WO2020218376A1 - 電子・電気機器部品屑の処理方法及び処理装置 - Google Patents

電子・電気機器部品屑の処理方法及び処理装置 Download PDF

Info

Publication number
WO2020218376A1
WO2020218376A1 PCT/JP2020/017390 JP2020017390W WO2020218376A1 WO 2020218376 A1 WO2020218376 A1 WO 2020218376A1 JP 2020017390 W JP2020017390 W JP 2020017390W WO 2020218376 A1 WO2020218376 A1 WO 2020218376A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic
electrical equipment
waste
copper wire
smelting
Prior art date
Application number
PCT/JP2020/017390
Other languages
English (en)
French (fr)
Inventor
勝志 青木
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to CN202080028872.2A priority Critical patent/CN113710383B/zh
Priority to EP20796350.5A priority patent/EP3960312A4/en
Priority to CA3137690A priority patent/CA3137690C/en
Priority to KR1020217036112A priority patent/KR102591293B1/ko
Priority to US17/605,419 priority patent/US20220203405A1/en
Publication of WO2020218376A1 publication Critical patent/WO2020218376A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/04Sorting according to size
    • B07C5/10Sorting according to size measured by light-responsive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/344Sorting according to other particular properties according to electric or electromagnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/36Sorting apparatus characterised by the means used for distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0052Gripping heads and other end effectors multiple gripper units or multiple end effectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/02Gripping heads and other end effectors servo-actuated
    • B25J15/0253Gripping heads and other end effectors servo-actuated comprising parallel grippers
    • B25J15/0293Gripping heads and other end effectors servo-actuated comprising parallel grippers having fingers directly connected to actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/003Programme-controlled manipulators having parallel kinematics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0093Programme-controlled manipulators co-operating with conveyor means
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C2501/00Sorting according to a characteristic or feature of the articles or material to be sorted
    • B07C2501/0054Sorting of waste or refuse
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C2501/00Sorting according to a characteristic or feature of the articles or material to be sorted
    • B07C2501/0063Using robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30136Metal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method and a treatment device for electronic / electrical equipment parts waste, and more particularly to an electronic / electric equipment parts waste treatment method and a treatment apparatus that can be used in a recycling processing process for used electronic / electrical equipment.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 9-78151
  • the recycling method of valuable metals including is described. According to such a recycling method, since scrap processing can be combined with copper smelting in a copper smelting flash smelting furnace, valuable metals can be recovered at low cost even from scraps having a low valuable metal content. ..
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2015-123418
  • Patent Document 2 electrical / electronic equipment component waste containing copper is incinerated, crushed to a predetermined size or less, and the crushed electrical / electronic equipment component waste is smelted with copper. It is described that it is processed in a furnace.
  • thermodynamic methods in the smelting process of copper smelting and methods for purifying electrolytes in the electrolysis process including smelting inhibitors derived from natural ores.
  • thermodynamic methods in the smelting process of copper smelting and methods for purifying electrolytes in the electrolysis process, including smelting inhibitors derived from natural ores.
  • the electronic / electrical equipment component scraps include various shapes and types of component scraps, and some of the component scraps may cause a defect in the sorting process, resulting in a decrease in processing efficiency.
  • the present disclosure shortens the parts waste that causes a defect in the smelting processing process in the smelting processing raw material sorting process for selecting the processing raw material containing a valuable metal for processing in the smelting process from the electronic / electrical equipment parts waste.
  • a treatment method and a treatment device for electronic / electrical equipment component waste that can be efficiently reduced in time.
  • the method for treating electronic / electrical equipment component waste is, in one embodiment, for selecting a processing raw material containing a valuable metal that can be processed in the smelting process from the electronic / electrical equipment component waste.
  • a method for treating electronic / electrical equipment parts waste including a smelting raw material sorting process, electronic / electrical equipment parts waste including removing massive copper wire waste contained in electronic / electrical equipment parts waste using a parallel link robot. It is a processing method of.
  • the method for treating electronic / electrical equipment component waste is to transport the electronic / electrical equipment component waste on the transport surface, and the electronic / electrical equipment transported on the transport surface.
  • Electronic / electrical processing including image recognition processing of lumpy copper wire shavings contained in component shavings and discharging of lumpy copper wire shavings on a transport surface using a parallel link robot based on the image recognition result by the image recognition processing. This is a method for treating equipment parts waste.
  • the electronic / electrical equipment component waste processing apparatus includes a transport means including a transport surface for transporting the electronic / electrical equipment component waste, and electronic / electrical transport on the transport surface.
  • An image recognition means for image-recognizing the massive copper wire scraps contained in the equipment parts scraps, and a picking means for discharging the massive copper wire scraps on the transport surface using a parallel link robot based on the image recognition result by the image recognition means. It is an electronic / electrical equipment component waste processing device including the above.
  • the parts scraps that cause defects in the sorting process in the sorting process of smelting raw materials for selecting processing raw materials containing valuable metals for processing in the smelting process from electronic / electrical equipment parts scraps, the parts scraps that cause defects in the sorting process. It is possible to provide a processing method and a processing apparatus for electronic / electrical equipment component waste, which can efficiently reduce
  • the method and apparatus for treating the electronic / electrical equipment component waste 5 can handle valuable metals that can be processed in the smelting process from the electronic / electrical equipment component waste 5.
  • a smelting raw material sorting process X for sorting the smelting raw material to be included and a pretreatment step of the smelting raw material sorting process X the massive copper wire waste contained in the electronic / electrical equipment component scrap 5 in the pretreatment step.
  • the picking process step Y for removing is included.
  • the "electronic / electrical equipment component waste 5" in the present embodiment is waste crushed electronic / electrical equipment such as waste home appliances / PCs and mobile phones, and after being collected, it is crushed to an appropriate size.
  • the crushing for making the electronic / electrical equipment parts waste 5 may be performed by the processor himself, or may be crushed in the city and purchased.
  • the crushing method is not limited to a specific device, and may be a shearing method or an impact method, but crushing that does not impair the shape of parts is desirable as much as possible. Therefore, equipment belonging to the category of crushers intended for fine crushing is not included.
  • Electronic / electrical equipment parts scrap 5 includes substrates, parts such as ICs and connectors, synthetic resins (plastics) used for housings, wire scraps, metal, film-shaped parts scraps, and powders generated by crushing or crushing. In addition, it can be classified into parts scraps composed of, and can be further classified according to the purpose of processing. Although not limited to the following, in the present embodiment, the electronic / electrical equipment component waste 5 which is crushed to a particle size of 50 mm or less and whose ratio of being separated as a simple substance is 70% or more is preferably treated. can do.
  • a substance unfavorable for the processing in the copper smelting process for example, antimony (Sb). , Nickel (Ni) and other elements, resins, aluminum (Al), iron (Fe) and other smelting inhibitors, while concentrating valuable metals including gold, silver, platinum, palladium and copper.
  • Sb antimony
  • Nickel (Ni) and other elements for example, nickel (Ni) and other elements, resins, aluminum (Al), iron (Fe) and other smelting inhibitors, while concentrating valuable metals including gold, silver, platinum, palladium and copper.
  • Raw materials can be obtained.
  • the smelting raw material sorting process X includes a wind force sorting step, a sieving step, a magnetic force sorting step, a eddy current sorting step, a specific gravity sorting step, and an optical sorting step of optically sorting metal and non-metal materials. It is preferable to include at least one of them.
  • the smelting raw material sorting process X by configuring the smelting raw material sorting process X to include at least a two-step wind sorting process and a sorting process using a metal sensor, it is valuable in the processing raw material processed in the smelting process. It is advantageous in that it is possible to suppress the mixing of smelting inhibitor into the processing raw material while concentrating the metal at a higher concentration, and to minimize the loss of valuable metal. Details of the smelting raw material sorting process X will be described later.
  • the lumpy copper wire shavings (referred to as "lumpy copper wire shavings" in the present embodiment) contained in the electronic / electrical equipment parts shavings 5 (raw materials) are selected for smelting raw materials. It has been found that it adversely affects various sorters used in the processing step X.
  • a picking process is performed to remove the massive copper wire scraps contained in the electronic / electrical equipment parts scraps 5 which are the initial raw materials.
  • the massive copper wire debris having a major axis of 10 mm or more, more preferably the major axis 20 mm or more, and further preferably the major axis 45 mm or more.
  • the massive copper wire scraps often have an irregular shape, and the length of the longest portion of the massive copper wire scraps is referred to as a "major axis" in the present embodiment.
  • the upper limit of the major axis of the lump copper wire scrap is not particularly limited, but can be 100 mm or less, which is suitable for the treatment in the smelting raw material sorting process X, and more typically 70 mm or less.
  • the lumpy copper wire scraps are other component scraps. It is possible to prevent deterioration of removal accuracy and clogging inside the device due to entanglement and coarsening.
  • the lumpy copper wire shavings are collected and put into the smelting process. It can be effectively used as a part of processing raw materials.
  • FIG. 2 is a side view showing an example of the picking device 100 according to the embodiment of the present invention.
  • the picking device 100 is included in the transport means 30 including the transport surface 3 for transporting the electronic / electrical equipment component scraps 5 and the electronic / electrical equipment component scraps 5 transported on the transport surface 3.
  • An image recognition means 20 for image recognition of the lump copper wire scrap 50 and a picking means 10 for discharging the lump copper wire scrap 50 on the transport surface 3 from the image recognition result by using the parallel link robot 1 are provided.
  • the electronic / electrical equipment component scrap 5 is supplied on the transport surface 3 along the transport direction, and the image recognition process 20 performs the image recognition process.
  • the image recognition means 20 is, for example, an irradiation means for irradiating the transport surface 3 with illumination light, an imaging means for capturing an image of electronic / electrical equipment component scraps 5 existing in the field of view irradiated by the irradiation means, and irradiation.
  • Control means (not shown) for controlling the means and the imaging means can be provided. Based on the image captured by the imaging means, the control means extracts the massive copper wire scrap 50 having a major axis of a predetermined length or an area of a predetermined area or more from the electronic / electrical equipment component scraps 5. It is configured to extract based on a predetermined program of the above and output the extraction result to the picking means 10.
  • the image recognition means 20 positions the massive copper wire scrap 50 to be removed by the picking means 10 based on the color (copper color) and area or major axis of the massive copper wire scrap 50 from the image captured by the imaging means. It is preferable to judge the information.
  • the electronic / electrical equipment component scrap 5 includes various component scraps, but since the massive copper wire scrap 50 has almost the same color (copper color) regardless of the type, the massive copper wire scrap 50 is based on the color. Is recognized, the massive copper wire scrap 50 to be treated can be easily identified from the electronic / electrical equipment component scraps 5 including various component scraps.
  • the bulk copper wire scrap 50 should be removed based on the area of the electronic / electrical equipment component scrap 5.
  • the electronic / electrical equipment component scrap 5 is image-recognized by the image recognition means 20, and then picked by the picking means 10.
  • the picking means 10 is arranged above the transport surface 3, and includes a parallel link robot 1 that removes the lumpy copper wire scrap 50 based on the position information of the lumpy copper wire scrap 50 by the image recognition means 20. Since the parallel link robot 1 moves to the target position in the shortest distance by the parallel link mechanism, it moves to the position of the substance to be extracted with high speed and high accuracy, grips the substance, and is high speed even among industrial robots. By removing the massive copper wire scrap 50 contained in the electronic / electrical equipment component scrap 5 using the parallel link robot 1, the massive copper wire scrap 50 is lumpy as compared with the conventional articulated robot or the like. Copper wire scrap 50 can be extracted at higher speed and with higher accuracy.
  • the parallel link robot 1 has a transport surface 3 on a discharge means 40 having a transport direction that typically intersects the transport direction perpendicularly so as to cross the transport surface 3 of the transport means 30.
  • the massive copper wire scrap 50 is grasped and discharged from the robot.
  • the discharging means 40 is arranged in the vicinity of the transport surface 3 and the parallel link robot 1, and the parallel link robot 1 is configured to discharge the massive copper wire scrap 50 in a direction crossing the transport direction of the transport means 30.
  • the massive copper wire scrap 50 can be accurately removed from the electronic / electrical equipment component scrap 5 in a short time.
  • the parallel link robot 1 is provided with one or more robot hands 11 at the tip portion.
  • the parallel link robot 1 causes the massive copper wire scrap 50. It may not be possible to remove. Therefore, it is preferable that a plurality of robot hands 11 are connected to the tip of the parallel link robot 1.
  • the processing speed of the parallel link robot 1 may decrease because many robot hands 11 are connected and the total weight of the robot hands 11 supported by the parallel link robot 1 increases. Therefore, the number of robot hands 11 is appropriately adjusted to an appropriate number according to the abundance ratio of the massive copper wire scraps 50 contained in the electronic / electrical equipment component scraps 5 transported to the transport surface 3, the processing speed, and the like. Is desirable.
  • the robot hand 11 grips the holding portions 110 and 111 having a pair of gripping portions 112 and 113 for gripping the massive copper wire scrap 50 at the tip and gripping the massive copper wire scrap 50.
  • the holding portions 110 and 111 for holding the portions 112 and 113 are provided with a driving portion 120 for driving in the horizontal direction to adjust the distance d between the grip portions 112 and 113 (opening and closing the grip portions 112 and 113). Can be done.
  • the drive unit 120 can be composed of an air cylinder or the like.
  • the grip portions 112 and 113 stand by in an open state (a state in which the grip portion is opened when discharging the previously gripped massive copper wire scraps), and when the target massive copper wire scraps 50 are detected, the positions are changed. After confirming, the parallel link robot 1 immediately moves to the massive copper wire scrap 50, and the grip portions 112 and 113 are inserted into the massive copper wire scrap 50, and the grip portions 112 and 113 are brought close to each other by the driving unit 120 and closed. As a result, the massive copper wire scrap 50 is sandwiched between the gripping portions 112 and 113.
  • the parallel link robot 1 that grips the lump copper wire scrap 50 operates so as to open between the grip portions 112 and 113 by the drive unit 120 while moving toward the discharge port so as to cross the transport direction of the transport means 30. Then, the gripped copper wire scrap 50 is discharged from the discharge port.
  • the parallel link robot 1 returns to a fixed position with the grip portions 112 and 113 open. In the example of FIG. 4, two robot hands 11 are connected to the tip of the parallel link robot 1 via the arm 15.
  • the shapes of the grips 112 and 113 are not particularly specified, it is desirable that the grips are not entangled with lumpy copper wire chips.
  • the grip portion, the prism, and the like do not have a protrusion.
  • the grip portions 112 and 113 at the tip of the robot hand 11 are bent so as to approach each other toward the tip, and the covering members 114 and 115 are arranged at the tip. ..
  • the covering members 114 and 115 can be formed of an elastic member such as silicon rubber.
  • the massive copper wire waste 50 contained in the electronic / electrical equipment component waste 5 is a parallel link robot.
  • the massive copper wire waste 50 By removing using No. 1, it becomes possible to remove the massive copper wire waste 50 with higher accuracy and in a shorter time. As a result, it is possible to reduce in advance the parts waste that causes a defect in the smelting raw material sorting process X.
  • the smelting raw material sorting process X can include at least step 1, step 2, and step 3. Further, steps B to C can be appropriately combined before and after steps 1 to 3 according to the properties of the electronic / electrical equipment component scrap 5.
  • step 1 powdery substances and film-like parts scraps (resin, aluminum foil, etc.) as substances that adversely affect the subsequent sorting steps are sorted and removed from the electronic / electrical equipment parts scraps 5 which are the initial raw materials. It is the role of pretreatment for the post-process and is positioned as rough sorting.
  • Wind power sorting is preferably used as step 1.
  • This wind power sorting is characterized in that it is a sorting method that can be treated in many ways for the purpose of the present invention. Wind sorting is divided into lightweight and heavy materials, but the light powder and film-like parts scraps (resin, aluminum foil, etc.) are sent to the copper smelting process via the pre-incineration process and are heavy. Is sent to step 2.
  • the air volume in step 1 is set to 5 to 20 m / s, more preferably 5 to 12 m / s, further to about 5 to 10 m / s, and further to 6 to 8 m / s. can do.
  • step 2 synthetic resins, substrates and parts are concentrated from the electronic / electrical equipment parts scrap 5 from which the powdery material and the film-like parts scraps have been removed.
  • Wind power sorting is preferably used as step 2.
  • step 2 the massive metal and other individual parts are separated as heavy objects, and the substrate, synthetic resins, and parts are concentrated on the lightweight object side.
  • the concentrate containing the substrate, synthetic resins, etc. concentrated on the lightweight side is sent to the next step, step 3.
  • step 3 heavy objects are further sorted by combining magnetic force sorting, eddy current sorting, color sorters, hand sorting, robots, and the like, and metals such as Fe, Al, and SUS existing in the heavy objects are recovered.
  • the air volume in step 2 is 5 to 20 m / s, more preferably 10 to 18 m / s, further 15 to 18 m / s, and further about 16 to 17 m / s. It can be set with.
  • Step 3 a substrate containing valuable metals such as copper, gold, and silver is concentrated from the substrate obtained in step 2, a lightweight material containing synthetic resins, and the like. By concentrating the substrate containing the valuable metal and treating it in the copper smelting step described later, the recovery efficiency of the valuable metal in the copper smelting step can be improved.
  • step 3 it is preferable to process with a sorter equipped with a metal sensor, a color camera, an air valve and a conveyor.
  • the metal is detected by the metal sensor, the metal is conveyed and discharged by the conveyor, and the position of the substance is confirmed by the color camera which is reserved later. Then, based on the information of the metal sensor and the position information of the color camera, it is preferable to carry out a process of selectively shooting down a part that is recognized as not metal and is on the fall trajectory with an air valve.
  • Substrates containing valuable metals such as copper and precious metals are concentrated on the sorted side that was not shot down by the air valve. Therefore, by using this as the object to be processed in the above-mentioned smelting process, less parts waste can be obtained. The recovery efficiency of valuable metals can be increased by the amount of input.
  • the substrate and synthetic resins that do not substantially contain the metal that was shot down by the air valve are included in the group consisting of Sb, Al, Fe, and Ni, which are smelting inhibitors in the smelting process described below. May contain one or more metals selected from.
  • step 3 parts scraps and the like containing at least one or more metals selected from the group consisting of smelting inhibitors Sb, Al, Fe, and Ni are previously prepared. Since it can be removed, it is possible to prevent the smelting inhibitor contained in the electronic / electrical equipment component waste 5 from being brought in as much as possible.
  • step 3 if powdery substances or film-like component scraps are mixed in the object to be processed, the powdery substances are blown up at the time of sorting and the visibility of the color camera is deteriorated. It may be difficult to identify the object to be removed using the color camera, or the color camera may erroneously detect the object to be removed and the air valve may malfunction and the non-object may be involved.
  • the powdery substance and the film contained in the electronic / electrical equipment component waste 5 which causes a decrease in the sorting efficiency of the sorting process in the step 3. Since the scraps of the shaped parts and the like are removed in advance, it is possible to prevent the sorting device from malfunctioning and the sorting efficiency from being lowered due to the powdery matter flying up during the processing.
  • the metal is first recovered by performing magnetic force sorting or the like.
  • parts scraps containing valuable metals may be mixed in the magnetic material, and the recovery amount of the valuable metals may decrease.
  • wind sorting is first divided into two stages (steps 1 and 2), as compared with the case where magnetic sorting is performed. Therefore, the loss of valuable metals can be suppressed, and a large amount of electronic / electrical equipment parts waste 5 (raw material) can be sorted and processed at once while concentrating more valuable metals. Then, after two-step wind power sorting, by combining the sorting process (step 3) using a metal sorter, which takes time to process, the smelting inhibitor can be produced while increasing the processing amount of the electronic / electrical equipment component waste 5. It can be removed to efficiently recover valuable metals.
  • step B it is more preferable to combine steps B to C before and after steps 1 to 3 in that sorting efficiency can be improved.
  • a step B between the steps 1 and 2 for removing the wire dust contained in the electronic / electrical equipment component scrap 5.
  • step B it is preferable to use a sieve separator having a slit-shaped sieve.
  • powdery substances can be removed in addition to wire dust by sieving. By sending the sieving powder and copper wire waste to the smelting process via the pre-incineration process, the valuable metal in the parts waste can be recovered more efficiently.
  • Process C may be carried out between process 2 and process 3.
  • Step C includes at least one process of sorting by a color sorter, sorting by sieving, and sorting by magnetic force, and can be positioned as a pretreatment for the sorting process of step 3.
  • step 3 can be achieved.
  • the metal content ratio of the processed object to be sent can be reduced.
  • a high metal content ratio in the object to be treated means that there are many parts scraps containing metal.
  • the metal sorter in step 3 when non-metals such as synthetic resins are present between the metal and the detected component scraps, if the interval is within the detection range of the metal sorter, it is erroneously detected as one metal. Synthetic resins such as plastics, which are non-metals between metal objects, may not be repelled by the air valve and may be treated as substrates or parts containing metal. Therefore, by carrying out step C including magnetic force, sieving, sorting by color sorter, etc. before separation by the metal sorter in step 3, the metal content ratio of the object to be processed sent to step 3 is lowered and the metal sorter is used. False detection can be suppressed.
  • the heavy material obtained in step 2 may contain a part of the substrate to be processed in the copper smelting process. Therefore, by further classifying the heavy objects obtained in step 2 by magnetic force sorting, eddy current sorting, color sorter, hand sorting, robots, etc., the substrates to be processed in the copper smelting step are separated and smelted. Since it can be sent to the process, the recovery efficiency of valuable metals is improved.
  • removal or “separation” means not only removing or separating 100%, but also removing 30% or more, more preferably 50% by mass or more by weight in the object. Such aspects are included.
  • the bulk copper wire waste 50 obtained in the pretreatment step, the valuable metals selected in the steps 1 to 3 and the steps B to C are used. It further has a smelting process for processing the containing processing raw materials in the smelting process.
  • the smelting step includes a step of incinerating the electronic / electrical equipment component waste 5, a step of crushing and sieving the incinerated product, and a step of smelting the crushed and sieved processed product into copper.
  • the step of processing the electronic / electrical equipment component waste 5 is preferably performed before the incineration step.
  • the copper smelting process using the flash smelting method can be preferably used as the smelting process according to the present embodiment.
  • a copper smelting process using the flash smelting method for example, copper concentrate, a solvent, and electronic / electrical equipment component scraps 5 are charged from the ceiling of the shaft of the flash smelting furnace.
  • the charged concentrate and electronic / electrical equipment component waste 5 melts on the shaft of the flash smelting furnace and floats on the mat containing, for example, 50 to 68% copper and above the mat in the flash smelting furnace setler. Separated into slag.
  • Valuable metals such as copper, gold, and silver in the electronic / electrical equipment parts are absorbed by the mat that stays in the flash smelting furnace, so that the valuable metals can be recovered from the electronic / electrical equipment parts waste 5.
  • the electronic / electrical equipment component scrap 5 contains a substance that affects the quality of products and by-products in copper smelting and / or a smelting inhibitor that affects the process of copper smelting. For example, if the amount of substances containing elements such as Sb and Ni as described above into the smelting furnace is large, the quality of electrolytic copper obtained by copper smelting may deteriorate.
  • sulfuric acid is produced from sulfur dioxide generated by oxidation of concentrates, but if hydrocarbons are mixed with sulfur dioxide, the produced sulfuric acid may be colored.
  • hydrocarbons such as plastics, but depending on the composition of the electronic / electrical equipment parts scrap 5 brought into copper smelting, such synthetic resins may be contained in large amounts. is there. Synthetic resins may cause rapid combustion in the smelting furnace, smoke leakage, and equipment deterioration due to local heating.
  • the slag composition may be changed in the copper smelting process, which may affect the loss of valuable metals to slag, so-called slag loss. ..
  • a large amount of halogen elements such as Cl, Br, and F are contained in the electronic / electrical equipment parts waste 5 input into the smelting furnace, it causes corrosion of the exhaust gas treatment equipment of copper smelting and deterioration of the sulfuric acid catalyst. In some cases.
  • Such a problem of mixing of smelting inhibitory substances becomes apparent as the amount of processed electronic / electrical equipment component waste 5 increases, and there is a problem that the smelting process is burdened.
  • the proportion of smelting inhibitor brought into the smelting process is suppressed as much as possible, the amount of electronic / electrical equipment component waste 5 processed is increased, and the proportion of electronic / electrical equipment component waste 5 containing copper and valuable metals is increased. As a result, copper and valuable metals can be efficiently recovered.
  • the amount of smelting inhibitor removed in the electronic / electrical equipment component scrap 5 is large, but some component scraps have both smelting inhibitor and valuable metal at the same time.
  • the electrons / electrical equipment by removing 1/2, more preferably 2/3 or more of the smelting inhibitors of the entire raw material of the electronic / electrical equipment component waste 5 by weight ratio, the electrons / electrical equipment.
  • the electrical equipment component waste 5 can be stably processed in the copper smelting process. Further, in the smelting process, if the limit amount of the smelting inhibitor that can be processed is the same as the current state, the smelting inhibitor of the entire raw material of the electronic / electrical equipment component waste 5 can be reduced in the smelting process. It is possible to process more electronic / electrical equipment parts waste 5 having less smelting inhibitory substances.
  • the smelting inhibitor is in the state of component waste before the electronic / electrical equipment component waste 5 is crushed into powder in the smelting process.
  • the present invention is not limited to the present embodiment, and the components can be modified and embodied without departing from the gist thereof.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the present embodiment. For example, some components may be deleted from all the components shown in the present embodiment, or each component may be combined as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Quality & Reliability (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manipulator (AREA)
  • Sorting Of Articles (AREA)
  • Image Analysis (AREA)

Abstract

電子・電気機器部品屑から製錬工程で処理するための有価金属を含む処理原料を選別する製錬処理原料の選別処理工程において、選別処理工程に不具合を生じさせる部品屑を予め低減することが可能な電子・電気機器部品屑の処理方法を提供する。電子・電気機器部品屑の中から製錬工程で処理可能な有価金属を含む処理原料を選別するための製錬原料選別処理工程を含む電子・電気機器部品屑の処理方法において、電子・電気機器部品屑に含まれる塊状銅線屑をパラレルリンクロボットを用いて取り除くことを含む電子・電気機器部品屑の処理方法である。

Description

電子・電気機器部品屑の処理方法及び処理装置
 本発明は、電子・電気機器部品屑の処理方法及び処理装置に関し、特に、使用済み電子・電気機器のリサイクル処理工程に利用可能な電子・電気機器部品屑の処理方法及び処理装置に関する。
 近年、資源保護の観点から、廃家電製品・PCや携帯電話等の電子・電気機器部品屑から、有価金属を回収することがますます盛んになってきており、その効率的な回収方法が検討され、提案されている。
 例えば、特開平9-78151号公報(特許文献1)では、有価金属を含有するスクラップ類を銅鉱石溶錬用自溶炉へ装入し、有価金属を炉内に滞留するマットへ回収させる工程を含む有価金属のリサイクル方法が記載されている。このようなリサイクル方法によれば、銅溶錬自溶炉での銅製錬にスクラップ処理を組み合わせることができるため、有価金属含有率が低いスクラップ類からでも低コストで有価金属を回収することができる。
 しかしながら、特許文献1に記載されるような銅溶錬自溶炉を用いた処理においては、電子・電気機器部品屑の処理量が増えると、電子・電気機器部品屑を構成する樹脂等の有機物に含まれる炭素成分が増加し、溶錬炉で過還元によるトラブルが発生する場合がある。一方で、電子・電気機器部品屑の処理量は近年増加する傾向にあるため、銅溶錬自溶炉での効率的な処理が望まれている。
 銅溶錬自溶炉の過還元によるトラブルを発生する手法の一つとして、電子・電気機器部品屑を銅溶錬自溶炉で処理する前に電子・電気機器部品屑を粉砕処理し、容量を小さくすることが提案されている。例えば、特開2015-123418号公報(特許文献2)では、銅を含む電気・電子機器部品屑を焼却後、所定のサイズ以下に粉砕し、粉砕した電気・電子機器部品屑を銅の溶錬炉で処理することが記載されている。
 しかしながら、電子・電気機器部品屑の処理量が増加することにより、電子・電気機器部品屑に含まれる物質の種類によっては、その後の銅製錬工程での処理に好ましくない物質(製錬阻害物質)が従来よりも多量に投入されることとなる。このような銅製錬工程に装入される製錬阻害物質の量が多くなると、電子・電気機器部品屑の投入量を制限せざるを得なくなる状況が生じる。
 従来より、天然の鉱石由来の製錬阻害物質も含め、銅製錬の溶錬工程における熱力学的な手法や電解工程における電解液の精製方法については数々の取り組みがされてきたが、天然の鉱石と比較して、製錬阻害物質の含有割合が著しく大きい電子・電気機器部品屑の処理方法には課題が多い。
 例えば、電子・電気機器部品屑から製錬阻害物質を低減しながら効率的に製錬工程へ投入するための原料を作製するためには、種々の選別機を用いて機械的な処理を行うことが効率性の観点から望ましい。しかしながら、電子・電気機器部品屑には、様々な形状及び種類の部品屑が含まれており、部品屑の一部が選別工程で不具合を発生させ、処理効率の低下を起こす場合がある。
特開平9-78151号公報 特開2015-123418号公報
 本開示は、電子・電気機器部品屑から製錬工程で処理するための有価金属を含む処理原料を選別する製錬処理原料の選別処理工程において、選別処理工程に不具合を生じさせる部品屑を短時間で効率良く低減することが可能な電子・電気機器部品屑の処理方法及び処理装置を提供する。
 本発明の実施の形態に係る電子・電気機器部品屑の処理方法は一実施態様において、電子・電気機器部品屑の中から製錬工程で処理可能な有価金属を含む処理原料を選別するための製錬原料選別処理工程を含む電子・電気機器部品屑の処理方法において、電子・電気機器部品屑に含まれる塊状銅線屑を、パラレルリンクロボットを用いて取り除くことを含む電子・電気機器部品屑の処理方法である。
 本発明の実施の形態に係る電子・電気機器部品屑の処理方法は別の一実施態様において、電子・電気機器部品屑を搬送面上で搬送し、搬送面上に搬送された電子・電気機器部品屑に含まれる塊状銅線屑を画像認識処理し、画像認識処理による画像認識結果に基づいて、搬送面上の塊状銅線屑を、パラレルリンクロボットを用いて排出させることを含む電子・電気機器部品屑の処理方法である。
 本発明の実施の形態に係る電子・電気機器部品屑の処理装置は一実施態様において、電子・電気機器部品屑を搬送する搬送面を備える搬送手段と、搬送面上に搬送された電子・電気機器部品屑に含まれる塊状銅線屑を画像認識する画像認識手段と、画像認識手段による画像認識結果に基づいて、搬送面上の塊状銅線屑を、パラレルリンクロボットを用いて排出させるピッキング手段とを備えることを含む電子・電気機器部品屑の処理装置である。
 本開示によれば、電子・電気機器部品屑から製錬工程で処理するための有価金属を含む処理原料を選別する製錬処理原料の選別処理工程において、選別処理工程に不具合を生じさせる部品屑を短時間で効率良く低減することが可能な電子・電気機器部品屑の処理方法及び処理装置を提供できる。
本発明の実施の形態に係る電子・電気機器部品屑の処理方法の一例を示すフロー図である。 本発明の実施の形態に係る電子・電気機器部品屑の処理装置の一例を示す側面図である。 本発明の実施の形態に係る電子・電気機器部品屑の処理装置の一例を示す上面図である。 パラレルリンクロボットの先端部に取り付けられたロボットハンドの構成例を示す概略図である。 ロボットハンドの先端部の構成例を表す概略図である。
 以下、本発明の実施の形態に係る電子・電気機器部品屑5の処理方法及び処理装置を図面を用いて説明する。なお、以下に示す実施の形態はこの発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の構造、配置等を下記のものに特定するものではない。
 本発明の実施の形態に係る電子・電気機器部品屑5の処理方法及び処理装置は、図1に示すように、電子・電気機器部品屑5の中から製錬工程で処理可能な有価金属を含む処理原料を選別するための製錬原料選別処理工程Xと、製錬原料選別処理工程Xの前処理工程とを含み、前処理工程において電子・電気機器部品屑5に含まれる塊状銅線屑を取り除くピッキング処理工程Yを含む。
 本実施形態における「電子・電気機器部品屑5」とは、廃家電製品・PCや携帯電話等の電子・電気機器を破砕した屑であり、回収された後、適当な大きさに破砕されたものを指す。本実施形態では、電子・電気機器部品屑5とするための破砕は、処理者自身が行ってもよいが、市中で破砕されたものを購入等したものでもよい。
 破砕方法として、特定の装置には限定されず、せん断方式でも衝撃方式でもよいが、できる限り、部品の形状を損なわない破砕が望ましい。従って、細かく粉砕することを目的とする粉砕機のカテゴリーに属する装置は含まれない。
 電子・電気機器部品屑5は、基板、ICやコネクタ等のパーツ、筐体などに使われる合成樹脂類(プラスチック)、線屑、メタル、フィルム状部品屑、破砕や粉砕によって生じる粉状物、その他、からなる部品屑に分類することができ、処理目的に応じて更に細かく分類することができる。以下に限定されるものではないが、本実施形態では、粒度50mm以下に破砕されており、且つ部品屑として単体分離されている割合が70%以上の電子・電気機器部品屑5を好適に処理することができる。
 これら種々の種類からなる部品屑を所定の順序で処理することにより、例えば、選別物を銅製錬工程に利用する場合には、銅製錬工程での処理に好ましくない物質、例えば、アンチモン(Sb)、ニッケル(Ni)等の元素、樹脂類、アルミニウム(Al)、鉄(Fe)等の製錬阻害物質を極力低減しながら、金、銀、白金、パラジウム、銅を含む有価金属を濃縮した処理原料を得ることができる。
 製錬原料選別処理工程Xとしては、風力選別工程、篩別工程、磁力選別工程、渦電流選別工程、比重選別工程、及び金属物と非金属物とを光学的に選別する光学式選別工程の少なくともいずれかを含むことが好ましい。
 特に、製錬原料選別処理工程Xとして、少なくとも2段階の風力選別工程と、メタルセンサーを用いた選別処理工程とを含むように構成することによって、製錬工程において処理される処理原料中に有価金属をより高濃度で濃縮しながら、処理原料中への製錬阻害物質の混入を抑制することができ、かつ、有価金属のロスを最小化できる点で有利である。製錬原料選別処理工程Xの詳細は後述する。
 製錬原料選別処理工程Xへ導入される電子・電気機器部品屑5(原料)としては、処理業者等の違いによって、種々の形状、大きさ、種類に破砕された部品屑が存在し、部品屑の割合も様々であることが多い。
 本発明者らの検討の結果、電子・電気機器部品屑5(原料)の中に含まれる塊状の銅線の屑(本実施形態では「塊状銅線屑」と称する)が、製錬原料選別処理工程Xで用いられる種々の選別機に悪影響を及ぼすことが分かってきた。
 そのため、本実施形態では、製錬原料選別処理工程Xの前処理として、初期原料である電子・電気機器部品屑5に含まれる塊状銅線屑を取り除くピッキング処理を行う。製錬原料選別処理工程Xの前にピッキング処理を行うことにより、後述する製錬原料選別処理工程Xの選別機の故障、誤検知などを抑制することができ、大量の初期原料を機械的に効率良く処理して、有価金属が濃縮された製錬工程で処理可能な処理原料を得ることができる。
 ピッキング処理においては長径10mm以上の塊状銅線屑を取り除くことが好ましく、より好ましくは長径20mm以上、更に好ましくは長径45mm以上の塊状銅線屑を取り除く。塊状銅線屑は不定形を有している場合が多いが、その塊状銅線屑の最も長い部分の長さのことを、本実施形態では「長径」という。塊状銅線屑の長径の上限値は特に限定されないが、製錬原料選別処理工程Xにおける処理に好適な100mm以下とすることができ、より典型的には70mm以下とすることができる。
 このような塊状銅線屑を製錬原料選別処理工程Xの前処理工程として取り除いておくことにより、例えば風力選別機を用いて選別処理を行う場合には、塊状銅線屑が他の部品屑と絡まり粗大化して除去精度の悪化や機器内部での詰まりを起こすことなどを抑制することができる。また、電子・電気機器部品屑5に含まれる塊状銅線屑の構成成分は有価金属である銅を多く含むものが多いため、この塊状銅線屑を回収して製錬工程へ投入するための処理原料の一部として有効利用できる。
 ピッキング処理は、ロボットを用いて自動で行うことにより、電子・電気機器部品屑5を短時間で大量に処理することが可能となる。ロボットとしては種々の産業用ロボットが利用可能であるが、その中でも、パラレルリンクロボット1を含むピッキング装置100が用いられる。
 図2は本発明の実施の形態に係るピッキング装置100の一例を示す側面図である。図2に示すように、ピッキング装置100は、電子・電気機器部品屑5を搬送する搬送面3を備える搬送手段30と、搬送面3上に搬送された電子・電気機器部品屑5に含まれる塊状銅線屑50を画像認識する画像認識手段20と、画像認識結果から搬送面3上の塊状銅線屑50をパラレルリンクロボット1を用いて排出させるピッキング手段10を備える。
 電子・電気機器部品屑5は、搬送面3上を搬送方向に沿って供給され、画像認識手段20において画像認識処理が行われる。画像認識手段20は、例えば、搬送面3に照明光を照射する照射手段、照射手段により照射された視野内に存在する電子・電気機器部品屑5の画像を撮像するための撮像手段、及び照射手段及び撮像手段を制御する制御手段(不図示)を備えることができる。撮像手段により撮像された画像に基づいて、制御手段が、長径が所定の長さ或いは面積が所定の面積以上となる塊状銅線屑50を、電子・電気機器部品屑5の中から抽出するための所定のプログラムに基づいて抽出し、抽出結果をピッキング手段10へ出力するように構成される。
 画像認識手段20は、撮像手段により撮像された画像の中から、塊状銅線屑50が有する色彩(銅色)と面積又は長径に基づいて、ピッキング手段10により取り除くべき塊状銅線屑50の位置情報を判定することが好ましい。電子・電気機器部品屑5は種々の部品屑を含むが、塊状銅線屑50は種類によらずほぼ類似の色彩(銅色)を有しているため、色彩に基づいて塊状銅線屑50が認識されることにより、種々の部品屑を含む電子・電気機器部品屑5の中から処理すべき塊状銅線屑50を容易に判別することができる。また、以上の塊状銅線屑50が製錬原料選別処理工程Xで不具合を生じさせる塊状銅線屑50を予め除去するために、電子・電気機器部品屑5の面積に基づいて除去すべき塊状銅線屑50の情報を抽出し、その面積から、後述するピッキング装置100でピッキングする重心の位置の割り出しを行うことで、パラレルリンクロボット1によるピッキング処理におけるピッキング不良を低減することができるようになる。
 電子・電気機器部品屑5は、画像認識手段20で画像認識された後、ピッキング手段10によりピッキング処理が行われる。ピッキング手段10は、搬送面3の上方に配置され、画像認識手段20による塊状銅線屑50の位置情報に基づいて、塊状銅線屑50を取り除くパラレルリンクロボット1を備える。パラレルリンクロボット1は、パラレルリンクメカニズムにより、ターゲットの位置に最短距離で移動するので、産業用ロボットの中でも、抽出対象とする物質の位置に高速・高精度で移動し、物質を把持し、高速で所定の位置へ送り出すことができるため、電子・電気機器部品屑5に含まれる塊状銅線屑50をパラレルリンクロボット1を用いて取り除くことにより、従来型の多関節ロボット等に比べて、塊状銅線屑50をより高速且つ高精度に抽出することができる。
 図3に示すように、パラレルリンクロボット1は、搬送手段30の搬送面3を横切るように、典型的には搬送方向に対して垂直に交わる方向に搬送方向を有する排出手段40に搬送面3から塊状銅線屑50を把持して排出させる。このように、排出手段40が搬送面3及びパラレルリンクロボット1の近傍に配置され、パラレルリンクロボット1が塊状銅線屑50を、搬送手段30の搬送方向を横切る方向に排出するように構成されることにより、塊状銅線屑50を電子・電気機器部品屑5中から短時間で精度よく取り除くことができる。
 パラレルリンクロボット1は、図2に示すように、先端部に一又は複数のロボットハンド11を備える。パラレルリンクロボット1の先端部にロボットハンド11が1本のみ接続される場合、塊状銅線屑50が搬送面3上に多量に搬送された場合には、パラレルリンクロボット1が塊状銅線屑50を取り切れない場合がある。よって、ロボットハンド11はパラレルリンクロボット1の先端部に複数個接続されることが好ましい。但し、ロボットハンド11が多く接続され、パラレルリンクロボット1が支えるロボットハンド11の総重量が増えることにより、パラレルリンクロボット1の処理速度が低下する場合がある。そのため、ロボットハンド11の数は、搬送面3に搬送される電子・電気機器部品屑5中に含まれる塊状銅線屑50の存在比、或いは処理速度等に応じて適宜好適な本数に調整されることが望ましい。
 図4に示すように、ロボットハンド11は、塊状銅線屑50を掴むための一対の掴み部112、113を先端に備える保持部110、111と、塊状銅線屑50を掴むために、掴み部112、113を保持する保持部110、111が水平方向に駆動して掴み部112、113間の距離dを調整する(掴み部112、113を開閉する)ための駆動部120とを備えることができる。
 駆動部120はエアシリンダー等から構成されることができる。掴み部112、113は開いた状態(先に掴んだ塊状銅線屑を排出する際に掴み部を開いた状態)で待機し、対象とする塊状銅線屑50が検知されると、位置を確認し、パラレルリンクロボット1が即座に塊状銅線屑50に移動し、塊状銅線屑50に掴み部112、113を差し込んだ状態とし、掴み部112、113を駆動部120によって互いに近づけ、閉じることで掴み部112、113の間に塊状銅線屑50を挟持する。
 塊状銅線屑50を把持したパラレルリンクロボット1は、排出口に向かって搬送手段30の搬送方向を横切るように移動しながら、駆動部120により、掴み部112、113の間が開くように稼働して、把持している塊状銅線屑50を排出口から排出する。パラレルリンクロボット1は、掴み部112、113を開いた状態のまま、定位置に戻る。図4の例では、パラレルリンクロボット1の先端部にアーム15を介して二本のロボットハンド11が接続される例を示す。
 なお、掴み部112、113の形状は特に、指定はないが、塊状銅線屑が絡まない形状が望ましい。例えば、掴み部や角柱などで、突起部を有さないことが好ましい。また、図5に示すように、ロボットハンド11の先端部の掴み部112、113は先端に向けて互いに近づくように屈曲しており、その先端部には被覆部材114、115が配置されている。被覆部材114、115はシリコンゴムなどの弾性部材で形成されることができる。先端部に被覆部材114、115が配置されることにより、塊状銅線屑50をロボットハンド11により保持しやすくなり、塊状銅線屑50による掴み部112、113の破損も防ぐこともできる。
 本発明の実施の形態に係る電子・電気機器部品屑5の処理装置(ピッキング装置100)及び処理方法によれば、電子・電気機器部品屑5に含まれる塊状銅線屑50を、パラレルリンクロボット1を用いて取り除くことにより、より高精度且つ短時間に塊状銅線屑50を取り除くことが可能になる。これにより、製錬原料選別処理工程Xに不具合を生じさせる部品屑を予め低減することが可能となる。
-製錬原料選別処理工程X-
 製錬原料選別処理工程Xは、図1に例示するように、工程1と、工程2と、工程3とを少なくとも備えることができる。更に、電子・電気機器部品屑5の性状に合わせて、工程1~3の前後に工程B~Cを適宜組み合わせることができる。
(1) 工程1
 工程1では、初期原料である電子・電気機器部品屑5に対し、以降の選別工程に悪影響を与える物質としての粉状物とフィルム状部品屑(樹脂、アルミ箔等)を選別除去する。後工程に対する前処理の役割であり、粗選別に位置づけられる。
 工程1としては、風力選別が好適に用いられる。この風力選別は本発明の目的において、多く処置できる選別方法であることが特徴である。風力選別は、軽量物と重量物に分かれるが、軽量物である粉状物とフィルム状部品屑(樹脂、アルミ箔等)は焼却前処理工程を経由して銅製錬工程に送られ、重量物は、工程2に送られる。
 以下の条件に制限されるものではないが、工程1の風量を5~20m/s、より好ましくは5~12m/s、更には5~10m/s程度、更には6~8m/sで設定することができる。
(2) 工程2
 工程2では、粉状物とフィルム状部品屑が除去された電子・電気機器部品屑5から合成樹脂類、基板及びパーツを濃縮する。
 工程2としては、風力選別が好適に用いられる。工程2では、塊状のメタルやその他の部品単体を重量物として分離し、軽量物側に基板、合成樹脂類、パーツを濃縮させる。軽量物側に濃縮された基板、合成樹脂類等を含む濃縮物は、次工程である工程3に送られる。重量物は必要に応じて更に磁力選別、渦電流選別、カラーソータ、手選別、ロボット等を組み合わせた選別を行い、重量物中に存在するFe、Al、SUS等のメタル類を回収する。
 以下の条件に制限されるものではないが、例えば、工程2の風量を5~20m/s、より好ましくは10~18m/s、更には15~18m/s、更には16~17m/s程度で設定することができる。
(3) 工程3
 工程3では、工程2で得られた基板、合成樹脂類等を含む軽量物から、銅、金、銀などの有価金属を含む基板を濃縮する。有価金属を含む基板を濃縮処理して、後述する銅製錬工程で処理することにより、銅製錬工程における有価金属の回収効率を向上させることができる。
 工程3では、メタルセンサー、カラーカメラ、エアーバルブ及びコンベアを備えるソータで処理することが好ましい。工程3では、まず、メタルセンサーで金属を検知し、コンベアで搬送・放出し、後に控えているカラーカメラで物質の位置を確認する。そして、メタルセンサーの情報とカラーカメラによる位置情報に基づき、メタルでないと認識され落下軌跡上にある部品をエアーバルブで選択的に撃ち落とす処理を実施することが好ましい。
 エアーバルブによって打ち落とされなかった選別物側には、銅、貴金属等の有価金属を含む基板が濃縮されるため、これを上述の製錬工程における処理対象物とすることにより、より少ない部品屑の投入量で有価金属の回収効率を上げることができる。
 一方、エアーバルブによって打ち落とされた金属を実質的に含まない基板及び合成樹脂類には、以下に説明する製錬工程において製錬阻害物質となるSb、Al、Fe、Niからなる群の中から選択される1種以上の金属が含まれている場合がある。このような製錬阻害物質を含む部品屑を製錬工程に送ることにより、製錬工程を安定的に行うことが困難になり、有価金属の高効率回収が困難になる場合がある。
 本実施形態に係る処理方法によれば、工程3によって、製錬阻害物質であるSb、Al、Fe、Niからなる群の中から選択される1種以上の金属を少なくとも含む部品屑等を予め除去することができるため、電子・電気機器部品屑5に含まれる製錬阻害物質を極力持ち込まないようにすることができる。
 なお、工程3における処理において、メタルソータは、処理対象物中に粉状物やフィルム状部品屑が混入していると、選別時に粉状物などが舞い上げられてカラーカメラの視界が悪くなり、カラーカメラを用いた除去対象物の特定が困難になったり、カラーカメラが除去対象物と誤検知し、エアーバルブが誤動作して非対象物が巻き込まれたりする場合がある。
 本発明の実施の形態に係る方法によれば、前処理工程及び工程Bにおいて、工程3における選別処理の選別効率低下の原因となる電子・電気機器部品屑5中に含まれる粉状物、フィルム状部品屑などが予め除去されるため、粉状物が処理中に舞い上がることによる選別装置の動作不良及び選別効率の低下を抑えることができる。
 なお、金属を濃縮させるための一般的な物理選別手法においては、まず磁力選別等を行うことによって金属を回収することが行われる。しかしながら、磁力選別装置は磁性物中に有価金属を含む部品屑が混入し、有価金属の回収量が低下する恐れがある。
 本発明の実施の形態に係る処理方法によれば、物理選別の初期段階において、まず風力選別を2段階に分けて行う(工程1及び工程2)ことにより、磁力選別の処理を行う場合に比べて有価金属のロスを抑えることができ、より多くの有価金属を濃縮しながら、多量の電子・電気機器部品屑5(原料)を一気に選別処理することができる。そして、2段階の風力選別の後、処理に時間を要するメタルソータを用いた選別処理(工程3)を組み合わせることによって、電子・電気機器部品屑5の処理量を増大しながら、製錬阻害物質を除去して、有価金属を効率的に回収することができる。
 図1に示すように、工程1~3の前後に工程B~Cを組み合わせることが選別効率を向上できる点においてより好ましい。例えば、工程1と工程2の間には、電子・電気機器部品屑5に含まれる線屑を除去する工程Bを有することが好ましい。工程Bとしては、スリット状の篩を有する篩別機を用いて処理することが好ましい。工程Bにおいては篩別により、線屑の他に粉状物も除去することができる。篩別後の粉状物及び銅線屑は、焼却前処理工程を経由して製錬工程に送ることで、部品屑中の有価金属をより効率的に回収できる。
 工程2と工程3との間には、工程Cが実施されてもよい。工程Cは、カラーソータによる選別及び篩別による選別及び磁力による選別の少なくとも1つの処理を含み、工程3の選別処理の前処理として位置づけることができ、これら選別処理を組み合わせることで、工程3に送られる処理対象物の金属含有比率を下げることができる。
 処理対象物中の金属含有比率が高いということは、金属を含む部品屑が多く存在することを意味する。工程3のメタルソータによる処理において、金属と検知される部品屑との間に合成樹脂類などの非金属が存在する場合、その間隔がメタルソータの検知範囲以内の時には、一つの金属と誤検知され、金属物と金属物との間にある非金属物であるプラスチックなどの合成樹脂類がエアーバルブではじかれず、金属を含有する基板やパーツとして取り扱われる場合がある。このため、工程3においてメタルソータによる分離を行う前に、磁力、篩別、カラーソータ等による選別を含む工程Cを実施することによって、工程3に送られる処理対象物の金属含有比率を下げてメタルソータの誤検知を抑制することができる。
 工程2で得られた重量物の中には、銅製錬工程で処理すべき基板が一部混入する場合がある。よって、工程2で得られた重量物を、磁力選別、渦電流選別、カラーソータ、手選別、ロボット等の処理により更に分類することで、銅製錬工程で処理すべき基板を分離して製錬工程に送ることができるため、有価金属の回収効率が高まる。
 なお、本発明の実施の形態において「除去」或いは「分離」とは、100%除去又は分離する態様を示すものだけでなく対象物中重量比30%以上、より好ましくは50質量%以上除去するような態様を含むものである。
-製錬工程-
 本発明の実施の形態に係る電子・電気機器部品屑5の処理方法は、前処理工程で得られた塊状銅線屑50、工程1~3、工程B~Cでそれぞれ選別された有価金属を含む処理原料を製錬工程で処理する製錬工程を更に有する。
 有価金属として銅を回収する場合は、溶錬炉を用いた製錬工程が行われる。製錬工程には、電子・電気機器部品屑5を焼却する工程と、焼却物を破砕及び篩別する工程と、破砕及び篩別処理した処理物を銅製錬する工程とを備える。電子・電気機器部品屑5を処理する工程は、焼却工程の前に行われることが好ましい。
 以下に制限されるものではないが、本実施形態に係る製錬工程としては、自溶炉法を用いた銅製錬工程が好適に利用できる。自溶炉法を用いた銅製錬工程としては、例えば、自溶炉のシャフトの天井部から銅精鉱と溶剤と電子・電気機器部品屑5を装入する。装入された精鉱及び電子・電気機器部品屑5が、自溶炉のシャフトにおいて溶融し、自溶炉のセットラーにおいて例えば50~68%の銅を含むマットとそのマットの上方に浮遊するスラグとに分離される。電子・電気機器部品中の銅、金、銀などの有価金属は、自溶炉内を滞留するマットへ吸収されることで、電子・電気機器部品屑5中から有価金属を回収できる。
 銅製錬においては、銅を製造するとともに、金、銀などの貴金属をより多く回収するために、処理する原料として銅、金、銀など有価金属の含有量の多い電子・電気機器部品屑5をできるだけ多く投入して処理することが重要である。一方、電子・電気機器部品屑5には、銅製錬における製品、副製品の品質に影響を与える物質および/または銅製錬のプロセスに影響を与える製錬阻害物質が含有される。例えば、上述のようなSb、Ni等の元素を含有する物質の溶錬炉への投入量が多くなると、銅製錬で得られる電気銅の品質が低下する場合がある。
 また、銅製錬などの非鉄金属製錬工程では、精鉱の酸化によって発生する二酸化硫黄から硫酸を製造するが、二酸化硫黄に炭化水素が混入すると、産出される硫酸が着色する場合がある。炭化水素の混入源としては、例えばプラスチックなどの合成樹脂類などが挙げられるが、銅製錬へ持ち込まれる電子・電気機器部品屑5の構成によっては、このような合成樹脂類が多く含まれる場合がある。合成樹脂類は、溶錬炉内での急激な燃焼、漏煙のほか局所加熱による設備劣化を生じさせる恐れもある。
 更に、Al、Feなどが溶錬炉内に一定以上の濃度で存在すると、例えば、銅製錬のプロセスでスラグ組成に変化を与え、有価金属のスラグへの損失、いわゆるスラグロスに影響する場合もある。また、Cl、Br、F等のハロゲン元素が溶錬炉へ投入される電子・電気機器部品屑5中に多く含まれていると、銅製錬の排ガス処理設備の腐食や硫酸触媒の劣化を引き起こす場合がある。このような製錬阻害物質の混入の問題は、電子・電気機器部品屑5の処理量が多くなるにつれて顕在化し、製錬工程に負担がかかるという問題が生じてきている。
 本発明の実施の形態に係る電子・電気機器部品屑5の処理方法によれば、製錬工程の前に、図1に示すような、前処理工程及び製錬原料選別処理工程Xを含む電子・電気機器部品屑5の物理選別工程を備える。これにより、製錬工程に持ち込まれる製錬阻害物質の割合を極力抑えるとともに、電子・電気機器部品屑5の処理量を増やし、銅及び有価金属を含む電子・電気機器部品屑5の割合を多くして銅及び有価金属を効率的に回収することが可能となる。
 電子・電気機器部品屑5中に含まれる製錬阻害物質の除去量は多ければ多い程望ましいが、部品屑によっては製錬阻害物質と有価金属とを同時に有する部品屑も存在する。以下に制限されるものではないが、電子・電気機器部品屑5の原料全体の製錬阻害物質のうちの1/2、より好ましくは2/3以上を重量比で除去することにより、電子・電気機器部品屑5を銅製錬工程において安定的に処理することができる。さらに、製錬工程において、製錬阻害物質の処理できる限界量が現状と同等であれば、電子・電気機器部品屑5の原料全体の製錬阻害物質を少なくすることで、製錬工程において、製錬阻害物質の少ない電子・電気機器部品屑5をより多く処理できることとなる。
 本発明の実施の形態に係る電子・電気機器部品屑5の処理方法によれば、製錬工程で電子・電気機器部品屑5を粉状に粉砕する前に部品屑の状態で製錬阻害物質を含む部品屑を部品単位で選別して除去する物理選別工程を具備することにより、製錬工程で処理する電子・電気機器部品屑5の処理量を増大でき、有価金属を効率的に回収することが可能となる。
 本発明は本実施形態に限定されるものではなく、その要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、本実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、本実施形態に示される全構成要素からいくつかの構成要素を削除する、或いは各構成要素を適宜組み合わせてもよい。
1…パラレルリンクロボット
3…搬送面
5…電子・電気機器部品屑
10…ピッキング手段
11…ロボットハンド
15…アーム
20…画像認識手段
30…搬送手段
40…排出手段
50…塊状銅線屑
100…ピッキング装置
110、11…保持部
112、113…掴み部
114、15…被覆部材
120…駆動部

Claims (9)

  1.  電子・電気機器部品屑の中から製錬工程で処理可能な有価金属を含む処理原料を選別するための製錬原料選別処理工程を含む電子・電気機器部品屑の処理方法において、
     前記電子・電気機器部品屑に含まれる塊状銅線屑を、パラレルリンクロボットを用いて取り除くことを特徴とする電子・電気機器部品屑の処理方法。
  2.  前記製錬原料選別処理工程の前処理として、前記電子・電気機器部品屑に含まれる塊状銅線屑を、前記パラレルリンクロボットを用いて取り除くことを特徴とする請求項1に記載の電子・電気機器部品屑の処理方法。
  3.  パラレルリンクロボットが、前記塊状銅線屑を掴むための一対の掴み部を先端に備える保持部と、前記保持部を駆動して前記掴み部間の距離を調整する駆動部と、を備える一又は複数のロボットハンドを先端部に備えることを特徴とする請求項1又は2に記載の電子・電気機器部品屑の処理方法。
  4.  前記掴み部の先端部に被覆部材が配置されていることを含む請求項3に記載の電子・電気機器部品屑の処理方法。
  5.  前記塊状銅線屑を取り除く工程の前に、前記電子・電気機器部品屑中に存在する塊状銅線屑の少なくとも色彩と大きさを認識する画像認識処理工程を含み、
     該画像認識処理工程で得られる塊状銅線屑の位置情報に基づいて、前記パラレルリンクロボットが前記塊状銅線屑を取り除くことを含む請求項1~4のいずれか1項に記載の電子・電気機器部品屑の処理方法。
  6.  前記パラレルリンクロボットが、前記電子・電気機器部品屑が搬送される搬送方向に対して横切る方向に前記塊状銅線屑を排出させることを含む請求項1~5のいずれか1項に記載の電子・電気機器部品屑の処理方法。
  7.  前記製錬原料選別処理工程が、風力選別工程、篩別工程、磁力選別工程、渦電流選別工程、及び金属物と非金属物とを光学的に選別する光学式選別工程を含むことを特徴とする請求項1~6のいずれか1項に記載の電子・電気機器部品屑の処理方法。
  8.  電子・電気機器部品屑を搬送面上で搬送し、
     前記搬送面上に搬送された電子・電気機器部品屑に含まれる塊状銅線屑を画像認識処理し、
     前記画像認識処理による画像認識結果に基づいて、前記搬送面上の塊状銅線屑を、パラレルリンクロボットを用いて排出させること
     を含むことを特徴とする電子・電気機器部品屑の処理方法。
  9.  電子・電気機器部品屑を搬送する搬送面を備える搬送手段と、
     前記搬送面上に搬送された電子・電気機器部品屑に含まれる塊状銅線屑を画像認識する画像認識手段と、
     前記画像認識手段による画像認識結果に基づいて、前記搬送面上の塊状銅線屑を、パラレルリンクロボットを用いて排出させるピッキング手段と
     を備えることを特徴とする電子・電気機器部品屑の処理装置。
PCT/JP2020/017390 2019-04-22 2020-04-22 電子・電気機器部品屑の処理方法及び処理装置 WO2020218376A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080028872.2A CN113710383B (zh) 2019-04-22 2020-04-22 电子/电气设备部件屑的处理方法及处理装置
EP20796350.5A EP3960312A4 (en) 2019-04-22 2020-04-22 PROCESSING METHOD AND PROCESSING DEVICE FOR ELECTRONIC/ELECTRICAL DEVICE COMPONENT WASTE
CA3137690A CA3137690C (en) 2019-04-22 2020-04-22 Processing method and processing device for electronic/electrical device component scrap
KR1020217036112A KR102591293B1 (ko) 2019-04-22 2020-04-22 전자ㆍ전기 기기 부품 스크랩의 처리 방법 및 처리 장치
US17/605,419 US20220203405A1 (en) 2019-04-22 2020-04-22 Processing method and processing device for electronic/electrical device component scrap

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019081346A JP7282582B2 (ja) 2019-04-22 2019-04-22 電子・電気機器部品屑の処理方法及び処理装置
JP2019-081346 2019-04-22

Publications (1)

Publication Number Publication Date
WO2020218376A1 true WO2020218376A1 (ja) 2020-10-29

Family

ID=72937395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017390 WO2020218376A1 (ja) 2019-04-22 2020-04-22 電子・電気機器部品屑の処理方法及び処理装置

Country Status (8)

Country Link
US (1) US20220203405A1 (ja)
EP (1) EP3960312A4 (ja)
JP (1) JP7282582B2 (ja)
KR (1) KR102591293B1 (ja)
CN (1) CN113710383B (ja)
CA (1) CA3137690C (ja)
TW (1) TWI815008B (ja)
WO (1) WO2020218376A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11590513B1 (en) * 2018-11-21 2023-02-28 BlueScope Recycling and Materials LLC System and method for processing scrap material
KR102358037B1 (ko) * 2021-03-11 2022-02-08 (주)로파 전기차 폐배터리의 학습기반 해체로봇 자동화시스템
JP7264936B2 (ja) * 2021-04-21 2023-04-25 Jx金属株式会社 電気電子部品屑の処理方法及び電気電子部品屑の処理装置
IT202200010550A1 (it) * 2022-05-20 2023-11-20 S T C S R L Metodo per determinare una operazione di smaltimento di un prodotto elettronico
KR20240003852A (ko) 2022-07-04 2024-01-11 바테크 주식회사 작업자 보호를 위한 사용후 배터리 해체 작업 테이블

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0978151A (ja) 1995-09-12 1997-03-25 Nikko Kinzoku Kk スクラップ類からの有価金属のリサイクル方法
JP2002105548A (ja) * 2000-09-27 2002-04-10 Nippon Mining & Metals Co Ltd 銅濃縮物の固形化による処理方法及び銅濃縮物の固形化物
JP2003534930A (ja) * 2000-05-30 2003-11-25 ユニヴェルシテ ラヴァル 非常に少数のアクチュエータで動作する把持機構用の作動システム
JP2012115785A (ja) * 2010-12-02 2012-06-21 Sharp Corp 廃棄物の選別システム
JP2012210598A (ja) * 2011-03-31 2012-11-01 Mitsui Mining & Smelting Co Ltd プリント配線板からのリサイクル用有価金属原料の製造方法
JP2013000685A (ja) * 2011-06-17 2013-01-07 Mitsui Mining & Smelting Co Ltd 家電製品からの有価金属回収方法
JP2013255901A (ja) * 2012-06-14 2013-12-26 Hitachi Ltd 使用済み電気電子機器のリサイクル処理装置及び方法
JP2015123418A (ja) 2013-12-26 2015-07-06 パンパシフィック・カッパー株式会社 電気・電子部品屑の処理方法
JP5969685B1 (ja) * 2015-12-15 2016-08-17 ウエノテックス株式会社 廃棄物選別システム及びその選別方法
JP2017170388A (ja) * 2016-03-25 2017-09-28 Jx金属株式会社 線状メタルの除去方法
JP2019034399A (ja) * 2017-08-10 2019-03-07 株式会社京都製作所 把持装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1255374B (it) * 1992-09-17 1995-10-31 Procedimento di selezione e raccolta separata di rifiuti solidi
DE4244449A1 (de) * 1992-12-23 1994-06-30 Wemex Ingenieurbuero Ges Fuer Verfahren und Vorrichtung zur mechanischen Separation metallhaltiger Kunststoffgemische und -verbunde
JP3293310B2 (ja) * 1994-03-18 2002-06-17 株式会社日立製作所 金属の選別回収方法とその装置
US5911327A (en) * 1996-10-02 1999-06-15 Nippon Steel Corporation Method of automatically discriminating and separating scraps containing copper from iron scraps
JP2000135450A (ja) * 1998-10-30 2000-05-16 Mitsubishi Electric Corp 破砕装置及び選別処理装置及び破砕方法及び選別処理方法
AT502172B1 (de) * 2004-08-26 2007-02-15 Metran Rohstoff Aufbereitungs Anlage zur selektiven behandlung von unsortierten oder vorsortierten abfallstoffen
CN1966165A (zh) * 2005-11-15 2007-05-23 杨舜 废pcb电子线路基板、线路板边角料及粉屑再利用工艺处理方法
ES2395795B1 (es) * 2011-05-27 2014-03-18 Eric Van Looy Estación automática de clasificación de materiales.
WO2013042185A1 (ja) * 2011-09-20 2013-03-28 株式会社安川電機 ハンドリングシステム
CN103480933B (zh) * 2013-09-12 2016-03-23 伟翔环保科技发展(上海)有限公司 一种利用高压热风自动分离废弃线路板元件的方法
WO2015163606A1 (ko) * 2014-04-21 2015-10-29 한양대학교 산학협력단 인쇄회로기판의 부품분리장치 및 구리 선별방법
JP5863922B1 (ja) * 2014-10-07 2016-02-17 ファナック株式会社 射出成形システム
WO2017106263A1 (en) * 2015-12-16 2017-06-22 Comau Llc Adaptable end effector and method
US9592515B1 (en) * 2016-03-14 2017-03-14 SA Recycling LLC High capacity separation of metals from auto shredder residue
CN106391657A (zh) * 2016-10-09 2017-02-15 金锋馥(滁州)输送机械有限公司 废旧家电处理生产线
CN106670122B (zh) * 2017-01-17 2023-10-03 北京碧海能源装备有限公司 用于生活垃圾的自动识别分拣回收系统
CN109225556B (zh) * 2018-08-24 2021-01-26 江苏华宏科技股份有限公司 一种废旧锂电池分级破碎设备及工艺
CN109590307A (zh) * 2018-11-23 2019-04-09 吴章荣 一种智能化垃圾综合处理系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0978151A (ja) 1995-09-12 1997-03-25 Nikko Kinzoku Kk スクラップ類からの有価金属のリサイクル方法
JP2003534930A (ja) * 2000-05-30 2003-11-25 ユニヴェルシテ ラヴァル 非常に少数のアクチュエータで動作する把持機構用の作動システム
JP2002105548A (ja) * 2000-09-27 2002-04-10 Nippon Mining & Metals Co Ltd 銅濃縮物の固形化による処理方法及び銅濃縮物の固形化物
JP2012115785A (ja) * 2010-12-02 2012-06-21 Sharp Corp 廃棄物の選別システム
JP2012210598A (ja) * 2011-03-31 2012-11-01 Mitsui Mining & Smelting Co Ltd プリント配線板からのリサイクル用有価金属原料の製造方法
JP2013000685A (ja) * 2011-06-17 2013-01-07 Mitsui Mining & Smelting Co Ltd 家電製品からの有価金属回収方法
JP2013255901A (ja) * 2012-06-14 2013-12-26 Hitachi Ltd 使用済み電気電子機器のリサイクル処理装置及び方法
JP2015123418A (ja) 2013-12-26 2015-07-06 パンパシフィック・カッパー株式会社 電気・電子部品屑の処理方法
JP5969685B1 (ja) * 2015-12-15 2016-08-17 ウエノテックス株式会社 廃棄物選別システム及びその選別方法
JP2017170388A (ja) * 2016-03-25 2017-09-28 Jx金属株式会社 線状メタルの除去方法
JP2019034399A (ja) * 2017-08-10 2019-03-07 株式会社京都製作所 把持装置

Also Published As

Publication number Publication date
EP3960312A4 (en) 2023-03-22
CA3137690A1 (en) 2020-10-29
CA3137690C (en) 2023-11-07
CN113710383B (zh) 2024-01-09
KR102591293B1 (ko) 2023-10-20
EP3960312A1 (en) 2022-03-02
KR20210141752A (ko) 2021-11-23
US20220203405A1 (en) 2022-06-30
JP2020175353A (ja) 2020-10-29
JP7282582B2 (ja) 2023-05-29
TWI815008B (zh) 2023-09-11
TW202045271A (zh) 2020-12-16
CN113710383A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
WO2020218376A1 (ja) 電子・電気機器部品屑の処理方法及び処理装置
JP6936344B2 (ja) 電子・電気機器部品屑の処理方法
WO2020203918A1 (ja) 電子・電気機器部品屑の処理方法
JP6914220B2 (ja) 電子・電気機器部品屑の処理方法
WO2022224478A1 (ja) 電気電子部品屑の処理方法及び電気電子部品屑の処理装置
JP6885904B2 (ja) 電子・電気機器部品屑の処理方法
JP7123600B2 (ja) 電子・電気機器部品屑の処理方法
JP2021186921A (ja) 電子部品屑のピッキング装置及び電子部品屑の処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20796350

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3137690

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217036112

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020796350

Country of ref document: EP

Effective date: 20211122