WO2022224478A1 - 電気電子部品屑の処理方法及び電気電子部品屑の処理装置 - Google Patents

電気電子部品屑の処理方法及び電気電子部品屑の処理装置 Download PDF

Info

Publication number
WO2022224478A1
WO2022224478A1 PCT/JP2021/043016 JP2021043016W WO2022224478A1 WO 2022224478 A1 WO2022224478 A1 WO 2022224478A1 JP 2021043016 W JP2021043016 W JP 2021043016W WO 2022224478 A1 WO2022224478 A1 WO 2022224478A1
Authority
WO
WIPO (PCT)
Prior art keywords
scrap
electrical
electronic component
image recognition
sorting
Prior art date
Application number
PCT/JP2021/043016
Other languages
English (en)
French (fr)
Inventor
勝志 青木
弘 河野
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to CA3216141A priority Critical patent/CA3216141A1/en
Priority to EP21937968.2A priority patent/EP4327954A1/en
Publication of WO2022224478A1 publication Critical patent/WO2022224478A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for processing scrap electrical and electronic components and a processing apparatus for scrap electrical and electronic components.
  • Patent Document 1 For example, in Japanese Patent Application Laid-Open No. 9-78151 (Patent Document 1), scraps containing valuable metals are charged from the ceiling into a flash smelting furnace for copper ore smelting, and the valuable metals are transferred to the mat that stays in the furnace. A method for recycling valuable metals that includes a step of recovering is described.
  • Patent Document 2 As a method for recovering valuable metals from recycled raw materials containing aluminum, recycled raw materials are charged into a melting furnace in a copper smelting process, and aluminum is oxidized to form a molten slag layer. A method for treating recycled raw materials is described in which the valuable metals are removed from the system by making them into components, the valuable metals are dissolved in the metal layer or the mat layer, and the dissolved valuable metals are recovered.
  • processing raw materials such as copper wire scraps containing valuable metals that can be processed in the smelting process (hereinafter referred to as “smelting raw materials”) and raw materials that may impair the treatment stability of the smelting process and should be sent outside the smelting process (hereinafter referred to as “external raw materials”).
  • smelting raw materials copper wire scraps containing valuable metals that can be processed in the smelting process
  • external raw materials raw materials that may impair the treatment stability of the smelting process and should be sent outside the smelting process
  • electrical and electronic component scrap is a mixture of various components and has various compositions and shapes, so there is a problem that it is difficult to accurately identify individual electrical and electronic component scrap by image recognition.
  • erroneous detection occurs frequently due to its nature, so it is necessary to determine the optimum value of the score threshold in consideration of the balance with erroneous detection.
  • the present disclosure uses an image recognition processing technology and a sorting device to provide a method for processing electrical and electronic component scraps that can more efficiently sort out desired component scraps from electrical and electronic component scraps, and electrical and electronic component scraps. is provided.
  • the method for processing scrap electrical and electronic components includes a sorting condition determination step of determining a sorting condition for scrap electrical and electronic components, and the step includes a step of determining a sorting condition for the scrap electrical and electronic components.
  • a score representing the likelihood of the identified component waste, the detection area of the component waste, and information on the number of the component waste are identified by image recognition processing from among a plurality of captured images of the waste.
  • Classification information that classifies the number of identified scrap parts based on the relationship between the score and the detection area of the scrap parts using the image recognition processing step of acquiring the image recognition information including the image recognition information of the plurality of captured images and a condition determination step of determining a score threshold for image recognition processing and a detection area threshold for scrap parts based on the classification information and processing capacity information of a sorting device for sorting scrap parts. It is a processing method of electronic component waste.
  • an imaging step of imaging electrical and electronic component scrap including a plurality of component scraps; Image recognition that identifies scrap parts belonging to a specific kind of parts by image recognition processing, and obtains image recognition information including at least information on a score indicating the likelihood of the identified scrap parts, a detection area of the scrap parts, and the number of the scrap parts.
  • a method for processing scrap electrical and electronic components comprising a ranking step and a sorting step of sorting scrap parts using a sorting device based on the order of priority.
  • an electric/electronic component waste processing apparatus includes a conveying device that conveys electric/electronic component waste, and an image of the electric/electronic component waste conveyed by the conveying device to obtain a captured image.
  • An imaging device, an image recognition processing device that identifies a plurality of scrap parts belonging to a specific component type from the captured image captured by the imaging device by image recognition processing, and a plurality of scrap parts identified by the image recognition processing device are sorted out.
  • the sorting device that performs the classification, and the classification information obtained by classifying the number of scrap parts identified by the image recognition process based on the relationship between the score and the detection area of the scrap parts is acquired, and the classification information and the processing capacity information of the sorting device are acquired. and a condition control device for determining a score threshold value for image recognition processing and a detection area threshold value for scrap parts to be sorted by a sorting device based on the above.
  • an electric/electronic component scrap processing method and an electric/electronic component scrap capable of more efficiently sorting out desired component scrap from electrical/electronic component scrap using image recognition processing technology and a sorting device. of processing equipment can be provided.
  • FIG. 5 is a flow chart showing an example of a processing flow of a sorting condition determination step in FIG. 4; FIG. FIG.
  • FIG. 6 is a flow chart showing an example of a processing flow of a threshold value determination step in FIG. 5;
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS It is a flowchart which shows an example of the whole flow including the smelting process of the waste electrical/electronic components which concerns on embodiment of this invention.
  • the processing apparatus for the electrical/electronic component waste 1 includes an imaging device 12 for imaging the electrical/electronic component waste 1 and a sorting device 13 for sorting the electrical/electronic component waste 1. , an imaging device 12 and a condition control device 10 for controlling the processing conditions of the sorting device 13 .
  • the electrical/electronic component scrap 1 can be scraps obtained by crushing electronic/electrical equipment such as waste home appliances/PCs and mobile phones.
  • the crushing to obtain the electrical and electronic component scrap 1 may be performed by the processor himself or may be purchased after being crushed in the market.
  • the crushing method is not limited to a specific device, and may be a shear method or an impact method, but crushing that does not damage the shape of the parts as much as possible is desirable. Therefore, it does not include equipment belonging to the category of grinders whose purpose is to grind finely.
  • the electrical and electronic component scrap 1 consists of a plurality of types of components such as plastics (synthetic resins) used for substrates, housings, etc., metal pieces, copper wire scraps, capacitors, IC chips, and others. , can be further subdivided. In a typical example, it is preferable to selectively sort out at least one of copper wire scraps, metal scraps, capacitors, plastic scraps, and circuit board scraps as specific component types from the electrical and electronic component scrap 1 .
  • the lower limit is not particularly limited, it is 5 mm or more, more typically 10 mm or more, and further 15 mm or more.
  • the “representative diameter” is the average value obtained by extracting arbitrary 100 points from the electrical and electronic component scrap 1, calculating the average value of the major axis of the extracted electrical and electronic component scrap 1, and repeating this five times. show.
  • the electric/electronic component scrap 1 is conveyed by a conveying device 3 such as a belt conveyor, imaged by an imaging device 12, and subjected to a predetermined sorting process by a sorting device 13.
  • a conveying device 3 such as a belt conveyor
  • the electrical and electronic component waste 1 supplied to the conveying device 3 is to prevent the electrical and electronic component waste 1 from overlapping each other and to facilitate the sorting process by the sorting device 13.
  • imaging devices such as an RGB camera and a multispectral imaging device can be used as the imaging device 12, for example. It is preferable to use a multispectral imaging device that more accurately detects the color of the component waste for imaging the electrical and electronic component waste 1 including component waste having gloss that is difficult to distinguish with the naked eye.
  • the sorting device 13 is not limited to the configuration shown in FIG. 1, and various sorting devices can be used. Among them, as the sorting device 13 suitable for selectively extracting specific scrap parts, it is preferable to use a picking robot having a robot hand for gripping the scrap parts at its tip. By the picking robot, the collected electric/electronic component scrap 1 can be conveyed to a conveying device 4 such as a belt conveyor that conveys in a direction different from that of the conveying device 3, and can be smoothly conveyed to the next process.
  • a conveying device 4 such as a belt conveyor that conveys in a direction different from that of the conveying device 3, and can be smoothly conveyed to the next process.
  • the condition control device 10 is connected to an imaging device 12, a sorting device 13, an image recognition processing device 11, and a storage device 14, as shown in FIG.
  • the image recognition processing device 11 may be stored in one processing device together with the condition control device 10, or may be connected to the outside of the processing device including the condition control device 10 via a network (not shown). configuration.
  • the storage device 14 stores an operation program for operating the image recognition processing device 11 and the condition control device 10 according to a predetermined control algorithm, an image captured by the imaging device 12, learning data for image recognition processing, and an input device (not shown).
  • it is a device that stores various information input via a network (not shown), processing conditions that are created and output by the condition control device 10, and the like, and can be composed of a memory or the like.
  • a display device for displaying various information to the operator may be further provided.
  • the image recognition processing device 11 is composed of an artificial intelligence (AI) system that utilizes a machine learning system using learning data in order to be able to identify a plurality of scrap parts that make up the electrical and electronic scrap 1 for each part type. It is The image recognition processing device 11 performs image recognition processing using AI on a captured image of the electrical/electronic component waste 1, and identifies components belonging to a specific component type from the electrical/electronic component waste 1 in the captured image. Waste identification processing is performed. General analysis tools suitable for image recognition processing such as deep learning can be appropriately used for machine learning using AI.
  • AI artificial intelligence
  • the condition control device 10 extracts the identification (inference) results of the multiple captured images output from the image recognition processing device 11 .
  • the condition control device 10 includes at least a score indicating the probability of the identified scrap parts, the number of scrap parts, and the detection area of the scrap parts from among the identification results of the plurality of captured images identified by the image recognition processing device 11. Get image recognition information.
  • the condition control device 10 extracts a plurality of pieces of image recognition information whose inference results satisfy a predetermined standard from among the identification results of the acquired plurality of captured images, adds them together, and determines the identified parts scrap. The number is classified based on the relationship between the score and the detection area of the scrap parts.
  • condition control device 10 divides the scores obtained for the image recognition information whose inference result satisfies the criteria into a plurality of set ranges, and for each set range, the number of identified scrap parts is counted as detection of the scrap parts.
  • Acquire classification information classified by area (see FIG. 4).
  • the classification information can also be created manually by an operator using spreadsheet software or the like.
  • the classification information is stored in storage device 14 .
  • the condition control device 10 determines the score threshold applied to the image recognition processing by the image recognition processing device 11 and the detection of scrap parts to be sorted by the sorting device 13. Determine the area threshold.
  • the processing capacity information of the sorting device 13 includes various information necessary for the sorting process of scrap parts, including the number of sorting devices 13, processing speed, operation or stop information, and the like. Typically, it refers to information including the number of scrap parts that can be extracted by the sorting device 13 per unit time.
  • the processing conditions determined by the condition control device 10 are output to the imaging device 12 and the sorting device 13 .
  • the sorting device 13 When the electrical/electronic component waste 1 is supplied to the conveying device 3 of FIG. is identified, and the sorting device 13 performs the sorting process so as to convey the scrap parts whose area is equal to or larger than the detection area threshold of the scrap parts to be sorted to the sorting device 13 side.
  • the storage device 14 stores an operation program for operating the image recognition processing device 11 and the condition control device 10 according to a predetermined control algorithm, an image captured by the imaging device 12, learning data for image recognition processing, and an input device (not shown).
  • it is a device that stores various information input via a network (not shown), processing conditions that are created and output by the condition control device 10, and the like, and can be composed of a memory or the like.
  • a display device for displaying various information to the operator may be further provided.
  • the condition control device 10 sets a score threshold suitable for image recognition processing using AI according to the sorting processing capability of the sorting device 13. Therefore, it is possible to suppress the omission of sorting of scrap parts due to the excess or deficiency of the sorting processing capacity, so that it is possible to sort out the desired scrap parts from the scrap electrical and electronic parts 1 more efficiently.
  • the electrical and electronic scrap scraps to be conveyed to the conveying device 3 A step of adjusting the throughput so as to increase the throughput of 1 is provided. As a result, it is possible to increase the processing amount of the electrical/electronic component waste 1 in accordance with the sorting capacity of the sorting device 13, so that the efficiency of the processing process can be improved.
  • step S10 the apparatus for processing scrap electrical and electronic components 1 according to the embodiment of the present invention determines sorting conditions for sorting (sorting condition determination step). The details of the sorting condition determination step S10 will be described later.
  • step S20 the image capturing device 12 captures an image of the electrical/electronic component waste 1 transported into the image capturing area by the transport device 3 to obtain a captured image (image capturing step).
  • step S30 the image recognition processing device 11 identifies a plurality of component scraps belonging to a specific component type from the captured image of the electric/electronic component scrap 1 by image recognition processing using AI.
  • the image recognition processing device 11 acquires image recognition information including information such as the score of the identified scrap, the detection area of the scrap, the number of the scrap, and the detection position (coordinates) (image recognition processing step).
  • the area along the outer edge of the scrap parts may be measured.
  • Various shapes such as a circle, an ellipse, a rectangle, and a polygon can be used as the circumscribed figure.
  • step S40 the condition control device 10 narrows down, from the image recognition information, scrap parts exceeding a score threshold and a detection area threshold for the scrap parts preset for the identified scrap parts (narrowing process).
  • step S50 the condition control device 10 prioritizes the narrowed-down scrap parts (prioritization process).
  • the conditions for prioritization can be appropriately set by the operator according to the features of the sorting device 13 . For example, priority can be given in descending order of detection area of scrap parts. Alternatively, the sorting device 13 may give priority to scrap parts having a shape that facilitates the sorting process.
  • the processing amount of the scrap electrical and electronic parts 1 is increased. may further include a throughput adjustment step of adjusting the throughput.
  • the sorting device 13 preferentially sorts the scrap parts prioritized in step S50. Each process of steps S10 to S60 is performed for each part type of the electrical/electronic component scrap 1 to be sorted.
  • step S11 a plurality of captured images of electrical and electronic component waste including target component waste are acquired (captured image acquisition step).
  • step S12 the image recognition processing device 11 identifies parts scrap belonging to a specific part type from among the plurality of captured images obtained by image recognition processing, and expresses the likelihood of the identified parts scrap as an inference result.
  • Image recognition information including information on the score, detection area of scrap parts, and the number of scrap parts is acquired (image recognition processing step).
  • step S13 the condition control device 10 sums up the image recognition information of a plurality of captured images, and classifies the number of identified scrap parts based on the relationship between the score and the detection area of the scrap parts (see FIG. 3). ) (classification step).
  • step S14 based on the classification information obtained in step S13 and the processing capacity information of the sorting device 13 for sorting out parts scrap, the score threshold for image recognition processing for sorting out parts scrap and detection of parts scrap Determine the area threshold (condition determination step).
  • step S41 of FIG. 6 the condition control device 10 acquires sorting capacity information and sorting information of the sorting device 13.
  • sorting processing capability information for example, information on the number of scrap parts that can be sorted per unit time by using the sorting device 13 from among the scrap electrical and electronic parts 1 captured in one captured image is acquired.
  • classification information for example, classification information as shown in FIG. 3 is acquired.
  • FIG. 3 shows an example of classification result information by image recognition processing using AI when copper wire scrap is selected as a component type from electrical and electronic component scrap 1.
  • the score representing the likelihood of the identified scrap parts is divided into a plurality of set ranges (horizontal axis), and each set range contains information in which the number of identified scrap parts is classified (vertical axis) for each detection area of the scrap parts.
  • step S42 the condition control device 10 selects the first category, which is the setting range with the highest score among the category information and the category with the largest detection area.
  • the first category 100 which has the highest score (0.20 or more) and the largest detection area (40 kpx or more) among the classification information is selected.
  • step S43 the condition control device 10 determines whether or not the number of scrap parts in the first section 100 is less than the number of scrap parts that can be sorted by the sorting device 13. If the number of scrap parts that can be sorted by the sorting device 13 is less than the number of scrap parts in the first section 100, the condition determination process is terminated. When the number of scrap parts that can be sorted by the sorting device 13 is greater than or equal to the number of scrap parts in the first section 100, the process proceeds to step S44.
  • step S44 another section adjacent to the first section 100 is selected from the classification information.
  • a second section 101 that belongs to the same score as the first section 100 and has a detection area smaller than that of the first section 100, and a second section 101 that has a smaller score than the first section 100 but has a detection area Select the same third partition 102 .
  • the storage device 14 stores information on the weight ratio of the target collected material preset for each part type.
  • the classification information of FIG. 3 represents an example of the classification information of scrap copper wire.
  • the condition control device 10 selects the object to be sorted by the sorting device 13 based on the relationship between the weight ratio of copper, which is the target recovery material in the copper wire scrap, the number of the second section 101 and the third section 102, and the detection area.
  • the score threshold and the detection area threshold are optimized so that the total weight of the desired collected material contained in the scrap parts is the maximum weight.
  • the score threshold is set to 0.08 or more and the detection area threshold is set to 40 kpx or more in order to properly sort out the copper wire scrap. preferably.
  • FIG. 7 shows an example of a method for processing electrical and electronic component waste according to an embodiment of the present invention.
  • the method for processing electrical and electronic component scraps according to the embodiment of the present invention comprises a step of processing electrical and electronic component scraps 1 by at least two stages of air sorting steps (S2, S4), and a metal sorting step (S6) using a metal sorter. ) to sort out the substrate scraps.
  • wind sorting is performed in two stages (S2, S4), so that magnetic sorting is performed in the initial stage.
  • S2, S4 wind sorting is performed in two stages
  • the electrical and electronic component scrap 1 that is input as a raw material is subjected to the pre-selection step (S1) in a state in which a certain size and shape are maintained (for example, a particle size of about 10 to 70 mm) without being crushed or crushed. conduct.
  • a certain size and shape for example, a particle size of about 10 to 70 mm
  • the electrical and electronic component scrap 1 can be easily handled as a raw material, transported easily, and can be processed as a whole. Efficiency can also be increased.
  • the electrical and electronic component scrap 1 includes bulk copper wire scrap, powder, film, linear copper wire scrap, board scrap, metal pieces, copper wire scrap, It can be classified into capacitors, IC chips, iron scraps (Fe), aluminum (Al) scraps, stainless steel (SUS) scraps, synthetic resins including rubbers and casings, and other scraps.
  • scrap parts containing 90% or more by weight of the substance to be classified in one part scrap is referred to as "single scrap" in this embodiment, and a single scrap in which a plurality of substances are mixed. Waste other than waste is called “composite waste”.
  • the electrical and electronic component scrap 1 contains 60% or more, and further 70% or more of the single scrap is used as the raw material to be processed in the pre-sorting step S1, so that the smelting inhibitor is removed from the system. It is possible to efficiently and accurately sort scrap parts containing the target valuables while removing them.
  • the method for processing electrical and electronic component scraps comprises a pre-sorting step (S1) for removing lumped copper wire scraps from electrical and electronic component scraps 1; A step of air sorting (S2) in which the later electrical and electronic component scrap 1 is sorted by wind to remove powdery materials and film-like scraps by moving them to the side of light materials, and the heavy items obtained by the wind sorting are sieved, A sieving step (S3) for removing shaped (long) copper wire scraps, a second-stage wind sorting step (S4), and a color sorter from the electrical and electronic component scraps 1 after removing the linear copper wire scraps.
  • S1 pre-sorting step
  • S2 step of air sorting
  • S3 for removing shaped (long) copper wire scraps
  • S4 second-stage wind sorting step
  • a color sorter from the electrical and electronic component scraps 1 after removing the linear copper wire scraps.
  • a sieving step (S3) between the first-stage wind sorting step (S2) and the second-stage wind sorting step (S4), wire scraps contained in the electrical and electronic component scrap 1 are removed. can be done.
  • the sieving step (S3) it is preferable to use a sieving machine having a slit-shaped sieve.
  • the sieving can remove powdery matter in addition to wire scraps. The sifted powder and copper wire scraps are sent to the smelting process via the pre-incineration treatment process, so that the valuable metals in the parts scraps can be recovered more efficiently.
  • the metal content ratio of the object to be processed sent to the metal sorting step (S6) can be reduced, so the metal sorting step ( The sorting efficiency in S6) can be made higher.
  • Some of the heavy objects obtained in the second stage of the wind separation process (S4) may contain substrates that should be processed in the copper smelting process. Therefore, the image sorting process according to the present embodiment is combined with the sorting process such as magnetic force sorting, eddy current sorting, color sorter, manual sorting, robot sorting, etc. As a result, the substrate to be treated in the copper smelting process can be separated and sent to the smelting process, thereby increasing the recovery efficiency of valuable metals.
  • the sorting process such as magnetic force sorting, eddy current sorting, color sorter, manual sorting, robot sorting, etc.
  • the heavy items obtained in the second stage of the wind sorting process (S4) are sent to the magnetic sorting process (S8) after going through the pre-sorting process (S7) including the image recognition process using the AI described above.
  • the magnetic separation step (S8) raw materials containing iron are removed from the heavy objects as raw materials outside the smelting process.
  • an eddy current sorting step (S9) is performed, and a pre-sorting step (S91) is performed to remove scraps containing aluminum, synthetic resins (plastics), SUS, etc.
  • the waste substrates are sent to the smelting process.
  • the respective sorting steps (S1 to S91) it is also possible to combine the respective sorting steps (S1 to S91) as appropriate. Further, image recognition processing is further performed on raw materials selected as outside raw materials in the pre-selection step (S7), the magnetic force sorting step (S8), the eddy current sorting step (S9), and the pre-selection step (S91). It is also preferable to perform a sorting process of extracting objects using a sorting device 13 having a hand.
  • the aluminum scraps extracted after the eddy current sorting step (S9) include component scraps with substrates containing valuables in the aluminum scraps.
  • the method for treating scrap electrical and electronic components according to the embodiment of the present invention further includes a smelting step of smelting the raw materials containing valuable metals that have been sorted out in the sorting steps (S1 to S91).
  • the smelting process includes, for example, a process of incinerating the electrical and electronic component waste 1, a process of crushing and sieving the incinerated material, and a process of copper smelting the crushed and sieved material.
  • the process of incinerating the electrical and electronic component waste 1 may be omitted.
  • any method can be selected for the process of crushing and sifting the electrical and electronic component waste 1 as long as it is a process of forming the electrical and electronic component waste 1 into a size suitable for the smelting process.
  • a copper smelting process using a flash smelting furnace method can be suitably used as the smelting process according to the present embodiment.
  • the copper concentrate, the solvent, and the electrical and electronic component waste 1 are charged from the ceiling of the shaft of the flash smelting furnace.
  • the charged concentrate and scrap are melted in the shaft of the flash smelting furnace and separated in the settler of the flash smelting furnace into a matte containing, for example, 50-68% copper and slag floating above the matte.
  • Valuable metals such as copper, gold, and silver in the electronic/electrical equipment parts are absorbed by the mat staying in the flash furnace, so that the valuable metals can be recovered from the electric/electronic parts scrap 1 .
  • electrical and electronic component scraps 1 containing a large amount of valuable metals such as copper, gold and silver are processed as much as possible. It is important to put in and process.
  • the electrical and electronic component scrap 1 contains substances that affect the quality of copper smelting products and by-products and/or smelting inhibitors that affect the copper smelting process. For example, when a large amount of material containing elements such as Sb and Ni is fed into a smelting furnace, the quality of electrolytic copper obtained by copper smelting may deteriorate.
  • sulfuric acid is produced from sulfur dioxide generated by oxidation of concentrates, but if hydrocarbons are mixed with sulfur dioxide, the sulfuric acid produced may be colored.
  • Sources of hydrocarbon contamination include, for example, synthetic resins such as plastics, and depending on the composition of the electrical and electronic component scrap 1 brought into the copper smelting process, a large amount of such synthetic resins may be included. Synthetic resins may cause rapid combustion in the smelting furnace, smoke leakage, and equipment deterioration due to localized heating.
  • the proportion of smelting inhibitors brought into the smelting process is minimized, the amount of electrical and electronic component scrap 1 processed is increased, copper and valuable It becomes possible to efficiently recover copper and valuable metals by increasing the ratio of electrical and electronic component scrap 1 containing metals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Sorting Of Articles (AREA)
  • Image Analysis (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

画像認識処理技術及び選別装置を用いて、電気電子部品屑の中から所望の部品屑をより効率良く選別することが可能な電気電子部品屑の処理方法及び電気電子部品屑の処理装置を提供する。電気電子部品屑1の選別条件を決定する選別条件決定工程S10を備え、この工程が、複数の部品屑を含む電気電子部品屑1を撮像した複数の撮像画像の中から特定の部品種に属する部品屑を画像認識処理によって識別し、識別した部品屑の確からしさを表すスコア、検知面積及び個数の情報を含む画像認識情報を取得する画像認識処理工程S12と、撮像画像の画像認識情報を用いて、識別した部品屑の分類情報を作製する分類工程S13と、分類情報と、部品屑を選別する選別装置13の処理能力情報とに基づいて、画像認識処理のスコア閾値及び部品屑の検知面積閾値を決定する条件決定工程S14とを備える電気電子部品屑の処理方法である。

Description

電気電子部品屑の処理方法及び電気電子部品屑の処理装置
 本発明は、電気電子部品屑の処理方法及び電気電子部品屑の処理装置に関する。
 近年、資源保護の観点から、廃家電製品・PC、携帯電話等の電気電子部品屑から、有価金属を回収することがますます盛んになってきており、その効率的な回収方法が検討され、提案されている。
 例えば、特開平9-78151号公報(特許文献1)では、有価金属を含有するスクラップ類を銅鉱石溶錬用自溶炉へ天井部から装入し、有価金属を炉内に滞留するマットへ回収させる工程を含む有価金属のリサイクル方法が記載されている。
 特開2018-123380号公報(特許文献2)では、アルミニウムを含むリサイクル原料から有価金属を回収する方法として、リサイクル原料を銅製錬工程の溶融炉へ装入し、アルミニウムを酸化させて溶融スラグ層の成分にすることで系外に除去し、有価金属をメタル層やマット層に溶け込ませ、溶け込んだ有価金属を回収するリサイクル原料の処理方法が記載されている。
特開平9-78151号公報 特開2018-123380号公報
 しかしながら、電気電子部品屑の処理量が増加に伴い、電気電子部品屑に含まれる物質の種類によっては、その後の銅製錬工程での処理に好ましくない物質(製錬阻害物質)が従来よりも多量に投入されることとなる。このような銅製錬工程に装入される製錬阻害物質の量が多くなると、電気電子部品屑の投入量を制限せざるを得なくなる状況が生じる。
 製錬工程へ投入する原料中に含まれる製錬阻害物質を低減しながら有価金属をより多く回収するためには、製錬工程で処理可能な有価金属を含む銅線屑などの処理原料(以下「製錬原料」という)と、製錬工程の処理安定性を損なう可能性があり製錬工程の系外へ送るべき原料(以下「系外原料」という)とを予め選別しておくことが好ましい。
 本発明者らは、人工知能を用いた画像認識処理技術の利用を検討し、電気電子部品屑の中から選別対象となる部品屑を適切に解析するための種々の検討を行ってきた。しかしながら、電気電子部品屑は種々の部品が混在しており、組成も形状も様々であるため、画像認識による電気電子部品屑の個体識別を精度良く行うことが難しいという問題がある。
 一般的に、人工知能を用いた電気電子部品屑の画像認識処理においては、認識結果の確からしさを表すスコア(確信度)が高いほど、所望の部品屑である可能性が高くなる。スコアが低いほど誤検知が多くなり、所望の部品屑である可能性は低くなるが、部品屑の識別点数自体は多くなる。電気電子部品屑の個体識別においては、その性質上誤検知も多くなるため誤検知とのバランスを考えてスコア閾値の最適値を見極めることが必要である。
 一方、スコア閾値の最適化により電気電子部品屑の適切な個体識別が行えたとしても、電気電子部品屑を選別処理する選別装置の処理能力自体に限界があり、要求された選別対象数に対して十分な選別処理が行えない場合がある。例えば、所望の部品屑を採集する選別装置としてピッキングロボットを採用する場合等には、ロボットの台数にも限りがあるため、選別能力とのバランスを考慮する必要もある。
 そこで、本開示は、画像認識処理技術及び選別装置を用いて、電気電子部品屑の中から所望の部品屑をより効率良く選別することが可能な電気電子部品屑の処理方法及び電気電子部品屑の処理装置を提供する。
 本発明の実施の形態に係る電気電子部品屑の処理方法は一側面において、電気電子部品屑の選別条件を決定する選別条件決定工程を備え、該工程が、複数の部品屑を含む電気電子部品屑を撮像した複数の撮像画像の中から特定の部品種に属する部品屑を画像認識処理によって識別し、識別した部品屑の確からしさを表すスコア、部品屑の検知面積及び部品屑の個数の情報を含む画像認識情報を取得する画像認識処理工程と、複数の撮像画像の画像認識情報を用いて、識別した部品屑の個数をスコアと部品屑の検知面積との関係に基づいて分類した分類情報を作製する分類工程と、分類情報と、部品屑を選別する選別装置の処理能力情報とに基づいて、画像認識処理のスコア閾値及び部品屑の検知面積閾値を決定する条件決定工程とを備える電気電子部品屑の処理方法である。
 本発明の実施の形態に係る電気電子部品屑の処理方法は別の一側面において、複数の部品屑を含む電気電子部品屑を撮像する撮像工程と、撮像工程で得られた撮像画像の中から特定の部品種に属する部品屑を画像認識処理によって識別し、識別した部品屑の確からしさを表すスコア、部品屑の検知面積及び部品屑の個数の情報を少なくとも含む画像認識情報を取得する画像認識処理工程と、画像認識情報の中から、部品屑に対して予め設定されたスコア閾値及び部品屑の検知面積閾値を超える部品屑を絞り込む絞り込み工程と、絞り込まれた部品屑に優先順位を付ける優先順位付け工程と、優先順位に基づいて選別装置を用いて部品屑を選別する選別工程とを備える電気電子部品屑の処理方法である。
 本発明の実施の形態に係る電気電子部品屑の処理装置は一側面において、電気電子部品屑を搬送する搬送装置と、搬送装置により搬送される電気電子部品屑を撮像し、撮像画像を取得する撮像装置と、撮像装置が撮像した撮像画像の中から特定の部品種に属する複数の部品屑を画像認識処理によって識別する画像認識処理装置と、画像認識処理装置が識別した複数の部品屑を選別する選別装置と、画像認識処理によって識別された部品屑の個数を、スコアと部品屑の検知面積との関係に基づいて分類した分類情報を取得し、該分類情報と、選別装置の処理能力情報とに基づいて、画像認識処理のスコア閾値及び選別装置が選別対象とする部品屑の検知面積閾値を決定する条件制御装置とを備える電気電子部品屑の処理装置である。
 本開示によれば、画像認識処理技術及び選別装置を用いて、電気電子部品屑の中から所望の部品屑をより効率良く選別することが可能な電気電子部品屑の処理方法及び電気電子部品屑の処理装置が提供できる。
本発明の実施の形態に係る電気電子部品屑の処理装置の一例を表す図である。 本発明の実施の形態に係る電気電子部品屑の処理装置の一例を示すブロック図である。 本発明の実施の形態に係る電気電子部品屑の分類情報の一例を示す表である。 本発明の実施の形態に係る電気電子部品屑の処理方法の一例を示すフローチャートである。 図4の選別条件決定工程の処理フローの一例を示すフローチャートである。 図5の閾値決定工程の処理フローの一例を示すフローチャートである。 本発明の実施の形態に係る電気電子部品屑の製錬工程を含めた全体フローの一例を示すフロー図である。
 以下に本発明の実施の形態について図面を用いて説明する。以下に示す実施の形態はこの発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の構造、配置等を下記のものに特定するものではない。
(電気電子部品屑の処理装置)
 本発明の実施の形態に係る電気電子部品屑1の処理装置は、図1に示すように、電気電子部品屑1を撮像する撮像装置12と、電気電子部品屑1を選別する選別装置13と、撮像装置12及び選別装置13の処理条件を制御する条件制御装置10を備える。
 電気電子部品屑1としては、廃家電製品・PCや携帯電話等の電子・電気機器を破砕した屑を利用することができ、回収された後、適当な大きさに破砕されたものを指す。電気電子部品屑1とするための破砕は、処理者自身が行ってもよいが、市中で破砕されたものを購入等したものでもよい。
 破砕方法として、特定の装置には限定されず、せん断方式でも衝撃方式でもよいが、できる限り、部品の形状を損なわない破砕が望ましい。従って、細かく粉砕することを目的とする粉砕機のカテゴリーに属する装置は含まれない。
 電気電子部品屑1は、基板、筐体などに使われるプラスチック(合成樹脂類)、金属片、銅線屑、コンデンサ、ICチップ、その他、等の複数の部品種からなり、処理目的に応じて、更に細かく分類することができる。典型的な例においては、電気電子部品屑1から、特定の部品種として、銅線屑、金属屑、コンデンサ、プラスチック屑、基板屑の少なくともいずれかを選択的に選別することが好ましい。
 以下に限定されるものではないが、本実施形態では、代表径が100mm以下、更に70mm以下、より更には50mm以下に破砕されている電気電子部品屑1を好適に処理することが好ましい。下限は特に限定されないが、5mm以上、より典型的には10mm以上、更には15mm以上である。「代表径」とは、電気電子部品屑1の中から任意の100点を抽出し、抽出した電気電子部品屑1の長径の平均値を算出し、これを5回繰り返した場合の平均値を表す。
 電気電子部品屑1はベルトコンベヤ等の搬送装置3によって搬送され、撮像装置12で撮像されて選別装置13で所定の選別処理がなされる。搬送装置3に供給される電気電子部品屑1は、電気電子部品屑1同士の重なりを防ぐように、また、選別装置13による選別処理を行いやすくするために、撮像装置12へ搬送される前に、それぞれ一定距離ずつ離間させて搬送されることが好ましい。
 撮像装置12としては、例えば、RGBカメラ、マルチスペクトル撮像装置等の種々の撮像装置を用いることができる。肉眼で判別が困難な光沢を有する部品屑等を含む電気電子部品屑1の撮像には、部品屑の色彩をより精度よく検出するマルチスペクトル撮像装置を用いることが好適である。
 選別装置13としては、図1に示す構成に限定されず種々の選別装置を利用できることは勿論である。中でも特定の部品屑を選択的に抽出するために好適な選別装置13としては、先端に部品屑を把持するためのロボットハンドを備えるピッキングロボットを利用することが好ましい。ピッキングロボットにより、採集した電気電子部品屑1を搬送装置3とは別の方向へ搬送するベルトコンベヤ等の搬送装置4へ搬送させ、次の工程へ円滑に搬送させることができる。
 条件制御装置10は、図2に示すように、撮像装置12と、選別装置13と、画像認識処理装置11と、記憶装置14とに接続されている。画像認識処理装置11は、条件制御装置10とともに一の処理装置内に格納されていてもよいし、条件制御装置10を備える処理装置の外部に、ネットワーク(不図示)を介して接続されるような構成であってもよい。
 記憶装置14は、画像認識処理装置11及び条件制御装置10を所定の制御アルゴリズムに従って動作させるための動作プログラム、撮像装置12による撮像画像、画像認識処理のための学習データ、入力装置(不図示)又はネットワーク(不図示)を介して入力される各種情報、条件制御装置10が作製及び出力する処理条件等を記憶する装置であり、メモリ等で構成することができる。図示を省略したが、各種情報を操作者に表示するための表示装置を更に備えていてもよい。
 画像認識処理装置11は、電気電子部品屑1を構成する複数の部品屑を部品種毎に識別可能とするために、学習データを用いた機械学習システムを利用した人工知能(AI)システムで構成されている。画像認識処理装置11は、電気電子部品屑1を撮像した撮像画像に対して、AIを利用した画像認識処理を行い、撮像画像中の電気電子部品屑1の中から特定の部品種に属する部品屑の識別処理を行う。AIを利用した機械学習には、ディープラーニング等の画像認識処理に適した一般的な解析ツールを適宜利用することができる。
 条件制御装置10は、画像認識処理装置11から出力される複数の撮像画像の識別(推論)結果を抽出する。条件制御装置10は、画像認識処理装置11が識別した複数の撮像画像の識別結果の中から、識別した部品屑の確からしさを表すスコアと、部品屑の個数及び部品屑の検知面積を少なくとも含む画像認識情報を取得する。条件制御装置10は、取得した複数の撮像画像の識別結果のうち、推論結果が予め定められた一定の基準を満たす複数の画像認識情報を抽出し、これらを合算して、識別した部品屑の個数をスコアと部品屑の検知面積との関係に基づいて分類する。具体的には、条件制御装置10は、推論結果が基準を満たす画像認識情報について得られたスコアを複数の設定範囲に分け、設定範囲毎に、識別した部品屑の個数をその部品屑の検知面積毎に分類した分類情報を取得する(図4参照)。分類情報の作製は、操作者が表計算ソフト等を利用して手動で行うこともできる。分類情報は記憶装置14内へ格納される。
 条件制御装置10は、分類情報と、選別装置13の処理能力情報とに基づいて、画像認識処理装置11による画像認識処理に適用するスコア閾値と、選別装置13が選別対象とする部品屑の検知面積閾値を決定する。選別装置13の処理能力情報とは、選別装置13の台数、処理速度、運転又は休止情報等を含めた部品屑の選別処理に必要な種々の情報を含む。典型的には、選別装置13が単位時間当たりに抽出可能な部品屑の個数を含む情報を指す。条件制御装置10が決定した処理条件は、撮像装置12及び選別装置13へ出力される。
 図1の搬送装置3に電気電子部品屑1が供給されると、画像認識処理装置11は、条件制御装置10が決定したスコア閾値に基づいて、撮像装置12が撮像した撮像画像内の部品屑を識別し、選別装置13が、選別対象とする部品屑の検知面積閾値以上となる部品屑を、選別装置13側へ搬送するように選別処理を行う。
 記憶装置14は、画像認識処理装置11及び条件制御装置10を所定の制御アルゴリズムに従って動作させるための動作プログラム、撮像装置12による撮像画像、画像認識処理のための学習データ、入力装置(不図示)又はネットワーク(不図示)を介して入力される各種情報、条件制御装置10が作製及び出力する処理条件等を記憶する装置であり、メモリ等で構成することができる。図示を省略したが、各種情報を操作者に表示するための表示装置を更に備えていてもよい。
 本発明の実施の形態に係る電気電子部品屑の処理方法によれば、条件制御装置10により、選別装置13の選別処理能力に応じて、AIを用いた画像認識処理に適したスコア閾値が設定されるため、選別処理能力の過不足による部品屑の選別漏れを抑制できるため、電気電子部品屑1の中から所望の部品屑をより効率良く選別することが可能となる。
 さらに、選別装置13が選別可能な部品屑の個数が、条件制御装置10によって設定された検知面積閾値を満足する部品屑の個数よりも多い場合には、搬送装置3へ搬送する電気電子部品屑1の処理量を増やすように、処理量を調整する工程を備える。これにより、選別装置13の選別処理能力に応じて、電気電子部品屑1の処理量を多くすることができるため、処理工程の効率化が図れる。
(電気電子部品屑の処理方法)
 図4に示すフローチャートに基づいて、本発明の実施の形態に係る電気電子部品屑の処理方法の一例を説明する。ステップS10において、本発明の実施の形態に係る電気電子部品屑1の処理装置が、選別処理を行うための選別条件を決定する(選別条件決定工程)。選別条件決定工程S10の詳細は後述する。ステップS20において、撮像装置12が、搬送装置3により撮像エリア内に搬送された電気電子部品屑1を撮像し、撮像画像を取得する(撮像工程)。
 ステップS30において、画像認識処理装置11が、電気電子部品屑1を撮像した撮像画像の中から特定の部品種に属する複数の部品屑を、AIを用いた画像認識処理によって識別する。画像認識処理装置11は、識別した部品屑のスコア、部品屑の検知面積及び部品屑の個数、検知位置(座標)等の情報を含む画像認識情報を取得する(画像認識処理工程)。
 部品屑の検知面積としては、部品屑の外縁に沿った面積を測定してもよいが、部品屑と外接する外接図形を付しその外接図形の面積を測定することが、処理高速化の観点から好ましい。外接図形としては円形、楕円形、矩形、多角形等種々の形状を利用することができる。
 ステップS40において、条件制御装置10が、画像認識情報の中から、識別した部品屑に対して予め設定されたスコア閾値及び部品屑の検知面積閾値を超える部品屑を絞り込む(絞り込み工程)。ステップS50において、条件制御装置10が、絞り込まれた部品屑の中から優先順位を付する(優先順位付け工程)。優先順位付けの条件は、選別装置13の特徴に合わせて操作者が適宜設定することができる。例えば、部品屑の検知面積が大きいものから順に優先付けすることができる。或いは、選別装置13が選別処理しやすい形状を有する部品屑から順に優先付けするようにしてもよい。
 なお、優先順位を付した結果、選別装置13が選別可能な部品屑の個数が、検知面積閾値を満足する部品屑の個数よりも多い場合には、電気電子部品屑1の処理量を増やすように、処理量を調整する処理量調整工程を更に含んでもよい。ステップS60において、選別装置13が、ステップS50において優先付けされた部品屑から優先的に選別処理を行う。ステップS10~S60の各工程は、選別対象とする電気電子部品屑1の部品種毎にそれぞれ行う。
(選別条件決定工程の具体例)
 図4のステップS10の選別条件決定工程の一例について図5及び6のフローチャート及び図3の分類情報の例を用いて説明する。なお、以下に示す処理は一例であり、選別条件決定工程は以下の例に限定されるものではない。
 ステップS11において、対象とする部品屑を含む電気電子部品屑を撮像した複数の撮像画像を取得する(撮像画像取得工程)。ステップS12において、画像認識処理装置11は、取得した複数の撮像画像の中から、特定の部品種に属する部品屑を画像認識処理によって識別し、推論結果として、識別した部品屑の確からしさを表すスコア、部品屑の検知面積及び部品屑の個数の情報を含む画像認識情報を取得する(画像認識処理工程)。
 ステップS13において、条件制御装置10は、複数の撮像画像の画像認識情報を合算し、識別した部品屑の個数をスコアと部品屑の検知面積との関係に基づいて分類した分類情報(図3参照)を作製する(分類工程)。ステップS14において、ステップS13で得られた分類情報と、部品屑を選別する選別装置13の処理能力情報とに基づいて、部品屑を選別処理するための画像認識処理のスコア閾値及び部品屑の検知面積閾値を決定する(条件決定工程)。
(条件決定工程の具体例)
 図6のステップS41において、条件制御装置10が、選別装置13の選別処理能力情報及び分類情報を取得する。選別処理能力情報としては、例えば一枚の撮像画像に撮像された電気電子部品屑1の中から選別装置13を用いて単位時間当たりに選別可能な部品屑の個数の情報を取得する。分類情報としては、例えば図3に示すような分類情報を取得する。
 図3は、電気電子部品屑1の中から部品種として銅線屑を選択した場合のAIを用いた画像認識処理による分類結果の情報の例を示す。図3の例では画像認識処理装置11が識別した複数の撮像画像の識別結果の中から、識別した部品屑の確からしさを表すスコアを複数の設定範囲に分け(横軸)、この設定範囲毎に、識別した部品屑の個数をその部品屑の検知面積毎に分類(縦軸)した情報を含む。
 ステップS42において、条件制御装置10は、分類情報のうち最もスコアが高い設定範囲であり、且つ最も検知面積の大きい区分となる第1区分を選択する。図3の例では、分類情報のうち最もスコアが高い設定範囲であり(0.20以上)で且つ最も検知面積の大きい(40kpx以上)第1の区分100が選択される。
 ステップS43において、条件制御装置10は、第1の区分100の部品屑の個数が、選別装置13の選別可能な部品屑の個数よりも少ないか否かを判定する。選別装置13の選別可能な部品屑が第1の区分100の部品屑の個数を下回る場合は、条件決定工程を終了する。選別装置13の選別可能な部品屑が第1の区分100の部品屑の個数以上である場合は、ステップS44に進む。
 ステップS44において、分類情報の中から第1の区分100に隣接する他の区分を選択する。図3の分類情報では、第1の区分100と同じスコアに属し、検知面積が第1の区分100よりも小さい第2の区分101と、第1の区分100よりもスコアが小さいが検知面積が同じ第3の区分102を選択する。
 次に、第2の区分101と第3の区分102に属する部品屑に含まれる目的とする回収物の総重量を算出する。記憶装置14には、各部品種毎に予め設定された目的回収物の重量割合の情報が格納されている。例えば図3の分類情報は、銅線屑の分類情報の一例を表している。条件制御装置10は、銅線屑中の目的回収物である銅の重量割合と、第2の区分101、第3の区分102の個数と検知面積の関係から、選別装置13が選別対象とする部品屑に含まれる目的とする回収物の総重量が最大重量となるように、スコア閾値及び検知面積閾値を最適化する。
 図3の例においては、スコア閾値を0.20とし、検知面積閾値を10kpxとした場合、部品屑の個数の合計は369+111=480個であり、目的回収物の重量は57038gとなる。一方、スコア閾値を0.08とし、検知面積閾値を40kpxとした場合、部品屑の個数の合計は40+369=409個であり、目的回収物の重量は61297gとなる。
 そのため、例えば、本発明の実施の形態に係る電気電子部品屑の処理方法においては、銅線屑を適切に選別処理するために、スコア閾値を0.08以上、検知面積閾値を40kpx以上に設定することが好ましい。
 本実施形態によれば、小面積の部品屑を数多く回収するよりも、スコアの閾値を低くしても大面積の部品屑を優先的に回収できるように、画像認識処理のスコアの閾値と、部品屑の検知面積閾値とが最適化されるため、目的回収物の回収率をより高めることができる。
 即ち、本発明の実施の形態に係る電気電子部品屑の処理方法によれば、電気電子部品屑1の選別に際し、選別装置13が選別可能な部品屑の個数と、図3に示すような分類情報とに基づいて、選別装置13が選別対象とする部品屑に含まれる目的回収物の総重量が最大重量となるように、スコア閾値及び検知面積閾値を最適化する工程を具備することによって、電気電子部品屑1の中から所望の部品屑をより多くより効率良く選別することが可能となる。
(電気電子部品屑の処理方法)
 本発明の実施の形態に係る電気電子部品屑の処理方法の一例を図7に示す。本発明の実施の形態に係る電気電子部品屑の処理方法は、電気電子部品屑1を少なくとも2段階の風力選別工程(S2、S4)により処理する工程と、メタルソータを用いた金属選別工程(S6)により基板屑を選別する工程を少なくとも含む。
 本発明の実施の形態に係る電気電子部品屑の処理方法によれば、物理選別の初期段階において、まず風力選別を2段階に分けて行う(S2、S4)ことにより、初期に磁力選別の処理を行う場合に比べて、有価金属のロスを抑えることができ、より多くの有価金属を濃縮しながら多量の電気電子部品屑1を一気に選別処理することができる。
 そして、2段階の風力選別の後、処理に時間を要するメタルソータを用いた金属選別工程(S6)を組み合わせることによって、電気電子部品屑1の処理量を増大しながら、製錬阻害物質を除去して、有価金属を効率的に回収することができる。更に、金属選別工程(S6)の非金属物側に選別された選別処理物に対して塩水分離を実施することにより、非金属物側の部品屑にも含まれる有価金属を漏れなく回収することができる。
 一実施態様では、原料として投入される電気電子部品屑1に、粉砕や破砕を行うことなく、一定の寸法及び形状を保持した状態(例えば粒度10~70mm程度)で前選別工程(S1)を行う。これにより、単位時間当たりに処理可能な電気電子部品屑1の処理量をより多くすることができる。また、破砕及び粉砕を行って電気電子部品屑1を粒状化又は粉状化する場合に比べて、電気電子部品屑1の原料としての取り扱い性を向上でき、搬送も容易で、全体としての処理効率も高めることができる。
 以下に限定されるものではないが、一実施態様においては、電気電子部品屑1を、塊状銅線屑、粉状物、フィルム、線状銅線屑、基板屑、金属片、銅線屑、コンデンサ、ICチップ、鉄屑(Fe)、アルミ(Al)屑、ステンレス(SUS)屑、ゴム類及び筐体等を含む合成樹脂類、及びそれ以外の屑に分類することができる。
 このような分類基準において、分類目的とする物質が、一の部品屑中に重量比で90%以上含まれる部品屑を、本実施形態では「単体屑」といい、複数の物質が混合する単体屑以外の屑を「複合屑」という。本実施形態では、電気電子部品屑1中に、単体屑が60%以上、更には70%以上含まれる原料を前選別工程S1で処理する原料として使用することにより、製錬阻害物質を系外へ除去しながら目的とする有価物を含む部品屑を効率良く的確に選別処理することができる。
 具体的な一実施形態においては、本発明の実施の形態に係る電気電子部品屑の処理方法は、電気電子部品屑1の中から塊状銅線屑を取り除く前選別工程(S1)と、前選別後の電気電子部品屑1を風力選別して粉状物及びフィルム状の屑を軽量物側に移行させて取り除く風力選別工程(S2)と、風力選別で得られる重量物を篩別し、線状(長尺状)銅線屑を取り除く篩別工程(S3)と、二段階目の風力選別工程(S4)と、線状銅線屑除去後の電気電子部品屑1から、カラーソータを用いて銅等の有価金属を含む基板屑を取り除く色彩選別工程(S5)と、色彩選別工程後の電気電子部品屑1の中からメタルソータを用いて銅等の有価金属を含む基板屑を更に取り除く金属選別工程(S6)を含む。
 一段階目の風力選別工程(S2)と二段階目の風力選別工程(S4)との間に篩別工程(S3)を備えることにより、電気電子部品屑1に含まれる線屑を除去することができる。篩別工程(S3)では、スリット状の篩を有する篩別機を用いて処理することが好ましい。篩別工程(S3)においては、篩別により、線屑の他に粉状物も除去することができる。篩別後の粉状物及び銅線屑は、焼却前処理工程を経由して製錬工程に送ることで、部品屑中の有価金属をより効率的に回収できる。また、風力選別工程(S4)の後に色彩選別工程(S5)が実施されることにより、金属選別工程(S6)に送られる処理対象物の金属含有比率を下げることができるため、金属選別工程(S6)における選別効率をより高くすることができる。
 二段階目の風力選別工程(S4)で得られる重量物の中には、銅製錬工程で処理すべき基板が一部混入する場合がある。よって、二段階目の風力選別工程(S4)で得られる重量物を、本実施形態に係る画像選別処理工程と磁力選別、渦電流選別、カラーソータ、手選別、ロボット等の選別処理とを組み合わせることにより、銅製錬工程で処理すべき基板を分離して製錬工程に送ることができるため、有価金属の回収効率が高まる。
 例えば、二段階目の風力選別工程(S4)で得られる重量物を、上述のAIを用いた画像認識処理を含む前選別工程(S7)を経て、磁力選別工程(S8)に送る。磁力選別工程(S8)では、重量物から鉄を含む原料を、製錬工程の系外原料として除去する。磁力選別工程(S8)後には渦電流選別工程(S9)が行われ、更に、前選別工程(S91)が行われ、アルミ、合成樹脂類(プラスチック)、SUSを含む屑等を除去し、残った基板屑を製錬工程へ送る。
 本実施形態に係る電気電子部品屑の処理方法では、各選別工程(S1~S91)を適宜組み合わせて利用することも可能である。更に、前選別工程(S7)、磁力選別工程(S8)、渦電流選別工程(S9)、前選別工程(S91)で系外原料として選別される原料に対して更に画像認識処理を行い、ロボットハンドを備える選別装置13を用いて対象物を抽出する選別処理を実施することもまた好適である。例えば、渦電流選別工程(S9)の後に抽出されたアルミ屑には、アルミ屑に有価物を含む基板のついた部品屑も含まれる。各選別工程(S7~S91)で系外原料として選別された対象物に対して更に本実施形態に係る塩水分離処理を用いた選別処理を行うことにより、系外原料へ混入する有価物量を低減することができ、より一層有価物の回収効率を高めることができる。
(製錬工程)
 本発明の実施の形態に係る電気電子部品屑の処理方法は、各選別工程(S1~S91)でそれぞれ選別された有価金属を含む処理原料を製錬する製錬工程を更に有する。
 有価金属として銅を回収する場合は、溶錬炉を用いた製錬が行われる。製錬工程には、例えば、電気電子部品屑1を焼却する工程と、焼却物を破砕及び篩別する工程と、破砕及び篩別処理した処理物を銅製錬する工程とを備える。製錬工程の処理能力に応じて、電気電子部品屑1を焼却する工程は省略してもよい。
 製錬工程において、電気電子部品屑1を破砕及び篩別する工程は、電気電子部品屑1を製錬処理に好ましいサイズに成形する処理であれば任意の手法を選択できる。図7の各選別工程(S1~S91)が、製錬工程における焼却工程、破砕及び篩別する工程の前に行われることにより、有価金属をより効率的に回収しながら製錬阻害物質となる鉄、アルミニウム、ステンレス鋼、合成樹脂のいずれかを含む原料を系外へ効率良く送ることができる。
 以下に制限されるものではないが、本実施形態に係る製錬工程としては、自溶炉法を用いた銅製錬工程が好適に利用できる。自溶炉法を用いた銅製錬工程としては、例えば、自溶炉のシャフトの天井部から銅精鉱と溶剤と電気電子部品屑1を装入する。装入された精鉱及び屑が、自溶炉のシャフトにおいて溶融し、自溶炉のセットラーにおいて例えば50~68%の銅を含むマットとそのマットの上方に浮遊するスラグとに分離される。電子・電気機器部品中の銅、金、銀などの有価金属は、自溶炉内を滞留するマットへ吸収されることで、電気電子部品屑1中から有価金属を回収できる。
 銅製錬においては、銅を製造するとともに、金、銀などの貴金属をより多く回収するために、処理する原料として銅、金、銀など有価金属の含有量の多い電気電子部品屑1をできるだけ多く投入して処理することが重要である。一方、電気電子部品屑1には、銅製錬における製品、副製品の品質に影響を与える物質及び/又は銅製錬のプロセスに影響を与える製錬阻害物質が含有される。例えば、Sb、Ni等の元素を含有する物質の溶錬炉への投入量が多くなると、銅製錬で得られる電気銅の品質が低下する場合がある。
 また、銅製錬などの非鉄金属製錬工程では、精鉱の酸化によって発生する二酸化硫黄から硫酸を製造するが、二酸化硫黄に炭化水素が混入すると、産出される硫酸が着色する場合がある。炭化水素の混入源としては、例えばプラスチックなどの合成樹脂類などが挙げられるが、銅製錬へ持ち込まれる電気電子部品屑1の構成によっては、このような合成樹脂類が多く含まれる場合がある。合成樹脂類は、溶錬炉内での急激な燃焼、漏煙のほか局所加熱による設備劣化を生じさせる恐れもある。
 更に、Al、Feなどが溶錬炉内に一定以上の濃度で存在すると、例えば、銅製錬のプロセスでスラグ組成に変化を与え、有価金属のスラグへの損失、いわゆるスラグロスに影響する場合もある。また、Cl、Br、F等のハロゲン元素が溶錬炉へ投入される電気電子部品屑1中に多く含まれていると、銅製錬の排ガス処理設備の腐食や硫酸触媒の劣化を引き起こす場合がある。このような製錬阻害物質の混入の問題は、電気電子部品屑1の処理量が多くなるにつれて顕在化し、製錬工程に負担がかかるという問題が生じている。
 本発明の実施の形態に係る電気電子部品屑の処理方法によれば、製錬工程に持ち込まれる製錬阻害物質の割合を極力抑えるとともに、電気電子部品屑1の処理量を増やし、銅及び有価金属を含む電気電子部品屑1の割合を多くして銅及び有価金属を効率的に回収することが可能となる。
 本発明は上記の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。即ち、本開示は、上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で構成要素を変形して具体化できる。
1…電気電子部品屑
3、4…搬送装置
10…条件制御装置
11…画像認識処理装置
12…撮像装置
13…選別装置
14…記憶装置

Claims (9)

  1.  電気電子部品屑の選別条件を決定する選別条件決定工程を備え、該工程が、
     複数の部品屑を含む電気電子部品屑を撮像した複数の撮像画像の中から特定の部品種に属する部品屑を画像認識処理によって識別し、識別した部品屑の確からしさを表すスコア、前記部品屑の検知面積及び前記部品屑の個数の情報を含む画像認識情報を取得する画像認識処理工程と、
     前記複数の撮像画像の前記画像認識情報を用いて、前記識別した部品屑の個数を前記スコアと前記部品屑の検知面積との関係に基づいて分類した分類情報を作製する分類工程と、
     前記分類情報と、前記部品屑を選別する選別装置の処理能力情報とに基づいて、前記画像認識処理のスコア閾値及び前記部品屑の検知面積閾値を決定する条件決定工程と
     を備えることを特徴とする電気電子部品屑の処理方法。
  2.  前記条件決定工程が、
     前記選別装置が選別可能な前記部品屑の個数と前記分類情報とに基づいて、前記選別装置が選別対象とする前記部品屑に含まれる目的回収物の総重量が最大重量となるように、前記スコア閾値及び前記検知面積閾値を最適化することを特徴とする請求項1に記載の電気電子部品屑の処理方法。
  3.  前記スコア閾値を0.08以上、前記検知面積閾値を40kpx以上に設定することを含む請求項1又は2に記載の電気電子部品屑の処理方法。
  4.  前記検知面積が、前記部品屑と外接する外接図形の面積であることを含む請求項1~3のいずれか1項に記載の電気電子部品屑の処理方法。
  5.  前記選別装置が、ピッキングロボットを含むことを特徴とする請求項1~4のいずれか1項に記載の電気電子部品屑の処理方法。
  6.  複数の部品屑を含む電気電子部品屑を撮像する撮像工程と、
     前記撮像工程で得られた撮像画像の中から特定の部品種に属する部品屑を画像認識処理によって識別し、識別した部品屑の確からしさを表すスコア、前記部品屑の検知面積及び前記部品屑の個数の情報を少なくとも含む画像認識情報を取得する画像認識処理工程と、
     前記画像認識情報の中から、前記部品屑に対して予め設定されたスコア閾値及び前記部品屑の検知面積閾値を超える部品屑を絞り込む絞り込み工程と、
     前記絞り込まれた前記部品屑に優先順位を付ける優先順位付け工程と、
     前記優先順位に基づいて選別装置を用いて前記部品屑を選別する選別工程と
     を備えることを特徴とする電気電子部品屑の処理方法。
  7.  前記撮像工程の前に、請求項1~5のいずれか1項に記載の前記選別条件決定工程を行い、前記スコア閾値及び前記検知面積閾値を決定することを含む請求項6に記載の電気電子部品屑の処理方法。
  8.  前記選別装置が選別可能な前記部品屑の個数が、前記検知面積閾値を満足する前記部品屑の個数よりも多い場合に、前記電気電子部品屑の処理量を増やすように、該処理量を調整する処理量調整工程を更に含むことを特徴とする請求項6又は7に記載の電気電子部品屑の処理方法。
  9.  電気電子部品屑を搬送する搬送装置と、
     前記搬送装置により搬送される前記電気電子部品屑を撮像し、撮像画像を取得する撮像装置と、
     前記撮像装置が撮像した前記撮像画像の中から特定の部品種に属する複数の部品屑を画像認識処理によって識別する画像認識処理装置と、
     前記画像認識処理装置が識別した前記複数の部品屑を選別する選別装置と、
     前記画像認識処理によって識別された部品屑の個数を、スコアと前記部品屑の検知面積との関係に基づいて分類した分類情報を取得し、該分類情報と、前記選別装置の処理能力情報とに基づいて、前記画像認識処理のスコア閾値及び前記選別装置が選別対象とする前記部品屑の検知面積閾値を決定する条件制御装置と
     を備えることを特徴とする電気電子部品屑の処理装置。
PCT/JP2021/043016 2021-04-21 2021-11-24 電気電子部品屑の処理方法及び電気電子部品屑の処理装置 WO2022224478A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3216141A CA3216141A1 (en) 2021-04-21 2021-11-24 Method for processing electrical and electronic component scraps and apparatus for processing electrical and electronic component scraps
EP21937968.2A EP4327954A1 (en) 2021-04-21 2021-11-24 Electrical and electronic component scrap processing method, and electrical and electronic component scrap processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021072130A JP7264936B2 (ja) 2021-04-21 2021-04-21 電気電子部品屑の処理方法及び電気電子部品屑の処理装置
JP2021-072130 2021-04-21

Publications (1)

Publication Number Publication Date
WO2022224478A1 true WO2022224478A1 (ja) 2022-10-27

Family

ID=83723281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043016 WO2022224478A1 (ja) 2021-04-21 2021-11-24 電気電子部品屑の処理方法及び電気電子部品屑の処理装置

Country Status (5)

Country Link
EP (1) EP4327954A1 (ja)
JP (1) JP7264936B2 (ja)
CA (1) CA3216141A1 (ja)
TW (1) TWI779947B (ja)
WO (1) WO2022224478A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7351043B1 (ja) 2023-01-24 2023-09-26 三菱電機株式会社 静電選別装置の制御方法、プログラム、および、静電選別装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0978151A (ja) 1995-09-12 1997-03-25 Nikko Kinzoku Kk スクラップ類からの有価金属のリサイクル方法
WO2015072338A1 (ja) * 2013-11-14 2015-05-21 オムロン株式会社 データ構造、ライブラリ作成装置、電子機器分析装置、ライブラリ提供システム
JP2018123380A (ja) 2017-02-01 2018-08-09 Jx金属株式会社 リサイクル原料の処理方法
WO2019026551A1 (ja) * 2017-07-31 2019-02-07 荏原環境プラント株式会社 廃棄物の質を推定する装置、システム、プログラム、方法、及びデータ構造
WO2019208754A1 (ja) * 2018-04-26 2019-10-31 大王製紙株式会社 選別装置、選別方法及び選別プログラム並びにコンピュータで読み取り可能な記録媒体又は記憶した機器
WO2020090941A1 (ja) * 2018-10-31 2020-05-07 Jx金属株式会社 電子・電気機器部品屑の組成解析装置、電子・電気機器部品屑の処理装置及び電子・電気機器部品屑の処理方法
WO2021201250A1 (ja) * 2020-04-01 2021-10-07 Jx金属株式会社 電子・電気機器部品屑の組成解析方法、電子・電気機器部品屑の処理方法、電子・電気機器部品屑の組成解析装置及び電子・電気機器部品屑の処理装置
WO2021201251A1 (ja) * 2020-04-01 2021-10-07 Jx金属株式会社 電子・電気機器部品屑の組成解析方法、電子・電気機器部品屑の処理方法、電子・電気機器部品屑の組成解析装置及び電子・電気機器部品屑の処理装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11080672B2 (en) * 2014-12-12 2021-08-03 Ecoatm, Llc Systems and methods for recycling consumer electronic devices
CN109013384A (zh) * 2018-07-10 2018-12-18 华侨大学 一种建筑垃圾物料的分拣装置及其分拣方法
JP6938450B2 (ja) * 2018-10-31 2021-09-22 Jx金属株式会社 原料供給装置、電子・電気機器部品屑の処理装置及び電子・電気機器部品屑の処理方法
JP7076397B2 (ja) * 2019-03-29 2022-05-27 Jx金属株式会社 電子・電気機器部品屑の処理方法
JP7282582B2 (ja) * 2019-04-22 2023-05-29 Jx金属株式会社 電子・電気機器部品屑の処理方法及び処理装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0978151A (ja) 1995-09-12 1997-03-25 Nikko Kinzoku Kk スクラップ類からの有価金属のリサイクル方法
WO2015072338A1 (ja) * 2013-11-14 2015-05-21 オムロン株式会社 データ構造、ライブラリ作成装置、電子機器分析装置、ライブラリ提供システム
JP2018123380A (ja) 2017-02-01 2018-08-09 Jx金属株式会社 リサイクル原料の処理方法
WO2019026551A1 (ja) * 2017-07-31 2019-02-07 荏原環境プラント株式会社 廃棄物の質を推定する装置、システム、プログラム、方法、及びデータ構造
WO2019208754A1 (ja) * 2018-04-26 2019-10-31 大王製紙株式会社 選別装置、選別方法及び選別プログラム並びにコンピュータで読み取り可能な記録媒体又は記憶した機器
WO2020090941A1 (ja) * 2018-10-31 2020-05-07 Jx金属株式会社 電子・電気機器部品屑の組成解析装置、電子・電気機器部品屑の処理装置及び電子・電気機器部品屑の処理方法
WO2021201250A1 (ja) * 2020-04-01 2021-10-07 Jx金属株式会社 電子・電気機器部品屑の組成解析方法、電子・電気機器部品屑の処理方法、電子・電気機器部品屑の組成解析装置及び電子・電気機器部品屑の処理装置
WO2021201251A1 (ja) * 2020-04-01 2021-10-07 Jx金属株式会社 電子・電気機器部品屑の組成解析方法、電子・電気機器部品屑の処理方法、電子・電気機器部品屑の組成解析装置及び電子・電気機器部品屑の処理装置

Also Published As

Publication number Publication date
TW202242148A (zh) 2022-11-01
TWI779947B (zh) 2022-10-01
JP2022166727A (ja) 2022-11-02
CA3216141A1 (en) 2022-10-27
JP7264936B2 (ja) 2023-04-25
EP4327954A1 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
TWI723604B (zh) 電子‧電氣機器零件屑之組成解析裝置、電子‧電氣機器零件屑之處理裝置及電子‧電氣機器零件屑之處理方法
JP6936344B2 (ja) 電子・電気機器部品屑の処理方法
JP7282582B2 (ja) 電子・電気機器部品屑の処理方法及び処理装置
WO2022224478A1 (ja) 電気電子部品屑の処理方法及び電気電子部品屑の処理装置
EP3950153A1 (en) Method for processing electronic/electrical device component scraps
JP6914220B2 (ja) 電子・電気機器部品屑の処理方法
JP6885904B2 (ja) 電子・電気機器部品屑の処理方法
WO2022102176A1 (ja) 電子部品屑の分類方法及び電子部品屑の処理方法
JP7029333B2 (ja) 電子・電気機器部品屑の処理方法
JP2022166728A (ja) 電気電子部品屑の処理方法
JP2022078833A (ja) 電子部品屑の処理方法、電子部品屑の画像解析システム及び電子部品屑の選別システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937968

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3216141

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2021937968

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021937968

Country of ref document: EP

Effective date: 20231121