WO2020220559A1 - Procédé de récupération de métaux de valeur présents dans des batteries usagées au lithium ternaire de nickel-cobalt-manganèse - Google Patents

Procédé de récupération de métaux de valeur présents dans des batteries usagées au lithium ternaire de nickel-cobalt-manganèse Download PDF

Info

Publication number
WO2020220559A1
WO2020220559A1 PCT/CN2019/105497 CN2019105497W WO2020220559A1 WO 2020220559 A1 WO2020220559 A1 WO 2020220559A1 CN 2019105497 W CN2019105497 W CN 2019105497W WO 2020220559 A1 WO2020220559 A1 WO 2020220559A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
extraction
nickel
raffinate
sulfuric acid
Prior art date
Application number
PCT/CN2019/105497
Other languages
English (en)
Chinese (zh)
Inventor
詹稳
甄爱钢
余心亮
张景伟
李斌
陈健
赵海敏
陈红娟
Original Assignee
浙江天能新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江天能新材料有限公司 filed Critical 浙江天能新材料有限公司
Publication of WO2020220559A1 publication Critical patent/WO2020220559A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/005Preliminary treatment of scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3844Phosphonic acid, e.g. H2P(O)(OH)2
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3846Phosphoric acid, e.g. (O)P(OH)3
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention relates to the technical field of waste lithium ion battery recovery, in particular to a method for recovering valuable metals in waste nickel cobalt manganese ternary lithium batteries.
  • the Chinese invention patent with publication number CN105591171A discloses a method for recovering the cathode material of a waste nickel-cobalt-manganese ternary lithium-ion battery.
  • the method dissolves the cathode material with an alkali, and separates the dissolved solution I and the insoluble matter; Acid hydrolyze the substance to obtain dissolving liquid II, adjust the pH value to alkaline to form a precipitate, obtain filtrate I and precipitate I; acid hydrolyze the precipitate I to obtain dissolving liquid III, add ammonia water to it for complexation, adjust the pH value After it is alkaline, add soluble carbonate and filter to obtain filtrate II and precipitate II; add soluble carbonate to filtrate II and heat to obtain precipitate III; after acidolysis, adjust the pH to 3.0 ⁇ 3.5, add hypochlorite to adjust the pH to 2.0-3.0, filter to obtain filtrate III and precipitate IV.
  • the Chinese invention patent with publication number CN109449523A discloses a comprehensive recovery method for waste lithium ion batteries, including: first leaching ternary waste lithium battery cell powder with sulfuric acid and potassium permanganate to obtain the first leaching solution and The first leaching residue; the first leaching solution is immersed with sodium carbonate to obtain lithium carbonate; the first leaching residue is selectively reduced and leached with hydrogen peroxide and sulfuric acid to obtain the second leaching solution and the second leaching residue; adjusting the pH of the second leaching solution to 4.2 -4.5, extract the second leachate with P204 to obtain P204 raffinate and P204 loaded organic phase; back-extract P204 loaded organic phase with sulfuric acid, evaporate and crystallize to obtain manganese sulfate; adjust the pH value of P204 raffinate to 4.5- 5.
  • the pH value is 5-5.5.
  • the C272 extract is extracted with P507 to obtain the P507-supported organic phase.
  • the P507-supported organic phase is back-extracted with sulfuric acid to obtain a nickel sulfate solution, which is evaporated and crystallized to obtain nickel sulfate.
  • the present invention provides a method for recovering valuable metals in waste nickel-cobalt-manganese ternary lithium batteries
  • a method for recovering valuable metals in waste nickel-cobalt-manganese ternary lithium batteries including the following steps:
  • step (4) The raffinate obtained in step (4) is used to extract cobalt with P507.
  • the ratio of oil to water is controlled to be 0.8 ⁇ 0.9:1, lye is used for saponification, and the saponification rate is controlled to be 55% ⁇ 60%;
  • step (5) The raffinate obtained in step (5) is extracted by using C272 to remove impurities, to obtain a C272 raffinate after removing Mg 2+ ;
  • step (7) The raffinate obtained in step (7) is reacted with sodium carbonate to collect lithium carbonate.
  • lithium batteries need to be discharged before being broken to discharge the remaining power to avoid explosion or combustion during the broken process.
  • the discharge can be immersed in a salt solution. After crushing, the crushed material is carbonized at a high temperature to consume the organic matter, and the remaining is mainly some metal elements. Carbonization is generally carried out in a carbonization furnace, and natural gas can be used for heating. After carbonization, it can be crushed again if necessary to make the electrode material into a powder form. Of course, it is also possible to crush the remaining larger particles again after air selection.
  • the air-selected powders are mainly electrode materials for the next processing, while the steel shell of the lithium battery becomes granular, which can be directly recycled after being separated from the powders.
  • step (2) when sulfuric acid is used for leaching, concentrated sulfuric acid is generally used, and concentrated sulfuric acid with a concentration of 98% is preferably used.
  • the step (2) is divided into two steps when the powder is leached with sulfuric acid:
  • the leaching solution I and the leaching solution II are mixed to obtain the leaching solution.
  • the mass of the reducing agent is 0.2 to 0.5 times that of the powder; the mass of hydrogen peroxide is 0.1 to 0.4 times that of the filter residue I.
  • the powder or filter residue I Before leaching with sulfuric acid, the powder or filter residue I needs to be slurried with water to facilitate subsequent leaching.
  • the liquid to solid ratio of the powder or filter residue I to water can be 4 to 5:1.
  • the main control parameter of the added sulfuric acid is the pH of the reaction, and there is no special requirement for the concentration of sulfuric acid used.
  • Leaching through a two-step method can ensure the leaching rate.
  • the reaction time of the two-step leaching reaction can be 1 hour. Of course, the longer the reaction time, the higher the leaching rate.
  • the concentration of the corresponding metal elements in the leaching solution or filter residue can be tested after the reaction, such as Ni, Co, Mn, Li, etc. Concentration to calculate the leaching rate.
  • the step (3) of removing Fe 2+ , Al 3+ , Ca 2+ and Mg 2+ in the leachate includes:
  • the amount of the oxidant added is 0.2-0.5 times the mass of Fe 2+ ; the neutralizer is sodium carbonate, and the pH is adjusted to 4.5-5.0.
  • the fluoride is sodium fluoride, and the added amount is 4-7 times the total mass of Ca 2+ and Mg 2+ .
  • the removal operation of some non-principal impurities in the leachate is beneficial to the preparation of higher-purity products during subsequent extraction and the reduction of impurities therein.
  • the filter residue produced in steps (2) and (3) also contains a small amount of Ni, Co and other components, and the residue washing operation can be selected to improve the overall recovery rate.
  • the residue washing operation can be terminated.
  • the obtained filtrate is used as the water for the slurry powder and filter residue I in the leaching process or as the leaching solution and step (2)
  • the obtained leachate is mixed and enters the next process.
  • step (4) uses a sulfuric acid solution with a concentration of 100-120 g/L for back extraction
  • step (5) uses a sulfuric acid solution with a concentration of 150-220 g/L for back extraction
  • step (7) uses a concentration of 100-220 g/L for back extraction.
  • Different extraction agents have different isotherms for different metal ions.
  • Different extraction agents are used to extract various metal ions successively, and then different concentrations of sulfuric acid solutions are used (in the case of close amounts, different pH can be achieved)
  • the metal ions extracted by the extractant are stripped out to obtain the corresponding sulfate, which can be further processed to obtain the sulfate product, and the extractant after the stripping can be reused.
  • P507 is used for extraction in two steps, and the extraction of cobalt and nickel is determined according to the isotherm of the P507 extractant for metal ion extraction at different pHs, so that the separation of cobalt and nickel can be achieved.
  • step (8) before using sodium carbonate reaction to collect lithium carbonate, the raffinate obtained in step (7) is adjusted to pH 9-10 to remove impurities, and the filter residue is concentrated to remove sodium salt to obtain a lithium-containing mother liquor.
  • the concentration of Li + in the raffinate is generally 1 ⁇ 3g/L.
  • the residue After removing impurities by adjusting pH 9 ⁇ 10 with sodium hydroxide solution, the residue is filtered and then concentrated. During the concentration process, the sodium salt is saturated and then precipitated.
  • the sodium salt is mainly The composition is sodium sulfate, and the precipitated sodium salt is separated and dried and packaged and stored for sale.
  • the concentration of Li + in the lithium-containing mother liquor is 12-15 g/L. During the concentration process, periodically check the concentration of Li + and stop the concentration after reaching the standard.
  • step (b) The lithium carbonate precipitate obtained in step (a) is reconstituted by adding sulfuric acid, and the pH is adjusted to 10-13 to remove impurities. After filtering the residue, sodium carbonate is added for reaction. The reaction temperature is 95°C ⁇ 98°C. The lithium carbonate precipitate is obtained by the reaction and washed. , Drying to obtain lithium carbonate.
  • the reaction temperature is selected from 95°C ⁇ 98 for the second purification of lithium carbonate. At this temperature, it can be ensured that the product obtained by the reaction has a good crystal form, and it is not easy to coat the sodium salt, and the sodium salt adhering to the surface can be washed away with water, so that the product lithium carbonate has a better purity.
  • the method for recovering valuable metals in the waste nickel-cobalt-manganese ternary lithium battery of the present invention through the Fe 2+ , Al 3+ , Ca 2+ and Mg 2+ de-impurity treatment before extraction, so that the subsequent recovery of valuable metals
  • the product purity is relatively high.
  • the ratio of oil to water is controlled to be 0.8-0.9:1, and the saponification rate is controlled to be 55% to 60%.
  • the saponification rate is reduced and the ratio of oil to water is appropriately reduced. The remaining cobalt remains in the water phase to ensure that magnesium will not be extracted, thereby ensuring that the magnesium impurity in the cobalt sulfate product meets the standard.
  • a step of magnesium extraction is added after cobalt extraction and before nickel extraction to remove residual magnesium as much as possible and increase the purity of the nickel sulfate product obtained from nickel extraction.
  • C272 extractant is used for extracting magnesium, using its characteristic of separating the isotherm curves of cobalt-magnesium and nickel, and controlling only extracting magnesium and cobalt without extracting nickel, so as to achieve the separation of magnesium and nickel.
  • the scraps are carbonized at a high temperature in a carbonization furnace to consume organic matter, and the remaining are mainly some metal elements.
  • the powder selected by the winnowing is mainly the electrode material (hereinafter referred to as the ternary black powder), which is used in the next step.
  • the steel shell, etc. becomes granular and can be recycled directly after being separated from the powder.
  • the secondary leaching residue is cleaned with clean water and 98% sulfuric acid to adjust the pH to about 3.0. After filtering, the washing water is used as the pre-leaching solution.
  • the two leaching solutions were mixed to obtain 1100 mL leaching solution, and the content of some major metal elements was tested. The test results are shown in Table 4.
  • P204 impurity removal mix 2L of 25% P204 organic phase, add 32% liquid caustic soda (sodium hydroxide solution) to saponify, the saponification rate is 70%, and the organic phase is compared with the pre-extraction liquid at a ratio of 2:1
  • the test results of raffinate and back extraction liquid are shown in Table 7.
  • manganese sulfate crystals are MnSO 4 ⁇ H 2 O, each molecule contains 1 crystal water, and manganese sulfate crystals are obtained.
  • the amount is 76g, the purity is 99.6%, and the recovery rate is 98.54%.
  • the cobalt sulfate solution is evaporated and crystallized into cobalt sulfate crystals (the cobalt sulfate crystals are CoSO 4 ⁇ 7H 2 O, and each molecule contains 7 crystal water) to obtain 108 g of cobalt sulfate crystals with a purity of 99.3% and a recovery rate of 98.57%.
  • the stripping liquid After the stripping liquid is back-leached and added sodium fluoride to remove magnesium, it then enters the P204 pre-extraction liquid.
  • P507 nickel extraction mix 2L of 25% P507 organic phase, add 32% liquid caustic soda for saponification, and the saponification rate is 70%.
  • Back extraction shake for 5 minutes and then clarify for 10 minutes, release the lower back extraction liquid, raffinate liquid 1800mL and back extraction liquid 300mL, the test results of raffinate and back extraction liquid are shown in Table 10.
  • the nickel sulfate solution is evaporated and crystallized into nickel sulfate crystals (the nickel sulfate crystals are NiSO 4 ⁇ 6H 2 O, and each molecule contains 6 crystal water) to obtain 182 g of nickel sulfate crystals with a purity of 99.35% and a recovery rate of 98%.
  • the obtained lithium carbonate has high purity and low sodium salt content.
  • the scraps are carbonized at a high temperature in a carbonization furnace to consume organic matter, and the remaining are mainly some metal elements.
  • the powder selected by the winnowing is mainly the electrode material (hereinafter referred to as the ternary black powder), which is used in the next step.
  • the steel shell, etc. becomes granular and can be recycled directly after being separated from the powder.
  • the secondary leaching residue is cleaned with clean water and 98% sulfuric acid to adjust the pH to about 3.0. After filtering, the washing water is used as the pre-leaching solution.
  • the two leaching solutions were mixed to obtain 1170 mL leaching solution, and the content of some major metal elements was tested. The test results are shown in Table 15.
  • P204 impurity removal mix 3L of 25% P204 organic phase, add 32% sodium hydroxide solution to saponify, the saponification rate is 70%, the organic phase and the pre-extraction liquid are added to the separatory funnel in a ratio of 2:1 for extraction Shake for 5 minutes and then clarify for 10 minutes, then add 200mL 15g/L sulfuric acid solution to wash the organic phase, shake for 5 minutes and then clarify for 10 minutes, release the lower raffinate 1600mL, and then add 200mL 100g/L sulfuric acid to the separatory funnel The solution was subjected to back extraction, shaken for 5 minutes and then clarified for 10 minutes, and the lower back extraction liquid was discharged. The test results of the raffinate and the back extraction liquid are shown in Table 18.
  • manganese sulfate solution is added with alkali sulfide to remove impurities
  • P204 extractant is used to remove Ca, and then evaporated and crystallized into manganese sulfate crystals (manganese sulfate crystals are MnSO 4 ⁇ H 2 O, each molecule contains 1 crystal water) to obtain manganese sulfate crystals 68.93g, purity 99.5%, recovery rate 98.76%.
  • the cobalt sulfate solution is evaporated and crystallized into cobalt sulfate crystals (the cobalt sulfate crystals are CoSO 4 ⁇ 7H 2 O, and each molecule contains 7 crystal water) to obtain 92 g of cobalt sulfate crystals with a purity of 99.3% and a recovery rate of 98.74%.
  • Extraction of magnesium from C272 mix 500 mL of 10% C272 organic phase, add 32% liquid caustic soda for saponification, and the saponification rate is 20%. Add the organic phase and the pre-extraction liquid to a separatory funnel at a ratio of 0.3:1 for extraction. Shake for 5 minutes and then clarify for 10 minutes, then add 100mL 15g/L sulfuric acid solution to wash the organic phase, shake for 5 minutes and then clarify for 10 minutes, release the lower raffinate 1950mL, and then add 50mL 200g/L sulfuric acid solution to the separatory funnel Perform back extraction, shake for 5 minutes and then clarify for 10 minutes, release the lower back extraction liquid, 1950 mL of raffinate and 50 mL of back extraction. The test results of raffinate and back extraction are shown in Table 20.
  • the stripping liquid After the stripping liquid is back-leached and added sodium fluoride to remove magnesium, it then enters the P204 pre-extraction liquid.
  • P507 nickel extraction mix 2L of 25% P507 organic phase, add 32% liquid caustic soda for saponification, and the saponification rate is 70%.
  • Back extraction shake for 5 minutes and then clarify for 10 minutes, release the lower back extraction liquid, raffinate 2250mL and back extraction liquid 300mL, the test results of raffinate and back extraction liquid are shown in Table 21.
  • the nickel sulfate solution is evaporated and crystallized into nickel sulfate crystals (the nickel sulfate crystals are NiSO 4 ⁇ 6H 2 O, and each molecule contains 6 crystal water) to obtain 140 g of nickel sulfate crystals with a purity of 99.6% and a recovery rate of 98.2%.
  • the obtained lithium carbonate has high purity and low sodium salt content.
  • Example 1 Take the same batch of ternary black powder in Example 1 for testing.
  • the leaching operation is the same as that in Example 1.
  • the extraction method is different.
  • the saponification rate is controlled to 65%, and the oil-water ratio (organic The ratio of phase and pre-extraction liquid) is 1:1, and finally cobalt is extracted to obtain cobalt sulfate crystals (cobalt sulfate crystals are CoSO 4 ⁇ 7H 2 O, each molecule contains 7 crystal water) 93.5g, purity 98.21%, and Co content It is 19.9%, and the Mg content is 0.0078%.
  • nickel sulfate crystals are NiSO 4 ⁇ 6H 2 O, each molecule contains 6 crystal water) 135g, purity 98.32%, of which The Ni content is 20.65%, and the Mg content is 0.0069%.
  • Example 2 The P507 nickel extraction residue after leaching and extraction in the same way as in Example 2 was subjected to lithium carbonate precipitation. Only the temperature was used for the precipitation of lithium carbonate at 80°C, and the other steps were the same. The purity of the finally obtained lithium carbonate product was tested and the purity was 98.52% , The Na content is 0.25%. Compared with Examples 1 and 2, Comparative Example 2 has more sodium salt impurities. It shows that at lower temperature, it is easy to coat sodium salt when lithium carbonate precipitates.
  • the percentages are all mass percentages.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

L'invention concerne un procédé de récupération de métaux de valeur présents dans des batteries usagées au lithium ternaire de nickel-cobalt-manganèse, le procédé comprenant : l'élimination d'impuretés à base de Fe2+, Al3+, Ca2+ et Mg2+ avant l'extraction de sorte que la pureté de produits métalliques de valeur récupérés par la suite est élevée. Pendant l'extraction de cobalt, le rapport huile-eau est réglé pour être de 0,8 à 0,9:1 et le taux de saponification est réglé pour être de 55 % à 60 % ; grâce à la diminution du taux de saponification et à la diminution de manière appropriée du rapport huile-eau, le cobalt présent dans une phase aqueuse est réglé pour ne pas être complètement extrait, une petite quantité de cobalt étant laissée dans la phase aqueuse, ce qui garantit ainsi que du magnésium n'est pas extrait et que les impuretés à base de magnésium présentes dans des produits de type sulfate de cobalt satisfont à une norme. Une étape d'une opération d'extraction de magnésium est ajoutée après l'extraction de cobalt et avant l'extraction de nickel, du magnésium résiduel est éliminé autant que possible et la pureté des produits de type sulfate de nickel obtenus après extraction de nickel est augmentée. Un agent d'extraction C272 est utilisé pour l'extraction de magnésium, la caractéristique de celui-ci selon laquelle les courbes isothermes d'extraction de cobalt, de magnésium et de nickel sont largement séparées est utilisée et l'extraction uniquement de magnésium et de cobalt tandis que le nickel n'est pas extrait est maîtrisée, d'où il résulte que le magnésium et le nickel sont séparés.
PCT/CN2019/105497 2019-04-28 2019-09-12 Procédé de récupération de métaux de valeur présents dans des batteries usagées au lithium ternaire de nickel-cobalt-manganèse WO2020220559A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910348755.3A CN110066925A (zh) 2019-04-28 2019-04-28 一种废旧镍钴锰三元锂电池中有价金属的回收方法
CN201910348755.3 2019-04-28

Publications (1)

Publication Number Publication Date
WO2020220559A1 true WO2020220559A1 (fr) 2020-11-05

Family

ID=67369226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105497 WO2020220559A1 (fr) 2019-04-28 2019-09-12 Procédé de récupération de métaux de valeur présents dans des batteries usagées au lithium ternaire de nickel-cobalt-manganèse

Country Status (2)

Country Link
CN (1) CN110066925A (fr)
WO (1) WO2020220559A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026931A1 (fr) * 2021-08-26 2023-03-02 Jfeスチール株式会社 Procédé d'élimination de manganèse et procédé de production d'oxyde ferrique
CN115893497A (zh) * 2022-11-14 2023-04-04 广东邦普循环科技有限公司 一种从含钙铜铬硅的锰溶液中制备高纯硫酸锰的方法
US11876196B2 (en) 2020-08-24 2024-01-16 Green Li-Ion Pte. Ltd. Process for removing impurities in the recycling of lithium-ion batteries
WO2024042115A1 (fr) 2022-08-24 2024-02-29 Umicore Procédé de préparation d'une solution de sulfate de nickel de haute pureté

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110066925A (zh) * 2019-04-28 2019-07-30 浙江天能新材料有限公司 一种废旧镍钴锰三元锂电池中有价金属的回收方法
CN110616331B (zh) * 2019-10-16 2021-11-30 衢州华友资源再生科技有限公司 一种动力锂离子电池全金属回收循环利用的方法
CN110642276B (zh) * 2019-11-11 2022-01-25 南昌航空大学 一种制备6n级氯化镁溶液的方法
CN111003734A (zh) * 2019-12-25 2020-04-14 南通金通储能动力新材料有限公司 一种三元前驱体废料回收再利用的方法
CN111018008B (zh) * 2019-12-28 2022-09-23 湖南金源新材料股份有限公司 免萃制取电池级氢氧化镍的方法
CN111270073A (zh) * 2020-02-03 2020-06-12 广东省稀有金属研究所 一种从废旧锂离子电池电极材料浸出液中回收有价金属的方法
CN111519031B (zh) * 2020-04-29 2022-06-28 江苏北矿金属循环利用科技有限公司 一种从废旧动力锂离子电池黑粉中回收镍钴锰锂的方法
CN112079391A (zh) * 2020-07-31 2020-12-15 浙江天能新材料有限公司 一种制备电池级硫酸锰的方法
CN114134341B (zh) 2020-09-04 2023-01-13 苏州博萃循环科技有限公司 一种含镍钴锰的料液中镍钴锰的回收方法
CN114250362A (zh) * 2020-09-22 2022-03-29 北京博萃循环科技有限公司 一种分离净化并回收废旧锂离子电池正极材料的方法及得到的正极材料
CN112342390A (zh) * 2020-10-26 2021-02-09 宁波互邦新材料有限公司 三元浸出液的萃取分离技术及基于其的三元正极材料回收工艺
CN113003589B (zh) * 2021-04-25 2023-04-25 湖南金源新材料股份有限公司 从p507萃余液中提取制备电池级碳酸锂的方法及萃取装置
CN114853093A (zh) * 2022-05-27 2022-08-05 中国恩菲工程技术有限公司 电池级硫酸镍的制备方法
CN115057481A (zh) * 2022-06-09 2022-09-16 云南金浔资源股份有限公司 一种高性能锂离子动力电池使用硫酸钴生产方法
CN115369251A (zh) * 2022-10-27 2022-11-22 杭州天易成环保设备股份有限公司 三元锂电池料的萃取回收线、方法及应用
CN116902999A (zh) * 2023-05-31 2023-10-20 广东盛祥新材料科技有限公司 三元粉/铁锂粉/碳酸锂加工方法及废旧电池回收方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101509071A (zh) * 2008-02-13 2009-08-19 日矿金属株式会社 从含有Co、Ni、Mn的锂电池渣中回收有价金属的方法
WO2016159001A1 (fr) * 2015-03-31 2016-10-06 Jx金属株式会社 Procédé pour l'élimination de fer d'une solution contenant du fer et procédé de récupération de métaux de valeur
CN108517409A (zh) * 2018-04-04 2018-09-11 长沙矿冶研究院有限责任公司 一种从废旧动力电池正极废料中回收有价金属的方法
CN110066925A (zh) * 2019-04-28 2019-07-30 浙江天能新材料有限公司 一种废旧镍钴锰三元锂电池中有价金属的回收方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383440B (zh) * 2007-11-16 2010-05-12 佛山市邦普镍钴技术有限公司 一种从镍氢电池正极废料中回收、制备超细金属镍粉的方法
JP5706457B2 (ja) * 2013-02-27 2015-04-22 Jx日鉱日石金属株式会社 金属混合溶液からの金属の分離回収方法
CN105206889B (zh) * 2015-07-29 2018-10-26 浙江三晟化工有限公司 一种废旧镍钴锰酸锂三元电池正极材料的处理方法
CN108002408B (zh) * 2016-10-31 2021-06-04 湖南金源新材料股份有限公司 电池废料制备硫酸镍、锰、锂、钴及四氧化三钴的方法
CN108977662A (zh) * 2018-07-13 2018-12-11 兰州金川新材料科技股份有限公司 一种利用钴铁合金制备氯化钴溶液和硫酸铜溶液的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101509071A (zh) * 2008-02-13 2009-08-19 日矿金属株式会社 从含有Co、Ni、Mn的锂电池渣中回收有价金属的方法
WO2016159001A1 (fr) * 2015-03-31 2016-10-06 Jx金属株式会社 Procédé pour l'élimination de fer d'une solution contenant du fer et procédé de récupération de métaux de valeur
CN108517409A (zh) * 2018-04-04 2018-09-11 长沙矿冶研究院有限责任公司 一种从废旧动力电池正极废料中回收有价金属的方法
CN110066925A (zh) * 2019-04-28 2019-07-30 浙江天能新材料有限公司 一种废旧镍钴锰三元锂电池中有价金属的回收方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11876196B2 (en) 2020-08-24 2024-01-16 Green Li-Ion Pte. Ltd. Process for removing impurities in the recycling of lithium-ion batteries
WO2023026931A1 (fr) * 2021-08-26 2023-03-02 Jfeスチール株式会社 Procédé d'élimination de manganèse et procédé de production d'oxyde ferrique
JP7276626B1 (ja) * 2021-08-26 2023-05-18 Jfeスチール株式会社 マンガンの除去方法および酸化鉄の製造方法
WO2024042115A1 (fr) 2022-08-24 2024-02-29 Umicore Procédé de préparation d'une solution de sulfate de nickel de haute pureté
CN115893497A (zh) * 2022-11-14 2023-04-04 广东邦普循环科技有限公司 一种从含钙铜铬硅的锰溶液中制备高纯硫酸锰的方法

Also Published As

Publication number Publication date
CN110066925A (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
WO2020220559A1 (fr) Procédé de récupération de métaux de valeur présents dans des batteries usagées au lithium ternaire de nickel-cobalt-manganèse
JP7216945B2 (ja) 三元系電池廃棄物総合回収におけるマンガン-リチウム分離と抽出前溶液調製プロセス及び三元系電池廃棄物からコバルト-ニッケル-マンガン-リチウム元素を総合回収する方法
CN111519031B (zh) 一种从废旧动力锂离子电池黑粉中回收镍钴锰锂的方法
JP6714226B2 (ja) 電池廃棄物による硫酸ニッケル、硫酸マンガン、硫酸リチウム、硫酸コバルト及び四酸化三コバルトの製造方法
CN106319228B (zh) 一种从含镍钴锰废渣中同步回收镍钴锰的方法
TWI392745B (zh) A method for recovering a valuable metal from a lithium battery residue containing Co, Ni, and Mn
CN102244309B (zh) 一种从电动汽车锂系动力电池中回收锂的方法
CN113444885B (zh) 一种从废旧三元锂离子电池中优先提取金属锂以及同时得到电池级金属盐的方法
CN111092273B (zh) 从三元电池废料中综合回收钴镍锰锂元素的新方法
CN110835683B (zh) 废旧锂离子电池材料中选择性提取锂的方法
CN112375910B (zh) 废动力电池粉的回收处理方法
CN108963371A (zh) 一种从废旧锂离子电池中回收有价金属的方法
WO2023035636A1 (fr) Procédé de préparation de sulfate de nickel à partir de matte à faible teneur en nickel
WO2023045331A1 (fr) Procédé de récupération sélective de métal précieux dans une batterie au lithium-ion usagée
JP2024514966A (ja) 使用済みリチウムイオン電池からの有価金属の回収方法
CN101603125B (zh) 一种镍液净化除杂的方法
CN114477240A (zh) 一种电池级氢氧化锂的制备方法
CN114132909A (zh) 一种从退役磷酸锰铁锂电池废料中回收纯金属盐的方法
CN111118311B (zh) 三元电池废料综合回收中的锰锂分离方法
CN113387402A (zh) 利用氢氧化镍钴原料结晶法生产硫酸镍钴盐的方法
CN115057481A (zh) 一种高性能锂离子动力电池使用硫酸钴生产方法
WO2021134515A1 (fr) Solution mixte de ni-co-mn de niveau de batterie et procédé de préparation de solution de mn de niveau de batterie
CN113122725A (zh) 一种提升废旧锂电池金属回收率及纯度的方法
WO2023193517A1 (fr) Procédé de traitement d'un alliage cuivre-cobalt de batterie au lithium usagée et son utilisation
KR100516976B1 (ko) 중유회 또는 오리멀젼회로 부터 산화바나듐 플레이크를회수하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927267

Country of ref document: EP

Kind code of ref document: A1