JP2011196223A - シングルスクリュー圧縮機 - Google Patents

シングルスクリュー圧縮機 Download PDF

Info

Publication number
JP2011196223A
JP2011196223A JP2010062649A JP2010062649A JP2011196223A JP 2011196223 A JP2011196223 A JP 2011196223A JP 2010062649 A JP2010062649 A JP 2010062649A JP 2010062649 A JP2010062649 A JP 2010062649A JP 2011196223 A JP2011196223 A JP 2011196223A
Authority
JP
Japan
Prior art keywords
compression
slide valve
screw rotor
screw compressor
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010062649A
Other languages
English (en)
Inventor
Hiromichi Ueno
広道 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2010062649A priority Critical patent/JP2011196223A/ja
Priority to PCT/JP2011/001230 priority patent/WO2011114636A1/ja
Publication of JP2011196223A publication Critical patent/JP2011196223A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/48Rotary-piston pumps with non-parallel axes of movement of co-operating members
    • F04C18/50Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees
    • F04C18/52Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees of intermeshing engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/12Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

【課題】スクリュー圧縮機の起動時において、スクリューロータを回転させるために要する負荷を軽減する。
【解決手段】第1の発明は、シングルスクリュー圧縮機は、圧縮室(23)の圧縮比を所定の範囲内で調整する調整機構(3)を備える。調整機構(3)は、駆動機構(15)の少なくとも起動時に、圧縮室(23)の圧縮比を最低の圧縮比とするように構成される。
【選択図】図10

Description

本発明は、シングルスクリュー圧縮機に関し、このシングルスクリュー圧縮機の起動時における起動機構の負荷を低減する対策に係るものである。
従来より、スクリューロータの回転運動によって冷媒を圧縮する圧縮機構を備えたシングルスクリュー圧縮機が知られている。
例えば特許文献1に記載のシングルスクリュー圧縮機(以下、単にスクリュー圧縮機という)では、シリンダの内部にスクリューロータが収容され、このスクリューロータにゲートロータが噛み合っている。これにより、スクリューロータの外周に形成される螺旋溝の内部では、ゲートロータのゲートと、スクリューロータと、シリンダ内壁との間に圧縮室が区画される。スクリュー圧縮機には、スクリューロータの軸方向の一端側(吸入側)に吸入口が形成され、スクリューロータの軸方向の他端側(吐出側)に吐出口が形成されている。
シングルスクリュー圧縮機の運転時には、流体が吸入口を通じて螺旋溝内に流入する。この螺旋溝内では、スクリューロータの回転に伴って圧縮室が区画される。この状態からスクリューロータが更に回転すると、流体が封止された状態の圧縮室の体積が徐々に縮小していく。これにより、圧縮室内の流体が徐々に圧縮される。この状態からスクリューロータが更に回転すると、圧縮室と吐出口とが連通する。その結果、圧縮室内の高圧の流体は、吐出口を通じて所定の空間へ吐出される。
特開2004−137934号公報
ところで、上述したようなスクリュー圧縮機では、その用途に応じて、圧縮機の圧縮比(即ち、吐出容積Vdに対する吸入容積Vsの比(容積比:VI(=Vs/Vd))が所定の値に設定されている。このような圧縮比が比較的高く設定される場合、スクリュー圧縮機の起動時には、スクリューロータを回転駆動するための負荷(例えばモータの起動トルクや起動電流)が大きくなってしまう。
本発明は、このような問題点に鑑みて創案されたものであり、その目的は、スクリュー圧縮機の起動時において、スクリューロータを回転させるために要する負荷を軽減することである。
第1の発明は、外周面に螺旋溝(41)が形成されて軸方向の一端が流体の吸入側となり他端が吐出側となるスクリューロータ(40)と、上記螺旋溝(41)に噛み合わされる複数のゲート(51)が放射状に形成されたゲートロータ(50)と、上記スクリューロータ(40)を回転させる駆動機構(15)と、上記螺旋溝(41)内に流体の圧縮室(23)を区画するように上記スクリューロータ(40)を収容するシリンダ(31)と、上記圧縮室(23)の流体を上記スクリューロータ(40)の吐出側に流出させるための吐出口(25)と、を備えたシングルスクリュー圧縮機を対象とする。そして、このシングルスクリュー圧縮機は、上記駆動機構(15)は、上記スクリューロータ(40)の回転速度を調整して容量制御を行うように構成され、上記圧縮室(23)の圧縮比を所定の範囲内で調整する調整機構(3)を更に備え、この調整機構(3)は、上記駆動機構(15)の少なくとも起動時に、上記圧縮室(23)の圧縮比を最低の圧縮比とするように構成されていることを特徴とする。
第1の発明のシングルスクリュー圧縮機では、駆動機構(15)によってスクリューロータ(40)が回転駆動されると、流体が螺旋溝(41)内に吸入される。スクリューロータ(40)の回転に伴って螺旋溝(41)内の圧縮室(23)の容積が小さくなると、圧縮室(23)内の流体が圧縮される。スクリューロータ(40)が更に回転して、圧縮室(23)と吐出口(25)とが連通すると、圧縮室(23)内の流体は吐出口(25)を通じて圧縮室(23)の外部へ吐出される。
本発明のシングルスクリュー圧縮機には、圧縮室(23)の圧縮比(即ち、吐出容積Vdに対する吸入容積Vsの比(容積比:VI(=Vs/Vd))を調整するための調整機構(3)が設けられる。このため、本発明のシングルスクリュー圧縮機では、運転条件や用途に応じて、圧縮室(23)の圧縮比が所定の範囲内で変更可能となっている。
本発明では、駆動機構(15)の起動時に、調整機構(3)が圧縮比を最低の圧縮比とする。つまり、本発明の圧縮室(23)の圧縮比は、調整機構(3)によって所定の最低圧縮比から所定の最大圧縮比までの範囲内で変更可能となっているが、駆動機構(15)の起動時の圧縮比は、このような圧縮比の調整範囲のうち最低の圧縮比となる。従って、駆動機構(15)を起動してスクリューロータ(40)の回転を開始する時点においては、スクリューロータ(40)を回転するために要する、駆動機構(15)の負荷が小さくなる。
第2の発明は、第1の発明において、調整機構(3)は、上記シリンダ(31)の内壁に該シリンダ(31)の軸方向に沿って形成されるスライド溝(33)と、該スライド溝(33)に摺動自在に嵌合して上記圧縮室(23)と吐出口(25)との連通位置を可変とするスライドバルブ(4)と、該スライドバルブ(4)が上記スクリューロータ(40)の吸入側に最も近い第1位置となるようにスライドバルブ(4)を変位させる変位部(10b,31a)と、上記スライドバルブ(4)が上記第1位置にある状態で上記駆動機構(15)を起動する制御部(80)と、を有することを特徴とする。
第2の発明の調整機構(3)は、スライド溝(33)とスライドバルブ(4)と変位部(10b,31a)と制御部(80)とを有する。スライドバルブ(4)がスライド溝(33)の内部を軸方向に変位すると、圧縮室(23)と吐出口(25)との連通位置が変更される。具体的に、スライドバルブ(4)がスクリューロータ(40)の吸入側に近づくと、圧縮室(23)と吐出口(25)とが連通するタイミングが早くなる。その結果、圧縮室(23)の圧縮比は、比較的小さくなる。一方、スライドバルブ(4)がスクリューロータ(40)の吸入側から離れると、圧縮室(23)と吐出口(25)とが連通するタイミングが遅くなる。その結果、圧縮室(23)の圧縮比は、比較的大きくなる。以上のように、本発明の調整機構(3)では、スライドバルブ(4)の位置を調整することで、圧縮室(23)と吐出口(25)とが連通するタイミングが調整され、ひいては圧縮室(23)の圧縮比が所定の範囲内で調整される。
本発明では、駆動機構(15)が起動する前に、変位部(10b,31a)によってスライドバルブ(4)が第1位置(スクリューロータの吸入側に最も近い位置)に調整される。その結果、圧縮室(23)と吐出口(25)とが連通するタイミングが最も早くなり、圧縮比が最低の圧縮比となる。制御部(80)は、この状態から駆動機構(15)を起動するため、駆動機構(15)の起動時には、圧縮室(23)の圧縮比が確実に最低の圧縮比となる。従って、駆動機構(15)を起動してスクリューロータ(40)の回転を開始する時点においては、スクリューロータ(40)を回転するために要する、駆動機構(15)の負荷が小さくなる。
第3の発明は、第2の発明において、上記変位部(10b,31a)は、上記スライドバルブ(4)をスクリューロータ(40)の吸入側に向かって付勢する付勢機構(10b)と、該付勢機構(10b)によって付勢されたスライドバルブ(4)に当接してスライドバルブ(4)を第1位置で保持する当接部(31a)とを有することを特徴とする。
第3の発明の変位部(10b,31a)は、付勢機構(10b)と当接部(31a)とを有する。つまり、本発明のスライドバルブ(4)は、付勢機構(10b)によってスクリューロータ(40)の吸入側に向かって付勢される。付勢機構(10b)によって付勢されたスライドバルブ(4)は、当接部(31a)に当接して第1位置に保持される。このような変位部(10b,31a)の機構により、駆動機構(15)の起動時において、圧縮比を確実に最低の圧縮比とすることができる。
第4の発明は、第2の発明において、上記調整機構(3)は、上記スクリューロータ(40)の運転中に、圧縮室(23)の吸入側の流体と吐出側の流体との差圧によって上記スライドバルブ(4)を変位させる圧力調整機構(70)を有し、この圧力調整機構(70)は、運転中のスクリューロータ(40)を停止させる直前に、上記スライドバルブ(4)を第1位置に変位させる上記変位部(10b,31a)を構成していることを特徴とする。
第4の発明の調整機構(3)は、圧縮室(23)の吸入側の流体の圧力と、この圧縮室(23)の吐出側の流体の圧力との差を利用して、スライドバルブ(4)を変位させる圧力調整機構(70)を有している。つまり、スクリューロータ(40)の運転中には、圧縮室(23)において、流体が圧縮されるため、圧縮室(23)の吸入側と吐出側との間に所定の圧力差が発生する。本発明では、スクリューロータ(40)の運転中において、この圧力差を利用することで、スライド溝(33)内のスライドバルブ(4)を変位させ、ひいては圧縮比を調整している。
一方、シングルスクリュー圧縮機(即ち、スクリューロータ(40))を停止させると、圧縮室(23)の吸入側と吐出側との間の圧力差が小さくなっていく。従って、スクリューロータ(40)の停止時や、その後の駆動機構(15)の起動時には、このような圧力差を利用してスライドバルブ(4)を第1位置に変位させることが困難となる。そこで、本発明では、スクリューロータ(40)の停止直前に、予めスライドバルブ(4)を第1位置に変位させるようにしている。
即ち、スクリューロータ(40)の停止直前には、圧縮室(23)の吸入側と吐出側との間に未だ圧力差があるため、この圧力差を利用してスライドバルブ(4)を確実に第1位置に変位させることができる。このため、その後にスクリューロータ(40)が停止し、再び駆動機構(15)が起動してスクリューロータ(40)の回転が開始される際には、スライドバルブ(4)が第1位置のままの状態となって圧縮比が最低圧縮比となる。
第5の発明は、第1乃至第4のいずれか1つの発明において、上記調整機構(3)は、スクリューロータ(40)の定常運転時に、上記圧縮室(23)の圧縮比を所定の制御範囲内において調整するように構成され、上記最低の圧縮比は、上記スクリューロータ(40)の定常運転時の圧縮比の制御範囲よりも小さいことを特徴とする。
第5の発明では、スクリューロータ(40)の回転数が定常状態に至る定常運転中には、調整機構(3)によって、圧縮比が所定の制御範囲内で調整される。これにより、スクリューロータ(40)の定常運転時においては、例えば運転条件の変化に対応するように、圧縮室(23)の圧縮比を変更することができる。
一方、駆動機構(15)の起動時においては、圧縮室(23)の圧縮比が、このような定常運転中の圧縮比の制御範囲よりも、小さい最低圧縮比に調整される。従って、シングルスクリュー圧縮機の起動時には、定常運転時と比較して、駆動機構(15)の負荷が軽減される。
第6の発明は、第1乃至第5のいずれか1つの発明において、上記最低の圧縮比は、1.0であることを特徴とする。
第6の発明では、シングルスクリュー圧縮機の起動時において、圧縮室(23)の圧縮比が1.0となる。これにより、スクリューロータ(40)の回転が開始される際には、螺旋溝(41)内において、流体が実質的には圧縮されない。その結果、シングルスクリュー圧縮機の起動時には、スクリューロータ(40)の回転に要する負荷が、最低の負荷に抑えられる。
本発明によれば、駆動機構(15)の起動時において、圧縮比を最低の圧縮比に調整しているため、スクリューロータ(40)の回転を開始させる際、スクリューロータ(40)の回転に要する負荷を低減できる。従って、シングルスクリュー圧縮機の起動時において、駆動機構(15)が過負荷状態となることを回避できる。
また、このように駆動機構(15)の起動時に圧縮比を最低圧縮比とすることで、圧縮室(23)における、いわゆる液圧縮現象を回避できる。この点について具体的に説明する。例えば冷凍装置(空気調和装置や冷却機等)の冷媒回路にシングルスクリュー圧縮機を適用する場合、シングルスクリュー圧縮機の停止時には、圧縮室(23)の吸入側の流体(冷媒)が凝縮して液状態となることがある。このような状態から駆動機構(15)を起動すると、圧縮室(23)に吸入された液冷媒を圧縮してしまうことがある。このような液圧縮現象により、駆動機構(15)の負荷が更に増大してしまったり、シングルスクリュー圧縮機の部品が破壊してしまったりする虞がある。これに対し、本発明では、シングルスクリュー圧縮機の起動時に圧縮比を最低の圧縮比としているため、このような液圧縮現象を未然に回避できる。
第2の発明では、スライドバルブ(4)を第1位置(スクリューロータ(40)の吸入側に最も近くなる位置)に変位させてから、駆動機構(15)を起動するようにしている。このため、シングルスクリュー圧縮機の起動時には、圧縮比を確実に最低圧縮比とでき、上述した本発明の効果を奏することができる。
第3の発明では、付勢機構(10b)によってスライドバルブ(4)を第1位置側に付勢し、このスライドバルブ(4)を当接部によって第1位置に保持させるようにしている。このため、比較的シンプルな構造を用いながら、シングルスクリュー圧縮機の起動時における圧縮比を最低圧縮比とすることができる。
第4の発明では、圧縮室(23)の吸入側の流体と吐出側の流体との間の差圧を利用して、圧縮室(23)の圧縮比を適宜調整することができる。このため、このシングルスクリュー圧縮機が適用される冷凍装置の運転条件(冷却対象の負荷や外気温度等)に応じて、最適な効率が得られるように圧縮比を調整することができる。
また、本発明では、シングルスクリュー圧縮機の停止直前に、上述した差圧を利用してスライドバルブ(4)を第1位置に変位させている。このため、その後にシングルスクリュー圧縮機を再び運転させる際には、差圧を利用してスライドバルブ(4)を変位させることなく、圧縮比を確実に最低の圧縮比とすることができる。
第5の発明では、シングルスクリュー圧縮機の起動時における圧縮比(最低圧縮比)を、定常運転時の圧縮比よりも小さくしているので、駆動機構(15)の起動時における負荷を抑えることができる。特に、第6の発明では、シングルスクリュー圧縮機の起動時における圧縮比(最低圧縮比)を、1.0としているので、駆動機構(15)の起動時における負荷を最小限に抑えることができる。
図1は、本発明の実施形態に係るスクリュー圧縮機の要部の構成を定格負荷に対応する最大VI運転状態で示す縦断面図である。 図2は、図1のスクリュー圧縮機の要部の構成を部分負荷に対応する低VI運転状態で示す縦断面図である。 図3は、図1のIII−III線における横断面図である。 図4は、スクリュー圧縮機の要部を抜き出して示す斜視図である。 図5は、スクリュー圧縮機のスクリューロータ示す斜視図である。 図6は、スクリュー圧縮機の圧縮機構の動作を示す平面図であり、図6(A)は吸入行程を示し、図6(B)は圧縮行程を示し、図6(C)は吐出行程を示している。 図7は、最大VI運転状態での圧縮機構の動作を示す展開図であり、図7(A)、図7(B)、図7(C)、図7(D)の順に、スクリューロータが回転していることを示している。 図8は、中間VI運転状態での圧縮機構の動作を示す展開図であり、図8(A)、図8(B)、図8(C)、図8(D)の順に、スクリューロータが回転していることを示している。 図9は、スクリュー圧縮機の要部の構成を、起動時における最低VI運転状態で示す縦断面図である。 図10は、最低VI運転状態での圧縮機構の動作を示す展開図であり、図10(A)、図10(B)、図10(C)、図10(D)の順に、スクリューロータが回転していることを示している。 図11は、変形例1に係るスクリュー圧縮機の要部の構成を、定格負荷に対応する最大VI運転状態で示す縦断面図である。 図12は、変形例1に係るスクリュー圧縮機の要部の構成を、起動時における最低VI運転状態で示す縦断面図である。 図13は、変形例2に係るスクリュー圧縮機の圧縮機構の展開図である。
以下、本発明の実施形態を図面に基づいて詳細に説明する。
本発明に係るシングルスクリュー圧縮機(1)(以下、単にスクリュー圧縮機という)は、比較的大規模なビル等の室内の空調を行うためのチリングユニットに適用されている。このチリングユニットは、冷媒回路の冷媒を循環させて蒸気圧縮式の冷凍サイクルを行う冷凍装置を構成しており、この冷媒回路にスクリュー圧縮機(1)が接続されている。
スクリュー圧縮機(1)は、圧縮機構(20)と、圧縮機構(20)を駆動するための駆動機構(15)と、圧縮機構(20)の容積比VIを調整するための可変VI機構(3)とを備えている。また、スクリュー圧縮機(1)は、圧縮機構(20)及び駆動機構(15)を収容するケーシング(30)を備えている。
圧縮機構(20)は、図1〜図3に示すように、ケーシング(30)内に形成されたシリンダ壁(31)と、このシリンダ壁(31)の中に回転可能に配置された1つのスクリューロータ(40)と、このスクリューロータ(40)に噛み合う2つのゲートロータ(50)とを備えている。
ケーシング(30)内には、圧縮機構(20)の吸入口(24)に臨む吸入室(S1)と、圧縮機構(20)の吐出口(25)に臨む吐出室(S2)とが区画形成されている。上記シリンダ壁(31)における周方向の2カ所には、径方向外側に膨出するとともに上記吸入室(S1)と吐出室(S2)とを連通するように連通部(32)が形成されている。この連通部(32)には、シリンダ壁(31)の軸方向沿いにのびるスライド溝(33)が含まれ、このスライド溝(33)に、後述するスライドバルブ(4)が軸方向へ移動可能に装着されている。なお、上記吐出口(25)には、スライドバルブ(4)に形成されるバルブ側吐出口(27)と、シリンダ壁(31)に形成されるシリンダ側吐出口(28)とが含まれている。
駆動機構(15)は、スクリューロータ(40)に挿通する駆動軸(21)と、この駆動軸(21)を回転させる電動機(16)とを有している。スクリューロータ(40)と駆動軸(21)とは、キー(22)によって連結されている。これにより、スクリューロータ(40)は、駆動機構(15)によって回転駆動されるようになっている。
駆動軸(21)は、スクリューロータ(40)と同軸上に配置されている。駆動軸(21)の先端部は、圧縮機構(20)の吐出側(図1における駆動軸(21)の軸方向を左右方向とした場合の右側)に位置するベアリングホルダ(60)に回転自在に支持されている。このベアリングホルダ(60)は、ボールベアリング(61)を介して駆動軸(21)を支持している。また、スクリューロータ(40)は、シリンダ壁(31)に回転可能に嵌合しており、その外周面がシリンダ壁(31)の内周面と油膜を介して摺接している。
電動機(16)は、インバータ制御により回転速度を調整することができるように構成されている。このことにより、スクリュー圧縮機(1)は、電動機(16)の回転速度を調整して運転容量を変更することができる。スクリュー圧縮機(1)の運転容量(単位時間当たりに圧縮機構(20)から吐出される冷媒の吐出量)は、冷媒回路の利用側の負荷に応じて制御される。その際、可変VI機構(3)のスライドバルブ(4)は、利用側の負荷に応じて制御される運転容量に対して、最適の圧縮効率が得られる容積比(圧縮比)になるように制御される。具体的には、運転状態が定格負荷(100%負荷)状態であるか部分負荷状態であるかによって変化する運転容量に応じて、スライドバルブ(4)は、スクリューロータ(40)の軸方向へ位置が変化する。なお、スクリュー圧縮機(1)において、スライドバルブ(4)は、定格負荷の運転状態(図1の状態)と部分負荷の運転状態(図2の状態)とを比較すると、負荷の小さい運転状態の方が上記シリンダ側吐出口(28)の面積が大きくなるように、図1において左側(吸入側)へ位置が変化する。
図4,図5に示すスクリューロータ(40)は、概ね円柱状に形成された金属製の部材である。スクリューロータ(40)の外周面には、スクリューロータ(40)の一端(流体(冷媒)の吸入側の端部)から他端(吐出側の端部)へ向かって螺旋状に延びる螺旋溝(41)が複数本(本実施形態では、6本)形成されている。
スクリューロータ(40)の各螺旋溝(41)は、図5における左端(吸入側の端部)が始端となり、同図における右端が終端(流体の吐出側)となっている。また、スクリューロータ(40)は、同図における左端部がテーパー状に形成されている。図5に示すスクリューロータ(40)では、テーパー面状に形成されたその左端面に螺旋溝(41)の始端が開口する一方、その右端面に螺旋溝(41)の終端は開口していない。スクリューロータ(40)の螺旋溝(41)は、吸入側端部において吸入室(S1)に開放されており、この開放部分が上記圧縮機構(20)の吸入口(24)になっている。
各ゲートロータ(50)は、樹脂製の部材である。各ゲートロータ(50)には、長方形板状に形成された複数枚(本実施形態では、11枚)のゲート(51)が放射状に設けられている。各ゲートロータ(50)は、シリンダ壁(31)の外側に、スクリューロータ(40)の回転軸に対して軸対称となるように配置されている。つまり、本実施形態のスクリュー圧縮機(1)では、二つのゲートロータ(50)が、スクリューロータ(40)の回転中心軸周りに等角度間隔(本実施形態では180°間隔)で配置されている。各ゲートロータ(50)の軸心は、スクリューロータ(40)の軸心と直交している。各ゲートロータ(50)は、ゲート(51)がシリンダ壁(31)の一部(図示せず)を貫通してスクリューロータ(40)の螺旋溝(41)に噛み合うように配置されている。
ゲートロータ(50)は、金属製のロータ支持部材(55)に取り付けられている(図4を参照)。ロータ支持部材(55)は、基部(56)とアーム部(57)と軸部(58)とを備えている。基部(56)は、やや肉厚の円板状に形成されている。アーム部(57)は、ゲートロータ(50)のゲート(51)と同数だけ設けられており、基部(56)の外周面から外側へ向かって放射状に延びている。軸部(58)は、棒状に形成されて基部(56)に立設されている。軸部(58)の中心軸は、基部(56)の中心軸と一致している。ゲートロータ(50)は、基部(56)及びアーム部(57)における軸部(58)とは反対側の面に取り付けられている。各アーム部(57)は、ゲート(51)の背面に当接している。
ゲートロータ(50)が取り付けられたロータ支持部材(55)は、シリンダ壁(31)に隣接してケーシング(30)内に区画形成されたゲートロータ室(90)に収容されている(図3を参照)。図3におけるスクリューロータ(40)の右側に配置されたロータ支持部材(55)は、ゲートロータ(50)が下端側となる姿勢で設置されている。一方、同図におけるスクリューロータ(40)の左側に配置されたロータ支持部材(55)は、ゲートロータ(50)が上端側となる姿勢で設置されている。各ロータ支持部材(55)の軸部(58)は、ゲートロータ室(90)内の軸受ハウジング(91)にボールベアリング(92,93)を介して回転自在に支持されている。なお、各ゲートロータ室(90)は、吸入室(S1)に連通している。
圧縮機構(20)では、シリンダ壁(31)の内周面と、スクリューロータ(40)の螺旋溝(41)と、ゲートロータ(50)のゲート(51)とによって囲まれた空間が圧縮室(23)になる。圧縮室(23)は、図3における水平方向の中心線よりも上側に位置する第1圧縮室(23a)と、その中心線よりも下側に位置する第2圧縮室(23b)とから構成されている(図5を参照)。
上述したように、スクリュー圧縮機(1)は、圧縮機構(20)の容積比VIを調整するための可変VI機構(調整機構)(3)を備えている。この容積比VIは、圧縮機構(20)における吐出容積Vdに対する吸入容積Vsの比(Vs/Vd)を意味し、換言すると、圧縮機構(20)の圧縮比を意味する。
可変VI機構(3)は、上述したスライド溝(33)及びスライドバルブ(4)と、スライド溝(33)内のスライドバルブ(4)の位置を変更するためのバルブ変位機構(18)とを有している。更に、バルブ変位機構(18)は、油圧シリンダ(5)と圧力調整機構(70)とを有している(図1及び図2を参照)。
スライドバルブ(4)は、第1圧縮室(23a)と第2圧縮室(23b)とにそれぞれ対応するように、双方の圧縮室(23a,23b)に1つずつ設けられている。スライドバルブ(4)は、スライド溝(33)に摺動自在に嵌合している。スライド溝(33)内において、スライドバルブ(4)は、スクリューロータ(40)の吸入側(吸入口(24))に最も近づく位置(第1位置)と、吸入口(24)から最も離れる位置(第2位置)との間を進退自在に構成されている。なお、スライドバルブ(4)が第1位置にあると、スライド溝(33)の軸方向一端側(吸入側)の内壁と、スライドバルブ(4)の軸方向一端側の端部とが接触する。つまり、シリンダ壁(31)には、スライドバルブ(4)を第1位置で保持するように、スライドバルブ(4)と当接する当接部(31a)が形成されている。
また、スライドバルブ(4)の軸方向の他端部には、軸方向に対して斜めに傾斜する傾斜面(4a)が形成されている(図7(A)を参照)。この傾斜面(4a)は、スクリューロータ(40)の回転方向(図7(A)に示す矢印方向)に進むにつれて、吐出口(25)の開口幅を拡大させるように形成されている。
圧縮機構(20)では、スライドバルブ(4)の位置に応じて、吐出口(25)の開口面積が変化する(図7、図8、及び図10を参照)。これにより、圧縮室(23a,23b)と吐出口(25)との連通位置が変更される。その結果、圧縮室(23a,23b)から冷媒が吐出される吐出行程のタイミングが調整され、容積比VIが調整される。なお、上述したシリンダ側吐出口(28)は、スライドバルブ(4)を第2位置とした時を基準に、開口形状が定められている。具体的に、シリンダ側吐出口(28)は、スライドバルブ(4)の位置が、第1位置から第2位置までの間のいずれの位置であっても、スライドバルブ(4)に閉塞されずに開放されて、冷媒が吐出可能に構成されている。
スライドバルブ(4)が図7に示す第2位置にあると、吸入口(24)から最も離れた位置(吐出室(S2)に最も近い位置)において、圧縮室(23a,23b)と吐出口(25)とが連通する。これにより、圧縮室(23a,23b)の吐出行程の開始のタイミング(圧縮行程の終了のタイミング)が最も遅くなり、容積比VIが最大の容積比VImax(即ち、最大の圧縮比)となる。一方、スライドバルブ(4)が図10に示す第1位置にあると、吸入口(24)から最も近い位置において、圧縮室(23a,23b)と吐出口(25)とが連通する。これにより、圧縮室(23a,23b)の吐出行程の開始のタイミング(圧縮行程の終了のタイミング)が最も早くなり、容積比VIが最低の容積比VImin(即ち、最低の圧縮比)となる。
油圧シリンダ(5)は、シリンダチューブ(6)と、このシリンダチューブ(6)内に装填されたピストン(7)と、このピストン(7)のピストンロッド(8)に連結されたアーム(9)と、このアーム(9)とスライドバルブ(4)とを連結する連結ロッド(10a)と、アーム(9)を図1の左方向(アーム(9)をケーシング(30)に引き寄せる方向)に付勢するスプリング(10b)とを備えている。スプリング(10b)は、スライドバルブ(4)をスクリューロータ(40)の吸入側に付勢する付勢機構を構成している。
シリンダチューブ(6)の内部には、ピストン(7)によって区画される2つのシリンダ室(11,12)が形成されている。具体的に、ピストン(7)の軸方向の一端側(図1におけるピストン(7)の左側)には、第1シリンダ室(11)が形成され、ピストン(7)の軸方向の他端側(図1におけるピストン(7)の右側)には、第2シリンダ室(12)が形成されている。両者のシリンダ室(11,12)の内部の圧力は、基本的には、高圧冷媒(吐出冷媒)と概ね同等の圧力となっている。
圧力調整機構(70)は、圧縮室(23)の吸入側の冷媒の圧力と、圧縮室(23)の吐出側の圧力との差を利用して、スライドバルブ(4)を変位させるものである。圧力調整機構(70)は、第1から第3までの連通管(71,72,73)と、各連通管(71,72,73)に対応する第1から第3までの開閉弁(74,75,76)とを有している。各連通管(71,72,73)は、一端側が第2シリンダ室(12)に接続し、他端側が吸入室(S1)に連通している。第2シリンダ室(12)では、第1連通管(71)の接続口が、第2連通管(72)の接続口よりもピストン(7)寄り設けられている。また、第2シリンダ室(12)では、第2連通管(72)の接続口が、第3連通管(73)の接続口よりもピストン(7)寄りに設けられている。各開閉弁(74,75,76)は、対応する連通管(71,72,73)を開閉するための電磁弁で構成されている。また、スクリュー圧縮機(1)は、各開閉弁(74,75,76)の開閉状態や、電動機(16)の運転状態(電動機(16)のON/OFFや運転周波数)を制御するためのコントローラ(制御部)(80))を備えている(図1及び図2を参照)。
本実施形態のスクリュー圧縮機(1)は、スクリューロータ(40)の回転数が所定の回転数に至る定常運転時に、容積比VIを適宜変更するように構成されている。具体的に、スクリュー圧縮機(1)の定常運転時には、冷媒回路の利用側の負荷に応じて圧縮機構(20)の運転容量が変更されるが、この運転容量の変化に対応するように容積比VIが変更される。
より詳細には、例えば利用側の負荷が定格の負荷(100%負荷)である場合、駆動軸(21)の回転数が比較的大きくなって運転容量も比較的大きくなる。この場合、容積比VIが最大容積比VImax(例えばVImax=3.0)となるように、スライドバルブ(4)の位置が調整される。また、例えば利用側の負荷が部分負荷である場合、駆動軸(21)の回転数が比較的小さくなって運転容量も比較的小さくなる。この場合、容積比VIは、最大容積比VImaxよりも小さい所定の容積比(例えば中間容積比VImid=1.5)となるように、スライドバルブ(4)の位置が調整される。以上のように、スクリュー圧縮機(1)の定常運転時には、圧縮機構(20)の容積比VIが所定の制御範囲(例えばVI=1.5〜3.0の範囲)で調整される。
また、本実施形態では、スクリュー圧縮機(1)の起動時に、容積比VIが最低の容積比に調整される。具体的に、本実施形態では、スクリュー圧縮機(1)が停止して圧縮室(23)の吸入側の圧力と吐出側の圧力との差がなくなることで、スプリング(10b)に付勢された状態のスライドバルブ(4)が当接部(31a)に当接して第1位置で保持される。その結果、その後、コントローラ(80)によって電動機(16)がオンされる時点においては、容積比VIが最低容積比VIminとなる。以上のように、本実施形態では、スプリング(10b)と当接部(31a)とが、スクリュー圧縮機(1)の起動時に、スライドバルブ(4)を第1位置に変位させるための変位部を構成している。
なお、本実施形態の最適容積比VIminは、定常運転での容積比VIの制御範囲(VI=1.5〜3.0の範囲)よりも小さくなっている。また、本実施形態では、最適容積比VIminが1.0に設定されている。従って、スライドバルブ(4)を第1位置に保持した状態で、電動機(16)がオンされても、圧縮機構(20)では冷媒が実質的に圧縮されないことになる(詳細は後述する)。
−運転動作−
スクリュー圧縮機(1)の運転動作について説明する。
〈基本的な運転動作〉
まず、スクリュー圧縮機(1)の基本的な運転動作について、図6を参照しながら説明する。
運転中のスクリュー圧縮機(1)の圧縮機構(20)では、図6(A)に示す吸入行程、図6(B)に示す圧縮行程、及び図6(C)に示す吐出行程が、順に繰り返し行われる。以下の説明では、図6においてドットを付した圧縮室(23)に着目する。
図6(A)において、ドットを付した圧縮室(23)は、吸入室(S1)に連通している。また、この圧縮室(23)が形成されている螺旋溝(41)は、同図の下側に位置するゲートロータ(50)のゲート(51)と噛み合わされている。スクリューロータ(40)が回転すると、このゲート(51)が螺旋溝(41)の終端へ向かって相対的に移動し、それに伴って圧縮室(23)の容積が拡大する。その結果、吸入室(S1)の低圧ガス冷媒が吸入口(24)を通じて圧縮室(23)へ吸い込まれる。
スクリューロータ(40)が更に回転すると、図6(B)の状態となる。同図において、ドットを付した圧縮室(23)は、閉じきり状態となっている。つまり、この圧縮室(23)が形成されている螺旋溝(41)は、同図の上側に位置するゲートロータ(50)のゲート(51)と噛み合わされ、このゲート(51)によって吸入室(S1)から仕切られている。そして、スクリューロータ(40)の回転に伴ってゲート(51)が螺旋溝(41)の終端へ向かって移動すると、圧縮室(23)の容積が次第に縮小していく。その結果、圧縮室(23)内のガス冷媒が圧縮される。
スクリューロータ(40)が更に回転すると、図6(C)の状態となる。同図において、ドットを付した圧縮室(23)は、吐出口(25)を介して吐出室(S2)と連通した状態となっている。そして、スクリューロータ(40)の回転に伴ってゲート(51)が螺旋溝(41)の終端へ向かって移動すると、圧縮された高圧ガス冷媒が圧縮室(23)から吐出室(S2)へ押し出されていく。
〈定常運転時に容積比VIの調整動作〉
次に、スクリュー圧縮機(1)の定常運転時において、容積比VIを調整する動作について説明する。スクリュー圧縮機(1)の定常運転時には、最大VI運転と中間VI運転とが少なくとも実行可能となっている。
[最大VI運転]
冷凍装置の負荷が定格負荷である場合、圧縮機構(20)の圧縮室(23)の容積比VIが最大容積比VImax(例えばVImax=3.0)に調整される。具体的に、冷凍装置の負荷が定格負荷であると、コントローラ(80)によって電動機(16)の運転周波数が最大周波数に制御され、駆動軸(21)の回転数が高速となる。その結果、圧縮機構(20)の運転容量も最大容量となる。また、コントローラ(80)によって、第1開閉弁(74)及び第2開閉弁(75)が閉状態に制御され、第3開閉弁(76)が開状態に制御される。
第3開閉弁(76)が開状態になると、吸入室(S1)と連通する第2シリンダ室(12)の内圧は、第1シリンダ室(11)の内圧と比較して相対的に低くなる。このため、ピストン(7)は、第2シリンダ室(12)側(図1における右側)に変位していく。図1に示すように、このピストン(7)が第3連通管(73)を塞ぐ位置にまで変位すると、第2シリンダ室(12)の圧力が上昇し、ピストン(7)が第1シリンダ室(11)側(図1における左側)に変位する。すると、第3連通管(73)の開口端が再び開放され、第2シリンダ室(12)の内圧が再び低下する。その結果、ピストン(7)は、再び第3連通管(73)の開口端を塞ぐ位置に変位する。以上のようにして、ピストン(7)は、実質的には、第3連通管(73)の開口端の近傍に保持される(図1を参照)。その結果、ピストン(7)と連結するスライドバルブ(4)は、吸入口(24)から最も離れる第2位置に保持される。
図7に示すように、スライドバルブ(4)が第2位置にある状態では、吐出口(25)の開口面積が最も小さくなり、吐出行程の開始のタイミング(即ち、圧縮行程の終了のタイミング)が最も遅くなる。この点について、図7(A)に示す太線内の螺旋溝(41)(螺旋溝(41a))に着目しながら具体的に説明する。なお、図7(B)、図7(C)、図7(D)では、スライドバルブ(4)の図示を省略する一方、吐出口(25)を破線で表している。また、図7(B)、図7(C)、図7(D)では、着目する螺旋溝(41a)内に形成される圧縮室(23)にドットを付している。
図7(A)の状態では、吸入口(24)と螺旋溝(41a)とが未だゲート(51)によって仕切られていない。また、螺旋溝(41a)と吐出口(25)とは、スライドバルブ(4)によって仕切られている。このため、図7(A)に示す状態の螺旋溝(41a)では、上述した吸入行程が行われる。
図7(A)の状態のスクリューロータ(40)が回転して図7(B)に示す状態になると、吸入口(24)と螺旋溝(41a)とがゲート(51)によって仕切られる。また、螺旋溝(41a)と吐出口(25)とは、スライドバルブ(4)によって仕切られている。このため、図7(B)に示す状態の螺旋溝(41a)では、吸入行程が終了し、上述した圧縮行程が開始される。
図7(B)の状態のスクリューロータ(40)が回転すると、螺旋溝(41a)内の圧縮室(23)の容積が徐々に小さくなっていく。これにより、圧縮行程が継続して行われ、圧縮室(23)内の冷媒の圧力が高くなっていく。そして、スクリューロータ(40)が図7(C)に示す状態になると、圧縮室(23)と吐出口(25)とが連通する。その結果、圧縮行程が終了し、上述した吐出行程が開始される。以上のように、定格負荷での運転では、圧縮室(23)と吐出口(25)とが連通するタイミングが最も遅くなる。このため、吐出容量Vdが小さくなるため、容積比VIが最大容積比Vmaxとなる。
図7(D)に示すように、スクリューロータ(40)が更に回転すると、吐出口(25)から高圧ガス冷媒が流出していく。この吐出行程は、螺旋溝(41a)内の圧縮室(23)と吐出口(25)とが遮断されるまで行われる。
[中間VI運転]
冷凍装置の負荷が部分負荷である場合、圧縮機構(20)の圧縮室(23)の容積比VIが中間容積比VImid(例えばVImid=1.5)に調整される。具体的に、冷凍装置の負荷が部分負荷であると、コントローラ(80)によって電動機(16)の運転周波数が所定の周波数(上記最大周波数よりも小さい周波数)に制御され、駆動軸(21)の回転数が上記最大VI運転時よりも低速となる。その結果、圧縮機構(20)の運転容量も、最大VI運転より小さくなる。また、コントローラ(80)によって、第2開閉弁(75)が開状態に制御され、第1及び第3開閉弁(74,76)が閉状態に制御される。
第2開閉弁(75)が開状態になると、吸入室(S1)と連通する第2シリンダ室(12)の内圧は、第1シリンダ室(11)の内圧と比較して相対的に低くなる。このため、ピストン(7)は、第2シリンダ室(12)側(図2における右側)に変位していく。図2に示すように、このピストン(7)が第2連通管(72)を塞ぐ位置にまで変位すると、第2シリンダ室(12)の圧力が上昇し、ピストン(7)が第1シリンダ室(11)側(図2における左側)に変位する。すると、第2連通管(72)の開口端が開放されることで、第2シリンダ室(12)の圧力が再び低下する。その結果、ピストン(7)は、再び第2連通管(72)の開口端を塞ぐ位置に変位する。以上のようにして、ピストン(7)は、実質的には、第2連通管(72)の開口端の近傍に保持される(図2を参照)。その結果、ピストン(7)と連結するスライドバルブ(4)は、第1位置と第2位置との間の所定の位置(中間位置)に保持される。
図8に示すように、スライドバルブ(4)が中間位置にある状態では、吐出口(25)の開口面積も中間面積(最大面積と最小面積との間の所定の面積)となり、吐出行程の開始のタイミングは、定格負荷の運転時よりも遅くなる。
図8(A)の状態では、吸入口(24)と螺旋溝(41a)とが未だゲート(51)によって仕切られていない。また、螺旋溝(41a)と吐出口(25)とは、スライドバルブ(4)によって仕切られている。このため、図8(A)に示す状態の螺旋溝(41a)では、上述した吸入行程が行われる。
図8(A)の状態のスクリューロータ(40)が回転して図8(B)に示す状態になると、吸入口(24)と螺旋溝(41a)とがゲート(51)によって仕切られる。また、螺旋溝(41a)と吐出口(25)とは、スライドバルブ(4)によって仕切られている。このため、図8(B)に示す状態の螺旋溝(41a)では、吸入行程が終了し、上述した圧縮行程が開始される。
図8(B)の状態のスクリューロータ(40)が回転すると、螺旋溝(41a)内の圧縮室(23)の容積が徐々に小さくなっていく。これにより、圧縮行程が継続して行われ、圧縮室(23)内の冷媒の圧力が高くなっていく。そして、スクリューロータ(40)が図8(C)に示す状態になると、圧縮室(23)と吐出口(25)とが連通する。その結果、圧縮行程が終了し、上述した吐出行程が開始される。以上のように、定格負荷での運転では、圧縮室(23)と吐出口(25)とが連通するタイミングが、定格負荷での運転(図7を参照)よりも早くなる。このため、吐出容量Vdが大きくなるため、容積比VIが中間容積比Vmidとなる。
図8(D)に示すように、スクリューロータ(40)が更に回転すると、吐出口(25)から高圧ガス冷媒が流出していく。この吐出行程は、螺旋溝(41a)内の圧縮室(23)と吐出口(25)とが遮断されるまで行われる。
〈最低VIでの起動動作〉
スクリュー圧縮機(1)の運転を開始して上述のような定常運転に至るまでの間には、電動機(16)の負荷が増大する。従って、電動機(16)では、比較的大きな起動トルクや起動電流を要するため、電動機(16)の大型化を招いたり、省エネ性が損なわれたり、起動時の信頼性が損なわれたりする、虞がある。
また、冷凍装置を停止させると、冷媒回路の低圧ライン(スクリュー圧縮機(1)の吸入側)の冷媒が凝縮して液状態となることがある。この状態から、スクリュー圧縮機(1)の運転を開始すると、圧縮室(23)で液冷媒が圧縮されてしまう、いわゆる液圧縮現象が発生してしまう虞がある。その結果、圧縮機構(20)が破壊されてしまう虞もある。
そこで、本実施形態では、スクリュー圧縮機(1)は、起動時において、圧縮機構(20)の容積比が最低容積比VIminとなるようになっている。この点について具体的に説明する。
上述した定常運転が終了してスクリュー圧縮機(1)が停止すると、冷凍装置の冷媒回路の高圧と低圧とが均圧していく。これにより、スクリュー圧縮機(1)では、吸入室(S1)と高圧室(S2)との間の差圧も小さくなる。このため、スライドバルブ(4)の軸方向の一端側(吸入室(S1)側)に作用する圧力と、スライドバルブ(4)の軸方向の他端側(吐出室(S2)側)に作用する圧力との差も小さくなる。また、第1シリンダ室(11)の内圧と第2シリンダ室(12)の内圧との差も小さくなる。その結果、スクリュー圧縮機(1)の停止時には、スプリング(10b)に付勢されたスライドバルブ(4)が当接部(31a)に当接し、このスライドバルブ(4)が第1位置に保持される(図9を参照)。
スクリュー圧縮機(1)の運転の開始時には、スライドバルブ(4)が第1位置に保持された状態で、駆動機構(15)が起動する。具体的に、スライドバルブ(4)が図10(A)に示す位置となった状態で電動機(16)がオンされると、冷媒が螺旋溝(41a)内に吸入されて吸入行程が開始する。図10(A)の状態のスクリューロータ(40)が回転して図10(B)に示す状態になると、吸入口(24)と螺旋溝(41a)とがゲート(51)によって仕切られる。
ここで、スライドバルブ(4)が第1位置にある場合には、吸入口(24)と螺旋溝(41a)とがゲート(51)に仕切られるのとほぼ同時に、螺旋溝(41a)と吐出口(25)とが連通する。つまり、最低VIでの起動動作では、吸入行程の終了とほぼ同時に吐出行程が開始されるため、圧縮行程が実質的に行われない。従って、この最低VIでの起動動作では、容積比(圧縮比)VIが1.0となった状態で、駆動軸(21)の回転数が早くなっていく。
スクリューロータ(40)が図10(C)、図10(D)の順に更に回転していくと、螺旋溝(41a)内の冷媒が吐出口(25)から吐出室(S2)へ流出していく。そして、駆動機構(15)によって駆動される駆動軸(21)(スクリューロータ(40))が所定の回転数に至ると、上述した定常運転となって冷媒が圧縮される。以上のように、本実施形態では、駆動機構(15)が起動してから、スクリューロータ(40)の回転数が所定の速度に至るまでは、容積比が最低容積比VIに制御される。
−実施形態の効果−
上記実施形態では、スクリュー圧縮機(1)の起動時において、圧縮機構(20)の容積比VIが最低容積比VIminに制御される。このため、電動機(16)の起動トルクや起動電流を抑えることができ、電動機(16)の小型化、省エネ性の向上、起動時の信頼性の向上を図ることができる。
また、スクリュー圧縮機(1)の起動時において、容積比VIを最低容積比VIとすることで、圧縮室(23)で液冷媒を圧縮してしまう、液圧縮現象を未然に回避できる。
特に、上記実施形態では、最低容積比VIminを1.0としているため、電動機(16)の起動トルクや起動電流を最低限に抑えることができる。また、液圧縮現象を確実に回避できる。
上記実施形態では、スプリング(10b)によってスライドバルブ(4)を第1位置に付勢しているため、スクリューロータ(40)の吸入側と吐出側との間の差圧がなくなっても、スライドバルブ(4)を確実に第1位置側に移動させることができる。また、スクリュー圧縮機(1)の停止中に予めスライドバルブ(4)を第1位置に移動させることができるため、スクリュー圧縮機(1)の起動時には、確実に最低容積比VIminの運転を行うことができる。また、第1位置に付勢されたスライドバルブ(4)を当接部(31a)に接触させるため、スライドバルブ(4)を確実に第1位置に保持できる。
《実施形態の変形例》
上記実施形態については、以下のような変形例の構成としても良い。
〈スプリングを省略した構成(変形例1)〉
図11及び図12示すように、上記実施形態について、スプリング(10b)を省略した構成としても良い。この変形例1では、運転中のスクリュー圧縮機(1)の停止直前に、吸入室(S1)と吐出室(S2)との差圧によってスライドバルブ(4)を第1位置に移動させるようにしている。
より詳細には、まず、スクリュー圧縮機(1)の定常運転時には、上記実施形態と同様、圧力調整機構(70)によって第2シリンダ室(S2)の内圧が調整され、これにより、スライドバルブ(4)の位置、ひいては容積比VIが調整される。このような定常運転時から、スクリュー圧縮機(1)の停止信号がコントローラ(80)に入力されると、駆動機構(15)を停止させる前に、コントローラ(80)が全ての開閉弁(74,75,76)を全閉とする制御を行う。
全ての開閉弁(74,75,76)が閉じた状態になると、第1シリンダ室(11)の内圧と第2シリンダ室(12)の内圧は、ほぼ均一となる。一方、スライドバルブ(4)には、吸入室(S1)側の吸入圧(低圧)と、吐出室(S2)側の吐出圧(高圧)とが作用しており、駆動機構(15)を停止させる前には、吐出室(S2)の圧力の方が吸入室(S1)の圧力よりも高くなっている。このため、スライドバルブ(4)は、このような差圧によって吸入室(S1)側に移動し、当接部(31a)と接触して第1位置に保持される(図12を参照)。
その後、駆動機構(15)に停止信号が出力されてスクリュー圧縮機(1)が停止すると、吸入室(S1)と吐出室(S2)との間の差圧はほぼ無くなるが、スライドバルブ(4)は第1位置の状態のままである。このような状態から、スクリュー圧縮機(1)の運転が開始されることで、駆動機構(15)の起動時には、スライドバルブ(4)を確実に第1位置とすることができる。その結果、スクリュー圧縮機(1)の運転を開始する際、容積比VIを最低容積比Vminとすることができ、電動機(16)の起動トルクや起動電流を低減したり、液圧縮現象を回避したりできる。
〈スライドバルブの形状が異なる構成(変形例2)〉
図13に示すように、スライドバルブ(4)の形状を上記実施形態と異なる形状とすることもできる。変形例2のスライドバルブ(4)は、第1位置となる状態で(即ち、容積比VIが最低容積比VIminとなる状態で)、吐出口(25)の開口面積が最大限に大きくなるように、スライドバルブ(4)の軸周りの幅(径)が定められている。具体的には、スライドバルブ(4)の径は、吸入行程が終了して螺旋溝(41a)と吐出口(25)とが連通するタイミングにおいて、傾斜面(4a)の一端部(図13における左端部)が螺旋溝(41a)に跨り、且つ傾斜面(4a)の他端部(図13における右端部)がスクリューロータ(40)の吐出側端部に跨るように、定められている。
このようにして第1位置のスライドバルブ(4)によって形成される吐出口(25)の開口面積を最大限に大きくすることで、吐出口(25)の圧力損失を効果的に低減できる。即ち、スライドバルブ(4)を第1位置とすると、容積比VIが最低容積比VIminとなるため、吐出口(25)を通過する冷媒の流量が増大し、これに伴い圧力損失も増大し易くなる。しかしながら、このように最大容積比VIminにおける吐出口(25)の開口面積を大きくすることで、冷媒の流速が小さくなり、ひいては圧力損失を低減できる。
《その他の実施形態》
上記実施形態については、以下のような構成としてもよい。
上記実施形態のスプリング(10b)の位置は、単なる一例である。例えばスプリング(10b)を直接的にスライドバルブ(4)に繋げて、スライドバルブ(4)を第1位置側に付勢する構成としても良い。また、ピストン(7)を吸入室(S1)側に付勢するように、第2シリンダ室(12)にスプリング(10b)を繋げるようにしても良い。
また、バルブ変位機構(18)を他の構成としても良い。具体的には、例えばスライドバルブ(4)を小型のモータ等でスライドさせる構成としても良い。また、複数の連通管(71,72,73)と複数の開閉弁(74,75,76)に換えて、例えば第2シリンダ室(12)と吸入室(S1)とを繋ぐ1つの連通管と、この連通管の開度を微調整できる電動弁等を用いて、第2シリンダ室(12)の内圧を調整できる構成としても良い。
上記実施形態では、スクリュー圧縮機(1)の起動時における最低容積比VIminを1.0としているが、最低の容積比であれば、これに限らず1.0よりも大きな容積比であっても良い。
また、上記実施形態では、例えば図7(B)に示すように、ゲート(51)によって吸入口(24)と螺旋溝(41a)とが仕切られると同時に、この螺旋溝(41a)と吐出口(25)とを連通させることで、容積比を1.0とするようにしている。しかしながら、ゲート(51)によって吸入口(24)と螺旋溝(41a)とが仕切られる前から、この螺旋溝(41a)と吐出口(25)とを連通させるようにスライドバルブ(4)の第1位置を設定するようにしても良い。このようにしても、螺旋溝(41a)内では、冷媒が圧縮されないため、容積比を1.0とすることができる。つまり、“容積比=1.0”とは、吸入口(24)と吐出口(25)とを螺旋溝(41a)を介して連通させることで、螺旋溝(41a)内で冷媒が全く圧縮されないことも、含む意味である。
なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
以上説明したように、本発明は、スクリュー圧縮機の起動時における駆動機構の負荷を低減する対策として有用である。
1 スクリュー圧縮機(シングルスクリュー圧縮機)
3 可変VI機構(調整機構)
4 スライドバルブ
10b スプリング(付勢機構、変位部)
15 駆動機構
23 圧縮室
25 吐出口
31 シリンダ壁(シリンダ)
31a 当接部(変位部)
33 スライド溝
40 スクリューロータ
41 螺旋溝
50 ゲートロータ
51 ゲート
80 コントローラ(制御部)

Claims (6)

  1. 外周面に螺旋溝(41)が形成されて軸方向の一端が流体の吸入側となり他端が吐出側となるスクリューロータ(40)と、上記螺旋溝(41)に噛み合わされる複数のゲート(51)が放射状に形成されたゲートロータ(50)と、上記スクリューロータ(40)を回転させる駆動機構(15)と、上記螺旋溝(41)内に流体の圧縮室(23)を区画するように上記スクリューロータ(40)を収容するシリンダ(31)と、上記圧縮室(23)の流体を上記スクリューロータ(40)の吐出側に流出させるための吐出口(25)と、を備えたシングルスクリュー圧縮機であって、
    上記圧縮室(23)の圧縮比を所定の範囲内で調整する調整機構(3)を備え、
    上記調整機構(3)は、上記駆動機構(15)の少なくとも起動時に、上記圧縮室(23)の圧縮比を最低の圧縮比とするように構成されていることを特徴とするシングルスクリュー圧縮機。
  2. 請求項1において、
    上記調整機構(3)は、上記シリンダ(31)の内壁に該シリンダ(31)の軸方向に沿って形成されるスライド溝(33)と、該スライド溝(33)に摺動自在に嵌合して上記圧縮室(23)と吐出口(25)との連通位置を可変とするスライドバルブ(4)と、該スライドバルブ(4)が上記スクリューロータ(40)の吸入側に最も近い第1位置となるようにスライドバルブ(4)を変位させる変位部(10b,31a)と、上記スライドバルブ(4)が上記第1位置にある状態で上記駆動機構(15)を起動する制御部(80)と、を有することを特徴とするシングルスクリュー圧縮機。
  3. 請求項2において、
    上記変位部(10b,31a)は、上記スライドバルブ(4)をスクリューロータ(40)の吸入側に向かって付勢する付勢機構(10b)と、該付勢機構(10b)によって付勢されたスライドバルブ(4)に当接してスライドバルブ(4)を第1位置で保持する当接部(31a)とを有することを特徴とするシングルスクリュー圧縮機。
  4. 請求項2において、
    上記調整機構(3)は、上記スクリューロータ(40)の運転中に、圧縮室(23)の吸入側の流体と吐出側の流体との差圧によって上記スライドバルブ(4)を変位させる圧力調整機構(70)を有し、
    上記圧力調整機構(70)は、運転中のスクリューロータ(40)を停止させる直前に、上記スライドバルブ(4)を第1位置に変位させる上記変位部(10b,31a)を構成していることを特徴とするシングルスクリュー圧縮機。
  5. 請求項1乃至4のいずれか1つにおいて、
    上記調整機構(3)は、スクリューロータ(40)の定常運転時に、上記圧縮室(23)の圧縮比を所定の制御範囲内において調整するように構成され、
    上記最低の圧縮比は、上記スクリューロータ(40)の定常運転時の圧縮比の制御範囲よりも小さいことを特徴とするシングルスクリュー圧縮機。
  6. 請求項1乃至5のいずれか1つにおいて、
    上記最低の圧縮比は、1.0であることを特徴とするシングルスクリュー圧縮機。
JP2010062649A 2010-03-18 2010-03-18 シングルスクリュー圧縮機 Pending JP2011196223A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010062649A JP2011196223A (ja) 2010-03-18 2010-03-18 シングルスクリュー圧縮機
PCT/JP2011/001230 WO2011114636A1 (ja) 2010-03-18 2011-03-02 シングルスクリュー圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010062649A JP2011196223A (ja) 2010-03-18 2010-03-18 シングルスクリュー圧縮機

Publications (1)

Publication Number Publication Date
JP2011196223A true JP2011196223A (ja) 2011-10-06

Family

ID=44648752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010062649A Pending JP2011196223A (ja) 2010-03-18 2010-03-18 シングルスクリュー圧縮機

Country Status (2)

Country Link
JP (1) JP2011196223A (ja)
WO (1) WO2011114636A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047708A (ja) * 2012-08-31 2014-03-17 Mitsubishi Electric Corp スクリュー圧縮機
JP2020176578A (ja) * 2019-04-19 2020-10-29 ダイキン工業株式会社 スクリュー圧縮機
WO2021106061A1 (ja) * 2019-11-26 2021-06-03 三菱電機株式会社 スクリュー圧縮機
WO2022244219A1 (ja) * 2021-05-21 2022-11-24 三菱電機株式会社 スクリュー圧縮機

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5943101B1 (ja) 2015-02-10 2016-06-29 ダイキン工業株式会社 スクリュー圧縮機
CN107524599A (zh) * 2017-10-13 2017-12-29 苏州利森空调制冷有限公司 单螺杆压缩机用内容积比调节机构
WO2022249237A1 (ja) * 2021-05-24 2022-12-01 三菱電機株式会社 圧縮機および冷凍サイクル装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724487A (en) * 1980-07-18 1982-02-09 Mayekawa Mfg Co Ltd Starting method for screw compressor
JPH0315688A (ja) * 1989-06-12 1991-01-24 Daikin Ind Ltd スクリュー圧縮機の容量制御装置
JPH05157072A (ja) * 1991-12-04 1993-06-22 Ebara Corp スクリュ圧縮機の容量制御装置
JPH05187378A (ja) * 1991-07-02 1993-07-27 Daikin Ind Ltd スクリュー圧縮機の容量制御装置
JPH06173872A (ja) * 1992-12-03 1994-06-21 Hitachi Ltd スクリュー圧縮機
JP2004137934A (ja) * 2002-10-16 2004-05-13 Daikin Ind Ltd 可変vi式インバータスクリュー圧縮機
JP2006029105A (ja) * 2004-07-12 2006-02-02 Kobe Steel Ltd スクリュ圧縮機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724487A (en) * 1980-07-18 1982-02-09 Mayekawa Mfg Co Ltd Starting method for screw compressor
JPH0315688A (ja) * 1989-06-12 1991-01-24 Daikin Ind Ltd スクリュー圧縮機の容量制御装置
JPH05187378A (ja) * 1991-07-02 1993-07-27 Daikin Ind Ltd スクリュー圧縮機の容量制御装置
JPH05157072A (ja) * 1991-12-04 1993-06-22 Ebara Corp スクリュ圧縮機の容量制御装置
JPH06173872A (ja) * 1992-12-03 1994-06-21 Hitachi Ltd スクリュー圧縮機
JP2004137934A (ja) * 2002-10-16 2004-05-13 Daikin Ind Ltd 可変vi式インバータスクリュー圧縮機
JP2006029105A (ja) * 2004-07-12 2006-02-02 Kobe Steel Ltd スクリュ圧縮機

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047708A (ja) * 2012-08-31 2014-03-17 Mitsubishi Electric Corp スクリュー圧縮機
JP2020176578A (ja) * 2019-04-19 2020-10-29 ダイキン工業株式会社 スクリュー圧縮機
US11913452B2 (en) 2019-04-19 2024-02-27 Daikin Industries, Ltd. Screw compressor
WO2021106061A1 (ja) * 2019-11-26 2021-06-03 三菱電機株式会社 スクリュー圧縮機
JPWO2021106061A1 (ja) * 2019-11-26 2021-06-03
JP7158603B2 (ja) 2019-11-26 2022-10-21 三菱電機株式会社 スクリュー圧縮機
WO2022244219A1 (ja) * 2021-05-21 2022-11-24 三菱電機株式会社 スクリュー圧縮機

Also Published As

Publication number Publication date
WO2011114636A1 (ja) 2011-09-22

Similar Documents

Publication Publication Date Title
WO2011114636A1 (ja) シングルスクリュー圧縮機
US8998596B2 (en) Scroll compressor
WO2011114637A1 (ja) シングルスクリュー圧縮機
JP4947205B2 (ja) スクリュー圧縮機
CN103711695B (zh) 马达驱动压缩机和空调
JP2008133820A (ja) ロータリ圧縮機及びその制御方法、並びにこれを利用した空気調和機
JP5228905B2 (ja) 冷凍装置
JP5445118B2 (ja) スクリュー圧縮機
JPWO2014192898A1 (ja) スクリュー圧縮機及び冷凍サイクル装置
KR20050012633A (ko) 용량 조절식 스크롤 압축기
JP2004293552A (ja) 容量可変回転圧縮機
JP2013036403A (ja) スクリュー圧縮機
JP5515289B2 (ja) 冷凍装置
JPWO2012042894A1 (ja) 容積型圧縮機
JP2017186924A (ja) 圧縮機
JP5831345B2 (ja) 冷凍装置
JP5951039B2 (ja) ロータリ圧縮機
JP2016020651A (ja) スクリュー圧縮機
JP2013177868A (ja) スクリュー圧縮機
WO2016088207A1 (ja) 冷凍サイクル回路
WO2018003015A1 (ja) シングルスクリュー圧縮機及び冷凍サイクル装置
JP2016109095A (ja) スクリュー圧縮機
JP5836890B2 (ja) ロータリ圧縮機及び蒸気圧縮式冷凍サイクル装置
WO2023058106A1 (ja) 圧縮機
JP2011196272A (ja) スクリュー圧縮機

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605