WO2020241180A1 - 成形材料、シートモールディングコンパウンド、及び成形品 - Google Patents

成形材料、シートモールディングコンパウンド、及び成形品 Download PDF

Info

Publication number
WO2020241180A1
WO2020241180A1 PCT/JP2020/018380 JP2020018380W WO2020241180A1 WO 2020241180 A1 WO2020241180 A1 WO 2020241180A1 JP 2020018380 W JP2020018380 W JP 2020018380W WO 2020241180 A1 WO2020241180 A1 WO 2020241180A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin
molding material
members
molding
Prior art date
Application number
PCT/JP2020/018380
Other languages
English (en)
French (fr)
Inventor
一迅 人見
健一 濱田
真実 木村
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2021522155A priority Critical patent/JP7092263B2/ja
Priority to CN202080037091.XA priority patent/CN113853408B/zh
Priority to US17/613,131 priority patent/US20220213280A1/en
Priority to EP20815042.5A priority patent/EP3978572A4/en
Publication of WO2020241180A1 publication Critical patent/WO2020241180A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4021Ureas; Thioureas; Guanidines; Dicyandiamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/10Homopolymers or copolymers of methacrylic acid esters

Definitions

  • the present invention relates to molding materials, sheet molding compounds, and molded articles.
  • the present application claims priority based on Japanese Patent Application No. 2019-099343 filed in Japan on May 28, 2019, the contents of which are incorporated herein by reference.
  • thermosetting resin in which thermosetting resin is reinforced with fiber reinforced plastic
  • fiber-reinforced resin composite materials reinforced with thermosetting resins such as epoxy resin and unsaturated polyester resin using carbon fiber as a fiber reinforced material are attracting attention for their excellent heat resistance and mechanical strength while being lightweight. Its use in structural applications is expanding.
  • discontinuous fibers are used as the fiber reinforcing material, the range of application of the molded shape is wider than that of continuous fibers, the scraps can be reused, and different material members can be inserted. Due to its wide range, seat molding compounds (hereinafter abbreviated as SMC) are widely used.
  • an aromatic epoxy resin, an alicyclic diamine, a curing agent for an epoxy resin, an epoxy resin composition containing an aliphatic epoxy resin as an essential component, and a molding material are known (for example).
  • Patent Document 1 an aromatic epoxy resin, an alicyclic diamine, a curing agent for an epoxy resin, an epoxy resin composition containing an aliphatic epoxy resin as an essential component, and a molding material.
  • this molding material has excellent storage stability, it has a low melt viscosity, and has problems such as excessive resin flowing out from the fiber reinforced material and productivity problems that the thickening process of the epoxy resin composition takes several days. ..
  • the problem to be solved by the present invention is a molding material, sheet molding, which has excellent viscosity thickening, moderate compressive hardness, and excellent productivity such as storage stability, film peelability, and curability during molding.
  • the purpose is to provide a compound and a molded product thereof.
  • the present inventors have found that a specific molding material containing an aromatic epoxy resin, a curing agent for epoxy resin, and a curing accelerator as essential raw materials can solve the above problems, and have completed the present invention.
  • the aromatic epoxy resin (A), the epoxy resin curing agent (B), and a molding material and curing accelerator (C) is essential raw material, 910 cm -1 and 1510cm in ATR measurement of FT-IR - molding material and a ratio of the transmittance at 1 (910cm -1 / 1510cm -1) is in the range of 1 to 3, a sheet molding compound and moldings.
  • the molding materials, seat molding compounds and molded products obtained from the present invention are excellent in productivity, moldability, etc., automobile members, railroad vehicle members, aerospace aircraft members, ship members, housing equipment members, sports members, light parts, etc. It can be suitably used for exteriors and structures of vehicle members, building civil engineering members, OA equipment and the like.
  • the molding material of the present invention is a molding material containing an aromatic epoxy resin (A), a curing agent for epoxy resin (B), and a curing accelerator (C) as essential raw materials, and is 910 cm in ATR measurement of FT-IR. -1 and the ratio of the transmittance at 1510cm -1 (910cm -1 / 1510cm -1 ) ( hereinafter, abbreviated as "transmittance ratio ⁇ ".) are those in the range of 1-3. Further, the molding material of the present invention is a molding containing a thickener of an epoxy resin composition containing an aromatic epoxy resin (A), a curing agent for epoxy resin (B), and a curing accelerator (C) as essential raw materials. a material, the transmittance ratio at 910 cm -1 and 1510 cm -1 in the FT-IR of the ATR measurement of the increase Nebabutsu ⁇ is in the range of 1-3.
  • Transmittance at ATR measurement of FT-IR of the present invention are those obtained from the peak value of the transmission spectrum, a peak of 910 cm -1 vicinity is a peak derived from the epoxy group, a peak of 1510 cm -1 vicinity benzene It is a peak derived from the ring.
  • the transmittance ratio ⁇ is in the range of 1 to 3, but if it is smaller than 1, the compression hardness is too flexible and the handleability becomes poor, and the film peelability and the curability during molding are also obtained. It will be insufficient. On the other hand, when the transmittance ratio ⁇ is larger than 3, the compressive hardness is too hard and the handleability is poor.
  • aromatic epoxy resin (A) examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol fluorene type epoxy resin, bisphenol fluorene type bisphenol type epoxy resin, phenol novolac type epoxy resin, and cresol novolac.
  • Novolak type epoxy resins such as type epoxy resins, phenolic glycidyl ethers such as brominated epoxy resins of these resins, diglycidyl ethers of alkylene oxide adducts of bisphenol A, diglycidyl phthalates, diglycidyl-p-oxybenzoic acid And the like, such as glycidyl ester.
  • epoxy resins can be used alone or in combination of two or more, but since the balance between viscosity and heat resistance is more excellent, the bifunctional aromatic epoxy resin (A') and the trifunctional or higher It is preferable to use the aromatic epoxy resin (A ′′) in combination, and the mass ratio (A ′ / A ′′) of the epoxy resin (A ′) to the epoxy resin (A ′′) is from 20/80 to More preferably, it is in the range of 80/20.
  • the number average molecular weight of the aromatic epoxy resin (A) is preferably 50 to 1,000, more preferably 100 to 500, because the impregnation property of the fiber reinforcing material is further improved.
  • the epoxy equivalent of the epoxy resin (A) is preferably in the range of 150 to 1500 g / eq, more preferably in the range of 170 to 500 g / eq, because the handleability and the strength of the molded product are further improved.
  • the viscosity of the epoxy resin (A') is preferably in the range of 500 to 50,000 mPa ⁇ s, preferably 1,000 to 30 at a temperature of 25 ° C., because the handleability and the impregnation property of the fiber reinforcing material are further improved. A range of 000 mPa ⁇ s is more preferable. Further, the viscosity of the epoxy resin (A ′′) is preferably in the range of 500 to 300,000 mPa ⁇ s at a temperature of 50 ° C., because the handleability and the impregnation property of the fiber reinforced material are further improved. The range of 000 to 200,000 mPa ⁇ s is more preferable.
  • an epoxy resin other than the aromatic epoxy resin (A) can be used as the molding material of the present invention.
  • Examples of other epoxy resins include glycidyl ethers of polyhydric alcohols such as oxazolidone-modified epoxy resins, trimethylpropan triglycidyl ethers, and diglycidyl ethers of bisphenol hydride, alicyclic epoxy resins, and diglycidyl tetrahydrophthalates. , Dimeric acid glycidyl ester, triglycidyl isocyanurate, tetraglycidyl diaminodiphenylmethane, triglycidyl-p monoaminophenol, N, N-diglycidyl aniline and other glycidylamine type epoxy resins and trisphenol methane type epoxy resins. Epoxy resin and the like can be mentioned. The other epoxy resins may be used alone or in combination of two or more.
  • epoxy resin (A) when used, it is preferable to use an epoxy diluent in combination because it becomes easy to adjust the viscosity and the epoxy equivalent.
  • the viscosity of the epoxy diluent is preferably in the range of 1 to 3,000 mPa ⁇ s, more preferably in the range of 1 to 1000 mPa ⁇ s, because the impregnation property of the molding material into the fiber reinforcing material is further improved.
  • epoxy diluent examples include phenylglycidyl ether, alcohol glycidyl ether, alkyl glycidyl ether, alkyl glycidyl ester, ⁇ -olefin epoxiside, alkylphenyl glycidyl ether, alkylphenol glycidyl ether and the like.
  • the alkyl group is preferably a linear or branched alkyl group having 1 to 20 carbon atoms.
  • phenylglycidyl ether, alcohol glycidyl ether, alkyl glycidyl ether, and alkylphenyl glycidyl ether are preferably used from the viewpoint of lower viscosity and easy adjustment of the viscosity of the composition, and from the viewpoint of heat resistance, there are many. It is preferable to use a functional aromatic epoxy resin.
  • the amount of the epoxy diluent used is preferably in the range of 1 to 30 parts by mass with respect to 100 parts by mass of the epoxy resin (A), and is preferably 2 to 20 parts by mass, because the adhesiveness to the fiber reinforcing material becomes better.
  • the range of parts is more preferable.
  • Examples of the epoxy resin curing agent (B) include amine compounds, amide compounds, acid anhydride compounds, and phenol compounds.
  • Examples of the amine compound include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF3-amine complex, guanidine derivative and the like, and examples of the amide compound include two amounts of dicyandiamide and linolenic acid.
  • Examples thereof include polyamide resins synthesized from the body and ethylenediamine, and examples of acid anhydride compounds include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, and methyltetrahydrophthalic anhydride. Examples thereof include acids, methylnadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, etc.
  • Examples of the phenolic compound include phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin modified phenol resin, and dicyclopentadiene.
  • Naftor-novolac resin naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenolic resin (polyphenolic compound in which phenol nuclei are linked by bismethylene group), biphenyl-modified naphthol resin (phenol by bismethylene group) Nucleus-linked polyvalent naphthol compound), aminotriazine-modified phenolic resin (polyvalent phenolic compound in which phenolic nuclei are linked with melamine, benzoguanamine, etc.) and alkoxy group-containing aromatic ring-modified novolak resin (phenol nuclei and alkoxy groups in formaldehyde) Examples thereof include polyvalent phenol compounds such as polyvalent phenol compounds in which contained aromatic rings are linked.
  • These epoxy resin curing agents (B) can be used alone or in combination of two or more.
  • amide compounds and amine compounds are preferable, and dicyandiamide and imidazole are more preferable because they have high curability and excellent quick curability.
  • the epoxy resin curing agent (B) is preferably in the range of 1 to 40 parts by mass and preferably in the range of 3 to 20 parts by mass with respect to a total of 100 parts by mass of the epoxy resin and the epoxy resin diluent.
  • a urea compound is preferable from the viewpoint of mechanical properties of the molded product, and an imidazole compound is preferable from the viewpoint of heat resistance.
  • Examples of the urea compound include 3-phenyl-1,1-dimethylurea, 3- (3,4-dichlorophenyl) -1,1-dimethylurea, and 3- (3-chloro-4-methylphenyl) -1,1-.
  • Examples thereof include dimethylurea, 2,4-bis (3,3-dimethylureaide) toluene, 1,1'-(4-methyl-1,3-phenylene) bis (3,3-dimethylurea) and the like.
  • imidazole compound examples include imidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, and 2-ethyl-4.
  • curing accelerators (C) can be used alone or in combination of two or more.
  • the curing accelerator (C) is preferably in the range of 1 to 20 parts by mass, more preferably in the range of 1.5 to 10 parts by mass, based on 100 parts by mass of the total of the epoxy resin and the epoxy diluent.
  • the molding material of the present invention may contain components other than the aromatic epoxy resin (A), the curing agent for epoxy resin (B), and the curing accelerator (C), and the moldability is further improved. It preferably contains the thermoplastic resin particles (D).
  • the thermoplastic resin particles (D) are resin powders containing at least one monomer unit selected from (meth) acrylic acid ester, diene and monomers copolymerizable with these.
  • the one containing a thermoplastic resin powder composed of a core layer and a shell layer as an active ingredient is preferable.
  • the (meth) acrylic acid ester include ethyl (meth) acrylate, n-butyl (meth) acrylate, methyl methacrylate, butyl (meth) acrylate, n-propyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
  • N-decyl methacrylate isobutyl (meth) acrylate, n-amyl (meth) acrylate, isoamyl (meth) acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate And so on.
  • diene-based monomer examples include conjugated diene-based compounds such as butadiene, isoprene, 1,3-pentadiene, cyclopentadiene, and dicyclopentadiene, and non-conjugated diene-based compounds such as 1,4-hexadiene and etilidennorbornene. Can be mentioned.
  • Examples of the monomer copolymerizable with these include aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, vinyltoluene, pt-butylstyrene, and chlorostyrene, (meth) acrylamide, and N-methylol (meth) acrylamide. , N-Butoxymethyl (meth) acrylamide and other (meth) acrylamide compounds, glycidyl (meth) acrylate, allyl glycidyl (meth) acrylate and the like, and among these, aromatic vinyl compounds are preferable.
  • aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, vinyltoluene, pt-butylstyrene, and chlorostyrene
  • (meth) acrylamide and N-methylol (meth) acrylamide.
  • N-Butoxymethyl (meth) acrylamide and other (meth) acrylamide compounds g
  • the content of the thermoplastic resin particles (D) is preferably in the range of 1 to 20 parts by mass with respect to 100 parts by mass in total of the epoxy resin and the epoxy diluent because the viscosity increase is further improved. A range of 9.5 parts by mass is more preferable.
  • Examples of the molding material of the present invention include a thermosetting resin other than an epoxy resin, a thermoplastic resin other than the thermoplastic resin particles (D), a polymerization inhibitor, a filler, a low shrinkage agent, a mold release agent, and a thickening agent. It can contain agents, thickeners, pigments, antioxidants, plasticizers, flame retardants, antibacterial agents, ultraviolet stabilizers, storage stabilizers, reinforcing materials, photocuring agents and the like.
  • thermosetting resin examples include vinyl ester resin, vinyl urethane resin, unsaturated polyester resin, acrylic resin, phenol resin, melamine resin, furan resin and the like.
  • thermosetting resins can be used alone or in combination of two or more.
  • thermoplastic resin examples include polyamide resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polycarbonate resin, urethane resin, polypropylene resin, polyethylene resin, polystyrene resin, acrylic resin, polybutadiene resin, polyisoprene resin, and copolymerization thereof. Examples thereof include those modified by the above. In addition, these thermoplastic resins can be used alone or in combination of two or more.
  • the filler includes inorganic compounds and organic compounds, which can be used to adjust physical properties such as strength, elastic modulus, impact strength, and fatigue durability of molded products.
  • examples of the inorganic compound include calcium carbonate, magnesium carbonate, barium sulfate, mica, talc, kaolin, clay, celite, asbestos, burlite, baryta, silica, silica sand, dolomite limestone, gypsum, aluminum fine powder, hollow balloon, and the like.
  • examples thereof include alumina, glass powder, aluminum hydroxide, cold water stone, zirconium oxide, antimony trioxide, titanium oxide, molybdenum dioxide, and iron powder.
  • organic compound examples include natural polysaccharide powders such as cellulose and chitin, synthetic resin powders, and the like, and synthetic resin powders are composed of hard resins, soft rubbers, elastomers, polymers (copolymers), and the like.
  • Particles having a multilayer structure such as organic powder or core-shell type can be used. Specific examples thereof include particles made of butadiene rubber and / or acrylic rubber, urethane rubber, silicon rubber and the like, polyimide resin powder, fluororesin powder, phenol resin powder and the like. These fillers can be used alone or in combination of two or more.
  • release agent examples include zinc stearate, calcium stearate, paraffin wax, polyethylene wax, carnauba wax, and fluorine-based compounds. Fluorine compounds and paraffin wax are preferable. These release agents can be used alone or in combination of two or more.
  • thickener examples include metal oxides such as magnesium oxide, magnesium hydroxide, calcium oxide and calcium hydroxide, acrylic resin-based fine particles such as metal hydroxides, and the fiber-reinforced molding material of the present invention. It can be selected as appropriate depending on the handleability of. These thickeners can be used alone or in combination of two or more.
  • the sheet molding compound of the present invention contains the above-mentioned molding material and fiber reinforced material (E) as essential components, is excellent in productivity, and is excellent in design and bonding of different materials. It has a variety of factors such as, and is excellent in moldability.
  • Fibers cut to a length of 2.5 to 50 mm are used, but since the fluidity in the mold at the time of molding, the appearance of the molded product and the mechanical properties are further improved, Fibers cut to 5-40 mm are more preferred.
  • the fiber reinforcing material (E) includes, for example, glass fiber, carbon fiber, silicon carbide fiber, pulp, linen, cotton, nylon, polyester, acrylic, polyurethane, polyimide, or polyamide fiber made of aramid such as Kevlar and Nomex. And so on. Among these, carbon fiber is preferable because a high-strength molded product can be obtained.
  • carbon fiber various types such as polyacrylonitrile type, pitch type, rayon type and the like can be used, but among these, polyacrylonitrile type one is preferable because high strength carbon fiber can be easily obtained.
  • the number of filaments of the fiber bundle used as the carbon fiber is preferably 1,000 to 60,000 because the resin impregnation property and the mechanical properties of the molded product are further improved.
  • the content of the fiber reinforced material (E) in the components of the SMC of the present invention is preferably in the range of 25 to 80% by mass, preferably 40 to 70% by mass, because the mechanical properties of the obtained molded product are further improved. Is more preferable, and 45 to 65% by mass is particularly preferable. If the fiber reinforced plastic content is too low, a high-strength molded product may not be obtained, and if the fiber reinforced plastic content is too high, the resin impregnation property of the fiber reinforced plastic is insufficient and the molded product There is a possibility that swelling will occur and a high-strength molded product cannot be obtained.
  • the fiber reinforcing material (E) in the SMC of the present invention is impregnated with the resin in a state where the fiber directions are random.
  • an aromatic epoxy resin (A) and a curing agent for epoxy resin (B) are used by using a mixer such as an ordinary mixer, an intermixer, a planetary mixer, a roll mill, a kneader, or an extruder.
  • a mixer such as an ordinary mixer, an intermixer, a planetary mixer, a roll mill, a kneader, or an extruder.
  • Curing accelerator (C) thermoplastic resin particles (D), etc.
  • the obtained resin composition is applied to carrier films placed on the top and bottom so as to have a uniform thickness.
  • the fiber reinforcing material (E) is sandwiched between the resin compositions on the carrier films installed above and below, and then the whole is passed between the impregnated rolls, and pressure is applied to the resin composition on the fiber reinforcing material (E).
  • Examples thereof include a method of impregnating an object and then winding it into a roll or folding it into a zigzag fold. Further, after this, it is preferable to carry out aging at room temperature or a temperature of 20 to 60 ° C. to thicken the viscosity.
  • a carrier film a polyethylene film, a polypropylene film, a polyethylene-polypropylene laminate film, polyethylene terephthalate, nylon or the like can be used.
  • the molded product of the present invention can be obtained from the SMC, but from the viewpoint of excellent productivity and excellent design diversity, heat compression molding is preferable as the molding method.
  • the SMC is weighed in a predetermined amount, put into a mold preheated to 110 to 180 ° C., molded by a compression molding machine, and the molding material is molded.
  • a manufacturing method is used in which a molding material is cured by holding a molding pressure of 1 to 30 MPa, and then the molded product is taken out to obtain a molded product.
  • molding conditions in which the molding pressure of 1 to 20 MPa is maintained in the mold at a mold temperature of 120 to 160 ° C. for 1 to 5 minutes per 1 mm of thickness of the molded product is preferable, and the productivity is good. More preferably, the molding conditions are such that the molding pressure of 1 to 20 MPa is maintained for 1 to 3 minutes per 1 mm of the thickness of the molded product at a mold temperature of 140 to 160 ° C.
  • the SMC of the present invention is excellent in productivity, formability, etc., and the obtained molded products are automobile members, railroad vehicle members, aerospace aircraft members, ship members, housing equipment members, sports members, light vehicle members, building civil engineering members. , Can be suitably used for housings of OA equipment and the like.
  • Epoxy resin (A-1) Tetraglycidyl diaminodiphenylmethane manufactured by Sigma Aldrich, epoxy equivalent 110-130 g / eq, tetrafunctional aromatic epoxy resin
  • A-3 DIC Co., Ltd.
  • EPICLON 840LV bisphenol A type, epoxy equivalent: 178 g / eq, number of functional groups: 2) 40 parts by mass, epoxy diluent (ANHUI XINYUAN Chemical "XY-622", 1,4-butanediol diglycidyl ether) , Epoxy equivalent 131 g / eq, number of functional groups: 2) 5 parts by mass, epoxy diluent ("EX-313" manufactured by Nagase Sangyo Co., Ltd., glycerol polyglycidyl ether, number of functional groups: 2 or more) 15 parts by mass, internal mold release agent ( 2 parts by mass of "FB-962
  • Example 2 to 5 Resin compositions (2) to (5), molding materials (X-2) to (X-5), SMC (Y-2) in the same manner as in Example 1 except that the composition and aging time shown in Table 1 were used. -(Y-5) and molded products (2)-(5) were obtained and each evaluation was performed.
  • the molding materials of the present inventions of Examples 1 to 5 had a compressive hardness excellent in moldability, and were excellent in film peelability and curability even when SMC was used.
  • Comparative Example 1 although the ratio of the transmittance at 910 cm -1 and 1510 cm -1 in the ATR measurement of FT-IR (transmittance ratio alpha) is greater than 3 example is the upper limit, the compression hardness is soft It was confirmed that the moldability was poor because it was too much.
  • Comparative Examples 2 and 3 are examples in which the transmittance ratio ⁇ is smaller than 1, which is the lower limit, but the compressive hardness is too hard, so that the moldability is poor and the film peelability and curability are also insufficient. It was confirmed that there was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

芳香族エポキシ樹脂(A)、エポキシ樹脂用硬化剤(B)、及び硬化促進剤(C)を必須原料とする成形材料であって、FT-IRのATR測定における910cm-1及び1510cm-1での透過率の比(910cm-1/1510cm-1)が1~3の範囲であることを特徴とする成形材料を提供する。この成形材料は、生産性、成形性等に優れることから、自動車部材、鉄道車両部材、航空宇宙機部材、船舶部材、住宅設備部材、スポーツ部材、軽車両部材、建築土木部材、OA機器等の外装や構造体等に好適に用いることができる。

Description

成形材料、シートモールディングコンパウンド、及び成形品
 本発明は、成形材料、シートモールディングコンパウンド、及び成形品に関するものである。
 本願は、2019年5月28日に、日本に出願された特願2019-099343に基づき優先権を主張し、その内容をここに援用する。
 熱硬化性樹脂を繊維強化材で補強したいわゆるFRPは、工業部品、住設部材、自動車部材等の多方面において使用されている。さらに、炭素繊維を繊維強化材としてエポキシ樹脂や不飽和ポリエステル樹脂等の熱硬化性樹脂を強化した繊維強化樹脂複合材料は、軽量でありながら耐熱性や機械強度に優れる特徴が注目され、様々な構造体用途での利用が拡大している。また、繊維強化材として、不連続繊維を使用するため、連続繊維に比べて、成形形状の適用範囲が広く、端材も再利用でき、異素材部材インサートができるなど、生産性や設計適用範囲広いことから、シートモールディングコンパウンド(以下SMCと略記)が広く用いられている。現在一般にSMC用熱硬化性樹脂として知られている不飽和ポリエステル樹脂やビニルエステル樹脂からなるSMCは、揮発性有機化合物の排出等の問題を有する。このために、エポキシ樹脂を用いたSMCの検討が進められている。
 エポキシ樹脂を主成分とするSMCとしては、芳香族エポキシ樹脂、脂環式ジアミン、エポキシ樹脂用硬化剤、脂肪族エポキシ樹脂を必須成分として含むエポキシ樹脂組成物及び成形材料が知られている(例えば、特許文献1参照)。この成形材料は、貯蔵安定性に優れるものの、溶融粘度が低く、繊維強化材から樹脂が過剰に流れ出す問題や、エポキシ樹脂組成物の増粘工程に数日を要するという生産性の問題があった。
特開2018-66026号公報
 本発明が解決しようとする課題は、増粘性に優れ、適度な圧縮硬さを有し、貯蔵安定性、フィルム剥離性、及び成形時の硬化性等の生産性に優れた成形材料、シートモールディングコンパウンド、及びその成形品を提供することにある。
 本発明者等は、芳香族エポキシ樹脂、エポキシ樹脂用硬化剤、及び硬化促進剤を必須原料とする特定の成形材料が、上記課題を解決できることを見出し、本発明を完成した。
 すなわち、芳香族エポキシ樹脂(A)、エポキシ樹脂用硬化剤(B)、及び硬化促進剤(C)を必須原料とする成形材料であって、FT-IRのATR測定における910cm-1及び1510cm-1での透過率の比(910cm-1/1510cm-1)が1~3の範囲であることを特徴とする成形材料、シートモールディングコンパウンド及び成形品に関する。
 本発明から得られる成形材料、シートモールディングコンパウンド及び成形品は、生産性、成形性等に優れることから、自動車部材、鉄道車両部材、航空宇宙機部材、船舶部材、住宅設備部材、スポーツ部材、軽車両部材、建築土木部材、OA機器等の外装や構造体等に好適に用いることができる。
 本発明の成形材料は、芳香族エポキシ樹脂(A)、エポキシ樹脂用硬化剤(B)、及び硬化促進剤(C)を必須原料とする成形材料であって、FT-IRのATR測定における910cm-1及び1510cm-1での透過率の比(910cm-1/1510cm-1)(以下、「透過率比α」と略記する。)が1~3の範囲であるものである。
 また、本発明の成形材料は、芳香族エポキシ樹脂(A)、エポキシ樹脂用硬化剤(B)、及び硬化促進剤(C)を必須原料とするエポキシ樹脂組成物の増粘物を含有する成形材料であって、前記増粘物のFT-IRのATR測定における910cm-1及び1510cm-1での透過率比αが1~3の範囲である。
 本発明のFT-IRのATR測定における透過率は、透過スペクトルのピーク値より得られるものであるが、910cm-1近傍のピークはエポキシ基由来のピークであり、1510cm-1近傍のピークはベンゼン環由来のピークである。
 前記透過率比αは1~3の範囲内であることが重要であるが、1より小さい場合は、圧縮硬さが柔軟すぎて取り扱い性が不良となり、フィルム剥離性及び成形時の硬化性も不十分となる。一方、透過率比αが3より大きい場合は、圧縮硬さが硬すぎて取り扱い性が不良となる。
 前記芳香族エポキシ樹脂(A)としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂、ビスクレゾールフルオレン型等のビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、これらの樹脂の臭素化エポキシ樹脂などのフェノールのグリシジルエーテル、ビスフェノールAのアルキレンオキサイド付加物のジグリシジルエーテル、フタル酸ジグリシジルエステル、ジグリシジル-p-オキシ安息香酸等のグリシジルエステルなどが挙げられる。なお、これらのエポキシ樹脂は、単独で用いることも2種以上併用することもできるが、粘度及び耐熱性のバランスがより優れることから、2官能の芳香族エポキシ樹脂(A’)及び3官能以上の芳香族エポキシ樹脂(A’’)を併用することが好ましく、前記エポキシ樹脂(A’)と前記エポキシ樹脂(A’’)との質量比率(A’/A’’)が20/80~80/20の範囲であることがより好ましい。
 前記芳香族エポキシ樹脂(A)の数平均分子量は、繊維強化材への含浸性がより向上することから、50~1,000が好ましく、100~500がより好ましい。
 前記エポキシ樹脂(A)のエポキシ当量は、取扱性及び成形品強度がより向上することから、150~1500g/eqの範囲が好ましく170~500g/eqの範囲がより好ましい。
 前記エポキシ樹脂(A’)の粘度は、取扱性及び繊維強化材への含浸性がより向上することから、温度25℃において、500~50,000mPa・sの範囲が好ましく、1,000~30,000mPa・sの範囲がより好ましい。また、前記エポキシ樹脂(A’’)の粘度は、取扱性及び繊維強化材への含浸性がより向上することから、温度50℃において、500~300,000mPa・sの範囲が好ましく、1,000~200,000mPa・sの範囲がより好ましい。
 また、本発明の成形材料には、前記芳香族エポキシ樹脂(A)以外のその他のエポキシ樹脂を使用することができる。
 その他のエポキシ樹脂としては、例えば、オキサゾリドン変性エポキシ樹脂、トリメチロールプロパントリグリシジルエーテル、水素化ビスフェノールAのジグリシジルエーテル等の多価アルコールのグリシジルエーテル、脂環式エポキシ樹脂、テトラヒドロフタル酸ジグリシジルエステル、ダイマー酸グリシジルエステル、トリグリシジルイソシアヌレート、テトラグリシジルジアミノジフェニルメタン、トリグリシジル-p一アミノフェノール、N,N-ジグリシジルアニリン等のグリシジルアミン型エポキシ樹脂やトリスフェノールメタン型エポキシ樹脂などの複素環式エポキシ樹脂等が挙げられる。なお、その他のエポキシ樹脂は、単独で用いることも2種以上併用することもできる。
 また、前記エポキシ樹脂(A)を使用する際には、粘度の調整、エポキシ当量の調整が容易になることから、エポキシ希釈剤を併用することが好ましい。
 前記エポキシ希釈剤の粘度は、成形材料の繊維強化材への含浸性がより向上することから、1~3,000mPa・sの範囲が好ましく、1~1000mPa・sの範囲がより好ましい。
 前記エポキシ希釈剤としては、例えば、フェニルグリシジルエーテル、アルコールグリシジルエーテル、アルキルグリシジルエーテル、アルキルグリシジルエステル、α-オレフィンエポキサイド、アルキルフェニルグリシジルエーテル、アルキルフェノールグリシジルエーテル等が挙げられる。ここで、アルキル基は炭素原子数1~20の直鎖又は分岐状のアルキル基であることが好ましい。
 これらの中でも、より粘度が低く、組成物の粘度調整が容易である観点から、フェニルグリシジルエーテル、アルコールグリシジルエーテル、アルキルグリシジルエーテル、アルキルフェニルグリシジルエーテルを用いることが好ましく、耐熱性の観点から、多官能の芳香族エポキシ樹脂を用いることが好ましい。
 前記エポキシ希釈剤の使用量は、繊維強化材との接着性がより良好となることから、前記エポキシ樹脂(A)100質量部に対し、1~30質量部の範囲が好ましく、2~20質量部の範囲がより好ましい。
 前記エポキシ樹脂用硬化剤(B)は、アミン系化合物、アミド系化合物、酸無水物系化合物、フェノ-ル系化合物などが挙げられる。アミン系化合物としてはジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ-ル、BF3-アミン錯体、グアニジン誘導体等が挙げられ、アミド系化合物としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられ、酸無水物系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられ、フェノール系化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、レゾルシンノボラック樹脂に代表される多価ヒドロキシ化合物とホルムアルデヒドから合成される多価フェノールノボラック樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)等の多価フェノール化合物等が挙げられる。なお、これらのエポキシ樹脂用硬化剤(B)は単独で用いることも2種以上併用することもできる。
 これらの中でも、硬化性が高く、速硬化性に優れることからアミド系化合物とアミン系化合物が好ましく、ジシアンジアミド、イミダゾ-ルがより好ましい。
 前記エポキシ樹脂用硬化剤(B)は、エポキシ樹脂及びエポキシ樹脂希釈剤の合計100質量部に対して、1~40質量部の範囲が好ましく、3~20質量部の範囲が好ましい。
 前記硬化促進剤(C)としては、成形品の機械特性の観点からは、尿素化合物が好ましく、耐熱性の観点からは、イミダゾール化合物が好ましい。
 尿素化合物としては、3-フェニル-1,1-ジメチル尿素、3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素、3-(3-クロロ-4-メチルフェニル)-1,1-ジメチル尿素、2,4-ビス(3,3-ジメチルウレイド)トルエン、1,1’-(4-メチル-1,3-フェニレン)ビス(3,3-ジメチル尿素)等が挙げられる。
 イミダゾール化合物としては、イミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等が挙げられる。
 なお、これらの硬化促進剤(C)は単独で用いることも2種以上併用することもできる。
 前記硬化促進剤(C)は、エポキシ樹脂及びエポキシ希釈剤の合計100質量部に対して、1~20質量部の範囲が好ましく、1.5~10質量部の範囲がより好ましい。
 本発明の成形材料は、芳香族エポキシ樹脂(A)、エポキシ樹脂用硬化剤(B)、及び硬化促進剤(C)以外の成分を含有してもよく、成形性がより向上することから、熱可塑性樹脂粒子(D)を含有することが好ましい。
 前記熱可塑性樹脂粒子(D)としては、(メタ)アクリル酸エステル、ジエンおよびこれらと共重合可能な単量体の中から選ばれた少なくとも1種の単量体単位を含有する樹脂粉末であり、コア層とシェル層で構成される熱可塑性樹脂粉末を有効成分とするものが好ましい。前記(メタ)アクリル酸エステルとしては、例えば、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、メチルメタクリレート、ブチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-デシルメタクリレート、イソブチル(メタ)アクリレート、n-アミル(メタ)アクリレート、イソアミル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート等が挙げられる。
 また、ジエン系単量体としては、ブタジエン、イソプレン、1,3-ペンタジエン、シクロペンタジエン、ジシクロペンタジエン等の共役ジエン系化合物、1,4-ヘキサジエン、エチリデンノルボルネン等の非共役ジエン系化合物などが挙げられる。
 これらと共重合可能な単量体としては、スチレン、α-メチルスチレン、ビニルトルエン、p-t-ブチルスチレン、クロロスチレン等の芳香族ビニル化合物、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド等の(メタ)アクリルアミド系化合物、グリシジル(メタ)アクリレート、アリルグリシジル(メタ)アクリレートなどが挙げられるが、これらの中でも、芳香族ビニル化合物が好ましい。
 前記熱可塑性樹脂粒子(D)の含有量としては、増粘性がより向上することから、エポキシ樹脂及びエポキシ希釈剤の合計100質量部に対して、1~20質量部の範囲が好ましく、3~9.5質量部の範囲がより好ましい。
 本発明の成形材料としては、例えば、エポキシ樹脂以外の熱硬化性樹脂、前記熱可塑性樹脂粒子(D)以外の熱可塑性樹脂、重合禁止剤、充填剤、低収縮剤、離型剤、増粘剤、減粘剤、顔料、酸化防止剤、可塑剤、難燃剤、抗菌剤、紫外線安定剤、保存安定剤、補強材、光硬化剤等を含有することができる。
 前記熱硬化性樹脂としては、例えば、ビニルエステル樹脂、ビニルウレタン樹脂、不飽和ポリエステル樹脂、アクリル樹脂、フェノール樹脂、メラミン樹脂、フラン樹脂等が挙げられる。また、これらの熱硬化性樹脂は、単独で用いることも2種以上併用することもできる。
 前記熱可塑性樹脂としては、例えば、ポリアミド樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリカーボネート樹脂、ウレタン樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、ポリスチレン樹脂、アクリル樹脂、ポリブタジエン樹脂、ポリイソプレン樹脂およびこれらを共重合等により変性させたものが挙げられる。また、これらの熱可塑性樹脂は、単独で用いることも2種以上併用することもできる。
 前記充填剤としては、無機化合物、有機化合物があり、成形品の強度、弾性率、衝撃強度、疲労耐久性等の物性を調整するために使用できる。
 前記無機化合物としては、例えば、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、マイカ、タルク、カオリン、クレー、セライト、アスベスト、バーライト、バライタ、シリカ、ケイ砂、ドロマイト石灰石、石こう、アルミニウム微粉、中空バルーン、アルミナ、ガラス粉、水酸化アルミニウム、寒水石、酸化ジルコニウム、三酸化アンチモン、酸化チタン、二酸化モリブデン、鉄粉等が挙げられる。
 前記有機化合物としては、セルロース、キチン等の天然多糖類粉末や、合成樹脂粉末等があり、合成樹脂粉末としては、硬質樹脂、軟質ゴム、エラストマーまたは重合体(共重合体)などから構成される有機物の粉体やコアシェル型などの多層構造を有する粒子を使用できる。具体的には、ブタジエンゴムおよび/またはアクリルゴム、ウレタンゴム、シリコンゴム等からなる粒子、ポリイミド樹脂粉末、フッ素樹脂粉末、フェノール樹脂粉末などが挙げられる。これらの充填剤は、単独で用いることも、2種以上を併用することもできる。
 前記離型剤としては、例えば、ステアリン酸亜鉛、ステアリン酸カルシウム、パラフィンワックス、ポリエチレンワックス、カルナバワックス、フッ素系化合物などが挙げられる。好ましくは、フッ素化合物、パラフィンワックスが挙げられる。これらの離型剤は、単独で用いることも、2種以上を併用することもできる。
 前記増粘剤としては、例えば、酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、水酸化カルシウム等の金属酸化物や金属水酸化物など、アクリル樹脂系微粒子などが挙げられ、本発明の繊維強化成形材料の取り扱い性によって適宜選択できる。これらの増粘剤は、単独で用いることも、2種以上を併用することもできる。
 本発明のシートモールディングコンパウンド(以下、「SMC」と略記する。)は、上記した成形材料及び繊維強化材(E)を必須成分として含有するものであり、生産性に優れ、デザインや異素材接合等の多様性を有し、成形性に優れる。
 前記繊維強化材(E)は、2.5~50mmの長さにカットした繊維が用いられるが、成形時の金型内流動性、成形品の外観及び機械的物性がより向上することから、5~40mmにカットした繊維がより好ましい。
 前記繊維強化材(E)としては、例えば、ガラス繊維、炭素繊維、シリコンカーバイド繊維、パルプ、麻、綿、ナイロン、ポリエステル、アクリル、ポリウレタン、ポリイミド、あるいはケブラー、ノーメックス等のアラミド等からなるポリアミド繊維等が挙げられる。これらの中でも高強度の成形品が得られることから炭素繊維が好ましい。
 前記炭素繊維としては、ポリアクリロニトリル系、ピッチ系、レーヨン系等の各種のものが使用できるが、これらの中でも、容易に高強度の炭素繊維が得られることから、ポリアクリロニトリル系のものが好ましい。
 また、前記炭素繊維として使用される繊維束のフィラメント数は、樹脂含浸性及び成形品の機械的物性がより向上することから、1,000~60,000が好ましい。
 本発明のSMCの成分中の前記繊維強化材(E)の含有率は、得られる成形品の機械的物性がより向上することから、25~80質量%の範囲が好ましく、40~70質量%の範囲がより好ましく、45~65質量%が特に好ましい。繊維強化材含有率が低すぎる場合、高強度な成形品が得られない可能性があり、繊維強化材含有率が高すぎる場合、繊維強化材への樹脂含浸性が不十分で、成形品に膨れが生じ、高強度な成形品が得られない可能性がある。
 また、本発明のSMC中の前記繊維強化材(E)は、繊維方向がランダムな状態で樹脂に含浸していることが好ましい。
 本発明のSMCの製造方法としては、通常のミキサー、インターミキサー、プラネタリーミキサー、ロールミル、ニーダー、押し出し機などの混合機を用いて、芳香族エポキシ樹脂(A)、エポキシ樹脂用硬化剤(B)、硬化促進剤(C)、熱可塑性樹脂粒子(D)等の各成分を混合・分散し、得られた樹脂組成物を上下に設置されたキャリアフィルムに均一な厚さになるように塗布し、繊維強化材(E)を前記上下に設置されたキャリアフィルム上の樹脂組成物で挟み込み、次いで、全体を含浸ロールの間に通して、圧力を加えて繊維強化材(E)に樹脂組成物を含浸させた後、ロール状に巻き取る又はつづら折りに畳む方法等が挙げられる。さらに、この後に常温もしくは20~60℃の温度で熟成を行い、増粘させることが好ましい。キャリアフィルムとしては、ポリエチレンフィルム、ポリプロピレンフィルム、ポリエチレンとポリプロピレンのラミネートフィルム、ポリエチレンテレフタレート、ナイロン等を用いることができる。
 本発明の成形品は、前記SMCより得られるが、生産性に優れる点とデザイン多様性に優れる観点からその成形方法としては、加熱圧縮成形が好ましい。
 前記加熱圧縮成形としては、例えば、前記SMCを所定量計量し、予め110~180℃に加熱した金型に投入し、圧縮成形機にて型締めを行い、成形材料を賦型させ、0.1~30MPaの成形圧力を保持することによって、成形材料を硬化させ、その後成形品を取り出し成形品を得る製造方法が用いられる。具体的な成形条件としては、金型内で金型温度120~160℃にて、成形品の厚さ1mm当たり1~5分間、1~20MPaの成形圧力を保持する成形条件が好ましく、生産性がより向上することから、金型温度140~160℃にて、成形品の厚さ1mm当たり1~3分間、1~20MPaの成形圧力を保持する成形条件がより好ましい。
 本発明のSMCは、生産性、成形性等に優れ、得られる成形品は、自動車部材、鉄道車両部材、航空宇宙機部材、船舶部材、住宅設備部材、スポーツ部材、軽車両部材、建築土木部材、OA機器等の筐体等に好適に用いることができる。
 以下、本発明を実施例によって更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、FT-IRのATR測定及び平均分子量は、下記の測定条件で測定したものである。
[FT-IR(ATR)測定条件]
測定装置:パーキンエルマー製「FT-IR Spectrometer Frontier T」
ATR測定ユニット:Specac製「Golden Gate ダイヤモンド」
測定法:1回反射ATR法
クリスタル:Type ■aダイヤモンド(2mm×2mm)
ATR侵入長(n=1.5, 1000cm-1):2um
光源:MIR(8000~30cm-1
入射角:45°
検出器:MIR TGS(15000~370cm-1
測定範囲:4000~400cm-1
分解能:4cm-1
積算回数:8回
[GPC測定条件]
測定装置:東ソー株式会社製「HLC-8220 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL-L」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G3000HXL」
    +東ソー株式会社製「TSK-GEL G4000HXL」
検出器:RI(示差屈折計)
データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.10」
測定条件: カラム温度  40℃
      展開溶媒   テトラヒドロフラン
      流速     1.0ml/分
標準試料:前記「GPC-8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
 (使用ポリスチレン)
  東ソー株式会社製「A-500」
  東ソー株式会社製「A-1000」
  東ソー株式会社製「A-2500」
  東ソー株式会社製「A-5000」
  東ソー株式会社製「F-1」
  東ソー株式会社製「F-2」
  東ソー株式会社製「F-4」
  東ソー株式会社製「F-10」
  東ソー株式会社製「F-20」
  東ソー株式会社製「F-40」
  東ソー株式会社製「F-80」
  東ソー株式会社製「F-128」
試料:樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
(実施例1)
 エポキシ樹脂(A-1)(シグマアルドリッチ社製「テトラグリシジルジアミノジフェニルメタン」、エポキシ当量110~130g/eq、4官能の芳香族エポキシ樹脂)40質量部、エポキシ樹脂(A-3)(DIC株式会社製「EPICLON 840LV」、ビスフェノールA型、エポキシ当量:178g/eq、官能基数:2)40質量部、エポキシ希釈剤(ANHUI XINYUAN Chemical社製「XY-622」、1,4-ブタンジオールジグリシジルエーテル、エポキシ当量131g/eq、官能基数:2)5質量部、エポキシ希釈剤(長瀬産業社製「EX-313」、グリセロールポリグリシジルエーテル、官能基数:2以上)15質量部、内部離型剤(ダイキン工業社製「FB-962」)2質量部、エポキシ樹脂用硬化剤(ピイ・ティ・アイ・ジャパン株式会社製「DDA5」、ジシアンジアミド)8質量部、硬化促進剤(ピイ・ティ・アイ・ジャパン株式会社製「オミキュア52」、4,4’-メチレンビス(フェニルジメチルウレア))5質量部を三本ロールにて混合し、熱可塑性樹脂粒子(アイカ工業株式会社製「F303」、ポリ(メタ)アクリル酸エステル系有機微粒子)9質量部を混合し、樹脂組成物(1)を得た。
[成形材料の作製]
 上記で得られた樹脂組成物(1)を、4mmスペーサーのガラス板間に流し入れ、熟成工程として、80℃中に2時間静置し、成形材料(X-1)を得た。
[圧縮硬さの評価]
 熟成工程直後の成形材料(X-1)及び熟成工程後2週間経過後の成形材料(X-1)について、以下の条件により、圧縮硬さを測定・評価した。
装置:フォースゲージ(日本電産シンポ社製「FGP-5」)
冶具:φ10の円盤状
測定方法:圧縮速度10mm/分にて、圧縮試験(サンプル温度25℃)
     2mm圧縮した時点の荷重(N)を測定(10回測定し、平均値にて評価)
 ○:3~30Nの範囲であり、適正な硬さである。
 ×:3Nより小さく、柔軟すぎる。又は、30Nより大きく、硬すぎる。
[SMCの作製]
 上記で得られた樹脂組成物(1)を、ポリエチレンとポリプロピレンのラミネートフィルム上に塗布量が平均860g/mとなるよう塗布し、この上に、炭素繊維ロービング(東レ株式会社製「T700SC-12000-50C」)を12.5mmにカットした炭素繊維(以下、繊維強化材(E-1)と略記する。)を繊維方向性が無く厚みが均一で炭素繊維含有率が57質量%になるよう空中から均一落下させ、同様に樹脂組成物(1)を塗布したフィルムで挟み込み炭素繊維に樹脂を含浸させた後、80℃中に2時間静置し、SMC(Y-1)を得た。このSMCの目付け量は、2kg/mであった。
[フィルム剥離性の評価]
 上記で得られたSMC(Y-1)を、23℃にて、ポリプロピレンフィルムからの剥離性を確認し、以下の4段階評価で表した。
◎:べたつきが無く、簡単にフィルムから剥がし易い。
○:わずかにべたつき感があるものの、容易にフィルムから剥がすことができる。
△:べたつきがあり、一部フィルムから剥がす時に付着物が残る。
×:フィルムに密着する。
[成形品の作製]
 上記で得られたSMC(Y-1)からフィルムを剥がし、200mm角2層積層し、2mm厚みの成形板となる金型を用いて、140℃で5分間プレス(10MPa)し、25℃に2日間保管し、成形品(1)を得た。
[硬化性の評価]
 上記で得られた成形品(1)の曲げ強度を、JIS K7074に準拠して測定し、下記の基準により硬化性を評価した。
 ○:曲げ弾性率が25GPa以上
 ×:曲げ弾性率が25GPa未満
(実施例2~5)
 表1の組成及び熟成時間とした以外は実施例1と同様にして、樹脂組成物(2)~(5)、成形材料(X-2)~(X-5)、SMC(Y-2)~(Y-5)、及び成形品(2)~(5)を得、各評価を行った。
Figure JPOXMLDOC01-appb-T000001
 表中のエポキシ樹脂(A-2):DIC株式会社製「EPICLON EXA-7250」、トリスフェノールメタン型、エポキシ当量:162g/eq、3官能以上の芳香族エポキシ樹脂
(比較例1~3)
 表2の組成及び熟成時間とした以外は実施例1と同様にして、樹脂組成物(R1)~(R3)、成形材料(RX-1)~(RX-3)、SMC(RY-1)~(RY-3)、及び成形品(R1)~(R3)を得、各評価を行った。
Figure JPOXMLDOC01-appb-T000002
 実施例1~5の本発明の成形材料は、成形性に優れた圧縮硬さを有し、SMCとした場合においても、フィルム剥離性及び硬化性に優れることが確認された。
 一方、比較例1は、FT-IRのATR測定における910cm-1及び1510cm-1での透過率の比(透過率比α)が上限である3より大きい例であるが、圧縮硬さが柔らかすぎるため、成形性が不良であることが確認された。
 一方、比較例2及び3は、透過率比αが下限である1より小さい例であるが、圧縮硬さが硬すぎるため、成形性が不良であり、フィルム剥離性及び硬化性も不十分であることが確認された。

Claims (6)

  1.  芳香族エポキシ樹脂(A)、エポキシ樹脂用硬化剤(B)、及び硬化促進剤(C)を必須原料とする成形材料であって、FT-IRのATR測定における910cm-1及び1510cm-1での透過率の比(910cm-1/1510cm-1)が1~3の範囲であることを特徴とする成形材料。
  2.  前記芳香族エポキシ樹脂(A)が、2官能の芳香族エポキシ樹脂(A’)及び3官能以上の芳香族エポキシ樹脂(A’’)を含有するものである、請求項1記載の成形材料。
  3.  さらに熱可塑性樹脂粒子(D)を含有するものである、請求項1又は2記載の成形材料。
  4.  芳香族エポキシ樹脂(A)、エポキシ樹脂用硬化剤(B)、及び硬化促進剤(C)を必須原料とするエポキシ樹脂組成物の増粘物を含有する成形材料であって、前記増粘物のFT-IRのATR測定における910cm-1及び1510cm-1での透過率の比(910cm-1/1510cm-1)が1~3の範囲であることを特徴とする成形材料。
  5.  請求項1~4いずれか1項記載の成形材料及び繊維強化材(E)を含有することを特徴とするシートモールディングコンパウンド。
  6.  請求項5記載のシートモールディングコンパウンドの成形品。
PCT/JP2020/018380 2019-05-28 2020-05-01 成形材料、シートモールディングコンパウンド、及び成形品 WO2020241180A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021522155A JP7092263B2 (ja) 2019-05-28 2020-05-01 成形材料、シートモールディングコンパウンド、及び成形品
CN202080037091.XA CN113853408B (zh) 2019-05-28 2020-05-01 成形材料、片状模塑料及成形品
US17/613,131 US20220213280A1 (en) 2019-05-28 2020-05-01 Molding material, sheet molding compound, and molded article
EP20815042.5A EP3978572A4 (en) 2019-05-28 2020-05-01 MOLDING MATERIAL, SHEET MOLDING COMPOUND AND MOLDED ARTICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-099343 2019-05-28
JP2019099343 2019-05-28

Publications (1)

Publication Number Publication Date
WO2020241180A1 true WO2020241180A1 (ja) 2020-12-03

Family

ID=73552612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018380 WO2020241180A1 (ja) 2019-05-28 2020-05-01 成形材料、シートモールディングコンパウンド、及び成形品

Country Status (5)

Country Link
US (1) US20220213280A1 (ja)
EP (1) EP3978572A4 (ja)
JP (1) JP7092263B2 (ja)
CN (1) CN113853408B (ja)
WO (1) WO2020241180A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113214601A (zh) * 2021-04-13 2021-08-06 句容市久诺复合材料有限公司 一种耐磨的环氧树脂合成的类smc材料

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773682A (zh) * 2022-03-17 2022-07-22 中致新(厦门)科技有限公司 一种基于植物纤维纸张制备的可降解材料及制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188636A (ja) * 1993-09-30 1995-07-25 Nippon Zeon Co Ltd 不飽和ノルボルネン系樹脂部材の接着方法
JPH11181245A (ja) * 1997-12-22 1999-07-06 Dainippon Ink & Chem Inc 加熱圧縮成形材料組成物、シートモールディングコンパウンド及びバルクモールディングコンパウンド
JPH11199755A (ja) * 1998-01-13 1999-07-27 Dainippon Ink & Chem Inc 成形材料組成物、その製造方法および成形方法
JP2010126694A (ja) * 2008-11-28 2010-06-10 Nagase Chemtex Corp 縮環構造含有フェノキシ樹脂
CN102337007A (zh) * 2011-07-01 2012-02-01 蓝星(北京)化工机械有限公司 Smc高性能环氧树脂组合物
WO2016182077A1 (ja) * 2015-05-13 2016-11-17 三菱レイヨン株式会社 シートモールディングコンパウンド及び繊維強化複合材料
JP2017119859A (ja) * 2015-12-25 2017-07-06 東レ株式会社 エポキシ樹脂組成物、繊維強化複合材料および成形品
WO2018190329A1 (ja) * 2017-04-12 2018-10-18 三菱ケミカル株式会社 シートモールディングコンパウンド、および繊維強化複合材料
JP2019099343A (ja) 2017-12-05 2019-06-24 トヨタ自動車株式会社 フィルム貼付治具及びフィルム貼付方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6045898A (en) * 1996-02-02 2000-04-04 Toray Industried, Inc. Resin compositions for fiber-reinforced composite materials and processes for producing the same, prepregs, fiber-reinforced composite materials, and honeycomb structures
JP2005272543A (ja) * 2004-03-23 2005-10-06 Sumitomo Bakelite Co Ltd 光半導体封止用エポキシ樹脂組成物及び光半導体装置
JP2009132834A (ja) * 2007-11-30 2009-06-18 Nippon Shokubai Co Ltd 硬化性樹脂組成物、光学部材用硬化性材料、及び、光学部材
JP5880921B2 (ja) * 2011-08-17 2016-03-09 Dic株式会社 硬化性樹脂組成物、その硬化物、プリント配線基板
TWI621639B (zh) 2013-01-07 2018-04-21 東麗股份有限公司 環氧樹脂組成物及預浸漬物
CN105793315B (zh) 2013-12-02 2018-08-03 三菱化学株式会社 环氧树脂组合物以及使用其的膜、预浸料和纤维增强塑料
JP7135271B2 (ja) * 2015-12-25 2022-09-13 東レ株式会社 エポキシ樹脂組成物、繊維強化複合材料、成形品および圧力容器
KR102628204B1 (ko) * 2015-12-25 2024-01-24 도레이 카부시키가이샤 에폭시 수지 조성물, 섬유 강화 복합 재료, 성형품 및 압력 용기
JP6292345B2 (ja) * 2016-02-29 2018-03-14 三菱ケミカル株式会社 成形材料および繊維強化複合材料
JP6241583B1 (ja) * 2016-10-11 2017-12-06 Dic株式会社 繊維強化成形材料及びそれを用いた成形品

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188636A (ja) * 1993-09-30 1995-07-25 Nippon Zeon Co Ltd 不飽和ノルボルネン系樹脂部材の接着方法
JPH11181245A (ja) * 1997-12-22 1999-07-06 Dainippon Ink & Chem Inc 加熱圧縮成形材料組成物、シートモールディングコンパウンド及びバルクモールディングコンパウンド
JPH11199755A (ja) * 1998-01-13 1999-07-27 Dainippon Ink & Chem Inc 成形材料組成物、その製造方法および成形方法
JP2010126694A (ja) * 2008-11-28 2010-06-10 Nagase Chemtex Corp 縮環構造含有フェノキシ樹脂
CN102337007A (zh) * 2011-07-01 2012-02-01 蓝星(北京)化工机械有限公司 Smc高性能环氧树脂组合物
WO2016182077A1 (ja) * 2015-05-13 2016-11-17 三菱レイヨン株式会社 シートモールディングコンパウンド及び繊維強化複合材料
JP2017119859A (ja) * 2015-12-25 2017-07-06 東レ株式会社 エポキシ樹脂組成物、繊維強化複合材料および成形品
WO2018190329A1 (ja) * 2017-04-12 2018-10-18 三菱ケミカル株式会社 シートモールディングコンパウンド、および繊維強化複合材料
JP2019099343A (ja) 2017-12-05 2019-06-24 トヨタ自動車株式会社 フィルム貼付治具及びフィルム貼付方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3978572A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113214601A (zh) * 2021-04-13 2021-08-06 句容市久诺复合材料有限公司 一种耐磨的环氧树脂合成的类smc材料

Also Published As

Publication number Publication date
EP3978572A1 (en) 2022-04-06
EP3978572A4 (en) 2023-05-24
JP7092263B2 (ja) 2022-06-28
CN113853408B (zh) 2023-04-18
US20220213280A1 (en) 2022-07-07
JPWO2020241180A1 (ja) 2021-11-18
CN113853408A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
KR20160144391A (ko) 섬유강화 복합재료
JP5723505B2 (ja) 樹脂組成物、硬化物、プリプレグ、および繊維強化複合材料
JP7092263B2 (ja) 成形材料、シートモールディングコンパウンド、及び成形品
WO2017110446A1 (ja) プリプレグ及び成形品
WO2018070076A1 (ja) 繊維強化成形材料及びそれを用いた成形品
JP7110834B2 (ja) シートモールディングコンパウンド用エポキシ樹脂組成物、シートモールディングコンパウンド、及び成形品
JP2019099609A (ja) 繊維強化成形材料及びそれを用いた成形品
US20130115440A1 (en) Composites
JP6150034B1 (ja) プリプレグ及び成形品
JP7024930B2 (ja) シートモールディングコンパウンド用樹脂組成物、シートモールディングコンパウンド、成形品、及びシートモールディングコンパウンドの製造方法
JP2022147236A (ja) 接着シート及びこれを用いた硬化物、積層体並びに自動車用外装材
WO2020213414A1 (ja) 繊維強化成形材料及びそれを用いた成形品
JP2008007618A (ja) 熱硬化性樹脂組成物、樹脂硬化物、プリプレグおよび繊維強化複合材料
JP2013018804A (ja) エポキシ樹脂組成物
JP4655329B2 (ja) 一方向プリプレグおよび繊維強化複合材料
JP2006104403A (ja) エポキシ樹脂組成物
JP6966026B2 (ja) 繊維強化成形材料及びそれを用いた成形品
JP2018080229A (ja) 硬化性樹脂組成物
JP6697711B2 (ja) エポキシ樹脂組成物、プリプレグ、繊維強化複合材料およびその製造方法
JP2006274110A (ja) プリプレグおよび繊維強化複合材料
JP2024005581A (ja) シートモールディングコンパウンド用エポキシ樹脂組成物、シートモールディングコンパウンド、及び成形品
JP7298800B1 (ja) ラジカル硬化性樹脂組成物、繊維強化成形材料、及びそれを用いた成形品
EP2844697A2 (en) Curable compositions
JP7136393B2 (ja) ラジカル硬化性樹脂組成物、繊維強化成形材料、及びそれを用いた成形品
JP2006104277A (ja) 硬化性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20815042

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522155

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020815042

Country of ref document: EP

Effective date: 20220103