WO2020228800A1 - 电子烟加热器及陶瓷发热体的加热控制方法和装置 - Google Patents

电子烟加热器及陶瓷发热体的加热控制方法和装置 Download PDF

Info

Publication number
WO2020228800A1
WO2020228800A1 PCT/CN2020/090391 CN2020090391W WO2020228800A1 WO 2020228800 A1 WO2020228800 A1 WO 2020228800A1 CN 2020090391 W CN2020090391 W CN 2020090391W WO 2020228800 A1 WO2020228800 A1 WO 2020228800A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
heating circuit
circuit
operating
ceramic
Prior art date
Application number
PCT/CN2020/090391
Other languages
English (en)
French (fr)
Inventor
朱肖华
熊兆荣
付增学
于祥一
刘茂琦
Original Assignee
厦门蜂涛陶瓷有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门蜂涛陶瓷有限公司 filed Critical 厦门蜂涛陶瓷有限公司
Priority to KR1020217039776A priority Critical patent/KR20220008849A/ko
Priority to JP2021567010A priority patent/JP7289467B2/ja
Priority to EP20805957.6A priority patent/EP3970535B1/en
Publication of WO2020228800A1 publication Critical patent/WO2020228800A1/zh
Priority to US17/521,870 priority patent/US11969015B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/17Filters specially adapted for simulated smoking devices
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0019Circuit arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/46Heating elements having the shape of rods or tubes non-flexible heating conductor mounted on insulating base
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material
    • H05B2203/024Heaters using beehive flow through structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to the technical field of electronic cigarettes, in particular to a heating control method for a ceramic heating element in a non-contact electronic cigarette heater, a heating control device for a ceramic heating element in a non-contact electronic cigarette heater, and a Non-contact electronic cigarette heater of heating control device.
  • Cigarettes, cigars and other smoking products produce smoke by burning tobacco during use, and the smoke produced by tobacco burning contains many harmful substances, such as tar. Long-term inhalation of these harmful substances will cause great harm to the human body. With the advancement of science and technology and people's continuous pursuit of a healthy life, a substitute for cigarettes, namely electronic cigarettes, has emerged. Among them, a typical electronic cigarette solution is to release effective substances in smoking products, such as nicotine, through heating without burning.
  • Heat-not-burn electronic cigarettes mainly use the working principle of low-temperature heating to heat the smoking product to about 300°C, thereby baking out the effective ingredients such as nicotine in the smoking product. Because the burning temperature is not reached, the smoking product Harmful substances such as tar are greatly reduced.
  • heat-not-burn electronic cigarettes generally use a contact heating scheme to bake smoking products, for example, a sword-shaped, needle-shaped heating element is inserted into the smoking product for heating.
  • the contact heating scheme has the defect of uneven heating, that is, the temperature of the part directly in contact with the heating element is higher, and the part far away from the heating element has a rapid temperature decrease. Therefore, only the part of the tobacco close to the heating element can be baked completely. This results in that the shredded tobacco in the smoking product cannot be completely roasted, which not only causes a large waste of shredded tobacco, but also insufficient smoke volume. If the temperature of the heating element is increased to improve the baking efficiency, it will easily cause the tobacco to burn near the heating element, which will not only affect the taste, but even cause a large increase in harmful components and affect health.
  • the contact heating scheme has the defect of uneven heating, which will inevitably lead to insufficient baking of the smoking products, which will not only cause a large waste of tobacco, but also insufficient smoke.
  • the inventor found through a lot of research and experiments that the process of smoking is a process of air flow. If the temperature of the air flowing into the smoking product is relatively high, the hot air can directly play the role of baking the smoking product. And since the hot air can penetrate all the tobacco of the roasted smoking product with the suction process more completely and evenly, the problem of uneven heating will be effectively solved. Therefore, the heating scheme is achieved by heating the air and then using the hot air flow during the suction process to bake the smoking products, and the overall heating effect will be better.
  • the present invention aims to solve one of the technical problems in the above technology at least to a certain extent.
  • the first object of the present invention is to provide a heating control method for the ceramic heating element in a non-contact electronic cigarette heater.
  • the effect of heating air for smoking cigarettes can be achieved.
  • the second object of the present invention is to provide a heating control device for the ceramic heating element in the non-contact electronic cigarette heater.
  • the third objective of the present invention is to provide a non-contact electronic cigarette heater.
  • an embodiment of the first aspect of the present invention proposes a heating control method for a ceramic heating element in a non-contact electronic cigarette heater, wherein the ceramic heating element includes a heating body and a heating circuit, and the heating body Is cylindrical, and the heating body is provided with a porous channel, and the heating circuit is arranged on the heating body to heat the air passing through the porous channel.
  • the heating control method includes the following steps: When the non-contact electronic cigarette heater is turned on, the heating circuit is controlled to use the first working voltage for heating operation, and the working time of the heating circuit is counted; the working current of the heating circuit is detected; according to the heating circuit The operating time of the heating circuit and the operating current of the heating circuit perform step-down control of the operating voltage of the heating circuit.
  • the ceramic heating element in the non-contact electronic cigarette heater of the embodiment of the present invention since the heating body adopts a porous honeycomb structure, the ceramic heating element can provide sufficient heat capacity, so that the airflow can generate heat during the simulated smoking process.
  • the temperature effect produced by the body is very small, and the heating circuit has a clear thermal effect. Therefore, when the non-contact electronic cigarette heater is turned on, the heating circuit is first controlled to use the first working voltage for heating, and then according to the heating circuit
  • the working time of the heating circuit and the working current of the heating circuit control the working voltage of the heating circuit. That is, by controlling the working voltage of the heating circuit, the effect of heating the air for smoking cigarettes can be achieved, without the need for dynamic power compensation based on the airflow sensor. There is no need to detect and control the temperature based on the temperature sensor, which not only simplifies the complexity of the control system, but also has a better control response effect.
  • the heating control method of the ceramic heating element in the non-contact electronic cigarette heater proposed according to the foregoing embodiment of the present invention may also have the following additional technical features:
  • the operating voltage of the heating circuit is also adaptively adjusted according to the rate of change of the operating current of the heating circuit.
  • the operating voltage of the heating circuit is adaptively adjusted according to the rate of change of the operating current of the heating circuit, so that the amount of smoke required by the smoking habits of different people can be met, and the user experience can be improved.
  • the adaptive adjustment of the operating voltage of the heating circuit according to the operating current change rate of the heating circuit includes: determining whether the operating current change rate of the heating circuit is within a preset current change rate interval; if If the operating current change rate of the heating circuit is greater than the upper limit of the current change rate interval, the operating voltage of the heating circuit is controlled to decrease; if the operating current change rate of the heating circuit is less than the current change rate interval The lower limit value is controlled to increase the operating voltage of the heating circuit; if the operating current change rate of the heating circuit is within the current change rate interval, the operating voltage of the heating circuit is controlled to remain unchanged.
  • performing step-down control of the operating voltage of the heating circuit according to the operating time of the heating circuit and the operating current of the heating circuit includes: determining whether the operating current of the heating circuit reaches a preset current threshold; if When the operating current of the heating circuit reaches the preset current threshold, the corresponding step-down curve is obtained according to the operating time of the heating circuit, and the operating voltage of the heating circuit is stepped down according to the obtained step-down curve .
  • a multi-stage step-down curve is used to measure the operating voltage of the heating circuit. Performing pressure reduction control, wherein the pressure reduction rate corresponding to the multi-stage pressure reduction curve gradually decreases.
  • the ceramic heating element in the non-contact electronic cigarette heater of the embodiment of the present invention since the heating body adopts a porous honeycomb structure, the ceramic heating element can provide sufficient heat capacity, so that the airflow can generate heat during the simulated smoking process.
  • the temperature effect generated by the body is very small, and the heating circuit has a clear thermal effect. Therefore, when the non-contact electronic cigarette heater is turned on, the voltage control module first controls the heating circuit to use the first working voltage for heating, and then According to the working time of the heating circuit and the working current of the heating circuit, the working voltage of the heating circuit is stepped down and controlled.
  • the effect of heating the air for smoking cigarettes can be achieved, without the need for dynamics based on airflow sensors
  • Power compensation does not need to detect and control the temperature based on the temperature sensor, which not only simplifies the complexity of the control system, but also has a better control response effect.
  • the heating control device for the ceramic heating element in the non-contact electronic cigarette heater proposed according to the foregoing embodiment of the present invention may also have the following additional technical features:
  • the voltage control module is further configured to adaptively adjust the operating voltage of the heating circuit according to the rate of change of the operating current of the heating circuit after the voltage reduction is completed.
  • the operating voltage of the heating circuit is adaptively adjusted according to the rate of change of the operating current of the heating circuit, so that the amount of smoke required by the smoking habits of different people can be met, and the user experience can be improved.
  • the voltage control module is further configured to determine whether the operating current change rate of the heating circuit is within a preset current change rate interval; if the operating current change rate of the heating circuit is greater than the current change rate interval Control the operating voltage of the heating circuit to decrease; if the operating current change rate of the heating circuit is less than the lower limit of the current change rate interval, control the operating voltage of the heating circuit to increase; If the operating current change rate of the heating circuit is within the current change rate interval, the operating voltage of the heating circuit is controlled to remain unchanged.
  • the voltage control module is also used to determine whether the operating current of the heating circuit reaches a preset current threshold; if the operating current of the heating circuit reaches the preset current threshold, according to the The corresponding step-down curve is acquired during the working time, and the operating voltage of the heating circuit is stepped down according to the obtained step-down curve.
  • the working time of the heating circuit is divided into a plurality of time periods, and each time period corresponds to a step-down curve, wherein the voltage control module obtains the corresponding step-down voltage according to the working time of the heating circuit.
  • the time period of the working time of the heating circuit is judged, and the corresponding step-down curve is obtained according to the time period of the working time of the heating circuit.
  • the voltage control module is further configured to: when the operating current of the heating circuit reaches the preset current threshold, if the operating time of the heating circuit is greater than or equal to the preset time threshold, use multiple steps of step-down The curve performs step-down control on the operating voltage of the heating circuit, wherein the step-down rate corresponding to the multi-stage step-down curve is successively reduced.
  • the heating circuit is printed on the outer surface of the heating body by a thick film circuit.
  • a non-contact electronic cigarette heater provided by an embodiment of the third aspect of the present invention includes the heating control device of the ceramic heating element in the non-contact electronic cigarette heater.
  • the effect of heating the air for smoking cigarettes can be achieved by controlling the operating voltage of the heating circuit, without the need for dynamic power compensation based on the airflow sensor , There is no need to detect and control the temperature based on the temperature sensor, which not only simplifies the complexity of the control system, but also has a better control response effect.
  • the embodiment of the present invention also provides a non-contact electronic cigarette heater, including a ceramic heating element, the ceramic heating element includes a heating body and a heating circuit, the heating body is cylindrical, and the heating body is provided with a porous Channel, the heating circuit is arranged on the heating body to heat the air passing through the porous channel, the non-contact electronic cigarette heater also includes a memory, a processor, and stored in the memory and can be processed When the processor executes the heating control program, the processor realizes the heating control method of the ceramic heating element in the non-contact electronic cigarette heater.
  • the heating component and the heat recovery device are both high-purity alumina ceramics, and their density is not less than 3.86 g/cm3.
  • first honeycomb-shaped porous channel and the second honeycomb-shaped porous channel are uniformly arranged square holes or other polygonal holes, and the pore size ranges from 0.1 to 2 mm, and the minimum distance between two adjacent holes is 0.1 to 0.5. mm.
  • the non-contact air heating type electronic cigarette heater of the embodiment of the present invention heats the air through the heating component, so that the heated flowing air uniformly roasts the tobacco, so that the amount of smoke can be increased.
  • the heating components and the heat recovery device are made of high-purity alumina ceramics.
  • the high-purity alumina ceramics have high density, and there are almost no pores in the microstructure. The pollutants in the fluid cannot penetrate into them, and they cannot leave pollution and Peculiar smell, and because it is heated by air, it does not come into contact with the cartridge to ensure that the device is not contaminated.
  • Fig. 1 is a schematic structural diagram of a non-contact air heating type electronic cigarette heater according to an embodiment of the present invention
  • Fig. 2 is a schematic diagram of a ceramic heating element according to an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of a deflector according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram of a heat recovery device according to an embodiment of the present invention.
  • Figure 5 is a schematic structural view of a smoking article carrying component according to an embodiment of the present invention.
  • Figure 6 is a schematic structural diagram of a smoking article carrying component according to another embodiment of the present invention.
  • Fig. 7 is a schematic structural diagram of a smoking article carrying component according to another embodiment of the present invention.
  • FIG. 8 is a flowchart of a heating control method of a ceramic heating element in a non-contact electronic cigarette heater according to an embodiment of the present invention.
  • Fig. 9 is a flowchart of a heating control method of a ceramic heating element in a non-contact electronic cigarette heater according to an embodiment of the present invention.
  • Fig. 10 is a block schematic diagram of a heating control device for a ceramic heating element in a non-contact electronic cigarette heater according to an embodiment of the present invention.
  • the inventor of the present application has discovered through a lot of research and experiments that the heating scheme is achieved by heating the air and then using the flow of hot air during the suction process to bake the smoking products, and the overall heating effect will be better. .
  • the air heating scheme it is first necessary to select a suitable heating element to heat the air.
  • room temperature air is required to enter the heating element, and the air temperature after the heating element reaches 300°C or more;
  • the general suction habit needs to be considered, that is, the temperature rise process needs to support about 20ml per second, and each puff is about 3 seconds, and the heating element needs a total heating efficiency of about 60ml of air.
  • the inventors have obtained through a large number of experiments that when the heating wire is used to heat the air, a higher temperature of the heating wire is required to heat the air by the heating wire only, and only when the temperature of the heating wire reaches 600°C or higher. , In order to heat the flowing air to above 300°C, and once the airflow passes through the heating wire will quickly cool down, so that the single-port suction action will make the temperature of the heating wire drop by 200-300°C. For this reason, it is necessary to compensate the power of the heating wire during suction, otherwise it is difficult to achieve the effect of heating the air required for smoking cigarettes.
  • the temperature of the heating wire when the temperature of the heating wire is increased to heat the flowing air to above 300°C, the temperature of the heating wire is increased and the direct contact with the air may cause the metal ions separated by the heating wire to be mixed into the suction airflow. Enter the human body and endanger human health.
  • the inventor of the present application has concluded through a lot of research that when the air heating solution is used to bake smoking products, the air heating element needs to have a larger heating area to reduce the temperature difference between the heating element and the air. At the same time, the heating element also needs a larger heat capacity to resist the cooling after the suction airflow passes, and the heating element also needs a higher thermal conductivity to reduce the heating preparation time.
  • the applicant has discovered, based on years of in-depth research on ceramics, that by designing the porous structure of the honeycomb ceramic, a larger heating surface area can be brought about, so that the heating element has a high air heating efficiency, and the porous ceramic honeycomb ceramic generates
  • the body is closer to a solid structure and has a higher heat capacity than a ceramic tube of the same volume.
  • the thermal conductivity of the alumina material is greater than 30W/MK, which can make the heat conduct faster and more uniformly, and the thermal conductivity is high. Therefore, the porous structure is adopted.
  • the honeycomb ceramic heating element can meet the needs of air heating to bake smoking products.
  • the ceramic heating element 10 of the embodiment of the present invention includes a heating body 11 and a heating circuit 12.
  • the heating body 11 has a columnar shape, and the heating body 11 is provided with a porous channel 101; the heating circuit 12 is arranged on the heating body 11 to heat the air passing through the porous channel 101.
  • the heating body 11 may be cylindrical or polygonal columnar, such as a prismatic column, a square column, a pentagonal column, etc.
  • the present invention does not specifically limit this.
  • the heating body 11 is a cylinder, and the porous channel 101 is arranged in the heating body 11 along the axial direction.
  • the heating circuit 12 is printed on the outer surface of the heating body 11 in the form of a thick film circuit, for example, in the form of a heating wire around the outer surface of the heating body 11, and is integrated with the heating body 11.
  • the printing material of the heating circuit 12 includes silver, tungsten or molybdenum manganese.
  • the heating circuit 12 When the heating circuit 12 is printed on the outer surface of the heating body 11 in the form of a thick film circuit, its heating resistance is generally a PTC thermistor, that is, the resistance becomes larger when the temperature rises, and it is found that the temperature of the ceramic heating body is Corresponding to resistance, so the temperature of the ceramic heating element can be characterized by measuring the resistance value.
  • the self-compensation effect of the thick film heating circuit (heating body cooling, resistance value reduction, current increase, power increase) can pull the heating body temperature back to the original temperature within a few seconds , And when there is no air flow, the temperature of the heating element can remain stable without fluctuations.
  • the ceramic heating body can provide sufficient heat capacity, so that the temperature effect of the airflow on the heating body during the simulated smoking process is small, so that no power compensation is required. , Relying on self-regulation to achieve the effect of heating the air required for smoking cigarettes.
  • the heating control method of the ceramic heating element in the non-contact electronic cigarette heater of the embodiment of the present invention includes the following steps:
  • the working voltage of the heating circuit is stepped down and controlled.
  • the voltage is constant, and the resistance of the heating circuit increases with the increase in temperature, so the operating current of the heating circuit decreases with the increase in temperature, which can then be reflected by the operating current of the heating circuit
  • the working temperature of the ceramic heating element, and after the ceramic heating element reaches a certain operating temperature, the operating voltage of the heating circuit is stepped down according to the operating time of the heating circuit to achieve thermal balance control.
  • the ceramic heating element in the non-contact electronic cigarette heater of the embodiment of the present invention since the heating body adopts a porous honeycomb structure, the ceramic heating element can provide sufficient heat capacity, so as to simulate the airflow during smoking.
  • the temperature effect on the heating element is very small, and the heating circuit has a clear thermal effect.
  • the heating circuit is first controlled to use the first working voltage for heating, and then according to The working time of the heating circuit and the working current of the heating circuit perform step-down control of the working voltage of the heating circuit, that is, by controlling the working voltage of the heating circuit, the effect of heating the air for smoking cigarettes can be achieved, without the need for dynamic power based on airflow sensors Compensation, there is no need to detect and control the temperature based on the temperature sensor, which not only simplifies the complexity of the control system, but also has a better control response effect.
  • the heating control method of the ceramic heating element in the non-contact electronic cigarette heater proposed by an embodiment of the present invention includes the following steps:
  • S3 Perform step-down control on the working voltage of the heating circuit according to the working time of the heating circuit and the working current of the heating circuit.
  • the voltage is constant, and the resistance of the heating circuit increases with the increase in temperature, so the operating current of the heating circuit decreases with the increase in temperature, which can then be reflected by the operating current of the heating circuit
  • the working temperature of the ceramic heating element, and after the ceramic heating element reaches a certain operating temperature, the operating voltage of the heating circuit is stepped down according to the operating time of the heating circuit to achieve thermal balance control.
  • the operating current of the heating circuit will increase every time the user smokes a puff, and the rate of change of the current is different according to the amount of smoke in each puff of different people Therefore, in order to meet the smoking habits of different groups of people, the operating voltage of the heating circuit can be adaptively adjusted according to the rate of change of the operating current of the heating circuit to adapt to the smoking habits of different groups of people.
  • the adaptive adjustment of the operating voltage of the heating circuit according to the operating current change rate of the heating circuit includes: determining whether the operating current change rate of the heating circuit is within a preset current change If the rate of change of the operating current of the heating circuit is greater than the upper limit of the rate of current change interval, the operating voltage of the heating circuit is controlled to decrease; if the rate of change of the operating current of the heating circuit is less than the current The lower limit value of the rate of change interval is controlled to increase the operating voltage of the heating circuit; if the rate of change of the operating current of the heating circuit is within the rate of current change interval, the operating voltage of the heating circuit is controlled to remain unchanged .
  • the preset current change rate interval can be calibrated according to actual conditions.
  • the thermal balance stage if the user smokes a large amount of smoke per puff, the current change rate of the heating circuit is relatively large. At this time, in order to ensure the thermal balance, the operating voltage of the heating circuit needs to be lowered. Decreasing one division can reduce the voltage threshold (0.1V); if the amount of smoke smoked by the user per puff is relatively small, then the current change rate of the heating circuit is relatively small.
  • the heating circuit needs to be
  • the working voltage can be increased a bit, for example, it can be increased by one step, or a voltage threshold (0.1V) can be increased; if the user smokes a moderate amount of smoke per puff, the current change rate of the heating circuit is at the preset current In the interval of the rate of change, there is no need to adjust the operating voltage of the heating circuit at this time, just keep it unchanged.
  • the ceramic heating element in the non-contact electronic cigarette heater of the embodiment of the present invention since the heating body adopts a porous honeycomb structure, the ceramic heating element can provide sufficient heat capacity, so as to simulate the air flow during smoking.
  • the temperature effect on the heating element is very small, and the heating circuit has a clear thermal effect. Therefore, when the non-contact electronic cigarette heater is turned on, the heating circuit is first controlled to use the first working voltage for heating, and then according to The working time of the heating circuit and the working current of the heating circuit perform step-down control on the working voltage of the heating circuit.
  • the working voltage of the heating circuit is adjusted adaptively according to the rate of change of the working current of the heating circuit, that is, through Controlling the operating voltage of the heating circuit can achieve the effect of heating the air required for smoking cigarettes.
  • the operating voltage of the heating circuit is adaptively adjusted according to the rate of change of the operating current of the heating circuit, so as to meet the amount of smoke required by different people's smoking habits and improve users Experience.
  • the through holes of the porous channel 101 are circular holes or polygonal holes.
  • the through holes of the porous channel 101 may be regularly distributed in the heating body 11, as shown in FIG. 2 for example.
  • the through holes of the porous channel 101 may be evenly distributed along the circumferential direction.
  • the through holes of the porous channel 101 are polygonal holes, they may be distributed in the cylinder in a center-symmetric manner.
  • the distribution of the through holes of the porous channel 101 may not be limited, as long as the heating body 11 can be defined as a porous honeycomb structure.
  • the aperture of the through hole of the porous channel 101 is 0.1-2 mm, for example, 0.5 mm, 1 mm, etc.
  • the distance between two adjacent through holes is 0.1-0.5 mm, For example, 0.2mm, 0.4mm, etc. It can be understood that the diameter of the through hole of the porous channel 101 and the distance between two adjacent through holes can be limited according to the specific conditions of the heating body 11, as long as air can be circulated to increase the air contact area with the surface.
  • the alumina content of the alumina ceramic is greater than 99%, and the density of the alumina ceramic is not less than 3.86 g/cm 3 .
  • the above-mentioned ceramic heating body includes a honeycomb heating body 11 made of alumina ceramic, a heating circuit 12 and a wire 13.
  • the center of the honeycomb heating body 11 is provided with a porous channel 101
  • the porous channels 101 are uniformly arranged square holes
  • the heating circuit 12 is arranged around the outer surface of the heating body 11, and the leading end of the heating printed circuit 12 is provided with a wire 13 .
  • the density of the alumina ceramic made of the heating body 11 is 3.9 g/cm 3
  • the resistance of the heating body 11 may be 0.1-2 ⁇ , such as 0.6 ⁇ , 0.8 ⁇ , etc.
  • the square hole diameter of the porous channel 101 may be 1.5mm , That is, the side length of the square hole is 1.5mm
  • the wall thickness of the porous channel 101 can be 0.2mm, as shown in FIG. 2, the distance between the corresponding sides of two adjacent square holes is the wall thickness of the porous channel 101.
  • the material of the heating circuit 12 may be silver.
  • the printing thickness of the heating circuit 2 is 0.01-0.02 mm
  • the wire 13 may be a silver wire with a diameter of 0.2 mm.
  • the purity of the alumina ceramic for preparing the heating body 11 exceeds 99%, that is, the high-purity alumina ceramic, which makes the surface of the honeycomb ceramic highly dense, which can effectively prevent the adsorption of soot particles and play a role in preventing The effect of odor.
  • the honeycomb heating body made of high-purity alumina ceramics has good thermal conductivity, and the thermal conductivity is as high as 33W/MK.
  • the wall thickness and pore diameter in the honeycomb ceramic heating body structure are small, and the thermal conductivity is extremely good, and the honeycomb is porous.
  • the shape can greatly increase the contact area with air, so that the specific surface area of the alumina honeycomb ceramic is large, the heating efficiency is high, and the purpose of heating the air can be achieved faster.
  • the honeycomb ceramic heating body of the embodiment of the present invention is arranged under the smoking product to be baked, and does not contact the smoking product to be baked.
  • air flows through the holes of the heating element honeycomb. Heating to a specific temperature, and then when hot air flows through the smoking product, the smoking product is quickly heated to about 320°C, which greatly improves the heating area and heating efficiency of the smoking product, heating more uniformly, and carbonization of the tobacco is more complete, avoiding waste of tobacco.
  • the taste of the user is improved, the amount of smoke is sufficient, and the type of smoking products is not restricted.
  • the gas flow rate is limited to a certain extent, and the contact time between the hot air and the smoking article is longer, which slows the loss of heat and saves energy.
  • the porous shape of the honeycomb ceramic can simultaneously lock the hot air, reduce the outflow of hot air, and further save energy.
  • the ceramic heating element according to the embodiment of the present invention is provided with a porous channel in the heating body, so that when the heating circuit heats the air passing through the porous channel, the contact area between the heating body and the air can be increased, so that the honeycomb
  • the ceramic body has a large specific surface area to achieve sufficient heating of the air, which not only has high heating efficiency, but also because the ceramic heating body has good thermal conductivity, the purpose of heating the air can be achieved faster, and the structure of the porous channel makes the air The flow rate of the product has been restricted to a certain extent.
  • the embodiment of the present invention also proposes a non-contact electronic cigarette heater, which includes the ceramic heating element 10 described in the above embodiment, the smoking article carrying component 20 and the sealing sleeve 30.
  • the cavity defined by the smoking article carrier assembly 20 is suitable for placing the smoking article, and the smoking article carrier assembly 20 separates the smoking article from the ceramic heating element 10.
  • the smoking article carrying assembly 20 may specifically include a ceramic tube 21 and a baffle 22.
  • the cavity defined by the ceramic tube 21 is suitable for placing smoking articles, and the baffle 22 is connected to the ceramic tube 21. And it is arranged adjacent to the ceramic heating element 10 to separate the smoking product from the ceramic heating element 10.
  • the baffle 22 may be a baffle, the baffle is located at the opening of one end of the ceramic tube 21, and is combined with the ceramic tube 21 to form a cup, and the baffle is provided with Multiple diversion holes 202.
  • the plurality of guide holes 202 are evenly distributed along the circumferential direction.
  • the diversion hole 202 is a round hole with a diameter of 0.1-2 mm.
  • the two baffle plates 22 there may be two baffle plates 22, and the two baffle plates 22 are arranged oppositely, so that the ceramic heating element 10 can be effectively separated from the smoking article, and the ceramic heating element 10 can be effectively prevented from directly contacting the smoking article.
  • the distance is too close, so as to prevent the part of the smoking product close to the ceramic heating element from being heated over 320°C and causing scorching.
  • the hot air can quickly flow into the space between the two baffles to evenly and quickly bake the smoking product.
  • the ceramic tube 21 is made of alumina ceramics, aluminum nitride ceramics, silicon nitride ceramics, silicon carbide ceramics, beryllium oxide ceramics or zirconia ceramics.
  • the deflector can also be made of alumina ceramics, aluminum nitride ceramics, silicon nitride ceramics, silicon carbide ceramics, beryllium oxide ceramics or zirconia ceramics.
  • the alumina content of the alumina ceramic is greater than 99%, and the density of the alumina ceramic is not less than 3.86 g/cm 3 .
  • the alumina ceramic tube 21 is not used as a heating component, which can reduce the loss of heat.
  • the hot air through holes used can facilitate the circulation of hot air, and on the other hand, it also prevents the direct diffusion of hot air when no suction action is performed. The effect of heat preservation.
  • the smoking product carrier assembly 20 is required to provide a preparation temperature of 200-220°C, so the ceramic tube must also have a preheating function .
  • a baffle should be provided at the bottom of the ceramic tube or in the defined cavity to limit the position.
  • the baffle can not only effectively isolate the smoking product from the ceramic heating element, but also that the e-liquid precipitate produced during the smoking process of the smoking product will not condense on the ceramic heating element and the baffle, and repeated smoking Naturally produce self-cleaning effect, not easy to retain peculiar smell, and no need for frequent cleaning, which has high use value.
  • alumina ceramic tube as a container for smoking products can not only effectively provide an ideal preparation temperature for smoking products through the high thermal conductivity of alumina material, but also alumina ceramics
  • the tube material is dense, and it is not easy to have smoke oil residue, so as to avoid the problem of odor caused by continuous use.
  • the ceramic tube 21 can also play a role of preheating and can preheat the smoking product, so it can be called a preheating tube.
  • the baffle 22 is disposed in the cavity defined by the ceramic tube 21 to divide the cavity into two parts, one part is used for placing smoking articles, and the other part is used to accommodate at least a part of the ceramic heating element 10.
  • the guide vane with a plurality of guide holes 202 is arranged in the cavity defined by the ceramic tube 21.
  • the ceramic heating element 10 when the ceramic heating element 10 is heating, since the deflector and the ceramic tube are made of high-purity alumina ceramics, they can be heated quickly to achieve the effect of preheating the cavity, improve the heating efficiency, and facilitate smoke generation. Even baking of products.
  • the sealing sleeve 30 is arranged in a hollow, and the ceramic heating element 10 and the smoking product carrying assembly 20 are sleeved inside.
  • the ceramic heating element is arranged in a porous shape, so that the specific surface area of the honeycomb ceramic body is large, and the air can be fully heated. Not only is the heating efficiency high, but also because the ceramic heating body has good thermal conductivity, it can quickly realize the heating of the air. Purpose, and due to the existence of the porous channel structure, the air flow speed is restricted to a certain extent, the hot air and the smoking product can be in contact for longer when the smoking product is baked, which slows the loss of heat and saves energy , And when there is no pumping action, the porous shape of the ceramic heating body can simultaneously lock the hot air, reduce the outflow of hot air, and further save energy.
  • the initial high-power pull-up can be used, and after reaching the operating temperature, the low-power heating strategy can be used to maintain the operating temperature.
  • the step-down control of the operating voltage of the heating circuit according to the operating time of the heating circuit and the operating current of the heating circuit includes: determining whether the operating current of the heating circuit reaches a preset current threshold; If the operating current of the heating circuit reaches the preset current threshold, the corresponding step-down curve is obtained according to the operating time of the heating circuit, and the operating voltage of the heating circuit is stepped down according to the obtained step-down curve.
  • the working time of the heating circuit can be divided into multiple time periods, and each time period corresponds to a step-down curve.
  • obtaining the corresponding step-down curve according to the working time of the heating circuit includes: judging heat generation The time period in which the working time of the circuit is located; the corresponding step-down curve is obtained according to the time period in which the working time of the heating circuit is located.
  • the initial temperature of the ceramic heating element may be different each time the non-contact electronic cigarette heater is turned on, which results in a different working time for the heating circuit from the initial temperature to a certain operating temperature (ie, thermal equilibrium temperature).
  • a certain operating temperature ie, thermal equilibrium temperature.
  • the step-down process needs to be divided into multiple stages. For example, a two-stage step-down is required. The first stage needs a rapid voltage drop, and the second stage needs to be slowly reduced to the corresponding voltage during the heat preservation stage. Enter the insulation stage to maintain the working temperature. This is because the power is much higher than the thermal equilibrium power in order to increase the temperature quickly in the early stage. If the pressure drop is too slow, the user's first puff and then continuous puffing will easily cause the temperature of the smoking product to exceed 330°C, causing the smoking product to appear burnt Therefore, the control process of quickly depressurizing first and then slowly depressurizing can effectively avoid this situation.
  • a multi-stage step-down curve is used to step-down control the operating voltage of the heating circuit , Among them, the depressurization rate corresponding to the multi-stage depressurization curve gradually decreases.
  • Multi-stage pressure reduction control is adopted, and the pressure reduction rate corresponding to the multi-stage pressure reduction curve is successively reduced, which can effectively avoid the scorching phenomenon of smoking products, and effectively achieve heat balance, ensure the uniform and effective baking of smoking products, and avoid waste of shredded tobacco , To ensure the amount of smoke.
  • the embodiment of the present invention also proposes a heating control device for a ceramic heating element in a non-contact electronic cigarette heater, wherein the ceramic heating element includes a heating body and a heating circuit, and the heating body is cylindrical and heats The body is provided with a porous channel, and a heating circuit is provided on the heating body to heat the air passing through the porous channel.
  • the heating control device 900 includes a voltage control module 901, a timing module 902, and a current detection module 903.
  • the voltage control module 901 is used to control the heating circuit to use the first working voltage for heating when the non-contact electronic cigarette heater is turned on, and the timing module 902 is used to monitor the working time of the heating circuit when the non-contact electronic cigarette heater is turned on. Timing, the current detection module 903 is used to detect the working current of the heating circuit. The voltage control module 901 is also used for stepping down the operating voltage of the heating circuit according to the operating time of the heating circuit and the operating current of the heating circuit.
  • the voltage control module 901 is also used to adjust the operating voltage of the heating circuit adaptively according to the rate of change of the operating current of the heating circuit after the voltage reduction is completed.
  • the voltage control module 903 is also used to determine whether the operating current change rate of the heating circuit is within a preset current change rate interval; if the operating current change rate of the heating circuit is greater than the upper limit of the current change rate interval Value, control the operating voltage of the heating circuit to decrease; if the operating current change rate of the heating circuit is less than the lower limit of the current change rate interval, control the operating voltage of the heating circuit to increase; if the If the operating current change rate of the heating circuit is within the current change rate interval, the operating voltage of the heating circuit is controlled to remain unchanged.
  • the thermal balance stage if the user smokes a large amount of smoke per puff, the current change rate of the heating circuit is relatively large. At this time, in order to ensure the thermal balance, the operating voltage of the heating circuit needs to be lowered. Decreasing one division can reduce the voltage threshold (0.1V); if the amount of smoke smoked by the user per puff is relatively small, then the current change rate of the heating circuit is relatively small.
  • the heating circuit needs to be
  • the working voltage can be increased a bit, for example, it can be increased by one step, or a voltage threshold (0.1V) can be increased; if the user smokes a moderate amount of smoke per puff, the current change rate of the heating circuit is at the preset current In the interval of the rate of change, there is no need to adjust the operating voltage of the heating circuit at this time, just keep it unchanged.
  • the operating voltage of the heating circuit is adaptively adjusted according to the rate of change of the operating current of the heating circuit, so that the amount of smoke required by the smoking habits of different people can be met, and the user experience can be improved.
  • the voltage control module 901 is also used to determine whether the operating current of the heating circuit reaches a preset current threshold, and if the operating current of the heating circuit reaches the preset current threshold, obtain the corresponding value according to the operating time of the heating circuit. According to the obtained step-down curve, the operating voltage of the heating circuit is step-down control.
  • the voltage control module 901 first applies a constant voltage to the heating circuit, and uses high power to increase the heating speed.
  • the timing module 902 such as a timer, controls the heating circuit. Time of working hours. Due to the rapid heating stage, the voltage is constant, and the resistance of the heating circuit increases with the increase in temperature, so the working current of the heating circuit decreases with the increase in temperature, and the working current of the heating circuit can reflect the ceramic heating element After the ceramic heating element reaches a certain operating temperature (ie, thermal equilibrium temperature), the operating voltage of the heating circuit is stepped down according to the operating time of the heating circuit to achieve thermal balance control.
  • a certain operating temperature ie, thermal equilibrium temperature
  • the working time of the heating circuit can be divided into multiple time periods, and each time period corresponds to a step-down curve, wherein the voltage control module 901 obtains the corresponding step-down curve according to the working time of the heating circuit.
  • the time period of the working time of the heating circuit is judged, and the corresponding step-down curve is obtained according to the time period of the working time of the heating circuit.
  • the initial temperature of the ceramic heating element may be different each time the non-contact electronic cigarette heater is turned on, which results in a different working time for the heating circuit from the initial temperature to a certain operating temperature (ie, thermal equilibrium temperature).
  • a certain operating temperature ie, thermal equilibrium temperature.
  • the voltage control module 901 is further configured to: when the operating current of the heating circuit reaches a preset current threshold, if the operating time of the heating circuit is greater than or equal to the preset time threshold, a multi-stage reduction is used.
  • the pressure curve performs step-down control on the operating voltage of the heating circuit, wherein the step-down rate corresponding to the multi-stage step-down curve is successively reduced.
  • the ceramic heating element is controlled by low-power heating (ie, reducing After pressing) to maintain the operating temperature, the voltage cannot be directly reduced to the voltage during the heat preservation stage, but needs to be slowly reduced.
  • the step-down process needs to be divided into multiple stages. For example, a two-stage step-down is required. The first stage needs a rapid voltage drop, and the second stage needs to be slowly reduced to the corresponding voltage during the heat preservation stage. Enter the insulation stage to maintain the working temperature. This is because the power is much higher than the thermal equilibrium power in order to increase the temperature quickly in the early stage. If the pressure drop is too slow, the user's first puff and then continuous puffing will easily cause the temperature of the smoking product to exceed 330°C, causing the smoking product to appear burnt Therefore, the control process of quickly depressurizing first and then slowly depressurizing can effectively avoid this situation.
  • Multi-stage pressure reduction control is adopted, and the pressure reduction rate corresponding to the multi-stage pressure reduction curve is successively reduced, which can effectively avoid the scorching phenomenon of smoking products, and effectively achieve heat balance, ensure the uniform and effective baking of smoking products, and avoid waste of shredded tobacco , To ensure the amount of smoke.
  • the heating circuit is printed on the outer surface of the heating body by a thick film circuit.
  • the preset current threshold and the preset time threshold can be calibrated according to the actual situation of the product.
  • the ceramic heating element in the non-contact electronic cigarette heater of the embodiment of the present invention since the heating body adopts a porous honeycomb structure, the ceramic heating element can provide sufficient heat capacity, so that the airflow can generate heat during the simulated smoking process.
  • the temperature effect generated by the body is very small, and the heating circuit has a clear thermal effect. Therefore, when the non-contact electronic cigarette heater is turned on, the voltage control module first controls the heating circuit to use the first working voltage for heating, and then According to the working time of the heating circuit and the working current of the heating circuit, the working voltage of the heating circuit is stepped down and controlled.
  • the effect of heating the air for smoking cigarettes can be achieved, without the need for dynamics based on airflow sensors
  • Power compensation does not need to detect and control the temperature based on the temperature sensor, which not only simplifies the complexity of the control system, but also has a better control response effect.
  • the operating voltage of the heating circuit is adaptively adjusted according to the rate of change of the operating current of the heating circuit, so that the amount of smoke required by the smoking habits of different people can be met, and the user experience can be improved.
  • the embodiment of the present invention also proposes a non-contact electronic cigarette heater, which includes the heating control device of the ceramic heating element in the non-contact electronic cigarette heater.
  • the effect of heating the air for smoking cigarettes can be achieved by controlling the operating voltage of the heating circuit, without the need for dynamic power compensation based on the airflow sensor , There is no need to detect and control the temperature based on the temperature sensor, which not only simplifies the complexity of the control system, but also has a better control response effect.
  • the amount of smoke required by the smoking habits of different groups of people can be met, and the user experience can be improved.
  • an embodiment of the present invention also proposes a non-contact air heating type electronic cigarette heater, including a heating assembly 1, a sealing sleeve 30 and a heat recovery device 3, wherein the heat recovery device 3
  • a first honeycomb porous channel 31 is provided in the side wall of the heat recovery device 3, and the first honeycomb porous channel 31 divides the heat recovery device 3 into an outer wall 32 and an inner wall 33; the inner wall 33 of the heat recovery device 3 is provided with a sealing sleeve 30,
  • the sealing sleeve 30 is sheathed with a heating component 1, and the heating component 1 is connected to the heat recovery device 3 through the sealing sleeve 30; the heating component 1 is provided with a heating body 11; the heating body 11 is provided with a heating
  • the circuit 12 is provided with a wire 13 at the end of the heating circuit 12, and a second honeycomb porous channel 101 is provided in the heating body 11.
  • the heating assembly 1 includes a preheating tube 21, a baffle 22, and a heating element 20, and a plurality of baffle holes 202 are provided on the baffle 22.
  • the heating assembly 1 and the heat recovery device 3 are both high-purity alumina ceramics, and their density is not less than 3.86 g/cm 3 .
  • first honeycomb porous channel 31 and the second honeycomb porous channel 101 are uniformly arranged square holes or other polygonal holes, and the pore size ranges from 0.1 to 2 mm, and the minimum distance between two adjacent holes is 0.1 ⁇ 0.5mm.
  • the printing material of the heating circuit 12 includes but is not limited to silver, tungsten, MoMn (molybdenum manganese).
  • the material of the wire 13 includes but is not limited to silver, copper, and nickel.
  • a first honeycomb porous channel 31 is provided in the side wall of the heat recovery device 3, and the first honeycomb porous channel 31 divides the heat recovery device 3 into an outer wall 32 and an inner wall. 33;
  • the inner wall 33 of the heat recovery device 3 is provided with a sealing sleeve 30, the sealing sleeve 30 is sheathed with a heating component 1, and the heating component 1 is connected to the heat recovery device 3 through the sealing sleeve 30; the heating component 1 From top to bottom, there are the preheating tube 21, the deflector 22 and the heating body 11.
  • a heating circuit 12 is provided on the heating body 11, and a wire is provided at the end of the heating circuit 12 13.
  • the heating body 11 is provided with a second honeycomb porous channel 101.
  • smoking products such as cartridges
  • the heating circuit 12 starts to heat up.
  • the cartridges can be baked at 280°C-320°C. Nicotine and other effective ingredients can be baked to produce smoke, so the device needs to be preheated.
  • the preheating tube 21 and the deflector 22 reaches 200°C, the preheating is completed. Since the preheating has been completed, The first or second puff is the first heating, the cartridge only needs to be heated from 200°C to 320°C, which is faster than from room temperature, and can more guarantee the amount of smoke produced by the first and second puffs.
  • a second honeycomb porous channel 101 is provided in the heating body 11, and the porous channel is uniformly arranged square holes or other polygonal holes, and the pore size ranges from 0.1 to 2 mm, and the smallest between two adjacent holes The distance is 0.1-0.5mm, and the expansion area is large, so the heating air efficiency is very high, and the hot air flows from the center of the honeycomb without contacting the heating circuit 12, and no pollution occurs.
  • the heating component 1 and the heat recovery device 3 are both high-purity alumina ceramics.
  • the high-purity alumina ceramics have good electrical insulation, high strength, and good thermal conductivity.
  • the heating element 20 will not leak electricity when heating, and the preheating tube 21 and the deflector 22 will also heat up quickly due to the good thermal conductivity of the high-purity alumina ceramics, and smoking bombs can be smoked without waiting long; when the smoking bombs are drawn, the airflow is heated to 320°C through the heating element 20, and then passes through The guide holes 202 on the guide vane 22 further homogenize and diverge, and flow into the cartridge to heat the cut tobacco more evenly, so as to increase the amount of smoke. During the heating process, all the heat that does not act on the cartridge will be recovered.
  • the inner wall 33 of the heat recovery device 3 is provided with a sealing sleeve 30, and the heating element 1 is sheathed in the sealing sleeve 30, the heat generated by the heating element 1 that does not act on the cartridge will transfer heat to the first honeycomb porous channel 31, and
  • This porous channel is a uniformly arranged square hole or other polygonal hole. Its pore diameter ranges from 0.1 to 2 mm, and the minimum distance between two adjacent holes is 0.1 to 0.5 mm. Its expansion area is large, so the heating efficiency is very high, thus To heat preservation, reduce the heating time to realize energy saving.
  • the heated air flows to the second honeycomb porous channel 101, and the air flows into the heat recovery device 3 to further take away the heat in the first honeycomb porous channel 31, thereby achieving heat recovery.
  • 30 plays a role of sealing the heat recovery device 3 and the heating assembly 1 to ensure that the hot air will not flow to other places.
  • some fluid pollutants emitted by the cartridge will inevitably remain in the device. Due to the high density of high-purity alumina ceramics, its density is not less than 3.86g/cm 3 , and there are almost no pores in the microstructure. , The pollutants in the flue gas cannot penetrate into it, and can not leave pollution and odor on the surface.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present invention, “plurality” means two or more than two, unless specifically defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • installed can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • the "above” or “below” of the first feature of the second feature may include the first and second features in direct contact, or may include the first and second features Not in direct contact but through other features between them.
  • “above”, “above” and “above” the second feature of the first feature include the first feature being directly above and obliquely above the second feature, or it simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” the first feature of the second feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Resistance Heating (AREA)
  • Control Of Resistance Heating (AREA)
  • Electric Stoves And Ranges (AREA)
  • Furnace Details (AREA)
  • Cigarettes, Filters, And Manufacturing Of Filters (AREA)

Abstract

一种非接触式电子烟加热器及陶瓷发热体(10)的加热控制方法和控制装置,其中,陶瓷发热体(10)包括发热本体(11)和发热电路(12),发热本体(11)呈柱状,且发热本体(11)内设有多孔通道(101),发热电路(12)设置在发热本体(11)上,以对通过多孔通道(101)的空气进行加热,加热控制方法包括以下步骤:在非接触式电子烟加热器开启时,控制发热电路(12)采用第一工作电压进行加热工作,并对发热电路(12)的工作时间进行计时;检测发热电路(12)的工作电流;根据发热电路(12)的工作时间和发热电路(12)的工作电流对发热电路(12)的工作电压进行降压控制。通过控制发热电路(12)的工作电压就可实现抽吸烟支所需加热空气的效果,无需进行动态功率补偿,也无需控制温度,不仅简化了控制复杂度,还具有更佳的控制响应效果。

Description

电子烟加热器及陶瓷发热体的加热控制方法和装置 技术领域
本发明涉及电子烟技术领域,特别涉及一种非接触式电子烟加热器中陶瓷发热体的加热控制方法、一种非接触式电子烟加热器中陶瓷发热体的加热控制装置以及一种具有该加热控制装置的非接触式电子烟加热器。
背景技术
香烟、雪茄等发烟制品在使用期间是通过燃烧烟草以产生烟气,而烟草燃烧产生的烟气中含有很多有害物质,例如焦油等,长期吸入这些有害物质会对人体产生非常大的危害。随着科技进步和人们对健康生活的不断追求,目前出现了一种香烟替代品即电子烟。其中,一种典型的电子烟方案是通过加热不燃烧的方式来释放发烟制品中的有效物质,例如尼古丁。
加热不燃烧电子烟主要是通过低温加热的工作原理,把发烟制品加热到300℃左右,从而将发烟制品中的尼古丁等有效成分烘烤出来,由于没有达到燃烧温度,发烟制品中的焦油等有害物质大大减少。
相关技术中,加热不燃烧电子烟一般采用接触式加热方案来烘烤发烟制品,例如采用宝剑形、针状等发热体插入发烟制品的内部进行加热。但是,接触式加热方案存在加热不均匀的缺陷,即与发热体直接接触的部分温度较高,而远离发热体的部分,温度快速递减,因此只有靠近发热体的烟草部分才能被烘烤透,这就导致发烟制品中的烟丝不能完全被烘烤,不仅造成烟丝浪费大,而且烟气量也会不足。如果提高发热体温度来提高烘烤效率,则又容易造成发热体附近烟丝焦胡,从而不仅影响口感,甚至会导致有害成分大量增加,影响身体健康。
发明内容
本申请是基于发明人对以下问题的认识和研究而做出的:
在加热不燃烧电子烟的工作过程中,由于接触式加热方案存在加热不均匀的缺陷,必然会导致发烟制品烘烤不充分,从而不仅造成烟丝浪费大,而且烟气量也会不足。
为此,发明人经过大量的研究和实验发现,吸烟的过程本身是一个空气流动的过程,如果流入发烟制品的空气本身温度较高,则热空气可以直接起到烘烤发烟制品的作用,且由于热空气可以随着抽吸过程比较完整均匀地渗透烘烤发烟制品的全部烟草,那么加热不均匀的问题就会得到有效解决。因此,采用对空气进行加热,再利用抽吸过程中热空气流 动来烘烤发烟制品的方式来实现加热的方案,整体加热效果会更好。
本发明旨在至少从一定程度上解决上述技术中的技术问题之一。为此,本发明的第一个目的在于提出一种非接触式电子烟加热器中陶瓷发热体的加热控制方法,通过控制发热电路的工作电压就可实现抽吸烟支所需加热空气的效果,无需基于气流传感器进行动态功率补偿,也无需基于温度传感器探测和控制温度,不仅简化了控制系统的复杂度,而且具有更佳的控制响应效果。
本发明的第二个目的在于提出一种非接触式电子烟加热器中陶瓷发热体的加热控制装置。本发明的第三个目的在于提出一种非接触式电子烟加热器。
为达到上述目的,本发明第一方面实施例提出了一种非接触式电子烟加热器中陶瓷发热体的加热控制方法,其中,所述陶瓷发热体包括发热本体和发热电路,所述发热本体呈柱状,且所述发热本体内设有多孔通道,所述发热电路设置在所述发热本体上,以对通过所述多孔通道的空气进行加热,所述加热控制方法包括以下步骤:在所述非接触式电子烟加热器开启时,控制所述发热电路采用第一工作电压进行加热工作,并对所述发热电路的工作时间进行计时;检测所述发热电路的工作电流;根据所述发热电路的工作时间和所述发热电路的工作电流对所述发热电路的工作电压进行降压控制。
根据本发明实施例的非接触式电子烟加热器中陶瓷发热体的加热控制方法,由于发热本体采用多孔蜂窝结构,使得陶瓷发热体能够提供充足的热容,从而使得模拟抽烟过程中气流对发热体产生的温度效应很小,再加上发热电路具有清晰的热敏效应,因而在非接触式电子烟加热器开启时,先控制发热电路采用第一工作电压进行加热工作,然后再根据发热电路的工作时间和发热电路的工作电流对发热电路的工作电压进行降压控制,即通过控制发热电路的工作电压就可实现抽吸烟支所需加热空气的效果,无需基于气流传感器进行动态功率补偿,也无需基于温度传感器探测和控制温度,不仅简化了控制系统的复杂度,而且具有更佳的控制响应效果。
另外,根据本发明上述实施例提出的非接触式电子烟加热器中陶瓷发热体的加热控制方法还可以具有如下附加的技术特征:
可选地,当降压完成后,还根据所述发热电路的工作电流变化率对所述发热电路的工作电压进行适应性调整。
在降压完成后还根据发热电路的工作电流变化率对发热电路的工作电压进行自适应调整,从而可以满足不同人群抽吸习惯所需的烟气量,提高用户体验。
可选地,根据所述发热电路的工作电流变化率对所述发热电路的工作电压进行适应性调整,包括:判断所述发热电路的工作电流变化率是否处于预设的电流变化率区间;如果所述发热电路的工作电流变化率大于所述电流变化率区间的上限值,则控制所述发热电路 的工作电压降低;如果所述发热电路的工作电流变化率小于所述电流变化率区间的下限值,则控制所述发热电路的工作电压升高;如果所述发热电路的工作电流变化率处于所述电流变化率区间,则控制所述发热电路的工作电压保持不变。
进一步地,根据所述发热电路的工作时间和所述发热电路的工作电流对所述发热电路的工作电压进行降压控制,包括:判断所述发热电路的工作电流是否达到预设电流阈值;如果所述发热电路的工作电流达到所述预设电流阈值,则根据所述发热电路的工作时间获取相应的降压曲线,并根据获取的降压曲线对所述发热电路的工作电压进行降压控制。
可选地,将所述发热电路的工作时间划分成多个时间段,每个时间段对应一个降压曲线,其中,根据所述发热电路的工作时间获取相应的降压曲线,包括:判断所述发热电路的工作时间所处的时间段;根据所述发热电路的工作时间所处的时间段获取相应的降压曲线。
可选地,当所述发热电路的工作电流达到所述预设电流阈值时,如果所述发热电路的工作时间大于等于预设时间阈值,则采用多段降压曲线对所述发热电路的工作电压进行降压控制,其中,所述多段降压曲线对应的降压速率依次变小。
可选地,所述发热电路采用厚膜电路的方式印刷在所述发热本体的外表面。
为达到上述目的,本发明第二方面实施例提出了一种非接触式电子烟加热器中陶瓷发热体的加热控制装置,其中,所述陶瓷发热体包括发热本体和发热电路,所述发热本体呈柱状,且所述发热本体内设有多孔通道,所述发热电路设置在所述发热本体上,以对通过所述多孔通道的空气进行加热,所述加热控制装置包括计时模块、电流检测模块和电压控制模块,其中,所述电压控制模块用于在所述非接触式电子烟加热器开启时控制所述发热电路采用第一工作电压进行加热工作;所述计时模块用于在所述非接触式电子烟加热器开启时对所述发热电路的工作时间进行计时;所述电流检测模块用于检测所述发热电路的工作电流;所述电压控制模块还用于,根据所述发热电路的工作时间和所述发热电路的工作电流对所述发热电路的工作电压进行降压控制。
根据本发明实施例的非接触式电子烟加热器中陶瓷发热体的加热控制装置,由于发热本体采用多孔蜂窝结构,使得陶瓷发热体能够提供充足的热容,从而使得模拟抽烟过程中气流对发热体产生的温度效应很小,再加上发热电路具有清晰的热敏效应,因而在非接触式电子烟加热器开启时,电压控制模块先控制发热电路采用第一工作电压进行加热工作,然后再根据发热电路的工作时间和发热电路的工作电流对发热电路的工作电压进行降压控制,即通过控制发热电路的工作电压就可实现抽吸烟支所需加热空气的效果,无需基于气流传感器进行动态功率补偿,也无需基于温度传感器探测和控制温度,不仅简化了控制系 统的复杂度,而且具有更佳的控制响应效果。
另外,根据本发明上述实施例提出的非接触式电子烟加热器中陶瓷发热体的加热控制装置还可以具有如下附加的技术特征:
可选地,所述电压控制模块还用于,在降压完成后根据所述发热电路的工作电流变化率对所述发热电路的工作电压进行适应性调整。
在降压完成后还根据发热电路的工作电流变化率对发热电路的工作电压进行自适应调整,从而可以满足不同人群抽吸习惯所需的烟气量,提高用户体验。
可选地,所述电压控制模块还用于,判断所述发热电路的工作电流变化率是否处于预设的电流变化率区间;如果所述发热电路的工作电流变化率大于所述电流变化率区间的上限值,则控制所述发热电路的工作电压降低;如果所述发热电路的工作电流变化率小于所述电流变化率区间的下限值,则控制所述发热电路的工作电压升高;如果所述发热电路的工作电流变化率处于所述电流变化率区间,则控制所述发热电路的工作电压保持不变。
进一步地,所述电压控制模块还用于,判断所述发热电路的工作电流是否达到预设电流阈值;如果所述发热电路的工作电流达到所述预设电流阈值,则根据所述发热电路的工作时间获取相应的降压曲线,并根据获取的降压曲线对所述发热电路的工作电压进行降压控制。
可选地,将所述发热电路的工作时间划分成多个时间段,每个时间段对应一个降压曲线,其中,所述电压控制模块在根据所述发热电路的工作时间获取相应的降压曲线时,判断所述发热电路的工作时间所处的时间段,并根据所述发热电路的工作时间所处的时间段获取相应的降压曲线。
可选地,所述电压控制模块还用于,当所述发热电路的工作电流达到所述预设电流阈值时,如果所述发热电路的工作时间大于等于预设时间阈值,则采用多段降压曲线对所述发热电路的工作电压进行降压控制,其中,所述多段降压曲线对应的降压速率依次变小。
可选地,所述发热电路采用厚膜电路的方式印刷在所述发热本体的外表面。
为达到上述目的,本发明第三方面实施例提出的一种非接触式电子烟加热器,包括上述的非接触式电子烟加热器中陶瓷发热体的加热控制装置。
根据本发明实施例的非接触式电子烟加热器,通过上述的加热控制装置,能够通过控制发热电路的工作电压就可实现抽吸烟支所需加热空气的效果,无需基于气流传感器进行动态功率补偿,也无需基于温度传感器探测和控制温度,不仅简化了控制系统的复杂度,而且具有更佳的控制响应效果。
本发明实施例还提出了一种计算机可读存储介质,其上存储有非接触式电子烟加热器 中陶瓷发热体的加热控制程序,该加热控制程序被处理器执行时实现上述的非接触式电子烟加热器中陶瓷发热体的加热控制方法。
本发明实施例还提出了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现上述的非接触式电子烟加热器中陶瓷发热体的加热控制方法。
本发明实施例还提出了一种非接触式电子烟加热器,包括陶瓷发热体,所述陶瓷发热体包括发热本体和发热电路,所述发热本体呈柱状,且所述发热本体内设有多孔通道,所述发热电路设置在所述发热本体上,以对通过所述多孔通道的空气进行加热,所述非接触式电子烟加热器还包括存储器、处理器及存储在存储器上并可在处理器上运行的加热控制程序,所述处理器执行所述加热控制程序时,实现上述的非接触式电子烟加热器中陶瓷发热体的加热控制方法。
此外,本发明实施例还提出了一种非接触加热空气式电子烟加热器,其包括加热组件、密封套和热量回收装置,其中,所述热量回收装置的侧壁内设有第一蜂窝状多孔通道,所述第一蜂窝状多孔通道将热量回收装置分成外壁和内壁;所述热量回收装置内壁中设置有密封套,所述密封套内套有加热组件,所述加热组件通过密封套与热量回收装置相连接;所述加热组件内设置有发热本体;所述发热本体上设置有发热电路,所述发热电路的端点处设置有导线,所述发热本体内设置有第二蜂窝状多孔通道。
进一步地,所述加热组件从上至下依次为预热管、导流片和发热体,所述导流片上设置有若干导流孔。
进一步地,所述加热组件和热量回收装置均为高纯氧化铝陶瓷,其密度不小于3.86g/cm3。
进一步地,所述第一蜂窝状多孔通道和第二蜂窝状多孔通道为均匀排布的方形孔或其它多边形孔,其孔径范围为0.1-2mm,相邻两孔间的最小距离为0.1-0.5mm。
进一步地,所述发热电路印刷材料包括但不仅限于银、钨、MoMn(钼锰)。
进一步地,所述导线材料包括但不仅限于银、铜、镍。
本发明实施例的非接触加热空气式电子烟加热器,通过加热组件对空气进行加热,使被加热的流动空气均匀的烘烤烟草,使其达到提升烟气量。同时加热组件和热量回收装置为高纯氧化铝陶瓷,高纯氧化铝陶瓷具有高致密性,在微观结构上几乎没有孔隙,流体中的污染物无法渗透进入其内,无法在表面留下污染和异味,且因为是空气加热的方式不与烟弹接触也能保证装置不受污染。
附图说明
图1为根据本发明一个实施例的非接触加热空气式电子烟加热器的结构示意图;
图2为根据本发明一个实施例的陶瓷发热体的示意图;
图3为根据本发明一个实施例的导流片的示意图;
图4为根据本发明一个实施例的热量回收装置的示意图;
图5为根据本发明一个实施例的发烟制品承载组件的结构示意图;
图6为根据本发明另一个实施例的发烟制品承载组件的结构示意图;
图7为根据本发明又一个实施例的发烟制品承载组件的结构示意图;
图8为根据本发明实施例的非接触式电子烟加热器中陶瓷发热体的加热控制方法的流程图;
图9为根据本发明一个实施例的非接触式电子烟加热器中陶瓷发热体的加热控制方法的流程图;以及
图10为根据本发明实施例的非接触式电子烟加热器中陶瓷发热体的加热控制装置的方框示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
为了更好的理解上述技术方案,下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细的说明。
首先,本申请的发明人经过大量的研究和实验发现,采用对空气进行加热,再利用抽吸过程中热空气流动来烘烤发烟制品的方式来实现加热的方案,整体加热效果会更好。
但是,采用空气加热方案时,首先需要选择合适的发热体来加热空气,而发热体在加热空气时,需要室温空气进入发热体,从发热体出来后的空气温度达到300℃以上;其次,还需要考虑到一般抽吸习惯,即温度上升过程需要支持每秒约20ml,每口抽吸3秒左右,发热体需要共约60ml空气的加热效率。
为达成如上效果,发明人经过大量实验得出,当采用加热丝对空气进行加热的方案时,单依靠加热丝加热空气需要较高的加热丝温度,只有在加热丝的温度达到600℃以上时, 才能将流过的空气加热到300℃以上,且一旦有气流经过时加热丝就会迅速冷却,这样单口抽吸动作就会使加热丝的温度下降幅度达200-300℃。为此,需要在抽吸时对加热丝进行功率补偿,否则难以达到抽吸烟支所需加热空气的效果,然而基于气流传感器检测气流大小来对加热丝的功率进行补偿时,由于加热丝与空气接触面积小,此功率补偿方案不仅需要较高的功率才能达到所需加热效果,同时还存在加热后气体温度不精准、补偿响应不及时而导致各向气温不均匀的问题。
并且,在通过提高加热丝的温度来将流过的空气加热到300℃以上时,由于加热丝的温度增高,且直接与空气接触,可能会导致加热丝分离出的金属离子混入抽吸气流而进入人体,危害人体健康。
综上,本申请的发明人经过大量研究得出,采用空气加热的方案来对发烟制品烘烤时,对空气加热的发热体需要具有较大的加热面积,来减小发热体与空气温差,同时发热体还需要较大的热容来对抗抽吸气流经过后的降温,以及发热体还需要较高的热导率来降低加热准备时间。
为此,申请人基于多年来对陶瓷的深入研究发现,通过设计蜂窝陶瓷的多孔结构可以带来更大的加热表面积,使发热体具有很高的加热空气的效率,同时多孔结构的蜂窝陶瓷发热体更接近实心结构,比同体积的陶瓷管拥有更高的热容,另外氧化铝材料导热率大于30W/MK,可以使热量更迅速更均匀的传导,热导率高,从而,采用多孔结构的蜂窝陶瓷发热体能够满足空气加热的方式来烘烤发烟制品的需求。
下面就参照附图来描述本发明实施例提出的陶瓷发热体、非接触式电子烟加热器中陶瓷发热体的加热控制方法、非接触式电子烟加热器中陶瓷发热体的加热控制装置以及非接触式电子烟加热器。
结合图1和图2所示,本发明实施例的陶瓷发热体10包括发热本体11和发热电路12。
其中,发热本体11呈柱状,且发热本体11内设有多孔通道101;发热电路12设置在发热本体11上,以对通过多孔通道101的空气进行加热。
也就是说,发热电路12在通电后进行加热工作,从而对通过多孔通道101的空气进行加热,实现空气均匀加热的功能。
可选地,发热本体11可以是圆柱状,也可以是多边形柱状,例如棱柱状、方柱状、五边形柱状等,本发明对此并不做具体限定。
作为一个实施例,如图2所示,发热本体11为圆柱体,且多孔通道101沿轴向设置在发热本体11内。
并且,如图2所示,发热电路12采用厚膜电路的方式印刷在发热本体11的外表面,例如采用发热丝的形式环绕在发热本体11的外表面,且与发热本体11一起成为一体。
根据本发明的一个实施例,发热电路12的印刷材料包括银、钨或钼锰。
具体地,将圆柱形蜂窝状陶瓷发热本体的外壁印刷发热银浆厚膜发热电路进行加热,由于陶瓷发热本体11采用了多孔蜂窝状结构,能够大大增加发热体的加热表面积,通过实验验证,只需将发热本体11加热至380℃左右,就能将空气加热到300℃以上,且由于陶瓷发热本体11有较高的热容,在每口抽吸气流例如50ml空气经过陶瓷发热体后,其温度降低较小,仅降低20-30℃。
发热电路12采用厚膜电路的方式印刷在发热本体11的外表面时,其发热电阻一般都是PTC热敏电阻,即温度升高电阻变大,经过多次升降温实验发现,陶瓷发热体温度与电阻是对应的,从而陶瓷发热体温度可通过测量电阻阻值进行表征。这样在直流电源恒压供电下,利用厚膜发热电路的自补偿效应(发热体降温,电阻阻值下降,电流增大,功率增大)就能将发热体温度在几秒内拉回原先温度,而在无气流通过时,发热体温度可保持稳定无波动。
因此,在本发明的实施例中,发热本体11由于采用蜂窝结构,使得陶瓷发热体能够提供充足的热容,使得模拟抽烟过程中气流对发热体产生的温度效应很小,从而无需进行功率补偿,依靠自身调节即可实现抽吸烟支所需加热空气的效果。
并且,采用厚膜电路的方式印刷在发热本体11的发热电路12具有清晰的热敏效应,会随温度升高电阻变大,温度降低电阻变小,其自身即可作为热传感器来使用,因此不需要温度传感器来控制发热体温度。
从而,如图8所示,本发明实施例的非接触式电子烟加热器中陶瓷发热体的加热控制方法包括以下步骤:
S1,在非接触式电子烟加热器开启时,控制发热电路采用第一工作电压进行加热工作,并对发热电路的工作时间进行计时。
也就是说,在非接触式电子烟加热器开启时,先给发热电路施加一个恒定的电压,采用高功率拉升,提高升温速度,同时对发热电路的工作时间进行计时。
S2,检测发热电路的工作电流。
S3,根据发热电路的工作时间和发热电路的工作电流对发热电路的工作电压进行降压控制。
即言,由于快速升温阶段,电压是恒定的,且发热电路的阻值随温度升高而升高,从而发热电路的工作电流随温度升高而降低,进而可以通过发热电路的工作电流来反映陶瓷发热体的工作温度,并在陶瓷发热体达到一定的工作温度后再根据发热电路的工作时间来 对发热电路的工作电压进行降压控制,实现热平衡控制。
因此,根据本发明实施例的非接触式电子烟加热器中陶瓷发热体的加热控制方法,由于发热本体采用多孔蜂窝结构,使得陶瓷发热体能够提供充足的热容,从而使得模拟抽烟过程中气流对发热体产生的温度效应很小,再加上发热电路具有清晰的热敏效应,因而在非接触式电子烟加热器开启时,先控制发热电路采用第一工作电压进行加热工作,然后再根据发热电路的工作时间和发热电路的工作电流对发热电路的工作电压进行降压控制,即通过控制发热电路的工作电压就可实现抽吸烟支所需加热空气的效果,无需基于气流传感器进行动态功率补偿,也无需基于温度传感器探测和控制温度,不仅简化了控制系统的复杂度,而且具有更佳的控制响应效果。
进一步地,如图9所示,本发明一个实施例提出的非接触式电子烟加热器中陶瓷发热体的加热控制方法包括以下步骤:
S1,在非接触式电子烟加热器开启时,控制发热电路采用第一工作电压进行加热工作,并对发热电路的工作时间进行计时。
也就是说,在非接触式电子烟加热器开启时,先给发热电路施加一个恒定的电压,采用高功率拉升,提高升温速度,同时对发热电路的工作时间进行计时。
S2,检测发热电路的工作电流。
S3,根据发热电路的工作时间和发热电路的工作电流对发热电路的工作电压进行降压控制。
即言,由于快速升温阶段,电压是恒定的,且发热电路的阻值随温度升高而升高,从而发热电路的工作电流随温度升高而降低,进而可以通过发热电路的工作电流来反映陶瓷发热体的工作温度,并在陶瓷发热体达到一定的工作温度后再根据发热电路的工作时间来对发热电路的工作电压进行降压控制,实现热平衡控制。
S4,当降压完成后,根据发热电路的工作电流变化率对发热电路的工作电压进行适应性调整。
也就是说,在降压完成后,进入热平衡阶段,这时用户每吸一口烟,发热电路的工作电流就会升高,而根据不同人群的每一口烟气量的大小,电流的变化率不同,因此,为满足不同人群的抽吸习惯,可根据发热电路的工作电流变化率对发热电路的工作电压进行适应性调整,从而来适应不同人群的抽吸习惯。
根据本发明的一个实施例,步骤S4中,根据发热电路的工作电流变化率对发热电路的工作电压进行适应性调整,包括:判断所述发热电路的工作电流变化率是否处于预设的电 流变化率区间;如果所述发热电路的工作电流变化率大于所述电流变化率区间的上限值,则控制所述发热电路的工作电压降低;如果所述发热电路的工作电流变化率小于所述电流变化率区间的下限值,则控制所述发热电路的工作电压升高;如果所述发热电路的工作电流变化率处于所述电流变化率区间,则控制所述发热电路的工作电压保持不变。
其中,预设的电流变化率区间可根据实际情况进行标定。
也就是说,在热平衡阶段,如果用户每口抽吸的烟气量比较大,那么发热电路的电流变化率比较大,这时为了保证热平衡,就需要把发热电路的工作电压降低一些,例如可降低一格,可以是降低一个电压阈值(0.1V);如果用户每口抽吸的烟气量比较小,那么发热电路的电流变化率比较小,这时为了保证热平衡,就需要把发热电路的工作电压升高一些,例如可升高一格,可以是升高一个电压阈值(0.1V);如果用户每口抽吸的烟气量比较适中,那么发热电路的电流变化率处于预设的电流变化率区间,这时无需对发热电路的工作电压进行调整,保持不变即可。
因此,根据本发明实施例的非接触式电子烟加热器中陶瓷发热体的加热控制方法,由于发热本体采用多孔蜂窝结构,使得陶瓷发热体能够提供充足的热容,从而使得模拟抽烟过程中气流对发热体产生的温度效应很小,再加上发热电路具有清晰的热敏效应,因而在非接触式电子烟加热器开启时,先控制发热电路采用第一工作电压进行加热工作,然后再根据发热电路的工作时间和发热电路的工作电流对发热电路的工作电压进行降压控制,最后在降压完成后再根据发热电路的工作电流变化率对发热电路的工作电压进行适应性调整,即通过控制发热电路的工作电压就可实现抽吸烟支所需加热空气的效果,无需基于气流传感器进行动态功率补偿,也无需基于温度传感器探测和控制温度,不仅简化了控制系统的复杂度,而且具有更佳的控制响应效果,此外,在降压完成后还根据发热电路的工作电流变化率对发热电路的工作电压进行自适应调整,从而可以满足不同人群抽吸习惯所需的烟气量,提高用户体验。
可选地,根据本发明的一个实施例,多孔通道101的通孔为圆形孔或多边形孔。
并且,作为一个实施例,多孔通道101的通孔可有规则地分布在发热本体11内,例如图2所示。
可选地,发热本体11为圆柱体时,多孔通道101的通孔可沿圆周方向均匀地分布。或者,如图2所示,多孔通道101的通孔为多边形孔时,可以中心对称的方式分布在圆柱体中。
可以理解的是,在本发明的实施例中,多孔通道101的通孔的分布情况可不做限定, 只要可将发热本体11限定出多孔蜂窝状结构即可。
具体地,在本发明的一个实施例中,多孔通道101的通孔的孔径为0.1-2mm,例如可以是0.5mm、1mm等,相邻两个通孔之间的距离为0.1-0.5mm,例如0.2mm、0.4mm等。可以理解的是,多孔通道101的通孔的孔径和相邻两个通孔之间的距离可根据发热本体11的具体情况进行限定,只要能够进行空气流通而增加空气与表面接触面积即可。
可选地,根据本发明的一个实施例,发热本体11由氧化铝陶瓷、氮化铝陶瓷、氮化硅陶瓷、碳化硅陶瓷、氧化铍陶瓷或者氧化锆陶瓷制成。
其中,氧化铝陶瓷中的氧化铝含量大于99%,氧化铝陶瓷的密度不小于3.86g/cm 3
具体地,作为一个示例,如图2所示,上述陶瓷发热体包括由氧化铝陶瓷制成的蜂窝状发热本体11、发热电路12和导线13。其中,蜂窝状发热本体11的中心设有多孔通道101,多孔通道101为均匀排布的方形孔,发热电路12环绕设置在发热本体11的外表面,发热印电路12的首末端设置有导线13。
并且,制成发热本体11的氧化铝陶瓷的密度为3.9g/cm 3,发热本体11的电阻可以为0.1-2Ω,例如0.6Ω、0.8Ω等;多孔通道101的方形孔孔径可以为1.5mm,即方形孔边长为1.5mm;多孔通道101的壁厚可以为0.2mm,如图2所示,相邻两方形孔对应边之间的距离即多孔通道101的壁厚。
进一步地,发热电路12的材料可以为银。其中,发热电路2的印刷厚度为0.01-0.02mm,导线13可以为银导线,其直径为0.2mm。
在本发明的实施例中,制备发热本体11的氧化铝陶瓷的纯度超过99%,即高纯氧化铝陶瓷,使其蜂窝陶瓷表面的致密性很高,能有效防止烟尘颗粒吸附,起到防异味的效果。高纯氧化铝陶瓷制成的蜂窝状发热本体具有良好的导热性,导热率高达33W/MK,蜂窝状陶瓷发热体结构中的的壁厚和孔径均很小,导热效果极其良好,同时蜂窝多孔的形状可以大大的增加与空气的接触面积,使得氧化铝蜂窝陶瓷的比表面积大,加热效率高,可以更快的实现加热空气的目的。这样,本发明实施例的的蜂窝状陶瓷加热体设置在待烘烤发烟制品的下方,与待烘烤发烟制品不接触,使用者抽吸时,空气从发热体蜂窝的孔洞中流过被加热到特定温度,而后热空气流过发烟制品时将发烟制品迅速加热到320℃左右,大大提高发烟制品的受热面积和受热效率,加热更均匀,烟丝碳化更完全,避免烟丝浪费,提升了使用者口感,烟气量足,而且不受发烟制品的种类限制。并且,由于蜂窝多孔的结构存在,使得气体的流动速度得到了一定的限制,热空气与发烟制品的接触时间更长,减缓了热量的散失,节约了能源。在没有进行抽吸动作时,蜂窝陶瓷的多孔形状同时可以锁住 热空气,减少热气体的外流,进一步节约能源。
综上所述,根据本发明实施例的陶瓷发热体,通过发热本体内设有多孔通道,这样发热电路对通过多孔通道的空气进行加热时,可增大发热本体与空气的接触面积,使得蜂窝陶瓷本体的比表面积大,实现对空气的充分加热,不仅加热效率高,而且由于陶瓷发热本体具有良好的导热性,可以更快的实现加热空气的目的,以及由于多孔通道的结构存在,使得空气的流动速度得到了一定的限制,对发烟制品进行烘烤时热空气与发烟制品的接触时间更长,减缓了热量的散失,节约了能源,且在没有进行抽吸动作时,陶瓷发热本体的多孔形状同时可以锁住热空气,减少热气体的外流,进一步节约能源。此外,由于陶瓷发热本体的表面致密性很高,能有效防止烟尘颗粒吸附,起到防异味的效果。
如图1所示,本发明实施例还提出了一种非接触式电子烟加热器,其包括上述实施例描述的陶瓷发热体10、发烟制品承载组件20和密封套30。
其中,发烟制品承载组件20限定出的空腔适于放置发烟制品,且发烟制品承载组件20将发烟制品与陶瓷发热体10隔开。
可选地,作为一个实施例,发烟制品承载组件20具体可以包括陶瓷管21和挡片22,陶瓷管21限定出的空腔适于放置发烟制品,挡片22与陶瓷管21相连,且邻近陶瓷发热体10设置,以将发烟制品与陶瓷发热体10隔开。
其中,如图1、图3和图5所示,挡片22可以为导流片,导流片位于陶瓷管21的一端开口处,且与陶瓷管21组合成杯体,导流片上设有多个导流孔202。
进一步地,如图1或图3所示,多个导流孔202沿圆周方向均匀分布。
具体地,作为一个示例,如图1或图3所示,导流孔202为圆孔,且孔径为0.1-2mm。
这样,在陶瓷发热体10进行加热工作时,导流片将陶瓷发热体10与发烟制品隔开,可有效防止陶瓷发热体10直接与发烟制品接触或距离过近,从而防止发烟制品靠近陶瓷发热体部分被加热超过320℃导致烤焦,并且,在使用者进行抽吸发烟制品时,热气又可从热气流通孔迅速流入均匀快速烘烤发烟制品。
可选地,作为另一个实施例,如图6所示,挡片22构造成沿陶瓷管21的管壁向中心延伸的台阶面。
具体地,挡片22可以为两个,且两个挡片22相对设置,从而可有效地将陶瓷发热体10与发烟制品隔开,可有效防止陶瓷发热体10直接与发烟制品接触或距离过近,从而防止发烟制品靠近陶瓷发热体部分被加热超过320℃导致烤焦。并且,在使用者进行抽吸发烟制品时,热气又可从两个挡片之间的空隙迅速流入均匀快速烘烤发烟制品。
可选地,根据本发明的一个实施例,陶瓷管21由氧化铝陶瓷、氮化铝陶瓷、氮化硅陶瓷、碳化硅陶瓷、氧化铍陶瓷或者氧化锆陶瓷制成。
进一步地,导流片也可由氧化铝陶瓷、氮化铝陶瓷、氮化硅陶瓷、碳化硅陶瓷、氧化铍陶瓷或者氧化锆陶瓷制成。
其中,氧化铝陶瓷中的氧化铝含量大于99%,氧化铝陶瓷的密度不小于3.86g/cm 3
在本发明的实施例中,氧化铝陶瓷的纯度超过99%,使其陶瓷表面的致密性很高,能有效防止烟尘颗粒吸附,起到防异味的效果,并且氧化铝陶瓷具有良好的导热性,导热率高达33W/MK,加热效率高,可以更快的实现空腔中空气温度升高。
同时氧化铝陶瓷管21不作为加热部件,可以减少热量的散失,并且采用的热气流通孔一方面可以便于热气的流通,另一方面在不进行抽吸动作时也阻止了热气的直接扩散,具有保温的效果。
基于本申请的发明人对陶瓷发热体以及发烟制品承载组件20的不断深入研究,发现目前常见的加热不燃烧电子烟所采用的发烟制品,其外包裹的烟纸碳化温度低于内部烟丝,当发烟制品外包裹的烟纸超过240℃时,就会有焦糊味产生,而内部烟丝则需要约330℃烘烤才能有效出烟。这就需要解决加热烟丝到理想温度时而不将烟纸烤糊的问题。进一步地,发明人通过实验发现,若能给整支发烟制品一个较为理想的工作准备温度,如200~220℃,在实际抽吸时就会有较佳的使用体验。
为此,在采用发烟制品不与陶瓷发热体直接接触的电子烟加热器方案时,需要发烟制品承载组件20能够提供200~220℃的准备工作温度,因此需要陶瓷管还具备预热功能。为防止发烟制品与陶瓷发热体进行直接接触,需在陶瓷管底部或限定的空腔内设置挡片,以起到限位为作用。通过反复实验发现,挡片不仅可以有效地将发烟制品与陶瓷发热体进行隔离,而且发烟制品抽吸过程中产生的烟油析出物不会凝聚在陶瓷发热体和挡片上,反复抽吸自然产生自清洁效应,不易留存异味,更无须经常清洁,具有较高的使用价值。
在加热效果方面,经过多次试验发现,氧化铝陶瓷管作为发烟制品的容器,不仅可以有效地通过氧化铝材料的高热导率为发烟制品提供一个理想的准备工作温度,而且氧化铝陶瓷管材料致密,不易出现烟油残留,避免连续使用产生的异味问题。
综上所述,根据本发明的另一个实施例,陶瓷管21还可起到预热的作用,能够对发烟制品进行预热,因此可称为预热管。
可选地,为了起到更好的预热效果,预热管的管壁还可相对挡片沿轴向向外伸出,以容纳陶瓷发热体10的至少一部分。
也就是说,挡片22设置在陶瓷管21限定的空腔内,从而将空腔分隔成两部分,一部分用于放置发烟制品,另一部分用于容纳陶瓷发热体10的至少一部分。
具体地,如图7所示,挡片22为导流片时,带有多个导流孔202的导流片设置在陶瓷管21限定的空腔内。
这样,当陶瓷发热体10进行加热工作时,由于导流片与陶瓷管均为高纯氧化铝陶瓷制成,可迅速被加热,达到预热空腔的效果,提高加热效率,有利于发烟制品的均匀烘烤。
在本发明的实施例中,如图1所示,密封套30中空设置,以内套陶瓷发热体10和发烟制品承载组件20。
根据本发明实施例的非接触式电子烟加热器,通过陶瓷发热体对空气进行加热,使得被加热的流动空气均匀地烘烤发烟制品,避免发烟制品的烟丝浪费,还可提高提升烟气量。同时,由于陶瓷发热体采用高纯氧化铝陶瓷,而高纯氧化铝陶瓷具有高致密性,在微观结构上几乎没有孔隙,流体中的污染物无法渗透进入其内,从而无法在表面留下污染和异味,且由于发烟制品承载组件将发烟制品与陶瓷发热体隔开,完全实现非接触式空气加热,也能保证产品不受污染。此外,陶瓷发热体采用多孔状设置,使得蜂窝陶瓷本体的比表面积大,实现对空气的充分加热,不仅加热效率高,而且由于陶瓷发热本体具有良好的导热性,可以更快的实现加热空气的目的,以及由于多孔通道的结构存在,使得空气的流动速度得到了一定的限制,对发烟制品进行烘烤时热空气与发烟制品的接触时间更长,减缓了热量的散失,节约了能源,且在没有进行抽吸动作时,陶瓷发热本体的多孔形状同时可以锁住热空气,减少热气体的外流,进一步节约能源。
另外,为了提高升温速度,在控制陶瓷发热体进行加热工作时,可采用初期高功率拉升,达到工作温度后再采用低功率维持该工作温度的加热策略。
可选地,根据本发明的一个实施例,根据发热电路的工作时间和发热电路的工作电流对发热电路的工作电压进行降压控制,包括:判断发热电路的工作电流是否达到预设电流阈值;如果发热电路的工作电流达到预设电流阈值,则根据发热电路的工作时间获取相应的降压曲线,并根据获取的降压曲线对发热电路的工作电压进行降压控制。
具体地,作为一个示例,可将发热电路的工作时间划分成多个时间段,每个时间段对应一个降压曲线,这样,根据发热电路的工作时间获取相应的降压曲线,包括:判断发热电路的工作时间所处的时间段;根据发热电路的工作时间所处的时间段获取相应的降压曲线。
也就是说,非接触式电子烟加热器每次开启时陶瓷发热体的初始温度可能不同,这就 导致从初始温度到一定的工作温度(即热平衡温度)发热电路所需要的工作时间可能不同,为了保证热平衡,就需要根据发热电路的工作时间来确定相应的降压曲线,从而就可以实现非接触式电子烟加热器随时抽吸而不需要等待产品冷却后再抽吸的理想使用效果,充分满足用户的需求,提高用户体验。
并且,由于温度是一个传导的过程,除了陶瓷发热体达到了相应的工作温度外,发烟制品、发烟制品承载组件还没达到相应温度,因此在控制陶瓷发热体采用低功率加热(即降压后)以维持该工作温度时,不能直接将电压降到保温阶段时的电压,而需要缓慢降低。
因此,控制陶瓷发热体进入保温阶段时,降压的过程需要分成多段完成,例如需要两段式降压,第一段需要电压快速降低,第二段需要缓慢降低至保温阶段对应的电压,从而进入到维持工作温度的保温阶段。这是因为前期为了快速升温,功率远高于热平衡功率,如果降压太慢使用者第一口抽吸后再连续抽吸容易造成发烟制品的温度超过330℃,导致发烟制品出现焦胡现象,从而先快速降压后缓慢降压的控制过程就能有效避免该情况出现。
根据本发明的一个实施例,当发热电路的工作电流达到预设电流阈值时,如果发热电路的工作时间大于等于预设时间阈值,则采用多段降压曲线对发热电路的工作电压进行降压控制,其中,多段降压曲线对应的降压速率依次变小。
采用多段式降压控制,且多段降压曲线对应的降压速率依次变小,可以有效避免发烟制品出现焦胡现象,并有效实现热平衡,保证发烟制品的均匀有效烘烤,避免烟丝浪费,确保烟气量。
如图10所示,本发明实施例还提出了一种非接触式电子烟加热器中陶瓷发热体的加热控制装置,其中,陶瓷发热体包括发热本体和发热电路,发热本体呈柱状,且发热本体内设有多孔通道,发热电路设置在所述发热本体上,以对通过所述多孔通道的空气进行加热,加热控制装置900包括电压控制模块901、计时模块902和电流检测模块903。
电压控制模块901用于在非接触式电子烟加热器开启时控制发热电路采用第一工作电压进行加热工作,计时模块902用于在非接触式电子烟加热器开启时对发热电路的工作时间进行计时,电流检测模块903用于检测发热电路的工作电流。电压控制模块901还用于根据发热电路的工作时间和发热电路的工作电流对发热电路的工作电压进行降压控制。
作为一个实施例,电压控制模块901还用于在降压完成后根据发热电路的工作电流变化率对发热电路的工作电压进行适应性调整。
进一步地,电压控制模块903还用于判断所述发热电路的工作电流变化率是否处于预设的电流变化率区间;如果所述发热电路的工作电流变化率大于所述电流变化率区间的上 限值,则控制所述发热电路的工作电压降低;如果所述发热电路的工作电流变化率小于所述电流变化率区间的下限值,则控制所述发热电路的工作电压升高;如果所述发热电路的工作电流变化率处于所述电流变化率区间,则控制所述发热电路的工作电压保持不变。
也就是说,在热平衡阶段,如果用户每口抽吸的烟气量比较大,那么发热电路的电流变化率比较大,这时为了保证热平衡,就需要把发热电路的工作电压降低一些,例如可降低一格,可以是降低一个电压阈值(0.1V);如果用户每口抽吸的烟气量比较小,那么发热电路的电流变化率比较小,这时为了保证热平衡,就需要把发热电路的工作电压升高一些,例如可升高一格,可以是升高一个电压阈值(0.1V);如果用户每口抽吸的烟气量比较适中,那么发热电路的电流变化率处于预设的电流变化率区间,这时无需对发热电路的工作电压进行调整,保持不变即可。
因此,在降压完成后还根据发热电路的工作电流变化率对发热电路的工作电压进行自适应调整,从而可以满足不同人群抽吸习惯所需的烟气量,提高用户体验。
可选地,作为一个实施例,电压控制模块901还用于判断发热电路的工作电流是否达到预设电流阈值,如果发热电路的工作电流达到预设电流阈值,则根据发热电路的工作时间获取相应的降压曲线,并根据获取的降压曲线对发热电路的工作电压进行降压控制。
也就是说,在非接触式电子烟加热器开启时,电压控制模块901先给发热电路施加一个恒定的电压,采用高功率拉升,提高升温速度,同时通过计时模块902例如计时器对发热电路的工作时间进行计时。由于快速升温阶段,电压是恒定的,且发热电路的阻值随温度升高而升高,从而发热电路的工作电流随温度升高而降低,进而可以通过发热电路的工作电流来反映陶瓷发热体的工作温度,并在陶瓷发热体达到一定的工作温度(即热平衡温度)后再根据发热电路的工作时间来对发热电路的工作电压进行降压控制,实现热平衡控制。
具体地,作为一个示例,可将发热电路的工作时间划分成多个时间段,每个时间段对应一个降压曲线,其中,电压控制模块901在根据发热电路的工作时间获取相应的降压曲线时,判断发热电路的工作时间所处的时间段,并根据发热电路的工作时间所处的时间段获取相应的降压曲线。
也就是说,非接触式电子烟加热器每次开启时陶瓷发热体的初始温度可能不同,这就导致从初始温度到一定的工作温度(即热平衡温度)发热电路所需要的工作时间可能不同,为了保证热平衡,就需要根据发热电路的工作时间来确定相应的降压曲线,从而就可以实现非接触式电子烟加热器随时抽吸而不需要等待产品冷却后再抽吸的理想使用效果,充分 满足用户的需求,提高用户体验。
可选地,根据本发明的一个实施例,电压控制模块901还用于,当发热电路的工作电流达到预设电流阈值时,如果发热电路的工作时间大于等于预设时间阈值,则采用多段降压曲线对发热电路的工作电压进行降压控制,其中,多段降压曲线对应的降压速率依次变小。
这是由于温度是一个传导的过程,除了陶瓷发热体达到了相应的工作温度外,发烟制品、发烟制品承载组件还没达到相应温度,因此在控制陶瓷发热体采用低功率加热(即降压后)以维持该工作温度时,不能直接将电压降到保温阶段时的电压,而需要缓慢降低。
因此,控制陶瓷发热体进入保温阶段时,降压的过程需要分成多段完成,例如需要两段式降压,第一段需要电压快速降低,第二段需要缓慢降低至保温阶段对应的电压,从而进入到维持工作温度的保温阶段。这是因为前期为了快速升温,功率远高于热平衡功率,如果降压太慢使用者第一口抽吸后再连续抽吸容易造成发烟制品的温度超过330℃,导致发烟制品出现焦胡现象,从而先快速降压后缓慢降压的控制过程就能有效避免该情况出现。
采用多段式降压控制,且多段降压曲线对应的降压速率依次变小,可以有效避免发烟制品出现焦胡现象,并有效实现热平衡,保证发烟制品的均匀有效烘烤,避免烟丝浪费,确保烟气量。
可选地,作为一个实施例,发热电路采用厚膜电路的方式印刷在发热本体的外表面。
其中,需要说明的是,在本发明的实施例中,预设电流阈值和预设时间阈值可根据产品的实际情况进行标定。
根据本发明实施例的非接触式电子烟加热器中陶瓷发热体的加热控制装置,由于发热本体采用多孔蜂窝结构,使得陶瓷发热体能够提供充足的热容,从而使得模拟抽烟过程中气流对发热体产生的温度效应很小,再加上发热电路具有清晰的热敏效应,因而在非接触式电子烟加热器开启时,电压控制模块先控制发热电路采用第一工作电压进行加热工作,然后再根据发热电路的工作时间和发热电路的工作电流对发热电路的工作电压进行降压控制,即通过控制发热电路的工作电压就可实现抽吸烟支所需加热空气的效果,无需基于气流传感器进行动态功率补偿,也无需基于温度传感器探测和控制温度,不仅简化了控制系统的复杂度,而且具有更佳的控制响应效果。此外,在降压完成后还根据发热电路的工作电流变化率对发热电路的工作电压进行自适应调整,从而可以满足不同人群抽吸习惯所需的烟气量,提高用户体验。
此外,本发明实施例还提出了一种非接触式电子烟加热器,其包括上述的非接触式电 子烟加热器中陶瓷发热体的加热控制装置。
根据本发明实施例的非接触式电子烟加热器,通过上述的加热控制装置,能够通过控制发热电路的工作电压就可实现抽吸烟支所需加热空气的效果,无需基于气流传感器进行动态功率补偿,也无需基于温度传感器探测和控制温度,不仅简化了控制系统的复杂度,而且具有更佳的控制响应效果。此外,还可以满足不同人群抽吸习惯所需的烟气量,提高用户体验。
结合图1至图4所示,本发明实施例还提出的一种非接触加热空气式电子烟加热器,包括加热组件1、密封套30和热量回收装置3,其中,所述热量回收装置3的侧壁内设有第一蜂窝状多孔通道31,所述第一蜂窝状多孔通道31将热量回收装置3分成外壁32和内壁33;所述热量回收装置3内壁33中设置有密封套30,所述密封套30内套有加热组件1,所述加热组件1通过密封套30与热量回收装置3相连接;所述加热组件1内设置有发热本体11;所述发热本体11上设置有发热电路12,所述发热电路12的端点处设置有导线13,所述发热本体11内设置有第二蜂窝状多孔通道101。
进一步的,所述加热组件1从上至下依次为预热管21、导流片22和发热体20,所述导流片22上设置有若干导流孔202。
进一步的,所述加热组件1和热量回收装置3均为高纯氧化铝陶瓷,其密度不小于3.86g/cm 3
进一步的,所述第一蜂窝状多孔通道31和第二蜂窝状多孔通道101为均匀排布的方形孔或其它多边形孔,其孔径范围为0.1~2mm,相邻两孔间的最小距离为0.1~0.5mm。
进一步的,所述发热电路12印刷材料包括但不仅限于银、钨、MoMn(钼锰)。
进一步的,所述导线13材料包括但不仅限于银、铜、镍。
本实施例中,如图1所示,所述热量回收装置3的侧壁内设有第一蜂窝状多孔通道31,所述第一蜂窝状多孔通道31将热量回收装置3分成外壁32和内壁33;所述热量回收装置3内壁33中设置有密封套30,所述密封套30内套有加热组件1,所述加热组件1通过密封套30与热量回收装置3相连接;所述加热组件1从上至下依次为预热管21、导流片22和发热本体11,如图2所示,所述发热本体11上设置有发热电路12,所述发热电路12的端点处设置有导线13,所述发热本体11内设置有第二蜂窝状多孔通道101。当吸烟者需要吸烟时将发烟制品(例如烟弹)放入预热管21中防止烟弹掉落,通电后发热电路12开始发热,由于烟弹在280℃-320℃进行烘烤才能将尼古丁等有效成分烘烤出即可以产生抽吸的烟气,所以装置需要进行预热,当预热管21和导流片22温度达到200℃后预热完成,由于预加热已经完成,在第一、二口抽吸即第一次加热的时候,烟弹只需要从200℃升温 到320℃,比从室温升温更快,且更能保证第一、二口产生的烟气量。为了快速加热特将发热本体11内设置有第二蜂窝状多孔通道101,且此多孔通道为均匀排布的方形孔或其它多边形孔,其孔径范围为0.1~2mm,相邻两孔间的最小距离为0.1~0.5mm,其展开面积大,因此加热空气效率非常高,而且热空气是从蜂窝中心流过不与发热电路12接触,不会产生污染。同时加热组件1和热量回收装置3均为高纯氧化铝陶瓷,高纯氧化铝陶瓷电绝缘性好、强度高、导热性好,因此发热体20在加热的时候不会漏电,且预热管21和导流片22也会因为高纯氧化铝陶瓷的良好导热性快速升温,不用等多久便可进行抽吸烟弹;在抽吸烟弹的时候气流通过发热体20被加热到320℃,而后经过导流片22上的导流孔202进一步均化和分流,更均匀的流入烟弹中加热烟丝,使其提升烟气量,在加热过程中,所有不作用于烟弹的热量会进行回收,因为热量回收装置3内壁33中设置有密封套30,密封套30内套有加热组件1,加热组件1所产生的不作用于烟弹的热量会向第一蜂窝状多孔通道31传递热量,且此多孔通道为均匀排布的方形孔或其它多边形孔,其孔径范围为0.1~2mm,相邻两孔间的最小距离为0.1~0.5mm,其展开面积大,因此升温效率非常高,从而起到保温作用,减少升温时间来实现节能。当进行抽吸时,被加热的空气往第二蜂窝状多孔通道101流动,空气流入热量回收装置3进一步带走第一蜂窝状多孔通道31中的热量,从而实现热量的回收,此中密封套30起到将热量回收装置3和加热组件1之间密封作用,保证热空气不会流到其他地方。在吸烟的过程中烟弹飘散出的流体污染物难免会有一些留在装置内,由于高纯氧化铝陶瓷具有高致密性,其密度不小于3.86g/cm 3,在微观结构上几乎没有孔隙,烟气中的污染物无法渗透进入其内,无法在表面留下污染和异味。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根 据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不应理解为必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (16)

  1. 一种非接触式电子烟加热器中陶瓷发热体的加热控制方法,其特征在于,所述陶瓷发热体包括发热本体和发热电路,所述发热本体呈柱状,且所述发热本体内设有多孔通道,所述发热电路设置在所述发热本体上,以对通过所述多孔通道的空气进行加热,所述加热控制方法包括以下步骤:
    在所述非接触式电子烟加热器开启时,控制所述发热电路采用第一工作电压进行加热工作,并对所述发热电路的工作时间进行计时;
    检测所述发热电路的工作电流;
    根据所述发热电路的工作时间和所述发热电路的工作电流对所述发热电路的工作电压进行降压控制。
  2. 如权利要求1所述的非接触式电子烟加热器中陶瓷发热体的加热控制方法,其特征在于,当降压完成后,还根据所述发热电路的工作电流变化率对所述发热电路的工作电压进行适应性调整。
  3. 如权利要求2所述的非接触式电子烟加热器中陶瓷发热体的加热控制方法,其特征在于,根据所述发热电路的工作电流变化率对所述发热电路的工作电压进行适应性调整,包括:
    判断所述发热电路的工作电流变化率是否处于预设的电流变化率区间;
    如果所述发热电路的工作电流变化率大于所述电流变化率区间的上限值,则控制所述发热电路的工作电压降低;
    如果所述发热电路的工作电流变化率小于所述电流变化率区间的下限值,则控制所述发热电路的工作电压升高;
    如果所述发热电路的工作电流变化率处于所述电流变化率区间,则控制所述发热电路的工作电压保持不变。
  4. 如权利要求1-3中任一项所述的非接触式电子烟加热器中陶瓷发热体的加热控制方法,其特征在于,根据所述发热电路的工作时间和所述发热电路的工作电流对所述发热电路的工作电压进行降压控制,包括:
    判断所述发热电路的工作电流是否达到预设电流阈值;
    如果所述发热电路的工作电流达到所述预设电流阈值,则根据所述发热电路的工作时间获取相应的降压曲线,并根据获取的降压曲线对所述发热电路的工作电压进行降压控制。
  5. 如权利要求4所述的非接触式电子烟加热器中陶瓷发热体的加热控制方法,其特征 在于,将所述发热电路的工作时间划分成多个时间段,每个时间段对应一个降压曲线,其中,根据所述发热电路的工作时间获取相应的降压曲线,包括:
    判断所述发热电路的工作时间所处的时间段;
    根据所述发热电路的工作时间所处的时间段获取相应的降压曲线。
  6. 如权利要求4所述的非接触式电子烟加热器中陶瓷发热体的加热控制方法,其特征在于,当所述发热电路的工作电流达到所述预设电流阈值时,如果所述发热电路的工作时间大于等于预设时间阈值,则采用多段降压曲线对所述发热电路的工作电压进行降压控制,其中,所述多段降压曲线对应的降压速率依次变小。
  7. 一种非接触式电子烟加热器中陶瓷发热体的加热控制装置,其特征在于,所述陶瓷发热体包括发热本体和发热电路,所述发热本体呈柱状,且所述发热本体内设有多孔通道,所述发热电路设置在所述发热本体上,以对通过所述多孔通道的空气进行加热,所述加热控制装置包括计时模块、电流检测模块和电压控制模块,其中,
    所述电压控制模块用于在所述非接触式电子烟加热器开启时控制所述发热电路采用第一工作电压进行加热工作;
    所述计时模块用于在所述非接触式电子烟加热器开启时对所述发热电路的工作时间进行计时;
    所述电流检测模块用于检测所述发热电路的工作电流;
    所述电压控制模块还用于,根据所述发热电路的工作时间和所述发热电路的工作电流对所述发热电路的工作电压进行降压控制。
  8. 如权利要求7所述的非接触式电子烟加热器中陶瓷发热体的加热控制装置,其特征在于,所述电压控制模块还用于,在降压完成后根据所述发热电路的工作电流变化率对所述发热电路的工作电压进行适应性调整。
  9. 如权利要求8所述的非接触式电子烟加热器中陶瓷发热体的加热控制装置,其特征在于,所述电压控制模块还用于,
    判断所述发热电路的工作电流变化率是否处于预设的电流变化率区间;
    如果所述发热电路的工作电流变化率大于所述电流变化率区间的上限值,则控制所述发热电路的工作电压降低;
    如果所述发热电路的工作电流变化率小于所述电流变化率区间的下限值,则控制所述发热电路的工作电压升高;
    如果所述发热电路的工作电流变化率处于所述电流变化率区间,则控制所述发热电路 的工作电压保持不变。
  10. 如权利要求7-9中任一项所述的非接触式电子烟加热器中陶瓷发热体的加热控制装置,其特征在于,所述电压控制模块还用于,
    判断所述发热电路的工作电流是否达到预设电流阈值;
    如果所述发热电路的工作电流达到所述预设电流阈值,则根据所述发热电路的工作时间获取相应的降压曲线,并根据获取的降压曲线对所述发热电路的工作电压进行降压控制。
  11. 如权利要求10所述的非接触式电子烟加热器中陶瓷发热体的加热控制装置,其特征在于,将所述发热电路的工作时间划分成多个时间段,每个时间段对应一个降压曲线,其中,所述电压控制模块在根据所述发热电路的工作时间获取相应的降压曲线时,判断所述发热电路的工作时间所处的时间段,并根据所述发热电路的工作时间所处的时间段获取相应的降压曲线。
  12. 如权利要求10所述的非接触式电子烟加热器中陶瓷发热体的加热控制装置,其特征在于,所述电压控制模块还用于,当所述发热电路的工作电流达到所述预设电流阈值时,如果所述发热电路的工作时间大于等于预设时间阈值,则采用多段降压曲线对所述发热电路的工作电压进行降压控制,其中,所述多段降压曲线对应的降压速率依次变小。
  13. 一种非接触式电子烟加热器,其特征在于,包括如权利要求7-12中任一项所述的非接触式电子烟加热器中陶瓷发热体的加热控制装置。
  14. 一种计算机可读存储介质,其特征在于,其上存储有非接触式电子烟加热器中陶瓷发热体的加热控制程序,该加热控制程序被处理器执行时实现如权利要求1-6中任一项所述的非接触式电子烟加热器中陶瓷发热体的加热控制方法。
  15. 一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时,实现如权利要求1-6中任一项所述的非接触式电子烟加热器中陶瓷发热体的加热控制方法。
  16. 一种非接触式电子烟加热器,其特征在于,包括陶瓷发热体,所述陶瓷发热体包括发热本体和发热电路,所述发热本体呈柱状,且所述发热本体内设有多孔通道,所述发热电路设置在所述发热本体上,以对通过所述多孔通道的空气进行加热,所述非接触式电子烟加热器还包括存储器、处理器及存储在存储器上并可在处理器上运行的加热控制程序,所述处理器执行所述加热控制程序时,实现如权利要求1-6中任一项所述的非接触式电子烟加热器中陶瓷发热体的加热控制方法。
PCT/CN2020/090391 2019-05-16 2020-05-15 电子烟加热器及陶瓷发热体的加热控制方法和装置 WO2020228800A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217039776A KR20220008849A (ko) 2019-05-16 2020-05-15 전자담배 히터 및 세라믹 발열체의 가열제어방법과 장치
JP2021567010A JP7289467B2 (ja) 2019-05-16 2020-05-15 電子タバコヒーター及びセラミック発熱体の加熱制御方法と装置
EP20805957.6A EP3970535B1 (en) 2019-05-16 2020-05-15 E-cigarette heater and heating control method and device of ceramic heating body
US17/521,870 US11969015B2 (en) 2019-05-16 2021-11-09 Heat not burn heating device and heating control method and device for ceramic heating element

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201920703370 2019-05-16
CN201920703370.X 2019-05-16
CN201910850950.6A CN110710719B (zh) 2019-05-16 2019-09-10 电子烟加热器及陶瓷发热体的加热控制方法和装置
CN201910850964.8 2019-09-10
CN201910850950.6 2019-09-10
CN201910850964.8A CN110710720B (zh) 2019-05-16 2019-09-10 电子烟加热器及陶瓷发热体的加热控制方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/521,870 Continuation US11969015B2 (en) 2019-05-16 2021-11-09 Heat not burn heating device and heating control method and device for ceramic heating element

Publications (1)

Publication Number Publication Date
WO2020228800A1 true WO2020228800A1 (zh) 2020-11-19

Family

ID=69229941

Family Applications (9)

Application Number Title Priority Date Filing Date
PCT/CN2020/090245 WO2020228775A1 (zh) 2019-05-16 2020-05-14 陶瓷发热体及具有其的非接触式电子烟加热器
PCT/CN2020/090253 WO2020228777A1 (zh) 2019-05-16 2020-05-14 非接触式电子烟加热器
PCT/CN2020/090256 WO2020228778A1 (zh) 2019-05-16 2020-05-14 非接触式电子烟加热器
PCT/CN2020/090251 WO2020228776A1 (zh) 2019-05-16 2020-05-14 非接触式电子烟加热器
PCT/CN2020/090391 WO2020228800A1 (zh) 2019-05-16 2020-05-15 电子烟加热器及陶瓷发热体的加热控制方法和装置
PCT/CN2020/090386 WO2020228799A1 (zh) 2019-05-16 2020-05-15 非接触式电子烟加热器
PCT/CN2020/090385 WO2020228798A1 (zh) 2019-05-16 2020-05-15 非接触式电子烟加热器
PCT/CN2020/090399 WO2020228803A1 (zh) 2019-05-16 2020-05-15 非接触式电子烟加热器
PCT/CN2020/090449 WO2020228812A1 (zh) 2019-05-16 2020-05-15 电子烟加热器及陶瓷发热体的加热控制方法和装置

Family Applications Before (4)

Application Number Title Priority Date Filing Date
PCT/CN2020/090245 WO2020228775A1 (zh) 2019-05-16 2020-05-14 陶瓷发热体及具有其的非接触式电子烟加热器
PCT/CN2020/090253 WO2020228777A1 (zh) 2019-05-16 2020-05-14 非接触式电子烟加热器
PCT/CN2020/090256 WO2020228778A1 (zh) 2019-05-16 2020-05-14 非接触式电子烟加热器
PCT/CN2020/090251 WO2020228776A1 (zh) 2019-05-16 2020-05-14 非接触式电子烟加热器

Family Applications After (4)

Application Number Title Priority Date Filing Date
PCT/CN2020/090386 WO2020228799A1 (zh) 2019-05-16 2020-05-15 非接触式电子烟加热器
PCT/CN2020/090385 WO2020228798A1 (zh) 2019-05-16 2020-05-15 非接触式电子烟加热器
PCT/CN2020/090399 WO2020228803A1 (zh) 2019-05-16 2020-05-15 非接触式电子烟加热器
PCT/CN2020/090449 WO2020228812A1 (zh) 2019-05-16 2020-05-15 电子烟加热器及陶瓷发热体的加热控制方法和装置

Country Status (13)

Country Link
US (5) US12011040B2 (zh)
EP (5) EP3970523A4 (zh)
JP (5) JP2022532882A (zh)
KR (5) KR20220008293A (zh)
CN (24) CN211298449U (zh)
AU (4) AU2020273529B2 (zh)
BR (4) BR112021022814A2 (zh)
CA (4) CA3139885A1 (zh)
MX (4) MX2021013937A (zh)
SG (4) SG11202112669QA (zh)
UA (1) UA127728C2 (zh)
WO (9) WO2020228775A1 (zh)
ZA (4) ZA202108570B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022266808A1 (zh) * 2021-06-21 2022-12-29 深圳沃德韦科技有限公司 雾化装置及其加热组件

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202112673QA (en) * 2019-05-16 2021-12-30 Xiamen Fengtao Ceramics Co Ltd Non-contact heat not burn heating device
CN211298449U (zh) * 2019-05-16 2020-08-21 厦门蜂涛陶瓷有限公司 非接触式电子烟加热器
CN111616420A (zh) * 2020-07-17 2020-09-04 惠州市沛格斯科技有限公司 发热模组及发烟设备
CN111802710B (zh) * 2020-08-13 2023-08-15 深圳市为美电子科技有限公司 电子雾化装置、雾化加热控制方法、装置及雾化器主体
CN112353016A (zh) * 2020-10-30 2021-02-12 安徽中烟工业有限责任公司 一种红外辐射加热烟具的智能温控方法
CN114668187A (zh) * 2020-12-24 2022-06-28 湖南中烟工业有限责任公司 一种加热卷烟烟具
CN114668185A (zh) * 2020-12-24 2022-06-28 湖南中烟工业有限责任公司 具有隔热保温性能的气溶胶生成系统
CN114668175A (zh) * 2020-12-24 2022-06-28 湖南中烟工业有限责任公司 加热卷烟烟具用发热组件
CN114668186A (zh) * 2020-12-24 2022-06-28 湖南中烟工业有限责任公司 具有复合型导热发热体的加热卷烟烟具
CN112880880A (zh) * 2021-01-13 2021-06-01 苏州福联泰克汽车电子有限公司 一种温度传感器响应时间测试装置
CN218790498U (zh) * 2021-02-16 2023-04-07 厦门蜂涛陶瓷有限公司 一种电子烟加热器
CN113142658B (zh) * 2021-04-09 2024-03-15 河南中烟工业有限责任公司 具备自动换针结构的加热卷烟器具
CN113100501B (zh) * 2021-04-15 2022-10-11 深圳市海仕格科技有限公司 一种电子烟控制方法及控制系统
KR102608972B1 (ko) * 2021-04-30 2023-12-01 주식회사 케이티앤지 에어로졸 생성 장치
CN113208187A (zh) * 2021-05-26 2021-08-06 惠州市沛格斯科技有限公司 一种发热模组及发烟装置
CN113662271B (zh) 2021-08-09 2024-07-09 广东省奇思智能制造有限公司 一种气溶胶产生装置的加热结构和气溶胶产生装置
CN113662269B (zh) * 2021-08-20 2023-04-11 华中科技大学 一种具有微螺旋气流通道的空气加热结构及电子烟
CN114128932A (zh) * 2021-11-30 2022-03-04 北京温致科技有限公司 加热模组及加热不燃烧烟具
CN113951574A (zh) * 2021-12-02 2022-01-21 云南中烟工业有限责任公司 间接加热的多孔陶瓷发热元件的制备及多孔陶瓷发热元件
CN114468386B (zh) * 2021-12-30 2024-01-05 深圳市基克纳科技有限公司 发热装置及低温不燃烧烟具
CN114223937A (zh) * 2022-01-25 2022-03-25 云南中烟工业有限责任公司 一种具有感应加热堵头的加热卷烟烟支及其适配烟具
WO2023197287A1 (zh) * 2022-04-15 2023-10-19 深圳市十国网络技术有限公司 一种改善口感的可加热燃烧花烟条形气雾专用吸具
WO2023223543A1 (ja) * 2022-05-20 2023-11-23 日本たばこ産業株式会社 香味吸引器、香味吸引システムおよび喫煙システム
WO2023226286A1 (zh) * 2022-05-23 2023-11-30 深圳市基克纳科技有限公司 电子雾化器和气溶胶生成装置
CN114983036B (zh) * 2022-07-08 2023-03-28 富满微电子集团股份有限公司 电子烟控制电路及芯片
CN117279526A (zh) * 2022-07-12 2023-12-22 深圳华宝协同创新技术研究院有限公司 一种用于气溶胶生成装置的加热组件及气溶胶生成装置
CN116801742A (zh) * 2022-08-29 2023-09-22 深圳华宝协同创新技术研究院有限公司 气溶胶生成设备及其加热装置
EP4360481A1 (en) * 2022-10-25 2024-05-01 EQOY International Group AG A handheld device for vaporizing liquid to be inhaled by a user

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106343617A (zh) * 2016-11-30 2017-01-25 广州周立功单片机科技有限公司 电子烟控制方法、装置和电子烟
CN107095343A (zh) * 2017-05-24 2017-08-29 惠州市新泓威科技有限公司 电子烟具的加热方法
US20180228218A1 (en) * 2017-02-10 2018-08-16 Nuvoton Technology Corporation Multifunctional electronic cigarette and multifunctional portable electronic device
CN108770084A (zh) * 2018-04-13 2018-11-06 深圳瀚星翔科技有限公司 一种电子加热装置及加热方法
CN208338876U (zh) * 2018-05-22 2019-01-08 深圳市冠世博电子科技有限公司 一种用于电子烟烤烟设备的陶瓷发热体
CN110710720A (zh) * 2019-05-16 2020-01-21 厦门蜂涛陶瓷有限公司 电子烟加热器及陶瓷发热体的加热控制方法和装置

Family Cites Families (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53110133A (en) * 1977-03-07 1978-09-26 Tdk Electronics Co Ltd Porcelain heating element made from positive characteristic semiconductor
JPS5484637A (en) * 1977-12-19 1979-07-05 Ngk Spark Plug Co Ltd Heater for heating fluid
US6040560A (en) * 1996-10-22 2000-03-21 Philip Morris Incorporated Power controller and method of operating an electrical smoking system
US5878752A (en) * 1996-11-25 1999-03-09 Philip Morris Incorporated Method and apparatus for using, cleaning, and maintaining electrical heat sources and lighters useful in smoking systems and other apparatuses
JPH1154245A (ja) * 1997-08-07 1999-02-26 Sumitomo Electric Ind Ltd セラミックスヒーター
JP2949114B1 (ja) * 1998-08-04 1999-09-13 日本たばこ産業株式会社 電気式香味生成物品加熱制御装置
CN2519577Y (zh) * 2001-11-28 2002-10-30 华中科技大学 Ptc陶瓷电辅助加热器件
US6868709B2 (en) * 2002-06-13 2005-03-22 Philip Morris Usa Inc. Apparatus and method for thermomechanically forming an aluminide part of a workpiece
US7826726B2 (en) * 2004-06-07 2010-11-02 Mccoy Mark S Intra-convertible thermal vapor extraction and delivery system
US20060225724A1 (en) * 2005-04-06 2006-10-12 Turner Kevin M Solid-fueled cooking or heating device
JP2008147051A (ja) * 2006-12-11 2008-06-26 I Feng Lin 熱風発生用発熱体
JP3132085U (ja) * 2007-03-14 2007-05-31 林一峰 熱風発生装置用発熱体
EP2110033A1 (en) * 2008-03-25 2009-10-21 Philip Morris Products S.A. Method for controlling the formation of smoke constituents in an electrical aerosol generating system
US20090288670A1 (en) * 2008-05-22 2009-11-26 Kevin Tak Lee Pipe
US20100212679A1 (en) * 2009-02-26 2010-08-26 Edwar Bishara Electric heating for hookah
JP6030580B2 (ja) * 2011-02-09 2016-11-24 エスアイエス・リソーシズ・リミテッド 可変出力制御電子タバコ
US8528569B1 (en) * 2011-06-28 2013-09-10 Kyle D. Newton Electronic cigarette with liquid reservoir
US10143232B2 (en) * 2011-12-30 2018-12-04 Philip Morris Products S.A. Aerosol generating device with air flow detection
AR091509A1 (es) * 2012-06-21 2015-02-11 Philip Morris Products Sa Articulo para fumar para ser usado con un elemento de calentamiento interno
JP2014103076A (ja) * 2012-11-22 2014-06-05 Neive:Kk 正特性発熱体及び温風発生供給装置
CN203177465U (zh) * 2013-01-29 2013-09-04 中国航天空气动力技术研究院 电预热高温高压蓄热式空气加热装置
US20140299137A1 (en) * 2013-04-05 2014-10-09 Johnson Creek Enterprises, LLC Electronic cigarette and method and apparatus for controlling the same
US20160044960A1 (en) * 2013-04-15 2016-02-18 George Patrick O'Connor Smoke and/or Vapor Ignition, Cooling and Dispensing Device
GB2519101A (en) * 2013-10-09 2015-04-15 Nicoventures Holdings Ltd Electronic vapour provision system
UA118858C2 (uk) * 2013-12-05 2019-03-25 Філіп Морріс Продактс С.А. Виріб, що генерує аерозоль, з жорстким порожнистим наконечником
CN203618767U (zh) * 2013-12-13 2014-06-04 浙江中烟工业有限责任公司 一种基于电阻丝加热的非燃烧吸烟装置
CN103734912A (zh) * 2013-12-13 2014-04-23 浙江中烟工业有限责任公司 一种基于电阻丝加热的非燃烧吸烟装置
JP5799236B2 (ja) * 2013-12-24 2015-10-21 パナソニックIpマネジメント株式会社 マルチホップ通信システム、ハイブリッド子機、マルチホップ通信システムにおける通信路の選択方法
US20140251355A1 (en) * 2014-01-06 2014-09-11 Vape Holdings, Inc. Ceramic vaporizer
CN203789154U (zh) * 2014-02-11 2014-08-27 深圳市合元科技有限公司 电子烟
GB201407642D0 (en) * 2014-04-30 2014-06-11 British American Tobacco Co Aerosol-cooling element and arrangements for apparatus for heating a smokable material
CN203873004U (zh) * 2014-05-07 2014-10-15 林光榕 一种双电压电子烟控制组件
CN104116138B (zh) * 2014-06-24 2017-10-10 深圳麦克韦尔股份有限公司 电子烟及其控制方法
US9949511B2 (en) * 2014-06-24 2018-04-24 Shenzhen Smoore Technology Limited Electronic cigarette and control method therefor
CN104068473B (zh) * 2014-07-18 2017-02-01 云南中烟工业有限责任公司 一种用于电加热型卷烟的中间悬空型电加热器
EP3182847B1 (en) * 2014-08-22 2024-02-21 Fontem Ventures B.V. Method, system and device for controlling a heating element
CN104323428B (zh) * 2014-10-24 2017-10-17 林光榕 温控电子烟及其温度控制方法
WO2016069876A1 (en) * 2014-10-29 2016-05-06 Altria Client Services Llc Ethanol-free gel formulation cartridge for e-vaping device
EP3225118A4 (en) * 2014-11-27 2018-08-15 Huizhou Kimree Technology Co., Ltd Electronic cigarette and smoke volume control method therefor
CN104703308A (zh) * 2015-02-12 2015-06-10 颐中(青岛)实业有限公司 一种可分区控温式电子烟发热体
CN104770899B (zh) * 2015-03-25 2018-02-16 延吉长白山科技服务有限公司 一种加热结构及具有该加热结构的雾化装置
MX2017012842A (es) * 2015-04-15 2018-01-23 Philip Morris Products Sa Dispositivo y metodo para controlar un calentador electrico para limitar la temperatura de acuerdo con un perfil de temperatura deseado en el tiempo.
WO2016172921A1 (zh) * 2015-04-30 2016-11-03 惠州市吉瑞科技有限公司深圳分公司 一种电子烟及其发热件温度控制方法
WO2016176800A1 (en) * 2015-05-04 2016-11-10 Fontem Holdings 2 B.V. Liquid guiding structure, coil-less heating element and power management unit for electronic cigarettes
CN106307614A (zh) * 2015-06-17 2017-01-11 深圳市新宜康科技有限公司 电子烟雾化温度控制方法、控制电路及可控温电子烟雾化芯
GB201515087D0 (en) * 2015-08-25 2015-10-07 Nicoventures Holdings Ltd Electronic vapour provision system
CN205072071U (zh) * 2015-09-11 2016-03-09 深圳麦克韦尔股份有限公司 电加热烟具及其加热组件
CN105302223B (zh) * 2015-09-17 2017-09-12 深圳睿思奇科技开发有限公司 电子烟的功率调节方法及其装置、电子烟
CN205409674U (zh) * 2015-11-19 2016-08-03 深圳市云创高科电子有限公司 玻璃发热真空隔热电子烟
WO2017096512A1 (zh) * 2015-12-07 2017-06-15 深圳麦克韦尔股份有限公司 电子烟及其加热雾化控制方法
CN105411004B (zh) * 2015-12-15 2018-03-13 深圳市赛尔美电子科技有限公司 一种新型气流预热装置
CN205585323U (zh) * 2016-04-16 2016-09-21 卓尔悦(常州)电子科技有限公司 发热组件、雾化头及电子烟
CN205728062U (zh) * 2016-05-06 2016-11-30 卓尔悦欧洲控股有限公司 陶瓷发热体及应用该陶瓷发热体的电子烟
TW201742555A (zh) * 2016-05-13 2017-12-16 英美煙草(投資)有限公司 用以加熱可吸菸材料之裝置(二)
CN107136572B (zh) * 2016-05-27 2018-06-19 深圳市赛尔美电子科技有限公司 一种气流加热组件
CN106198082B (zh) * 2016-08-12 2018-08-14 北京空间飞行器总体设计部 一种基于瞬态热流控制的热防护系统性能验证装置及方法
DE102016115574B4 (de) * 2016-08-23 2024-06-20 Schott Ag Heizelemente für elektronische Zigaretten
CN107788579B (zh) * 2016-09-07 2021-02-02 湖南中烟工业有限责任公司 一种超声雾化电子烟控制方法及电路
US10918127B2 (en) * 2016-09-27 2021-02-16 Bond Street Manufacturing Llc Vaporizable tobacco wax compositions and container thereof
CN206390305U (zh) * 2017-01-13 2017-08-11 深圳市泰康瑞科技有限公司 一种对流加热电子烟烤烟
CN206744572U (zh) * 2017-04-07 2017-12-15 湖南中烟工业有限责任公司 一种烟弹及其电子烟
CN108685175B (zh) * 2017-04-10 2020-08-25 常州市派腾电子技术服务有限公司 雾化电路、雾化装置及雾化电路控制方法
WO2018194291A2 (ko) * 2017-04-18 2018-10-25 주식회사 아모센스 궐련형 전자담배장치용 발열히터
CN107411172A (zh) * 2017-04-20 2017-12-01 深圳市泰康瑞科技有限公司 一种蜂窝式发热体
WO2018195901A1 (zh) * 2017-04-28 2018-11-01 深圳唯嘉康健科技有限公司 一种烤烟器和加热控制方法
US11229238B2 (en) * 2017-04-28 2022-01-25 Shenzhen Jianan Technology Co., Limited Tobacco evaporator and heating control method
CN106912986A (zh) * 2017-05-04 2017-07-04 廖向阳 加热器和加热不燃烧电子烟
CN107536111A (zh) * 2017-05-04 2018-01-05 深圳市卓力能电子有限公司 一种低温型香烟吸食设备
CN107006896B (zh) * 2017-05-05 2019-04-09 湖北中烟工业有限责任公司 一种复合的陶瓷雾化器及其制备方法
CN108991601A (zh) * 2017-06-07 2018-12-14 常州市派腾电子技术服务有限公司 雾化装置及其电子烟
CN206776745U (zh) * 2017-06-07 2017-12-22 常州市派腾电子技术服务有限公司 雾化装置及其电子烟
CN206776746U (zh) * 2017-06-07 2017-12-22 常州市派腾电子技术服务有限公司 雾化装置及其电子烟
US10940275B2 (en) * 2017-06-15 2021-03-09 Vuber Technologies, Llc Cannabis vaporization temperature control
CN206852038U (zh) * 2017-06-16 2018-01-09 陈铁山 一种电子烟雾化器上釉陶瓷加热杯
CN207151944U (zh) * 2017-06-22 2018-03-30 深圳市云创高科电子有限公司 电子烟
CN107467717A (zh) * 2017-06-22 2017-12-15 深圳市云创高科电子有限公司 电子烟
CN107495471B (zh) * 2017-07-13 2018-07-03 深圳市赛尔美电子科技有限公司 低温不燃烧烟具
CN107467718B (zh) * 2017-08-15 2023-08-01 惠州市新泓威科技有限公司 电子烟具的发热装置及其控制方法
CN207236088U (zh) * 2017-08-15 2018-04-17 惠州市新泓威科技有限公司 电子烟具的发热装置
CN107373776A (zh) * 2017-09-04 2017-11-24 深圳云蒙科技有限公司 一种用于加热不燃烧卷烟的电热加热元件及其制备方法
EA202090607A1 (ru) * 2017-09-22 2020-06-18 Эситейт Интернэшнл Ллк Устройство выработки аэрозоля, содержащее пористую массу
CN109549253B (zh) * 2017-09-27 2024-06-11 常州市派腾电子技术服务有限公司 雾化器及其电子烟
JP7344199B2 (ja) * 2017-10-05 2023-09-13 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 連続的な電力調整を有する電気的に作動するエアロゾル発生装置
CN107594624A (zh) * 2017-10-20 2018-01-19 刘础齐 一种用于加热不燃烧卷烟的电加热型两级复合烘烤装置
KR102138245B1 (ko) * 2017-10-30 2020-07-28 주식회사 케이티앤지 에어로졸 생성 장치
CN207444282U (zh) * 2017-11-17 2018-06-05 深圳市合元科技有限公司 一种加热装置及烟具
CN207505928U (zh) * 2017-11-17 2018-06-19 深圳市合元科技有限公司 一种加热装置及烟具
CN208228302U (zh) * 2017-12-14 2018-12-14 深圳市卓力能电子有限公司 一种发热体及电子烟
CN107874322A (zh) * 2017-12-14 2018-04-06 深圳市卓力能电子有限公司 一种发热体及电子烟
CN108208938A (zh) * 2017-12-27 2018-06-29 深圳市卓力能电子有限公司 一种发热体及制备方法
CN208144423U (zh) * 2018-02-26 2018-11-27 常州市派腾电子技术服务有限公司 烤烟加热件、烟锅装置及电子烟
CN207869432U (zh) * 2018-03-07 2018-09-14 东莞市国研电热材料有限公司 一种多温区陶瓷发热体
CN207968984U (zh) * 2018-03-09 2018-10-12 东莞市国研电热材料有限公司 一种电子烟陶瓷发热体
CN109588779B (zh) * 2018-03-27 2024-03-29 深圳瀚星翔科技有限公司 电子雾化设备及其防干烧控制装置
CN208160039U (zh) * 2018-03-30 2018-11-30 深圳麦克韦尔股份有限公司 电子烟及其雾化装置
CN108851232B (zh) * 2018-03-30 2021-03-23 深圳麦克韦尔科技有限公司 一种电子烟烟草剩余烘烤时间检测装置、方法及电子烟
CN208079427U (zh) * 2018-04-18 2018-11-09 东莞市国研电热材料有限公司 一种热风式陶瓷发热体组件
CN109330027B (zh) * 2018-08-24 2022-10-21 深圳麦克韦尔科技有限公司 电子烟具及其控制方法、发热组件、电子设备及存储介质
CN109043671A (zh) * 2018-08-24 2018-12-21 深圳市康泓威科技有限公司 加热不燃型电子烟具
CN108903063A (zh) * 2018-08-28 2018-11-30 深圳伊卡普科技有限公司 低温烟加热系统
CN208837111U (zh) * 2018-09-11 2019-05-10 深圳市科伊斯科技有限公司 一种利用热空气烘烤烟草的加热装置及电子烟
CN108968162A (zh) * 2018-09-30 2018-12-11 湖北中烟工业有限责任公司 一种具有非接触式热元件的烟草加热装置
CN109077367A (zh) * 2018-10-26 2018-12-25 深圳伊卡普科技有限公司 非接触式加热型电子烟
CN109222250A (zh) * 2018-10-26 2019-01-18 深圳伊卡普科技有限公司 内置式烟丝加热芯
CN109561736A (zh) * 2018-11-02 2019-04-02 惠州市吉瑞科技有限公司深圳分公司 一种加热可抽吸材料的加热器及其加热不燃烧发烟设备
CN109413781A (zh) * 2018-11-05 2019-03-01 深圳顺络电子股份有限公司 一种低温烘烤电子烟发热体及其制备方法
CN109219175B (zh) * 2018-11-05 2021-06-25 深圳顺络电子股份有限公司 一种低温烘烤电子烟发热体及其制备方法
CN109463804A (zh) * 2018-12-26 2019-03-15 深圳市瑞科迈科技有限公司 一种电子烤烟
CN109549254B (zh) * 2019-01-04 2021-07-20 新化县鹏磊电子陶瓷器材科技有限责任公司 一种全陶瓷的电子烟雾化器的制作方法
CN109730360A (zh) * 2019-01-21 2019-05-10 深圳麦克韦尔股份有限公司 电子雾化装置及其加热元件的控制方法
CN109674095A (zh) * 2019-01-26 2019-04-26 深圳市合元科技有限公司 烟支加热器及电加热吸烟装置、隔热装置
CN109744590B (zh) * 2019-03-27 2022-02-15 新化县恒睿电子陶瓷科技有限公司 一种多孔蜂窝陶瓷电子烟雾化器芯
SG11202112673QA (en) * 2019-05-16 2021-12-30 Xiamen Fengtao Ceramics Co Ltd Non-contact heat not burn heating device
CN110037352B (zh) * 2019-05-16 2023-12-29 厦门蜂涛陶瓷有限公司 一种非接触加热空气式电子烟加热器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106343617A (zh) * 2016-11-30 2017-01-25 广州周立功单片机科技有限公司 电子烟控制方法、装置和电子烟
US20180228218A1 (en) * 2017-02-10 2018-08-16 Nuvoton Technology Corporation Multifunctional electronic cigarette and multifunctional portable electronic device
CN107095343A (zh) * 2017-05-24 2017-08-29 惠州市新泓威科技有限公司 电子烟具的加热方法
CN108770084A (zh) * 2018-04-13 2018-11-06 深圳瀚星翔科技有限公司 一种电子加热装置及加热方法
CN208338876U (zh) * 2018-05-22 2019-01-08 深圳市冠世博电子科技有限公司 一种用于电子烟烤烟设备的陶瓷发热体
CN110710720A (zh) * 2019-05-16 2020-01-21 厦门蜂涛陶瓷有限公司 电子烟加热器及陶瓷发热体的加热控制方法和装置
CN110710719A (zh) * 2019-05-16 2020-01-21 厦门蜂涛陶瓷有限公司 电子烟加热器及陶瓷发热体的加热控制方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022266808A1 (zh) * 2021-06-21 2022-12-29 深圳沃德韦科技有限公司 雾化装置及其加热组件

Also Published As

Publication number Publication date
ZA202108570B (en) 2022-04-28
EP3970539A4 (en) 2022-06-15
CN210988233U (zh) 2020-07-14
EP3970535A1 (en) 2022-03-23
UA127728C2 (uk) 2023-12-13
CA3139830A1 (en) 2020-11-19
ZA202108573B (en) 2022-04-28
CN110710724A (zh) 2020-01-21
CN110710720A (zh) 2020-01-21
AU2020274773A1 (en) 2021-12-09
BR112021022821A2 (pt) 2021-12-28
MX2021013936A (es) 2021-12-15
US20220061390A1 (en) 2022-03-03
EP3970535A4 (en) 2022-06-22
JP7370621B2 (ja) 2023-10-30
MX2021013937A (es) 2021-12-15
JP2022532882A (ja) 2022-07-20
WO2020228798A1 (zh) 2020-11-19
CN110710722B (zh) 2024-06-04
KR20220008847A (ko) 2022-01-21
US20220110369A1 (en) 2022-04-14
WO2020228777A1 (zh) 2020-11-19
EP3970530A1 (en) 2022-03-23
CN111011941B (zh) 2024-06-04
US12011040B2 (en) 2024-06-18
JP7289467B2 (ja) 2023-06-12
KR20220008849A (ko) 2022-01-21
KR20220008850A (ko) 2022-01-21
JP2022532198A (ja) 2022-07-13
MX2021013927A (es) 2022-01-18
EP3970523A4 (en) 2022-06-22
EP3970540A4 (en) 2022-06-15
EP3970530A4 (en) 2022-06-22
CN211185873U (zh) 2020-08-07
EP3970539A1 (en) 2022-03-23
EP3970540A1 (en) 2022-03-23
EP3970540B1 (en) 2024-09-18
CN110742315A (zh) 2020-02-04
BR112021022817A2 (pt) 2021-12-28
CN110710720B (zh) 2024-01-19
JP2022532883A (ja) 2022-07-20
CN211298446U (zh) 2020-08-21
AU2020273529A1 (en) 2021-12-09
CN110710726A (zh) 2020-01-21
AU2020274773B2 (en) 2023-09-28
CN110710723B (zh) 2024-06-04
WO2020228775A1 (zh) 2020-11-19
WO2020228803A1 (zh) 2020-11-19
CN110710725B (zh) 2024-06-04
CN111011941A (zh) 2020-04-17
ZA202108587B (en) 2022-04-28
WO2020228778A1 (zh) 2020-11-19
CN110710723A (zh) 2020-01-21
AU2020276004A1 (en) 2021-12-09
AU2020273529B2 (en) 2023-10-19
CN210960434U (zh) 2020-07-10
CN110710721B (zh) 2024-06-04
US20220061398A1 (en) 2022-03-03
CA3139838A1 (en) 2020-11-19
EP3970523A1 (en) 2022-03-23
CN211431089U (zh) 2020-09-08
WO2020228776A1 (zh) 2020-11-19
CA3139885A1 (en) 2020-11-19
CN211794337U (zh) 2020-10-30
KR20220008848A (ko) 2022-01-21
US12011041B2 (en) 2024-06-18
US20220053833A1 (en) 2022-02-24
CN110710719B (zh) 2024-02-09
WO2020228812A1 (zh) 2020-11-19
AU2020274148A1 (en) 2021-12-09
CN211298449U (zh) 2020-08-21
CA3139924A1 (en) 2020-11-19
CN110742315B (zh) 2024-01-19
US20220061388A1 (en) 2022-03-03
WO2020228799A1 (zh) 2020-11-19
BR112021022814A2 (pt) 2021-12-28
CN210988231U (zh) 2020-07-14
KR20220008293A (ko) 2022-01-20
CN211910539U (zh) 2020-11-13
CN211298432U (zh) 2020-08-21
SG11202112669QA (en) 2021-12-30
SG11202112674TA (en) 2021-12-30
CN110710719A (zh) 2020-01-21
AU2020274148B2 (en) 2023-09-28
CN110710724B (zh) 2024-06-04
US11969015B2 (en) 2024-04-30
ZA202108746B (en) 2022-01-26
EP3970535B1 (en) 2023-04-19
CN210988230U (zh) 2020-07-14
BR112021022811A2 (pt) 2022-02-15
SG11202112670RA (en) 2021-12-30
JP7370620B2 (ja) 2023-10-30
JP2022532199A (ja) 2022-07-13
SG11202112671UA (en) 2021-12-30
JP2022532712A (ja) 2022-07-19
CN110710725A (zh) 2020-01-21
CN210988232U (zh) 2020-07-14
CN211298448U (zh) 2020-08-21
MX2021013929A (es) 2021-12-15
AU2020276004B2 (en) 2023-10-05
CN211298447U (zh) 2020-08-21
CN110710722A (zh) 2020-01-21
CN110710721A (zh) 2020-01-21
US20230103278A9 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
WO2020228800A1 (zh) 电子烟加热器及陶瓷发热体的加热控制方法和装置
WO2020228805A1 (zh) 非接触式电子烟加热器
RU2789767C1 (ru) Керамический нагреватель и бесконтактный нагреватель электронных сигарет с ним
CN212787427U (zh) 非接触式电子烟加热器
CN211794327U (zh) 密封套及具有其的非接触式电子烟加热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805957

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567010

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217039776

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020805957

Country of ref document: EP

Ref document number: 2021133996

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2020805957

Country of ref document: EP

Effective date: 20211216