WO2020224429A1 - 一种各向异性层状无机纤维气凝胶材料及其制备方法 - Google Patents

一种各向异性层状无机纤维气凝胶材料及其制备方法 Download PDF

Info

Publication number
WO2020224429A1
WO2020224429A1 PCT/CN2020/085976 CN2020085976W WO2020224429A1 WO 2020224429 A1 WO2020224429 A1 WO 2020224429A1 CN 2020085976 W CN2020085976 W CN 2020085976W WO 2020224429 A1 WO2020224429 A1 WO 2020224429A1
Authority
WO
WIPO (PCT)
Prior art keywords
chloride
fiber aerogel
inorganic fiber
acid
aerogel material
Prior art date
Application number
PCT/CN2020/085976
Other languages
English (en)
French (fr)
Inventor
伍晖
贾超
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to US16/980,376 priority Critical patent/US11857937B2/en
Publication of WO2020224429A1 publication Critical patent/WO2020224429A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/301Oxides other than silica porous or hollow
    • C04B14/302Aerogels
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6225Fibres based on zirconium oxide, e.g. zirconates such as PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • D01D5/14Stretch-spinning methods with flowing liquid or gaseous stretching media, e.g. solution-blowing
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Definitions

  • the structure can be cut into any desired shape and stacked to a desired thickness; and the prepared inorganic fiber aerogel material has good flexibility and compressibility; the layered structure of the inorganic fiber aerogel material Inorganic components make aerogel materials have excellent fire resistance, good high and low temperature resistance and thermal insulation, which greatly expands its application fields.
  • Fig. 6 is a scanning electron micrograph of an anisotropic layered inorganic fiber aerogel material in another embodiment of the present disclosure.
  • the step of preparing the polymer solution includes: adding a certain amount of polymer material to a certain amount of solvent, and then at room temperature (25°C) ⁇ 100°C Under the conditions of stirring and dissolving at a speed of 50-1000 rpm for 0.1-10 hours, a polymer solution with a suitable concentration can be obtained.
  • the specific amount of polymer materials and solvents and specific process conditions can be determined by those skilled in the art according to specific The polymer material and the selected solvent are set. There are no restrictions here, as long as the polymer material is fully and quickly dissolved.
  • the stirring can be accomplished by mechanical stirring or magnetic stirring.
  • the inorganic precursor, catalyst and chloride are added to the polymer solution separately, and a spinning precursor mixture with a certain viscosity is obtained by stirring; in other embodiments of the present disclosure, The inorganic precursor, catalyst and chloride are mixed first, and then added to the polymer solution, and a spinning precursor mixture with a certain viscosity is obtained by stirring.
  • the specific method of stirring is also not limited. It can be mechanical stirring or magnetic stirring, which is not limited here.
  • the inorganic fiber aerogel material can be completely restored (refer to Figure 2), while compressing the inorganic fiber aerogel material from the direction parallel to the inorganic fiber layer, the inorganic fiber aerogel material cannot Restore the original state (see Figure 3).
  • the spinning precursor mixture is spun using the jet spinning technology, and the spinning precursor mixture is ejected from the spinneret of the jet spinning equipment by compressed air, specifically: Jet spinning adopts a pair of coaxial nozzles, using compressed air to extrude the spinning precursor mixture through the inner nozzle, and the high-speed airflow is ejected through the outer nozzle.
  • the spinning precursor mixture is polymerized under the shearing action of the high-speed airflow.
  • the jet further splits, stretches, and refines.
  • the solvent continuously volatilizes, and the fibers are formed and solidified and collected on the receiving device (also called "receiver").
  • the extrusion speed of the spinning precursor mixture is 0.1-15 ml/ Hours (e.g. 0.1mL/h, 0.5mL/h, 1mL/h, 2mL/h, 3mL/h, 4mL/h, 5mL/h, 6mL/h, 7mL/h, 8mL/h, 9mL/h, 10mL /h, 11mL/h, 12mL/h, 13mL/h, 14mL/h, 15mL/h), the distance between the spinneret and the receiver is 20-100 cm (such as 20cm, 30cm, 40cm, 50cm, 60cm , 70cm, 80cm, 90cm, 100cm), the airflow velocity of compressed air is 1-50m/s (such as 1m/s, 5m/s, 10m/s,
  • Figure 2 refers to Figure 2, Figure 3, Figure 4 and Figure 5 for the physical images of the prepared inorganic fiber aerogel material, and refer to Figure 6 for the scanning electron microscope images (SEM) of the inorganic fiber aerogel material.
  • SEM scanning electron microscope images
  • Good compressibility and flexibility refer to Figure 2 and Figure 5; inorganic fiber aerogel materials have excellent fire resistance, good high and low temperature resistance (after 24 hours of treatment at -196 °C and 1000 °C, inorganic fiber gas The gel material can maintain good compression resilience performance) and thermal insulation performance (the thermal conductivity of the inorganic fiber aerogel material is as low as 0.034W/m K).
  • the present disclosure provides an anisotropic layered inorganic fiber aerogel material.
  • the anisotropic layered inorganic fiber aerogel material is prepared by the aforementioned method.
  • the inorganic fiber aerogel material is composed of multiple stacked microfibers, has an anisotropic layered structure, can be cut into any desired shape, and stacked to a desired thickness; moreover, the Inorganic fiber aerogel materials have good flexibility and compressibility; the layered structure and inorganic components of inorganic fiber aerogel materials make the aerogel materials have excellent fire resistance, good high and low temperature resistance and thermal insulation It has greatly expanded its application fields.
  • the bulk density of the inorganic fiber aerogel material is 5 to 200 mg/cm 3 (such as 5 mg/cm 3 , 25 mg/cm 3 , 50 mg/cm 3 , 75 mg/cm 3 , 100 mg/cm 3 , 125mg/cm 3 , 150mg/cm 3 , 175mg/cm 3 , 200mg/cm 3 , ), the average diameter of inorganic fibers in the inorganic fiber aerogel material is 0.2-10 microns (such as 0.2 microns, 0.5 microns, 1 microns, 2 microns, 4 microns, 6 microns, 8 microns or 10 microns).
  • a preparation method of anisotropic layered inorganic fiber aerogel material adopts the following process steps:
  • the obtained composite fiber aerogel is increased from room temperature to 1100°C at a speed of 5°C/min, kept for 1 hour, and then reduced to room temperature to obtain an anisotropic layered inorganic fiber aerogel material.
  • a preparation method of anisotropic layered inorganic fiber aerogel material adopts the following process steps:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

一种各向异性层状无机纤维气凝胶材料及其制备方法。各向异性层状无机纤维气凝胶材料的制备方法包括:将高分子溶液、无机前驱体和氯化物混合,得到纺丝前驱体混合液;对纺丝前驱体混合液进行喷射纺丝,得到复合纤维气凝胶;对复合纤维气凝胶进行煅烧处理,得到各向异性层状无机纤维气凝胶材料。

Description

一种各向异性层状无机纤维气凝胶材料及其制备方法
优先权信息
本申请请求2019年05月07日向中国国家知识产权局提交的、专利申请号为201910376244.2的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本公开涉及材料技术领域,具体的,涉及一种各向异性层状无机纤维气凝胶材料及其制备方法。
背景技术
近年来,由于具有多孔三维网络结构的气凝胶材料,包括碳纳米管气凝胶、生物质来源的气凝胶、石墨烯气凝胶、无机纳米纤维气凝胶和碳纤维气凝胶等具有高的可压缩性和大应变回弹性而受到越来越多的关注。而且无机气凝胶材料具有轻量、比表面积大、热导率低、化学稳定性和热稳定性好等优点,故而,无机气凝胶材料已经被广泛应用于各种各样的领域,包括热绝缘、水处理、催化剂载体、能量吸收、高温空气过滤等。然而,传统的无机气凝胶材料一般都是由无机氧化物,如氧化硅纳米颗粒、氧化铝纳米晶、氮化硼纳米片等制备而得,无机材料固有的脆性极大地限制了它们的实际应用。
因此,开发柔韧性好、可压缩性高和耐高低温性佳的无机气凝胶材料具有重要的意义。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开的一个目的在于提出一种各向异性层状无机纤维气凝胶材料的制备方法,该方法简单、易操作,制备成本低,效率高,制备的无机纤维气凝胶材料的柔韧性好、可压缩性高,耐高低温性佳或热绝缘性优异。
在本公开的一个方面,本公开提供了一种各向异性层状无机纤维气凝胶材料的制备方法。根据本公开的实施例,所述方法包括:将高分子溶液、无机前驱体和氯化物混合,得到纺丝前驱体混合液;对所述纺丝前驱体混合液进行喷射纺丝,得到复合纤维气凝胶;对所述复合纤维气凝胶进行煅烧处理,得到各向异性层状无机纤维气凝胶材料。由此,上述制备方法简单,易操作,制备成本低、效率高,易于工业化生产;由上述方法制备的无机纤维气凝胶材料是由多层堆叠的微纤维构成,具有各向异性的层状结构,可以裁 切成所需的任意形状,以及堆叠成所需的厚度;而且制备的无机纤维气凝胶材料具有良好的柔韧性和可压缩性;无机纤维气凝胶材料的层状结构和无机组分使得气凝胶材料具有优异的耐火性、良好的耐高低温性以及热绝缘性,大大扩展了其应用领域。
根据本公开的实施例,所述高分子溶液包括高分子材料和溶剂,其中,所述高分子材料与所述溶剂的质量比为(2~30):100。
根据本公开的实施例,所述纺丝前驱体混合液中进一步包括催化剂。
根据本公开的实施例,所述纺丝前驱体混合液包括:2~30重量份的所述高分子材料;100重量份的所述溶剂;0.5~100重量份的所述无机前驱体;0.001~1重量份的所述催化剂;及1~100重量份的所述氯化物。
根据本公开的实施例,所述高分子材料选自聚乙烯醇、聚乙二醇、聚氨酯、聚丙烯酸、聚乙烯吡咯烷酮、醋酸纤维素、甲基纤维素、羧甲基纤维素、聚偏氟乙烯、聚甲基丙烯酸甲酯、聚丙烯酰胺、聚氧化乙烯、聚乳酸、聚酰胺、聚己内酯、聚乙烯醇缩丁醛、聚苯胺、聚酰亚胺和聚碳酸酯中的至少一种;
任选地,所述溶剂选自水、甲酸、四氢呋喃、丙酮、丁酮、正己烷、环己烷、正庚烷、乙腈、N-甲基吡咯烷酮、1,2-丙二醇、氯仿、二氯甲烷、1,2-二氯乙烷、甲醇、乙醇、异丙醇、叔丁醇、正丁醇、甲苯、二甲苯、乙二胺、二甲基亚砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺和四氯化碳中的至少一种;
任选地,所述无机前驱体为氧氯化锆、乙酸锆、异丙醇铝、正丙醇锆、正硅酸乙酯和正硅酸甲酯中的至少一种;
任选地,所述催化剂选自磷酸、硫酸、盐酸、硝酸、甲酸、醋酸、氢氟酸、高氯酸、三氟乙酸、柠檬酸、草酸和马来酸中的至少一种。
根据本公开的实施例,所述氯化物选自氯化锂、氯化钠、氯化钾、氯化铷、氯化铯、氯化铍、氯化镁、氯化钙、氯化锶、氯化钡、氯化镭、氯化锌、氯化铜、氯化镍、氯化钴、氯化铁、氯化亚铁、氯化锰、氯化铬、氯化钒、四氯化钛、氯化钪、氯化铝、氯化镓、氯化铟、氯化铊、氯化锡、氯化铅、氯化镉、氯化钯、氯化铑、氯化钌、氯化锆、氯化铪、三氯化锇、氯化铂、氯化金和氯化汞中的至少一种。
根据本公开的实施例,利用压缩空气将所述纺丝前驱体混合液从喷射纺丝设备的喷丝口喷出,在所述喷射纺丝中,所述纺丝前驱体混合液的挤出速度为0.1~15毫升/小时,所述喷丝口与所述接收器之间的距离为20~100厘米,所述压缩空气的气流流速为1~50米/秒。
根据本公开的实施例,所述煅烧处理的条件为:所述煅烧处理的温度以0.1~10℃ /min的升温速度升至500℃~2000℃,保温0~24小时,之后降温至室温。
在本公开的又一方面,本公开提供了一种各向异性层状无机纤维气凝胶材料。根据本公开的实施例,所述各向异性层状无机纤维气凝胶材料是由前面所述的方法制备得到的。由此,该无机纤维气凝胶材料是由多层堆叠的微纤维构成,具有各向异性的层状结构,可以裁切成所需的任意形状,以及堆叠成所需的厚度;而且,该无机纤维气凝胶材料具有良好的柔韧性和可压缩性;无机纤维气凝胶材料的层状结构和无机组分使得气凝胶材料具有优异的耐火性、良好的耐高低温性以及热绝缘性,大大扩展了其应用领域。
根据本公开的实施例,所述无机纤维气凝胶材料的体积密度为5~200mg/cm 3,任选地,所述无机纤维气凝胶材料中无机纤维的平均直径为0.2~10微米。
附图说明
图1是本公开一个实施例中各向异性层状无机纤维气凝胶材料的制备方法流程图。
图2是本公开另一个实施例中压缩各向异性层状无机纤维气凝胶材料的示意图。
图3是本公开另一个实施例中压缩各向异性层状无机纤维气凝胶材料的示意图。
图4是本公开另一个实施例中各向异性层状无机纤维气凝胶材料的实物示意图。
图5是本公开又一个实施例中压缩各向异性层状无机纤维气凝胶材料的示意图。
图6是本公开又一个实施例中各向异性层状无机纤维气凝胶材料的扫描电镜图。
发明详细描述
下面详细描述本公开的实施例。下面描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
在本公开的一个方面,本公开提供了一种各向异性层状无机纤维气凝胶材料(本文中可简称无机纤维气凝胶材料)的制备方法。根据本公开的实施例,参照图1,所述各向异性层状无机纤维气凝胶材料的制备方法包括:
S100:将高分子溶液、无机前驱体和氯化物混合,得到纺丝前驱体混合液。在该过程中,无机前驱体发生水解,得到无机氧化物,以便后续得到无机纤维气凝胶材料。
根据本公开的实施例,高分子溶液包括高分子材料和溶剂,其中,高分子材料与溶剂的质量比为(2~30):100,比如2:100、5:100、8:100、10:100、15:100、20:100、25:100、30:100。由此,可以得到溶解均匀的高分子溶液,而且上述浓度的高 分子溶液有利于后续的喷射纺丝,得到可压缩性、柔韧性等性能优异的无机纤维气凝胶材料;若高分子材料与溶剂的质量比低于2:100,则高分子溶液浓度过低,无法形成纤维;若高分子材料与溶剂的质量比高于30:100,一则高分子材料不易于全部溶解,二则高分子溶液粘度过高,难以从喷射纺丝设备的喷丝口喷出形成纤维。
根据本公开的实施例,为了得到充分溶解的高分子溶液,配制高分子溶液的步骤包括:将一定量的高分子材料添加到一定量的溶剂中,之后在室温(25℃)~100℃的条件下以50~1000rpm的转速下搅拌溶解0.1~10小时,即可得到浓度适宜的高分子溶液,其中,高分子材料和溶剂的具体用量以及具体的工艺条件,本领域技术人员可以根据具体的高分子材料和选择的溶剂进行设定,在此不作限制要求,只要保证高分子材料充分快速的溶解即可。其中,搅拌可以通过机械搅拌或磁力搅拌完成。
根据本公开的实施例,高分子材料选自聚乙烯醇、聚乙二醇、聚氨酯、聚丙烯酸、聚乙烯吡咯烷酮、醋酸纤维素、甲基纤维素、羧甲基纤维素、聚偏氟乙烯、聚甲基丙烯酸甲酯、聚丙烯酰胺、聚氧化乙烯、聚乳酸、聚酰胺、聚己内酯、聚乙烯醇缩丁醛、聚苯胺、聚酰亚胺和聚碳酸酯中的至少一种。由此,材料来源广泛,易于纺丝,而且便于在后续的煅烧过程中将高分子材料去除。
根据本公开的实施例,溶剂选自水、甲酸、四氢呋喃、丙酮、丁酮、正己烷、环己烷、正庚烷、乙腈、N-甲基吡咯烷酮、1,2-丙二醇、氯仿、二氯甲烷、1,2-二氯乙烷、甲醇、乙醇、异丙醇、叔丁醇、正丁醇、甲苯、二甲苯、乙二胺、二甲基亚砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺和四氯化碳中的至少一种。由此,本领域技术人员可以根据不同的高分子材料选择适宜的溶剂,保证高分子材料可以快速有效地被溶解掉。
根据本公开的实施例,无机前驱体为氧氯化锆、乙酸锆、异丙醇铝、正丙醇锆、正硅酸乙酯和正硅酸甲酯中的至少一种。由此,上述无机前驱体在水解后得到氧化物(比如氧化锆、氧化铝、二氧化硅),通过喷射纺丝后得到无机纤维气凝胶材料。
根据本公开的实施例,为了得到层状结构的无机纤维气凝胶材料,氯化物选自氯化锂、氯化钠、氯化钾、氯化铷、氯化铯、氯化铍、氯化镁、氯化钙、氯化锶、氯化钡、氯化镭、氯化锌、氯化铜、氯化镍、氯化钴、氯化铁、氯化亚铁、氯化锰、氯化铬、氯化钒、四氯化钛、氯化钪、氯化铝、氯化镓、氯化铟、氯化铊、氯化锡、氯化铅、氯化镉、氯化钯、氯化铑、氯化钌、氯化锆、氯化铪、三氯化锇、氯化铂、氯化金和氯化汞中的至少一种。由此,在喷射纺丝的过程中,在氯化物的作用下,可以得到层状结构的无机纤维气凝胶材料,大大提高无机纤维气凝胶材料的可压缩性能。
根据本公开的实施例,为了促进无机前驱体的水解,纺丝前驱体混合液中进一步包 括催化剂。在本公开的实施例中,所述催化剂选自磷酸、硫酸、盐酸、硝酸、甲酸、醋酸、氢氟酸、高氯酸、三氟乙酸、柠檬酸、草酸和马来酸中的至少一种。由此,在上述催化剂的作用下,无机前驱体可以快速、有效地、更充分地水解成无机氧化物,进而有利于后续得到性能优异的无机纤维气凝胶材料。
根据本公开的实施例,上述各个试剂、组分的混合的具体工艺没有限制要求,本领域技术人员可以根据实际需求灵活设定。在本公开的一些实施例中,将无机前驱体、催化剂和氯化物分别加入到高分子溶液中,通过搅拌得到具有一定粘度的纺丝前驱体混合液;在本公开的另一些实施例中,先将无机前驱体、催化剂和氯化物混合之后,再加入到高分子溶液中,通过搅拌得到具有一定粘度的纺丝前驱体混合液。其中,搅拌的具体方式也没有限定要求,可以是机械搅拌,也可以是磁力搅拌,在此不作限制要求。
根据本公开的实施例,为了得到性能较佳的无机纤维气凝胶材料,纺丝前驱体混合液包括:2~30重量份的高分子材料;100重量份的溶剂;0.5~100重量份的无机前驱体;0.001~1重量份的催化剂;及1~100重量份的氯化物。由此,上述配比制备的无机纤维气凝胶材料具有良好的可压缩性、柔韧性,具有各向异性的层状结构,其中,氯化物的用量可以有效保证无机纤维气凝胶的层状结构;若氯化物的用量偏低,则无机纤维气凝胶材料的层状结构不明显,导致其可压缩性能相对较差;若氯化物的用量偏多,也会造成无机纤维气凝胶材料的可压缩性能变差。
S200:对纺丝前驱体混合液进行喷射纺丝,得到复合纤维气凝胶。在该过程中,在氯化物的作用下,得到的复合纤维气凝胶为多层堆叠的层状结构,使其具有各向异性,使得最终得到的无机纤维气凝胶材料可以裁剪成所需的形状,堆叠得到所需的厚度。其中,“各向异性”是指相对无机纤维气凝胶材料中无机纤维层,从不同方向压缩无机纤维气凝胶材料,其可压缩性能不同,恢复性能不同,比如从垂直于无机纤维层的方向压缩无机纤维气凝胶材料,无机纤维气凝胶材料可以完全恢复原状(参照图2),而从平行于无机纤维层的方向压缩无机纤维气凝胶材料,无机纤维气凝胶材料则不能恢复原状(参照图3)。
根据本公开的实施例,利用喷射纺丝技术对纺丝前驱体混合液进行纺丝,利用压缩空气将所述纺丝前驱体混合液从喷射纺丝设备的喷丝口喷出,具体的:喷射纺丝采用一对同轴喷嘴,利用压缩空气将纺丝前驱体混合液经内喷嘴挤出,高速气流经外喷嘴喷出,纺丝前驱体混合液在高速气流的剪切作用下形成聚合物射流,在到达接收装置的过程中,射流进一步发生分裂、牵伸、细化,同时溶剂不断挥发,纤维成形固化并收集于接收装置(也可称“接收器”)上。与静电纺丝相比,喷射纺丝设备简单,以高速气流作 为驱动力,不需要高压静电场,具有更高的纺丝效率,并且复合纤维气凝胶可以沉积在任何基底上。因此,采用喷射纺丝技术大规模制备具有高可压缩性和耐高温性能的无机纤维气凝胶材料具有重要意义。
根据本公开的实施例,接收装置的具体种类没有限制要求,本领域技术人员可以根据实际需求灵活选择。在本公开的一些实施例中,接收装置包括但不限于金属网、塑料网和无纺布。
根据本公开的实施例,为了得到可压缩性强、柔韧性佳等性能优异的无机纤维气凝胶材料,在喷射纺丝中,纺丝前驱体混合液的挤出速度为0.1~15毫升/小时(比如0.1mL/h、0.5mL/h、1mL/h、2mL/h、3mL/h、4mL/h、5mL/h、6mL/h、7mL/h、8mL/h、9mL/h、10mL/h、11mL/h、12mL/h、13mL/h、14mL/h、15mL/h),喷丝口与接收器之间的距离为20~100厘米(比如20cm、30cm、40cm、50cm、60cm、70cm、80cm、90cm、100cm),压缩空气的气流流速为1~50米/秒(比如1m/s、5m/s、10m/s、15m/s、20m/s、25m/s、30m/s、35m/s、40m/s、45m/s、50m/s)。由此,可以制备性能优异的无机纤维气凝胶材料。
S300:对复合纤维气凝胶进行煅烧处理,得到各向异性层状无机纤维气凝胶材料。在该过程中,通过煅烧处理,高分子材料会被分解成二氧化碳、水等小分子,进而将高分子材料除去,得到无机纤维气凝胶材料,使得层状结构的无机纤维气凝胶材料具有优异的耐火性能、良好的耐高低温性能(在-196℃和1000℃处理24小时后,无机纤维气凝胶材料均可以保持良好的压缩回弹性能)和热绝缘性能(无机纤维气凝胶材料的热导率低至0.034W/m K)。
根据本公开的实施例,为了充分地将高分子材料分解掉,煅烧处理的条件为:煅烧处理的温度以0.1~10℃/min的升温速度升至500℃~2000℃(比如500℃、800℃、1000℃、1300℃、1500℃、1800℃或2000℃),保温0~24小时(比如1小时、5小时、8小时、10小时、14小时、18小时、20小时或24小时),之后降温至室温,其中的具体参数本领域技术人员可以根据实际情况灵活设定即可。
根据本公开的实施例,上述无机纤维气凝胶材料的制备方法简单,易操作,制备成本低、效率高,易于工业化生产;由上述方法制备的无机纤维气凝胶材料是由多层堆叠的微纤维构成,具有各向异性的层状结构,可以裁切成所需的任意形状,以及堆叠成所需的厚度;而且制备的无机纤维气凝胶材料具有良好的柔韧性和可压缩性;无机纤维气凝胶材料的层状结构和无机组分使得气凝胶材料具有优异的耐火性、良好的耐高低温性以及热绝缘性,大大扩展了其应用领域。
在发明的一些实施例中,制备的无机纤维气凝胶材料的实物图参照图2、图3、图4和图5,其扫描电镜图(SEM)参照图6,无机纤维气凝胶材料具有良好的可压缩性和柔韧性,参照图2和图5;无机纤维气凝胶材料具有优异的耐火性能、良好的耐高低温性能(在-196℃和1000℃处理24小时后,无机纤维气凝胶材料均可以保持良好的压缩回弹性能)和热绝缘性能(无机纤维气凝胶材料的热导率低至0.034W/m K)。
在本公开的又一方面,本公开提供了一种各向异性层状无机纤维气凝胶材料。根据本公开的实施例,所述各向异性层状无机纤维气凝胶材料是由前面所述的方法制备得到的。由此,该无机纤维气凝胶材料是由多层堆叠的微纤维构成,具有各向异性的层状结构,可以裁切成所需的任意形状,以及堆叠成所需的厚度;而且,该无机纤维气凝胶材料具有良好的柔韧性和可压缩性;无机纤维气凝胶材料的层状结构和无机组分使得气凝胶材料具有优异的耐火性、良好的耐高低温性以及热绝缘性,大大扩展了其应用领域。
根据本公开的实施例,无机纤维气凝胶材料的体积密度为5~200mg/cm 3(比如5mg/cm 3、25mg/cm 3、50mg/cm 3、75mg/cm 3、100mg/cm 3、125mg/cm 3、150mg/cm 3、175mg/cm 3、200mg/cm 3、),无机纤维气凝胶材料中无机纤维的平均直径为0.2~10微米(比如0.2微米、0.5微米、1微米、2微米、4微米、6微米、8微米或10微米)。由此,无机纤维气凝胶材料的体积密度和无机纤维的直径范围较宽,本领域技术人员可以根据不同的需求和应用,制备体积密度和纤维直径不同的无机纤维气凝胶材料,满足不同的市场需求。
实施例
实施例1
一种各向异性层状无机纤维气凝胶材料的制备方法,采用以下工艺步骤:
(1)高分子溶液配制:将20g聚乙烯醇添加到100g去离子水中,在90℃条件下以800rpm的转速搅拌溶解1h,得到高分子材料与溶剂质量比为20:100的聚乙烯醇溶液;
(2)纺丝前驱体混合液配制:将50g氧氯化锆、0.2g盐酸、40g氯化铁添加到上述聚乙烯醇溶液中,通过搅拌得到具有一定粘度的纺丝前驱体混合液;
(3)喷射纺丝:采用喷射纺丝技术用流速为5m/s的压缩空气将纺丝前驱体混合液以5mL/h的速度从喷丝口喷出,得到的纤维沉积在距离喷丝口60cm的金属网接收器上,得到复合纤维气凝胶;
(4)煅烧:将得到的复合纤维气凝胶以5℃/min的速度从室温升高到1000℃,保 温1h,降至室温后得到各向异性层状无机纤维气凝胶材料。
得到的各向异性层状无机纤维气凝胶材料的体积密度为15mg/cm 3,室温热导率为0.037W/m K,纤维的平均直径为2.5μm。
实施例2
一种各向异性层状无机纤维气凝胶材料的制备方法,采用以下工艺步骤:
(1)高分子溶液配制:将5g聚氧化乙烯添加到100g去离子水中,在60℃条件下以800rpm的转速搅拌溶解1h,得到高分子材料与溶剂质量比为5:100的聚氧化乙烯溶液;
(2)纺丝前驱体混合液配制:将40g正硅酸乙酯、0.2g磷酸、30g氯化锰添加到上述聚氧化乙烯溶液中,通过搅拌得到具有一定粘度的纺丝前驱体混合液;
(3)喷射纺丝:采用喷射纺丝技术用流速为3m/s的压缩空气将纺丝前驱体混合液以5mL/h的速度从喷丝口喷出,得到的纤维沉积在距离喷丝口60cm的金属网接收器上,得到复合纤维气凝胶;
(4)煅烧:将得到的复合纤维气凝胶以5℃/min的速度从室温升高到1100℃,保温1h,降至室温后得到各向异性层状无机纤维气凝胶材料。
所得产品各向异性层状无机纤维气凝胶材料的体积密度为19mg/cm 3,室温热导率为0.038W/m K,纤维的平均直径为2.4μm。
实施例3
一种各向异性层状无机纤维气凝胶材料的制备方法,采用以下工艺步骤:
(1)高分子溶液配制:将12g聚乙烯醇添加到100g去离子水中,在80℃条件下以800rpm的转速搅拌溶解1h,得到高分子材料与溶剂质量比为12:100的聚乙烯醇溶液;
(2)纺丝前驱体混合液配制:将40g正硅酸乙酯、0.1g磷酸、35g氯化铝添加到上述聚乙烯醇溶液中,通过搅拌得到具有一定粘度的纺丝前驱体混合液;
(3)喷射纺丝:采用喷射纺丝技术用流速为5m/s的压缩空气将纺丝前驱体混合液以5mL/h的速度从喷丝口喷出,得到的纤维沉积在距离喷丝口60cm的金属网接收器上,得到复合纤维气凝胶;
(4)煅烧:将得到的复合纤维气凝胶以5℃/min的速度从室温升高到1000℃,保温1h,降至室温后得到各向异性层状无机纤维气凝胶材料。
所得产品各向异性层状无机纤维气凝胶材料的体积密度为21mg/cm 3,室温热导率为0.035W/m K,纤维的平均直径为2.7μm。
实施例4
一种各向异性层状无机纤维气凝胶材料的制备方法,采用以下工艺步骤:
(1)高分子溶液配制:将4g羧甲基纤维素添加到100g去离子水中,在40℃条件下以900rpm的转速搅拌溶解2h,得到高分子材料与溶剂质量比为4:100的羧甲基纤维素溶液;
(2)纺丝前驱体混合液配制:将40g乙酸锆、0.01g磷酸、30g氯化镁添加到上述羧甲基纤维素溶液中,通过搅拌得到具有一定粘度的纺丝前驱体混合液;
(3)喷射纺丝:采用喷射纺丝技术用流速为5m/s的压缩空气将纺丝前驱体混合液以5mL/h的速度从喷丝口喷出,得到的纤维沉积在距离喷丝口60cm的金属网接收器上,得到复合纤维气凝胶;
(4)煅烧:将得到的复合纤维气凝胶以5℃/min的速度从室温升高到1100℃,保温1h,降至室温后得到各向异性层状无机纤维气凝胶材料。
所得产品各向异性层状无机纤维气凝胶材料的体积密度为20mg/cm 3,室温热导率为0.034W/m K,纤维的平均直径为2.6μm。
实施例5
一种各向异性层状无机纤维气凝胶材料的制备方法,采用以下工艺步骤:
(1)高分子溶液配制:将15g聚乙烯吡咯烷酮添加到100g去离子水中,在70℃条件下以800rpm的转速搅拌溶解1h,得到高分子材料与溶剂质量比为15:100的聚乙烯吡咯烷酮溶液;
(2)纺丝前驱体混合液配制:将50g氧氯化锆、0.01g硫酸、30g氯化锡添加到上述聚乙烯吡咯烷酮溶液中,通过搅拌得到具有一定粘度的纺丝前驱体混合液;
(3)喷射纺丝:采用溶液喷射纺丝技术用流速为5m/s的压缩空气将纺丝前驱体混合液以5mL/h的速度从喷丝口喷出,得到的纤维沉积在距离喷丝口60cm的金属网接收器上,得到复合纤维气凝胶;
(4)煅烧:将得到的复合纤维气凝胶以5℃/min的速度从室温升高到1000℃,保温1h,降至室温后得到各向异性层状无机纤维气凝胶材料。
所得产品各向异性层状无机纤维气凝胶材料的体积密度为25mg/cm 3,室温热导率为0.037W/m K,纤维的平均直径为2.1μm。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结 构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种各向异性层状无机纤维气凝胶材料的制备方法,其特征在于,包括:
    将高分子溶液、无机前驱体和氯化物混合,得到纺丝前驱体混合液;
    对所述纺丝前驱体混合液进行喷射纺丝,得到复合纤维气凝胶;
    对所述复合纤维气凝胶进行煅烧处理,得到各向异性层状无机纤维气凝胶材料。
  2. 根据权利要求1所述的方法,其特征在于,所述高分子溶液包括高分子材料和溶剂,其中,所述高分子材料与所述溶剂的质量比为(2~30):100。
  3. 根据权利要求1或2所述的方法,其特征在于,所述纺丝前驱体混合液中进一步包括催化剂。
  4. 根据权利要求3所述的方法,其特征在于,所述纺丝前驱体混合液包括:
    2~30重量份的所述高分子材料;
    100重量份的所述溶剂;
    0.5~100重量份的所述无机前驱体;
    0.001~1重量份的所述催化剂;及
    1~100重量份的所述氯化物。
  5. 根据权利要求3或4所述的方法,其特征在于,所述高分子材料选自聚乙烯醇、聚乙二醇、聚氨酯、聚丙烯酸、聚乙烯吡咯烷酮、醋酸纤维素、甲基纤维素、羧甲基纤维素、聚偏氟乙烯、聚甲基丙烯酸甲酯、聚丙烯酰胺、聚氧化乙烯、聚乳酸、聚酰胺、聚己内酯、聚乙烯醇缩丁醛、聚苯胺、聚酰亚胺和聚碳酸酯中的至少一种;
    任选地,所述溶剂选自水、甲酸、四氢呋喃、丙酮、丁酮、正己烷、环己烷、正庚烷、乙腈、N-甲基吡咯烷酮、1,2-丙二醇、氯仿、二氯甲烷、1,2-二氯乙烷、甲醇、乙醇、异丙醇、叔丁醇、正丁醇、甲苯、二甲苯、乙二胺、二甲基亚砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺和四氯化碳中的至少一种;
    任选地,所述无机前驱体为氧氯化锆、乙酸锆、异丙醇铝、正丙醇锆、正硅酸乙酯和正硅酸甲酯中的至少一种;
    任选地,所述催化剂选自磷酸、硫酸、盐酸、硝酸、甲酸、醋酸、氢氟酸、高氯酸、三氟乙酸、柠檬酸、草酸和马来酸中的至少一种。
  6. 根据权利要求1~5中任一项所述的方法,其特征在于,所述氯化物选自氯化锂、氯化钠、氯化钾、氯化铷、氯化铯、氯化铍、氯化镁、氯化钙、氯化锶、氯化钡、氯化镭、氯化锌、氯化铜、氯化镍、氯化钴、氯化铁、氯化亚铁、氯化锰、氯化铬、氯化钒、四氯 化钛、氯化钪、氯化铝、氯化镓、氯化铟、氯化铊、氯化锡、氯化铅、氯化镉、氯化钯、氯化铑、氯化钌、氯化锆、氯化铪、三氯化锇、氯化铂、氯化金和氯化汞中的至少一种。
  7. 根据权利要求1~6中任一项所述的方法,其特征在于,利用压缩空气将所述纺丝前驱体混合液从喷射纺丝设备的喷丝口喷出,在所述喷射纺丝中,所述纺丝前驱体混合液的挤出速度为0.1~15毫升/小时,所述喷丝口与接收器之间的距离为20~100厘米,所述压缩空气的气流流速为1~50米/秒。
  8. 根据权利要求1~7中任一项所述的方法,其特征在于,所述煅烧处理的条件为:所述煅烧处理的温度以0.1~10℃/min的升温速度升至500℃~2000℃,保温0~24小时,之后降温至室温。
  9. 一种各向异性层状无机纤维气凝胶材料,其特征在于,是由权利要求1~8中任一项所述的方法制备得到的。
  10. 根据权利要求9所述的无机纤维气凝胶材料,其特征在于,所述无机纤维气凝胶材料的体积密度为5~200mg/cm 3
    任选地,所述无机纤维气凝胶材料中无机纤维的平均直径为0.2~10微米。
PCT/CN2020/085976 2019-05-07 2020-04-21 一种各向异性层状无机纤维气凝胶材料及其制备方法 WO2020224429A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/980,376 US11857937B2 (en) 2019-05-07 2020-04-21 Anisotropic lamellar inorganic fiber aerogel materials and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910376244.2A CN110170282B (zh) 2019-05-07 2019-05-07 一种各向异性层状无机纤维气凝胶材料及其制备方法
CN201910376244.2 2019-05-07

Publications (1)

Publication Number Publication Date
WO2020224429A1 true WO2020224429A1 (zh) 2020-11-12

Family

ID=67691265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085976 WO2020224429A1 (zh) 2019-05-07 2020-04-21 一种各向异性层状无机纤维气凝胶材料及其制备方法

Country Status (3)

Country Link
US (1) US11857937B2 (zh)
CN (1) CN110170282B (zh)
WO (1) WO2020224429A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114349537A (zh) * 2022-01-25 2022-04-15 西安交通大学 一种超弹性气凝胶及其制备方法
CN114560709A (zh) * 2021-11-19 2022-05-31 东华大学 一种具有铰接结构的陶瓷纳米纤维气凝胶及其制备方法
CN116143506A (zh) * 2023-02-24 2023-05-23 北京理工大学 一种氧化物纳米纤维海绵体及其制备方法
CN116813368A (zh) * 2023-06-08 2023-09-29 东华大学 弹性层状结构二氧化钛陶瓷纳米纤维体型材料的制备方法
CN117382267A (zh) * 2023-10-16 2024-01-12 无锡市世纪风服饰有限公司 一种防晒衣用凉感透气面料及其制备方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BG67252B1 (bg) * 2017-06-27 2021-02-15 Е.Миролио ЕАД Метод за получаване на вискозна изкуствена коприна с променяща се дебелина, продукт, получен по този метод и инсталация за реализиране на метода
CN110170282B (zh) * 2019-05-07 2020-07-14 清华大学 一种各向异性层状无机纤维气凝胶材料及其制备方法
CN110846741B (zh) * 2019-10-09 2020-10-23 清华大学 柔性莫来石纤维气凝胶材料及其制备方法
CN111874917A (zh) * 2020-07-29 2020-11-03 纳诺科技有限公司 一种具有特殊形状的气凝胶及其制备方法
CN112721362A (zh) * 2020-12-30 2021-04-30 台州市路桥区静荷纺织有限公司 一种隔热复合纺织面料及其制备方法
CN112876244B (zh) * 2021-04-08 2022-06-24 齐鲁工业大学 一种锆酸锶无机纤维及其制备方法
CN115337875B (zh) * 2021-05-14 2024-04-02 李涛 一种气凝胶及其制备方法和应用
CN113666668A (zh) * 2021-09-18 2021-11-19 乐清市建瓴沥青混凝土有限公司 一种再生沥青混凝土及其制备方法
CN114367248B (zh) * 2021-11-19 2023-03-28 东华大学 一种线性无机聚合物溶胶及其制备方法
CN113999037B (zh) * 2021-11-26 2022-04-22 哈尔滨工业大学 一种三维富碳纳米纤维陶瓷气凝胶及其制备方法
CN115073122B (zh) * 2022-06-16 2023-07-18 千年舟新材科技集团股份有限公司 一种秸秆气凝胶难燃保温板及其制备方法
CN115193348B (zh) * 2022-07-20 2024-03-22 天津工业大学 一种连续纳米纤维的动态接收装置及其用于构筑纳米纤维气凝胶的制备方法
CN115477546B (zh) * 2022-08-09 2023-08-01 哈尔滨工业大学 一种中熵陶瓷纳米纤维气凝胶及其制备方法
CN115262032B (zh) * 2022-08-22 2024-09-03 上海交通大学 一种氧化铝柔性纤维及其制备方法
CN115651260B (zh) * 2022-10-11 2024-08-13 北京石墨烯技术研究院有限公司 气凝胶复合材料及其制备方法、应用和制品
CN115612181B (zh) * 2022-10-28 2023-09-22 山东大学 一种用于电磁干扰屏蔽的复合气凝胶及其制备方法
CN115872769B (zh) * 2022-11-03 2023-11-14 常州大学 低温下利用废铅酸电池阳极材料制备隔热且电磁屏蔽性能好的块体陶瓷气凝胶的方法
CN115557790B (zh) * 2022-11-11 2023-08-29 中国人民解放军国防科技大学 一种弹性SiC陶瓷海绵材料及其制备方法、应用
CN115821420A (zh) * 2022-11-24 2023-03-21 江苏江山红化纤有限责任公司 一种石墨烯改性聚酰胺6复合纤维及其制备方法
CN116005286B (zh) * 2023-02-03 2024-06-04 中国科学院苏州纳米技术与纳米仿生研究所 一种气凝胶纤维的制备方法及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080305377A1 (en) * 2007-03-15 2008-12-11 University Of Rochester Long metallic nanowires, methods of making, and use thereof in proton exchange membrane fuel cell
US20100021794A1 (en) * 2008-07-23 2010-01-28 Korea Institute Of Science And Techology Method of fabricating carbon material, carbon material prepared by the method, cell material and apparatus using the same
US20110151255A1 (en) * 2009-12-23 2011-06-23 Korea Institute Of Science And Technology Nanofiber and preparation method thereof
CN106048783A (zh) * 2016-05-30 2016-10-26 天津工业大学 一种高效制备钛基‑碳三维卷曲纳米纤维的方法
CN106540676A (zh) * 2016-09-07 2017-03-29 福建师范大学 一种简易调控制备不同晶型铋钛复合氧化物光催化剂的方法及其应用
CN107604537A (zh) * 2017-09-30 2018-01-19 河北耐诺科技有限公司 一种耐高温耐腐蚀无机过滤纤维膜及其制备方法
CN110170282A (zh) * 2019-05-07 2019-08-27 清华大学 一种各向异性层状无机纤维气凝胶材料及其制备方法
CN110184683A (zh) * 2019-05-07 2019-08-30 清华大学 一种各向异性层状碳纤维基气凝胶材料及其制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157424A (en) * 1964-08-13 1979-06-05 Porvair Limited Production of porous materials
DE69503142T2 (de) * 1994-09-22 1998-11-05 Hoffmann La Roche Heterogenen katalysatoren
CA2583469C (en) * 2004-10-06 2013-03-19 Research Foundation Of State University Of New York High flux and low fouling filtration media
DE602006000280T2 (de) * 2005-03-11 2008-11-27 Rohm And Haas Co. Härtbare Zusammensetzung
US8080488B2 (en) * 2008-03-10 2011-12-20 H. B. Fuller Company Wound glass filament webs that include formaldehyde-free binder compositions, and methods of making and appliances including the same
US8225641B2 (en) * 2008-08-20 2012-07-24 Headwaters Technology Innovation, Llc Nanofibers and methods of making same and using same in humidity sensors
JP2010101308A (ja) * 2008-09-25 2010-05-06 Ibiden Co Ltd マット製品、マット製品を製造する方法、排気ガス処理装置および消音装置
WO2012058553A2 (en) * 2010-10-28 2012-05-03 University Of Central Florida Research Foundation, Inc. Oxidized graphite and carbon fiber
KR20120076997A (ko) * 2010-12-30 2012-07-10 한국에너지기술연구원 섬유 형태의 고분자/에어로겔을 포함하는 시트 및 그 제조방법
US9804607B1 (en) * 2011-11-16 2017-10-31 Zane Coleman Fluid transfer systems, devices, components, and methods of manufacture
US8791198B2 (en) * 2012-04-30 2014-07-29 H.B. Fuller Company Curable aqueous composition
US9416294B2 (en) * 2012-04-30 2016-08-16 H.B. Fuller Company Curable epoxide containing formaldehyde-free compositions, articles including the same, and methods of using the same
WO2014160045A1 (en) * 2013-03-14 2014-10-02 Cornell University Electrospinning apparatuses & processes
DE102015101282A1 (de) * 2015-01-29 2016-08-04 Rwth Aachen Verfahren und Vorrichtung zur Herstellung anorganischer Aerogel-Fasern
JP7005490B2 (ja) * 2015-11-17 2022-01-21 プリマロフト,インコーポレイテッド エアロゲル及びポリマー材料を含有する合成繊維並びにそれの製造方法及びそれを含む物品
EP3507407B1 (en) * 2016-09-05 2021-12-15 TB-Safety AG Method for producing a threedimensional sponge based on nanofibers
CN108840656B (zh) * 2018-04-26 2021-02-09 东华大学 一种基于静电纺SiO2纳米纤维气凝胶隔热材料及其制备和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080305377A1 (en) * 2007-03-15 2008-12-11 University Of Rochester Long metallic nanowires, methods of making, and use thereof in proton exchange membrane fuel cell
US20100021794A1 (en) * 2008-07-23 2010-01-28 Korea Institute Of Science And Techology Method of fabricating carbon material, carbon material prepared by the method, cell material and apparatus using the same
US20110151255A1 (en) * 2009-12-23 2011-06-23 Korea Institute Of Science And Technology Nanofiber and preparation method thereof
CN106048783A (zh) * 2016-05-30 2016-10-26 天津工业大学 一种高效制备钛基‑碳三维卷曲纳米纤维的方法
CN106540676A (zh) * 2016-09-07 2017-03-29 福建师范大学 一种简易调控制备不同晶型铋钛复合氧化物光催化剂的方法及其应用
CN107604537A (zh) * 2017-09-30 2018-01-19 河北耐诺科技有限公司 一种耐高温耐腐蚀无机过滤纤维膜及其制备方法
CN110170282A (zh) * 2019-05-07 2019-08-27 清华大学 一种各向异性层状无机纤维气凝胶材料及其制备方法
CN110184683A (zh) * 2019-05-07 2019-08-30 清华大学 一种各向异性层状碳纤维基气凝胶材料及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114560709A (zh) * 2021-11-19 2022-05-31 东华大学 一种具有铰接结构的陶瓷纳米纤维气凝胶及其制备方法
CN114349537A (zh) * 2022-01-25 2022-04-15 西安交通大学 一种超弹性气凝胶及其制备方法
CN114349537B (zh) * 2022-01-25 2022-12-13 西安交通大学 一种超弹性气凝胶及其制备方法
CN116143506A (zh) * 2023-02-24 2023-05-23 北京理工大学 一种氧化物纳米纤维海绵体及其制备方法
CN116143506B (zh) * 2023-02-24 2024-04-05 北京理工大学 一种氧化物纳米纤维海绵体及其制备方法
CN116813368A (zh) * 2023-06-08 2023-09-29 东华大学 弹性层状结构二氧化钛陶瓷纳米纤维体型材料的制备方法
CN117382267A (zh) * 2023-10-16 2024-01-12 无锡市世纪风服饰有限公司 一种防晒衣用凉感透气面料及其制备方法
CN117382267B (zh) * 2023-10-16 2024-03-08 无锡市世纪风服饰有限公司 一种防晒衣用凉感透气面料及其制备方法

Also Published As

Publication number Publication date
CN110170282B (zh) 2020-07-14
US11857937B2 (en) 2024-01-02
US20210213411A1 (en) 2021-07-15
CN110170282A (zh) 2019-08-27

Similar Documents

Publication Publication Date Title
WO2020224429A1 (zh) 一种各向异性层状无机纤维气凝胶材料及其制备方法
WO2020224431A1 (zh) 一种各向异性层状碳纤维基气凝胶材料及其制备方法
Jia et al. Flexible ceramic fibers: Recent development in preparation and application
Tafreshi et al. A review on multifunctional aerogel fibers: processing, fabrication, functionalization, and applications
CN110982114B (zh) 芳纶/碳纳米管杂化气凝胶薄膜、其制备方法及应用
CN110846741B (zh) 柔性莫来石纤维气凝胶材料及其制备方法
Liu et al. Recent advances in novel aerogels through the hybrid aggregation of inorganic nanomaterials and polymeric fibers for thermal insulation
JP4223042B2 (ja) 炭素繊維不織布の製造方法
CN109023590B (zh) 一种碳化硅中空纤维及其制备方法
CN110079896B (zh) 一种碳化硅纳米纤维束及其制备方法
CN110424067A (zh) 一种柔性二氧化硅纤维气凝胶材料及其制备方法
WO2015014124A1 (zh) 一种电石墨烯复合纤维的制备方法
Horzum et al. Nanofibers for fiber-reinforced composites
Guan et al. Recent progress of graphene fiber/fabric supercapacitors: from building block architecture, fiber assembly, and fabric construction to wearable applications
CN108176256B (zh) 一种耐高温复合纳米纤维过滤膜制备方法
Li et al. Ultralight aerogel textiles based on aramid nanofibers composites with excellent thermal insulation and electromagnetic shielding properties
CN111646816A (zh) 一种氧化锆-氧化铝复合纤维气凝胶材料及其制备方法
CN113308764B (zh) 一种硅基陶瓷微纳米纤维隔热毛毡及其制备方法
Ma et al. Direct ink writing of polyimide/bacterial cellulose composite aerogel for thermal insulation
Shao et al. MgO nanofibres via an electrospinning technique
CN111979609A (zh) 一种大直径石墨烯纤维的制备方法
Liu et al. Recent progress in electrospun Al2O3 nanofibers: Component design, structure regulation and performance optimization
CN110364371B (zh) 一种活性多孔碳框架/石墨烯复合纤维及其制备方法
JP6841638B2 (ja) セラミックナノファイバの製造方法
Zhu et al. Low-cost and temperature-resistant mullite fiber sponges with superior thermal insulation and high-temperature PM filtration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20802685

Country of ref document: EP

Kind code of ref document: A1