WO2016088207A1 - 冷凍サイクル回路 - Google Patents

冷凍サイクル回路 Download PDF

Info

Publication number
WO2016088207A1
WO2016088207A1 PCT/JP2014/081895 JP2014081895W WO2016088207A1 WO 2016088207 A1 WO2016088207 A1 WO 2016088207A1 JP 2014081895 W JP2014081895 W JP 2014081895W WO 2016088207 A1 WO2016088207 A1 WO 2016088207A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
slide valve
screw compressor
refrigeration cycle
control device
Prior art date
Application number
PCT/JP2014/081895
Other languages
English (en)
French (fr)
Inventor
雅浩 神田
和幸 塚本
雅章 上川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/081895 priority Critical patent/WO2016088207A1/ja
Publication of WO2016088207A1 publication Critical patent/WO2016088207A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/48Rotary-piston pumps with non-parallel axes of movement of co-operating members
    • F04C18/50Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees
    • F04C18/52Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees of intermeshing engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation

Definitions

  • the present invention relates to a refrigeration cycle circuit using a screw compressor.
  • screw compressors single screw compressors, twin screw compressors, etc.
  • compressors used in refrigeration cycle circuits are known as compressors used in refrigeration cycle circuits.
  • a single screw compressor includes one screw rotor and two gate rotors, and has the following configuration. That is, in the single screw compressor, the screw rotor and the gate rotor are accommodated in the casing. A plurality of spiral grooves (screw grooves) are formed in the screw rotor, and the grooves (screw grooves) are engaged with and engaged with a pair of gate rotors arranged in the radial direction of the screw rotor. That is, the groove portion of the screw rotor becomes a compression chamber by being partitioned by the casing and the gate rotor. Further, a low pressure space and a high pressure space are formed in the casing.
  • the high-pressure space is a space that communicates with the discharge port and discharges the refrigerant compressed in the compression chamber.
  • the low pressure space is a space other than the high pressure space, such as a space where the refrigerant sucked into the compression chamber exists.
  • the screw rotor described above is fixed to the screw shaft.
  • one end side of the screw shaft is supported by the bearing support via a bearing disposed opposite to the discharge side of the screw rotor, and the other end side (suction side) is connected to the rotor of the motor. Yes.
  • the screw rotor is rotationally driven by a motor, the fluid in the low pressure space is sucked into the compression chamber and compressed, and the fluid compressed in the compression chamber is discharged into the high pressure space.
  • the groove portion of the screw rotor that is, the discharge flow path side where the compression chamber is opened becomes the high pressure space.
  • a space formed on the opposite side of the high-pressure space with the bearing support as the center is a low-pressure space. That is, since the high pressure space and the low pressure space are close to each other, a differential pressure is generated between them. Therefore, leakage of high-pressure fluid (such as refrigerant discharged from the compression chamber and lubricating oil mixed in the refrigerant) occurs from the high-pressure space side to the low-pressure space side through the gap between the screw rotor and the bearing support.
  • high-pressure fluid such as refrigerant discharged from the compression chamber and lubricating oil mixed in the refrigerant
  • a gap is required between the outer peripheral surface of the screw rotor and the casing (more specifically, the inner peripheral surface of the housing portion that houses the screw rotor) so that the screw rotor can be rotationally driven. For this reason, leakage of high-pressure fluid also occurs from this gap. When such high-pressure fluid leakage occurs, the operating efficiency of the single screw compressor decreases.
  • the gap between the screw rotor and the bearing support and the gap between the screw rotor and the casing are set small, It is effective to reduce leakage.
  • these gaps are set too small in order to suppress a decrease in operating efficiency of the single screw compressor, the following problems may occur. That is, the temperature of the refrigerant discharged from the compression chamber becomes high when the refrigeration cycle circuit is in an operating condition with a high differential pressure or when the frequency (rotational speed) of the single screw compressor is increased. Therefore, the screw rotor is thermally expanded. For this reason, the malfunction that a screw rotor contacts and a bearing support and a casing will generate
  • a cooling chamber (groove portion of the screw rotor) is formed from a flow path formed by cooling the lubricating oil in the casing or the like.
  • Patent Document 1 To suppress the rise in the temperature of the refrigerant discharged from the compression chamber has been proposed (see, for example, Patent Document 1).
  • the single screw compressor described in Patent Document 1 is a refrigerant that is injected from a flow path formed in a casing or the like into a compression chamber (a groove portion of a screw rotor) and discharged from the compression chamber.
  • the rise in temperature is suppressed.
  • the flow path for supplying the lubricating oil formed in the casing or the like is always in communication with the compression chamber.
  • the flow path for supplying the lubricating oil formed in the casing or the like becomes a volume portion (dead volume) that is wastedly compressed from low pressure to high pressure. End up. Therefore, the single screw compressor described in Patent Document 1 has a problem of causing dead volume loss (reexpansion loss) and reducing the performance of the single screw compressor.
  • the present invention has been made to solve the above-described problems, and provides a refrigeration cycle circuit capable of suppressing seizure of a screw rotor in a screw compressor and reducing dead volume loss of the screw compressor.
  • the purpose is to do.
  • the refrigeration cycle circuit includes a refrigerant circuit in which a screw compressor, a condenser, a decompression device, and an evaporator are sequentially connected, and a control device that controls the screw compressor.
  • a rotor and a slide valve provided movably in the slide groove of the casing, wherein the casing is formed with a refrigerant flow path communicating with the outside of the casing and the slide groove.
  • a refrigerant injection channel that penetrates from a surface facing the casing to a surface facing the screw rotor, and the refrigerant circuit Furthermore, a refrigerant supply pipe having one end connected to a refrigerant pipe between the condenser and the pressure reducing device and the other end connected to the refrigerant flow path of the screw compressor,
  • the refrigerant flow path of the casing communicates with the refrigerant injection flow path of the slide valve, and a refrigerant supply position for supplying the refrigerant to the compression chamber, or the refrigerant flow path of the casing and the slide
  • the slide valve is moved to a non-refrigerant supply position that does not communicate with the refrigerant injection passage of the valve and does not supply refrigerant to the compression chamber.
  • the screw rotor by moving the slide valve to the refrigerant supply position, the refrigerant can be supplied to the compression chamber, and an increase in the temperature of the refrigerant discharged from the screw compressor can be suppressed (the screw rotor can be cooled). . Therefore, according to the present invention, when it is necessary to cool the screw rotor by supplying the refrigerant to the compression chamber, the screw rotor is moved in the screw supply position by moving the slide valve to the refrigerant supply position, thereby the screw rotor in the screw compressor. It is possible to suppress seizure.
  • the communication between the compression chamber and the refrigerant supply flow path can be blocked by moving the slide valve to the non-refrigerant supply position. Therefore, according to the present invention, when it is not necessary to cool the screw rotor, the slide valve is moved to the non-refrigerant supply position, and the compression chamber and the refrigerant supply flow path (refrigerant supply pipe, the refrigerant flow path of the casing) By shutting off the communication with the screw compressor, it is possible to form the same state as that of the screw compressor not provided with the refrigerant supply flow path in the compression stroke. Therefore, the present invention can also reduce the dead volume loss generated in the refrigerant supply passage. Therefore, this invention can improve the performance of a screw compressor, ie, the performance of a refrigerating cycle circuit, compared with the past.
  • FIG. 1 is a refrigerant circuit diagram showing a refrigeration cycle circuit according to Embodiment 1 of the present invention.
  • the form of the component shown by the whole specification is an illustration to the last, and is not limited to these description.
  • the refrigeration cycle circuit 100 includes a refrigerant circuit 100a configured by sequentially connecting a screw compressor 102, a condenser 104, an expansion valve 105 that is a decompression device, and an evaporator 106 through refrigerant piping. I have.
  • This refrigeration cycle circuit 100 is used, for example, in a refrigeration apparatus. Of course, the refrigeration cycle circuit 100 may be used in other devices (such as an air conditioner and a water heater).
  • the screw compressor 102 sucks refrigerant and compresses the refrigerant to a high temperature and high pressure state.
  • the screw compressor 102 according to the first embodiment is a single screw compressor.
  • the screw compressor 102 is preferably of a type that can variably control the frequency (number of rotations) of the motor 2 of the screw compressor 102. Therefore, the refrigeration cycle circuit 100 according to the first embodiment includes an inverter 101 that is electrically connected to a power supply source (not shown), and the inverter 101 and the motor 2 are electrically connected.
  • the refrigeration cycle circuit 100 according to the first embodiment includes a control device 109 that controls the frequency of the motor 2 of the screw compressor 102, and the control device 109 and the inverter 101 are also electrically connected.
  • the control device 109 controls the screw compressor 102 and is configured to drive the motor 2 via the inverter 101. More specifically, the control device 109 controls the frequency of the motor 2 of the screw compressor 102 by controlling the frequency of the voltage supplied to the motor 2 by controlling the inverter 101.
  • the motor 2 is one of the configurations of the screw compressor 102, but the motor 2 may be configured differently from the screw compressor 102. That is, the motor 2 may be externally attached to the screw compressor 102. The detailed configuration of the screw compressor 102 will be described later.
  • the condenser 104 cools and condenses the refrigerant flowing through the condenser 104, that is, the gaseous refrigerant discharged from the screw compressor 102, depending on the heat exchange target (air, water, drain, etc.). .
  • the condenser 104 heats the heat exchange target (air, water, drain, etc.) with the refrigerant flowing inside the condenser 104.
  • the expansion valve 105 decompresses, for example, liquid refrigerant flowing out of the condenser 104 and expands it.
  • the opening degree of the expansion valve 105 is controlled by the control device 109.
  • the evaporator 106 heats and evaporates the refrigerant flowing inside the condenser 104, that is, the gas-liquid two-phase refrigerant expanded by the expansion valve 105, depending on the heat exchange target (air, water, drain, etc.). is there. In other words, the condenser 104 cools the heat exchange target (air, water, drain, etc.) with the refrigerant flowing inside the condenser 104.
  • the refrigeration cycle circuit 100 includes a refrigerant supply pipe 108 and a valve 107.
  • One end of the refrigerant supply pipe 108 is connected to the refrigerant pipe between the condenser 104 and the expansion valve 105, and the other end is connected to the screw compressor 102 (more specifically, a refrigerant flow path 1b described later). It is connected.
  • the valve 107 is, for example, an electromagnetic valve and an expansion valve, and opens and closes the refrigerant flow path in the refrigerant supply pipe 108.
  • the opening degree of the valve 107 is controlled by the control device 109.
  • the refrigeration cycle circuit 100 also includes a temperature sensor 201 that detects the temperature of the refrigerant discharged from the screw compressor 102.
  • the temperature sensor 201 is electrically connected to the control device 109.
  • the temperature sensor 201 corresponds to the temperature detection device of the present invention.
  • FIG. 2 is a cross-sectional view showing the screw compressor according to Embodiment 1 of the present invention.
  • the screw compressor 102 according to the first embodiment includes a casing 1, a screw rotor 3, a gate rotor 6, a motor 2, and the like.
  • the casing 1 accommodates the screw rotor 3, the gate rotor 6, the motor 2, and the like, and a substantially cylindrical accommodating portion 1 c that accommodates the screw rotor 3 is formed therein. Further, a discharge port 10 communicates with the accommodating portion 1c of the casing 1 (see FIG. 5 described later).
  • the substantially cylindrical screw rotor 3 is accommodated in the accommodating portion 1 c of the casing 1.
  • a groove 3a screw groove
  • the screw rotor 3 is provided with a screw shaft 4 as a drive shaft at the center axis (rotary shaft).
  • One end of the screw shaft 4 (left side in FIG. 2) is supported by a bearing support 4a via a bearing.
  • the other end (right side in FIG. 2) of the screw shaft 4 is connected to the rotor 2 b of the motor 2.
  • the motor 2 includes a stator 2a fixed to the casing 1 and a rotor 2b disposed inside the stator 2a. That is, the screw rotor 3 is configured to be rotationally driven by the motor 2 via the screw shaft 4.
  • the casing 1 is provided with a pair of gate rotors 6 on both sides (upper and lower sides in FIG. 2) of the accommodating portion 1c, that is, the screw rotor 3, so as to be rotatable.
  • These gate rotors 6 have a substantially disk shape, and a plurality of teeth portions that engage with and engage with the groove portions 3 a of the screw rotor 3 are formed on the outer peripheral portion thereof. That is, the groove portion 3 a of the screw rotor 3 is partitioned by the inner wall surface of the housing portion 1 c of the casing 1 and the gate rotor 6, thereby forming the compression chamber 5.
  • the casing 1 is partitioned by a partition wall (not shown) to form a low pressure space and a high pressure space.
  • the high-pressure space is a space that communicates with the discharge port 10 and discharges the refrigerant compressed in the compression chamber 5.
  • the low pressure space is a space other than the high pressure space, such as a space where the refrigerant sucked into the compression chamber 5 exists.
  • the discharge port 10 of the casing 1 is located at one end side of the screw rotor 3 (the left side in FIG. 2, that is, the bearing support 4 a side) in the rotational axis direction of the screw rotor 3. Is formed. That is, in this Embodiment 1, the range (bearing support 4a side) which becomes the said edge part side of the screw rotor 3 among the accommodating parts 1c of the casing 1 is a high voltage
  • a slide groove 1a is formed on the outer peripheral side of the accommodating portion 1c.
  • the slide groove 1 a is formed along the rotation axis of the screw rotor 3.
  • a slide valve 7 is movably provided in the slide groove 1a.
  • the slide valve 7 forms a compression chamber 5 by closing the groove 3a of the screw rotor 3, and thus forms a part of the inner peripheral surface of the accommodating portion 1c.
  • FIG. 2 shows an example in which one slide valve 7 is provided, a plurality of slide valves 7 may be provided.
  • the slide valve 7 is connected to a drive device 9 such as a piston via a connecting rod 8. For this reason, by driving the driving device 9, the slide valve 7 moves in the slide groove 1 a in the direction of the rotation axis of the screw rotor 3.
  • the movement of the slide valve 7, that is, the control of the driving device 9 is performed by the control device 109.
  • the drive device 9 drives with gas pressure, it does not limit a drive method, such as what drives with a hydraulic pressure, and what drives with a motor etc. separately from a piston.
  • the screw compressor 102 in the screw compressor 102 according to the first embodiment, the refrigerant flow path 1b that communicates the outside of the casing 1 and the slide groove 1a is formed in the casing 1.
  • the slide valve 7 is formed with a refrigerant injection channel 7 a that penetrates from a surface facing the casing 1 to a surface facing the screw rotor 3.
  • the refrigerant flow path 1b of the casing 1 is connected to the refrigerant supply pipe 108 described above.
  • the screw compressor 102 according to the first embodiment is configured as follows by moving the slide valve 7 by the control device 109.
  • FIG. 3 is an essential part enlarged cross-sectional view showing a state in which the slide valve has moved to the refrigerant supply position in the screw compressor according to Embodiment 1 of the present invention.
  • FIG. 4 is an enlarged cross-sectional view of a main part showing a state in which the slide valve is moved to the non-refrigerant supply position in the screw compressor. 3 and 4 show the vicinity of the slide valve 7 in the same cross section as FIG.
  • the control device 109 moves the slide valve 7 to, for example, the moving end on the suction port side (the moving end on the right side in FIG. 3, opposite to the discharge port 10), that is, the control device 109
  • the slide valve 7 When the slide valve 7 is moved to the refrigerant supply position, the refrigerant flow path 1b of the casing 1 and the refrigerant injection flow path 7a of the slide valve 7 communicate with each other.
  • the refrigerant flowing between the condenser 104 and the expansion valve 105 is supplied to the compression chamber 5 through the refrigerant supply pipe 108, the refrigerant flow path 1 b of the casing 1, and the refrigerant injection flow path 7 a of the slide valve 7. Is done. That is, when the control device 109 moves the slide valve 7 to the refrigerant supply position, the screw rotor 3 is cooled by the refrigerant.
  • the control device 109 moves the slide valve 7 to, for example, the moving end on the discharge port 10 side (left side in FIG. 4), the control device 109 moves the slide valve 7 to the non-refrigerant supply position.
  • the refrigerant flow path 1b of the casing 1 and the refrigerant injection flow path 7a of the slide valve 7 are not communicated with each other. That is, when the control device 109 moves the slide valve 7 to the refrigerant supply position, the refrigerant flowing between the condenser 104 and the expansion valve 105 is not supplied to the compression chamber 5.
  • FIG. 5 is a cross-sectional view for explaining the compression principle of the screw compressor according to the present invention.
  • 5A is a diagram showing the suction process
  • FIG. 5B is a diagram showing the compression process
  • FIG. 5C is a diagram showing the discharge process.
  • the screw rotor 3 is rotated by the motor 2 (see FIG. 2) via the screw shaft 4, so that the tooth portion of the gate rotor 6 relatively moves in the groove portion 3 a.
  • the suction stroke, the compression stroke, and the discharge stroke are set as one cycle, and this cycle is repeated.
  • FIG. 5 (a) when the screw rotor 3 is driven by the motor 2 and rotates in the direction of the solid arrow, a gaseous refrigerant (in the evaporator 106) flows into the low-pressure space from a suction port (not shown). Evaporated) is sucked into the compression chamber 5. Then, as shown in FIG. 5B, when the screw rotor 3 continues to rotate, the volume of the compression chamber 5 decreases.
  • a refrigerant for example, liquid refrigerant
  • a refrigerant injection passage 7a in the compression stroke.
  • the refrigerant cools the gaseous refrigerant in the compression chamber 5 (in other words, the screw rotor 3), is compressed together with the gaseous refrigerant, and is discharged to the outside in the discharge stroke.
  • the control device 109 moves the slide valve 7 of the screw compressor 102 based on the detection value of the temperature sensor 201. Specifically, the control device 109 moves the slide valve 7 as follows.
  • FIG. 6 is a flowchart showing the operation of the slide valve in the screw compressor according to Embodiment 1 of the present invention.
  • step S1 the control device 109 uses the temperature sensor 201 to detect the temperature of the refrigerant discharged from the screw compressor 102 ( In FIG. 6, “discharging refrigerant gas temperature” is detected. Then, the control device 109 compares the temperature of the refrigerant discharged from the screw compressor 102 with the target cooling temperature A (first set temperature). When the temperature of the refrigerant discharged from the screw compressor 102 is equal to or lower than the target cooling temperature A, the control device 109 moves the slide valve 7 to the non-refrigerant supply position (position shown in FIG. 4) in step S2.
  • the refrigerant supply pipe 108 and the refrigerant flow path 1b of the casing 1 are in communication with the compression chamber 5, the refrigerant supply pipe 108 and the refrigerant flow path 1b of the casing 1 are connected from low pressure to high pressure. It becomes the volume part (dead volume) compressed uselessly.
  • the high / low differential pressure of the refrigeration cycle circuit 100 refers to the refrigerant pressure (high pressure side pressure) from the discharge side of the screw compressor 102 to the inlet side of the expansion valve 105 and screw compression from the outlet side of the expansion valve 105. This is the pressure difference between the refrigerant pressure up to the suction side of the machine 102 (low pressure side pressure).
  • step S2 when the temperature of the refrigerant discharged from the screw compressor 102 is equal to or lower than the target cooling temperature A, in step S2, the control device 109 moves the slide valve 7 to the non-refrigerant supply position (shown in FIG. 4). Position).
  • the screw compressor 102 according to the first embodiment can form the same state as a screw compressor that does not have a refrigerant supply channel in the compression stroke.
  • step S1 when the temperature of the refrigerant discharged from the screw compressor 102 in step S1 is higher than the target cooling temperature A, the control device 109 moves the slide valve 7 to the refrigerant supply position (position shown in FIG. 3) in step S3.
  • the slide valve 7 is moved to the refrigerant supply position (position shown in FIG. 3).
  • the screw compressor 102 can cool the screw rotor 3 with the refrigerant supplied to the compression chamber 5 via the refrigerant supply pipe 108 and the like, the seizure of the screw rotor 3 can be suppressed, and the screw The reliability of the compressor 102 can be improved.
  • step S4 the control device 109 compares the temperature of the refrigerant discharged from the screw compressor 102 with the target cooling temperature B (second set temperature).
  • the control device 109 returns to step S3, and the slide valve 7 moves to the refrigerant supply position (position shown in FIG. 3).
  • the control device 109 proceeds to step S2 and moves the slide valve 7 to the non-refrigerant supply position (position shown in FIG. 4). .
  • the target cooling temperature B is set lower than the target cooling temperature A in the first embodiment. Thereby, after returning to step S1 from step S2, it can prevent that the temperature of the refrigerant
  • the refrigeration cycle circuit 100 according to the first embodiment needs to supply the refrigerant to the compression chamber 5 and cool the screw rotor 3, the slide valve 7 is moved to the refrigerant supply position. By cooling the screw rotor 3, seizure of the screw rotor 3 in the screw compressor 102 can be suppressed. Further, the refrigeration cycle circuit 100 according to the first embodiment moves the slide valve 7 to the non-refrigerant supply position when the screw rotor 3 does not need to be cooled, so that the compression chamber 5 and the refrigerant supply channel are moved.
  • the refrigeration cycle circuit 100 according to Embodiment 1 can also reduce dead volume loss that occurs in the refrigerant supply flow path. Therefore, the refrigeration cycle circuit 100 according to the first embodiment can also improve the performance of the screw compressor 102, that is, the performance of the refrigeration cycle circuit 100 as compared with the prior art.
  • the position where the slide valve 7 is moved to the moving end on the suction port side is defined as the refrigerant supply position.
  • the position where the slide valve 7 was moved to the moving end on the discharge port 10 side was defined as a non-refrigerant supply position.
  • these refrigerant supply positions and non-refrigerant supply positions are merely examples.
  • the position where the slide valve 7 is moved to the discharge end side moving end is the refrigerant supply position
  • the slide valve 7 is the suction end side moving end (right side in FIG. 7).
  • the position moved to the moving end opposite to the discharge port 10 may be set as the non-refrigerant supply position.
  • the control device 109 can switch between the refrigerant supply position and the non-refrigerant supply position simply by performing ON / OFF control of the drive device 9. For this reason, the position control of the slide valve 7 in the control device 109 becomes easy.
  • valve 107 is provided in the refrigerant supply pipe 108, but it is not particularly necessary to provide the valve 107. This is because the supply of refrigerant from the refrigerant supply pipe 108 to the compression chamber 5 can be stopped by setting the slide valve 7 to the non-refrigerant supply position.
  • a space for suppressing pulsation when the refrigerant flows may be formed in the refrigerant flow path 1b of the casing 1. Thereby, the dispersion
  • Embodiment 2 the position of the slide valve 7 of the screw compressor 102 is controlled based on the detection value of the temperature sensor 201. However, the position of the slide valve 7 may be controlled based on the detected value of the temperature sensor 201 and the pressure difference of the refrigeration cycle circuit 100.
  • differences from the first embodiment will be described, and configurations not described in the second embodiment are the same as those in the first embodiment.
  • FIG. 8 is a refrigerant circuit diagram showing a refrigeration cycle circuit according to Embodiment 2 of the present invention.
  • the refrigeration cycle circuit 100 according to the second embodiment includes a pressure sensor 202 and a pressure sensor 203 in addition to the configuration shown in the first embodiment.
  • the pressure sensor 202 detects the refrigerant pressure (high-pressure side pressure) between the discharge side of the screw compressor 102 and the inlet side of the expansion valve 105.
  • the pressure sensor 202 is provided in the refrigerant pipe between the discharge side of the screw compressor 102 and the condenser 104.
  • the pressure sensor 203 detects a refrigerant pressure (low pressure side pressure) between the outlet side of the expansion valve 105 and the suction side of the screw compressor 102.
  • the refrigerant pipe is provided between the evaporator 106 and the suction side of the screw compressor 102.
  • the pressure sensor 202 corresponds to the high pressure side pressure detection device of the present invention
  • the pressure sensor 203 corresponds to the low pressure side pressure detection device of the present invention.
  • control device 109 uses the detection values of the pressure sensor 202 and the pressure sensor 203 in addition to the detection values of the temperature sensor 201 to control the slide valve 7 of the screw compressor 102. Control the position. Specifically, the control device 109 controls the position of the slide valve 7 as follows.
  • FIG. 9 is a flowchart showing the operation of the slide valve in the screw compressor according to Embodiment 2 of the present invention.
  • step S1 the control device 109 uses the temperature sensor 201 to detect the temperature of the refrigerant discharged from the screw compressor 102 ( In FIG. 9, “discharged refrigerant gas temperature” is detected. Then, the control device 109 compares the temperature of the refrigerant discharged from the screw compressor 102 with the target cooling temperature A (first set temperature). When the temperature of the refrigerant discharged from the screw compressor 102 is equal to or lower than the target cooling temperature A, the control device 109 moves the slide valve 7 to the non-refrigerant supply position (position shown in FIG. 4) in step S2.
  • the refrigerant when the refrigeration cycle circuit 100 is in an operating condition with a small high / low differential pressure, or when the frequency (rotational speed) of the screw compressor 102 is decreased, the refrigerant is discharged from the compression chamber 5. Therefore, the refrigerant does not need to be supplied to the compression chamber 5 via the refrigerant supply pipe 108 or the like. In such a state, when the refrigerant supply pipe 108 and the refrigerant flow path 1b of the casing 1 are in communication with the compression chamber 5, the refrigerant supply pipe 108 and the refrigerant flow path 1b of the casing 1 are low pressure to high pressure. It becomes the volume part (dead volume) compressed uselessly.
  • the control device 109 controls the slide valve 7 in step S2. It is moved to the non-refrigerant supply position (position shown in FIG. 4). For this reason, the screw compressor 102 according to the second embodiment can form the same state as a screw compressor that does not have a refrigerant supply channel in the compression stroke.
  • step S1 when the temperature of the refrigerant discharged from the screw compressor 102 in step S1 is higher than the target cooling temperature A, the control device 109 moves the slide valve 7 to the refrigerant supply position (position shown in FIG. 3) in step S3.
  • the screw rotor 3 is thermally expanded. For this reason, there is a concern that the screw rotor 3 may come into contact with the bearing support 4a and the casing 1 and seize.
  • the slide valve 7 is moved to the refrigerant supply position (see FIG. 3). To the position shown).
  • the refrigerant flowing between the condenser 104 and the expansion valve 105 is supplied to the compression chamber 5 through the refrigerant supply pipe 108, the refrigerant flow path 1 b of the casing 1, and the refrigerant injection flow path 7 a of the slide valve 7. Is done. Therefore, since the screw compressor 102 according to the second embodiment can cool the screw rotor 3 with the refrigerant supplied to the compression chamber 5 via the refrigerant supply pipe 108 and the like, the seizure of the screw rotor 3 can be suppressed, and the screw The reliability of the compressor 102 can be improved.
  • step S4 the control device 109 compares the temperature of the refrigerant discharged from the screw compressor 102 with the target cooling temperature B (second set temperature).
  • the control device 109 proceeds to step S2 and moves the slide valve 7 to the non-refrigerant supply position (position shown in FIG. 4).
  • the control device 109 proceeds to step S5.
  • the target cooling temperature B is set lower than the target cooling temperature A as in the first embodiment.
  • step S5 the control device 109 compares the temperature of the refrigerant discharged from the screw compressor 102 with the target cooling temperature C (third set temperature).
  • the target cooling temperature C is higher than the target cooling temperature B and lower than the target cooling temperature A.
  • step S5 when the temperature of the refrigerant discharged from the screw compressor 102 is higher than the target cooling temperature C, the control device 109 returns to step S3, and the slide valve 7 is moved to the refrigerant supply position (position shown in FIG. 3). Keep moving.
  • the control device 109 proceeds to step S6.
  • step S6 the control device 109 detects the high pressure side pressure using the pressure sensor 202 and detects the low pressure side pressure using the pressure sensor 203. Then, the control device 109 calculates the difference between the high-pressure side pressure and the low-pressure side pressure (high-low pressure—low-pressure pressure, described as “high-low differential pressure” in FIG. 9). Thereafter, the control device 109 compares the difference between the high pressure side pressure and the low pressure side pressure with the set height difference pressure X (set pressure difference).
  • step S3 When the difference between the high-pressure side pressure and the low-pressure side pressure is larger than the set high-low pressure difference X, the control device 109 returns to step S3 and the slide valve 7 has moved to the refrigerant supply position (position shown in FIG. 3). Let the state continue.
  • the control device 109 proceeds to step S2 and moves the slide valve 7 to the non-refrigerant supply position (position shown in FIG. 4). .
  • the refrigerant supplied to the compression chamber 5 via the refrigerant supply pipe 108 and the like is unlikely to flow into the compression chamber 5.
  • the refrigerant supply pipe 108 and the refrigerant flow path 1b of the casing 1 are in communication with the compression chamber 5, no refrigerant is supplied to the compression chamber 5 from the refrigerant supply pipe 108 or the like.
  • the supply pipe 108 and the refrigerant flow path 1b of the casing 1 only become a volume portion (dead volume) that is wastedly compressed from a low pressure to a high pressure.
  • the control device 109 moves the slide valve 7 to the non-refrigerant supply position (position shown in FIG. 4). Move.
  • the screw compressor 102 according to the first embodiment can form the same state as a screw compressor that does not have a refrigerant supply channel in the compression stroke.
  • the refrigeration cycle circuit 100 according to the second embodiment controls the position of the slide valve 7 based on the detected value of the temperature sensor 201 and the pressure difference of the refrigeration cycle circuit 100. For this reason, the refrigeration cycle circuit 100 according to the second embodiment moves the slide valve 7 to the non-refrigerant supply position when the refrigerant is difficult to be supplied to the compression chamber 5 from the refrigerant supply pipe 108 or the like. It is also possible to reduce dead volume loss that occurs in the refrigerant supply flow path. Therefore, the refrigeration cycle circuit 100 according to the second embodiment can further improve the performance of the screw compressor 102, that is, the performance of the refrigeration cycle circuit 100, as compared with the first embodiment.
  • step S5 described in the second embodiment need not be provided. However, the following effects can be obtained by providing step S5.
  • a state where the difference between the high pressure side pressure and the low pressure side pressure is equal to or less than the set high / low pressure difference X that is, a state where the difference between the high pressure side pressure and the low pressure side pressure is small is the temperature of the refrigerant discharged from the screw compressor 102. It is in a state of gradually decreasing. That is, this state is a state in which the seizure of the screw rotor 3 does not occur even if the refrigerant is not supplied to the compression chamber 5 from the refrigerant supply pipe 108 or the like.
  • step S5 the slide valve 7 can be brought into the non-cooling position in a state where the temperature of the refrigerant discharged from the screw compressor 102 is higher than the target cooling temperature B but the screw rotor 3 is not seized. . For this reason, it is possible to further reduce the dead volume loss that occurs in the refrigerant supply passage. Therefore, the performance of the screw compressor 102, that is, the performance of the refrigeration cycle circuit 100 can be further improved.
  • the frequency of the screw compressor 102 when the position of the slide valve 7 is controlled, the frequency of the screw compressor 102 (more specifically, the frequency of the screw rotor 3) may be further used. This is because the frequency of the screw compressor 102 has a corresponding relationship with the temperature of the refrigerant discharged from the screw compressor 102 and the high / low differential pressure of the refrigeration cycle circuit 100. Specifically, when the slide valve 7 is moved to the refrigerant supply position, the control device 109 moves the slide valve 7 to the non-refrigerant supply position when the frequency of the screw rotor 3 of the screw compressor 102 is equal to or lower than the set frequency. It is good to let them.
  • the slide valve 7 By controlling the slide valve 7 in this manner, the time during which the slide valve 7 is in the non-cooling position becomes longer, and the performance of the screw compressor 102, that is, the performance of the refrigeration cycle circuit 100 can be further improved. . Since the frequency of the screw rotor 3 of the screw compressor 102 is controlled by the control device 109, it can be grasped by the control device 109. For this reason, it is not particularly necessary to provide a detection device for detecting the frequency of the screw rotor 3 of the screw compressor 102.
  • the present invention has been described using the screw compressor 102 that is a single screw compressor.
  • the present invention can also be implemented in a twin screw compressor that includes two screw rotors and that forms a compression chamber by meshing the groove portions of these screw rotors.
  • 1 casing 1a slide groove, 1b refrigerant flow path, 1c accommodating part, 2 motor, 2a stator, 2b rotor, 3 screw rotor, 3a groove part, 4 screw shaft, 4a bearing support, 5 compression chamber, 6 gate rotor, 7 slide Valve, 7a Refrigerant injection channel, 8 connecting rod, 9 drive unit, 10 outlet, 100 refrigeration cycle circuit, 100a refrigerant circuit, 101 inverter, 102 screw compressor, 104 condenser, 105 expansion valve, 106 evaporator, 107 Valve, 108 refrigerant supply pipe, 109 control device, 201 temperature sensor, 202 pressure sensor, 203 pressure sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

 冷凍サイクル回路100のスクリュー圧縮機102は、冷媒流路1bがケーシング1形成され、冷媒注入流路7aがスライドバルブ7に形成されている。冷凍サイクル回路100は、さらに、一方の端部が凝縮器104と膨張弁105との間の冷媒配管に接続され、他方の端部がスクリュー圧縮機102の冷媒流路1bに接続された冷媒供給配管108を備えている。冷凍サイクル回路100の制御装置109は、冷媒流路1bと冷媒注入流路7aとが連通し、圧縮室5に冷媒を供給する冷媒供給位置、あるいは、冷媒流路1bと冷媒注入流路7aとが連通せず、圧縮室5に冷媒を供給しない非冷媒供給位置に、スライドバルブ7を移動させる構成になっている。

Description

冷凍サイクル回路
 本発明は、スクリュー圧縮機を用いた冷凍サイクル回路に関するものである。
 従来、冷凍サイクル回路に用いられる圧縮機として、スクリュー圧縮機(シングルスクリュー圧縮機、ツインスクリュー圧縮機等)が知られている。
 例えばシングルスクリュー圧縮機は、1つのスクリューロータと2つのゲートロータとを備え、以下のような構成となっている。すなわち、シングルスクリュー圧縮機は、スクリューロータとゲートロータがケーシング内に収容されている。スクリューロータには複数の螺旋状の溝部(スクリュー溝)が形成されており、この溝部(スクリュー溝)はスクリューロータの径方向に配置された一対のゲートロータと噛み合い係合している。つまり、スクリューロータの溝部は、ケーシング及びゲートロータによって仕切られることにより、圧縮室となる。また、ケーシング内には、低圧空間と高圧空間とが形成される。ここで、高圧空間とは、吐出口と連通し、圧縮室で圧縮された冷媒が吐出される空間である。また、低圧空間とは、圧縮室に吸入される冷媒が存在する空間等、高圧空間以外の空間である。
 上述のスクリューロータはスクリュー軸に固定されている。また、スクリュー軸の一端側は、スクリューロータの吐出側に対向して配置している軸受を介して軸受サポートに支持されているとともに、他端側(吸込側)はモータのロータに連結されている。そして、スクリューロータがモータにより回転駆動されると、低圧空間内の流体が圧縮室へ吸入されて圧縮され、圧縮室内で圧縮された流体が高圧空間へ吐出される構成となっている。
 このように構成された従来のシングルスクリュー圧縮機においては、運転時、スクリューロータの溝部、つまり、圧縮室が開口される吐出流路側が高圧空間となる。また、軸受サポートを中心として、当該高圧空間の反対側に形成される空間は低圧空間となる。すなわち、この高圧空間と低圧空間とが近傍にあるため、これらの間に差圧が発生する。したがって、スクリューロータと軸受サポートとの隙間を通って、高圧空間側から低圧空間側へ高圧流体(圧縮室から吐出された冷媒、及び、該冷媒に混入した潤滑油等)の漏れが生じる。また、スクリューロータの外周面とケーシング(より詳しくは、スクリューロータを収容する収容部の内周面)との間には、スクリューロータが回転駆動できるための隙間が必要である。このため、この隙間からも高圧流体の漏れが生じる。このような高圧流体の漏れが生じると、シングルスクリュー圧縮機の運転効率は低下する。
 このような場合、シングルスクリュー圧縮機の運転効率の低下を抑制するためには、スクリューロータと軸受サポートとの間の隙間、及び、スクリューロータとケーシングとの間の隙間を小さく設定し、高圧流体の漏れを少なくすることが有効である。しかしながら、シングルスクリュー圧縮機の運転効率の低下を抑制するためにこれらの隙間を過度に小さく設定すると、以下のような不具合が発生してしまうことがある。すなわち、冷凍サイクル回路が高低差圧の大きい運転条件になっている場合、及び、シングルスクリュー圧縮機の周波数(回転数)を増加させた場合等、圧縮室から吐出される冷媒の温度が高くなるため、スクリューロータが熱膨張する。このため、スクリューロータが軸受サポート及びケーシングと接触して焼き付くという不具合が発生してしまい、シングルスクリュー圧縮機の信頼性が低下してしまうことがある。
 そこで、従来のシングルスクリュー圧縮機には、スクリューロータが軸受サポート及びケーシングと接触し焼き付くという不具合を防止するために、冷却した潤滑油をケーシング等に形成した流路から圧縮室(スクリューロータの溝部)へ注入して、圧縮室から吐出される冷媒の温度の上昇を抑制するものが提案されている(例えば特許文献1参照)。
実開昭63-130686号公報
 上述のように、特許文献1に記載のシングルスクリュー圧縮機は、冷却した潤滑油をケーシング等に形成した流路から圧縮室(スクリューロータの溝部)へ注入して、圧縮室から吐出される冷媒の温度の上昇を抑制している。このとき、冷凍サイクル回路が高低差圧の小さい運転条件になっている場合、及び、シングルスクリュー圧縮機の周波数(回転数)を減少させた場合等には、圧縮室から吐出される冷媒の温度が低くなるため、圧縮室へ潤滑油を注入する必要がない状態となる。しかしながら、特許文献1に記載のシングルスクリュー圧縮機においては、ケーシング等に形成された潤滑油を供給するための流路が、常時、圧縮室と連通した状態となっている。このため、特許文献1に記載のシングルスクリュー圧縮機においては、ケーシング等に形成された潤滑油を供給するための流路が、低圧から高圧まで無駄に圧縮される容積部(デッドボリューム)となってしまう。したがって、特許文献1に記載のシングルスクリュー圧縮機は、デッドボリューム損失(再膨張損失)を発生させ、シングルスクリュー圧縮機の性能を低下させてしまうという課題があった。
 本発明は、上記のような課題を解決するためになされたものであり、スクリュー圧縮機においてスクリューロータの焼き付きを抑制でき、スクリュー圧縮機のデッドボリューム損失も低減させることができる冷凍サイクル回路を提供することを目的とする。
 本発明に係る冷凍サイクル回路は、スクリュー圧縮機、凝縮器、減圧装置及び蒸発器が順次接続された冷媒回路と、前記スクリュー圧縮機を制御する制御装置と、を備え、前記スクリュー圧縮機は、収容部が内部に形成され、該収容部の外周側にスライド溝が形成されたケーシングと、前記ケーシングの前記収容部に回転自在に収容され、外周部に圧縮室となる溝部が形成されたスクリューロータと、前記ケーシングの前記スライド溝に移動自在に設けられたスライドバルブと、を備え、前記ケーシングには、該ケーシングの外部と前記スライド溝とを連通する冷媒流路が形成され、前記スライドバルブには、前記ケーシングと対向する側の面から前記スクリューロータと対向する側の面に貫通する冷媒注入流路が形成され、前記冷媒回路は、さらに、一方の端部が前記凝縮器と前記減圧装置との間の冷媒配管に接続され、他方の端部が前記スクリュー圧縮機の前記冷媒流路に接続された冷媒供給配管を備え、前記制御装置は、前記ケーシングの前記冷媒流路と前記スライドバルブの前記冷媒注入流路とが連通し、前記圧縮室に冷媒を供給する冷媒供給位置、あるいは、前記ケーシングの前記冷媒流路と前記スライドバルブの前記冷媒注入流路とが連通せず、前記圧縮室に冷媒を供給しない非冷媒供給位置に、前記スライドバルブを移動させる構成になっているものである。
 本発明においては、スライドバルブを冷媒供給位置に移動させることにより、圧縮室に冷媒を供給し、スクリュー圧縮機から吐出される冷媒の温度の上昇を抑制できる(スクリューロータを冷却することができる)。このため、本発明は、圧縮室に冷媒を供給してスクリューロータを冷却する必要があるとき、スライドバルブを冷媒供給位置に移動させて、スクリューロータを冷却することにより、スクリュー圧縮機においてスクリューロータの焼き付きを抑制できる。
 また、本発明においては、スライドバルブを非冷媒供給位置に移動させることにより、圧縮室と冷媒の供給流路(冷媒供給配管、ケーシングの冷媒流路)との連通を遮断することができる。このため、本発明は、スクリューロータを冷却する必要が無い場合には、スライドバルブを非冷媒供給位置に移動させて、圧縮室と冷媒の供給流路(冷媒供給配管、ケーシングの冷媒流路)との連通を遮断することにより、圧縮行程において冷媒の供給流路を設けていないスクリュー圧縮機と同じ状態を形成することができる。したがって、本発明は、冷媒の供給流路で発生するデッドボリューム損失も低減させることができる。したがって、本発明は、スクリュー圧縮機の性能、つまり、冷凍サイクル回路の性能を従来よりも向上させることができる。
本発明の実施の形態1に係る冷凍サイクル回路を示す冷媒回路図である。 本発明の実施の形態1に係るスクリュー圧縮機を示す断面図である。 本発明の実施の形態1に係るスクリュー圧縮機において、スライドバルブが冷媒供給位置に移動した状態を示す要部拡大断面図である。 本発明の実施の形態1に係るスクリュー圧縮機において、スライドバルブが非冷媒供給位置に移動した状態を示す要部拡大断面図である。 本発明の実施のスクリュー圧縮機の圧縮原理を説明するための断面図である。 本発明の実施の形態1に係るスクリュー圧縮機におけるスライドバルブの動作を示すフローチャートである。 本発明の実施の形態1に係るスクリュー圧縮機の別の一例を示す要部拡大断面図である。 本発明の実施の形態2に係る冷凍サイクル回路を示す冷媒回路図である。 本発明の実施の形態2に係るスクリュー圧縮機におけるスライドバルブの動作を示すフローチャートである。
実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍サイクル回路を示す冷媒回路図である。なお、明細書全文に示されている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
 本実施の形態1に係る冷凍サイクル回路100は、スクリュー圧縮機102、凝縮器104、減圧装置である膨張弁105、及び、蒸発器106が順次冷媒配管で接続されて構成された冷媒回路100aを備えている。この冷凍サイクル回路100は、例えば冷凍装置に用いられる。なお、冷凍サイクル回路100をその他の装置(空気調和装置、給湯機等)に用いても勿論よい。
 スクリュー圧縮機102は、冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にするものである。また、本実施の形態1に係るスクリュー圧縮機102は、シングルスクリュー圧縮機である。このスクリュー圧縮機102は、該スクリュー圧縮機102のモータ2の周波数(回転数)を可変に制御可能なタイプのものが好ましい。このため、本実施の形態1に係る冷凍サイクル回路100は、図示せぬ電力供給源に電気的に接続されたインバータ101を備え、該インバータ101とモータ2とを電気的に接続している。また、本実施の形態1に係る冷凍サイクル回路100は、スクリュー圧縮機102のモータ2の周波数を制御する制御装置109を備え、該制御装置109及びインバータ101も電気的に接続されている。つまり、本実施の形態1に係る制御装置109は、スクリュー圧縮機102を制御するものであり、インバータ101を介してモータ2を駆動させる構成となっている。より詳しくは、制御装置109は、インバータ101を制御してモータ2に供給する電圧の周波数を制御することにより、スクリュー圧縮機102のモータ2の周波数を制御している。
 なお、本実施の形態1では、モータ2をスクリュー圧縮機102の構成の1つとしたが、モータ2をスクリュー圧縮機102とは別の構成としてもよい。すなわち、モータ2をスクリュー圧縮機102に外付けしてもよい。
 また、スクリュー圧縮機102の詳細な構成については後述する。
 凝縮器104は、熱交換対象(空気、水、ドレイン等)によって、該凝縮器104の内部を流れる冷媒、つまりスクリュー圧縮機102から吐出されたガス状の冷媒を冷却して凝縮させるものである。換言すると、凝縮器104は、該凝縮器104の内部を流れる冷媒によって、熱交換対象(空気、水、ドレイン等)を加熱するものである。
 膨張弁105は、凝縮器104から流出した例えば液状の冷媒を、減圧して膨張させるものである。なお、膨張弁105の開度は、制御装置109によって制御される。
 蒸発器106は、熱交換対象(空気、水、ドレイン等)によって、該凝縮器104の内部を流れる冷媒、つまり膨張弁105で膨張した気液二相状態の冷媒を加熱して蒸発させるものである。換言すると、凝縮器104は、該凝縮器104の内部を流れる冷媒によって、熱交換対象(空気、水、ドレイン等)を冷却するものである。
 さらに、本実施の形態1に係る冷凍サイクル回路100は、冷媒供給配管108及び弁107を備えている。冷媒供給配管108は、一方の端部が凝縮器104と膨張弁105との間の冷媒配管に接続され、他方の端部がスクリュー圧縮機102(より詳しくは、後述の冷媒流路1b)に接続されている。弁107は、例えば電磁弁及び膨張弁等であり、冷媒供給配管108内の冷媒流路を開閉するものである。なお、弁107の開度は、制御装置109によって制御される。
 また、冷凍サイクル回路100は、スクリュー圧縮機102から吐出された冷媒の温度を検出する温度センサー201を備えている。この温度センサー201は、制御装置109と電気的に接続されている。
 ここで、温度センサー201が、本発明の温度検出装置に相当する。
(スクリュー圧縮機102の詳細構成)
 続いて、スクリュー圧縮機102の詳細構成について説明する。
 図2は、本発明の実施の形態1に係るスクリュー圧縮機を示す断面図である。
 本実施の形態1に係るスクリュー圧縮機102は、ケーシング1、スクリューロータ3、ゲートロータ6、及び、モータ2等を備えている。
 ケーシング1は、スクリューロータ3、ゲートロータ6、及びモータ2等を収容するものであり、その内部には、スクリューロータ3を収容する略円筒状の収容部1cが形成されている。また、ケーシング1の収容部1cには、吐出口10が連通している(後述の図5参照)。
 ケーシング1の収容部1cには、略円筒形状のスクリューロータ3が収容されている。このスクリューロータ3の外周面には、溝部3a(スクリュー溝)が螺旋状に形成されている。また、スクリューロータ3には、その中心軸(回転軸)に駆動軸であるスクリュー軸4が設けられている。このスクリュー軸4の一方の端部(図2の左側)は、軸受を介して軸受サポート4aに支持されている。また、スクリュー軸4の他端(図2の右側)はモータ2のロータ2bに連結されている。このモータ2は、ケーシング1に固定されたステータ2aと、ステータ2aの内側に配設されたロータ2bとから構成されている。つまり、スクリューロータ3は、スクリュー軸4を介して、モータ2に回転駆動される構成となっている。
 また、ケーシング1には、収容部1cつまりスクリューロータ3の両側(図2の上下)に、一対のゲートロータ6が回転自在に設けられている。これらゲートロータ6は略円板形状をしており、その外周部には、スクリューロータ3の溝部3aに噛み合い係合する複数の歯部が形成されている。つまり、スクリューロータ3の溝部3aは、ケーシング1の収容部1cの内壁面及びゲートロータ6によって仕切られることにより、圧縮室5となる。
 また、ケーシング1内は、図示せぬ隔壁によって区画され、低圧空間と高圧空間とが形成される。ここで、高圧空間とは、吐出口10と連通し、圧縮室5で圧縮された冷媒が吐出される空間である。また、低圧空間とは、圧縮室5に吸入される冷媒が存在する空間等、高圧空間以外の空間である。なお、本実施の形態1では、ケーシング1の吐出口10は、スクリューロータ3の回転軸方向において、スクリューロータ3の一方の端部側(図2における左側、つまり軸受サポート4a側)となる位置に形成されている。つまり、本実施の形態1では、ケーシング1の収容部1cのうち、スクリューロータ3の当該端部側となる範囲(軸受サポート4a側)が、高圧空間となっている。
 また、ケーシング1内には、収容部1cの外周側にスライド溝1aが形成されている。本実施の形態1では、スライド溝1aは、スクリューロータ3の回転軸に沿って形成されている。そして、このスライド溝1aには、スライドバルブ7が移動自在に設けられている。スライドバルブ7は、スクリューロータ3の溝部3aを塞いで圧縮室5を形成するため、収容部1cの内周面の一部を形成している。
 なお、図2ではスライドバルブ7を1つ設けた例を示しているが、複数のスライドバルブ7を設けてもよい。
 このスライドバルブ7は、連結棒8を介して、ピストン等の駆動装置9に接続されている。このため、駆動装置9を駆動させることにより、スライド溝1a内をスライドバルブ7がスクリューロータ3の回転軸方向に移動する。このスライドバルブ7の移動、つまり、駆動装置9の制御は、制御装置109によって行われる。
 なお、駆動装置9は、ガス圧で駆動するも、油圧で駆動するもの、及び、ピストンとは別にモータ等により駆動するもの等、駆動方法を限定しない。
 さらに、本実施の形態1に係るスクリュー圧縮機102は、ケーシング1に、該ケーシング1の外部とスライド溝1aとを連通する冷媒流路1bが形成されている。また、スライドバルブ7には、ケーシング1と対向する側の面からスクリューロータ3と対向する側の面に貫通する冷媒注入流路7aが形成されている。そして、ケーシング1の冷媒流路1bは、上述の冷媒供給配管108に接続されている。このため、本実施の形態1に係るスクリュー圧縮機102は、制御装置109によってスライドバルブ7を移動させることにより、以下のような構成となる。
 図3は、本発明の実施の形態1に係るスクリュー圧縮機において、スライドバルブが冷媒供給位置に移動した状態を示す要部拡大断面図である。また、図4は、このスクリュー圧縮機において、スライドバルブが非冷媒供給位置に移動した状態を示す要部拡大断面図である。なお、これら図3,4は、図2と同じ断面において、スライドバルブ7近傍を示したものである。
 図3に示すように、制御装置109がスライドバルブ7を例えば吸入口側の移動端(図3における右側、吐出口10とは反対側の移動端)に移動させると、つまり、制御装置109がスライドバルブ7を冷媒供給位置に移動させると、ケーシング1の冷媒流路1bとスライドバルブ7の冷媒注入流路7aとが連通する状態となる。これにより、冷媒供給配管108、ケーシング1の冷媒流路1b、及び、スライドバルブ7の冷媒注入流路7aを介して、凝縮器104と膨張弁105との間を流れる冷媒が圧縮室5に供給される。つまり、制御装置109がスライドバルブ7を冷媒供給位置に移動させることにより、スクリューロータ3が冷媒に冷却される状態となる。
 一方、図4に示すように、制御装置109がスライドバルブ7を例えば吐出口10側の移動端(図4における左側)に移動させると、つまり、制御装置109がスライドバルブ7を非冷媒供給位置に移動させると、ケーシング1の冷媒流路1bとスライドバルブ7の冷媒注入流路7aとが連通しない状態となる。すなわち、制御装置109がスライドバルブ7を冷媒供給位置に移動させることにより、凝縮器104と膨張弁105との間を流れる冷媒が圧縮室5に供給されない状態となる。
(動作説明)
 続いて、本実施の形態1におけるスクリュー圧縮機102の動作について説明する。
 まず、スクリュー圧縮機102の圧縮動作について説明する。
 図5は、本発明の実施のスクリュー圧縮機の圧縮原理を説明するための断面図である。なお、図5(a)は吸入工程を示す図であり、図5(b)は圧縮行程を示す図であり、図5(c)は吐出工程を示す図である。
 図2に示したように、スクリューロータ3がモータ2(図2参照)によりスクリュー軸4を介して回転させられることで、ゲートロータ6の歯部が溝部3a内を相対的に移動する。これにより、圧縮室5内では吸入行程、圧縮行程及び吐出行程を一サイクルとして、このサイクルを繰り返すようになっている。
 詳しくは、図5(a)に示すように、スクリューロータ3がモータ2により駆動されて実線矢印の方向に回転すると、図示せぬ吸入口から低圧空間に流入したガス状冷媒(蒸発器106で蒸発した)は、圧縮室5内に吸入される。そして、図5(b)に示すように、引き続きスクリューロータ3が回転すると、圧縮室5の容積が縮小する。
 さらに、図5(c)に示すように、図5(b)の状態から引き続きスクリューロータ3が回転すると、圧縮室5が吐出口10に連通する。これにより、圧縮室5内で圧縮された高圧のガス状冷媒が、吐出口10より外部へ吐出される。そして、再びスクリューロータ3の背面で同様の圧縮が行われる。
 なお、図5ではスライドバルブ7及びスライド溝1aの図示を省略しているが、スライドバルブ7が冷媒供給位置に移動している場合、圧縮行程において冷媒注入流路7aより冷媒(例えば液状冷媒)が圧縮室5に流入する。そして、当該冷媒は、圧縮室5内のガス状冷媒(換言すると、スクリューロータ3)を冷却し、ガス状冷媒と一緒に圧縮され、吐出行程において外部に吐出される。
 次に、本実施の形態1に係るスクリュー圧縮機102におけるスライドバルブ7の動作について説明する。本実施の形態1においては、制御装置109は、温度センサー201の検出値に基づいて、スクリュー圧縮機102のスライドバルブ7を移動させている。詳しくは、制御装置109は、以下のようにスライドバルブ7を移動させている。
 図6は、本発明の実施の形態1に係るスクリュー圧縮機におけるスライドバルブの動作を示すフローチャートである。
 冷凍サイクル回路100の運転が開始されると、つまり、スクリュー圧縮機102が駆動されると、ステップS1において制御装置109は、温度センサー201を用い、スクリュー圧縮機102から吐出された冷媒の温度(図6では「吐出冷媒ガス温度」と記載)を検出する。そして、制御装置109は、スクリュー圧縮機102から吐出された冷媒の温度と目標冷却温度A(第1設定温度)とを比較する。スクリュー圧縮機102から吐出された冷媒の温度が目標冷却温度A以下の場合、ステップS2において制御装置109は、スライドバルブ7を非冷媒供給位置(図4に示す位置)に移動させる。
 ここで、冷凍サイクル回路100が高低差圧の小さい運転条件になっている場合、及び、スクリュー圧縮機102の周波数(回転数)を減少させた場合等には、圧縮室5から吐出される冷媒の温度が低くなるため、冷媒供給配管108等を介して圧縮室5へ冷媒を供給する必要がない状態となる。このような状態において、冷媒供給配管108及びケーシング1の冷媒流路1bが圧縮室5と連通した状態になっていると、冷媒供給配管108及びケーシング1の冷媒流路1bは、低圧から高圧まで無駄に圧縮される容積部(デッドボリューム)となってしまう。つまり、このような状態において、冷媒供給配管108及びケーシング1の冷媒流路1bが圧縮室5と連通した状態になっていると、スクリュー圧縮機102は、デッドボリューム損失(再膨張損失)が発生し、性能が低下してしまう。
 なお、冷凍サイクル回路100の高低差圧とは、スクリュー圧縮機102の吐出側から膨張弁105の入口側までの間の冷媒の圧力(高圧側圧力)と、膨張弁105の出口側からスクリュー圧縮機102の吸入側までの間の冷媒の圧力(低圧側圧力)と、の間の圧力差のことである。
 しかしながら、本実施の形態1では、スクリュー圧縮機102から吐出された冷媒の温度が目標冷却温度A以下の場合、ステップS2において制御装置109は、スライドバルブ7を非冷媒供給位置(図4に示す位置)に移動させる。このため、本実施の形態1に係るスクリュー圧縮機102は、圧縮行程において冷媒の供給流路を設けていないスクリュー圧縮機と同じ状態を形成することができる。
 一方、ステップS1においてスクリュー圧縮機102から吐出された冷媒の温度が目標冷却温度Aよりも大きい場合、ステップS3において制御装置109は、スライドバルブ7を冷媒供給位置(図3に示す位置)に移動させる。
 ここで、冷凍サイクル回路100が高低差圧の大きい運転条件になっている場合、及び、スクリュー圧縮機102の周波数(回転数)を増加させた場合等、圧縮室5から吐出される冷媒の温度が高くなるため、スクリューロータ3が熱膨張する。このため、スクリューロータ3が軸受サポート4a及びケーシング1と接触して焼き付くことが懸念される。しかしながら、本実施の形態1では、スクリュー圧縮機102から吐出された冷媒の温度が目標冷却温度Aよりも大きい場合、スライドバルブ7を冷媒供給位置(図3に示す位置)に移動させる。つまり、これにより、冷媒供給配管108、ケーシング1の冷媒流路1b、及び、スライドバルブ7の冷媒注入流路7aを介して、凝縮器104と膨張弁105との間を流れる冷媒が圧縮室5に供給される。したがって、本実施の形態1に係るスクリュー圧縮機102は、冷媒供給配管108等を介して圧縮室5に供給される冷媒によってスクリューロータ3を冷却できるので、スクリューロータ3の焼き付きを抑制でき、スクリュー圧縮機102の信頼性を向上させることができる。
 再び図6に戻ると、ステップS3の後、ステップS4において制御装置109は、スクリュー圧縮機102から吐出された冷媒の温度と目標冷却温度B(第2設定温度)とを比較する。そして、制御装置109は、スクリュー圧縮機102から吐出された冷媒の温度が目標冷却温度Bよりも大きい場合、ステップS3に戻り、スライドバルブ7が冷媒供給位置(図3に示す位置)に移動している状態を継続させる。一方、制御装置109は、スクリュー圧縮機102から吐出された冷媒の温度が目標冷却温度B以下の場合、ステップS2に進み、スライドバルブ7を非冷媒供給位置(図4に示す位置)に移動させる。
 なお、目標冷却温度Bとして目標冷却温度Aと同じ値を用いてもよいが、本実施の形態1では、目標冷却温度Bを目標冷却温度Aよりも低い値としている。これにより、ステップS2からステップS1に戻った後、スクリュー圧縮機102から吐出された冷媒の温度がすぐに目標冷却温度Aよりも大きくなること、つまり、スライドバルブ7がハンチングすることを防止できる。
 以上のように、本実施の形態1に係る冷凍サイクル回路100は、圧縮室5に冷媒を供給してスクリューロータ3を冷却する必要があるとき、スライドバルブ7を冷媒供給位置に移動させて、スクリューロータ3を冷却することにより、スクリュー圧縮機102においてスクリューロータ3の焼き付きを抑制できる。
 また、本実施の形態1に係る冷凍サイクル回路100は、スクリューロータ3を冷却する必要が無い場合には、スライドバルブ7を非冷媒供給位置に移動させて、圧縮室5と冷媒の供給流路(冷媒供給配管108、及び、ケーシング1の冷媒流路1b)との連通を遮断することにより、圧縮行程において冷媒の供給流路を設けていないスクリュー圧縮機と同じ状態を形成することができる。したがって、本実施の形態1に係る冷凍サイクル回路100は、冷媒の供給流路で発生するデッドボリューム損失も低減させることができる。したがって、本実施の形態1に係る冷凍サイクル回路100は、スクリュー圧縮機102の性能、つまり、冷凍サイクル回路100の性能を従来よりも向上させることもできる。
 なお、本実施の形態1では、スライドバルブ7を吸入口側の移動端(図3における右側、吐出口10とは反対側の移動端)に移動させた位置を、冷媒供給位置とした。また、スライドバルブ7を吐出口10側の移動端(図4における左側)に移動させた位置を、非冷媒供給位置とした。しかしながら、これら冷媒供給位置及び非冷媒供給位置は、あくまでも一例である。例えば図7に示すように、スライドバルブ7を吐出口側の移動端(図7における左側)に移動させた位置を冷媒供給位置とし、スライドバルブ7を吸入口側の移動端(図7における右側、吐出口10とは反対側の移動端)に移動させた位置を非冷媒供給位置としてもよい。スライドバルブ7の移動端を冷媒供給位置にすることにより、制御装置109は、駆動装置9をON・OFF制御するだけで、冷媒供給位置と非冷媒供給位置とを切り替えることができる。このため、制御装置109におけるスライドバルブ7の位置制御が容易となる。
 また、本実施の形態1では、冷媒供給配管108に弁107を設けたが、弁107を設ける必要は特にない。スライドバルブ7を非冷媒供給位置にすることで、冷媒供給配管108から圧縮室5へ冷媒が供給されることを停止できるからである。
 また、本実施の形態1では特に言及しなかったが、ケーシング1の冷媒流路1bに、冷媒が流れる際の脈動を抑制する空間を形成してもよい。これにより、圧縮室5に供給される冷媒量のばらつきを抑制することができる。
実施の形態2.
 実施の形態1では、温度センサー201の検出値に基づいて、スクリュー圧縮機102のスライドバルブ7の位置を制御していた。これに限らず、温度センサー201の検出値、及び、冷凍サイクル回路100の高低差圧に基づいてスライドバルブ7の位置を制御してもよい。
 なお、本実施の形態2では実施の形態1との差異点を説明するものとし、本実施の形態2で説明されていない構成は実施の形態1と同様である。
 図8は、本発明の実施の形態2に係る冷凍サイクル回路を示す冷媒回路図である。
 本実施の形態2に係る冷凍サイクル回路100は、実施の形態1で示した構成に加え、圧力センサー202及び圧力センサー203を備えている。
 圧力センサー202は、スクリュー圧縮機102の吐出側から膨張弁105の入口側までの間の冷媒の圧力(高圧側圧力)を検出するものである。本実施の形態2では、圧力センサー202は、スクリュー圧縮機102の吐出側と凝縮器104との間の冷媒配管に設けられている。また、圧力センサー203は、膨張弁105の出口側からスクリュー圧縮機102の吸入側までの間の冷媒の圧力(低圧側圧力)を検出するものである。本実施の形態2では、蒸発器106とスクリュー圧縮機102の吸入側との間の冷媒配管に設けられている。
 ここで、圧力センサー202が本発明の高圧側圧力検出装置に相当し、圧力センサー203が本発明の低圧側圧力検出装置に相当する。
 このように構成された冷凍サイクル回路100においては、制御装置109は、温度センサー201の検出値に加え、圧力センサー202及び圧力センサー203の検出値も用いて、スクリュー圧縮機102のスライドバルブ7の位置を制御する。具体的には、制御装置109は、以下のようにスライドバルブ7の位置を制御する。
 図9は、本発明の実施の形態2に係るスクリュー圧縮機におけるスライドバルブの動作を示すフローチャートである。
 冷凍サイクル回路100の運転が開始されると、つまり、スクリュー圧縮機102が駆動されると、ステップS1において制御装置109は、温度センサー201を用い、スクリュー圧縮機102から吐出された冷媒の温度(図9では「吐出冷媒ガス温度」と記載)を検出する。そして、制御装置109は、スクリュー圧縮機102から吐出された冷媒の温度と目標冷却温度A(第1設定温度)とを比較する。スクリュー圧縮機102から吐出された冷媒の温度が目標冷却温度A以下の場合、ステップS2において制御装置109は、スライドバルブ7を非冷媒供給位置(図4に示す位置)に移動させる。
 上述のように、冷凍サイクル回路100が高低差圧の小さい運転条件になっている場合、及び、スクリュー圧縮機102の周波数(回転数)を減少させた場合等には、圧縮室5から吐出される冷媒の温度が低くなるため、冷媒供給配管108等を介して圧縮室5へ冷媒を供給する必要がない状態となる。このような状態において、冷媒供給配管108及びケーシング1の冷媒流路1bが圧縮室5と連通した状態になっていると、冷媒供給配管108及びケーシング1の冷媒流路1bは、低圧から高圧まで無駄に圧縮される容積部(デッドボリューム)となってしまう。つまり、このような状態において、冷媒供給配管108及びケーシング1の冷媒流路1bが圧縮室5と連通した状態になっていると、スクリュー圧縮機102は、デッドボリューム損失(再膨張損失)が発生し、性能が低下してしまう。
 しかしながら、本実施の形態2においても、実施の形態1と同様に、スクリュー圧縮機102から吐出された冷媒の温度が目標冷却温度A以下の場合、ステップS2において制御装置109は、スライドバルブ7を非冷媒供給位置(図4に示す位置)に移動させる。このため、本実施の形態2に係るスクリュー圧縮機102は、圧縮行程において冷媒の供給流路を設けていないスクリュー圧縮機と同じ状態を形成することができる。
 一方、ステップS1においてスクリュー圧縮機102から吐出された冷媒の温度が目標冷却温度Aよりも大きい場合、ステップS3において制御装置109は、スライドバルブ7を冷媒供給位置(図3に示す位置)に移動させる。
 上述のように、冷凍サイクル回路100が高低差圧の大きい運転条件になっている場合、及び、スクリュー圧縮機102の周波数(回転数)を増加させた場合等、圧縮室5から吐出される冷媒の温度が高くなるため、スクリューロータ3が熱膨張する。このため、スクリューロータ3が軸受サポート4a及びケーシング1と接触して焼き付くことが懸念される。しかしながら、本実施の形態2においても、実施の形態1と同様に、スクリュー圧縮機102から吐出された冷媒の温度が目標冷却温度Aよりも大きい場合、スライドバルブ7を冷媒供給位置(図3に示す位置)に移動させる。これにより、冷媒供給配管108、ケーシング1の冷媒流路1b、及び、スライドバルブ7の冷媒注入流路7aを介して、凝縮器104と膨張弁105との間を流れる冷媒が圧縮室5に供給される。したがって、本実施の形態2に係るスクリュー圧縮機102は、冷媒供給配管108等を介して圧縮室5に供給される冷媒によってスクリューロータ3を冷却できるので、スクリューロータ3の焼き付きを抑制でき、スクリュー圧縮機102の信頼性を向上させることができる。
 再び図9に戻ると、ステップS3の後、ステップS4において制御装置109は、スクリュー圧縮機102から吐出された冷媒の温度と目標冷却温度B(第2設定温度)とを比較する。そして、制御装置109は、スクリュー圧縮機102から吐出された冷媒の温度が目標冷却温度B以下の場合、ステップS2に進み、スライドバルブ7を非冷媒供給位置(図4に示す位置)に移動させる。一方、制御装置109は、スクリュー圧縮機102から吐出された冷媒の温度が目標冷却温度Bよりも大きい場合、ステップS5に進む。
 なお、本実施の形態2においても、実施の形態1と同様に、目標冷却温度Bを目標冷却温度Aよりも低い値としている。
 ステップS5において、制御装置109は、スクリュー圧縮機102から吐出された冷媒の温度と目標冷却温度C(第3設定温度)とを比較する。なお、目標冷却温度Cは、目標冷却温度Bよりも高く、目標冷却温度Aよりも低い値である。
 ステップS5において、スクリュー圧縮機102から吐出された冷媒の温度が目標冷却温度Cよりも大きい場合、制御装置109は、ステップS3に戻り、スライドバルブ7が冷媒供給位置(図3に示す位置)に移動している状態を継続させる。一方、制御装置109は、スクリュー圧縮機102から吐出された冷媒の温度が目標冷却温度C以下の場合、ステップS6に進む。
 ステップS6において、制御装置109は、圧力センサー202を用いて高圧側圧力を検出し、圧力センサー203を用いて低圧側圧力を検出する。そして、制御装置109は、高圧側圧力と低圧側圧力との差(高低側圧力-低圧側圧力、図9では「高低差圧」と記載)を算出する。その後、制御装置109は、高圧側圧力と低圧側圧力との差と設定高低差圧X(設定圧力差)とを比較する。
 高圧側圧力と低圧側圧力との差が設定高低差圧Xよりも大きい場合、制御装置109は、ステップS3に戻り、スライドバルブ7が冷媒供給位置(図3に示す位置)に移動している状態を継続させる。一方、高圧側圧力と低圧側圧力との差が設定高低差圧X以下の場合、制御装置109は、ステップS2に進み、スライドバルブ7を非冷媒供給位置(図4に示す位置)に移動させる。
 ここで、冷凍サイクル回路100が高低差圧の小さい運転条件になっている場合、冷媒供給配管108等を介して圧縮室5へ供給される冷媒は、圧縮室5へ流入しにくい状態となる。このような状態において、冷媒供給配管108及びケーシング1の冷媒流路1bが圧縮室5と連通した状態になっていても、圧縮室5には冷媒供給配管108等から冷媒が供給されず、冷媒供給配管108及びケーシング1の冷媒流路1bは、低圧から高圧まで無駄に圧縮される容積部(デッドボリューム)となってしまうだけである。しかしながら、本実施の形態2では、高圧側圧力と低圧側圧力との差が設定高低差圧X以下の場合、制御装置109は、スライドバルブ7を非冷媒供給位置(図4に示す位置)に移動させる。このため、本実施の形態1に係るスクリュー圧縮機102は、圧縮行程において冷媒の供給流路を設けていないスクリュー圧縮機と同じ状態を形成することができる。
 以上のように、本実施の形態2に係る冷凍サイクル回路100は、温度センサー201の検出値、及び、冷凍サイクル回路100の高低差圧に基づいてスライドバルブ7の位置を制御している。このため、本実施の形態2に係る冷凍サイクル回路100は、冷媒供給配管108等から圧縮室5へ冷媒が供給されにくい状態となっているとき、スライドバルブ7を非冷媒供給位置へ移動させ、冷媒の供給流路で発生するデッドボリューム損失も低減させることができる。したがって、本実施の形態2に係る冷凍サイクル回路100は、実施の形態1よりもさらに、スクリュー圧縮機102の性能、つまり、冷凍サイクル回路100の性能を向上させることができる。
 なお、本実施の形態2で説明したステップS5は、特に設ける必要はない。しかしながら、ステップS5を設けることにより、以下のような効果を得ることができる。
 高圧側圧力と低圧側圧力との差が設定高低差圧X以下の状態、つまり、高圧側圧力と低圧側圧力との差が小さい状態とは、スクリュー圧縮機102から吐出された冷媒の温度が徐々に低下していく状態である。つまり、この状態は、冷媒供給配管108等から圧縮室5へ冷媒を供給しなくても、スクリューロータ3の焼き付きが発生しない状態である。ステップS5を設けることにより、スクリュー圧縮機102から吐出された冷媒の温度が目標冷却温度Bよりも大きいけれどもスクリューロータ3の焼き付きが発生しない状態において、スライドバルブ7を非冷却位置にすることができる。このため、冷媒の供給流路で発生するデッドボリューム損失をさらに低減させることができる。したがって、スクリュー圧縮機102の性能、つまり、冷凍サイクル回路100の性能をさらに向上させることができる。
 また、上記の実施の形態1及び実施の形態2において、スライドバルブ7の位置を制御する際、スクリュー圧縮機102の周波数(より詳しくは、スクリューロータ3の周波数)をさらに用いてもよい。スクリュー圧縮機102の周波数は、スクリュー圧縮機102から吐出された冷媒の温度、及び、冷凍サイクル回路100の高低差圧と対応関係があるからである。詳しくは、スライドバルブ7が冷媒供給位置に移動している状態において、制御装置109は、スクリュー圧縮機102のスクリューロータ3の周波数が設定周波数以下の場合、スライドバルブ7を非冷媒供給位置に移動させるとよい。このようにスライドバルブ7を制御することにより、スライドバルブ7を非冷却位置にしている時間がより長くなり、スクリュー圧縮機102の性能、つまり、冷凍サイクル回路100の性能をさらに向上させることができる。
 なお、スクリュー圧縮機102のスクリューロータ3の周波数は、制御装置109によって制御されているため、制御装置109によって把握することができる。このため、スクリュー圧縮機102のスクリューロータ3の周波数を検出する検出装置を設ける必要は、特にない。
 また、上記の実施の形態1及び実施の形態2では、シングルスクリュー圧縮機であるスクリュー圧縮機102を用いて、本発明を説明した。しかしながら、2つのスクリューロータを備え、これらスクリューロータの溝部を噛み合わせて圧縮室を形成するツインスクリュー圧縮機においても、本発明を実施することができる。
 1 ケーシング、1a スライド溝、1b 冷媒流路、1c 収容部、2 モータ、2a ステータ、2b ロータ、3 スクリューロータ、3a 溝部、4 スクリュー軸、4a 軸受サポート、5 圧縮室、6 ゲートロータ、7 スライドバルブ、7a 冷媒注入流路、8 連結棒、9 駆動装置、10 吐出口、100 冷凍サイクル回路、100a 冷媒回路、101 インバータ、102 スクリュー圧縮機、104 凝縮器、105 膨張弁、106 蒸発器、107 弁、108 冷媒供給配管、109 制御装置、201 温度センサー、202 圧力センサー、203 圧力センサー。

Claims (12)

  1.  スクリュー圧縮機、凝縮器、減圧装置及び蒸発器が順次接続された冷媒回路と、
     前記スクリュー圧縮機を制御する制御装置と、
     を備え、
     前記スクリュー圧縮機は、
     収容部が内部に形成され、該収容部の外周側にスライド溝が形成されたケーシングと、
     前記ケーシングの前記収容部に回転自在に収容され、外周部に圧縮室となる溝部が形成されたスクリューロータと、
     前記ケーシングの前記スライド溝に移動自在に設けられたスライドバルブと、
     を備え、
     前記ケーシングには、該ケーシングの外部と前記スライド溝とを連通する冷媒流路が形成され、
     前記スライドバルブには、前記ケーシングと対向する側の面から前記スクリューロータと対向する側の面に貫通する冷媒注入流路が形成され、
     前記冷媒回路は、さらに、一方の端部が前記凝縮器と前記減圧装置との間の冷媒配管に接続され、他方の端部が前記スクリュー圧縮機の前記冷媒流路に接続された冷媒供給配管を備え、
     前記制御装置は、前記ケーシングの前記冷媒流路と前記スライドバルブの前記冷媒注入流路とが連通し、前記圧縮室に冷媒を供給する冷媒供給位置、あるいは、前記ケーシングの前記冷媒流路と前記スライドバルブの前記冷媒注入流路とが連通せず、前記圧縮室に冷媒を供給しない非冷媒供給位置に、前記スライドバルブを移動させる構成である冷凍サイクル回路。
  2.  前記スライドバルブが移動端に移動した際、前記ケーシングの前記冷媒流路と前記スライドバルブの前記冷媒注入流路とが連通し、前記圧縮室に冷媒を供給する構成である請求項1に記載の冷凍サイクル回路。
  3.  前記スクリュー圧縮機から吐出された冷媒の温度を検出する温度検出装置を備え、
     前記制御装置は、前記温度検出装置の検出値に基づいて、前記スライドバルブを移動させる構成である請求項1又は請求項2に記載の冷凍サイクル回路。
  4.  前記制御装置は、前記温度検出装置の検出値が第1設定温度よりも大きい場合、前記スライドバルブを前記冷媒供給位置に移動させる構成である請求項3に記載の冷凍サイクル回路。
  5.  前記制御装置は、前記温度検出装置の検出値が第2設定温度以下の場合、前記スライドバルブを前記非冷媒供給位置に移動させる構成である請求項4に記載の冷凍サイクル回路。
  6.  前記第2設定温度は、前記第1設定温度よりも低い値である請求項5に記載の冷凍サイクル回路。
  7.  前記スクリュー圧縮機の吐出側から前記減圧装置の入口側までの間の冷媒の圧力を検出する高圧側圧力検出装置と、
     前記減圧装置の出口側から前記スクリュー圧縮機の吸入側までの間の冷媒の圧力を検出する低圧側圧力検出装置と、
     を備え、
     前記制御装置は、さらに、前記高圧側圧力検出装置の検出値及び前記低圧側圧力検出装置の検出値に基づいて、前記スライドバルブを移動させる構成である請求項3~請求項6のいずれか一項に記載の冷凍サイクル回路。
  8.  前記スライドバルブが前記冷媒供給位置に移動している状態において、
     前記制御装置は、前記高圧側圧力検出装置の検出値と前記低圧側圧力検出装置の検出値との差が設定圧力差以下の場合、前記スライドバルブを前記非冷媒供給位置に移動させる構成である請求項7に記載の冷凍サイクル回路。
  9.  前記スライドバルブが前記冷媒供給位置に移動している状態において、
     前記制御装置は、前記温度検出装置の検出値が前記第2設定温度よりも高く前記第1設定温度よりも低い第3設定温度以下となっており、前記高圧側圧力検出装置の検出値と前記低圧側圧力検出装置の検出値との差が設定圧力差以下の場合、前記スライドバルブを前記非冷媒供給位置に移動させる構成である請求項5又は請求項6に従属する請求項7に記載の冷凍サイクル回路。
  10.  前記制御装置は、さらに、前記スクリュー圧縮機の前記スクリューロータの周波数に基づいて、前記スライドバルブを移動させる構成である請求項3~請求項9のいずれか一項に記載の冷凍サイクル回路。
  11.  前記スライドバルブが前記冷媒供給位置に移動している状態において、
     前記制御装置は、前記スクリュー圧縮機の前記スクリューロータの周波数が設定周波数以下の場合、前記スライドバルブを前記非冷媒供給位置に移動させる構成である請求項10に記載の冷凍サイクル回路。
  12.  請求項1~請求項11のいずれか一項に記載の冷凍サイクル回路であって、
     前記スクリュー圧縮機は、
     前記スクリューロータに接続された駆動軸と、
     前記駆動軸と接続され、該駆動軸を介して前記スクリューロータを回転駆動させるモータと、
     を備え、
     当該冷凍サイクル回路は、前記モータ及び前記制御装置と電気的に接続されたインバータを備え、
     前記制御装置は、前記インバータを介して前記モータを駆動させる構成である冷凍サイクル回路。
PCT/JP2014/081895 2014-12-02 2014-12-02 冷凍サイクル回路 WO2016088207A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/081895 WO2016088207A1 (ja) 2014-12-02 2014-12-02 冷凍サイクル回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/081895 WO2016088207A1 (ja) 2014-12-02 2014-12-02 冷凍サイクル回路

Publications (1)

Publication Number Publication Date
WO2016088207A1 true WO2016088207A1 (ja) 2016-06-09

Family

ID=56091181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081895 WO2016088207A1 (ja) 2014-12-02 2014-12-02 冷凍サイクル回路

Country Status (1)

Country Link
WO (1) WO2016088207A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114810602A (zh) * 2017-12-20 2022-07-29 株式会社日立产机系统 螺杆压缩机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080206075A1 (en) * 2007-02-22 2008-08-28 Jean Louis Picouet Compressor Having a Dual Slide Valve Assembly
JP2010242746A (ja) * 2009-03-16 2010-10-28 Daikin Ind Ltd スクリュー圧縮機
JP2012197746A (ja) * 2011-03-22 2012-10-18 Daikin Industries Ltd スクリュー圧縮機
JP2014202071A (ja) * 2013-04-01 2014-10-27 ダイキン工業株式会社 スクリュー圧縮機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080206075A1 (en) * 2007-02-22 2008-08-28 Jean Louis Picouet Compressor Having a Dual Slide Valve Assembly
JP2010242746A (ja) * 2009-03-16 2010-10-28 Daikin Ind Ltd スクリュー圧縮機
JP2012197746A (ja) * 2011-03-22 2012-10-18 Daikin Industries Ltd スクリュー圧縮機
JP2014202071A (ja) * 2013-04-01 2014-10-27 ダイキン工業株式会社 スクリュー圧縮機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114810602A (zh) * 2017-12-20 2022-07-29 株式会社日立产机系统 螺杆压缩机
CN114810602B (zh) * 2017-12-20 2024-03-29 株式会社日立产机系统 螺杆压缩机

Similar Documents

Publication Publication Date Title
US10309700B2 (en) High pressure compressor and refrigerating machine having a high pressure compressor
WO2009141993A1 (ja) 2段ロータリ膨張機、膨張機一体型圧縮機および冷凍サイクル装置
JP6342821B2 (ja) スクリュー流体機械
CN109154455B (zh) 制冷循环装置
JP6685379B2 (ja) スクリュー圧縮機および冷凍サイクル装置
JP2012211520A (ja) スクリュー圧縮機及びこれを用いたチラーユニット
JP2009085156A (ja) 冷凍装置用のスクリュー圧縮機
JP5228905B2 (ja) 冷凍装置
JP5389755B2 (ja) スクリュー圧縮機
JP2011196223A (ja) シングルスクリュー圧縮機
JP6385708B2 (ja) スクリュー圧縮機
JP5338314B2 (ja) 圧縮機および冷凍装置
WO2015114851A1 (ja) スクリュー圧縮機
WO2016088207A1 (ja) 冷凍サイクル回路
JP5656691B2 (ja) 冷凍装置
US20230184475A1 (en) Refrigeration cycle apparatus
EP3505765B1 (en) Screw compressor and refrigeration cycle device
KR20120101296A (ko) 2단 스크류 압축식 냉동 장치
EP3569950B1 (en) Refrigeration cycle device
WO2023182457A1 (ja) スクリュー圧縮機、および冷凍装置
WO2018003015A1 (ja) シングルスクリュー圧縮機及び冷凍サイクル装置
WO2022249237A1 (ja) 圧縮機および冷凍サイクル装置
EP4067659B1 (en) Screw compressor
JP2012007859A (ja) 冷凍サイクル装置
JP2013024194A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP