WO2020233700A1 - 能够提升体系稳定性的habi类光引发剂及其应用 - Google Patents

能够提升体系稳定性的habi类光引发剂及其应用 Download PDF

Info

Publication number
WO2020233700A1
WO2020233700A1 PCT/CN2020/091769 CN2020091769W WO2020233700A1 WO 2020233700 A1 WO2020233700 A1 WO 2020233700A1 CN 2020091769 W CN2020091769 W CN 2020091769W WO 2020233700 A1 WO2020233700 A1 WO 2020233700A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
photosensitive resin
acrylate
resin composition
compounds
Prior art date
Application number
PCT/CN2020/091769
Other languages
English (en)
French (fr)
Inventor
钱彬
Original Assignee
常州格林感光新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州格林感光新材料有限公司 filed Critical 常州格林感光新材料有限公司
Priority to JP2021569578A priority Critical patent/JP7311920B2/ja
Priority to KR1020217042080A priority patent/KR20220017423A/ko
Publication of WO2020233700A1 publication Critical patent/WO2020233700A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/88Nitrogen atoms, e.g. allantoin
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers

Definitions

  • the invention belongs to the technical field of light curing, and specifically relates to a hexaaryl bisimidazole (HABI) photoinitiator capable of improving system stability and applications thereof.
  • HABI hexaaryl bisimidazole
  • HABI compounds have a special chemical structure and can be photolyzed to generate macromolecular free radicals under the action of ultraviolet light. They are a very important type of photoinitiator in the field of photocuring, especially in the field of free radical polymerization.
  • the existing HABI photoinitiators in the market are composed of multiple isomers with different linkage positions.
  • the applications of HABI photoinitiators in photosensitive resin compositions that have been reported so far do not make further requirements for the composition of the internal isomers, and only apply them directly to the composition.
  • the application performance of HABI photoinitiators produced by different manufacturers on the market vary greatly. When applied in fine circuits, the yield is low, which seriously affects product quality.
  • the photosensitive resin composition and its dry film containing the existing HABI products have a tendency to decrease in sensitivity and resolution after long-term storage, which is likely to cause defective products, which is also a problem that needs to be solved urgently.
  • the present invention optimizes the composition and ratio of the isomers in the product by adjusting the parameters such as the reaction solvent and the oxidizing agent in the HABI preparation process, thereby obtaining HABI photoinitiator products with improved performance.
  • the photoinitiator has controllable performance, and when applied to a photosensitive resin composition, the composition and its dry film have excellent storage stability, and there is no tendency for sensitivity and resolution to decrease even after long-term storage.
  • the HABI photoinitiator capable of improving the stability of the system according to the present invention has a structure as shown in the general formula (I), which contains 2-1', 2-3', 2'-1 and The total mass percentage of the bisimidazole compounds of the four connection positions of 2'-3 is 92% or more, and the content of the two connection positions of 2-1' and 2'-1
  • the ratio of sum (hereinafter referred to as 2-1 linking position) and the sum of the content of 2-3' and 2'-3 linking positions (hereinafter referred to as 2-3 linking position) is between 1.5:1-2:1 between;
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 , and Ar 6 may be the same or different, and each independently represents a substituted or unsubstituted aryl group.
  • the object of the present invention is also to provide a photosensitive resin composition containing the above-mentioned photoinitiator, and the application of the composition and its dry film in the manufacture of printed circuit boards, protective patterns, conductor patterns, lead wires, semiconductor packages, and the like.
  • the present invention relates to a HABI photoinitiator capable of improving system stability, a photosensitive resin composition containing the photoinitiator, and the application of the composition and its dry film.
  • a HABI photoinitiator capable of improving system stability
  • a photosensitive resin composition containing the photoinitiator and the application of the composition and its dry film.
  • the HABI photoinitiator capable of improving the stability of the system of the present invention has a structure as shown in the general formula (I), which contains four connections of 2-1', 2-3', 2'-1 and 2'-3
  • the total mass percentage of the bisimidazole compound at the four connection positions is 92% or more, and the sum of the content of the two connection positions 2-1' and 2'-1 is the same as that of 2-3' and
  • the ratio of the sum of the content of the two connection sites of 2'-3 is between 1.5:1 and 2:1;
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 , and Ar 6 may be the same or different, and each independently represents a substituted or unsubstituted aryl group.
  • the bisimidazole compounds satisfying the four connection positions 2-1', 2-3', 2'-1 and 2'-3 of the structure represented by the general formula (I) are specifically the following structures:
  • the aryl group is preferably a phenyl group.
  • the substituted aryl group may be mono-substituted or poly-substituted.
  • the substituents on the aryl group can be halogen, nitro, cyano, amino, hydroxyl, C 1 -C 20 alkyl or alkenyl, C 1 -C 8 alkoxy, wherein each independently
  • the methylene group in the variable ie, each substituent may be optionally substituted with oxygen, sulfur, or imino groups.
  • the substituent on the aryl group can be fluorine, chlorine, bromine, nitro, cyano, amino, hydroxyl, C 1 -C 10 alkyl or alkenyl, C 1 -C 5 alkoxy Group, wherein the methylene group in each independent variable can be optionally substituted with oxygen, sulfur, or imino groups.
  • At least one of Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 , and Ar 6 is an aryl group containing a halogen substituent.
  • Halogen substituents can improve the discoloration effect during the curing process to enhance the recognition ability of the electronic eye during development (Note: The photosensitive resin layer will change color after exposure, and form a color difference with the unexposed area, which will be recognized by the electronic eye. The invention can make the chromatic aberration more obvious), thereby improving the quality of the application product.
  • the halogen substituent is chlorine.
  • HABI photoinitiator is a type of photoinitiator well-known in the photoresist field, and its preparation usually includes oxidative coupling of triarylimidazole compounds in the presence of an oxidant, solvent and phase transfer catalyst.
  • oxidant for example, see US3784557. , US4622286 and US4311783 and other prior art records (the full text is hereby incorporated by reference).
  • the preparation method of the above-mentioned HABI photoinitiator of the present invention includes the following steps:
  • Reaction step Under the protection of nitrogen, triarylimidazoles are oxidatively coupled in the presence of an oxidant, solvent and phase transfer catalyst, and the reaction is controlled to complete by HPLC;
  • Refining step washing with pure water to remove inorganic salts, filtering and concentrating to obtain a crude product, and then recrystallization and drying to obtain the desired product.
  • HABI compounds are formed by coupling two triarylimidazole compounds (which can be the same or different, depending on the substituents on the aryl group). Due to the inductive effect of the substituents on the aromatic ring, the ⁇ electron cloud density of the aromatic ring is reduced, and the inductive effect promotes the distortion of the aromatic ring, and the conjugation center on the imidazole ring is shifted, making the substituted aryl and imidazole not in the same plane ( The triarylimidazole becomes a curved state). When the two triarylimidazole compounds are finally coupled, the connection of N and C presents different spatial configurations, so 2-1', 2-3', 2'-1 and 2'-3 bisimidazole compounds at the four link positions.
  • the standard electrode potential (E 0 ) of the oxidant used in the above preparation should be between 0.3-0.9V. From the perspective of the cost, stability, and environmental protection of the oxidant, one or a combination of two or more of sodium hypochlorite, potassium hypochlorite, sodium hypobromite, potassium hypobromite, sodium ferricyanide, and potassium ferricyanide is preferred.
  • the relative dielectric constant ( ⁇ r ) of the solvent used in the above preparation is determined to be 0-5, preferably benzene, toluene, xylene, trimethylbenzene, anisole, phenylethyl ether and the like. From the viewpoints of solvent cost, toxicity, and recycling, toluene is more preferable.
  • the dielectric constant ( ⁇ ) is an important property of a solvent, which characterizes the solvent's ability to solvate solute molecules and separate ions.
  • a solvent with a large dielectric constant has a greater ability to separate ions, and also has a strong solvation ability.
  • the relative permittivity ⁇ r can be measured with an electrostatic field in the following way: first test the capacitance C 0 of the capacitor when there is a vacuum between the two plates, then use the same distance between the capacitor plates but add a dielectric between the plates Then the capacitance C x is measured, and then calculated by the following formula:
  • the reaction in the above preparation is a secondary nucleophilic substitution reaction (SN2 reaction).
  • SN2 reaction after increasing the polarity of the solvent, the degree of solvation increases more, which is not conducive to the formation of the SN2 transition state (because the SN2 process changes from the originally concentrated nucleophile to the charge when the transition state is formed. Relatively dispersed transition state).
  • the electron pair donor solvent such as acetone
  • the hydroxyl groups deactivate the positively charged C atoms, thus affecting the reaction.
  • the inductive effect of the lone pair of electrons will accelerate the decomposition of sodium hypochlorite and produce oxygen.
  • Oxygen will deactivate the negatively charged nitrogen atoms to generate nitrogen oxides.
  • the nitrogen oxides will further react with solvents or other by-products, so they are in the reaction Many large polar by-products appear in the product, making the obtained reaction product low in purity. Therefore, it is preferable to perform the reaction with a solvent having a relative permittivity ⁇ r of 0-5.
  • Phase transfer catalysts can help the reactants to transfer from one phase to another, which can react, thereby accelerating the reaction rate of heterogeneous systems.
  • the two phases are isolated from each other, and the reactants cannot contact each other, and the reaction proceeds very slowly.
  • the presence of the phase transfer catalyst can combine with the ions in the water phase (usually), and use its own affinity for organic solvents to transfer the reactants in the water phase to the organic phase to promote the reaction.
  • the phase transfer catalyst used is not particularly limited, but quaternary ammonium salts and cyclic crown ethers are preferred, which may be benzyltriethylammonium chloride (TEBA), tetrabutylammonium bromide (TBAB), tetrabutylammonium chloride, tetrabutylammonium hydrogen sulfate, trioctylmethylammonium chloride, dodecyltrimethylammonium chloride, tetradecyltrimethylammonium chloride, 18 crowns 6, 15 crowns 5, cyclodextrin, etc.
  • TEBA benzyltriethylammonium chloride
  • TBAB tetrabutylammonium bromide
  • tetrabutylammonium chloride tetrabutylammonium hydrogen sulfate
  • trioctylmethylammonium chloride dodecyltrimethylammonium chloride
  • the reaction temperature is preferably 0-70°C, more preferably 20-70°C.
  • the reaction rate is slower, which is unfavorable for improving production efficiency.
  • the reaction temperature is too high, on the one hand, it will affect the conversion rate of the reaction, resulting in increased by-products and lower product purity, on the other hand, it will increase energy consumption, which is inconsistent with the original intention of reducing production costs.
  • the composition and ratio of the isomers at the multiple attachment positions in the HABI product can be controlled.
  • the composition and its dry film have excellent storage stability, and there is no tendency for sensitivity and resolution to decrease even after long-term storage.
  • the HABI-based photoinitiator of the present invention has excellent performance when applied to a photosensitive resin composition. Accordingly, the present invention also provides a photosensitive resin composition, which is characterized by comprising the following components:
  • the HABI photoinitiator of the present invention may be selected from or include, for example:
  • HABI photoinitiator of the present invention such as compound A1, compound A2, etc., can be used alone, or two or more of them can be used in combination.
  • the content of the HABI-based photoinitiator (A) is 1-20 parts by mass, preferably 1-10 parts by mass. If the content is too small, there is a defect that the photosensitivity is reduced; if the content is too large, there is a defect that the photoresist pattern tends to become wider than the line width of the photomask.
  • the alkali-soluble polymer can impart a film-forming function to the photosensitive resin composition.
  • any polymer having such characteristics can be used without particular limitation.
  • suitable alkali-soluble polymers can be (meth)acrylic polymers, styrene polymers, epoxy polymers, aliphatic polyurethane (meth)acrylate polymers, aromatic polyurethanes (meth) Base) Acrylate polymer, amide resin, amide epoxy resin, alkyd resin, phenolic resin, etc.
  • the alkali-soluble polymer can be obtained by radical polymerization of a polymerizable monomer.
  • polymerizable monomers include: styrene, vinyl toluene, ⁇ -methylstyrene, p-methylstyrene, p-ethylstyrene, p-chlorostyrene, etc.
  • styrene derivatives in the ⁇ -position or aromatic Ring-substituted polymerizable styrene derivatives; acrylamide derivatives such as acrylamide and diacetone acrylamide; ether derivatives of vinyl alcohol such as acrylonitrile and vinyl n-butyl ether; (meth)acrylic acid , ⁇ -bromo(meth)acrylic acid, ⁇ -chloro(meth)acrylic acid, ⁇ -furyl(meth)acrylic acid, ⁇ -styryl(meth)acrylic acid and other (meth)acrylic acid derivatives; Alkyl (meth)acrylate, benzyl (meth)acrylate, phenoxyethyl methacrylate, tetrahydrofurfuryl (meth)acrylate, dimethylaminoethyl (meth)acrylate, ( (Meth) diethylaminoethyl acrylate, glycidyl (meth)acrylate,
  • the alkali-soluble polymer having a carboxyl group may be an acrylic resin containing (meth)acrylic acid as a monomer unit, which introduces a carboxyl group by using (meth)acrylic acid as a monomer unit; and may further include (meth)acrylic acid in addition to (meth)acrylic acid.
  • Meth) acrylic acid alkyl ester as a copolymer of monomer units; in addition to (meth) acrylic acid, it can also contain polymerizable monomers other than (meth) acrylic acid and (meth) acrylic acid alkyl esters (such as A monomer having an ethylenically unsaturated group) is a copolymer as a monomer component.
  • alkali-soluble polymers containing carboxyl groups can be obtained by radical polymerization of polymerizable monomers having carboxyl groups with other polymerizable monomers, especially those made from (meth)acrylates, ethylenically unsaturated carboxylic acids and other A (meth)acrylate-based polymer formed by copolymerization of copolymerizable monomers.
  • the (meth)acrylate can be methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate , Hexyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, (meth) Decyl acrylate, undecyl (meth)acrylate, dodecyl (meth)acrylate, cyclohexyl (meth)acrylate, benzyl (meth)acrylate, di(meth)acrylate Ethylaminoethyl, dimethylaminoethyl (meth)acrylate, hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, furfuryl (meth)acrylate, (
  • the ethylenically unsaturated carboxylic acid can be acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, and itaconic acid, particularly preferably acrylic acid and methacrylic acid. These ethylenically unsaturated carboxylic acids may be used alone or in combination of two or more kinds.
  • the other copolymerizable monomers can be (meth)acrylamide, n-butyl (meth)acrylate, styrene, vinyl naphthalene, (meth)acrylonitrile, vinyl acetate, vinyl cyclohexane Wait. These other copolymerizable monomers may be used alone or in combination of two or more.
  • the alkali-soluble polymer may be used alone or in combination of two or more.
  • the alkali-soluble polymer used in combination of two or more kinds two or more kinds of alkali-soluble polymers composed of different copolymerization components, two or more kinds of alkali-soluble polymers with different weight average molecular weights, and two kinds of different dispersion degrees can be cited.
  • the weight average molecular weight of the alkali-soluble polymer is not particularly limited, and it should be adapted to the specific application environment. Considering the mechanical strength and alkali developability comprehensively, the weight average molecular weight is preferably 15,000 to 200,000, more preferably 30,000 to 150,000, and particularly preferably 30,000 to 120,000. When the weight average molecular weight is greater than 15,000, the developer resistance after exposure tends to be further improved. When the weight average molecular weight is less than 200,000, the development time tends to become shorter, and it can maintain the compatibility with other components such as photoinitiators. Compatibility.
  • the weight average molecular weight of the alkali-soluble polymer is measured by gel permeation chromatography (GPC), and is obtained by conversion using a standard curve of standard polystyrene.
  • the acid value of the alkali-soluble polymer is preferably 50-300 mgKOH/g, more preferably 50-250 mgKOH/g, still more preferably 70-250 mgKOH/g, and particularly preferably 100- 250mgKOH/g.
  • the acid value of the alkali-soluble resin is less than 50mgKOH/g, it is difficult to ensure a sufficient development speed.
  • it exceeds 300mgKOH/g the adhesion is reduced, pattern short-circuiting is likely to occur, and the composition is likely to decrease storage stability and viscosity The problem of rising.
  • the molecular weight distribution [weight average molecular weight (Mw)/number average molecular weight (Mn)] of the alkali-soluble resin is preferably 1.5-6.0, particularly preferably 1.8-3.7. When the molecular weight distribution is in the range, the developability is excellent.
  • the content of the alkali-soluble polymer in the composition is preferably 20-70 parts by mass, more preferably 30-60 parts by mass.
  • the content of the alkali-soluble polymer is 20 parts by mass or more, it can ensure that the photosensitive resin composition has improved durability for plating treatment, etching treatment, etc., and when the content is less than 70 parts by mass, it is beneficial to improve the photosensitive resin composition The sensitivity.
  • the compound having an ethylenically unsaturated double bond can promote film formation of the photosensitive resin composition.
  • the compound having an ethylenically unsaturated double bond is not particularly limited, as long as a photopolymerizable compound having at least one ethylenically unsaturated bond in the molecule can be used.
  • examples include: compounds obtained by reacting ⁇ , ⁇ -unsaturated carboxylic acids with polyhydric alcohols, bisphenol A (meth)acrylate compounds, ⁇ , ⁇ -unsaturated carboxylic acids, and glycidyl-containing compounds
  • urethane monomers such as (meth)acrylate compounds with urethane bonds in the molecule, nonylphenoxy polyvinyloxy acrylate, ⁇ -chloro- ⁇ -hydroxypropyl - ⁇ '-(meth)acryloyloxyethyl-phthalate, ⁇ -hydroxyethyl- ⁇ '-(meth)acryloyloxyethyl-phthalate, ⁇ -hydroxypropyl- ⁇ '-(meth)
  • Examples of the compound obtained by reacting the above-mentioned ⁇ , ⁇ -unsaturated carboxylic acid with a polyhydric alcohol include polyethylene glycol di(meth)acrylate having an ethylene number of 2-14, and a propylene number of 2 Polypropylene glycol di(meth)acrylate of 14, ethylene number of 2-14 and propylene number of 2-14 polyethylene ⁇ polypropylene glycol di(meth)acrylate, trimethylol Propane di(meth)acrylate, trimethylolpropane tri(meth)acrylate, EO modified trimethylolpropane tri(meth)acrylate, PO modified trimethylolpropane tri(meth)acrylate Base) acrylate, EO, PO modified trimethylolpropane tri(meth)acrylate, tetramethylolmethane tri(meth)acrylate, tetramethylolmethane tetra(meth)acrylate, two Pentaerythritol penta
  • EO means ethylene oxide
  • PO means propylene oxide
  • a PO-modified compound means a compound having a block structure of an oxypropylene group.
  • Examples of the bisphenol A-based (meth)acrylate compound include: 2,2-bis ⁇ 4-[(meth)acryloxypolyethoxy]phenyl ⁇ propane, 2,2- Bis ⁇ 4-[(meth)acryloxypolypropoxy]phenyl ⁇ propane, 2,2-bis ⁇ 4-[(meth)acryloxypolybutoxy]phenyl ⁇ propane, 2,2-Bis ⁇ 4-[(meth)acryloyloxypolyethoxypolypropoxy]phenyl ⁇ propane and the like.
  • 2,2-bis ⁇ 4-[(meth)acryloyloxypolyethoxy]phenyl ⁇ propane there may be mentioned: 2,2-bis ⁇ 4-[(meth)acryloyloxy Diethoxy]phenyl ⁇ propane, 2,2-bis ⁇ 4-[(meth)acryloxytriethoxy]phenyl ⁇ propane, 2,2-bis ⁇ 4-[(methyl )Acryloyloxytetraethoxy]phenyl ⁇ propane, 2,2-bis ⁇ 4-[(meth)acryloxypentaethoxy]phenyl ⁇ propane, 2,2-bis ⁇ 4- [(Meth)acryloyloxyhexaethoxy]phenyl ⁇ propane, 2,2-bis ⁇ 4-[(meth)acryloyloxyheptethoxy]phenyl ⁇ propane, 2,2- Bis ⁇ 4-[(meth)acryloyloxyoctaethoxy]phenyl ⁇ propane, 2,2-bis ⁇
  • the number of oxyethylene groups in one molecule of the 2,2-bis ⁇ 4-[(meth)acryloyloxypolyethoxy]phenyl ⁇ propane is preferably 4-20, and more preferably 8-15. These compounds may be used alone or in combination of two or more kinds.
  • the (meth)acrylate compound having a urethane bond in the molecule a (meth)acrylic monomer having an OH group at the ⁇ -position and a diisocyanate compound (isophorone diisocyanate, 2 ,6-toluene diisocyanate, 2,4-toluene diisocyanate, 1,6-hexamethylene diisocyanate, etc.) addition reaction product, tris((meth)acryloyloxytetraethylene glycol isocyanate) ] Hexamethylene isocyanurate, EO modified urethane di(meth)acrylate, PO modified urethane di(meth)acrylate, EO, PO modified urethane di(meth)acrylic acid Ester etc. These compounds may be used alone or in combination of two or more kinds.
  • nonylphenoxy polyvinyloxy acrylate nonylphenoxy tetravinyloxy acrylate, nonylphenoxy pentavinyloxy acrylate, nonylphenoxy hexaethylene Oxyacrylate, nonylphenoxy heptavinyloxy acrylate, nonylphenoxy octavinyloxy acrylate, nonylphenoxy nonavinyloxy acrylate, nonylphenoxydecaethyleneoxy Acrylate, nonylphenoxyundecenyloxy acrylate, etc. These compounds may be used alone or in combination of two or more kinds.
  • phthalic acid compound examples include: ⁇ -chloro- ⁇ -hydroxypropyl- ⁇ '-(meth)acryloyloxyethyl phthalate, ⁇ -hydroxyalkyl- ⁇ '-(Meth)acryloyloxyalkyl phthalate, etc. These compounds may be used alone or in combination of two or more kinds.
  • the alkyl (meth)acrylate may, for example, be methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, N-Butyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, phenyl (meth)acrylate, (methyl) ) Isobornyl acrylate, hydroxymethyl (meth)acrylate, hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, (meth)acrylic acid 2-hydroxypropyl ester, benzyl (meth)acrylate, amyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, isooctyl (meth)
  • These compounds may be used alone or in combination of two or more kinds.
  • the compound having an ethylenically unsaturated double bond is preferably a bisphenol A (meth)acrylate compound and a compound having a urethane bond in the molecule ( Meth)acrylate compound. From the viewpoint of improving sensitivity and resolution, bisphenol A-based (meth)acrylate compounds are preferred.
  • the content of the compound (C) having an ethylenically unsaturated double bond is preferably 20-50 parts by mass, more preferably 25-45 parts by mass.
  • the sensitivity and resolution of the photosensitive resin composition will be further improved; when the content is less than 50 parts by mass, the photosensitive resin composition is more easily The film becomes thinner, and the durability against etching treatment is further improved.
  • the photosensitive resin composition of the present invention further includes a hydrogen donor in order to improve sensitivity.
  • the bisimidazole compounds are cleaved after exposure to light, and the monoimidazole radicals produced are larger in volume. The steric hindrance makes the activity less, and it is difficult to initiate monomer polymerization alone. If used in conjunction with hydrogen donors, the monoimidazole radicals are easy The active hydrogen on the hydrogen donor is taken away to generate new active free radicals, which in turn initiates monomer polymerization.
  • Amine compounds are not particularly limited, and may include (but are not limited to): aliphatic amine compounds, such as triethanolamine, methyldiethanolamine, triisopropanolamine, etc.; aromatic amine compounds, such as 4-dimethylaminobenzoic acid methyl Ester, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2-dimethylaminoethyl benzoate, N , N-dimethyl-p-toluidine, 4,4'-bis(dimethylamino)benzophenone, 4,4'-bis(diethylamino)benzophenone, etc.
  • aliphatic amine compounds such as triethanolamine, methyldiethanolamine, triisopropanolamine, etc.
  • aromatic amine compounds such as 4-dimethylaminobenzoic acid methyl Ester,
  • the carboxylic acid compound is not particularly limited, and may include (but is not limited to): aromatic heteroacetic acid, phenylthioacetic acid, methylphenylthioacetic acid, ethylphenylthioacetic acid, methylethylphenylsulfide Acetic acid, dimethylphenylthioacetic acid, methoxyphenylthioacetic acid, dimethoxyphenylthioacetic acid, chlorophenylthioacetic acid, dichlorophenylthioacetic acid, N-phenyl Glycine, phenoxyacetic acid, naphthylthioacetic acid, N-naphthylglycine, naphthyloxyacetic acid, etc.
  • the organosulfur compounds containing mercapto groups are not particularly limited, and may include (but are not limited to): 2-mercaptobenzothiazole (MBO), 2-mercaptobenzimidazole (MBI), dodecyl mercaptan, ethylene glycol bis( 3-mercaptobutyrate), 1,2-propanediol bis(3-mercaptobutyrate), diethylene glycol bis(3-mercaptobutyrate), butanediol bis(3-mercaptobutyrate), Octanediol bis(3-mercaptobutyrate), trimethylolpropane tris(3-mercaptobutyrate), pentaerythritol tetra(3-mercaptobutyrate), dipentaerythritol hexa(3-mercaptobutyrate) , Ethylene glycol bis(2-mercaptopropionate), propylene glycol bis(2-mercaptopropionate), diethylene glycol
  • the alcohol compound is not particularly limited, and may include (but is not limited to): methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, neopentyl alcohol, n-hexanol, cyclohexanol, Ethylene glycol, 1,2-propanediol, 1,2,3-propanetriol, benzyl alcohol, phenethyl alcohol, etc.
  • the content of the hydrogen donor (D) may be 0.01-20 parts by weight, preferably 0.01-10 parts by weight.
  • the content of the hydrogen donor is within the above range, it is advantageous to control the sensitivity of the photosensitive resin composition.
  • the photosensitive resin composition of the present invention may further contain an appropriate amount of other auxiliary agents as needed.
  • the auxiliary agent may include other photoinitiators and/or sensitizers, organic solvents, dyes, pigments, light developers, fillers, plasticizers, stabilizers, coating aids, peeling promoters, etc. At least one of them.
  • the other photoinitiators and/or sensitizers may include (but are not limited to): bisimidazoles, aromatic ketones, anthraquinones, benzoin and benzoin alkyl ethers, oxime esters, three Azazines, coumarins, thioxanthones, acridines and other photoinitiators known to those skilled in the art.
  • bisimidazole compounds include: 2,2'-bis(o-chlorophenyl)-4,4',5,5'-tetraphenyl-diimidazole, 2,2',5-tris(ortho Chlorophenyl)-4-(3,4-dimethoxyphenyl)-4',5'-diphenyl-1,1'-diimidazole, 2,2',5-tris(2-fluoro Phenyl)-4-(3,4-dimethoxyphenyl)-4',5'-diphenyl-diimidazole, 2,2'-bis(2,4-dichlorophenyl)-4 ,4',5,5'-tetraphenyl-diimidazole, 2,2'-bis(2-fluorophenyl)-4-(o-chlorophenyl)-5-(3,4-dimethoxy Phenyl)-4',5'-diphenyl-diimidazole, 2,2'
  • the aromatic ketone compounds include: acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1 ,1-Dichloroacetophenone, benzophenone, 4-benzoyl diphenyl sulfide, 4-benzoyl-4'-methyl diphenyl sulfide, 4-benzoyl-4'-ethyl Diphenyl sulfide, 4-benzoyl-4'-propyl diphenyl sulfide, 4,4'-bis(diethylamino)benzophenone, 4-p-toluene mercaptobenzophenone, 2 ,4,6-Trimethylbenzophenone, 4-methylbenzophenone, 4,4'-bis(dimethylamino)benzophenone, 4,4'-bis(methyl, ethyl Amino) benzophenone, acetophenone dimethyl ketal, benzil dimethyl ket
  • anthraquinone compounds include: 2-phenylanthraquinone, 2,3-diphenylanthraquinone, 1-chloroanthraquinone, 2-methylanthraquinone, 2,3-dimethylanthraquinone, 2-ethylanthracene-9,10-diethyl, 1,2,3-trimethylanthracene-9,10-dioctyl, 2-ethylanthracene-9,10-bis(4-chlorobutyric acid Methyl ester), 2- ⁇ 3-[(3-ethyloxetan-3-yl)methoxy]-3-oxopropyl ⁇ anthracene-9,10-diethyl ester, 9,10 -Dibutoxyanthracene, 9,10-diethoxy-2-ethylanthracene, 9,10-bis(3-chloropropoxy)anthracene, 9,10-bis(2-hydroxyethy
  • benzoin and benzoin alkyl ether compounds include: benzoin methyl ether, benzoin ethyl ether, benzoin phenyl ether and the like. These benzoin and benzoin alkyl ether compounds can be used alone or in combination of two or more.
  • the oxime ester compound may include: 1-(4-phenylthiophenyl)-n-octane-1,2-dione-2-benzoic acid oxime ester, 1-[6-(2-methyl Benzoyl)-9-ethylcarbazol-3-yl]-ethane-1-one-oxime acetate, 1-[6-(2-methylbenzoyl)-9-ethylcarbazole -3-yl]-butan-1-one-oxime acetate, 1-[6-(2-methylbenzoyl)-9-ethylcarbazol-3-yl]-propan-1-one- Oxime acetate, 1-[6-(2-methylbenzoyl)-9-ethylcarbazol-3-yl]-1-cyclohexyl-methane-1-one-oxime acetate, 1-[6 -(2-Methylbenzoyl)-9-ethylcarbazol-3-yl)-(3-
  • triazine compounds include: 2-(4-ethylbiphenyl)-4,6-bis(trichloromethyl)-1,3,5-triazine, 2-(3,4-ethylene Methoxyphenyl)-4,6-bis(trichloromethyl)-1,3,5-triazine, 3- ⁇ 4-[2,4-bis(trichloromethyl)-s-triazine -6-yl]phenylthio)propionic acid, 1,1,1,3,3,3-hexafluoroisopropyl-3- ⁇ 4-[2,4-bis(trichloromethyl)-s- Triazine-6-yl]phenylthio ⁇ propionate, ethyl-2- ⁇ 4-[2,4-bis(trichloromethyl)-s-triazin-6-yl]phenylthio ⁇ ethyl Ester, 2-ethoxyethyl-2- ⁇ 4-[2,4-bis(trichloromethyl)-s-triazin-6-y
  • the coumarin compound includes: 3,3'-carbonyl bis(7-diethylamine coumarin), 3-benzoyl-7-diethylamine coumarin, 3,3'-carbonyl Bis(7-methoxycoumarin), 7-diethylamino-4-methylcoumarin, 3-(2-benzothiazole)-7-(diethylamino)coumarin, 7 -(Diethylamino)-4-methyl-2H-1-benzopyran-2-one [7-(diethylamino)-4-methylcoumarin], 3-benzoyl-7- Methoxycoumarin and its analogues.
  • These coumarin compounds can be used alone or in combination of two or more.
  • thioxanthone compounds include: thioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, 2 -Chlorothioxanthone, 1-chloro-4-propoxythioxanthone, isopropylthioxanthone, diisopropylthioxanthone and the like. These thioxanthone compounds can be used alone or in combination of two or more.
  • acridine compounds include: 9-phenyl acridine, 9-p-methylphenyl acridine, 9-m-methylphenyl acridine, 9-o-chlorophenyl acridine, 9-o-fluoro Phenylacridine, 1,7-bis(9-acridinyl)heptane, 9-ethylacridine, 9-(4-bromophenyl)acridine, 9-(3-chlorophenyl)acridine , 1,7-bis(9-acridine) heptane, 1,5-bis(9-acridine pentane), 1,3-bis(9-acridine) propane and the like. These acridine compounds can be used alone or in combination of two or more.
  • the organic solvent only needs to be able to dissolve the aforementioned components.
  • it may be glycol ether solvents, alcohol solvents, ester solvents, ketone solvents, amide solvents, chlorine-containing solvents, etc., and colorants are particularly preferred.
  • the organic solvent may be ethyl cellosolve (ethylene glycol monoethyl ether), methyl cellosolve (ethylene glycol monomethyl ether), butyl cellosolve (ethylene glycol monobutyl ether), Methyl methoxybutanol (3-methyl-3-methoxybutanol), butyl carbitol (diethylene glycol monobutyl ether), ethylene glycol monoethyl ether acetate, ethylene two Alcohol mono-tert-butyl ether, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether (1-methoxy-2-propanol), propylene glycol monoethyl ether (1-ethoxy-2-propanol) ), propylene glycol monoethyl ether acetate, ethyl acetate, n-butyl acetate, isobutyl acetate, cellosolve acetate (ethylene glycol monomethyl ether), but
  • dyes, pigments and light developers include: tris(4-dimethylaminophenyl)methane, tris(4-dimethylamino-2methylphenyl)methane, fluoran dye, toluene sulfonate Acid monohydrate, basic fuchsin, phthalocyanine green and phthalocyanine blue and other phthalocyanines, auramine base, para-fuchsin, crystal violet, methyl orange, Nile blue 2B, Victoria blue, malachite green, diamond green , Basic Blue 20, Brilliant Green, Eosin, Ethyl Violet, Erythrosine Sodium B, Methyl Green, Phenolphthalein, Alizarin Red S, Thymolphthalein, Methyl Violet 2B, Quinadine Red, Rose Red Sodium agar, mitanil yellow, thymol sulfophthalein, xylenol blue, methyl orange, tangerine IV, diphenyl flow carbachol,
  • the filler includes fillers such as silica, alumina, talc, calcium carbonate, and barium sulfate (not including the above-mentioned inorganic pigments).
  • the filler can be used alone or in combination of two or more.
  • the plasticizer includes: phthalate esters such as dibutyl phthalate, diheptyl phthalate, dioctyl phthalate, diallyl phthalate, three Glycol esters such as glycol diacetate, tetraethylene glycol diacetate, sulfonamides such as p-toluenesulfonamide, benzenesulfonamide, n-butylbenzenesulfonamide, triphenyl phosphate, trimethyl phosphoric acid Esters, triethyl phosphate, triphenyl phosphate, tricresyl phosphate, tricresyl phosphate, tolyl diphenyl phosphate, tricresyl phosphate, 2-naphthyl diphenyl phosphate Ester, cresyl bis 2,6-xylyl phosphate, aromatic condensed phosphate, tris(chloropropyl) phosphate, tris(ch
  • the stabilizer includes: hydroquinone, 1,4,4-trimethyl-diazobicyclo(3.2.2)-non-2-ene-2,3-dioxide, 1-phenyl- 3-pyrazolidinone, p-methoxyphenol, alkyl and aryl substituted hydroquinone and quinone, tert-butylcatechol, 1,2,3-benzenetriol, copper resinate, naphthylamine, ⁇ - Naphthol, cuprous chloride, 2,6-di-tert-butyl-p-cresol, phenothiazine, pyridine, nitrobenzene, dinitrobenzene, p-toluoquinone and chloranil, etc.
  • the stabilizer can be used singly or in combination of two or more.
  • the coating aids include: acetone, methanol, methyl alcohol, ethyl alcohol, isopropyl alcohol, methyl ethyl ketone, propylene glycol monomethyl ether acetate, ethyl lactate, cyclohexanone, ⁇ -butyrolactone, dichloromethane, etc.
  • the coating aids can be used alone or in combination of two or more.
  • the peeling accelerator includes: benzene sulfonic acid, toluene sulfonic acid, xylene sulfonic acid, phenol sulfonic acid, methyl, propyl, heptyl, octyl, decyl, dodecyl and other alkyl benzene sulfonic acids Acid etc.
  • the peeling accelerator may be used alone or in combination of two or more.
  • the photosensitive resin composition of the present invention can be prepared into a dry film, that is, a photosensitive resin laminate, and applied to the manufacture of printed circuit boards, protective patterns, conductor patterns, lead wires, and semiconductor packages. Form the required pattern on the substrate.
  • the photosensitive resin composition of the present invention can also be applied to the corresponding substrate in each corresponding manufacturing step by a wet film coater, that is, applied as a wet film to printed circuit boards, protective patterns, conductor patterns, lead wires, In the manufacture of semiconductor packages, the required patterns are formed on different substrates through different processes.
  • the dry film of the present invention which is a photosensitive resin laminate, includes a photosensitive resin layer formed of a photosensitive resin composition and a support that supports the photosensitive resin layer.
  • the preparation of the dry film includes: coating the photosensitive resin composition on the support and drying to form a photosensitive resin layer; optionally, bonding a cover film (protective layer) as needed.
  • the drying conditions are drying at 60-100°C for 0.5-15 minutes.
  • the thickness of the photosensitive resin layer is preferably 5-95 ⁇ m, more preferably 10-50 ⁇ m, and more preferably 15-30 ⁇ m. If the thickness of the photosensitive resin layer is less than 5 ⁇ m, the insulation is poor, and if the thickness of the photosensitive resin layer exceeds 95 ⁇ m, the resolution may be poor.
  • plastic films such as polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyethylene, cellulose acetate, polymethacrylate Ester, methacrylate copolymer, polyvinyl chloride, polyvinyl alcohol, polycarbonate, polystyrene, cellophane, vinyl chloride copolymer, polyamide, polyimide, vinyl chloride-vinyl acetate copolymer, polytetrafluoroethylene Vinyl fluoride, polytrifluoroethylene and the like.
  • composite materials composed of two or more materials can also be used.
  • polyethylene terephthalate having excellent light penetration is used.
  • the thickness of the support is preferably 5-150 ⁇ m, more preferably 10-50 ⁇ m.
  • the coating of the photosensitive resin composition There are no particular restrictions on the coating of the photosensitive resin composition.
  • spray coating, roller coating, spin coating, slit coating, compression coating, curtain coating, and dye coating can be used.
  • Conventional methods such as cloth method, line coating method, knife coating method, roll coating method, knife coating method, spraying method, dip coating method, etc.
  • the present invention provides the application of the above-mentioned dry film in the manufacture of printed circuit boards, including:
  • Exposure step exposing the photosensitive resin layer in the photosensitive resin laminate, irradiating active light in an image form to photocuring the exposed part;
  • Conductor pattern formation process etching or plating the part of the surface of the copper clad laminate or flexible substrate that is not covered by the protective pattern;
  • Peeling step peeling the protective pattern from the copper clad laminate or flexible substrate.
  • the present invention provides the application of the above-mentioned dry film in the manufacture of protective patterns, including the lamination process, exposure process, and development process as described above.
  • the difference is that the photosensitive resin laminate can be laminated on various materials in the lamination process. On the substrate.
  • the present invention provides the application of the above-mentioned dry film in the manufacture of conductor patterns, including the lamination process, exposure process, development process, and conductor pattern formation process as described above.
  • the difference is that the photosensitive resin laminate is laminated on the metal in the lamination process. Board or metal coated insulating board.
  • the present invention provides the application of the above-mentioned dry film in the manufacture of lead wires, including the lamination process, exposure process, development process, and conductor pattern forming process as described above, the difference being that the photosensitive resin laminate is laminated in the lamination process On the metal plate, the portion not covered by the protective pattern is etched during the conductor pattern forming process.
  • the present invention provides the application of the above-mentioned dry film in the manufacture of semiconductor packages, including the lamination process, exposure process, development process, and conductor pattern forming process as described above.
  • the difference is that the photosensitive resin laminate is laminated in the lamination process.
  • the portion not covered by the protective pattern is plated during the conductor pattern formation process.
  • the photosensitive resin composition of the present invention can be directly coated on a substrate by a wet film method, and used for the production of printed circuit boards, protective patterns, conductor patterns, lead wires, semiconductor packages, and the like.
  • the photosensitive resin composition can be coated on the substrate by conventional methods such as roll coating, knife coating, spray coating, and dip coating, and dried to form a photosensitive resin layer.
  • the exposure can include the mask exposure method (a method in which the negative or positive mask pattern of the wiring pattern irradiates the active light in an image), the projection exposure method, the direct imaging exposure method by laser, and the digital optics
  • the direct drawing exposure method such as the processing exposure method, irradiates active light in an image.
  • the light source of active light well-known light sources can be used, such as carbon arc lamp, mercury vapor arc lamp, ultra-high pressure indicator lamp, high pressure indicator lamp, xenon lamp, gas laser such as argon laser, solid laser such as YAG laser, semiconductor laser, and gallium nitride It is a light source that effectively emits ultraviolet rays such as a blue-violet laser.
  • the photosensitive resin composition of the present invention has no particular limitation on the type of light source of active light, and the exposure amount is preferably 10-1000 mJ/cm 2 .
  • the unexposed portion of the photosensitive resin layer is removed with a developer.
  • the support can be removed using an automatic peeler or the like, and then the unexposed part can be removed with a developer such as an alkaline aqueous solution, an aqueous developer, or an organic solvent.
  • a developer such as an alkaline aqueous solution, an aqueous developer, or an organic solvent.
  • the alkaline aqueous solution may be 0.1-5% by mass sodium carbonate solution, 0.1-5% by mass potassium carbonate solution, 0.1-5% by mass sodium hydroxide solution, etc.
  • the pH value is preferably 9-11.
  • Surfactants, defoamers, organic solvents, etc. can also be added to the alkaline aqueous solution.
  • the development method can be dipping, spraying, brushing and other conventional methods.
  • the resist pattern (ie, protective pattern) formed on the substrate is used as a mask to etch away the uncovered conductor layer of the circuit forming substrate, thereby forming a conductor pattern.
  • the etching method can be selected according to the conductor layer to be removed.
  • examples of the etching solution include a copper oxide solution, an iron oxide solution, an alkali etching solution, and a hydrogen peroxide-based etching solution.
  • the resist pattern formed on the substrate is used as a mask, and copper, solder, etc. are plated on the insulating plate of the circuit formation substrate that is not covered. After the plating process, the resist pattern is removed to form a conductor pattern.
  • the plating treatment method may be electroplating treatment or electroless plating treatment, but electroless plating treatment is preferred. Examples of electroless plating include copper plating such as copper sulfate plating and copper pyrophosphate plating, solder plating such as high-throw solder plating, and Watt bath (nickel sulfate-chlorinated Nickel) plating and nickel plating such as sulfamate nickel plating, and gold plating such as hard gold plating and soft gold plating.
  • the removal of the resist pattern can be performed by an aqueous solution that is more alkaline than the alkaline aqueous solution used in the development step.
  • an aqueous solution that is more alkaline than the alkaline aqueous solution used in the development step.
  • a strong alkaline aqueous solution for example, 1-10% by mass aqueous sodium hydroxide solution can be used.
  • Figure 1 is a structure configuration spectrum obtained by single crystal diffraction of TCTM2.
  • Figure 2 is a high performance liquid chromatogram of product a1.
  • Figure 3 is a comparison of the sensitivity tests of TCTM1, TCTM2, TCTM3 and TCTM4.
  • Figure 4 is a high performance liquid chromatogram of product b1.
  • Figure 5 is a structure configuration spectrum obtained by single crystal diffraction of product b1.
  • the product a1 is generated by the asymmetric monoimidazole self-coupling reaction, so the product a1 is a bisimidazole compound composed of four linkage positions of 2-1', 2-3', 2'-1 and 2'-3.
  • Its composition is: TCTM1: 2,2',5,5'-tetra(o-chlorophenyl)-4',4-bis(3,4-dimethoxyphenyl)-3,2'-di Imidazole; TCTM2: 2,2',5,5'-tetra(o-chlorophenyl)-4,4'-bis(3,4-dimethoxyphenyl)-1,2'-diimidazole; TCTM3 :2,2',5,5'-Tetra(o-chlorophenyl)-4',4-bis(3,4-dimethoxyphenyl)-2,1'-diimidazole; TCTM4: 2, 2',5,5'-Tetra(o
  • LCMS was used to confirm the structure of product a1, and mass spectrometry analysis was performed with the aid of the software attached to the instrument.
  • the four products of TCTM1, TCTM2, TCTM3 and TCTM4 all contained molecular fragmentation peaks of 847 and 848, and the molecular weight of product a1 was 846, which was comparable to T+1 and T +2 coincides. This shows that the four products have the same molecular weight and similar structures.
  • TCTM1, TCTM2, TCTM3 and TCTM4 were obtained by means of monoimidazole self-coupling, column chromatography, chromatographic separation and other means.
  • Figure 1 is a structure configuration spectrum obtained by single crystal diffraction of TCTM2.
  • TCTM4 Judging from the high performance liquid chromatogram and spatial structure of product a1, TCTM4 has a large steric hindrance, so it is difficult to produce.
  • the content of product a1 is 0.1%; TCTM3 has a steric hindrance of TCTM3 compared with TCTM1 Therefore, the content of TCTM3 in the product a1 is 34.2%, and the content of TCTM1 in the product a1 is 17.1%; the steric hindrance of TCTM2 in these four connection sites is the smallest, and the single crystal configuration has been determined.
  • the content in a1 is 45.2%.
  • the photosensitive resin composition of sample 1-4 was prepared for sensitivity testing, and the unit of each substance in the table is g.
  • TMPTA trimethylolpropane triacrylate
  • NPG N-phenylglycine
  • PMEA Propylene glycol methyl ether acetate
  • TCTM2 has the least steric hindrance and the highest content in product a1, but the sensitivity is the lowest; TCTM1 and TCTM3
  • the content in the product a1 is in the middle, and the sensitivity is also in the middle; the content of TCTM4 in the product a1 is the least, but the sensitivity is the highest.
  • the reason is: According to the molecular collision theory, the existence of steric hindrance reduces the probability of collisions between molecules, which makes it easier to generate compounds with low steric hindrance.
  • TCTM2 which has the least steric hindrance, has the highest content in the product a1, but TCTM2 itself has a stable structure and requires more heat to be cracked, and its bond energy is large.
  • TCTM4 which has the largest steric hindrance, has the lowest content in the product a1, but the structure of TCTM4 itself is unstable, the heat required for cracking is small, and its bond energy is small. That is to say, the hexaarylbisimidazole compound with large steric hindrance requires low energy for cleavage after exposure to light, so it is easier to cleavage and exhibits higher sensitivity.
  • the product b1 is produced by the symmetrical monoimidazole (INC) self-coupling reaction, so the 2'-1 and 2'-3 obtained by coupling are similar in polarity, and the liquid phase is difficult to separate; and due to the structural symmetry of INC,
  • the structure of the product obtained by self-coupling has the same structure of 2'-1 and 2-1', and the structure of 2'-3 and 2-3' are also the same.
  • the product b1 is a bisimidazole compound composed of two linking positions 2'-1 and 2'-3, and its composition is: BCIM1: 2,2'-bis(o-chlorophenyl)-4,4' ,5,5'-tetraphenyl-1,2'-diimidazole; BCIM2: 2,2'-bis(o-chlorophenyl)-4,4',5,5'-tetraphenyl-2', 3-Diimidazole.
  • BCIM1 2,2'-bis(o-chlorophenyl)-4,4' ,5,5'-tetraphenyl-1,2'-diimidazole
  • BCIM2 2,2'-bis(o-chlorophenyl)-4,4',5,5'-tetraphenyl-2', 3-Diimidazole.
  • the structure is as follows:
  • Figure 4 is a high performance liquid chromatogram of product b1.
  • the product b1 has only one peak in the liquid phase, but two configurations are obtained by single crystal diffraction (as shown in Figure 5).
  • dipentaerythritol hexaacrylate (DPHA) was purchased from Tianjin Beilian Fine Chemicals Development Co., Ltd.
  • leuco crystal violet (LCV) was purchased from Changzhou Qiangli Electronic New Materials Co., Ltd.
  • NPG N-phenyl Glycine
  • PMEA propylene glycol methyl ether acetate
  • the photosensitive resin composition was sufficiently stirred, and the composition was uniformly applied on the surface of a 25 ⁇ m thick polyethylene terephthalate film as a support using a bar coater. It was dried in an oven at 95°C for 5 minutes to form a photosensitive resin layer. Exposure was carried out with a Stouffer 21-step exposure ruler, and an exposure machine with a high-pressure mercury lamp (manufactured by Eic Corporation, trade name EXM-1201) was used to expose the photosensitive layer with an irradiation energy of 60 mJ/cm 2 . After exposure, a 1% by mass aqueous solution of sodium carbonate at 30° C. was sprayed and developed in a time twice the minimum development time to remove the unexposed parts and develop.
  • the photosensitivity of the photosensitive resin composition was evaluated by measuring the number of grids of the stepwise exposure ruler of the formed photocured film.
  • the light sensitivity is expressed by the number of grids of the step exposure ruler. The higher the number of grids of the step exposure ruler, the higher the light sensitivity.
  • Table 1-6 The results are shown in Table 1-6.
  • the sensitivity test results of products b1-b45 and the products a1-a45 have basically the same trend.
  • Preparation of alkali-soluble polymer B In a nitrogen atmosphere, add a mixed solvent of methyl cellosolve and toluene (mass ratio 3:2) into a flask equipped with a stirrer, a reflux cooler, a thermometer and a dropping funnel 500g, after stirring and heating to 80°C, the solution prepared by mixing 100g of methacrylic acid, 200g of ethyl methacrylate, 100g of ethyl acrylate, 100g of styrene and 0.8g of azobisisobutyronitrile was slowly added dropwise to the flask The dropping time was 4 hours, and the reaction was continued for 2 hours after the dropping.
  • a mixed solvent of methyl cellosolve and toluene mass ratio 3:2
  • the photosensitive resin composition was fully stirred, and it was uniformly coated on the surface of a 25 ⁇ m thick polyethylene terephthalate film as a support using a bar coater, and dried in a dryer at 95°C for 5 minutes. A photosensitive resin layer with a thickness of 40 ⁇ m was formed, and then a 15 ⁇ m-thick polyethylene film as a protective layer was laminated on the surface of the photosensitive resin layer on which the polyethylene terephthalate film was not laminated to obtain a dry film.
  • a 1.2mm thick copper clad laminate laminated with 35 ⁇ m thick rolled copper foil was used, and the surface was subjected to wet buffing roll polishing [Scotch-Brite (registered trademark) HD#600 manufactured by 3M Company, passed twice ].
  • the protective layer of the polyethylene film was peeled off from the dry film, and then laminated on a copper clad laminate preheated to 60°C at a roll temperature of 105°C using a hot roll laminator (AL-70 manufactured by Asahi Kasei) .
  • the gas pressure is 0.35MPa and the lamination speed is 1.5m/min.
  • the mask is placed on the polyethylene terephthalate film as a support, and the photosensitive layer is exposed by an ultra-high pressure mercury lamp (HMW-201KB manufactured by ORCMANUFACTURINGCO., LTD.) with an irradiation energy of 60mJ/cm 2 .
  • an ultra-high pressure mercury lamp HMW-201KB manufactured by ORCMANUFACTURINGCO., LTD.
  • the polyethylene terephthalate film was peeled off, and an alkali developing machine (developing machine for dry film manufactured by FujiKiko Co., Ltd.) was used to spray a 1% by mass Na 2 CO 3 aqueous solution at 30°C on the photosensitive resin layer Above, the unexposed part of the photosensitive resin layer was dissolved and removed in a time twice the minimum development time.
  • the minimum development time is the minimum time required for the photosensitive resin layer in the unexposed part to be completely dissolved.
  • the photosensitive resin compositions of the foregoing Examples and Comparative Examples were stored in a dark place at 20°C for 2 weeks, and the thickening rate after 2 weeks was measured.
  • the evaluation criteria are as follows:
  • the thickening rate is 200% or more or gelation.
  • the dry film prepared from the photosensitive resin composition of the above examples and comparative examples was stored in a dark place at 23°C and 50% humidity for 5 hours, and then the photosensitive resin layer laminated on the copper clad laminate was passed through Expose and develop with Stouffer 21 step exposure ruler.
  • the sensitivity of the photosensitive resin composition was evaluated by measuring the number of grids of the step exposure ruler of the photocured film formed on the copper-clad laminated board. Sensitivity is expressed by the number of grids of the step exposure ruler. The higher the number of grids of the step exposure ruler, the higher the sensitivity.
  • the dry films prepared from the photosensitive resin compositions of the foregoing Examples and Comparative Examples were stored in a dark place at 23° C. and 50% humidity for 2 weeks, and then the sensitivity was evaluated by the same method as the foregoing sensitivity test.
  • the resolution of the dry film was measured.
  • the resolution is the minimum value of the pattern after the unexposed part is cleaned out of the resist pattern formed by development after exposure.
  • The resolution value is below 30 ⁇ m
  • the resolution value is 30 ⁇ m-50 ⁇ m, excluding the end value
  • the resolution value is 50 ⁇ m or more.
  • the dry film was stored in a dark place at 23°C and 50% humidity for 2 weeks, and then the resolution was evaluated by the same method as the above resolution test.
  • the composition and its dry film have excellent storage stability, and there is no tendency for sensitivity and resolution to decrease even after long-term storage.
  • the photosensitive resin composition can be widely used in the production of printed circuit boards, protective patterns, conductor patterns, lead wires, semiconductor packages, etc., in the form of dry film and wet film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials For Photolithography (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Polymerization Catalysts (AREA)

Abstract

一种能够提升体系稳定性的HABI类光引发剂,具有如通式(I)所示结构,其中含有2-1'、2-3'、2'-1和2'-3四种连接位的双咪唑化合物,该四种连接位的双咪唑化合物的总质量百分含量为92%以上,且2-1'和2'-1两种连接位的含量之和与2-3'和2'-3两种连接位的含量之和的比值在1.5:1-2:1之间。该光引发剂性能可控,应用于感光性树脂组合物时,组合物及其干膜具有优异的储存稳定性,即使长时间储存后也不会有灵敏度和分辨率下降的趋势。本发明还涉及包含该光引发剂的感光性树脂组合物及其应用。

Description

能够提升体系稳定性的HABI类光引发剂及其应用 技术领域
本发明属于光固化技术领域,具体涉及一种能够提升体系稳定性的六芳基双咪唑(HABI)类光引发剂及其应用。
背景技术
随着电子设备向着轻薄短小的方向发展,需要进一步形成精细的图案,其所搭载的印刷电路板等图形的线条尺寸也越来越小。为了以更高的成品率制造这种窄间距的线路图形,需要干膜抗蚀剂具有优异的分辨率,因此具有高分辨率的感光性树脂组合物成为研究热点。作为感光性树脂组合物的关键组分之一,光引发剂对感光性树脂组合物的分辨率的影响更是研究的重中之重。
HABI类化合物具有特殊的化学结构,在紫外光作用下可以光解产生大分子自由基,是光固化领域特别是自由基聚合领域非常重要的一类光引发剂。市场中现有的HABI类光引发剂都是由多种不同连接位的异构体构成。目前已报道的HABI类光引发剂在感光性树脂组合物中的应用均未对内含异构体的组成做进一步要求,仅是将其直接应用于组合物中。一方面,源于生产工艺的不同,市场上不同厂家生产的HABI类光引发剂应用性能差异很大,在精细线路中应用时成品率低,严重影响产品质量。另一方面,含有现有HABI产品的感光性树脂组合物及其干膜在长时间储存后会有灵敏度和分辨率下降的趋势,易导致制品不良,也是亟需解决的一个难题。
发明内容
针对现有技术的不足,本发明通过调整HABI制备工艺中反应溶剂、氧化剂等参数,优化产物中异构体的组成与比例,进而得到了性能提升的HABI类光引发剂产品。该光引发剂性能可控,应用于感光性树脂组合物时,组合物及其干膜具有优异的储存稳定性,即使长时间储存后也不会有灵敏度和分辨率下降的趋势。
为实现上述目的,本发明所述的能够提升体系稳定性的HABI类光引发剂,具有如通式(I)所示结构,其中含有2-1’、2-3’、2’-1和2’-3四种连接位的双咪唑化合物,该四种连接位的双咪唑化合物的总质量百分含量为92%以上,且2-1’和2’-1两种连接位的含量之和(下文简称为2-1连接位)与2-3’和2’-3两种连接位的含量之和(下文简称为2-3连接位)的比值在1.5:1-2:1之间;
Figure PCTCN2020091769-appb-000001
通式(I)中,Ar 1、Ar 2、Ar 3、Ar 4、Ar 5、Ar 6可以相同也可以不同,各自独立地表示取代或未取代的芳基。
本发明的目的还在于提供包含上述光引发剂的感光性树脂组合物,以及该组合物及其干膜在制造印刷电路板、保护图案、导体图案、引框线、半导体封装等方面的应用。
发明详述
如上文所述,本发明涉及一种能够提升体系稳定性的HABI类光引发剂,含有该光引发剂的感光性树脂组合物,以及该组合物及其干膜的应用。以下将对上述各方面进行更加详细的说明。
<HABI类光引发剂>
本发明的能够提升体系稳定性的HABI类光引发剂,具有如通式(I)所示结构,其中含有2-1’、2-3’、2’-1和2’-3四种连接位的双咪唑化合物,该四种连接位的双咪唑化合物的总质量百分含量为92%以上,且2-1’和2’-1两种连接位的含量之和与2-3’和2’-3两种连接位的含量之和的比值在1.5:1-2:1之间;
Figure PCTCN2020091769-appb-000002
通式(I)中,Ar 1、Ar 2、Ar 3、Ar 4、Ar 5、Ar 6可以相同也可以不同,各自独立地表示取代或未取代的芳基。
满足通式(I)所示结构的2-1’、2-3’、2’-1和2’-3四种连接位的双咪唑化合物,具体为下列结构:
Figure PCTCN2020091769-appb-000003
Figure PCTCN2020091769-appb-000004
通式(I)中,所述芳基优选是苯基。
所述取代的芳基可以是单取代的,也可以是多取代的。
优选地,芳基上的取代基可以为卤素、硝基、氰基、胺基、羟基、C 1-C 20的烷基或链烯基、C 1-C 8的烷氧基,其中各独立变量(即,各取代基)中的亚甲基可以任选地被氧、硫、亚胺基所取代。
更优选地,芳基上的取代基可以为氟、氯、溴、硝基、氰基、胺基、羟基、C 1-C 10的烷基或链烯基、C 1-C 5的烷氧基,其中各独立变量中的亚甲基可以任选地被氧、硫、亚胺基所取代。
进一步优选地,Ar 1、Ar 2、Ar 3、Ar 4、Ar 5、Ar 6中至少一个是含有卤素取代基的芳基。通过卤素取代基可以提高固化过程中的变色效果,以增强在显影时电子眼的识别能力(注:感光性树脂层经曝光后会发生颜色变化,与未曝光区域形成色差,从而被电子眼识别,本发明可以使色差更明显),进而提高应用产品的质量。特别优选地,卤素取代基为氯。
HABI类光引发剂是光刻胶领域公知的一类光引发剂,其制备通常包括三芳基咪唑类化合物在氧化剂、溶剂和相转移催化剂的存在下发生氧化偶合,示例性地,例如可参见US3784557、US4622286和US4311783等现有技术中的记载(在此将其全文引入以作为参考)。
为获得上述性能提升的HABI类光引发剂,如上文所述,本发明对制备工艺进行优化和改进。具体来说,本发明上述HABI类光引发剂的制备方法,包括下列步骤:
(1)反应步骤:氮气保护下,三芳基咪唑类化合物在氧化剂、溶剂和相转移催化剂的存在下发生氧化偶合,通过HPLC中控至反应完全;
(2)精制步骤:用纯水洗涤除去无机盐,经过滤、浓缩后得到粗品,再经过重结晶、烘干得到所需产物。
HABI类化合物由两个三芳基咪唑化合物(可以相同也可以不同,取决于芳基上的取代基)偶合而成。由于芳香环上取代基的诱导效应,降低了芳香环的π电子云密度,诱导效应促使芳香环扭曲,咪唑环上的共轭中心出现了偏移,使得取代芳基与咪唑不处于同一平面(三芳基咪唑成曲面态),最终两个三芳基咪唑化合物偶合时,N、C的连接呈现出不同的空间构型,所以就产生了2-1’、2-3’、2’-1和2’-3这四种连接位的双咪唑化合物。
为获得本发明的HABI类光引发剂,上述制备中所用氧化剂的标准电极电位(E 0)应当在0.3-0.9V之间。从氧化剂的成本、稳定性、环境保护等角度出发,优选次氯酸钠、次氯酸钾、次溴酸钠、次溴酸钾、铁氰化钠、铁氰化钾中的一种或两种以上的组合。
为获得本发明的HABI类光引发剂,上述制备中所用溶剂的相对介电常数(ε r)确定为0-5,优选苯、甲苯、二甲苯、三甲苯、苯甲醚、苯乙醚等。从溶剂的成本、毒性、回收利用等角度出发,进一步优选甲苯。
介电常数(ε)是溶剂的一个重要性质,它表征溶剂对溶质分子溶剂化以及隔开离子的能力。介电常数大的溶剂有较大隔开离子的能力,同时也具有较强的溶剂化能力。相对介电常数ε r可以用静电场以如下方式测量:首 先在两块极板之间为真空的时候测试电容器的电容C 0,然后用同样的电容极板间距离但在极板间加入电介质后测得电容C x,接着通过下式计算得出:
Figure PCTCN2020091769-appb-000005
在此,首先以BCIM为例阐述HABI类化合物的反应机制:三芳基咪唑分子中氮原子失去H原子带负电荷,邻氯苯基的存在使得三芳基咪唑中2-位的C更活泼,电荷效应使得2-位的C原子带正电荷,所以带负电荷的N原子进攻带正电荷的C原子,最后电子转移,生成BCIM。具体反应机制历程如下所示:
Figure PCTCN2020091769-appb-000006
上述制备中的反应是一个二级亲核取代反应(SN2反应)。在SN2反应中,增大溶剂的极性后,溶剂化程度增大较多,不利于SN2过渡态的形成(因为SN2历程在形成过渡态时,由原来电荷比较集中的亲核试剂变成电荷比较分散的过渡态)。同时,在电子对给体溶剂中(如丙酮),很容易夺取氢离子生成羟基,羟基使得带正电荷的C原子失活,故而影响反应。另外,孤对电子的诱导效应会加速次氯酸钠的分解并产生氧气,氧气会使得带负电荷的氮原子失活,生成氮氧化物,氮氧化物会进一步和溶剂或者其他副产物反应,故而在反应产物中会出现很多大极性的副产物,使得得 到的反应产物纯度偏低。因此,优选相对介电常数ε r为0-5的溶剂进行反应。
相转移催化剂可以帮助反应物从一相转移到能够发生反应的另一相当中,从而加快异相系统反应速率。不存在相转移催化剂时,两相相互隔离,反应物之间无法接触,反应进行得很慢。相转移催化剂的存在,可以与水相中的离子所结合(通常情况),并利用自身对有机溶剂的亲和性,将水相中的反应物转移到有机相中,促使反应发生。本发明的上述制备中,对所用相转移催化剂并无特别限定,但优选季铵盐和环状冠醚类,可以是苄基三乙基氯化铵(TEBA)、四丁基溴化铵(TBAB)、四丁基氯化铵、四丁基硫酸氢铵、三辛基甲基氯化铵、十二烷基三甲基氯化铵、十四烷基三甲基氯化铵、18冠6、15冠5、环糊精等。
反应温度优选为0-70℃,进一步优选为20-70℃。反应温度较低时,反应速率较慢,对提高生产效率不利。反应温度过高,一方面会影响反应的转化率,使得副产物增多和产物纯度偏低,另一方面会使得能耗增加,与降低生产成本的初衷不符。
令人满意的是,在本发明的上述制备中,通过控制反应溶剂、氧化剂等工艺参数,能够实现对HABI产物中多种连接位的异构体的组成与比例的控制。制得的HABI类光引发剂应用于感光性树脂组合物时,组合物及其干膜具有优异的储存稳定性,即使长时间储存后也不会有灵敏度和分辨率下降的趋势。
<感光性树脂组合物>
如上文所述,本发明的HABI类光引发剂应用于感光性树脂组合物时具有优异的性能表现。因此相应地,本发明还提供一种感光性树脂组合物, 其特征在于,包含下列组分:
(A)如上所述的HABI类光引发剂;
(B)碱可溶性聚合物;
(C)具有烯属不饱和双键的化合物;
(D)供氢体;
(E)其它任选的助剂。
以下将对各组分进行更加详细的说明。
HABI类光引发剂(A)
在上文所述特征限定范围内,示例性地,本发明的HABI类光引发剂可选自或包括:
化合物A1:
Figure PCTCN2020091769-appb-000007
化合物A2:
Figure PCTCN2020091769-appb-000008
Figure PCTCN2020091769-appb-000009
化合物A3:
Figure PCTCN2020091769-appb-000010
化合物A4:
Figure PCTCN2020091769-appb-000011
化合物A5:
Figure PCTCN2020091769-appb-000012
在本发明的HABI类光引发剂中,诸如化合物A1、化合物A2等可以单独使用,也可以两种以上混合使用。
在100质量份感光性树脂组合物中,HABI类光引发剂(A)的含量为1-20质量份,优选1-10质量份。若含量过小,存在光致灵敏度下降的缺陷;如果含量过大,则存在光阻图案趋于变宽超过光掩模线宽的缺陷。
碱可溶性聚合物(B)
碱可溶性聚合物可赋予感光性树脂组合物成膜功能。作为碱可溶性聚合物,只要是具有这样特性的聚合物就可以没有特别限制地适用。
示例性地,适用的碱可溶性聚合物可以是(甲基)丙烯酸系聚合物、苯乙烯系聚合物、环氧系聚合物、脂肪族聚氨酯(甲基)丙烯酸酯聚合物、芳香族聚氨酯(甲基)丙烯酸酯聚合物、酰胺系树脂、酰胺环氧系树脂、醇酸系树脂 以及酚醛系树脂等。
进一步地,碱可溶性聚合物可经由聚合性单体进行自由基聚合而得到。作为聚合性单体,可例举出:苯乙烯、乙烯基甲苯、α-甲基苯乙烯、对甲基苯乙烯、对乙基苯乙烯、对氯苯乙烯等在α-位或在芳香族环上被取代的可聚合的苯乙烯衍生物;丙烯酰胺、双丙酮丙烯酰胺等丙烯酰胺衍生物;丙烯腈、乙烯基正丁基醚等乙烯基醇的醚类衍生物;(甲基)丙烯酸、α-溴代(甲基)丙烯酸、α-氯代(甲基)丙烯酸、β-呋喃基(甲基)丙烯酸、β-苯乙烯基(甲基)丙烯酸等(甲基)丙烯酸衍生物;(甲基)丙烯酸烷基酯、(甲基)丙烯酸苄酯、甲基丙烯酸苯氧基乙酯、(甲基)丙烯酸四氢糠基酯、(甲基)丙烯酸二甲基氨基乙酯、(甲基)丙烯酸二乙基氨基乙酯、(甲基)丙烯酸缩水甘油酯、2,2,2-三氟乙基(甲基)丙烯酸酯、2,2,3,3-四氟丙基(甲基)丙烯酸酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸四氢糠基酯、(甲基)丙烯酸二甲基氨基乙酯、(甲基)丙烯酸二乙基氨基乙酯、(甲基)丙烯酸缩水甘油酯等(甲基)丙烯酸酯类化合物;马来酸、马来酸酐、马来酸单甲酯、马来酸单乙酯、马来酸单异丙酯等马来酸单酯;富马酸、肉桂酸、α-氰基肉桂酸、衣康酸、巴豆酸、丙醇酸、N-乙烯基己内酰胺;N-乙烯基吡咯烷酮等。这些聚合性单体可以单独使用,也可以两种以上组合使用。
进一步地,从碱显影性和密合性的角度考虑,优选使用含羧基的碱可溶性聚合物。具有羧基的碱可溶性聚合物可以为包含(甲基)丙烯酸作为单体单元的丙烯酸树脂,其通过使用(甲基)丙烯酸作为单体单元导入羧基;可以为除(甲基)丙烯酸以外进一步包含(甲基)丙烯酸烷基酯作为单体单元的共聚物;也可以为除(甲基)丙烯酸以外进一步含有除(甲基)丙烯酸和(甲基)丙烯酸烷基酯以外的聚合性单体(如具有乙烯性不饱和基团的单体)作为单体 成分的共聚物。
进一步地,含羧基的碱可溶性聚合物可通过具有羧基的聚合性单体与其它聚合性单体进行自由基聚合而得到,特别是由(甲基)丙烯酸酯、乙烯性不饱和羧酸和其它可共聚单体共聚而成的(甲基)丙烯酸酯系聚合物。
所述的(甲基)丙烯酸酯可以是(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸戊酯、(甲基)丙烯酸己酯、(甲基)丙烯酸庚酯、(甲基)丙烯酸辛酯、(甲基)丙烯酸-2-乙基己酯、(甲基)丙烯酸壬酯、(甲基)丙烯酸癸酯、(甲基)丙烯酸十一烷基酯、(甲基)丙烯酸十二烷基酯、(甲基)丙烯酸环己酯、(甲基)丙烯酸苄基酯、(甲基)丙烯酸二乙胺基乙酯、(甲基)丙烯酸酯二甲胺基乙酯、(甲基)丙烯酸羟乙酯、(甲基)丙烯酸羟丙酯、(甲基)丙烯酸糠基酯、(甲基)丙烯酸缩水甘油酯等。这些(甲基)丙烯酸酯可以单独使用,也可以两种以上组合使用。
所述的乙烯性不饱和羧酸可以是丙烯酸、甲基丙烯酸、丁烯酸、马来酸、富马酸、衣康酸,特别优选丙烯酸、甲基丙烯酸。这些乙烯性不饱和羧酸可以单独使用,也可以两种以上组合使用。
所述的其它可共聚单体可以是(甲基)丙烯酰胺、(甲基)丙烯酸正丁酯、苯乙烯、乙烯基萘、(甲基)丙烯晴、乙酸乙烯基酯、乙烯基环己烷等。这些其它可共聚单体可以单独使用,也可以两种以上组合使用。
碱可溶性聚合物可以单独一种使用,也可以两种以上组合使用。作为组合两种以上使用的碱可溶性聚合物,可列举出由不同共聚成分构成的两种以上的碱可溶性聚合物、不同重均分子量的两种以上的碱可溶性聚合物、不同分散度的两种以上的碱可溶性聚合物等。
在本发明的感光性树脂组合物中,对碱可溶性聚合物的重均分子量没 有特别限制,其应与具体应用环境相适应。从机械强度与碱显影性方面综合考虑,重均分子量优选为15000-200000,更优选为30000-150000,特别优选为30000-120000。当重均分子量大于15000时,曝光后耐显影液性有进一步提高的倾向,当该重均分子量小于200000时,显影时间有变得更短的倾向,且可以保持与光引发剂等其它组分的相容性。碱可溶性聚合物的重均分子量通过凝胶渗透色谱法(GPC)进行测定,通过使用标准聚苯乙烯的标准曲线进行换算而得到。
进一步地,从碱显影性良好的角度考虑,碱可溶性聚合物的酸值优选为50-300mgKOH/g,更优选为50-250mgKOH/g,进一步优选为70-250mgKOH/g,特别优选为100-250mgKOH/g。当碱可溶性树脂的酸值低于50mgKOH/g时,难以确保充分的显影速度,当超过300mgKOH/g时,密合性减小,容易发生图案短路,且易出现组合物贮存稳定性降低、粘度上升的问题。
碱可溶性树脂的分子量分布[重均分子量(Mw)/数均分子量(Mn)]优选为1.5-6.0,特别优选为1.8-3.7。当分子量分布处于所述范围时,显影性优异。
在100质量份感光性树脂组合物中,碱可溶性聚合物在组合物中的含量优选20-70质量份,更优选30-60质量份。当碱可溶性聚合物的含量在20质量份以上,可确保感光性树脂组合物对于镀敷处理、蚀刻处理等的耐久性得到提高,当含量在70质量份以下,有利于提高感光性树脂组合物的灵敏度。
具有烯属不饱和双键的化合物(C)
具有烯属不饱和双键的化合物可促进感光性树脂组合物成膜。
对具有烯属不饱和双键的化合物没有特别限定,只要在分子内具有至少一个乙烯性不饱和键的光聚合性化合物就可以使用。示例性地,可列举 出:α,β-不饱和羧酸与多元醇反应而得的化合物、双酚A类(甲基)丙烯酸酯化合物、α,β-不饱和羧酸与含缩水甘油基的化合物反应而得的化合物、分子内具有氨酯键的(甲基)丙烯酸酯化合物等氨基甲酸酯单体、壬基苯氧基多乙烯氧基丙烯酸酯、γ-氯-β-羟基丙基-β’-(甲基)丙烯酰氧基乙基-邻苯二甲酸酯、β-羟基乙基-β’-(甲基)丙烯酰氧基乙基-邻苯二甲酸酯、β-羟基丙基-β’-(甲基)丙烯酰氧基乙基-邻苯二甲酸酯、苯二甲酸类化合物、(甲基)丙烯酸烷基酯等。这些化合物可以单独使用,也可两种以上组合使用。
作为上述α,β-不饱和羧酸与多元醇反应而得的化合物,可例举出:亚乙基数为2-14的聚乙二醇二(甲基)丙烯酸酯、亚丙基数为2-14的聚丙二醇二(甲基)丙烯酸酯、亚乙基数为2-14且亚丙基数为2-14的聚亚乙基·聚亚丙基二醇二(甲基)丙烯酸酯、三羟甲基丙烷二(甲基)丙烯酸酯、三羟甲基丙烷三(甲基)丙烯酸酯、EO改性三羟甲基丙烷三(甲基)丙烯酸酯、PO改性三羟甲基丙烷三(甲基)丙烯酸酯、EO,PO改性三羟甲基丙烷三(甲基)丙烯酸酯、四羟甲基甲烷三(甲基)丙烯酸酯、四羟甲基甲烷四(甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、聚丙二醇单(甲基)丙烯酸酯、聚乙二醇单(甲基)丙烯酸酯、三丙二醇二(甲基)丙烯酸酯等。这些化合物可以单独使用,也可两种以上组合使用。在这里,“EO”表示环氧乙烷,经EO改性的化合物是指具有氧化乙烯基的嵌段结构的化合物。“PO”表示环氧丙烷,经PO改性的化合物是指具有氧化丙烯基的嵌段结构的化合物。
作为上述双酚A类(甲基)丙烯酸酯化合物,可例举出:2,2-双{4-[(甲基)丙烯酰氧基多乙氧基]苯基}丙烷、2,2-双{4-[(甲基)丙烯酰氧基多丙氧基]苯基}丙烷、2,2-双{4-[(甲基)丙烯酰氧基多丁氧基]苯基}丙烷、2,2-双{4-[(甲 基)丙烯酰氧基多乙氧基多丙氧基]苯基}丙烷等。作为上述2,2-双{4-[(甲基)丙烯酰氧基多乙氧基]苯基}丙烷,可例举出:2,2-双{4-[(甲基)丙烯酰氧基二乙氧基]苯基}丙烷、2,2-双{4-[(甲基)丙烯酰氧基三乙氧基]苯基}丙烷、2,2-双{4-[(甲基)丙烯酰氧基四乙氧基]苯基}丙烷、2,2-双{4-[(甲基)丙烯酰氧基五乙氧基]苯基}丙烷、2,2-双{4-[(甲基)丙烯酰氧基六乙氧基]苯基}丙烷、2,2-双{4-[(甲基)丙烯酰氧基七乙氧基]苯基}丙烷、2,2-双{4-[(甲基)丙烯酰氧基八乙氧基]苯基}丙烷、2,2-双{4-[(甲基)丙烯酰氧基九乙氧基]苯基}丙烷、2,2-双{4-[(甲基)丙烯酰氧基十乙氧基]苯基}丙烷、2,2-双{4-[(甲基)丙烯酰氧基十一乙氧基]苯基}丙烷、2,2-双{4-[(甲基)丙烯酰氧基十二乙氧基]苯基}丙烷、2,2-双{4-[(甲基)丙烯酰氧基十三乙氧基]苯基}丙烷、2,2-双{4-[(甲基)丙烯酰氧基十四乙氧基]苯基}丙烷、2,2-双{4-[(甲基)丙烯酰氧基十五乙氧基]苯基}丙烷、2,2-双{4-[(甲基)丙烯酰氧基十六乙氧基]苯基}丙烷等。上述2,2-双{4-[(甲基)丙烯酰氧基多乙氧基]苯基}丙烷的1分子内的氧化乙烯基数优选为4-20,更优选为8-15。这些化合物可以单独使用,也可两种以上组合使用。
作为上述分子内具有氨酯键的(甲基)丙烯酸酯化合物,可例举出:在β位具有OH基的(甲基)丙烯酸类单体和二异氰酸酯化合物(异佛尔酮二异氰酸酯、2,6-甲苯二异氰酸酯、2,4-甲苯二异氰酸酯、1,6-六亚甲基二异氰酸酯等)的加成反应产物、三[(甲基)丙烯酰氧基四亚乙基二醇异氰酸酯]六亚甲基异氰脲酸酯、EO改性氨酯二(甲基)丙烯酸酯、PO改性氨酯二(甲基)丙烯酸酯、EO,PO改性氨酯二(甲基)丙烯酸酯等。这些化合物可以单独使用,也可两种以上组合使用。
作为上述壬基苯氧基多乙烯氧基丙烯酸酯,可例举出:壬基苯氧基四 乙烯氧基丙烯酸酯、壬基苯氧基五乙烯氧基丙烯酸酯、壬基苯氧基六乙烯氧基丙烯酸酯、壬基苯氧基七乙烯氧基丙烯酸酯、壬基苯氧基八乙烯氧基丙烯酸酯、壬基苯氧基九乙烯氧基丙烯酸酯、壬基苯氧基十乙烯氧基丙烯酸酯、壬基苯氧基十一乙烯氧基丙烯酸酯等。这些化合物可以单独使用,也可两种以上组合使用。
作为上述苯二甲酸类化合物,可例举出:γ-氯-β-羟基丙基-β’-(甲基)丙烯酰氧基乙基邻苯二甲酸酯、β-羟基烷基-β’-(甲基)丙烯酰氧基烷基邻苯二甲酸酯等。这些化合物可以单独使用,也可两种以上组合使用。
作为上述(甲基)丙烯酸烷基酯,可例举出:(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丙酯、(甲基)丙烯酸异丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸仲丁酯、(甲基)丙烯酸叔丁酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸苯酯、(甲基)丙烯酸异冰片酯、(甲基)丙烯酸羟甲酯、(甲基)丙烯酸羟乙酯、(甲基)丙烯酸羟丙酯、(甲基)丙烯酸-2-羟乙酯、(甲基)丙烯酸-2-羟丙酯、(甲基)丙烯酸苄基酯、(甲基)丙烯酸戊酯、(甲基)丙烯酸四氢糠基酯、(甲基)丙烯酸异辛酯、乙氧基化壬基酚(甲基)丙烯酸酯、丙二醇聚丙烯醚二(甲基)丙烯酸酯、1,9-壬二醇二(甲基)丙烯酸酯、1,10-癸二醇二(甲基)丙烯酸酯、乙氧基化聚四氢呋喃二醇二(甲基)丙烯酸酯、乙氧基化聚丙二醇二(甲基)丙烯酸酯等。其中,优选为(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、三羟甲基丙烷三(甲基)丙烯酸酯、乙氧基化三羟甲基丙烷三(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、乙氧化季戊四醇四(甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、二季戊四醇六丙烯酸酯。这些化合物可以单独使用,也可两种以上组合使用。
从提高分辨率、耐镀覆性、密合性的角度来看,所述具有烯属不饱和 双键的化合物优选双酚A类(甲基)丙烯酸酯化合物和分子内具有氨酯键的(甲基)丙烯酸酯化合物。从可以提高灵敏度和解析度的角度来看,优选双酚A类(甲基)丙烯酸酯化合物。作为双酚A类(甲基)丙烯酸酯化合物的市售品,示例性地,有2,2-双{4-[(甲基)丙烯酰氧基多乙氧基]苯基}丙烷(新中村化学工业株式会社制,BPE-200)、2,2-双{4-[(甲基)丙烯酰氧基多丙氧基]苯基)丙烷(新中村化学工业株式会社制,BPE-5000;日立化成株式会社制,FA-321M)、2,2-双{4-[(甲基)丙烯酰氧基多丁氧基]苯基}丙烷(新中村化学工业株式会社,BPE-1300)等。
在100质量份感光性树脂组合物中,具有烯属不饱和双键的化合物(C)的含量优选20-50质量份,更优选25-45质量份。当所述具有烯属不饱和双键的化合物的含量在20质量份以上时,感光性树脂组合物的灵敏度和解析度会进一步提高;当其含量在50质量份以下,感光性树脂组合物更易薄膜化,且对于蚀刻处理的耐久性进一步提高。
供氢体(D)
本发明的感光性树脂组合物还包括供氢体,以便改善感光度。双咪唑类化合物经光照后裂解,产生的单咪唑自由基体积较大,位阻效应使得活性较小,很难单独引发单体聚合,而如果和供氢体配合使用,则单咪唑自由基容易夺取供氢体上的活泼氢,产生新的活性自由基,进而引发单体聚合。
只要是具有上述特性的供氢体,在具体种类方面就没有特别限制,可以包括(但不限于):胺类化合物、羧酸类化合物、含有巯基的有机硫化合物或醇类化合物等。这些化合物可单独使用,或以其中的两种以上组合使用。
胺类化合物没有特别限制,可以包括(但不限于):脂肪族胺化合物,如三乙醇胺、甲基二乙醇胺、三异丙醇胺等;芳香族胺化合物,如4-二甲氨基苯甲酸甲酯、4-二甲氨基苯甲酸乙酯、4-二甲氨基苯甲酸异戊酯、4-二甲氨基苯甲酸2-乙基己酯、2-二甲氨基乙基苯甲酸酯、N,N-二甲基对甲苯胺、4,4’-双(二甲氨基)二苯甲酮、4,4’-双(二乙氨基)二苯甲酮等。
羧酸类化合物没有特别限制,可以包括(但不限于):芳香族杂乙酸、苯基硫代乙酸、甲基苯基硫代乙酸、乙基苯基硫代乙酸、甲基乙基苯基硫代乙酸、二甲基苯基硫代乙酸、甲氧基苯基硫代乙酸、二甲氧基苯基硫代乙酸、氯苯基硫代乙酸、二氯苯基硫代乙酸、N-苯基甘氨酸、苯氧基乙酸、萘基硫代乙酸、N-萘基甘氨酸、萘氧基乙酸等。
含有巯基的有机硫化合物没有特别限制,可以包括(但不限于):2-巯基苯并噻唑(MBO)、2-巯基苯并咪唑(MBI)、十二烷基硫醇、乙二醇双(3-巯基丁酸酯)、1,2-丙二醇双(3-巯基丁酸酯)、二乙二醇双(3-巯基丁酸酯)、丁二醇双(3-巯基丁酸酯)、辛二醇双(3-巯基丁酸酯)、三羟甲基丙烷三(3-巯基丁酸酯)、季戊四醇四(3-巯基丁酸酯)、二季戊四醇六(3-巯基丁酸酯)、乙二醇双(2-巯基丙酸酯)、丙二醇双(2-巯基丙酸酯)、二乙二醇双(2-巯基丙酸酯)、丁二醇双(2-巯基丙酸酯)、辛二醇双(2-巯基丙酸酯)、三羟甲基丙烷三(2-巯基丙酸酯)、季戊四醇四(3-巯基丙酸酯)、二季戊四醇六(2-巯基丙酸酯)、乙二醇双(3-巯基异丁酸酯)、1,2-丙二醇双(3-巯基异丁酸酯)、二乙二醇双(3-巯基异丁酸酯)、丁二醇双(3-巯基异丁酸酯)、辛二醇双(3-巯基异丁酸酯)、三羟甲基丙烷三(3-巯基异丁酸酯)、季戊四醇四(3-巯基异丁酸酯)、二季戊四醇六(3-巯基异丁酸酯)、乙二醇双(2-巯基异丁酸酯)、1,2-丙二醇双(2-巯基异丁酸酯)、二乙二醇双(2-巯基异丁酸酯)、丁二醇双(2-巯基异丁酸酯)、 辛二醇双(2-巯基异丁酸酯)、三羟甲基丙烷三(2-巯基异丁酸酯)、季戊四醇四(2-巯基异丁酸酯)、二季戊四醇六(2-巯基异丁酸酯)、乙二醇双(4-巯基戊酸酯)、1,2-丙二醇双(4-巯基异戊酸酯)、二乙二醇双(4-巯基戊酸酯)、丁二醇双(4-巯基戊酸酯)、辛二醇双(4-巯基戊酸酯)、三羟甲基丙烷三(4-巯基戊酸酯)、季戊四醇四(4-巯基戊酸酯)、二季戊四醇六(4-巯基戊酸酯)、乙二醇双(3-巯基戊酸酯)、1,2-丙二醇双(3-巯基戊酸酯)、二乙二醇双(3-巯基戊酸酯)、丁二醇双(3-巯基戊酸酯)、辛二醇双(3-巯基戊酸酯)、三羟甲基丙烷三(3-巯基戊酸酯)、季戊四醇四(3-巯基戊酸酯)、二季戊四醇六(3-巯基戊酸酯)等脂肪族二级多官能硫醇化合物;芳香族二级多官能硫醇化合物,如邻苯二甲酸二(1-巯基乙酯)、邻苯二甲酸二(2-巯基丙酯)、邻苯二甲酸二(3-巯基丁酯)、邻苯二甲酸二(3-巯基异丁酯)等。
醇类化合物没有特别限制,可以包括(但不限于):甲醇、乙醇、1-丙醇、2-丙醇、1-丁醇、2-丁醇、新戊醇、正己醇、环已醇、乙二醇、1,2-丙二醇、1,2,3-丙三醇、苯甲醇、苯乙醇等。
在100质量份感光性树脂组合物中,供氢体(D)的含量可以为0.01-20重量份,优选0.01-10重量份。当供氢体的含量在上述范围内,对调控感光性树脂组合物的感光度是有利的。
其他任选的助剂(E)
除了上述各组分,任选地,本发明的感光性树脂组合物中还可以根据需要包含适量的其它助剂。示例性地,助剂可以包括其它光引发剂和/或增感剂、有机溶剂、染料、颜料、光显色剂、填充剂、增塑剂、稳定剂、涂布助剂、剥离促进剂等中的至少一种。
所述其它光引发剂和/或增感剂可包括(但不限于):双咪唑类、芳香 族酮类、蒽醌类、苯偶姻和苯偶姻烷基醚类、肟酯类、三嗪类、香豆素类、噻吨酮类、吖啶类及其它本领域技术人员已知的光引发剂。
示例性地,双咪唑类化合物包括:2,2’-二(邻氯苯基)-4,4’,5,5’-四苯基-二咪唑、2,2’,5-三(邻氯苯基)-4-(3,4-二甲氧基苯基)-4’,5’-二苯基-1,1’-二咪唑、2,2’,5-三(2-氟苯基)-4-(3,4-二甲氧基苯基)-4’,5’-二苯基-二咪唑、2,2’-二(2,4-二氯苯基)-4,4’,5,5’-四苯基-二咪唑、2,2’-二(2-氟苯基)-4-(邻氯苯基)-5-(3,4-二甲氧基苯基)-4’,5’-二苯基-二咪唑、2,2’-二(2-氟苯基)-4,4’,5,5’-四苯基-二咪唑、2,2’-二(2-甲氧基苯基)-4,4’,5,5’-四苯基-二咪唑、2,2’-二(2-氯-5-硝基苯基)-4,4’-二(3,4-二甲氧基苯基)-5,5’-二(邻氯苯基)-二咪唑、2,2’-二(2-氯-5-硝基苯基)-4-(3,4-二甲氧基苯基)-5-(邻氯苯基)-4’,5’-二苯基-二咪唑、2,2’-二(2,4-二氯苯基)-4,4’-二(3,4-二甲氧基苯基)-5,5’-二(邻氯苯基)-二咪唑、2-(2,4-二氯苯基)-4-(3,4-二甲氧基苯基)-2’,5-二(邻氯苯基)-4’,5’-二苯基-二咪唑、2-(2,4-二氯苯基)-2’-(邻氯苯基)-4,4’,5,5’-四苯基-二咪唑、2,2’-二(2,4-二氯苯基)-4,4’,5,5’-四苯基-二咪唑及其相似物。这些双咪唑类化合物可以单独使用或两种以上组合使用。
示例性地,芳香族酮类化合物包括:苯乙酮、2,2-二甲氧基-2-苯基苯乙酮、2,2-二乙氧基-2-苯基苯乙酮、1,1-二氯苯乙酮、二苯甲酮、4-苯甲酰基二苯硫醚、4-苯甲酰基-4’-甲基二苯硫醚、4-苯甲酰基-4’-乙基二苯硫醚、4-苯甲酰基-4’-丙基二苯硫醚、4,4’-双(二乙基氨基)二苯甲酮、4-对甲苯巯基二苯甲酮、2,4,6-三甲基二苯甲酮、4-甲基二苯甲酮、4,4’-双(二甲氨基)二苯甲酮、4,4’-双(甲基、乙基氨基)二苯甲酮、苯乙酮二甲基缩酮、苯偶酰二甲基缩酮、α,α’-二甲基苯偶酰缩酮、α,α’-二乙氧基苯乙酮、2-羟基-2-甲基-1-苯基丙酮、1-羟基环己基苯甲酮、2-羟基-2-甲基-1-对羟乙基醚基苯基 丙酮、2-甲基1-(4-甲巯基苯基)-2-吗啉1-丙酮、2-苄基-2-二甲氨基-1-(4-吗啉苯基)1-丁酮、苯基双(2,4,6-三甲基苯甲酰基)氧膦、2,4,6(三甲基苯甲酰基)二苯基氧化膦、2-羟基-1-{3-[4-(2-羟基-2-甲基-丙酰基)-苯基]-1,1,3-三甲基-茚-5-基}-2-甲基丙酮、2-羟基-1-{1-[4-(2-羟基-2-甲基-丙酰基)-苯基]-1,3,3-三甲基-茚-5-基}-2-甲基丙酮、1-(4-异丙基苯基)-2-羟基-2-甲基丙-1-酮、4-(2-羟基乙氧基)-苯基-(2-羟基-2-丙基)酮及其相似物。这些芳香族酮类化合物可以单独使用或两种以上组合使用。
示例性地,蒽醌类化合物包括:2-苯基蒽醌、2,3-二苯基蒽醌、1-氯蒽醌、2-甲基蒽醌、2,3-二甲基蒽醌、2-乙基蒽-9,10-二乙酯、1,2,3-三甲基蒽-9,10-二辛脂、2-乙基蒽-9,10-二(4-氯丁酸甲酯)、2-{3-[(3-乙基氧杂环丁烷-3-基)甲氧基]-3-氧代丙基}蒽-9,10-二乙酯、9,10-二丁氧基蒽、9,10-二乙氧基-2-乙基蒽、9,10-二(3-氯丙氧基)蒽、9,10-二(2-羟基乙巯基)蒽、9,10-二(3-羟基-1-丙巯基)蒽及其相似物。这些蒽醌类化合物可以单独使用或两种以上组合使用。
示例性地,苯偶姻和苯偶姻烷基醚类化合物包括:苯偶姻甲基醚、苯偶姻乙基醚、苯偶姻苯基醚及其相似物。这些苯偶姻和苯偶姻烷基醚类化合物可以单独使用或两种以上组合使用。
示例性地,肟酯类化合物可以包括:1-(4-苯硫基苯基)-正辛烷-1,2-二酮-2-苯甲酸肟酯、1-[6-(2-甲基苯甲酰基)-9-乙基咔唑-3-基]-乙烷-1-酮-乙酸肟酯、1-[6-(2-甲基苯甲酰基)-9-乙基咔唑-3-基]-丁烷-1-酮-乙酸肟酯、1-[6-(2-甲基苯甲酰基)-9-乙基咔唑-3-基]-丙烷-1-酮-乙酸肟酯、1-[6-(2-甲基苯甲酰基)-9-乙基咔唑-3-基]-1-环己基-甲烷-1-酮-乙酸肟酯、1-[6-(2-甲基苯甲酰基)-9-乙基咔唑-3-基]-(3-环戊基)-丙烷-1-酮-乙酸肟酯、1-(4-苯硫基苯基)-(3- 环戊基)-丙烷-1,2-二酮-2-苯甲酸肟酯、1-(4-苯硫基苯基)-(3-环己基)-丙烷-1,2-二酮-2-环己基甲酸肟酯、1-[6-(2-甲基苯甲酰基)-9-乙基咔唑-3-基]-(3-环戊基)-丙烷-1,2-二酮-2-乙酸肟酯、1-(6-邻甲基苯甲酰基-9-乙基咔唑-3-基)-(3-环戊基)-丙烷-1,2-二酮-2-苯甲酸肟酯、1-(4-苯甲酰基二苯硫醚)-(3-环戊基丙酮)-1-肟乙酸酯、1-(6-邻甲基苯甲酰基-9-乙基咔唑-3-基)-(3-环戊基丙酮)-1-肟环己基甲酸酯、1-(4-苯甲酰基二苯硫醚)-3-环戊基丙酮)-1-肟环己基甲酸酯、1-(6-邻甲基苯甲酰基-9-乙基咔唑-3-基)-(3-环戊基)-丙烷-1,2-二酮-2-邻甲基苯甲酸肟酯、1-(4-苯硫基苯基)-(3-环戊基)-丙烷-1,2-二酮-2-环己基甲酸肟酯、1-(4-噻吩甲酰基-二苯硫醚-4’-基)-3-环戊基-丙烷-1-酮-乙酸肟酯、1-(4-苯甲酰基二苯硫醚)-(3-环戊基)-丙烷-1,2-二酮-2-肟乙酸酯、1-(6-硝基-9-乙基咔唑-3-基)-3-环己基-丙烷-1-酮-乙酸肟酯、1-(6-邻甲基苯甲酰基-9-乙基咔唑-3-基)-3-环己基-丙烷-1-酮-乙酸肟酯、1-(6-噻吩甲酰基-9-乙基咔唑-3-基)-(3-环己基丙酮)-1-肟乙酸酯、1-(6-呋喃糠甲酰基-9-乙基咔唑-3-基)-(3-环戊基丙酮)-1-肟乙酸酯、1,4-二苯基丙烷-1,3-二酮-2-乙酸肟酯、1-(6-糠酰基-9-乙基咔唑-3-基)-(3-环己基)-丙烷-1,2-二酮-2-乙酸肟酯、1-(4-苯硫基苯基)-(3-环已基)-丙烷-1,2-二酮-2-乙酸肟酯、1-(6-呋喃糠甲酰基-9-乙基咔唑-3-基)-(3-环己基丙酮)-1-肟乙酸酯、1-(4-苯硫基苯基)-(3-环已基)-丙烷-1,2-二酮-3-苯甲酸肟酯、1-(6-噻吩甲酰基-9-乙基咔唑-3-基)-(3-环己基)-丙烷-1,2-二酮-2-乙酸肟酯、2-[(苯甲酰氧基)亚氨基]-1-苯基丙烷-1-酮、1-苯基-1,2-丙二酮-2-(氧代乙酰基)肟、1-(4-苯硫基苯基)-2-(2-甲基苯基)-乙烷-1,2-二酮-2-乙酸肟酯、1-(9,9-二丁基-7-硝基芴-2-基)-3-环己基-丙烷-1-酮-乙酸肟酯、1-{4-[4-(噻吩-2-甲酰基)苯硫基]苯基}-3-环戊基丙烷-1,2-二酮-2-乙酸肟酯、1-[9,9-二丁基-2-基]-3-环己基丙基丙烷-1,2-二酮-2-乙酸肟酯、1-[6-(2-苯甲 酰氧基亚氨基)-3-环己基丙基-9-乙基咔唑-3-基]辛烷-1,2-二酮-2-苯甲酸肟酯、1-(7-硝基-9,9-二烯丙基芴-2-基)-1-(2-甲基苯基)甲酮-乙酸肟酯、1-[6-(2-甲基苯甲酰基)-9-乙基咔唑-3-基]-3-环戊基-丙烷-1-酮-苯甲酸肟酯、1-[7-(2-甲基苯甲酰基)-9,9-二丁基芴-2-基]-3-环己基丙烷-1,2-二酮-2-乙酸肟酯、1-[6-(呋喃-2-甲酰基)-9-乙基咔唑-3-基]-3-环己基丙烷-1,2-二酮-2-乙氧甲酰肟酯及其相似物。这些肟酯类化合物可以单独使用或两种以上组合使用。
示例性地,三嗪类化合物包括:2-(4-乙基联苯)-4,6-双(三氯甲基)-1,3,5-三嗪、2-(3,4-亚甲氧基苯基)-4,6-双(三氯甲基)-1,3,5-三嗪、3-{4-[2,4-双(三氯甲基)-s-三嗪-6-基]苯硫基}丙酸、1,1,1,3,3,3-六氟异丙基-3-{4-[2,4-双(三氯甲基)-s-三嗪-6-基]苯硫基}丙酸酯、乙基-2-{4-[2,4-双(三氯甲基)-s-三嗪-6-基]苯硫基}乙酸酯、2-乙氧基乙基-2-{4-[2,4-双(三氯甲基)-s-三嗪-6-基]苯硫基}乙酸酯、环己基-2-{4-[2,4-双(三氯甲基)-s-三嗪-6-基]苯硫基}乙酸酯、芐基-2-{4-[2,4-双(三氯甲基)-s-三嗪-6-基]苯硫基}乙酸酯、3-{氯-4-[2,4-双(三氯甲基)-s-三嗪-6-基]苯硫基}丙酸、3-{4-[2,4-双(三氯甲基)-s-三嗪-6-基]苯硫基}丙醯胺、2,4-双(三氯甲基)-6-p-甲氧基苯乙烯基-s-三嗪、2,4-双(三氯甲基)-6-(1-p-二甲基胺基苯基)-1,3-丁二烯基-s-三嗪、2-三氯甲基-4-胺基-6-p-甲氧基苯乙烯基-s-三嗪及其相似物。这些三嗪类化合物可以单独使用或两种以上组合使用。
示例性地,香豆素类化合物包括:3,3’-羰基双(7-二乙胺香豆素)、3-苯甲酰基-7-二乙胺香豆素、3,3’-羰基双(7-甲氧基香豆素)、7-二乙氨基-4-甲基香豆素、3-(2-苯并噻唑)-7-(二乙基胺基)香豆素、7-(二乙氨基)-4-甲基-2H-1-苯并吡喃-2-酮[7-(二乙氨基)-4-甲基香豆素]、3-苯甲酰基-7-甲氧基香豆素及其相似物。这些香豆素类化合物可以单独使用或两种以上组合使用。
示例性地,噻吨酮类化合物包括:噻吨酮、2,4-二甲基噻吨酮、2,4-二乙基噻吨酮、2,4-二异丙基噻吨酮、2-氯噻吨酮、1-氯-4-丙氧基噻吨酮、异丙基噻吨酮、二异丙基噻吨酮及相似物。这些噻吨酮类化合物可以单独使用或两种以上组合使用。
示例性地,吖啶类化合物包括:9-苯基吖啶、9-对甲基苯基吖啶、9-间甲基苯基吖啶、9-邻氯苯基吖啶、9-邻氟苯基吖啶、1,7-二(9-吖啶基)庚烷、9-乙基吖啶、9-(4-溴苯基)吖啶、9-(3-氯苯基)吖啶、1,7-双(9-吖啶)庚烷、1,5-双(9-吖啶戊烷)、1,3-双(9-吖啶)丙烷及其相似物。这些吖啶类化合物可以单独使用或两种以上组合使用。
有机溶剂只要能够溶解前述各组分即可,示例性地,可以是二醇醚系溶剂、醇系溶剂、酯系溶剂、酮系溶剂、酰胺系溶剂、含氯溶剂等,优选特别考虑着色剂、碱可溶性聚合物的溶解性、涂布性、安全性等因素来进行选择。优选地,有机溶剂可以是乙基溶纤剂(乙二醇单乙基醚)、甲基溶纤剂(乙二醇单甲基醚)、丁基溶纤剂(乙二醇单丁基醚)、甲基甲氧基丁醇(3-甲基-3-甲氧基丁醇)、丁基卡必醇(二甘醇单丁基醚)、乙二醇单乙基醚乙酸酯、乙二醇单叔丁基醚、丙二醇单甲基醚乙酸酯、丙二醇单甲基醚(1-甲氧基-2-丙醇)、丙二醇单乙基醚(1-乙氧基-2-丙醇)、丙二醇单乙基醚乙酸酯、乙酸乙酯、乙酸正丁酯、乙酸异丁酯、乙酸溶纤剂(乙二醇单甲基醚乙酸酯)、乙酸甲氧基丁酯(乙酸3-甲氧基丁酯)、乙酸3-甲基-3-甲氧基丁酯、3-乙氧基丙酸乙酯(EEP)、乳酸甲酯、乳酸乙酯、乳酸丙酯、乳酸丁酯、2-丁酮(MEK)、甲基异丁基酮(MIBK)、环己酮、环戊酮、二丙酮醇(4-羟基-4-甲基-2-戊酮)、异佛尔酮(3,5,5-三甲基-2-环己烯-1-酮)、二异丁基酮(2,6-二甲基-4-庚酮)、N-甲基吡咯烷酮(4-甲基氨基内酰胺或NMP)、甲醇、乙醇、异丙醇、正丙 醇、异丁醇、正丁醇等。这些溶剂可单独使用,或以其中两种以上组合使用。
示例性地,染料、颜料及光显色剂包括:三(4-二甲基氨基苯基)甲烷、三(4-二甲基氨基-2甲基苯基)甲烷、荧烷染料、甲苯磺酸一水合物、碱性品红、酞菁绿及酞菁蓝等酞菁系、金胺碱、副品红、结晶紫、甲基橙、尼罗蓝2B、维多利亚蓝、孔雀绿、金刚绿、碱性蓝20、艳绿、伊红、乙基紫、赤藓红钠盐B、甲基绿、苯酚酞、茜素红S、百里香酚酞、甲基紫2B、喹那定红、玫瑰红钠琼脂、米塔尼尔黄、百里香酚磺酞、二甲苯酚蓝、甲基橘、橘IV、二苯基流卡巴腙、2,7-二氯荧光素、泛甲基红、刚果红、本佐红紫4B、α-萘基红、非那西汀、甲基紫、维多利亚纯蓝BOH、罗丹明6G、二苯基胺、二苄基苯胺、三苯基胺、二乙基苯胺、二-对伸二胺、对甲苯胺、苯并三氮唑、甲基苯丙三唑、4,4’-联二胺、邻氯苯胺、白色结晶紫、白色孔雀绿、白色苯胺、白色甲基紫、偶氮系等有机颜料,二氧化钛等无机颜料。在具有良好对比度的考量下,优选使用三(4-二甲基氨基苯基)甲烷(即隐色结晶紫,LCV)。这些染料、颜料及光显色剂可以单独一种使用,也可两种以上混合使用。
示例性地,填充剂包括:二氧化硅、氧化铝、滑石、碳酸钙、硫酸钡等填充剂(不包含上述无机颜料)。填充剂可以单独一种使用,也可两种以上混合使用。
示例性地,增塑剂包括:邻苯二甲酸二丁酯、邻苯二甲酸二庚酯、邻苯二甲酸二辛酯、邻苯二甲酸二烯丙酯等邻苯二甲酸酯,三甘醇二乙酸酯、四乙二醇二乙酸酯等乙二醇酯,对甲苯磺酰胺、苯磺酰胺、正丁基苯磺酰胺等磺酰胺类,磷酸三苯酯、三甲基磷酸酯、三乙基磷酸酯、三苯基磷酸 酯、三甲苯基磷酸酯、三二甲苯基磷酸酯、甲苯基二苯基磷酸酯、三二甲苯基磷酸酯、2-萘基二苯基磷酸酯、甲苯基二2,6-二甲苯基磷酸酯、芳香族缩合磷酸酯、三(氯丙基)磷酸酯、三(三溴新戊基)磷酸酯、含卤缩合磷酸酯,二辛酸三甘醇酯,二(2-乙基己酸)三甘醇酯、二庚酸四甘醇酯、癸二酸二乙酯、辛二酸二丁酯、磷酸三(2-乙基乙酯)、Brij30[C 12H 25(OCH 2CH 2) 4OH]、和Brij35[C 12H 25(OCH 2CH 2) 20OH]等。增塑剂可以单独一种使用,也可两种以上混合使用。
示例性地,稳定剂包括:氢醌、1,4,4-三甲基-重氮二环(3.2.2)-壬-2-烯-2,3-二氧化物、1-苯基-3-吡唑烷酮、对甲氧基苯酚、烷基和芳基取代的氢醌和醌、叔丁基邻苯二酚、1,2,3-苯三酚、树脂酸铜、萘胺、β-萘酚、氯化亚铜、2,6-二叔丁基对甲酚、吩噻嗪、吡啶、硝基苯、二硝基苯、对甲苯醌和氯醌等。稳定剂可以单独一种使用,也可两种以上混合使用。
示例性地,涂布助剂包括:丙酮、甲醇、甲基醇、乙基醇、异丙基醇、甲基乙基酮、丙二醇单甲基醚乙酸酯、乳酸乙酯、环己酮、γ-丁内酯、二氯甲烷等。涂布助剂可以单独一种使用,也可两种以上混合使用。
示例性地,剥离促进剂包括:苯磺酸、甲苯磺酸、二甲苯磺酸、苯酚磺酸,甲基、丙基、庚基、辛基、癸基、十二烷基等烷基苯磺酸等。剥离促进剂可以单独一种使用,也可两种以上混合使用。
<干膜和湿膜应用>
本发明的感光性树脂组合物可以制备成干膜,即感光性树脂层叠体,并应用于印刷电路板、保护图案、导体图案、引框线、半导体封装的制造中,经过不同的工序在不同的基材上形成所需要的图案。
本发明的感光性树脂组合物也可以通过湿膜涂布机涂布至各对应制造步骤中对应的基材上,即作为湿膜应用于印刷电路板、保护图案、导体图案、引框线、半导体封装的制造中,经过不同的工序在不同的基材上形成所需要的图案。
干膜应用
本发明的干膜即感光性树脂层叠体,其包含:感光性树脂组合物形成的感光性树脂层以及支撑该感光性树脂层的支撑体。
通常,干膜的制作包括:将感光性树脂组合物涂布在支撑体上,干燥以形成感光性树脂层;任选地,根据需要贴合覆盖膜(保护层)。较佳地,干燥条件是60-100℃下干燥0.5-15min。感光性树脂层的厚度优选为5-95μm,再优选为10-50μm,更优选为15-30μm。若感光性树脂层的厚度小于5μm,则绝缘性不佳,而若感光性树脂层的厚度超过95μm,则解析度可能会较差。
作为支撑体,具体实例可以是各种类型的塑胶膜,如聚对苯二甲酸乙二醇酯、聚乙烯萘二酸酯、聚丙烯、聚乙烯、纤维素乙酸酯、聚甲基丙烯酸烷酯、甲基丙烯酸酯共聚物、聚氯乙烯、聚乙烯醇、聚碳酸酯、聚苯乙烯、玻璃纸、氯乙烯共聚物、聚酰胺、聚亚酰胺、乙烯氯-乙酸乙烯酯共聚物、聚四氟乙烯、聚三氟乙烯及其相似物。此外,亦可使用由两种或以上材料所组成的复合材料。优选地,使用的是具有极佳光穿透性的聚对苯二甲酸乙二醇酯。支撑体的厚度优选为5-150μm,更优选为10-50μm。
对感光性树脂组合物的涂布并无特殊限制,例如可使用喷涂法、滚筒式涂布法、旋转式涂布法、狭缝式涂布法、压缩涂布法、帘涂法、染料涂布法、线条涂布法、刮刀涂布法、辊涂法、刮涂法、喷涂法、浸涂法等常 规方法。
进一步地,本发明提供上述干膜在制造印刷电路板中的应用,包括:
(1)层叠工序:将感光性树脂层叠体层叠于覆铜层叠板或柔性基板上;
(2)曝光工序:对感光性树脂层叠体中的感光性树脂层进行曝光,以图像状照射活性光线使曝光部分进行光固化;
(3)显影工序:将感光性树脂层的未曝光部分用显影液去除,以形成保护图案;
(4)导体图案形成工序:对覆铜层叠板或柔性基板表面的未被保护图案覆盖的部分进行刻蚀或镀覆;
(5)剥离工序:将保护图案从该覆铜层叠板或柔性基板剥离。
进一步地,本发明提供上述干膜在制造保护图案中的应用,包括如上所述的层叠工序、曝光工序和显影工序,不同在于:层叠工序中感光性树脂层叠体可层叠于各种不同材质的基板上。
进一步地,本发明提供上述干膜在制造导体图案中的应用,包括如上所述的层叠工序、曝光工序、显影工序和导体图案形成工序,不同在于:层叠工序中感光性树脂层叠体层叠于金属板或金属覆膜绝缘板上。
进一步地,本发明提供上述干膜在制造引框线中的应用,包括如上所述的层叠工序、曝光工序、显影工序、和导体图案形成工序,不同在于:层叠工序中感光性树脂层叠体层叠于金属板上,导体图案形成工序中对未被保护图案覆盖的部分进行刻蚀。
进一步地,本发明提供上述干膜在制造半导体封装中的应用,包括如上所述的层叠工序、曝光工序、显影工序、和导体图案形成工序,不同在于:层叠工序中感光性树脂层叠体层叠于具有大规模集成电路的晶片上, 导体图案形成工序中对未被保护图案覆盖的部分进行镀覆。
湿膜应用
本发明的感光性树脂组合物可以湿膜方式直接涂布在基板上使用,以用于印刷电路板、保护图案、导体图案、引框线、半导体封装等的制造。
非限制性地,可利用辊涂、刮涂、喷涂、浸涂等常规方法将感光性树脂组合物涂布于基板上,干燥后形成感光性树脂层。
在基板上形成感光性树脂层后,后续工序如曝光工序、显影工序、导体图案形成工序和剥离工序,均可参照干膜应用的方式进行。
曝光工序中,曝光可以列举出掩模曝光法(布线图的负或正掩模图形将活性光线呈图像状地照射的方法)、投影曝光法,也可以采用通过激光直接成像曝光法、数字光学处理曝光法等直接描画曝光法将活性光线呈图像状地照射的方法。作为活性光线的光源,可使用公知的光源,如碳弧灯、汞蒸气弧灯、超高压示灯、高压示灯、氙灯、氩气激光等气体激光、YAG激光等固体激光、半导体激光和氮化镓系蓝紫色激光等有效放射出紫外线的光源。此外,还可以使用照相用泛光灯、日光灯等有效放射出可见光的光源。本发明的感光性树脂组合物对活性光线的光源种类没有特别限制,曝光量优选为10-1000mJ/cm 2
显影工序中,将感光性树脂层的未曝光部分用显影液去除。在感光性树脂层上存在支撑体的情况下,可利用自动剥离器等先除去支撑体,然后再使用碱性水溶液、水系显影液、有机溶剂等显影液除去未曝光部分。碱性水溶液的例子可以是0.1-5质量%的碳酸钠溶液、0.1-5质量%的碳酸钾溶液、0.1-5质量%的氢氧化钠溶液等,pH值优选为9-11。碱性水溶液中还可以加入表面活性剂、消泡剂、有机溶剂等。显影的方式可以是浸渍、喷 雾、刷洗等常规方式。
刻蚀处理中,以形成于基板上的抗蚀图案(即保护图案)作为掩模,将未被覆盖的电路形成用基板的导体层刻蚀除去,从而形成导体图案。刻蚀处理的方法可以根据待去除的导体层而选择。例如,作为蚀刻液可以列举出氧化铜溶液、氧化铁溶液、碱蚀刻溶液、过氧化氢系蚀刻液等。
镀敷处理中,以形成于基板上的抗蚀图案为掩模,在未被覆盖的电路形成用基板的绝缘板上镀覆铜和焊锡等。镀敷处理后,除去抗蚀图案从而形成导体图案。作为镀敷处理的方法,既可以是电镀处理,也可以是无电解镀覆处理,优选无电解镀覆处理。作为无电解镀覆处理,可以列举出:硫酸铜镀敷和焦磷酸铜镀敷等铜镀敷、高均匀焊锡(high-throw solder)镀敷等焊锡镀敷、瓦特浴(硫酸镍-氯化镍)镀敷和氨基磺酸镍镀敷等镍镀敷、硬质金镀敷和软质金镀敷等金镀敷。
抗蚀图案的除去可以通过比显影工序中使用的碱性水溶液碱性更强的水溶液来进行剥离。作为强碱性水溶液的实例,可使用例如1-10质量%的氢氧化钠水溶液。
附图说明
附图1是TCTM2经单晶衍射得到的结构构型谱图。
附图2是产物a1的高效液相色谱图。
附图3是TCTM1、TCTM2、TCTM3和TCTM4的感光度测试对比。
附图4是产物b1的高效液相色谱图。
附图5是产物b1经单晶衍射得到的结构构型谱图。
具体实施方式
以下通过实施例对本发明作进一步详细说明,但不应将其理解为对本发明保护范围的限制。
1.HABI类光引发剂的制备
1.1 HABI类光引发剂a1的制备
氮气保护下,向1L的四口烧瓶中投入30.6g 2,5-二(邻氯苯基)-4-(3,4-二甲氧基苯基)-咪唑(TAI)、1.0g 30%液碱、0.5g四丁基溴化铵和300g甲苯,加热搅拌,并在内温60℃时滴加25g次氯酸钠(11%的水溶液),滴加结束后保温反应,取样通过HPLC中控,至TAI小于1%,反应完全,结束保温。保温反应结束后,用100g纯水洗涤四次,然后用100g甲苯萃取一次水层,将有机层进行减压蒸馏。向蒸馏得到的物料中加入40g甲醇加热搅拌,再将由20g甲醇和200g纯水配置而成的溶液滴加入上述体系中,滴加结束后进行过滤、淋洗、烘干,得到26.5g产物a1。
Figure PCTCN2020091769-appb-000013
产物a1是由不对称的单咪唑自身偶合反应生成的,所以产物a1是由2-1’、2-3’、2’-1和2’-3这四种连接位构成的双咪唑化合物,其组成分别为:TCTM1:2,2’,5,5’-四(邻氯苯基)-4’,4-二(3,4-二甲氧基苯基)-3,2’-二咪唑;TCTM2:2,2’,5,5’-四(邻氯苯基)-4,4’-二(3,4-二甲氧基苯基)-1,2’-二咪唑;TCTM3:2,2’,5,5’-四(邻氯苯基)-4’,4-二(3,4-二甲氧基苯基)-2,1’-二咪唑; TCTM4:2,2’,5,5’-四(邻氯苯基)-4,4’-二(3,4-二甲氧基苯基)-2,3’-二咪唑。结构如下所示:
Figure PCTCN2020091769-appb-000014
使用LCMS确认产物a1的结构,质谱分析借助仪器附带软件,TCTM1、TCTM2、TCTM3和TCTM4这四个产物均含有847与848的分子碎片峰,而产物a1的分子量为846,与T+1和T+2吻合。这说明四个产物分子量相同,结构相仿。
为了精确验证产物的结构组成,通过单咪唑自身偶合、柱层析、色谱分离等手段,分别得到纯的TCTM1、TCTM2、TCTM3和TCTM4。附图1是TCTM2经单晶衍射得到的结构构型谱图。
使用高效液相色谱对产物a1进行分析,结果显示,TCTM1、TCTM2、TCTM3和TCTM4这四种连接位的产品峰总含量为96.6%。附图2是产物a1的 高效液相色谱图。
从产物a1的高效液相色谱图和空间结构的角度判断,TCTM4的空间位阻很大,故而很难生成,在产物a1中的含量为0.1%;TCTM3与TCTM1相比,TCTM3的空间位阻要小,故而TCTM3在产物a1中的含量为34.2%,TCTM1在产物a1中的含量为17.1%;TCTM2在这四种连接位中的位阻最小,而且单晶构型已经确定,TCTM2在产物a1中的含量为45.2%。
1.2感光度测试
参照表1-1中所示的配方,制得样品1-4的感光性树脂组合物以进行感光度测试,表中各物质用量单位均为g。
表1-1
Figure PCTCN2020091769-appb-000015
上述表1-1中,三羟甲基丙烷三丙烯酸酯(TMPTA)采购于天津市北联精细化学品开发有限公司,N-苯基甘氨酸(NPG)采购于深圳市鹏顺兴科 技有限公司,丙二醇甲醚醋酸酯(PGMEA)采购于济南汇丰达化工有限公司。
按上述配方进行样品配制,混合均匀后取1.0mg样品平铺于坩埚底部,后放入差示扫描量热仪(型号:DSC8000,厂家:PerkinElmer)的炉体中进行测试。峰值代表最大放热量(mw/mg),放热量越大,感光度越高;斜率代表固化速率,斜率越小,则感光度越高。
结果如附图3所示,感光度测试结果为:TCTM4>TCTM1>TCTM3>TCTM2。
2-1’、2-3’、2’-1和2’-3四种连接位的双咪唑化合物中,TCTM2位阻最小,在产物a1中含量最高,但是感光度却最低;TCTM1和TCTM3在产物a1中的含量居中,感光度也居中;TCTM4在产物a1中含量最少,但感光度却最高。原因在于:根据分子碰撞理论,位阻效应的存在使得分子与分子之间发生碰撞的几率减小,这就导致位阻小的化合物更容易生成。位阻最小的TCTM2在产物a1中含量最高,但是TCTM2本身结构稳定,需要吸收更多的热量才能够裂解,其键能大。反之,位阻最大的TCTM4在产物a1中含量最低,但是TCTM4本身结构不稳定,裂解需要吸收的热量少,其键能小。也就是说,位阻大的六芳基双咪唑化合物受光照后裂解需要的能量低,故而更容易裂解,表现出更高的感光度。
上述测试结果充分证实,HABI类光引发剂中含有的2-1’、2-3’、2’-1和2’-3四种连接位的双咪唑化合物彼此之间的配比对最终光引发剂的感光度具有很大影响。
1.3 HABI类光引发剂a2-a45的制备
参照a1的制备工艺制备a2-a45,使用的溶剂、氧化剂、相转移催化剂以及反应温度如下表1-2中所示,其它工艺参数条件保持不变。
表1-2
Figure PCTCN2020091769-appb-000016
Figure PCTCN2020091769-appb-000017
Figure PCTCN2020091769-appb-000018
通过HPLC对产物a1-a45进行分析,结果如下表1-3中所示。
表1-3
Figure PCTCN2020091769-appb-000019
Figure PCTCN2020091769-appb-000020
Figure PCTCN2020091769-appb-000021
1.4 HABI类光引发剂b1的制备
氮气保护下,向1L的四口烧瓶中投入20.7g 2-(邻氯苯基)-4,5-二苯基-咪唑(INC)、1.0g 30%液碱、0.5g四丁基溴化铵和300g甲苯,加热搅拌,并在内温60℃时滴加25g次氯酸钠(11%的水溶液),滴加结束后保温反应,取样通过HPLC中控,至INC小于1%,反应完全,结束保温。保温反应结束后,用100g纯水洗涤四次,然后用100g甲苯萃取一次水层,将有机层进行减压蒸馏至剩余约30g甲苯后,降温至25℃左右过滤、淋洗、烘干,得到18.8g产物b1。
Figure PCTCN2020091769-appb-000022
产物b1是由对称的单咪唑(INC)自身偶合反应生成的,所以偶合得到的2’-1和2’-3极性相似,液相难以进行分离;并且由于INC的结构对称性,由其自身偶合得到的产物结构中2’-1与2-1’结构相同,2’-3与2-3’的结构也相同。所以,产物b1是由2’-1和2’-3这两种连接位构成的双咪唑化合物,其组成分别为:BCIM1:2,2’-二(邻氯苯基)-4,4’,5,5’-四苯基-1,2’-二咪唑;BCIM2:2,2’-二(邻氯苯基)-4,4’,5,5’-四苯基-2’,3-二咪唑。结构如下所示:
Figure PCTCN2020091769-appb-000023
使用LCMS确认产物b1的结构,质谱分析借助仪器附带软件得到659与660的分子碎片峰,而产物b1的分子量为648,与T+1和T+2吻合。
使用高效液相色谱对产物b1进行分析,结果显示,产物b1在液相中只有一个峰,总含量为99.5%。附图4是产物b1的高效液相色谱图。
产物b1在液相中只有一个峰,但是通过单晶衍射得到两个构型(如附图5所示)。
1.5 HABI类光引发剂b2-b45的制备
参照b1的制备工艺制备b2-b45,使用的溶剂、氧化剂、相转移催化剂以及反应温度如表1-4中所示,其它工艺参数条件保持不变。
产物b1-b45中四种连接位的总含量也列于表1-4中。
表1-4
Figure PCTCN2020091769-appb-000024
Figure PCTCN2020091769-appb-000025
Figure PCTCN2020091769-appb-000026
1.6感光度测试
参照表1-5中所示的配方,制得感光性树脂组合物以进行感光度测试,表中各物质用量单位均为g。
表1-5
Figure PCTCN2020091769-appb-000027
上述表1-5中,双季戊四醇六丙烯酸酯(DPHA)采购于天津市北联精 细化学品开发有限公司,隐色结晶紫(LCV)采购于常州强力电子新材料股份有限公司,N-苯基甘氨酸(NPG)采购于深圳市鹏顺兴科技有限公司,丙二醇甲醚醋酸酯(PGMEA)采购于济南汇丰达化工有限公司。
将感光性树脂组合物充分搅拌,使用棒涂布器将组合物均匀涂布于作为支撑体的25μm厚的聚对苯二甲酸乙二醇酯薄膜的表面上。在烘箱中95℃干燥5min,形成感光性树脂层。通过Stouffer21阶曝光尺进行曝光,带有高压水银灯的曝光机(オ一ク社制,商品名EXM-1201),以60mJ/cm 2的照射能量曝光感光层。曝光后,用最少显影时间的2倍的时间喷射显影30℃的1质量%碳酸钠水溶液,除去未曝光部分,进行显影。然后,通过测定形成的光固化膜的阶段曝光尺的格数,来评价感光性树脂组合物的光敏度。光敏度用阶段曝光尺的格数表示,该阶段曝光尺的格数越高,表示光敏度高,结果如表1-6所示。
表1-6
样品 a1 a2 a3 a4 a6 a7 a8 a9 a10 a11
光敏度(格) 10 10 10 10 7.5 8 7.5 10 10 10
样品 a12 a13 a15 a16 a17 a18 a19 a21 a24 a25
光敏度(格) 10 9 10 10 10 10 10 7.5 10 10
样品 a26 a27 a28 a29 a30 a31 a32 a33 a34 a36
光敏度(格) 10 10 10 8 10 10 10 10 10 7.5
样品 a39 a40 a41 a42 a43 a44 a45      
光敏度(格) 10 10 10 10 10 8 10      
样品 b1 b2 b3 b4 b6 b7 b8 b9 b10 b11
光敏度(格) 5 5 5 5 3 4 3 5 5 5
样品 b12 b13 b15 b16 b17 b18 b19 b21 b24 b25
光敏度(格) 5 4 5 5 5 5 5 3 5 5
样品 b26 b27 b28 b29 b30 b31 b32 b33 b34 b36
光敏度(格) 5 5 5 4 5 5 5 5 5 3
样品 b39 b40 b41 b42 b43 b44 b45      
光敏度(格) 5 5 5 5 5 4 5      
产物b1-b45的感光度测试结果与产物a1-a45的感光度测试结果趋势基本一致。
基于上述实验结果,0-70℃时,在相对介电常数为0-5的溶剂中,通过标准电极电位为0.3-0.9V的氧化剂氧化得到的六芳基双咪唑类化合物,2-1’、2-3’、2’-1和2’-3这四种连接位构成的双咪唑化合物的组成稳定,2-1连接位与2-3连接位的比值在1.5:1-2:1之间,且对光引发剂的感光度的影响较小。反之,会存在纯度偏低、感度偏低等问题,从而影响HABI类光引发剂在感光性树脂组合物中的应用。
2.感光性树脂组合物的制备
参照表2-1和表2-2中所示配方,将各组分混合均匀制得感光性树脂组合物。如无特别说明,表2-1和表2-2中所示份数均为质量份。
表2-1
Figure PCTCN2020091769-appb-000028
Figure PCTCN2020091769-appb-000029
表2-2
Figure PCTCN2020091769-appb-000030
Figure PCTCN2020091769-appb-000031
表2-1和表2-2中各组分代号表示的含义如表2-3中所示。
表2-3
Figure PCTCN2020091769-appb-000032
碱可溶性聚合物B的制备:在氮气氛围下,向配有搅拌器、回流冷却器、温度计和滴液漏斗的烧瓶中,加入甲基溶纤剂和甲苯(质量比3:2)的混合 溶剂500g,搅拌加热至80℃后,将甲基丙烯酸100g、甲基丙烯酸乙酯200g、丙烯酸乙酯100g、苯乙烯100g和偶氮双异丁腈0.8g混合制得的溶液慢慢滴加至烧瓶中,滴加时间为4小时,滴加结束后继续反应2小时。接着,向烧瓶内滴加溶解有1.2g偶氮双异丁腈的混合溶剂(组成同上)100g,滴加时间为10分钟,滴加结束后,在80℃下进一步反应3小时,再升温至90℃继续反应2小时。反应结束后,过滤得到碱可溶性聚合物B,酸值为196mgKOH/g,重均分子量约为80000。
3.性能评价
3.1评价方式
<干膜的制作>
将感光性树脂组合物充分搅拌,使用棒涂器将其均匀涂布在作为支撑体的25μm厚的聚对苯二甲酸乙二醇酯薄膜的表面上,在干燥机中95℃干燥5分钟,形成厚度为40μm的感光性树脂层,然后在感光性树脂层的没有层压聚对苯二甲酸乙二醇酯薄膜的表面贴合作为保护层的15μm厚的聚乙烯薄膜,获得干膜。
<基板表面整平>
作为基板,使用层压有35μm厚的轧制铜箔的1.2mm厚的覆铜层压板,对表面进行湿式抛光辊研磨[3M公司制造的Scotch-Brite(注册商标)HD#600,通过两次]。
<层压>
将聚乙烯薄膜保护层从干膜上剥离,然后使用热辊层压机(旭化成制造的AL-70),以105℃的辊温度将其层压于预热至60℃的覆铜层压板上。 气体压力为0.35MPa,层压速度为1.5m/min。
<曝光>
将掩膜放置在作为支撑体的聚对苯二甲酸乙二醇酯薄膜上,通过超高压汞灯(ORCMANUFACTURINGCO.,LTD.制造的HMW-201KB),以60mJ/cm 2的照射能量曝光感光层。
<显影>
剥离聚对苯二甲酸乙二醇酯薄膜,使用碱显影机(FujiKikoCo.,Ltd.制造的干膜用显影机),将30℃的1质量%的Na 2CO 3水溶液喷雾在感光性树脂层上,用2倍于最小显影时间的时间溶解除去感光性树脂层的未曝光部分。以未曝光部分的感光性树脂层完全溶解所需的最短时间为最小显影时间。
3.2评价内容
(1)储存稳定性
将上述实施例和比较例的感光性树脂组合物在20℃的暗处储存2周,测定2周后的增粘率。评价基准如下所述:
○:增粘率0-100%;
△:增粘率100-200%;
×:增粘率200%以上或凝胶化。
(2)灵敏度
将由上述实施例和比较例的感光性树脂组合物制得的干膜在23℃、50%湿度的环境下,在暗处储存5小时,然后将覆铜层压板上层压的感光性树脂层通过Stouffer21阶曝光尺进行曝光,显影。通过测定在覆铜叠层板上形成的光固化膜的阶段曝光尺的格数,来评价感光性树脂组合物的灵敏度。 灵敏度用阶段曝光尺的格数表示,该阶段曝光尺的格数越高,表示灵敏度高。
(3)保持时间灵敏度
将由上述实施例和比较例的感光性树脂组合物制得的干膜在23℃、50%湿度的环境下,在暗处储存2周,然后通过与上述灵敏度试验同样的方法评价灵敏度。
(4)分辨率
利用具有Line/Space=10:10-150:150(单位:μm)的布线图案的光掩模进行曝光显影后,测量干膜的分辨率。分辨率是在曝光后显影形成的抗蚀图案中,未曝光部分被清除干净后的图案的最小值。评价基准如下所述:
○:分辨率值在30μm以下;
◎:分辨率值在30μm-50μm,不包括端值;
×:分辨率值在50μm以上。
(5)保持时间分辨率
将干膜在23℃、50%湿度的环境下,在暗处储存2周,然后通过与上述分辨率试验同样的方法评价分辨率。
3.3评价结果
评价结果如表3-1中所示。
表3-1
Figure PCTCN2020091769-appb-000033
Figure PCTCN2020091769-appb-000034
Figure PCTCN2020091769-appb-000035
本发明的HABI类光引发剂应用于感光性树脂组合物时,组合物及其干膜具有优异的储存稳定性,即使长时间储存后也不会有灵敏度和分辨率下降的趋势。该感光性树脂组合物能够以干膜和湿膜的方式在制造印刷电路板、保护图案、导体图案、引框线、半导体封装等方面得到广泛应用。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (20)

  1. 能够提升体系稳定性的HABI类光引发剂,具有如通式(I)所示结构,其中含有2-1’、2-3’、2’-1和2’-3四种连接位的双咪唑化合物,该四种连接位的双咪唑化合物的总质量百分含量为92%以上,且2-1’和2’-1两种连接位的含量之和与2-3’和2’-3两种连接位的含量之和的比值在1.5:1-2:1之间;
    Figure PCTCN2020091769-appb-100001
    通式(I)中,Ar 1、Ar 2、Ar 3、Ar 4、Ar 5、Ar 6可以相同也可以不同,各自独立地表示取代或未取代的芳基。
  2. 根据权利要求1所述的HABI类光引发剂,其特征在于:通式(I)中,所述芳基是苯基。
  3. 根据权利要求1或2所述的HABI类光引发剂,其特征在于:芳基上的取代基为卤素、硝基、氰基、胺基、羟基、C 1-C 20的烷基或链烯基、C 1-C 8的烷氧基,各独立变量中的亚甲基可以任选地被氧、硫、亚胺基所取代。
  4. 根据权利要求3所述的HABI类光引发剂,其特征在于:芳基上的取代基为氟、氯、溴、硝基、氰基、胺基、羟基、C 1-C 10的烷基或链烯基、C 1-C 5的烷氧基,各独立变量中的亚甲基可以任选地被氧、硫、亚胺基所取代。
  5. 根据权利要求3所述的HABI类光引发剂,其特征在于:Ar 1、Ar 2、Ar 3、Ar 4、Ar 5、Ar 6中至少一个是含有卤素取代基的芳基;优选地,卤素取代基为氯。
  6. 权利要求1-5中任一项所述的HABI类光引发剂的制备方法,包括下 列步骤:
    (1)反应步骤:氮气保护下,三芳基咪唑类化合物在氧化剂、溶剂和相转移催化剂的存在下发生氧化偶合,通过HPLC中控至反应完全;
    (2)精制步骤:用纯水洗涤除去无机盐,经过滤、浓缩后得到粗品,再经过重结晶、烘干得到所需产物。
  7. 根据权利要求6所述的制备方法,其特征在于:所述氧化剂的标准电极电位(E 0)在0.3-0.9V之间,优选次氯酸钠、次氯酸钾、次溴酸钠、次溴酸钾、铁氰化钠、铁氰化钾中的一种或两种以上的组合。
  8. 根据权利要求6所述的制备方法,其特征在于:所述溶剂的相对介电常数(ε r)为0-5,优选苯、甲苯、二甲苯、三甲苯、苯甲醚、苯乙醚,进一步优选甲苯。
  9. 根据权利要求6所述的制备方法,其特征在于:所述相转移催化剂选自季铵盐和环状冠醚类,优选苄基三乙基氯化铵(TEBA)、四丁基溴化铵(TBAB)、四丁基氯化铵、四丁基硫酸氢铵、三辛基甲基氯化铵、十二烷基三甲基氯化铵、十四烷基三甲基氯化铵、18冠6、15冠5、环糊精中的一种或两种以上的组合。
  10. 根据权利要求6所述的制备方法,其特征在于:反应温度为0-70℃,优选为20-70℃。
  11. 一种感光性树脂组合物,其特征在于,包含下列组分:
    (A)权利要求1-5中任一项所述的HABI类光引发剂;
    (B)碱可溶性聚合物;
    (C)具有烯属不饱和双键的化合物;
    (D)供氢体;
    (E)其它任选的助剂。
  12. 根据权利要求11所述的感光性树脂组合物,其特征在于:所述碱可溶性聚合物选自(甲基)丙烯酸系聚合物、苯乙烯系聚合物、环氧系聚合物、脂肪族聚氨酯(甲基)丙烯酸酯聚合物、芳香族聚氨酯(甲基)丙烯酸酯聚合物、酰胺系树脂、酰胺环氧系树脂、醇酸系树脂以及酚醛系树脂。
  13. 根据权利要求12所述的感光性树脂组合物,其特征在于:所述碱可溶性聚合物是由(甲基)丙烯酸酯、乙烯性不饱和羧酸和其它可共聚单体共聚而成的(甲基)丙烯酸酯系聚合物。
  14. 根据权利要求11-13中任一项所述的感光性树脂组合物,其特征在于:碱可溶性聚合物的酸值为50-300mgKOH/g,优选为50-250mgKOH/g,进一步优选为70-250mg KOH/g,特别优选为100-250mgKOH/g。
  15. 根据权利要求11所述的感光性树脂组合物,其特征在于:所述具有烯属不饱和双键的化合物是在分子内具有至少一个乙烯性不饱和键的光聚合性化合物。
  16. 根据权利要求15所述的感光性树脂组合物,其特征在于:所述具有烯属不饱和双键的化合物选自双酚A类(甲基)丙烯酸酯化合物和分子内具有氨酯键的(甲基)丙烯酸酯化合物。
  17. 根据权利要求11所述的感光性树脂组合物,其特征在于:所述供氢体选自胺类化合物、羧酸类化合物、含有巯基的有机硫化合物和醇类化合物中的一种或两种以上的组合。
  18. 根据权利要求11所述的感光性树脂组合物,其特征在于:所述助剂包括其它光引发剂和/或增感剂、有机溶剂、染料、颜料、光显色剂、填充剂、增塑剂、稳定剂、涂布助剂、剥离促进剂中的至少一种。
  19. 感光性树脂层叠体,包含:权利要求11-18中任一项所述的感光性树脂组合物形成的感光性树脂层以及支撑该感光性树脂层的支撑体。
  20. 权利要求11-18中任一项所述的感光性树脂组合物或权利要求19所述的感光性树脂层叠体在制造印刷电路板、保护图案、导体图案、引框线、半导体封装中的应用。
PCT/CN2020/091769 2019-05-23 2020-05-22 能够提升体系稳定性的habi类光引发剂及其应用 WO2020233700A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021569578A JP7311920B2 (ja) 2019-05-23 2020-05-22 システム安定性を向上できるhabi類光開始剤及びその応用
KR1020217042080A KR20220017423A (ko) 2019-05-23 2020-05-22 시스템 안정성을 향상시킬 수 있는 habi계 광개시제 및 그 응용

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910432191.1 2019-05-23
CN201910432191.1A CN112062721B (zh) 2019-05-23 2019-05-23 能够提升体系稳定性的habi类光引发剂及其应用

Publications (1)

Publication Number Publication Date
WO2020233700A1 true WO2020233700A1 (zh) 2020-11-26

Family

ID=73458369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091769 WO2020233700A1 (zh) 2019-05-23 2020-05-22 能够提升体系稳定性的habi类光引发剂及其应用

Country Status (4)

Country Link
JP (1) JP7311920B2 (zh)
KR (1) KR20220017423A (zh)
CN (1) CN112062721B (zh)
WO (1) WO2020233700A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115128899A (zh) * 2021-03-26 2022-09-30 常州正洁智造科技有限公司 一种具有提升的体系色相稳定性的感光性树脂组合物
CN113121726A (zh) * 2021-04-20 2021-07-16 优缔贸易(上海)有限公司 含有双咪唑类光引发剂的组合物及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866183A (en) * 1986-06-18 1989-09-12 Basf Aktiengesellschaft Preparation of hexaarylbisimidazoles
CN1705646A (zh) * 2002-10-15 2005-12-07 昭和电工株式会社 六芳基二咪唑化合物和含有该化合物的光聚合引发剂组合物
JP2007332045A (ja) * 2006-06-12 2007-12-27 Showa Denko Kk ヘキサアリールビイミダゾール化合物および該化合物を含む光重合性組成物
CN101654489A (zh) * 2009-08-20 2010-02-24 池州群兴化工有限公司 新型六芳基二咪唑结构光引发剂及聚酰亚胺光敏组合物
CN102675210A (zh) * 2012-05-23 2012-09-19 湖南和诚医药化学品有限公司 一种双咪唑光引发剂的制备方法
CN107540855A (zh) * 2017-08-30 2018-01-05 华中科技大学 一种光调控凝胶‑溶胶转变的智能凝胶及其应用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1072447A (ja) * 1996-06-24 1998-03-17 Nippon Kayaku Co Ltd ヘキサアリールビスイミダゾール類の製造方法
JPH1036354A (ja) * 1996-07-19 1998-02-10 Nippon Kayaku Co Ltd ヘキサアリールビスイミダゾール類の製造方法
JP3867177B2 (ja) * 1997-04-30 2007-01-10 Jsr株式会社 カラーフィルタ用感放射線性組成物
JP4675693B2 (ja) * 2005-06-23 2011-04-27 東京応化工業株式会社 感光性樹脂組成物
CN101302257A (zh) * 2008-06-03 2008-11-12 江南大学 一种紫外光敏复合引发体系及其应用
JP2010122381A (ja) * 2008-11-18 2010-06-03 Hitachi Chem Co Ltd 黒色感光性樹脂組成物、ブラックマトリクスの製造方法、カラーフィルタの製造方法及びカラーフィルタ
JP2015087429A (ja) * 2013-10-28 2015-05-07 日立化成株式会社 感光性樹脂組成物、感光性エレメント及びレジストパターンの形成方法
JP6755109B2 (ja) * 2016-03-29 2020-09-16 旭化成株式会社 感光性樹脂組成物、感光性樹脂積層体、レジストパターン形成方法及び導体パターン製造方法
CN111258181B (zh) * 2018-11-30 2024-02-27 常州正洁智造科技有限公司 六芳基双咪唑混合光引发剂
CN111258180B (zh) * 2018-11-30 2024-03-08 常州正洁智造科技有限公司 六芳基双咪唑类混合光引发剂及应用
CN111752091B (zh) * 2019-03-29 2022-09-06 常州正洁智造科技有限公司 Habi类混合光引发剂在uvled光固化中的应用
CN111752096B (zh) * 2019-03-29 2022-10-14 常州正洁智造科技有限公司 用于彩色滤光片的感光性树脂组合物及彩色滤光片
CN111747897A (zh) * 2019-03-29 2020-10-09 常州格林感光新材料有限公司 一种六芳基双咪唑类光引发剂及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866183A (en) * 1986-06-18 1989-09-12 Basf Aktiengesellschaft Preparation of hexaarylbisimidazoles
CN1705646A (zh) * 2002-10-15 2005-12-07 昭和电工株式会社 六芳基二咪唑化合物和含有该化合物的光聚合引发剂组合物
JP2007332045A (ja) * 2006-06-12 2007-12-27 Showa Denko Kk ヘキサアリールビイミダゾール化合物および該化合物を含む光重合性組成物
CN101654489A (zh) * 2009-08-20 2010-02-24 池州群兴化工有限公司 新型六芳基二咪唑结构光引发剂及聚酰亚胺光敏组合物
CN102675210A (zh) * 2012-05-23 2012-09-19 湖南和诚医药化学品有限公司 一种双咪唑光引发剂的制备方法
CN107540855A (zh) * 2017-08-30 2018-01-05 华中科技大学 一种光调控凝胶‑溶胶转变的智能凝胶及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ATSUSHI KIMOTO ET AL.: "Formation of hexaarylbiimidazole heterodimers via the cross recombination of two lophyl radicals", NEW J. CHEM., vol. 33, no. 6, 17 March 2009 (2009-03-17), pages 1339 - 1342, XP055755738 *

Also Published As

Publication number Publication date
CN112062721B (zh) 2023-06-30
CN112062721A (zh) 2020-12-11
JP2022533454A (ja) 2022-07-22
JP7311920B2 (ja) 2023-07-20
KR20220017423A (ko) 2022-02-11

Similar Documents

Publication Publication Date Title
KR102542920B1 (ko) 헥사아릴비스이미다졸계 혼합 광개시제 및 응용
KR102542061B1 (ko) 헥사아릴비스이미다졸 혼합 광개시제
WO2020200019A1 (zh) Habi类混合光引发剂在uvled光固化中的应用
WO2020200020A1 (zh) 一种六芳基双咪唑类光引发剂及其应用
WO2020233700A1 (zh) 能够提升体系稳定性的habi类光引发剂及其应用
JP7465998B2 (ja) エトキシ/プロポキシ変性ピラゾリン有機物、その使用、光硬化性組成物及びフォトレジスト
JP7332807B2 (ja) Eo/po変性9-フェニルアクリジン類光増感剤及びその使用
WO2022199625A1 (zh) 一种具有提升的体系色相稳定性的感光性树脂组合物
TWI838715B (zh) 具有提升的體系色相穩定性的感光性樹脂組合物、包含其的感光性樹脂層疊體及其用途
TWI810605B (zh) 一種吡唑啉類化合物、感光性樹脂組合物及圖形化方法
CN116410135A (zh) 萘乙烯基吡啶类化合物、感光性树脂组合物、其应用及图形化方法
CN114326309A (zh) 一种感光性树脂组合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809722

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021569578

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217042080

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20809722

Country of ref document: EP

Kind code of ref document: A1