WO2020228579A1 - Mram器件的制造方法 - Google Patents

Mram器件的制造方法 Download PDF

Info

Publication number
WO2020228579A1
WO2020228579A1 PCT/CN2020/088934 CN2020088934W WO2020228579A1 WO 2020228579 A1 WO2020228579 A1 WO 2020228579A1 CN 2020088934 W CN2020088934 W CN 2020088934W WO 2020228579 A1 WO2020228579 A1 WO 2020228579A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard mask
layer
mask layer
remaining
etching
Prior art date
Application number
PCT/CN2020/088934
Other languages
English (en)
French (fr)
Inventor
杨成成
刘瑞盛
Original Assignee
浙江驰拓科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江驰拓科技有限公司 filed Critical 浙江驰拓科技有限公司
Publication of WO2020228579A1 publication Critical patent/WO2020228579A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N59/00Integrated devices, or assemblies of multiple devices, comprising at least one galvanomagnetic or Hall-effect element covered by groups H10N50/00 - H10N52/00

Definitions

  • the present invention relates to the technical field of semiconductor manufacturing, in particular to a manufacturing method of an MRAM device.
  • Magnetic Random Access Memory has the advantages of high-speed reading and writing, non-volatile, low power consumption, and nearly unlimited repeated erasing and writing, and has broad application prospects.
  • the core storage part of MRAM is a magnetic tunnel junction (MTJ) element, and the performance of the MTJ element directly affects the performance of the MRAM.
  • MTJ magnetic tunnel junction
  • the deposited MTJ element layer needs to be etched when manufacturing the MRAM to obtain the MTJ element.
  • the existing etching process whether reactive ion etching (Reactive Ion Etch, RIE) or ion beam etching (Ion Beam Etch, IBE) is used, the sidewalls of the final MTJ element will be greatly damaged, and then Affect the performance of MRAM.
  • the present invention provides a method for manufacturing an MRAM device, which can reduce the sidewall damage of the MTJ element and improve the reliability of the MRAM device.
  • the present invention provides a method for manufacturing an MRAM device, including:
  • the MTJ preform is etched to obtain an MTJ element that is flush with the sidewall of the remaining first hard mask layer.
  • the protective layer is deposited by plasma enhanced atomic layer deposition or plasma enhanced chemical vapor deposition.
  • the material of the protective layer includes any one of SiO 2 , SiN, SiC, SiON and SiCN.
  • a chemical reactive ion etching method is used to etch the protective layer, and the etching gas is a gas including C and F elements.
  • the MTJ element layer is etched by a chemical reactive ion etching method, and the etching gas is a gas including C, H, and O elements.
  • the MTJ element layer is etched by a physical ion acyl etching method, and the etching gas is Ar gas, Kr gas or Xe gas.
  • the MTJ preform is etched by a low-energy physical ion acyl etching method, and the etching gas is Ar gas, Kr gas or Xe gas.
  • the first hard mask layer adopts a single-layer structure of Ta or Ti, or adopts a multi-layer composite structure of Ta/Ru/Ta or Ti/Ru/Ti.
  • the second hard mask layer adopts a single-layer structure of TaO x or TiO x , or adopts a multi-layer composite structure of TaO x /Ru/Ta or TiO x /Ru/Ti.
  • the second hard mask layer is a dielectric layer.
  • a protective layer is formed on the sidewall of the remaining first hard mask layer, and the remaining first hard mask layer and the protective layer on the sidewall thereof
  • etch the MTJ element layer to obtain the MTJ preform; then remove the protective layer covering the sidewall of the remaining first hard mask layer, and then use the remaining first hard mask layer as the hard mask,
  • the MTJ preform is etched to obtain the MTJ element.
  • the sidewall damage of the MTJ preform can be reduced after the second etching, and the final MTJ element has good sidewalls.
  • the reliability of MRAM devices can be improved.
  • FIG. 1 is a schematic flowchart of a manufacturing method of an MRAM device according to an embodiment of the present invention
  • 2-9 are schematic diagrams of the structure corresponding to each process step in an embodiment of the present invention.
  • An embodiment of the present invention provides a method for manufacturing an MRAM device. As shown in FIG. 1, the method includes:
  • an MTJ element layer 202, a first hard mask layer 203, and a second hard mask layer 204 are sequentially formed on the bottom electrode 201.
  • the structure of the first hard mask layer 203 can be a single layer of metal, using metal materials such as Ta, Ti, or a composite structure of multiple layers of metal, such as a composite structure of Ta/Ru/Ta or Ti/Ru/Ti .
  • the second hard mask layer 204 may be a dielectric layer, and the material includes, but is not limited to, SiO 2 , SiN, SiC, SiON, SiCN, etc.
  • step S102 as shown in FIG. 3, the second hard mask layer 204 and the first hard mask layer 203 are sequentially etched.
  • a chemical reactive ion etching (RIE) method is used to etch the second hard mask layer.
  • the film layer 204 and the first hard mask layer 203 are etched.
  • the etching gas used is a gas including C, H, and O elements, such as CH 3 OH or C 2 H 5 OH, or a mixture of C, H, and O elements. gas.
  • the etching gas used is a gas including C and F elements, including but not limited to CF 4 , C 4 F 8 , C 2 F 6 and CHF 3 .
  • step S103 as shown in FIG. 4, the remaining second hard mask layer 2041 is removed.
  • a chemical reactive ion etching method is used to remove the remaining second hard mask layer 2041, and the etching gas used is It is a gas including C, H and O elements, such as CH 3 OH or C 2 H 5 OH, or a mixed gas including C, H and O elements.
  • a protective layer 205 is deposited, which covers the sidewalls of the remaining first hard mask layer 2031, the surface of the remaining first hard mask layer 2031, and the MTJ element layer 202 s surface.
  • the protective layer 205 may be deposited by plasma enhanced atomic layer deposition (PEALD) or plasma enhanced chemical vapor deposition (PECVD), and the deposition temperature is about 200°C.
  • the material of the protective layer 205 includes but is not limited to SiO 2 , SiN, SiC, SiON, SiCN and the like.
  • the thickness of the protective layer 205 is 3-15 nm.
  • the protective layer 205 is etched.
  • the protective layer 205 is etched by the chemical reactive ion etching method, leaving only the remaining first hard mask layer.
  • the protective layer 2051 on the sidewall of 2031 etches the protective layer in the horizontal direction.
  • the etching gas used is a gas including C and F elements, including but not limited to CF 4 , C 4 F 8 , C 2 F 6 and One or several mixed gases in CHF 3 . Since each type of etching includes three processes: physical vertical bombardment, chemical etching, and re-deposition, different shapes can be obtained.
  • step S105 is specifically implemented, it can be achieved by adjusting the ratio of the etching gas.
  • the remaining first hard mask layer 2031 and the protective layer 2051 on its sidewalls are used as hard masks to etch the MTJ element layer 202.
  • chemical reaction ions can be used.
  • the etching method is used to etch the MTJ element layer 202.
  • the etching gas used is a gas including C, H and O elements, such as CH 3 OH or C 2 H 5 OH, or a mixture of C, H and O elements. gas.
  • the MTJ element layer 202 can also be etched by physical ion acyl etching, and CH 3 OH or C 2 H 5 OH, or a mixed gas including C, H and O elements can be used after the etching is completed.
  • the sidewall of the MTJ preform 2021 is cleaned, wherein the etching gas used in the physical ion acyl etching includes but is not limited to Ar gas, Kr gas or Xe gas.
  • the protective layer 2051 covering the sidewall of the remaining first hard mask layer 2031 is removed.
  • the etching gas used is a gas including C and F elements, including but not limited to CF 4 , C 4 F 8 , C 2 F 6 and CHF 3 .
  • the MTJ preform 2021 is etched to obtain an MTJ element 2022, wherein the sidewalls of the MTJ element 2022 and the remaining second The sidewalls of a hard mask layer 2031 are flush.
  • the MTJ element layer 2021 is etched using a low-energy physical ion acyl etching method, and the etching gas used includes but not limited to Ar gas, Kr gas or Xe gas.
  • the second hard mask layer 204 may also be an oxide layer corresponding to the first hard mask layer 203.
  • Using metal and its corresponding oxide as the hard mask layer can effectively reduce the thickness of the hard mask layer, especially when the device size is reduced, the pattern can be better transferred, which is beneficial to obtain better sidewalls.
  • the second hard mask layer 204 may be a single-layer structure of TaO x or TiO x , or a multi-layer composite structure of TaO x /Ru/Ta or TiO x /Ru/Ti.
  • the etching gas used includes but not limited to HBr, etc.
  • step S103 a chemical reaction
  • the remaining second hard mask layer 2041 is removed by the ion etching method, and the etching gas used is the same including but not limited to HBr.
  • Subsequent steps S104 to S108 are the same as the above-mentioned embodiment, and will not be described again.
  • the embodiment of the present invention provides a method for manufacturing an MRAM device.
  • a protective layer is formed on the sidewalls of the remaining first hard mask layer to protect the remaining first hard mask layer and its sidewalls.
  • the layer is a hard mask, and the MTJ element layer is etched to obtain an MTJ preform; then the protective layer covering the sidewall of the remaining first hard mask layer is removed, and then the remaining first hard mask layer is used as a hard mask , Etch the MTJ preform to obtain the MTJ element.
  • the sidewall damage of the MTJ preform can be reduced after the second etching, and the final MTJ element has good sidewalls.
  • the reliability of MRAM devices can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本发明提供一种MRAM器件的制造方法,包括:在底电极上依次形成MTJ元件层、第一硬掩膜层和第二硬掩膜层;图形化第二硬掩膜层,依次刻蚀第二硬掩膜层及第一硬掩膜层;去除剩余的第二硬掩膜层;沉积一保护层,所述保护层覆盖剩余的第一硬掩膜层的侧壁和表面以及MTJ元件层的表面;对保护层进行刻蚀,只保留覆盖于剩余的第一硬掩膜层的侧壁的保护层;以剩余的第一硬掩膜层及其侧壁的保护层为硬掩膜,刻蚀MTJ元件层,得到MTJ预制件;去除覆盖于剩余的第一硬掩膜层的侧壁的保护层;以剩余的第一硬掩膜层为硬掩膜,刻蚀MTJ预制件,得到与剩余的第一硬掩膜层的侧壁平齐的MTJ元件。本发明能够降低MTJ元件的侧壁损伤,提高MRAM器件的可靠性。

Description

MRAM器件的制造方法 技术领域
本发明涉及半导体制造技术领域,尤其涉及一种MRAM器件的制造方法。
背景技术
磁性随机存取存储器(Magnetic Random Access Memory,MRAM)具有高速读写、非易失性、低功耗、接近无限次反复擦写等优点,具有广阔的应用前景。
MRAM的核心存储部分是磁性隧道结(Magnetic Tunnel Junction,MTJ)元件,MTJ元件的性能直接影响MRAM的性能。在现有工艺下,制造MRAM时需要对沉积的MTJ元件层进行刻蚀,从而得到MTJ元件。但是现有的刻蚀工艺,不论是采用反应离子刻蚀(Reactive Ion Etch,RIE)还是离子束刻蚀(Ion Beam Etch,IBE),最终得到的MTJ元件的侧壁都会有较大损伤,进而影响MRAM的性能。
发明内容
为解决上述问题,本发明提供一种MRAM器件的制造方法,能够降低MTJ元件的侧壁损伤,提高MRAM器件的可靠性。
本发明提供一种MRAM器件的制造方法,包括:
在底电极上依次形成MTJ元件层、第一硬掩膜层和第二硬掩膜层;
图形化所述第二硬掩膜层,依次刻蚀所述第二硬掩膜层及所述第一硬掩膜层;
去除剩余的第二硬掩膜层;
沉积一保护层,所述保护层覆盖剩余的第一硬掩膜层的侧壁、剩余的第一硬掩膜层的表面以及所述MTJ元件层的表面;
对所述保护层进行刻蚀,只保留覆盖于所述剩余的第一硬掩膜层的侧壁的保护层;
以所述剩余的第一硬掩膜层及其侧壁的保护层为硬掩膜,刻蚀所述MTJ元件层,得到MTJ预制件;
去除覆盖于所述剩余的第一硬掩膜层的侧壁的保护层;
以所述剩余的第一硬掩膜层为硬掩膜,刻蚀所述MTJ预制件,得到与所述剩余的第一硬掩膜层的侧壁平齐的MTJ元件。
可选地,所述保护层采用等离子体增强原子层沉积或者等离子体增强化学气相沉积的方法进行沉积。
可选地,所述保护层的材料包括SiO 2、SiN、SiC、SiON和SiCN中的任意一种。
可选地,采用化学反应离子刻蚀的方法对所述保护层进行刻蚀,刻蚀气体为包括C和F元素的气体。
可选地,采用化学反应离子刻蚀的方法刻蚀所述MTJ元件层,刻蚀气体为包括C、H和O元素的气体。
可选地,采用物理离子酰刻蚀的方法刻蚀所述MTJ元件层,刻蚀气体为Ar气、Kr气或者Xe气。
可选地,采用低能物理离子酰刻蚀的方法刻蚀所述MTJ预制件,刻蚀气体为Ar气、Kr气或者Xe气。
可选地,所述第一硬掩膜层采用Ta或者Ti的单层结构,或者,采用Ta/Ru/Ta或者Ti/Ru/Ti的多层复合结构。
可选地,所述第二硬掩膜层采用TaO x或者TiO x的单层结构,或者,采用TaO x/Ru/Ta或者TiO x/Ru/Ti的多层复合结构。
可选地,所述第二硬掩膜层为一层介电质层。
本发明提供的MRAM器件的制造方法,在刻蚀MTJ元件层之前,在剩余的第一硬掩膜层的侧壁形成保护层,以剩余的第一硬掩膜层及其侧壁的保护层为硬掩膜,刻蚀MTJ元件层,得到MTJ预制件;然后去除覆盖于剩余的第一硬掩膜层的侧壁的保护层,再以剩余的第一硬掩膜层为硬掩膜,刻蚀MTJ预制件,得到MTJ元件。通过两次刻蚀,第一次刻蚀后即使MTJ预制件侧壁有损伤,通过第二次刻蚀后,可以降低MTJ预制件的侧壁损伤,最终得到的MTJ元件具有良好的侧壁,能够提高MRAM器件的可靠性。
附图说明
图1为本发明一个实施例示出的MRAM器件的制造方法的流程示意图;
图2~图9为本发明一个实施例中对应各工艺步骤的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供一种MRAM器件的制造方法,如图1所示,所述方法包括:
S101、在底电极上依次形成MTJ元件层、第一硬掩膜层和第二硬掩膜层;
S102、图形化所述第二硬掩膜层,依次刻蚀所述第二硬掩膜层及所述第一硬掩膜层;
S103、去除剩余的第二硬掩膜层;
S104、沉积一保护层,所述保护层覆盖剩余的第一硬掩膜层的侧壁、剩余的第一硬掩膜层的表面以及所述MTJ元件层的表面;
S105、对所述保护层进行刻蚀,只保留覆盖于所述剩余的第一硬掩膜层的侧壁的保护层;
S106、以所述剩余的第一硬掩膜层及其侧壁的保护层为硬掩膜,刻蚀所述MTJ元件层,得到MTJ预制件;
S107、去除覆盖于所述剩余的第一硬掩膜层的侧壁的保护层;
S108、以所述剩余的第一硬掩膜层为硬掩膜,刻蚀所述MTJ预制件,得到与所述剩余的第一硬掩膜层的侧壁平齐的MTJ元件。
关于步骤S101,如图2所示,在底电极201上依次形成MTJ元件层202、第一硬掩膜层203和第二硬掩膜层204。其中,第一硬掩膜层203的结构可以采用单层金属,使用Ta、Ti等金属材料,也可以采用多层金属的复合结构,如Ta/Ru/Ta或者Ti/Ru/Ti的复合结构。第二硬掩膜层204可以是一层介电质层,材料包括但不限于SiO 2,SiN,SiC,SiON,SiCN等。
关于步骤S102,如图3所示,依次刻蚀第二硬掩膜层204和第一硬掩膜层203,本实施例中,采用化学反应离子刻蚀(RIE)的方法对第二硬掩膜层204和第一硬掩膜层203进行刻蚀。
对第二硬掩膜层204进行刻蚀时,使用的刻蚀气体为包括C、H和O元素的气体,如CH 3OH或者C 2H 5OH,或者包括C、H和O元素的混合气体。
对第一硬掩膜层203进行刻蚀时,使用的刻蚀气体为包括C和F元素的气体,包括但不限于CF 4、C 4F 8、C 2F 6和CHF 3
关于步骤S103,如图4所示,去除剩余的第二硬掩膜层2041,本实施例中,采用化学反应离子刻蚀的方法去除剩余的第二硬掩膜层2041,使用的刻 蚀气体为包括C、H和O元素的气体,如CH 3OH或者C 2H 5OH,或者包括C、H和O元素的混合气体。
关于步骤S104,如图5所示,沉积保护层205,保护层205覆盖剩余的第一硬掩膜层2031的侧壁、剩余的第一硬掩膜层2031的表面以及所述MTJ元件层202的表面。本实施例中,可以采用等离子体增强原子层沉积(PEALD)或者等离子体增强化学气相沉积(PECVD)的方法沉积保护层205,沉积温度大约在200℃。保护层205的材料包括但不限于SiO 2,SiN,SiC,SiON,SiCN等。保护层205的厚度在3~15nm。
关于步骤S105,如图6所示,对保护层205进行刻蚀,本实施例中采用化学反应离子刻蚀的方法对保护层205进行刻蚀,只保留覆盖于剩余的第一硬掩膜层2031的侧壁的保护层2051,即刻蚀掉水平方向上的保护层,使用的刻蚀气体为包括C和F元素的气体,包括但不限于CF 4、C 4F 8、C 2F 6和CHF 3中的一种或者几种的混合气体。由于每种刻蚀都是包含三个过程:物理竖直轰击、化学刻蚀和再沉积,从而可以得到不同的形状,具体实现步骤S105时,可以通过调节刻蚀气体的比例来实现。
关于步骤S106,如图7所示,以剩余的第一硬掩膜层2031及其侧壁的保护层2051为硬掩膜,刻蚀MTJ元件层202,本实施例中,可以采用化学反应离子刻蚀的方法对MTJ元件层202进行刻蚀,使用的刻蚀气体为包括C、H和O元素的气体,如CH 3OH或者C 2H 5OH,或者包括C、H和O元素的混合气体。另外,还可以采用物理离子酰刻蚀的方法对MTJ元件层202进行刻蚀,并在刻蚀完成后使用CH 3OH或者C 2H 5OH,或者包括C、H和O元素的混合气体对MTJ预制件2021的侧壁进行清洗,其中,物理离子酰刻蚀使用的刻蚀气体包括但不限于Ar气、Kr气或者Xe气。
关于步骤S107,如图8所示,去除覆盖于剩余的第一硬掩膜层2031的侧壁的保护层2051。本实施例中,使用的刻蚀气体为包括C和F元素的气体,包括但不限于CF 4、C 4F 8、C 2F 6和CHF 3
关于步骤S108,如图9所示,以剩余的第一硬掩膜层2031为硬掩膜,刻蚀所述MTJ预制件2021,得到MTJ元件2022,其中MTJ元件2022的侧壁与剩余的第一硬掩膜层2031的侧壁平齐。本实施例中,采用低能物理离子酰刻蚀的方法对MTJ元件层2021进行刻蚀,使用的刻蚀气体包括但不限于Ar气、Kr气或者Xe气。
另外说明的是,在本发明另一个实施例中,上述步骤S101中,第二硬掩膜层204还可以采用第一硬掩膜层203对应的氧化物层。采用金属以及其对应的氧化物来充当硬掩膜层,可以有效的降低硬掩膜层的厚度,特别是器件尺寸降低时,图形能够更好的转移,有利于获得更好的侧壁。
具体地,第二硬掩膜层204可以是TaO x或者TiO x的单层结构,也可以采用TaO x/Ru/Ta或者TiO x/Ru/Ti的多层复合结构。对应的,步骤S102中,采用采用化学反应离子刻蚀(RIE)的方法刻蚀第二硬掩膜层204时,使用的刻蚀气体包括但不限于HBr等,在步骤S103中,采用化学反应离子刻蚀的方法去除剩余的第二硬掩膜层2041,使用的刻蚀气体为同样的包括但不限于HBr等。后续步骤S104~S108与上述实施例相同,不再赘述。
本发明实施例提供MRAM器件的制造方法,在刻蚀MTJ元件层之前,在剩余的第一硬掩膜层的侧壁形成保护层,以剩余的第一硬掩膜层及其侧壁的保护层为硬掩膜,刻蚀MTJ元件层,得到MTJ预制件;然后去除覆盖于剩余的第一硬掩膜层的侧壁的保护层,再以剩余的第一硬掩膜层为硬掩膜,刻蚀MTJ预制件,得到MTJ元件。通过两次刻蚀,第一次刻蚀后即使MTJ预制件侧壁 有损伤,通过第二次刻蚀后,可以降低MTJ预制件的侧壁损伤,最终得到的MTJ元件具有良好的侧壁,能够提高MRAM器件的可靠性。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (10)

  1. 一种MRAM器件的制造方法,其特征在于,包括:
    在底电极上依次形成MTJ元件层、第一硬掩膜层和第二硬掩膜层;
    图形化所述第二硬掩膜层,依次刻蚀所述第二硬掩膜层及所述第一硬掩膜层;
    去除剩余的第二硬掩膜层;
    沉积一保护层,所述保护层覆盖剩余的第一硬掩膜层的侧壁、剩余的第一硬掩膜层的表面以及所述MTJ元件层的表面;
    对所述保护层进行刻蚀,只保留覆盖于所述剩余的第一硬掩膜层的侧壁的保护层;
    以所述剩余的第一硬掩膜层及其侧壁的保护层为硬掩膜,刻蚀所述MTJ元件层,得到MTJ预制件;
    去除覆盖于所述剩余的第一硬掩膜层的侧壁的保护层;
    以所述剩余的第一硬掩膜层为硬掩膜,刻蚀所述MTJ预制件,得到与所述剩余的第一硬掩膜层的侧壁平齐的MTJ元件。
  2. 根据权利要求1所述的方法,其特征在于,所述保护层采用等离子体增强原子层沉积或者等离子体增强化学气相沉积的方法进行沉积。
  3. 根据权利要求1所述的方法,其特征在于,所述保护层的材料包括SiO 2、SiN、SiC、SiON和SiCN中的任意一种。
  4. 根据权利要求1所述的方法,其特征在于,采用化学反应离子刻蚀的方法对所述保护层进行刻蚀,刻蚀气体为包括C和F元素的气体。
  5. 根据权利要求1所述的方法,其特征在于,采用化学反应离子刻蚀的 方法刻蚀所述MTJ元件层,刻蚀气体为包括C、H和O元素的气体。
  6. 根据权利要求1所述的方法,其特征在于,采用物理离子酰刻蚀的方法刻蚀所述MTJ元件层,刻蚀气体为Ar气、Kr气或者Xe气。
  7. 根据权利要求1所述的方法,其特征在于,采用低能物理离子酰刻蚀的方法刻蚀所述MTJ预制件,刻蚀气体为Ar气、Kr气或者Xe气。
  8. 根据权利要求1所述的方法,其特征在于,所述第一硬掩膜层采用Ta或者Ti的单层结构,或者,采用Ta/Ru/Ta或者Ti/Ru/Ti的多层复合结构。
  9. 根据权利要求1所述的方法,其特征在于,所述第二硬掩膜层采用TaO x或者TiO x的单层结构,或者,采用TaO x/Ru/Ta或者TiO x/Ru/Ti的多层复合结构。
  10. 根据权利要求1所述的方法,其特征在于,所述第二硬掩膜层为一层介电质层。
PCT/CN2020/088934 2019-05-16 2020-05-07 Mram器件的制造方法 WO2020228579A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910407222.8A CN111952440B (zh) 2019-05-16 2019-05-16 Mram器件的制造方法
CN201910407222.8 2019-05-16

Publications (1)

Publication Number Publication Date
WO2020228579A1 true WO2020228579A1 (zh) 2020-11-19

Family

ID=73289043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088934 WO2020228579A1 (zh) 2019-05-16 2020-05-07 Mram器件的制造方法

Country Status (2)

Country Link
CN (1) CN111952440B (zh)
WO (1) WO2020228579A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115249764A (zh) * 2021-04-28 2022-10-28 浙江驰拓科技有限公司 一种硬掩模的制备方法及磁随机存储器的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065755A (ja) * 2011-09-20 2013-04-11 Toshiba Corp 半導体記憶装置およびその製造方法
CN103985672A (zh) * 2013-02-08 2014-08-13 台湾积体电路制造股份有限公司 从半导体器件去除膜的方法
CN104465984A (zh) * 2013-09-17 2015-03-25 中芯国际集成电路制造(北京)有限公司 磁性隧道结及其形成方法
CN105428231A (zh) * 2014-09-11 2016-03-23 朗姆研究公司 用于新兴存储装置的电介质修复
CN108140728A (zh) * 2015-07-30 2018-06-08 海德威科技公司 用于自旋式组件的物理性去除和封装层原位沉积方法
CN108232004A (zh) * 2016-12-21 2018-06-29 上海磁宇信息科技有限公司 一种轻离子溅射刻蚀制备磁性隧道结的方法
CN108232007A (zh) * 2016-12-21 2018-06-29 上海磁宇信息科技有限公司 一种气体团簇离子束修剪被刻蚀后的磁性隧道结的方法
US10103322B1 (en) * 2017-03-22 2018-10-16 Headway Technologies Inc. Method to remove sidewall damage after MTJ etching

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060169A (ja) * 2001-08-15 2003-02-28 Sony Corp 磁気記憶装置の製造方法および磁気ヘッドの製造方法
WO2015147855A1 (en) * 2014-03-28 2015-10-01 Intel Corporation Techniques for forming spin-transfer torque memory having a dot-contacted free magnetic layer
US9660177B2 (en) * 2015-09-09 2017-05-23 Headway Technologies, Inc. Method to minimize MTJ sidewall damage and bottom electrode redeposition using IBE trimming
US20180033957A1 (en) * 2016-07-26 2018-02-01 Shanghai CiYu Information Technologies Co., LTD Method to make magnetic ramdom accesss memroy array with small footprint
CN108232002B (zh) * 2016-12-14 2022-02-25 上海磁宇信息科技有限公司 一种制备磁性隧道结阵列的方法
CN109065480B (zh) * 2018-08-03 2021-09-07 江苏鲁汶仪器有限公司 一种磁隧道结刻蚀方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065755A (ja) * 2011-09-20 2013-04-11 Toshiba Corp 半導体記憶装置およびその製造方法
CN103985672A (zh) * 2013-02-08 2014-08-13 台湾积体电路制造股份有限公司 从半导体器件去除膜的方法
CN104465984A (zh) * 2013-09-17 2015-03-25 中芯国际集成电路制造(北京)有限公司 磁性隧道结及其形成方法
CN105428231A (zh) * 2014-09-11 2016-03-23 朗姆研究公司 用于新兴存储装置的电介质修复
CN108140728A (zh) * 2015-07-30 2018-06-08 海德威科技公司 用于自旋式组件的物理性去除和封装层原位沉积方法
CN108232004A (zh) * 2016-12-21 2018-06-29 上海磁宇信息科技有限公司 一种轻离子溅射刻蚀制备磁性隧道结的方法
CN108232007A (zh) * 2016-12-21 2018-06-29 上海磁宇信息科技有限公司 一种气体团簇离子束修剪被刻蚀后的磁性隧道结的方法
US10103322B1 (en) * 2017-03-22 2018-10-16 Headway Technologies Inc. Method to remove sidewall damage after MTJ etching

Also Published As

Publication number Publication date
CN111952440B (zh) 2023-04-07
CN111952440A (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
TWI723057B (zh) Stt-ram結構之離子束蝕刻
KR102330561B1 (ko) 비에칭 자기 정렬 자석 터널 접합(mtj) 디바이스 구조물
TWI737607B (zh) 圖案化磁性通道接面的硬遮罩
US6897532B1 (en) Magnetic tunneling junction configuration and a method for making the same
US9564582B2 (en) Method of forming magnetic tunneling junctions
EP3531461B1 (en) Fabrication of large height top metal electrodes for sub-60 nm width magnetic tunnel junctions of magnetoresistive random access memory devices
US11367832B2 (en) Method of making magnetoresistive random access memory device
US20130034917A1 (en) Method for fabricating magnetic tunnel junction device
CN111566831B (zh) 用于高性能磁性随机存取存储器装置的自由层氧化与间隔物辅助磁性穿隧结蚀刻
CN107623069B (zh) 一种刻蚀磁性隧道结及其底电极的方法
KR102299219B1 (ko) 스핀 토크 자기 랜덤 액세스 메모리의 스페이서 보조 이온 빔 에칭
US20200052196A1 (en) Avoiding Oxygen Plasma Damage During Hard Mask Etching in Magnetic Tunnel Junction (MTJ) Fabrication Process
JP5085637B2 (ja) Mramデバイス構造内の電気的短絡を排除するドライエッチング停止処理
US9543509B2 (en) Magnatoresistive structure and method for forming the same
KR102230436B1 (ko) 60 nm 이하 MRAM의 복수 스페이서 보조 물리적 에칭
KR102496547B1 (ko) 반도체 디바이스 제조 방법
CN110071214B (zh) 一种减小刻蚀产物侧壁再淀积的刻蚀方法
WO2020228579A1 (zh) Mram器件的制造方法
CN111613719A (zh) 一种制作磁性随机存储器单元阵列的方法
CN108231580A (zh) 一种清除磁性隧道结硬掩模刻蚀之后形成的聚合物的方法
US6972265B1 (en) Metal etch process selective to metallic insulating materials
CN101449361A (zh) 消除磁性随机存取存储器器件结构中的电短路的干法蚀刻停止工艺
JP6564683B2 (ja) デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20806504

Country of ref document: EP

Kind code of ref document: A1