CN113999037B - 一种三维富碳纳米纤维陶瓷气凝胶及其制备方法 - Google Patents
一种三维富碳纳米纤维陶瓷气凝胶及其制备方法 Download PDFInfo
- Publication number
- CN113999037B CN113999037B CN202111418179.9A CN202111418179A CN113999037B CN 113999037 B CN113999037 B CN 113999037B CN 202111418179 A CN202111418179 A CN 202111418179A CN 113999037 B CN113999037 B CN 113999037B
- Authority
- CN
- China
- Prior art keywords
- electrostatic spinning
- aerogel
- rich
- preparation
- nanofiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/0045—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/624—Sol-gel processing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/48—Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/48—Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
- C04B2235/483—Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/94—Products characterised by their shape
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Fibers (AREA)
Abstract
本发明公开一种三维富碳纳米纤维陶瓷气凝胶及其制备方法,基于远电场‑静电纺丝制备方法,方法具体如下:将高度聚合的乙酰丙酮合锆粉体结合相稳定剂钇元素后,同时引入硅烷偶联剂KH550,在甲醇中共溶高分子聚氧化乙烯PEO制备具有高度可纺性的二元硅锆陶瓷静电纺丝前驱体后,通过远电场‑静电纺丝方法制备成型具有三维层状结构的二元硅锆纳米纤维陶瓷气凝胶前体,最后经过分步高温退火结晶热处理和化学交联得到形状结构完好的三维富碳纳米纤维陶瓷气凝胶。本发明涉及的制备方法具备生产成本低、生产工艺简单的优点,所制得的三维富碳纳米纤维陶瓷气凝胶材料具有较高碳含量、优异的高温隔热性能与机械性能。
Description
技术领域
本发明涉及热管理及无机纳米隔热材料领域,具体涉及一种三维富碳纳米纤维陶瓷气凝胶及其制备方法。
背景技术
目前,使用最广泛的隔热陶瓷气凝胶是由零维中空纳米颗粒堆叠形成的传统二氧化硅气凝胶材料,虽然其具有优异的常温隔热性能,但由于本身的脆性性质导致其在使用过程中极易发生材料结构受力破坏及高温析晶粉化,严重限制了二氧化硅陶瓷气凝胶的应用。经研究发现,采用一维纤维结构对传统零维颗粒陶瓷气凝胶材料进行力学增强的方式,既可以保留由全陶瓷组分所构成的陶瓷气凝胶的优异隔热性能,同时能进一步强化其力学强度,例如玻璃纤维、莫来石纤维等增强硅基、铝基氧化物陶瓷气凝胶;基于此,研究者们进一步拓展研发制备了纯一维体系的纤维陶瓷气凝胶,相较于传统气凝胶来说,纤维体系陶瓷气凝胶在复杂变形情况下有更充分的协同变形柔韧性,同时其多孔性质有效保障了防隔热性能,例如SiO2、ZrO2纳米纤维陶瓷气凝胶。因此,由柔性无机陶瓷纤维为构筑单元通过随机缠绕组装而成的多孔气凝胶材料兼具超高孔隙率、超低密度等特点,同时具有出色的防隔热性能,推动了陶瓷气凝胶材料在复杂受力环境下的隔热防护应用。
铝基陶瓷气凝胶材料被认为是一种很有使用前景的高温隔热材料,具有超高孔隙率、超隔热等优异性能。冯坚等人通过采用溶胶-凝胶法(SIG)和超临界流体干燥法(SCFD)制备出由莫来石纤维增强的铝硅基陶瓷气凝胶复合材料(MFASs),解决了铝基陶瓷气凝胶材料机械性能差、制备工艺复杂等难点问题。经实验研究发现,相同温度条件下,随着莫来石纤维增强铝硅基陶瓷气凝胶复合材料密度的增加,其导热系数逐渐降低,特别是在高温隔热能力方面:密度为350mg cm-3的莫来石纤维增强铝硅基陶瓷气凝胶复合材料在1200℃高温下的导热系数为82mW m-1K-1,接近空气的高温热导率。但是其材料密度远大于超轻质气凝胶材料的密度范围(10~100mg cm-3),严重限制了陶瓷气凝胶材料的应用范围。
硅基陶瓷气凝胶材料是目前最为广泛应用的陶瓷气凝胶材料之一,通过一维纳米纤维结构改善陶瓷气凝胶机械性能的方式所制备的新型硅基纳米纤维陶瓷气凝胶材料具有更广泛的应用前景。丁彬等人通过采用静电纺丝结合二次交联定向冷冻干燥的方法制备出的SiO2纳米纤维陶瓷气凝胶(SNFAs),使得SiO2纳米纤维陶瓷气凝胶具有良好的压缩、拉伸、弯曲等机械性能。实验研究发现,SiO2纳米纤维气凝胶在1100℃高温条件下具有优异的隔热性能;在室温(25℃)条件下,低密度SiO2纳米纤维陶瓷气凝胶导热系数为38.9mW m-1K-1。经过理论分析,随实验温度不断升高,当超过100℃时,热量传递的方式逐渐从以固体传导的方式为主(室温条件)变为以热辐射传导为主(高温条件),由于没有对高温热辐射起到吸收作用的元素成分,导致SiO2纳米纤维气凝胶在高温下的导热系数相较于低温条件下成倍增长,大大削弱其高温隔热能力。因此,尽管SiO2纳米纤维陶瓷气凝胶密度较低、机械力学性能优异,且在低温条件下的导热系数较低,但在高温条件下的高导热系数依然严重限制了其在高温领域的应用。
综上所述,拓展陶瓷气凝胶材料的应用前景,不仅需要克服陶瓷气凝胶材料脆性本质引起的结构问题,还要使其在高低温环境条件下兼具低密度和低导热系数。因此,提升陶瓷气凝胶材料中的碳含量来有效吸收热辐射并提高其高温隔热性能,急需实现三维富碳纳米纤维陶瓷气凝胶材料的制备与应用。
发明内容
针对一般纤维陶瓷气凝胶材料的制备方法所制备成型的纤维陶瓷气凝胶材料中碳含量的不足,导致了其在高温领域的限制应用的问题,本发明的目的在于提供一种三维富碳纳米纤维陶瓷气凝胶的制备方法,能够提高纤维陶瓷气凝胶中的碳含量比例,提高其高温隔热性能。
本发明所采用的技术方法如下:一种三维富碳纳米纤维陶瓷气凝胶的制备方法,基于远电场-静电纺丝制备方法,具体步骤如下:
步骤一:在40℃~60℃的温度条件下,先将乙酰丙酮聚锆和硝酸钇六水合物的甲醇溶液与硅烷偶联剂KH550的甲醇溶液充分溶解混合,再加入高分子聚氧化乙烯PEO的甲醇溶液充分共溶,得到具有高度可纺性的二元硅锆陶瓷静电纺丝前驱体溶液;其中,原料配方按照质量配比,如下:乙酰丙酮聚锆:硝酸钇六水合物:硅烷偶联剂KH550:高分子聚氧化乙烯PEO:甲醇=50:12~20:83:0.4:200~350;
步骤二:将二元硅锆陶瓷静电纺丝前驱体溶液推入注射器,控制温度为24℃~26℃,湿度条件为50%,静电纺丝针与金属网状收集器之间距离为0.5m~0.7m,控制静电纺丝电压稳定在35~48kV,使前驱体液滴在强静电力作用下于静电纺丝针前方形成泰勒锥,随之固化成连续长纤维脱离静电纺丝针后,在静电场中被高压静电力充分拉伸牵引,使纤维之间相互随机缠绕,同时在远距离空间中实现纤维的充分干燥,利用金属网状收集器作为负极来收集,形成三维层状结构纳米纤维陶瓷气凝胶前体;
步骤三:收集吸附在金属网状收集器上的三维纳米纤维陶瓷气凝胶前体,并进行分步程控高温退火、结晶热处理和化学交联得到形状结构完好的三维富碳纳米纤维陶瓷气凝胶。
本发明还具有如下技术特征:
1、步骤二,前驱体溶液在温度24℃~26℃条件下的溶液粘度为55mPa.s~200mPa.s,将二元硅锆陶瓷静电纺丝前驱体以0.8~3.0mL/h的泵送速度推入注射器,并且静电纺丝针内径为0.15mm~0.2mm。
2、步骤二,控制静电纺丝电压稳定在40kV,静电纺丝针与金属网状收集器之间距离为0.7m。
3、步骤三,所述的分步程控高温退火的步骤为:首先以2℃/min的升温速率升温至600℃,随后以4℃/min的升温速率升温至1000℃,并在1000℃的条件下稳定保温30min,最后缓慢降至20-25℃。
本发明的另一目的是公开通过如上的方法得出的一种三维富碳纳米纤维陶瓷气凝胶。
本发明涉及的制备方法具备生产成本低、生产工艺简单的优点,所制备的三维富碳纳米纤维陶瓷气凝胶材料具有较高碳含量,从而具备优异的高温隔热性能:1000℃导热系数仅为95.41mW m-1K-1;兼具出色的机械性能:优异的压缩可恢复能力,在纵向的极限可恢复应变达到95%,同时具有优异的可压缩回弹抗疲劳特性,通过本发明能够推动陶瓷气凝胶材料在极端高温环境领域的应用。
附图说明
图1为远电场-静电纺丝三维富碳纳米纤维陶瓷气凝胶制备装置示意图;
图2为远电场-静电纺丝三维富碳纳米纤维陶瓷气凝胶层折结构SEM照片;(A)气凝胶层状结构弯折处SEM图;(B)气凝胶层状结构SEM图;(C)气凝胶单根纳米纤维元素分布能谱图;(D)气凝胶单根纳米纤维高分辨TEM图;
图3为采用远电场-静电纺丝方法制备的三维富碳纳米纤维陶瓷气凝胶力学性能研究对比图;(A)气凝胶纵向受压可恢复应变30%、60%、95%的应力-应变曲线图;(B)气凝胶50%压缩应变下纵向循环受压100次的应力-应变曲线图;(C)气凝胶拉伸状态下的应力-应变曲线图;(D)气凝胶弯曲屈曲的应力-应变曲线图;
图4为采用远电场-静电纺丝方法制备的三维富碳纳米纤维陶瓷气凝胶热学性能研究对比图;(A)不同温度下气凝胶导热系数测试图;(B)气凝胶在紫外线、可见光、近红外线的电磁波吸收图;(C)以气凝胶代替消防员防火服中芳纶夹层的人体隔热防火效果测试对比图。
具体实施方式
下面结合附图举例对本发明专利做更详细地描述:
实施例1:
本发明基于通过静电纺丝方法制备纳米纤维的原理,通过控制静电纺丝针与收集器之间距离,利用远电场产生的定向弱化电场力制备成型三维富碳纳米纤维陶瓷气凝胶。具体装置主要包括以下部分:高压直流电源、智能注射泵送控制器、静电纺丝前驱体注射装置、稀疏金属网状收集装置;其中,智能注射泵送控制器主要调控注射装置步进注液流速;静电纺丝前驱体注射装置将前驱体溶液推入静电纺丝针;高压直流电源主要提供静电纺丝高压直流静电场;稀疏金属网状收集装置主要用来收集成型三维纳米纤维陶瓷气凝结构前体。
一种三维富碳纳米纤维陶瓷气凝胶的制备方法,如下:
1)在40℃~60℃的温度条件下,先将乙酰丙酮聚锆和硝酸钇六水合物的甲醇溶液与硅烷偶联剂KH550的甲醇溶液充分溶解混合,再加入高分子聚氧化乙烯PEO的甲醇溶液充分共溶,得到具有高度可纺性的二元硅锆陶瓷静电纺丝前驱体溶液;其中,原料配方按照质量配比,如下:乙酰丙酮聚锆:硝酸钇六水合物:硅烷偶联剂KH550:高分子聚氧化乙烯PEO:甲醇=50:12:83:0.4:200。
2)取上述35ml具有高度可纺性的二元硅锆陶瓷静电纺丝前驱体,溶液粘度控制在55mPa.s~200mPa.s,稳定控制温度为室温24℃~26℃,湿度条件为50%,静电纺丝针与收集器之间距离为0.5m,并通过内径为0.15mm的静电纺丝针以0.8mL/h的泵送速度推入注射器,控制静电纺丝电压稳定在35kV,利用细长铜线规则搭接而成的稀疏网状收集器作为负极来收集成型的三维纳米纤维陶瓷气凝胶前体。
3)收集气凝胶前体后采用鼓风箱式马弗炉进行“分步程控高温退火”结晶热处理和化学交联,得到形状结构完好的三维富碳纳米纤维陶瓷气凝胶。“分步程控高温退火”过程主要分为四步:首先以2℃/min的升温速率升温至600℃,随后以4℃/min的升温速率升温至1000℃,并在1000℃的条件下稳定保温30min,最后缓慢降至20℃。
优选的,将二元硅锆陶瓷静电纺丝前驱体溶液粘度控制在55mPa.s~200mPa.s,静电纺丝温度控制在24℃~26℃,湿度条件50%,控制静电纺丝电压稳定在40kV,控制静电纺丝针与稀疏金属网状收集器之间距离为0.7m,能够成功制备三维富碳纳米纤维陶瓷气凝胶前体。静电纺丝温度及湿度条件过高或过低、静电纺丝电压不稳定、静电纺丝针与收集器之间的静电场距离过小时,均会导致气凝胶前体的结构成型失败。
实施例2:
一种三维富碳纳米纤维陶瓷气凝胶的制备方法,如下:
1)在40℃~60℃的温度条件下,先将乙酰丙酮聚锆和硝酸钇六水合物的甲醇溶液与硅烷偶联剂KH550的甲醇溶液充分溶解混合,再加入高分子聚氧化乙烯PEO的甲醇溶液充分共溶,得到具有高度可纺性的二元硅锆陶瓷静电纺丝前驱体溶液;其中,原料配方按照质量配比,如下:乙酰丙酮聚锆:硝酸钇六水合物:硅烷偶联剂KH550:高分子聚氧化乙烯PEO:甲醇=50:20:83:0.4:350。
2)取上述35ml具有高度可纺性的二元硅锆陶瓷静电纺丝前驱体,稳定控制温度为室温26℃,湿度条件为50%,静电纺丝针与收集器之间距离为0.7m,并通过内径为0.2mm的静电纺丝针以3.0mL/h的泵送速度推入注射器,控制静电纺丝电压稳定在48kV,利用细长铜线规则搭接而成的稀疏网状收集器作为负极来收集成型的三维纳米纤维陶瓷气凝胶前体。
3)收集气凝胶前体后采用鼓风箱式马弗炉进行“分步程控高温退火”结晶热处理和化学交联,得到形状结构完好的三维富碳纳米纤维陶瓷气凝胶。“分步程控高温退火”过程主要分为四步:首先以2℃/min的升温速率升温至600℃,随后以4℃/min的升温速率升温至1000℃,并在1000℃的条件下稳定保温30min,最后缓慢降至25℃。
优选的,将二元硅锆陶瓷静电纺丝前驱体溶液粘度控制在55mPa.s~200mPa.s,静电纺丝温度控制在24℃~26℃,湿度条件50%,控制静电纺丝电压稳定在40kV,控制静电纺丝针与稀疏金属网状收集器之间距离为0.7m,能够成功制备三维富碳纳米纤维陶瓷气凝胶前体。静电纺丝温度及湿度条件过高或过低、静电纺丝电压不稳定、静电纺丝针与收集器之间的静电场距离过小时,均会导致气凝胶前体的结构成型失败。
实施例3:
结合图2,远电场-静电纺丝制备的三维富碳纳米纤维陶瓷气凝胶的结构表征测试照片,如下:
本发明提出通过远电场-静电纺丝的方法制备三维富碳纳米纤维陶瓷气凝胶,控制静电纺丝针与收集器之间距离保持0.5m~0.7m,当前驱体在静电纺丝针头处被推出时,液滴在高压静电场力与液体表面张力共同作用下首先形成泰勒锥,当液滴在电场作用下所受到的电荷斥力大于液体表面张力时,在泰勒锥尾部形成散射状射流,同时在远电场中沿复杂轨迹运动并相互缠绕,在此过程中射流被连续拉伸牵引,干燥固化,最终以蓬松层状纤维棉散落在收集器上,形成三维层状结构纳米纤维气凝胶前体。在静电纺丝过程中,由于气凝胶前体纤维散落吸附在收集器上的先后顺序不同,在吸附点位置处易形成弯折,典型的弯折处SEM图如图2(A)所示。气凝胶纤维层状结构SEM图如图2(B)所示,其中纤维直径分布在400nm~1000nm。经“分步程控高温退火”步骤后,气凝胶前体形成三维富碳气凝结构,对单根纤维进行元素成分分布能谱分析,结果如图2(C)所示,在单根纤维中依然保有较高的碳元素含量。图2(D)对单根纳米纤维进行TEM表征,结果显示在单根纳米陶瓷纤维中,存在无定形非晶区域,有效包覆无定形碳保证碳的均匀分布与高含碳量,进而增强了气凝胶的高温隔热性能。
实施例4:
结合图3,远电场-静电纺丝制备的三维富碳纳米纤维陶瓷气凝胶的力学性能测试及分析,如下:
本发明采用远电场-静电纺丝方法制备三维富碳纳米纤维陶瓷气凝胶,所制备的气凝胶具有优异的压缩可恢复能力,在纵向的极限可恢复应变达到95%,如图3(A)所示。对气凝胶进行循环压缩疲劳测试,测试结果如图3(B)所示,在进行100次压缩应变为50%的压缩循环测试后,结构强度损失小于7.5%,结构整体残余应变较低,表示出优异的可压缩回弹抗疲劳特性。如图3(C)所示,对气凝胶进行纵向拉伸测试,极限破坏应力达到144.69kPa,这是由于气凝胶中的纳米陶瓷纤维相互缠绕纠缠,形成有效的物理化学交联,有效提升了柔性气凝胶的拉伸强度。如图3(D)所示,对气凝胶进行弯曲能力测试,分别将气凝胶弯折60°、120°、180°,在整个弯曲过程中,气凝胶弯曲变形均可恢复到初始状态且结构没有发生破坏。
实施例5:
结合图4,远电场-静电纺丝制备的三维富碳纳米纤维陶瓷气凝胶的热学性能测试及分析,如下:
本发明采用远电场-静电纺丝方法制备三维富碳纳米纤维陶瓷气凝胶,所制备的气凝胶在热学性能方面具有高温下低导热系数、防火阻燃的特点。对气凝胶在不同温度条件下采用稳态法进行导热系数的测量,在室温到1000℃的范围进行100℃的温度梯度测试,结果如图4(A)所示,室温下,气凝胶导热系数低于30mW m-1K-1,接近空气导热系数;当温度逐步升至1000℃的高温时,气凝胶导热系数为95.41mW m-1K-1,说明在室温到1000℃的区间范围内,富碳纳米纤维陶瓷气凝胶可以有效吸收高温热辐射,使其始终保持低导热系数的状态,优异的隔热性能不随温度升高而发生退化。图4(B)显示三维富碳气凝胶对以紫外线、可见光、近红外线为代表的电磁波具有良好的吸收作用,特别是在紫外线区域,最高吸收率高达94.5%。图4(C)展示了以富碳气凝胶替代现有防火服中芳纶夹层的人体隔热防火效果测试对比,在经过1300℃丁烷喷灯的短时作用后,以芳纶夹层作为隔热层的防火服发生严重烧毁穿透,无法保障人身安全;相反,使用富碳纳米纤维陶瓷气凝胶作为隔热夹层的防火服可以有效隔绝高温火焰的烧穿作用,在丁烷喷灯作用中心的体感温度为53.6℃,对高温热传导起到了充分阻隔的作用,有效保护人体安全。
Claims (5)
1.一种三维富碳纳米纤维陶瓷气凝胶的制备方法,基于远电场-静电纺丝制备方法,其特征在于,具体步骤如下:
步骤一:在40℃~60℃的温度条件下,先将乙酰丙酮聚锆和硝酸钇六水合物的甲醇溶液与硅烷偶联剂KH550的甲醇溶液充分溶解混合,再加入高分子聚氧化乙烯PEO的甲醇溶液充分共溶,得到具有高度可纺性的二元硅锆陶瓷静电纺丝前驱体溶液;其中,原料配方按照质量配比,如下:乙酰丙酮聚锆:硝酸钇六水合物:硅烷偶联剂KH550:高分子聚氧化乙烯PEO:甲醇=50:12~20:83:0.4:200~350;
步骤二:将二元硅锆陶瓷静电纺丝前驱体溶液推入注射器,控制温度为24℃~26℃,湿度条件为50%,静电纺丝针与金属网状收集器之间距离为0.5m~0.7m,控制静电纺丝电压稳定在35~48kV,使前驱体液滴在强静电力作用下于静电纺丝针前方形成泰勒锥,随之固化成连续长纤维脱离静电纺丝针后,在静电场中被高压静电力充分拉伸牵引,使纤维之间相互随机缠绕,同时在远距离空间中实现纤维的充分干燥,利用金属网状收集器作为负极来收集,形成三维层状结构纳米纤维陶瓷气凝胶前体;
步骤三:收集吸附在金属网状收集器上的三维纳米纤维陶瓷气凝胶前体,并进行分步程控高温退火、结晶热处理和化学交联得到形状结构完好的三维富碳纳米纤维陶瓷气凝胶。
2.根据权利要求1所述的一种三维富碳纳米纤维陶瓷气凝胶的制备方法,其特征在于:步骤二,控制前驱体溶液在温度24℃~26℃条件下的溶液粘度为55mPa.s~200mPa.s,将二元硅锆陶瓷静电纺丝前驱体以0.8~3.0mL/h的泵送速度推入注射器,并且静电纺丝针内径为0.15mm~0.2mm。
3.根据权利要求2所述的一种三维富碳纳米纤维陶瓷气凝胶的制备方法,其特征在于:步骤二,控制静电纺丝电压稳定在40kV,静电纺丝针与金属网状收集器之间距离为0.7m。
4.根据权利要求1-3任一项所述的一种三维富碳纳米纤维陶瓷气凝胶的制备方法,其特征在于:步骤三,所述的分步程控高温退火的步骤为:首先以2℃/min的升温速率升温至600℃,随后以4℃/min的升温速率升温至1000℃,并在1000℃的条件下稳定保温30min,最后缓慢降至20-25℃。
5.根据权利要求4所述的制备方法制备得出的一种三维富碳纳米纤维陶瓷气凝胶。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111418179.9A CN113999037B (zh) | 2021-11-26 | 2021-11-26 | 一种三维富碳纳米纤维陶瓷气凝胶及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111418179.9A CN113999037B (zh) | 2021-11-26 | 2021-11-26 | 一种三维富碳纳米纤维陶瓷气凝胶及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113999037A CN113999037A (zh) | 2022-02-01 |
CN113999037B true CN113999037B (zh) | 2022-04-22 |
Family
ID=79930435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111418179.9A Active CN113999037B (zh) | 2021-11-26 | 2021-11-26 | 一种三维富碳纳米纤维陶瓷气凝胶及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113999037B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115010501A (zh) * | 2022-06-08 | 2022-09-06 | 佛山市中柔材料科技有限公司 | 弹性陶瓷微纳米纤维气凝胶隔热材料及其制备方法、应用 |
CN115340365A (zh) * | 2022-06-23 | 2022-11-15 | 东华大学 | 一种杂化凝胶长丝的陶瓷化方法 |
CN115161784A (zh) * | 2022-06-23 | 2022-10-11 | 东华大学 | 一种用于规模化生产连续陶瓷长丝的方法 |
CN115477546B (zh) * | 2022-08-09 | 2023-08-01 | 哈尔滨工业大学 | 一种中熵陶瓷纳米纤维气凝胶及其制备方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2990510A1 (en) * | 2014-08-27 | 2016-03-02 | Gabriel A/S | Composite polymer fibres comprising aerogel particles and method for production. |
CN106929927B (zh) * | 2015-12-30 | 2020-03-24 | 山东大学 | 聚乙酰丙酮合锆前驱体溶胶纺丝液及亚微米氧化锆晶体纤维的制备方法 |
CN106192052B (zh) * | 2016-09-23 | 2018-05-04 | 江苏金由新材料有限公司 | 一种聚四氟乙烯超细纤维制备用静电纺丝装置 |
CN110170282B (zh) * | 2019-05-07 | 2020-07-14 | 清华大学 | 一种各向异性层状无机纤维气凝胶材料及其制备方法 |
CN111233445B (zh) * | 2020-02-19 | 2021-08-24 | 山东大学 | 一种高温高强柔性氧化锆-氧化硅纤维膜及其制备方法与应用 |
CN113149655B (zh) * | 2021-04-01 | 2021-09-21 | 哈尔滨工业大学 | 一种涡流场辅助-静电纺丝制备三维纳米纤维陶瓷气凝胶的方法 |
CN113604964A (zh) * | 2021-09-07 | 2021-11-05 | 北京化工大学 | 一种有序复合纤维膜及其制备方法与应用 |
-
2021
- 2021-11-26 CN CN202111418179.9A patent/CN113999037B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN113999037A (zh) | 2022-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113999037B (zh) | 一种三维富碳纳米纤维陶瓷气凝胶及其制备方法 | |
CN113149655B (zh) | 一种涡流场辅助-静电纺丝制备三维纳米纤维陶瓷气凝胶的方法 | |
Jiang et al. | Recent advances of carbon-based electromagnetic wave absorption materials facing the actual situations | |
CN102167567B (zh) | 一种柔性氧化铝陶瓷纤维及其制备方法 | |
Jia et al. | Flexible ceramic fibers: Recent development in preparation and application | |
CN109537105B (zh) | 一种多孔中空纤维导电材料及其制备方法 | |
CN106930004B (zh) | 静电纺丝制备柔性碳化硅/碳纳米管复合纤维膜的方法 | |
Xu et al. | Artificial muscle with reversible and controllable deformation based on stiffness-variable carbon nanotube spring-like nanocomposite yarn | |
CN109851336B (zh) | 一种高模量致密连续莫来石纳米陶瓷纤维及其制备方法 | |
CN105256407A (zh) | 基于同轴静电纺丝工艺的“核-壳”结构的碳-碳化硅复合纳米纤维及制备方法 | |
CN104746149B (zh) | 静电纺丝结合复溶剂技术制备多孔纳米纤维的方法 | |
CN109265879B (zh) | 一种高定向排布核壳结构纤维聚偏氟乙烯基复合介质及其制备方法 | |
CN114349526A (zh) | 一种具有曲折连续相结构的陶瓷纳米纤维气凝胶及其制备方法 | |
CN113416054A (zh) | 一种具有双重防护性能的二氧化硅纳米纤维/MXene复合气凝胶制备方法 | |
Zhao et al. | Superelastic, lightweight, and flame-retardant 3D fibrous sponge fabricated by one-step electrospinning for heat retention | |
Zhang et al. | Super-insulating, ultralight and high-strength mullite-based nanofiber composite aerogels | |
CN103058621A (zh) | 氧化锌微波吸收发热材料的制备方法 | |
CN102605468A (zh) | 一种制备硫化镍纳米纤维的方法 | |
Zhang et al. | Design and preparation of hollow SiO2 nanospheres/SiC-based nanocomposite fiber membrane for high temperature thermal insulators | |
Li et al. | Elastic and compressible Al2O3/ZrO2/La2O3 nanofibrous membranes for firefighting protective clothing | |
Zhao et al. | Fabrication of ultra-fine flexible Y2Si2O7 fibrous membranes for thermal insulation by electrospinning | |
Wang et al. | Lightweight, Compressible, and Multifunctional Organic–Inorganic Nanofibrous Aerogels for Enhanced Microwave Absorption | |
CN115477546B (zh) | 一种中熵陶瓷纳米纤维气凝胶及其制备方法 | |
Dang et al. | ZrO2/SiO2/C nanofiber aerogels with enhanced mechanical and thermal insulation properties fabricated by freeze casting | |
WO2022194124A1 (zh) | 一种光驱致动的人工肌肉材料及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |