WO2020218140A1 - 熱可塑性液晶ポリマーフィルム、積層体、および成形体、ならびにそれらの製造方法 - Google Patents

熱可塑性液晶ポリマーフィルム、積層体、および成形体、ならびにそれらの製造方法 Download PDF

Info

Publication number
WO2020218140A1
WO2020218140A1 PCT/JP2020/016681 JP2020016681W WO2020218140A1 WO 2020218140 A1 WO2020218140 A1 WO 2020218140A1 JP 2020016681 W JP2020016681 W JP 2020016681W WO 2020218140 A1 WO2020218140 A1 WO 2020218140A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal polymer
thermoplastic liquid
polymer film
heat
Prior art date
Application number
PCT/JP2020/016681
Other languages
English (en)
French (fr)
Inventor
澤田 貴文
光則 浅田
紀久雄 有本
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=72942023&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020218140(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2021516048A priority Critical patent/JP7024142B2/ja
Priority to CN202080030367.1A priority patent/CN113727843B/zh
Priority to KR1020217036849A priority patent/KR102518009B1/ko
Publication of WO2020218140A1 publication Critical patent/WO2020218140A1/ja
Priority to JP2022018582A priority patent/JP2022070937A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a film, a laminate, and a molded product, which are made of a polymer capable of forming an optically anisotropic molten phase (hereinafter referred to as a thermoplastic liquid crystal polymer) and have excellent heat resistance, and a method for producing the same. ..
  • a high-density circuit is manufactured by forming a metal-clad laminate composed of a non-metal layer and a metal layer into multiple layers via the non-metal layer.
  • thermosetting resins such as phenolic resin and epoxy resin are mainly used as non-metal layers in printed wiring boards and circuits, and they are manufactured by laminating them with metal layers such as copper foil. It is known that it takes time for proper lamination to be possible by the heating reaction.
  • thermoplastic liquid crystal polymer material can be expected to have an effect of improving productivity by taking advantage of the fact that it is a thermoplastic resin, and also in terms of physical properties, it has an extremely low water absorption rate and dielectric compared to other materials. Due to the loss, it is attracting a lot of attention as a representative of high frequency transmission applications.
  • Thermoplastic liquid crystal polymer materials can be multi-layered by thermocompression bonding using thermoplasticity, but on the other hand, heat resistance is also required for multi-layering. That is, even when the non-metal layer used for multi-layering is appropriately softened and plasticized and the laminate is manufactured under the condition that the laminate is firmly adhered to the metal layer or the non-metal layer of the laminate.
  • the non-metal layer of the above has high heat resistance, a stable product with a wide process window (optimal range of manufacturing conditions) can be manufactured.
  • Patent Document 1 Patent No. 4004139
  • Patent Document 2 Patent No. 4138995
  • a method for manufacturing a metal laminate composed of a metal layer and a multilayer laminate having a non-metal layer is described.
  • Patent Document 3 Japanese Patent No. 389930
  • a plurality of sheet materials made of a thermoplastic resin are laminated, and the laminated sheet materials are held one by one in a sheet material holder.
  • a multilayer substrate can be manufactured without utilizing a conventional batch type vacuum chamber. Therefore, according to the manufacturing method, the production efficiency can be significantly improved as compared with the process using the conventional batch type vacuum chamber.
  • Patent Document 4 Patent No. 3878741 describes a method of raising the melting point of a thermoplastic liquid crystal polymer having a melting point of 300 ° C. or less to 300 ° C. or higher. Is described.
  • Japanese Patent No. 4004139 Japanese Patent No. 4138995 Japanese Patent No. 389930 Japanese Patent No. 3878741
  • thermoplastic liquid crystal polymer film having a low melting point is used.
  • heat treatment for 4 hours or more in multiple steps is required, which causes a problem of poor productivity.
  • thermoplastic resin undergoes a hydrolysis reaction, and for example, in the case of a thermoplastic liquid crystal polymer or the like, the fluidity of the resin is increased.
  • the position of the conductor pattern becomes larger and the position of the conductor pattern shifts, or voids are generated in the resin film.
  • thermoplastic liquid crystal polymer films Therefore, there is a limit to the improvement of equipment and adhesives in order to widen the process window when multi-layering using a thermoplastic liquid crystal polymer film, and the demand for further multi-layering has not been fully satisfied. In addition, simply raising the melting point has not been able to satisfy market demands, including productivity during the production of thermoplastic liquid crystal polymer films.
  • an object of the present invention is to provide a thermoplastic liquid crystal polymer film, a laminate, and a molded product having a wide process window when performing multilayering, and a method capable of easily producing these.
  • the present inventors surprisingly have a rubber-like flat region with respect to the temperature dependence of the storage elastic modulus obtained by dynamic viscoelasticity measurement, and the rubber.
  • Thermoplastic liquid crystal polymer films in which the storage elastic modulus E'in the flat region is in a specific range have extremely high heat resistance required in the production of multilayer laminated plates, especially because of their specific dynamic viscoelastic properties. We have found that the flow of the resin can be suppressed, and have completed the present invention.
  • a film composed of a polymer capable of forming an optically anisotropic molten phase (hereinafter referred to as a thermoplastic liquid crystal polymer), and has a storage elastic modulus profile determined by dynamic viscoelasticity measurement at 180 ° C.
  • the rubber-like flat region exists at the above temperature (preferably 190 ° C. or higher, more preferably 200 ° C. or higher), and the storage elastic modulus E'of the rubber-like flat region at 200 to 280 ° C. is 80 MPa or higher (preferably 100 MPa or higher, More preferably 120 MPa or more), a thermoplastic liquid crystal polymer film.
  • thermoplastic liquid crystal polymer film according to aspect 1 wherein the storage elastic modulus at 280 ° C. is 60 MPa or more (preferably 70 MPa or more, more preferably 80 MPa or more).
  • the endothermic peak position that appears when the temperature is raised at a rate of 10 ° C./min in the temperature range of room temperature to 400 ° C. using a differential scanning calorimeter is 310 ° C. or higher (preferably 315 ° C. or higher, more preferably 320 ° C. or higher). ), The thermoplastic liquid crystal polymer film according to aspect 1 or 2.
  • a laminate comprising at least one layer of the thermoplastic liquid crystal polymer film according to any one of aspects 1 to 3.
  • the metal layer is composed of copper, a copper alloy, an aluminum, an aluminum alloy, nickel, a nickel alloy, an iron, an iron alloy, a silver, a silver alloy, and at least one selected from these composite metal types.
  • thermoplastic liquid crystal polymer having a melting point rise rate Rtm of 0.20 ° C./min or more (preferably 0.22 ° C./min or more, more preferably 0.25 ° C./min or more, still more preferably 0.26 ° C./min or more).
  • the heat treatment is a one-step or multi-step heat treatment and the melting point (Tm 0 ) of the thermoplastic liquid crystal polymer is taken, it is Tm 0 ° C.
  • thermoplastic liquid crystal polymer film according to the tenth aspect wherein the first heat treatment is performed in (below) to make the heat resistant.
  • thermoplastic liquid crystal polymer film according to aspect 10 or 11 wherein at least one selected from a hot air oven, a steam oven, an electric heater, an infrared heater, a ceramic heater, a heat roll, a heat press, and an electromagnetic wave irradiator is used as a heat source. Manufacturing method.
  • Aspect 13 The method for producing a thermoplastic liquid crystal polymer film according to any one of aspects 10 to 12, wherein the heat treatment is one step.
  • the laminate composed of a thermoplastic liquid crystal polymer is heat-treated to heat it, according to any one of aspects 4 to 6.
  • the heat treatment is a one-step or multiple-step heat treatment and has a melting point (Tm 0 ) of the thermoplastic liquid crystal polymer, it is Tm 0 ° C.
  • the rate of increase in melting point of a thermoplastic liquid crystal polymer is defined as a thermoplastic liquid crystal polymer film (raw material film) between a normal temperature (for example, 25 ° C.) and a predetermined temperature (for example, 400 ° C.) in differential scanning calorimetry.
  • the temperature at which the heat absorption peak appears at the time of reheating is set to the melting point Tm 0 of the thermoplastic liquid crystal polymer, and the thermoplastic liquid crystal polymer film is heat-treated at a temperature of Tm 0-10 ° C. for 1 hour after heating, cooling, and reheating.
  • Tm' the temperature at which the heat absorption peak appears when heated from room temperature (for example, 25 ° C.) to a predetermined temperature (for example, 400 ° C.)
  • Rtm (Tm'-Tm 0 ) / 60. It is a value calculated by.
  • the temperature change rate (heating rate, temperature lowering rate) in the above differential scanning calorimetry may be 10 ° C./min.
  • the laminated body means a structure in which an adherend is laminated on a thermoplastic liquid crystal polymer film
  • the molded body means a circuit or the like formed on the thermoplastic liquid crystal polymer film. It means a structure.
  • thermoplastic liquid crystal polymer film of the present invention has extremely high heat resistance required for manufacturing a multilayer laminated plate and has a wide process window during lamination and circuit processing. Therefore, for example, a previously complicated multilayer lamination process It leads to the simplification of the above, and it is possible to manufacture the laminated body at low cost. Further, it is possible to manufacture a super multi-layer laminated substrate without using special equipment or jigs.
  • thermoplastic liquid crystal polymer film of the present invention is composed of a thermoplastic liquid crystal polymer.
  • This thermoplastic liquid crystal polymer is composed of a melt-moldable liquid crystal polymer (or a polymer capable of forming an optically anisotropic molten phase), and the chemical composition of the melt-moldable liquid crystal polymer is particularly limited.
  • a thermoplastic liquid crystal polyester or a thermoplastic liquid crystal polyester amide having an amide bond introduced therein can be mentioned.
  • thermoplastic liquid crystal polymer may be a polymer in which an imide bond, a carbonate bond, an isocyanate-derived bond such as a carbodiimide bond or an isocyanurate bond is further introduced into an aromatic polyester or an aromatic polyester amide.
  • thermoplastic liquid crystal polymer used in the present invention include known thermoplastic liquid crystal polyesters and thermoplastic liquid crystal polyesteramides derived from the compounds classified into (1) to (4) and derivatives thereof exemplified below. Can be mentioned. However, it goes without saying that the combination of various raw material compounds has an appropriate range in order to form a polymer capable of forming an optically anisotropic molten phase.
  • Aromatic or aliphatic diols (see Table 1 for typical examples)
  • Aromatic diamine, aromatic hydroxyamine or aromatic aminocarboxylic acid (see Table 4 for typical examples)
  • thermoplastic liquid crystal polymers obtained from these raw material compounds include copolymers having structural units shown in Tables 5 and 6.
  • a copolymer containing p-hydroxybenzoic acid and / or 6-hydroxy-2-naphthoic acid as at least a repeating unit is preferable, and (i) p-hydroxybenzoic acid and 6-hydroxy are particularly preferable.
  • a copolymer containing a repeating unit of a type of aromatic diol and at least one type of aromatic dicarboxylic acid is preferred.
  • thermoplastic liquid crystal polymer is a copolymer containing a repeating unit of p-hydroxybenzoic acid (A) and 6-hydroxy-2-naphthoic acid (B)
  • A p-hydroxybenzoic acid
  • B 6-hydroxy-2-naphthoic acid
  • A molar ratio
  • (A) / (B) 10/90 to 90/10 is preferable, 50/50 to 90/10 is more preferable, 75/25 to 90/10 is more preferable, and 75/25 to 85/15 is even more preferable.
  • 77/23 to 80/20 is particularly preferable.
  • aromatic diols and aromatic dicarboxylic acids for example, from the viewpoint of adjusting the molecular weight and the like.
  • Terephthalic acid may be included.
  • At least one aromatic hydroxycarboxylic acid selected from the group consisting of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, and 4,4'-dihydroxybiphenyl
  • At least one aromatic diol selected from the group consisting of hydroquinone, phenylhydroquinone, and 4,4'-dihydroxydiphenyl ether
  • at least one aromatic diol selected from the group consisting of terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid.
  • It may be a copolymer containing a repeating unit with a group dicarboxylic acid.
  • the possibility of forming the optically anisotropic molten phase referred to in the present invention can be determined by, for example, placing the sample on a hot stage, heating the sample in a nitrogen atmosphere, and observing the transmitted light of the sample.
  • the thermoplastic liquid crystal polymer film of the present invention is preferably composed of the thermoplastic liquid crystal polymer having a melting point increase rate Rtm of 0.20 ° C./min or more among the above copolymers. It may be more preferably 0.22 ° C./min or more, still more preferably 0.25 ° C./min or more, and even more preferably 0.26 ° C./min or more.
  • the upper limit of the melting point rise rate Rtm of the thermoplastic liquid crystal polymer is not particularly limited, but may be 1.0 ° C./min or less.
  • the melting point rise rate Rtm is calculated as follows. First, a part of the thermoplastic liquid crystal polymer film is placed in a sample container using a differential scanning calorimeter, and the temperature is raised from room temperature (for example, 25 ° C.) to 400 ° C. at a rate of 10 ° C./min, and then to room temperature. The position of the heat absorption peak that appears when the film is cooled at a rate of ° C./min and then raised again from room temperature to 400 ° C. at a rate of 10 ° C./min is the melting point peculiar to the thermoplastic liquid crystal polymer constituting the thermoplastic liquid crystal polymer film. Hereinafter referred to as Tm 0 ).
  • thermoplastic liquid crystal polymer film used for the measurement of Tm 0 was treated for 60 minutes at Tm 0 -10 ° C., a part of the thermoplastic liquid crystal polymer films the process put into the sample container, to 400 ° C. from room
  • the position of the heat absorption peak that appears when the temperature is raised at a rate of 10 ° C./min is measured as the melting point Tm'of the thermoplastic liquid crystal polymer film treated for 60 minutes in an atmosphere of Tm 0-10 ° C.
  • the melting point increase rate Rtm (° C./min) of the thermoplastic liquid crystal polymer constituting the thermoplastic liquid crystal polymer film is calculated by the following formula.
  • Rtm (Tm'-Tm 0 ) / 60
  • thermoplastic liquid crystal polymer which has a rapid melting point rise rate, easily forms orthorhombic crystals with high crystal structure uniformity by heat treatment, which not only improves heat resistance but also imparts specific dynamic viscous properties. can do.
  • the thermoplastic liquid crystal polymer preferably has a melting point (Tm 0 ) in the range of, for example, 300 to 380 ° C, more preferably 305 to 360 ° C, and even more preferably 310 to 350 ° C. Good.
  • Tm 0 melting point
  • the melting point can be obtained by observing the thermal behavior of the thermoplastic liquid crystal polymer sample as described above using a differential scanning calorimeter.
  • the thermoplastic liquid crystal polymer may have a melt viscosity of 30 to 120 Pa ⁇ s at a shear rate of 1000 / s at (Tm 0 + 20) ° C., preferably a melt viscosity of 50. It may have ⁇ 100 Pa ⁇ s.
  • thermoplastic liquid crystal polymer includes thermoplastic polymers such as polyethylene terephthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyarylate, polyamide, polyphenylene sulfide, polyether ether ketone, and fluororesin, as long as the effects of the present invention are not impaired. , Various additives may be added. In addition, a filler may be added if necessary.
  • thermoplastic liquid crystal polymer film of the present invention heat-treats a thermoplastic liquid crystal polymer film (film before heat resistance, material film) composed of a thermoplastic liquid crystal polymer having a melting point rise rate Rtm of 0.20 ° C./min or more. It is possible to manufacture by performing.
  • thermoplastic liquid crystal polymer film (film before heat resistance) is not particularly limited as long as it is composed of the thermoplastic liquid crystal polymer having a specific melting point rise rate Rtm, and for example, the thermoplastic liquid crystal polymer is cast-molded.
  • the film may be obtained by extrusion molding the melt-kneaded product of the thermoplastic liquid crystal polymer. Any method is used as the extrusion molding method, but the well-known T-die method, inflation method and the like are industrially advantageous.
  • the inflation method stress is applied not only in the mechanical axis direction (hereinafter abbreviated as MD direction) of the thermoplastic liquid crystal polymer film but also in the direction orthogonal to this (hereinafter abbreviated as TD direction), and the MD direction and TD direction are applied. Since it can be uniformly stretched in the direction, a thermoplastic liquid crystal polymer film having controlled molecular orientation, dielectric properties, etc. in the MD direction and the TD direction can be obtained.
  • MD direction mechanical axis direction
  • TD direction direction orthogonal to this
  • the melt sheet extruded from the T-die may be stretched not only in the MD direction of the thermoplastic liquid crystal polymer film but also in both the MD direction and the TD direction at the same time to form a film.
  • the melt sheet extruded from the T die may be once stretched in the MD direction and then stretched in the TD direction to form a film.
  • a predetermined draw ratio corresponding to the stretching ratio in the MD direction
  • a blow ratio corresponding to the stretching ratio in the TD direction
  • the draw ratio of such extrusion molding may be, for example, about 1.0 to 10 as the draw ratio (or draw ratio) in the MD direction, preferably about 1.2 to 7, and more preferably 1. It may be about 3 to 7. Further, the stretching ratio (or blow ratio) in the TD direction may be, for example, about 1.5 to 20, preferably about 2 to 15, and more preferably about 2.5 to 14.
  • thermoplastic liquid crystal polymer film (film before heat resistance) thus obtained is heat-treated to be heat-resistant.
  • the method of heat treatment is not particularly limited as long as the heat-resistant thermoplastic liquid crystal polymer film has specific dynamic viscous properties.
  • the thermoplastic liquid crystal polymer film (preheat heat-resistant film) is directly rolled to roll or the like. It may be heat-treated, or the laminate obtained by laminating the thermoplastic liquid crystal polymer film (film before heat resistance) and the adherend may be heat-treated, or the thermoplastic liquid crystal polymer film may be subjected to sputtering, plating, or the like.
  • the laminate in which the metal layer is directly formed on the (preheat-resistant film) may be heat-treated.
  • Such a laminate can be manufactured by using a thermocompression bonding method such as a hot press, a hot roller, or a double belt press, but the present invention is not particularly limited thereto.
  • heat source for performing heat treatment
  • a known or conventional heat source can be used.
  • Preferred heat sources include, for example, hot air ovens, steam ovens, electric heaters, infrared heaters, ceramic heaters, heat rolls, heat presses, electromagnetic wave irradiators (eg, microwave irradiators, etc.) and the like. These heat sources may be used alone or in combination of two or more.
  • the heat resistance can be increased by one step or a plurality of steps of heat treatment, but in the thermoplastic liquid crystal polymer film of the present invention, the heat treatment is preferably carried out in one or two steps, more preferably in one step. Is preferably performed.
  • thermoplastic liquid crystal polymer when the melting point of the thermoplastic liquid crystal polymer is (Tm 0 ) as the first heat treatment, Tm 0 ° C. or lower, preferably less than Tm 0 ° C., more preferably (Tm 0).
  • Heat treatment may be performed at ° C or lower.
  • the heating temperature is preferably (Tm 0 -50) °C or higher, more preferably may be (Tm 0 -40) °C or higher.
  • the melting point (Tm 0 ) of the thermoplastic liquid crystal polymer can be determined by the above-mentioned method for measuring the melting point.
  • the heat treatment is performed only by the first heat treatment, and in the multi-step heat treatment, after the first heat treatment, the heat treatment in the next step is performed at a heating temperature higher than the heat treatment temperature in the previous step. It may be done.
  • thermoplastic liquid crystal polymer film rises with heat treatment, but in the present invention, rapid heat resistance can be achieved. Therefore, if the heating temperature is determined based on the melting point (Tm 0 ) of the thermoplastic liquid crystal polymer. Good.
  • the heating temperature after the second heat treatment may be performed at a melting point (Tm 0 ) or higher of the thermoplastic liquid crystal polymer, if necessary.
  • Tm melting point
  • the maximum temperature reached in the heat treatment in a plurality of steps is (Tm). It may be 0 + 30) ° C. or lower, and preferably (Tm 0 + 20) ° C. or lower.
  • the heating time at each stage of the heat treatment can be appropriately set according to the heating temperature, the stage of the heat treatment, and the like.
  • the heating time may be, for example, about 10 minutes to 3 hours in total, preferably about 10 minutes to 2 hours (for example, about 30 minutes to 2 hours). ), More preferably about 10 minutes to 1.3 hours (for example, about 45 minutes to 1.3 hours).
  • the adherend is not particularly limited as long as it can be used as a support for heat treatment, and examples thereof include a metal layer and a heat-resistant resin layer.
  • the metal constituting the metal layer is not particularly limited as long as it is a conductive metal, and for example, copper, copper alloy, aluminum, aluminum alloy, nickel, nickel alloy, iron, iron alloy, silver, silver alloy, and Examples thereof include these composite metal species. These metals may contain other metal species at 2000 mass ppm or less, and may contain unavoidable impurities.
  • the thermoplastic liquid crystal polymer film portion can be used as it is as a heat-resistant laminate after heat treatment.
  • copper, copper alloy, silver, and silver alloy may be used when conductivity and heat dissipation are required, and iron alloy may be used when ferromagnetism is required, and inexpensive ones are required. If so, aluminum or the like may be used.
  • copper may be used as the metal species for the circuit board, specifically, the metal layer contains 99.8% or more of copper by mass, and further, silver, tin, zinc, chromium and boron. , Titanium, magnesium, phosphorus, silicon, iron, gold, placeodium, nickel, and at least one other metal species selected from the group consisting of copper with less than 2000 mass ppm and residual unavoidable impurities. You may be.
  • a known method can be used as a method for forming a metal layer on the thermoplastic liquid crystal polymer film.
  • a metal layer may be vapor-deposited on a thermoplastic liquid crystal polymer film, or a metal layer may be formed by electroless plating or electroplating.
  • a metal foil (for example, a copper foil) may be laminated on the surface of the thermoplastic liquid crystal polymer film by thermocompression bonding.
  • the copper foil is not particularly limited as long as it can be used in a circuit board, and may be either a rolled copper foil or an electrolytic copper foil.
  • the resin constituting the heat-resistant resin layer examples include a resin having a melting point higher than the maximum reached temperature performed by heat treatment or a thermosetting resin, and preferably polyimide, polyphenylene ether, polyphenylene sulfide, and fluororesin (for example,). , Polytetrafluoroethylene) and the like.
  • thermoplastic liquid crystal polymer film A known method can be used as a method for forming the heat-resistant resin layer on the thermoplastic liquid crystal polymer film.
  • the heat-resistant resin film may be laminated on the surface of the thermoplastic liquid crystal polymer film by thermocompression bonding. ..
  • Ta and Tb are selected from the range of 0.1 to 500 ⁇ m, respectively. It is possible to do. From the viewpoint of thinning and weight reduction in recent years, Ta may be preferably about 1 to 175 ⁇ m, more preferably about 5 to 130 ⁇ m. Further, Tb may be preferably about 1 to 20 ⁇ m, more preferably about 2 to 15 ⁇ m.
  • the laminate has a multilayer structure of a thermoplastic liquid crystal polymer film and a metal layer, and includes at least one thermoplastic liquid crystal polymer film and at least one metal layer.
  • a laminated body having a multi-layer structure (I) Metal layer / Thermoplastic liquid crystal polymer film (ii) Metal layer / Thermoplastic liquid crystal polymer film / Metal layer (iii) Thermoplastic liquid crystal polymer film / Thermoplastic liquid crystal polymer film / Metal layer (iv) Thermoplastic liquid crystal polymer film / Metal layer / Thermoplastic liquid crystal polymer film (v) Metal layer / Thermoplastic liquid crystal polymer film / Thermoplastic liquid crystal polymer film / Metal layer (vi) metal layer / Thermoplastic liquid crystal polymer film / Metal layer / Thermoplastic liquid crystal polymer film / Examples thereof include those having a laminated structure such as a metal layer, but the present invention is not limited thereto.
  • thermoplastic liquid crystal polymer film may be used as a laminated body as it is in a state of being laminated with the adherend, or may be separated from the adherend and used alone as the thermoplastic liquid crystal polymer film. Further, the thermoplastic liquid crystal polymer film may be multi-layered via an appropriate adhesive layer. Examples of the adhesive layer include polyphenylene ether, epoxy resin, polyurethane, thermoplastic polyimide, polyetherimide and the like.
  • the molded product may be produced by post-processing the thermoplastic liquid crystal polymer film and / or the laminate.
  • a molded body (or unit circuit board) such as a wiring board may be manufactured by forming a conductor pattern on the surface of a thermoplastic liquid crystal polymer film. Further, a molded body (or unit circuit board) such as a wiring board may be manufactured by forming a conductor pattern on the metal layer of the laminated body. Further, a molded body (or circuit board) such as a wiring board may be manufactured by superimposing a unit circuit board on which a conductor pattern is formed on another substrate material to form a multilayer. Examples of the substrate material include the above-mentioned thermoplastic liquid crystal polymer film, metal layer (metal foil), unit circuit board, and the like, and an adhesive layer may be used if necessary.
  • a molded product may be obtained by performing heat treatment.
  • the polymer portion of the molded product has a storage elastic modulus E'of a rubber-like flat region in a specific range described later.
  • thermoplastic liquid crystal polymer film, laminate and molded product In the thermoplastic liquid crystal polymer film, laminate, and molded body of the present invention, the thermoplastic liquid crystal polymer portion is determined by dynamic viscoelasticity measurement, probably because a specific crystal structure is formed on the thermoplastic liquid crystal polymer by heat treatment.
  • the rubber-like flat region exists at a temperature of 180 ° C. or higher, and the storage elastic modulus E'of the rubber-like flat region at 200 to 280 ° C. is 80 MPa or more.
  • the rubber-like flat region is a region in which the molecular chain of the polymer moves but does not completely melt, and the storage elastic modulus does not depend on the temperature and takes a substantially constant value.
  • the absolute value of the slope calculated from the amount of change in the storage elastic modulus (MPa) in the temperature range of ⁇ 5 ° C. of a predetermined temperature is 5 MPa / ° C. or less
  • the storage elasticity at the predetermined temperature is considered to belong to the flat region.
  • the case where the rubber-like flat region exists at a temperature within a predetermined range means that the entire rubber-like flat region belongs to the temperature within the predetermined range.
  • the rubber-like flat region may be preferably present at 190 ° C. or higher, and more preferably at 200 ° C. or higher. Further, the rubber-like flat region may be present at 350 ° C. or lower, preferably 340 ° C. or lower, and more preferably 330 ° C. or lower.
  • the region where the absolute value of the inclination exceeds 5 MPa / ° C. on the high temperature side and the storage elastic modulus sharply decreases is defined as the flow region.
  • thermoplastic liquid crystal polymer film of the present invention can be imparted with specific dynamic viscous properties by the above-mentioned production method. Specifically, by heat-treating the thermoplastic liquid crystal polymer film (film before heat resistance), a rubber-like flat region can be present in a high temperature region of the storage elastic modulus, and the thermoplastic liquid crystal polymer film is formed. By using a thermoplastic liquid crystal polymer having a specific melting point rise rate, the storage elastic modulus E'in the rubber-like flat region can be increased to a specific range. Then, they have found that such a thermoplastic liquid crystal polymer film can suppress the flow of the resin at the time of producing the laminate.
  • the storage elastic modulus E'of the rubber-like flat region at 200 to 280 ° C. may be preferably 100 MPa or more, more preferably 120 MPa or more.
  • the upper limit of the storage elastic modulus E'in the rubber-like flat region at 200 to 280 ° C. is not particularly limited, but may be, for example, about 1000 MPa.
  • the storage elastic modulus E'of the rubber-like flat region at 200 to 280 ° C. is a value measured by the method described in Examples described later, and the rubber-like flat region continues to the outside of the range of 200 to 280 ° C. It is a value measured between 200 and 280 ° C., even if it is present.
  • the storage elastic modulus at 280 ° C. may be, for example, 60 MPa or more, preferably 70 MPa or more, and more preferably 80 MPa or more.
  • the upper limit of the storage elastic modulus at 280 ° C. is not particularly limited, but may be, for example, about 800 MPa.
  • the thermoplastic liquid crystal polymer film of the present invention may have an end point temperature of a rubber-like flat region of 280 ° C. or higher, preferably 285 ° C. or higher, more preferably 300 ° C. or higher. Good.
  • the upper limit of the end point temperature of the rubber-like flat region is not particularly limited, but may be, for example, about 400 ° C.
  • the end point temperature of the rubber-like flat region is a value measured by the method described in Examples described later.
  • thermoplastic liquid crystal polymer film of the present invention has a heat absorption peak position that appears when the temperature is raised at a rate of 10 ° C./min in a temperature range of room temperature (for example, 25 ° C.) to 400 ° C. using a differential scanning calorimeter.
  • Tm melting point
  • the melting point (Tm) of the thermoplastic liquid crystal polymer film may be 310 ° C. or higher, preferably 315 ° C. or higher, and more preferably 320 ° C. or higher.
  • the upper limit of the melting point (Tm) is not particularly limited, but may be, for example, about 400 ° C.
  • thermoplastic liquid crystal polymer film, laminate, and molded body of the present invention a specific crystal structure is generated in the thermoplastic liquid crystal polymer by heat treatment, so that the thermoplastic liquid crystal polymer portion is measured by wide-angle X-ray diffraction.
  • the UC in the present invention can be regarded as an index of the uniformity (crystallinity) of the structure of the orthorhombic crystal.
  • the UC by wide-angle X-ray diffraction measurement is a value measured by the method described in Examples described later.
  • thermoplastic liquid crystal polymer film having a melting point of 280 to 340 ° C. exists.
  • heat treatment is mainly performed by a solid phase polymerization process, not by formation of orthorhombic crystals, so that heat treatment tends to require an enormous amount of time. is there.
  • thermoplastic liquid crystal polymer film, laminate and molded product of the present invention are not only excellent in heat resistance but also have a wide process window, so that they can be suitably used in various applications.
  • a laminate having at least one thermoplastic liquid crystal polymer film and at least one metal layer can form a circuit pattern on the metal layer and is useful as a wiring board.
  • the molded body includes a plurality of circuit layers, the molded body is suitable as a multi-layer circuit board because it is possible to satisfy the demands for high density and high functionality.
  • thermoplastic liquid crystal polymer film, laminate and molded product of the present invention have extremely high heat resistance, they are suitable for applications such as high-frequency circuit boards, in-vehicle sensors, mobile circuit boards, and antennas, but are limited thereto. It is not something that is done.
  • thermoplastic liquid crystal polymer film was measured at 1 cm intervals in the TD direction, and the average value of 10 points arbitrarily selected from the center and edges was used as the film thickness. ..
  • thermoplastic liquid crystal polymer film (Differential scanning calorimetry) (Tm) Using a differential scanning calorimeter (manufactured by Shimadzu Corporation), a predetermined size is sampled from the heat-treated thermoplastic liquid crystal polymer films obtained in Examples and Comparative Examples, placed in a sample container, and placed at room temperature to 400 ° C. The position of the heat absorption peak that appears when the temperature is raised at a rate of 10 ° C./min is defined as the melting point Tm of the thermoplastic liquid crystal polymer film.
  • thermoplastic liquid crystal polymer film film before heat resistance
  • the temperature is 10 ° C./min from room temperature to 400 ° C.
  • the thermoplastic liquid crystal polymer film is used to determine the position of the heat absorption peak that appears when the temperature is raised to room temperature at a rate of 10 ° C / min and then raised again from room temperature to 400 ° C at a rate of 10 ° C / min.
  • the melting point of the constituent thermoplastic liquid crystal polymer was set to Tm 0 .
  • thermoplastic liquid crystal polymer film (film before heat resistance) was treated in an oven batch in an atmosphere of Tm 0-10 ° C. for 60 minutes.
  • the position was defined as the melting point Tm'of the treated thermoplastic liquid crystal polymer film, and the melting point increase rate Rtm (° C./min) of the thermoplastic liquid crystal polymer constituting the thermoplastic liquid crystal polymer film was calculated by the following formula.
  • Rtm (Tm'-Tm 0 ) / 60
  • thermoplastic liquid crystal polymer film was cut into a length of 10 mm and a width of 5 mm to prepare a test piece.
  • a viscoelasticity measuring device NETZSCH "DMA242E Artemis"
  • the test piece was attached to the sample holder, the frequency was 1 Hz, the load was 0.2 N, the measurement mode was the tensile mode, and the temperature range was 5 from room temperature to 350 ° C.
  • the storage elastic modulus was measured at a heating rate of ° C./min. In the obtained storage elastic modulus profile (vertical axis: storage elastic modulus (MPa), horizontal axis: temperature (° C.)), the change in storage elastic modulus with respect to the temperature change every 10 ° C.
  • the slope was calculated from the quantity.
  • the calculated absolute value of the slope is 5 MPa / ° C or less, and the smallest temperature change range is obtained, and the storage elastic modulus at the center temperature (for example, 205 ° C if 200 to 210 ° C) in the temperature change range is rubber-like. It was calculated as the storage elastic modulus E'in the flat region.
  • the storage elastic modulus at 280 ° C. was calculated. Further, the temperature at the intersection of the tangent line of the rubber-like flat region existing at a temperature of 180 ° C. or higher and the tangent line of the flow region on the higher temperature side than the rubber-like flat region was calculated as the end point temperature of the rubber-like flat region.
  • thermoplastic liquid crystal polymer film was cut into 10 mm squares and attached to a standard sample holder. In order to increase the S / N ratio of the data, a plurality of thermoplastic liquid crystal polymer films were stacked so as to match the MD directions, and the thickness was adjusted to be about 0.5 mm.
  • the X-ray source was CuK ⁇
  • the filament voltage was 45 kV
  • the current was 110 mA.
  • a collimator of 0.3 mm was used.
  • thermoplastic liquid crystal polymer film A standard sample holder was attached to the device, and the position was adjusted so that X-rays would be emitted from the direction consistent with the normal of the thermoplastic liquid crystal polymer film. That is, X-rays were irradiated perpendicularly to the surface of the thermoplastic liquid crystal polymer film.
  • the distance (camera distance) between the thermoplastic liquid crystal polymer film and the detector was set to 100 mm.
  • a two-dimensional PSPC detector was used as the detector, and a two-dimensional diffraction image was acquired. The detector was placed behind the sample so that the normal of the thermoplastic liquid crystal polymer film, the normal of the detector, and the X-ray irradiation direction all coincided.
  • the exposure time was 600 seconds.
  • the obtained two-dimensional diffraction image was subjected to ring averaging processing and converted into a one-dimensional profile (data 1).
  • the range of the annulus average was 10 to 30 degrees at the diffraction angle (2 ⁇ ).
  • the azimuth range was 0 to 180 degrees.
  • the step of 2 ⁇ was set to 0.05 degrees.
  • the azimuth angle of 0 degrees was made to correspond to the MD direction of the thermoplastic liquid crystal polymer film.
  • the converted one-dimensional profile (data 1) was subjected to processing such as parasitic scattering using the background data (measurement data when the sample was not attached) acquired under the same conditions. That is, the background data was made into a one-dimensional profile and then subtracted from the data of the thermoplastic liquid crystal polymer film. This was used as data 2.
  • a baseline was set and subtracted from the background processed data 2.
  • the baseline was a linear function in which 2 ⁇ connects the intensity values at 14 degrees and 26 degrees in the data after background processing.
  • the intensity values at 14 degrees and 26 degrees were average values (interval 0.05 degrees) in the range of 13.8 to 14.2 degrees and 25.8 to 26.2 degrees, respectively.
  • the above linear function was subtracted from the data 2. This was used as data 3.
  • the integrated intensity was obtained in the range of 14 to 26 degrees with the diffraction angle 2 ⁇ , and the obtained integrated intensity was defined as A.
  • thermoplastic liquid crystal polymer film 1 and the metal foil 2 were superposed to prepare an assembly.
  • the metal foil CF-H9A-DS-HD2-12 (thickness 12 ⁇ m) manufactured by Fukuda Metal Foil Powder Industry Co., Ltd. was used.
  • this assembly was heated from room temperature (25 ° C.) to 250 ° C. at 6 ° C./min, held for 15 minutes, and then raised to 300 ° C. at 6 ° C./min.
  • thermocompression bonding was performed under the condition of a surface pressure of 4 MPa, and after 10 minutes, the temperature was lowered to 250 ° C. at 7 ° C./min, and after reaching 250 ° C., it was confirmed that the temperature reached 50 ° C. by quenching, and the vacuum was released to obtain a thermoplastic liquid crystal.
  • a metal-clad laminate 3 having a polymer film 1 and a metal foil 2 was produced.
  • thermoplastic liquid crystal polymer film The heat resistance due to the laminated flow was evaluated by observing changes in the shape of the thermoplastic liquid crystal polymer film at the four corners of the multilayer laminated substrate.
  • FIG. 2 two metal-clad laminates 3 obtained in FIG. 1 were laminated so that the thermoplastic liquid crystal polymer films 1 were overlapped with each other to prepare an assembly.
  • a SUS plate 4 and a cushioning material 5 are respectively arranged on the upper and lower surfaces of the assembly, the assembly is sandwiched, and thermocompression bonding is performed at 310 ° C. and a surface pressure of 2 MPa in a vacuum press to prepare a multilayer laminated substrate. ..
  • thermoplastic liquid crystal polymer film at the four corners of the produced multilayer laminated substrate were visually observed and evaluated according to the following criteria.
  • C Under the lamination conditions, burrs larger than 1 mm were observed from the metal layer due to the flow of the thermoplastic liquid crystal polymer.
  • thermoplastic liquid crystal polymer As a typical example of the polymerization of the thermoplastic liquid crystal polymer, the method of Example 1 is as follows. 6.1 kg (23 mol parts) of p-hydroxybenzoic acid, 28.1 kg (77 mol parts) of 2-hydroxy-6-naphthoic acid, and 20.1 kg of acetic anhydride were added and acetylated (160 ° C., about under reflux). After 2 hours), the temperature was raised at 1 ° C./min, kept at 340 ° C., reduced pressure treatment (1000 Pa) was performed for 60 minutes, and melt polycondensation was performed.
  • reduced pressure treatment 1000 Pa
  • thermotropic liquid polyester having a molar ratio of 23 mol parts of 6-hydroxy-2-naphthoic acid unit and 77 mol parts of p-hydroxybenzoic acid unit was polymerized and extruded from an inflation die to a thickness of 50 ⁇ m.
  • a thermoplastic liquid crystal polymer film (film before heat resistance) was obtained.
  • the Tm 0 of the thermoplastic liquid crystal polymer constituting the obtained thermoplastic liquid crystal polymer film (film before heat resistance) was 310 ° C.
  • the thermoplastic liquid crystal polymer film (film before heat resistance) obtained above was heat-treated at 280 ° C. for 3 hours.
  • the Tm of the obtained thermoplastic liquid crystal polymer film was 317 ° C.
  • FIG. 3 is a graph showing the profile regarding the temperature dependence of the storage elastic modulus by the dynamic viscoelasticity measurement of the thermoplastic liquid crystal polymer film after the heat treatment obtained in Example 1, and the storage elastic modulus E'is 245. It represents the numerical value of the storage elastic modulus at ° C.
  • thermoplastic polyester having a molar ratio of 20 mol parts of 6-hydroxy-2-naphthoic acid unit, 80 mol parts of p-hydroxybenzoic acid unit, and 1 mol part of terephthalic acid unit is polymerized and extruded from an inflation die. It was molded to obtain a thermoplastic liquid crystal polymer film (film before heat resistance) having a thickness of 50 ⁇ m.
  • the Tm 0 of the thermoplastic liquid crystal polymer constituting the obtained thermoplastic liquid crystal polymer film (film before heat resistance) was 320 ° C.
  • the thermoplastic liquid crystal polymer film (film before heat resistance) obtained above was heat-treated at 300 ° C. for 1 hour.
  • thermoplastic liquid crystal polymer film was 334 ° C.
  • a metal-clad laminate and a multilayer laminate were produced using the thermoplastic liquid crystal polymer film obtained in (2) above.
  • Table 7 shows the results of evaluation of differential scanning calorimetry, dynamic viscoelasticity measurement, wide-angle X-ray diffraction measurement, and lamination flow of the obtained thermoplastic liquid crystal polymer film and multilayer laminated substrate. ..
  • the storage elastic modulus E' represents a numerical value of the storage elastic modulus at 265 ° C.
  • thermoplastic polyester having a molar ratio of 20 mol parts of 6-hydroxy-2-naphthoic acid unit, 80 mol parts of p-hydroxybenzoic acid unit, and 1 mol part of terephthalic acid unit is polymerized and extruded from an inflation die. It was molded to obtain a thermoplastic liquid crystal polymer film (film before heat resistance) having a thickness of 50 ⁇ m.
  • the Tm 0 of the thermoplastic liquid crystal polymer constituting the obtained thermoplastic liquid crystal polymer film (film before heat resistance) was 320 ° C.
  • the thermoplastic liquid crystal polymer film (film before heat resistance) obtained above was heat-treated at 310 ° C. for 1 hour.
  • thermoplastic liquid crystal polymer film was 347 ° C.
  • a metal-clad laminate and a multilayer laminate were produced using the thermoplastic liquid crystal polymer film obtained in (2) above.
  • Table 7 shows the results of evaluation of differential scanning calorimetry, dynamic viscoelasticity measurement, wide-angle X-ray diffraction measurement, and lamination flow of the obtained thermoplastic liquid crystal polymer film and multilayer laminated substrate. ..
  • the storage elastic modulus E' represents a numerical value of the storage elastic modulus at 265 ° C.
  • thermoplastic polyester having a molar ratio of 27 mol parts of 6-hydroxy-2-naphthoic acid unit and 73 mol parts of p-hydroxybenzoic acid unit is polymerized and extruded from an inflation die to have a thermoplastic property having a thickness of 50 ⁇ m.
  • a liquid crystal polymer film was obtained.
  • the Tm 0 of the thermoplastic liquid crystal polymer constituting the obtained thermoplastic liquid crystal polymer film was 280 ° C.
  • Table 7 shows the results of evaluation of differential scanning calorimetry, dynamic viscoelasticity measurement, wide-angle X-ray diffraction measurement, and lamination flow of the obtained thermoplastic liquid crystal polymer film and multilayer laminated substrate. .. In the dynamic viscoelasticity measurement, a rubber-like flat region having a storage elastic modulus was not detected at a temperature of 180 ° C. or higher.
  • thermoplastic polyester having a molar ratio of 23 mol parts of 6-hydroxy-2-naphthoic acid unit and 77 mol parts of p-hydroxybenzoic acid unit is polymerized and extruded from an inflation die to have a thermoplastic property having a thickness of 50 ⁇ m.
  • a liquid crystal polymer film was obtained.
  • the Tm 0 of the thermoplastic liquid crystal polymer constituting the obtained thermoplastic liquid crystal polymer film was 310 ° C.
  • FIG. 4 is a graph showing the temperature dependence of the storage elastic modulus of the thermoplastic liquid crystal polymer film obtained in Comparative Example 2 by dynamic viscoelasticity measurement. As shown in this figure, FIG. 4 is a graph showing a profile of 180 ° C. No rubber-like flat region of storage elastic modulus was detected at the above temperature.
  • thermotropic liquid polyester having a molar ratio of 20 mol parts of 6-hydroxy-2-naphthoic acid unit, 80 mol parts of p-hydroxybenzoic acid unit and 1 mol part of terephthalic acid is polymerized and extruded from an inflation die.
  • a thermoplastic liquid crystal polymer film having a thickness of 50 ⁇ m was obtained.
  • the Tm 0 of the thermoplastic liquid crystal polymer constituting the obtained thermoplastic liquid crystal polymer film was 320 ° C.
  • Table 7 shows the results of evaluation of differential scanning calorimetry, dynamic viscoelasticity measurement, wide-angle X-ray diffraction measurement, and lamination flow of the obtained thermoplastic liquid crystal polymer film and multilayer laminated substrate. .. In the dynamic viscoelasticity measurement, a rubber-like flat region having a storage elastic modulus was not detected at a temperature of 180 ° C. or higher.
  • thermoplastic liquid crystal polymer film was 313 ° C.
  • Table 7 shows the results of evaluation of differential scanning calorimetry, dynamic viscoelasticity measurement, wide-angle X-ray diffraction measurement, and lamination flow of the obtained thermoplastic liquid crystal polymer film and multilayer laminated substrate. .. In addition, FIG.
  • FIG. 5 is a graph showing the profile regarding the temperature dependence of the storage elastic modulus by the dynamic viscoelasticity measurement of the thermoplastic liquid crystal polymer film after the heat treatment obtained in Comparative Example 4, and the storage elastic modulus E'is 245. It represents the numerical value of the storage elastic modulus at ° C.
  • thermoplastic liquid crystal polymer films obtained in Comparative Examples 1 to 3 did not have a rubber-like flat region, so that the laminated flow could not be satisfied. Further, in Comparative Example 4, a rubber-like flat region is generated by heat treatment, but when a thermoplastic liquid crystal polymer having a small Rtm is used as in Comparative Example 4, the storage elastic modulus E of the rubber-like flat region is E. The stacking flow could not be satisfied because the'cannot be increased.
  • thermoplastic liquid crystal polymer film and laminated board of the present invention are suitable as materials for various molded bodies (for example, wiring boards), particularly as multilayer laminated circuit materials, and for example, printed wiring boards in the fields of electronics, electricity, and communication industries. It is useful in applications such as high frequency circuit boards, in-vehicle sensors, mobile circuit boards, and antennas.
  • Thermoplastic liquid crystal polymer film 2 ...
  • Metal layer (copper foil) 3 ...
  • Metal-clad laminate 4 ...
  • SUS plate 5 ... Cushion material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Rotational Drive Of Disk (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

配線基板の多層化を行う際にプロセス窓の広い、高い耐熱性と生産性を両立する熱可塑性液晶ポリマーフィルム、積層体および成形体を提供する。前記熱可塑性液晶ポリマーフィルムは、光学的に異方性の溶融相を形成し得る熱可塑性ポリマーで構成されたフィルムであって、動的粘弾性測定で求められる貯蔵弾性率のプロファイルにおいて、180℃以上の温度でゴム状平坦領域が存在し、200~280℃におけるゴム状平坦領域の貯蔵弾性率E'が80MPa以上である。

Description

熱可塑性液晶ポリマーフィルム、積層体、および成形体、ならびにそれらの製造方法 関連出願
 本願は2019年4月23日出願の特願2019-082064の優先権を主張するものであり、その全体を参照により本出願の一部をなすものとして引用する。
 本発明は、光学的に異方性の溶融相を形成し得るポリマー(以下、熱可塑性液晶ポリマーと称する)からなり、耐熱性に優れるフィルム、積層体、および成形体、ならびにそれらの製造方法に関する。
 近年、電子・電気・通信工業分野において機器の小型化・軽量化の要求から、プリント配線基板の高密度化の必要性が高まっている。これに伴い、配線基板の多層化、配線ピッチの狭幅化、ビアホールの微細化など様々な工夫が進められている。例えば、高密度化回路は、非金属層と金属層からなる金属張積層板を非金属層を介して多層化し製造される。従来、プリント配線基板・回路は、フェノール樹脂やエポキシ樹脂等の熱硬化性樹脂が非金属層として主に使用され、銅箔などの金属層と積層して製造されているが、熱硬化性樹脂は加熱反応によって適正な積層が可能になるまでに時間を要することが知られている。
 これに対し、生産性向上を目的に、複数枚の同時積層、装置による同時多段製造が一般的に採用されている。このような状況の下、熱可塑性液晶ポリマー材料は熱可塑性樹脂であることを活かした生産性の向上効果が期待でき、また、物性面においても他の材料と比較して極めて低い吸水率と誘電損失から高周波伝送用途を代表として高く注目を集めている。
 熱可塑性液晶ポリマー材料は熱可塑性を利用して熱圧着による多層化が可能となるが、その一方で、多層化に際する耐熱性も必要である。つまり、多層化に使用される非金属層が適度に軟化・可塑化され、積層板の金属層または非金属層と強固に密着する条件で積層体が製造される際であっても、積層板の非金属層が高い耐熱性を有する場合、プロセス窓(製造条件の最適範囲)が広く安定した製品が製造可能となる。
 多層積層体の安定した製造法として、接着剤を使用しない例として、特許文献1(特許第4004139号公報)、特許文献2(特許第4138995号公報)には、融点の異なる熱可塑性液晶ポリマーフィルムと金属層からなる金属積層体と非金属層の多層積層板の製造方法が記載されている。
 特許文献3(特許第3893930号公報)に提案された多層基板の製造方法では、熱可塑性樹脂からなる複数のシート材を積層し、前記積層シート材を一つずつシート材保持具に保持した状態で可撓性材料を介して加熱および加圧を行うことにより、従来のバッチ型の真空チャンバを利用することなく、多層基板を製造することができる。そのため、該製造方法によれば、従来のバッチ型の真空チャンバを用いた工程に較べて、生産効率を大幅に向上することができる。
 材料自体の耐熱化に関しては、熱可塑性液晶ポリマー材料の耐熱化として、特許文献4(特許第3878741号公報)には、融点が300℃以下の熱可塑性液晶ポリマーの融点を300℃以上に高める方法が記載されている。
特許第4004139号公報 特許第4138995号公報 特許第3893930号公報 特許第3878741号公報
 しかしながら、特許文献1および2に提案された多層積層板では、低融点の熱可塑性液晶ポリマーフィルムを使用する点で、プロセス窓を広げることが困難である。また、熱可塑性液晶ポリマーフィルムの融点を高める場合、多段階による4時間以上の熱処理が必要であるため、生産性に乏しいという問題点を有している。
 また、特許文献3に提案された方法では、可撓性材料を介して積層シート材を急速加熱する際、熱可塑性樹脂が加水分解反応を起こし、例えば熱可塑性液晶ポリマーなどでは樹脂の流動性が大きくなって導体パターンの位置がずれたり、樹脂フィルム中にボイドが発生するという問題点を有している。
 さらにまた、特許文献4に記載された方法においても、多段階により4時間以上の加熱により熱可塑性液晶ポリマーの融点を高めることが可能であるが、このような方法は、生産性に乏しいという問題点を有している。
 そのため、熱可塑性液晶ポリマーフィルムを用いて多層化を行うにあたってプロセス窓を広げるには、設備や接着剤の改善では限界があり、更なる多層化の要求を十分に満足させるには至っていない。また、単純に融点を上げるだけでは、熱可塑性液晶ポリマーフィルム製造時の生産性も含め、市場要求を満足させることは出来ていなかった。
 従って本発明の目的は、多層化を行う際にプロセス窓の広い熱可塑性液晶ポリマーフィルム、積層体、および成形体、ならびにこれらを容易に製造可能な方法を提供することにある。
 本発明者らは、上記課題を解決するため鋭意検討した結果、驚くべきことに、動的粘弾性測定で求められる貯蔵弾性率の温度依存性に関して、ゴム状平坦領域が存在し、かつ当該ゴム状平坦領域における貯蔵弾性率E’が特定の範囲である熱可塑性液晶ポリマーフィルムは、多層積層板製造時に要求される耐熱性が著しく高く、特に、その特定の動的粘弾特性のためか、樹脂の流動を抑制できることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、以下の態様で構成されうる。
〔態様1〕
 光学的に異方性の溶融相を形成し得るポリマー(以下、熱可塑性液晶ポリマーと称する)で構成されたフィルムであって、動的粘弾性測定で求められる貯蔵弾性率のプロファイルにおいて、180℃以上(好ましくは190℃以上、より好ましくは200℃以上)の温度でゴム状平坦領域が存在し、200~280℃におけるゴム状平坦領域の貯蔵弾性率E’が80MPa以上(好ましくは100MPa以上、より好ましくは120MPa以上)である、熱可塑性液晶ポリマーフィルム。
〔態様2〕
 280℃における貯蔵弾性率が60MPa以上(好ましくは70MPa以上、より好ましくは80MPa以上)である、態様1に記載の熱可塑性液晶ポリマーフィルム。
〔態様3〕
 示差走査熱量計を用いて、室温から400℃の温度範囲で10℃/minの速度で昇温した際に現れる吸熱ピーク位置が、310℃以上(好ましくは315℃以上、より好ましくは320℃以上)である、態様1または2に記載の熱可塑性液晶ポリマーフィルム。
〔態様4〕
 態様1~3のいずれか一態様に記載の熱可塑性液晶ポリマーフィルムを少なくとも1層備える、積層体。
〔態様5〕
 さらに、金属層を少なくとも1層備える、態様4に記載の積層体。
〔態様6〕
 前記金属層が、銅、銅合金、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、鉄、鉄合金、銀、銀合金、およびこれらの複合金属種から選択される少なくとも一種で構成される、態様5に記載の積層体。
〔態様7〕
 態様1~3のいずれか一態様に記載の熱可塑性液晶ポリマーフィルムまたは態様4~6のいずれか一態様に記載の積層体から形成された、成形体。
〔態様8〕
 配線板である、態様7に記載の成形体。
〔態様9〕
 高周波用回路基板、車載用センサ、モバイル用回路基板、またはアンテナである、態様7または8に記載の成形体。
〔態様10〕
 融点上昇速度Rtmが0.20℃/min以上(好ましくは0.22℃/min以上、より好ましくは0.25℃/min以上、さらに好ましくは0.26℃/min以上)の熱可塑性液晶ポリマーから構成される熱可塑性液晶ポリマーフィルム(材料フィルム)に対して、熱処理を行い耐熱化する、態様1~3のいずれか一態様に記載の熱可塑性液晶ポリマーフィルムの製造方法。
〔態様11〕
 前記熱処理が、1段階または複数段階の熱処理であり、熱可塑性液晶ポリマーの融点(Tm)とした場合、Tm℃以下(好ましくはTm℃未満、より好ましくは(Tm-2)℃以下)で第1の熱処理を行い耐熱化する、態様10に記載の熱可塑性液晶ポリマーフィルムの製造方法。
〔態様12〕
 熱源として、熱風オーブン、蒸気オーブン、電気ヒータ、赤外線ヒータ、セラミックヒータ、熱ロール、熱プレス、および電磁波照射機から選択された少なくとも一種が用いられる、態様10または11に記載の熱可塑性液晶ポリマーフィルムの製造方法。
〔態様13〕
 前記熱処理が1段階である、態様10~12のいずれか一態様に記載の熱可塑性液晶ポリマーフィルムの製造方法。
〔態様14〕
 熱可塑性液晶ポリマーで構成されたポリマー層を備える積層体であって、前記ポリマー層が融点上昇速度Rtmが0.20℃/min以上(好ましくは0.22℃/min以上、より好ましくは0.25℃/min以上、さらに好ましくは0.26℃/min以上)の熱可塑性液晶ポリマーから構成される積層体に対して、熱処理を行い耐熱化する、態様4~6のいずれか一態様に記載の積層体の製造方法。
〔態様15〕
 前記熱処理が、1段階または複数段階の熱処理であり、熱可塑性液晶ポリマーの融点(Tm)とした場合、Tm℃以下(好ましくはTm℃未満、より好ましくは(Tm-2)℃以下)で第1の熱処理を行い耐熱化する、態様14に記載の積層体の製造方法。
〔態様16〕
 熱源として、熱風オーブン、蒸気オーブン、電気ヒータ、赤外線ヒータ、セラミックヒータ、熱ロール、熱プレス、および電磁波照射機から選択された少なくとも一種が用いられる、態様14または15に記載の積層体の製造方法。
〔態様17〕
 態様1~3のいずれか一態様に記載の熱可塑性液晶ポリマーフィルム、および/または態様4~6のいずれか一態様に記載の積層体に後加工を行うことにより、成形体を製造する方法。
 本明細書において、熱可塑性液晶ポリマーの融点上昇速度とは、示差走査熱量測定において、常温(例えば25℃)と所定の温度(例えば400℃)の間で、熱可塑性液晶ポリマーフィルム(原料フィルム)を加熱、冷却、再加熱した際に、再加熱時に吸熱ピークが現れる温度を熱可塑性液晶ポリマーの融点Tmとし、熱可塑性液晶ポリマーフィルムをTm-10℃の温度で一時間熱処理した後に、示差走査熱量測定において、常温(例えば25℃)から所定の温度(例えば400℃)まで加熱した際に、吸熱ピークが現れる温度をTm’としたとき、Rtm=(Tm’-Tm)/60で算出される値である。上記の差走査熱量測定における温度変化率(昇温速度、降温速度)は、10℃/minであってもよい。
 本明細書において、積層体とは、熱可塑性液晶ポリマーフィルムに対して、被着体が積層した構造物を意味し、成形体とは、熱可塑性液晶ポリマーフィルムに対して回路などが形成された構造物を意味している。
 なお、請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成要素のどのような組み合わせも、本発明に含まれる。特に、請求の範囲に記載された請求項の2つ以上のどのような組み合わせも本発明に含まれる。
 本発明の熱可塑性液晶ポリマーフィルムは、多層積層板製造時に要求される耐熱性が非常に高く、積層・回路加工の際に広いプロセス窓を有するため、例えば、これまで煩雑であった多層積層プロセスの簡略化に繋がり、積層体を低コストで製造する事が可能である。さらに、特殊な設備や治具を使用することなく、超多層積層基板を製造することも可能となる。
本発明の一態様における金属張積層板の断面図である。 本発明の一態様における多層積層基板作製時の組立体の断面図である。 本発明の実施例1で得られた熱処理後のフィルムの動的粘弾性測定による貯蔵弾性率の温度依存性に関するプロファイルを示すグラフである。 比較例2で得られたフィルムの動的粘弾性測定による貯蔵弾性率の温度依存性に関するプロファイルを示すグラフである。 比較例4で得られた熱処理後のフィルムの動的粘弾性測定による貯蔵弾性率の温度依存性に関するプロファイルを示すグラフである。
 以下、本発明の実施形態について説明する。なお、以下の説明において、特定の機能を発現する化合物として具体例を示しているが、本発明はこれに限定されない。また、例示される材料は、特に説明がない限り、単独で用いても組み合わせて用いてもよい。
[熱可塑性液晶ポリマー]
 本発明の熱可塑性液晶ポリマーフィルムは、熱可塑性液晶ポリマーで構成される。この熱可塑性液晶ポリマーは、溶融成形できる液晶ポリマー(または光学的に異方性の溶融相を形成し得るポリマー)で構成され、溶融成形できる液晶ポリマーであればその化学的構成については特に限定されるものではないが、例えば、熱可塑性液晶ポリエステル、またはこれにアミド結合が導入された熱可塑性液晶ポリエステルアミドなどを挙げることができる。
 また、熱可塑性液晶ポリマーは、芳香族ポリエステルまたは芳香族ポリエステルアミドに、更にイミド結合、カーボネート結合、カルボジイミド結合やイソシアヌレート結合などのイソシアネート由来の結合等が導入されたポリマーであってもよい。
 本発明に用いられる熱可塑性液晶ポリマーの具体例としては、以下に例示する(1)から(4)に分類される化合物およびその誘導体から導かれる公知の熱可塑性液晶ポリエステルおよび熱可塑性液晶ポリエステルアミドを挙げることができる。ただし、光学的に異方性の溶融相を形成し得るポリマーを形成するためには、種々の原料化合物の組合せには適当な範囲があることは言うまでもない。
(1)芳香族または脂肪族ジオール(代表例は表1参照)
Figure JPOXMLDOC01-appb-T000001
(2)芳香族または脂肪族ジカルボン酸(代表例は表2参照)
Figure JPOXMLDOC01-appb-T000002
(3)芳香族ヒドロキシカルボン酸(代表例は表3参照)
Figure JPOXMLDOC01-appb-T000003
(4)芳香族ジアミン、芳香族ヒドロキシアミンまたは芳香族アミノカルボン酸(代表例は表4参照)
Figure JPOXMLDOC01-appb-T000004
 これらの原料化合物から得られる熱可塑性液晶ポリマーの代表例として表5および6に示す構造単位を有する共重合体を挙げることができる。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 これらの共重合体のうち、p-ヒドロキシ安息香酸および/または6-ヒドロキシ-2-ナフトエ酸を少なくとも繰り返し単位として含む共重合体が好ましく、特に、(i)p-ヒドロキシ安息香酸と6-ヒドロキシ-2-ナフトエ酸との繰り返し単位を含む共重合体、または(ii)p-ヒドロキシ安息香酸および6-ヒドロキシ-2-ナフトエ酸からなる群から選ばれる少なくとも一種の芳香族ヒドロキシカルボン酸と、少なくとも一種の芳香族ジオールと、少なくとも一種の芳香族ジカルボン酸との繰り返し単位を含む共重合体が好ましい。
 熱可塑性液晶ポリマーが、p-ヒドロキシ安息香酸(A)および6-ヒドロキシ-2-ナフトエ酸(B)との繰り返し単位を含む共重合体の場合、そのモル比(A)/(B)は、(A)/(B)=10/90~90/10が好ましく、50/50~90/10がより好ましく、75/25~90/10がさらに好ましく、75/25~85/15がよりさらに好ましく、77/23~80/20が特に好ましい。
 例えば、(i)の共重合体の場合、p-ヒドロキシ安息香酸および6-ヒドロキシ-2-ナフトエ酸の繰り返し単位以外に、分子量等を調整する観点から、芳香族ジオールや芳香族ジカルボン酸(例えば、テレフタル酸)から構成される繰り返し単位を含んでいてもよい。
 また、(ii)の共重合体の場合、p-ヒドロキシ安息香酸および6-ヒドロキシ-2-ナフトエ酸からなる群から選ばれる少なくとも一種の芳香族ヒドロキシカルボン酸と、4,4’-ジヒドロキシビフェニル、ヒドロキノン、フェニルヒドロキノン、および4,4’-ジヒドロキシジフェニルエーテルからなる群から選ばれる少なくとも一種の芳香族ジオールと、テレフタル酸、イソフタル酸および2,6-ナフタレンジカルボン酸からなる群から選ばれる少なくとも一種の芳香族ジカルボン酸との繰り返し単位を含む共重合体であってもよい。
 なお、本発明にいう光学的異方性の溶融相を形成し得るとは、例えば試料をホットステージにのせ、窒素雰囲気下で昇温加熱し、試料の透過光を観察することにより認定できる。
 本発明の熱可塑性液晶ポリマーフィルムは、上記共重合体のうち、融点上昇速度Rtmが0.20℃/min以上である熱可塑性液晶ポリマーで構成されることが好ましい。より好ましくは0.22℃/min以上、さらに好ましくは0.25℃/min以上、さらにより好ましくは0.26℃/min以上であってもよい。熱可塑性液晶ポリマーの融点上昇速度Rtmの上限は特に制限されないが、1.0℃/min以下であってもよい。
 融点上昇速度Rtmは、以下のように算出される。まず、示差走査熱量計を用いて、熱可塑性液晶ポリマーフィルムの一部を試料容器に入れ、室温(例えば、25℃)から400℃まで10℃/minの速度で昇温した後、室温まで10℃/minの速度で冷却し、再度室温から400℃まで10℃/minの速度で昇温した際に現れる吸熱ピークの位置を、熱可塑性液晶ポリマーフィルムを構成する熱可塑性液晶ポリマー固有の融点(以下Tmと称す)として測定する。
 また、Tmの測定に用いた熱可塑性液晶ポリマーフィルムを、Tm-10℃で60分間処理した後、当該処理した熱可塑性液晶ポリマーフィルムの一部を試料容器に入れ、室温から400℃まで10℃/minの速度で昇温した際に現れる吸熱ピークの位置を、Tm-10℃雰囲気下で60分間処理した熱可塑性液晶ポリマーフィルムの融点Tm’として測定する。これらの測定値に基づき、以下の式により、熱可塑性液晶ポリマーフィルムを構成する熱可塑性液晶ポリマーの融点上昇速度Rtm(℃/min)を算出する。
 Rtm=(Tm’-Tm)/60
 融点上昇速度が速やかな熱可塑性液晶ポリマーは、熱処理により、結晶構造の均一性が高い斜方晶結晶を形成しやすいためか、耐熱性の向上だけではなく、特定の動的粘弾特性を付与することができる。
 熱可塑性液晶ポリマーは、融点(Tm)が、例えば、300~380℃の範囲であることが好ましく、より好ましくは305~360℃の範囲、さらに好ましくは310~350℃の範囲であってもよい。なお、融点は、示差走査熱量計を用いて、上述のように、熱可塑性液晶ポリマーサンプルの熱挙動を観察して得ることができる。
 また、熱可塑性液晶ポリマーは、溶融成形性の観点から、例えば、(Tm+20)℃におけるせん断速度1000/sの溶融粘度30~120Pa・sを有していてもよく、好ましくは溶融粘度50~100Pa・sを有していてもよい。
 前記熱可塑性液晶ポリマーには、本発明の効果を損なわない範囲内で、ポリエチレンテレフタレート、変性ポリエチレンテレフタレート、ポリオレフィン、ポリカーボネート、ポリアリレート、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、フッ素樹脂等の熱可塑性ポリマー、各種添加剤を添加してもよい。また、必要に応じて充填剤を添加してもよい。
[熱可塑性液晶ポリマーフィルム、積層体または成形体の製造方法]
 本発明の熱可塑性液晶ポリマーフィルムは、融点上昇速度Rtmが0.20℃/min以上の熱可塑性液晶ポリマーから構成される熱可塑性液晶ポリマーフィルム(耐熱化前フィルム、材料フィルム)に対して、熱処理を行うことにより製造することが可能である。
 熱可塑性液晶ポリマーフィルム(耐熱化前フィルム)は、特定の融点上昇速度Rtmを有する熱可塑性液晶ポリマーから構成されていればその製造方法は特に限定されず、例えば、前記熱可塑性液晶ポリマーをキャスト成形してフィルムを得てもよいし、前記熱可塑性液晶ポリマーの溶融混練物を押出成形してフィルムを得てもよい。押出成形法としては任意の方法のものが使用されるが、周知のTダイ法、インフレーション法等が工業的に有利である。特にインフレーション法では、熱可塑性液晶ポリマーフィルムの機械軸方向(以下、MD方向と略す)だけでなく、これと直交する方向(以下、TD方向と略す)にも応力が加えられ、MD方向、TD方向に均一に延伸できることから、MD方向とTD方向における分子配向性、誘電特性等を制御した熱可塑性液晶ポリマーフィルムが得られる。
 例えば、Tダイ法による押出成形では、Tダイから押出した溶融体シートを、熱可塑性液晶ポリマーフィルムのMD方向だけでなく、これとTD方向の双方に対して同時に延伸して製膜してもよいし、またはTダイから押出した溶融体シートを一旦MD方向に延伸し、ついでTD方向に延伸して製膜してもよい。
 また、インフレーション法による押出成形では、リングダイから溶融押出された円筒状シートに対して、所定のドロー比(MD方向の延伸倍率に相当する)およびブロー比(TD方向の延伸倍率に相当する)で延伸して製膜してもよい。
 このような押出成形の延伸倍率は、MD方向の延伸倍率(またはドロー比)として、例えば、1.0~10程度であってもよく、好ましくは1.2~7程度、さらに好ましくは1.3~7程度であってもよい。また、TD方向の延伸倍率(またはブロー比)として、例えば、1.5~20程度であってもよく、好ましくは2~15程度、さらに好ましくは2.5~14程度であってもよい。
 このようにして得られた熱可塑性液晶ポリマーフィルム(耐熱化前フィルム)に対して熱処理が行われ、耐熱化される。
 熱処理の方法は、耐熱化された熱可塑性液晶ポリマーフィルムが特定の動的粘弾特性を有する限り特に限定されず、例えば、熱可塑性液晶ポリマーフィルム(耐熱化前フィルム)をロールトゥロールなどにより直接熱処理してもよいし、一旦得られた熱可塑性液晶ポリマーフィルム(耐熱化前フィルム)と被着体とを積層した積層体を熱処理してもよいし、スパッタリングやめっきなどにより熱可塑性液晶ポリマーフィルム(耐熱化前フィルム)上に金属層が直接形成された積層体を熱処理してもよい。このような積層体は、熱プレスや熱ローラー、ダブルベルトプレス等の熱圧着法を利用して製造する事が可能であるが、特にこれに限定されない。
 熱処理を行う際の熱源としては、公知または慣用の熱源を利用することが可能である。好ましい熱源としては、例えば、熱風オーブン、蒸気オーブン、電気ヒータ、赤外線ヒータ、セラミックヒータ、熱ロール、熱プレス、電磁波照射機(例えば、マイクロ波照射機など)などが挙げられる。これらの熱源は、単独でまたは二種以上組み合わせて使用してもよい。
 耐熱化は、1段階または複数段階の熱処理により行うことが可能であるが、本発明の熱可塑性液晶ポリマーフィルムでは、1~2段階で熱処理が行われるのが好ましく、より好ましくは1段階で熱処理が行われるのが好ましい。
 1段階または複数段階の熱処理では、例えば、第1の熱処理として、熱可塑性液晶ポリマーの融点を(Tm)とした場合、Tm℃以下、好ましくはTm℃未満、より好ましくは(Tm-2)℃以下で加熱処理が行われてもよい。加熱温度は、好ましくは(Tm-50)℃以上、より好ましくは(Tm-40)℃以上であってもよい。ここで熱可塑性液晶ポリマーの融点(Tm)は前述の融点の測定方法により求めることができる。1段階の熱処理では、第1の熱処理のみにより耐熱化が行われ、複数段階の熱処理では、第1の熱処理以降、次段階の熱処理温度は、前段階の熱処理温度よりも高い加熱温度により熱処理が行われてもよい。
 熱可塑性液晶ポリマーフィルムの融点は熱処理に応じて上昇するが、本発明では速やかな耐熱化が可能であるため、加熱温度は、熱可塑性液晶ポリマーの融点(Tm)を基準として決定されればよい。
 したがって、第2の熱処理以降の加熱温度は、必要に応じて、熱可塑性液晶ポリマーの融点(Tm)以上で行われてもよく、例えば、複数段階での熱処理における最高到達温度は、(Tm+30)℃以下であってもよく、好ましくは(Tm+20)℃以下であってもよい。
 熱処理における各段階での加熱時間は、加熱温度、熱処理の段階などに応じて適宜設定することができる。本発明では、速やかな耐熱化が可能であるため、加熱時間は、例えば、全体で10分~3時間程度であってもよく、好ましくは10分~2時間程度(例えば30分~2時間程度)、より好ましくは10分~1.3時間程度(例えば45分~1.3時間程度)であってもよい。
 被着体としては、熱処理の支持体として利用することができる限り特に限定されず、金属層、耐熱性樹脂層などが挙げられる。
 金属層を構成する金属としては、導電性を有する金属であれば特に限定されないが、例えば、銅、銅合金、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、鉄、鉄合金、銀、銀合金、およびこれらの複合金属種などが挙げられる。これらの金属には、2000質量ppm以下で他の金属種が含まれていてもよく、不可避不純物が存在していてもよい。
 被着体として金属層が用いられる場合、熱処理後に、熱可塑性液晶ポリマーフィルム部分が耐熱化された積層体としてそのまま用いることが可能である。例えば、導電性、放熱性を必要とする場合は銅、銅合金、銀、銀合金を使用すればよく、強磁性が必要であれば鉄合金などを使用すればよく、安価なものが必要であればアルミニウムなどを使用すればよい。
 好ましくは、回路基板用の金属種として銅が用いられてもよく、具体的には、金属層には、銅が99.8%質量以上含まれ、さらに、銀、スズ、亜鉛、クロム、ホウ素、チタン、マグネシウム、リン、ケイ素、鉄、金、プラセオジム、ニッケル、およびコバルトからなる群から選択された少なくとも一種の他の金属種を2000質量ppm以下および、残部不可避不純物が含まれる銅で構成されていてもよい。
 熱可塑性液晶ポリマーフィルム上に金属層を形成する方法としては、公知の方法を用いることができる。例えば熱可塑性液晶ポリマーフィルム上に、金属層を蒸着してもよく、無電解めっき、電解めっきにより、金属層を形成してもよい。また、金属箔(例えば銅箔)を、熱圧着により熱可塑性液晶ポリマーフィルムの表面に積層してもよい。銅箔は、回路基板において用い得る銅箔であれば、特に限定されず、圧延銅箔、電解銅箔のいずれであってもよい。
 耐熱性樹脂層を構成する樹脂としては、熱処理で行われる最高到達温度よりも高い融点を有する樹脂または熱硬化性樹脂などが挙げられ、好ましくは、ポリイミド、ポリフェニレンエーテル、ポリフェニレンスルフィド、フッ素樹脂(例えば、ポリテトラフルオロエチレン)などが挙げられる。
 熱可塑性液晶ポリマーフィルム上に耐熱性樹脂層を形成する方法としては、公知の方法を用いることができ、例えば耐熱性樹脂フィルムを、熱圧着により熱可塑性液晶ポリマーフィルムの表面に積層してもよい。
 前記熱可塑性液晶ポリマーフィルムと金属層の積層体は、それぞれの単層での厚みをTa(μm)、Tb(μm)とすると、Ta、Tbは、それぞれ、0.1~500μmの範囲から選択することが可能である。近年の薄型化、軽量化の観点からは、Taは好ましくは1~175μm、より好ましくは5~130μm程度であってもよい。また、Tbは好ましくは1~20μm、より好ましくは2~15μm程度であってもよい。
 なお、前記積層体は、熱可塑性液晶ポリマーフィルムと金属層との多層構造を有しており、少なくとも1層の熱可塑性液晶ポリマーフィルムと少なくとも1層の金属層を含んでいる。例えば、多層構造の積層体としては、
(i)金属層/熱可塑性液晶ポリマーフィルム
(ii)金属層/熱可塑性液晶ポリマーフィルム/金属層
(iii)熱可塑性液晶ポリマーフィルム/熱可塑性液晶ポリマーフィルム/金属層
(iv)熱可塑性液晶ポリマーフィルム/金属層/熱可塑性液晶ポリマーフィルム
(v)金属層/熱可塑性液晶ポリマーフィルム/熱可塑性液晶ポリマーフィルム/金属層(vi)金属層/熱可塑性液晶ポリマーフィルム/金属層/熱可塑性液晶ポリマーフィルム/金属層
などの積層構造を有する物を挙げることができるが、これらに限定されない。
 なお、熱可塑性液晶ポリマーフィルムは、被着体と積層された状態で、そのまま積層体として用いてもよいし、被着体と分離して熱可塑性液晶ポリマーフィルム単独で用いてもよい。さらに、熱可塑性液晶ポリマーフィルムに対して、適当な接着層を介して多層化を行ってもよい。接着層としては、例えば、ポリフェニレンエーテル、エポキシ樹脂、ポリウレタン、熱可塑性ポリイミド、ポリエーテルイミド等が挙げられる。
 また、例えば、成形体は、熱可塑性液晶ポリマーフィルム、および/または積層体に後加工を行うことにより、製造されてもよい。
 例えば、熱可塑性液晶ポリマーフィルムに対して、表面上に導体パターンを形成することにより、配線板などの成形体(またはユニット回路基板)を製造してもよい。また、積層体の金属層に対して、導体パターンを形成することにより、配線板などの成形体(またはユニット回路基板)を製造してもよい。
 さらに、導体パターンが形成されたユニット回路基板を、他の基板材料に対して重ね合わせて多層化することにより配線板などの成形体(または回路基板)を製造してもよい。基板材料としては、上述の熱可塑性液晶ポリマーフィルム、金属層(金属箔)、ユニット回路基板などが例示でき、必要に応じて接着層を用いてもよい。
 または、熱可塑性液晶ポリマーで構成されたポリマー層を備える予備成形体であって、前記ポリマー層が融点上昇速度Rtmが0.20℃/min以上の熱可塑性液晶ポリマーから構成される予備成形体に対して、熱処理を行い、成形体を得てもよい。その場合、成形体のポリマー部分は、後述する特定の範囲のゴム状平坦領域の貯蔵弾性率E’を有している。
[熱可塑性液晶ポリマーフィルム、積層体および成形体]
 本発明の熱可塑性液晶ポリマーフィルム、積層体、および成形体は、熱処理によって、熱可塑性液晶ポリマーに特定の結晶構造が形成されるためか、熱可塑性液晶ポリマー部分が、動的粘弾性測定で求められる貯蔵弾性率のプロファイルにおいて、180℃以上の温度でゴム状平坦領域が存在し、200~280℃におけるゴム状平坦領域の貯蔵弾性率E’が80MPa以上である。
 ここで、ゴム状平坦領域とは、重合体の分子鎖は動くが、完全には溶融しない領域であり、貯蔵弾性率が温度に依存せず、略一定の値をとる領域をいう。本発明においては、所定の温度の±5℃の温度範囲における貯蔵弾性率(MPa)の変化量から算出される傾きの絶対値が5MPa/℃以下である場合に、当該所定の温度における貯蔵弾性率は平坦領域に属するものとみなす。なお、所定の範囲(例えば、180℃以上)の温度でゴム状平坦領域が存在する場合とは、ゴム状平坦領域の全体が当該所定の範囲の温度に属していることをいう。ゴム状平坦領域は、好ましくは190℃以上に存在していてもよく、より好ましくは200℃以上に存在していてもよい。また、ゴム状平坦領域は、350℃以下に存在していてもよく、好ましくは340℃以下、より好ましくは330℃以下に存在していてもよい。なお、高温側で上記傾きの絶対値が5MPa/℃を超えて、貯蔵弾性率が急激に低下する領域を流動領域とする。
 本発明の熱可塑性液晶ポリマーフィルムは、上述の製造方法により、特定の動的粘弾特性を付与することができることを見出したものである。具体的には、熱可塑性液晶ポリマーフィルム(耐熱化前フィルム)を熱処理することにより、貯蔵弾性率の高温域にゴム状平坦領域を存在させることができ、また、当該熱可塑性液晶ポリマーフィルムを構成する熱可塑性液晶ポリマーとして特定の融点上昇速度を有するものを用いることにより、ゴム状平坦領域の貯蔵弾性率E’を特定の範囲に高くすることができる。そして、そのような熱可塑性液晶ポリマーフィルムは、積層体作製時における樹脂の流動を抑制することができることを見出したものである。
 積層体作製時における樹脂の流動を抑制する観点から、200~280℃におけるゴム状平坦領域の貯蔵弾性率E’が、好ましくは100MPa以上、より好ましくは120MPa以上であってもよい。200~280℃におけるゴム状平坦領域の貯蔵弾性率E’の上限は特に限定されないが、例えば1000MPa程度であってもよい。なお、200~280℃におけるゴム状平坦領域の貯蔵弾性率E’は、後述の実施例に記載した方法により測定される値であり、ゴム状平坦領域が200~280℃の範囲外まで続いて存在している場合であっても、200~280℃の間において測定される値である。
 また、積層体作製時における樹脂の流動を抑制する観点から、280℃における貯蔵弾性率が、例えば、60MPa以上、好ましくは70MPa以上、より好ましくは80MPa以上であってもよい。280℃における貯蔵弾性率の上限は特に限定されないが、例えば800MPa程度であってもよい。
 本発明の熱可塑性液晶ポリマーフィルムは、耐熱性に優れる観点から、ゴム状平坦領域の終点温度が280℃以上であってもよく、好ましくは285℃以上、より好ましくは300℃以上であってもよい。ゴム状平坦領域の終点温度の上限は特に限定されないが、例えば400℃程度であってもよい。なお、ゴム状平坦領域の終点温度は、後述の実施例に記載した方法により測定される値である。
 また、本発明の熱可塑性液晶ポリマーフィルムは、示差走査熱量計を用いて、室温(例えば、25℃)から400℃の温度範囲で10℃/minの速度で昇温した際に現れる吸熱ピーク位置を熱可塑性液晶ポリマーフィルムの融点(Tm)とする。例えば、熱可塑性液晶ポリマーフィルムの融点(Tm)は、310℃以上であってもよく、好ましくは315℃以上、より好ましくは320℃以上であってもよい。融点(Tm)の上限は特に限定されないが、例えば400℃程度であってもよい。
 また、本発明の熱可塑性液晶ポリマーフィルム、積層体、および成形体は、熱処理によって、熱可塑性液晶ポリマーに特定の結晶構造が発生しているため、熱可塑性液晶ポリマー部分が、広角X線回折測定で検出される回折プロファイルにおいて、2θ=14~26度におけるベースライン上の積分強度をA、2θ=22.3~24.3度においてメインピークのプロファイルを一次関数に近似して除去した後のサブピークのプロファイルの積分強度をB、B/A×100=UCとしたとき、下記式(1)を充足してもよく、より好ましくは下記式(2)を充足してもよい。
     0≦UC≦2.0      (1)
     0.1≦UC≦1.5    (2)
 本発明におけるUCとは、斜方晶結晶の構造の均一性(結晶性)の指標とみなすことができる。数値が大きいほど斜方晶の(200)面の回折信号がシャープであることを意味する。すなわち、結晶構造の均一性の高い斜方晶が大きく成長している。なお、広角X線回折測定によるUCは、後述の実施例に記載した方法により測定される値である。
 UCが所定の範囲に存在しない場合であっても、例えば融点が280~340℃の熱可塑性液晶ポリマーフィルムは存在する。しかしながら、そのような熱可塑性液晶ポリマーフィルムでは、耐熱化は斜方晶の形成によってではなく、主に固相重合プロセスによって行われているので、耐熱化には膨大な時間の熱処理を要する傾向にある。
 例えば、本発明の熱可塑性液晶ポリマーフィルム、積層体および成形体は、耐熱性に優れるだけでなく、プロセス窓が広いため、各種用途において好適に用いることができる。
 例えば、少なくとも1層の熱可塑性液晶ポリマーフィルムと、少なくとも1層の金属層を備える積層体は、金属層に回路パターンを形成でき、配線板として有用である。また、成形体が複数の回路層を備える場合、高密度化、高機能化の要求を満たすことが可能であるため、成形体は、多層回路基板として好適である。
 本発明の熱可塑性液晶ポリマーフィルム、積層体および成形体は、耐熱性が著しく高いため、高周波用回路基板や車載用センサ、モバイル用回路基板、アンテナなどの用途において好適であるが、これらに限定されるものではない。
 以下、実施例により本発明をより詳細に説明するが、本発明は本実施例により何ら限定されるものではない。なお、以下の実施例及び比較例においては、下記の方法により各種物性を測定した。
 (膜厚)
 デジタル厚み計(株式会社ミツトヨ製)を用い、得られた熱可塑性液晶ポリマーフィルムをTD方向に1cm間隔で測定し、中心部および端部から任意に選んだ10点の平均値を膜厚とした。
 (示差走査熱量測定)
 (Tm)
 示差走査熱量計(株式会社島津製作所製)を用いて、実施例および比較例で得られた熱処理後の熱可塑性液晶ポリマーフィルムから所定の大きさをサンプリングして試料容器に入れ、室温から400℃まで10℃/minの速度で昇温した際に現れる吸熱ピークの位置を熱可塑性液晶ポリマーフィルムの融点Tmとした。
 (TmおよびRtm)
 示差走査熱量計(株式会社島津製作所製)を用いて、熱可塑性液晶ポリマーフィルム(耐熱化前フィルム)から所定の大きさをサンプリングして試料容器に入れ、室温から400℃まで10℃/minの速度で昇温した後、室温まで10℃/minの速度で冷却し、再度室温から400℃まで10℃/minの速度で昇温した際に現れる吸熱ピークの位置を、熱可塑性液晶ポリマーフィルムを構成する熱可塑性液晶ポリマーの融点Tmとした。
 また、熱可塑性液晶ポリマーフィルム(耐熱化前フィルム)を、オーブンバッチにおいてTm-10℃の雰囲気下で60分間処理した。示差走査熱量計を用いて、処理した熱可塑性液晶ポリマーフィルムから所定の大きさをサンプリングして試料容器に入れ、室温から400℃まで10℃/minの速度で昇温した際に現れる吸熱ピークの位置を、上記処理した熱可塑性液晶ポリマーフィルムの融点Tm’とし、以下の式により、熱可塑性液晶ポリマーフィルムを構成する熱可塑性液晶ポリマーの融点上昇速度Rtm(℃/min)を算出した。
 Rtm=(Tm’-Tm)/60
 (動的粘弾性測定)
 熱可塑性液晶ポリマーフィルムを縦10mm、横5mmに切り出し、試験片を作製した。粘弾性測定装置(NETZSCH製「DMA242E Artemis」)を用いて、試験片を試料ホルダに取り付け、周波数を1Hz、荷重を0.2N、測定モードを引張りモードとし、室温から350℃の温度範囲で5℃/minの昇温速度で貯蔵弾性率を測定した。
 得られた貯蔵弾性率のプロファイル(縦軸:貯蔵弾性率(MPa)、横軸:温度(℃))において、200℃から280℃までの間で10℃毎の温度変化に対する貯蔵弾性率の変化量から傾きを算出した。算出した傾きの絶対値が5MPa/℃以下であり最も小さい温度変化範囲を求め、その温度変化範囲における中心の温度(例えば、200~210℃であれば205℃)での貯蔵弾性率をゴム状平坦領域の貯蔵弾性率E’として算出した。また、280℃における貯蔵弾性率を算出した。
 また、180℃以上の温度で存在するゴム状平坦領域の接線と、当該ゴム状平坦領域より高温側の流動領域の接線との交点における温度を、ゴム状平坦領域の終点温度として算出した。
 (広角X線回折測定)
 広角X線回折測定には、Bruker AXS社製、D8 Discover装置を使用した。熱可塑性液晶ポリマーフィルムを10mm四方に切り取り、標準的な試料ホルダに貼り付けた。データのS/N比を高めるため、熱可塑性液晶ポリマーフィルムはMD方向を一致させるように複数枚重ね、厚みが0.5mm程度になるように調整した。X線源はCuKαとし、フィラメント電圧を45kV、電流を110mAとした。コリメーターは0.3mmのものを使用した。
 標準試料ホルダを装置に取り付け、熱可塑性液晶ポリマーフィルムの法線と一致する方向からX線が照射されるように位置調整した。すなわち熱可塑性液晶ポリマーフィルム表面に対して垂直にX線を照射した。熱可塑性液晶ポリマーフィルムと検出器の距離(カメラ距離)を100mmとした。検出器には2次元PSPC検出器を使用し、2次元回折像を取得した。検出器は試料の後方に設置し、熱可塑性液晶ポリマーフィルムの法線、検出器の法線、X線照射方向がすべて一致するように配置した。露光時間は600秒とした。
 得られた2次元回折像を円環平均処理し、1次元プロファイルへと変換した(データ1)。円環平均の範囲は、回折角(2θ)で10~30度とした。方位角範囲は0~180度とした。2θのステップは0.05度とした。なお方位角0度は熱可塑性液晶ポリマーフィルムのMD方向に対応させた。
 変換した1次元プロファイル(データ1)は、同じ条件で取得したバックグラウンドデータ(試料を取り付けないときの測定データ)を使って寄生散乱等の処理をした。すなわちバックグラウンドデータを1次元プロファイル化したのち、熱可塑性液晶ポリマーフィルムのデータから差し引いた。これをデータ2とした。
 バックグラウンド処理したデータ2に対して、ベースラインを設定して差し引いた。ベースラインは、バックグラウンド処理後のデータにおいて、2θが14度と26度における強度値を結ぶ一次関数とした。なお14度および26度における強度値は、それぞれ、13.8~14.2度、25.8~26.2度の範囲の強度の平均値(間隔0.05度)とした。データ2から上述の一次関数を差し引いた。これをデータ3とした。データ3に対して、回折角2θとして14~26度の範囲で積分強度を求め、求めた積分強度をAとした。
 さらに、データ3において、回折角2θが22.3度と24.3度における強度値を結ぶ一次関数を計算し、データ3からさらに一次関数を減算した。これをデータ4とした。データ4に対して、2θが22.3~24.3度の範囲の積分強度を求めた(B)。さらにB/A×100を計算した(=UC)。
 (金属張積層板の作製)
 図1に示すように、熱可塑性液晶ポリマーフィルム1と金属箔2とを重ね合わせ、組立体を作製した。金属箔には、福田金属箔粉工業株式会社製CF-H9A-DS-HD2-12(厚さ12μm)を使用した。この組立体を北川精機株式会社製真空プレス機において、真空下、室温(25℃)より250℃に6℃/minで昇温させ、15分保持した後、300℃に6℃/minで昇温後、面圧4MPaの条件で熱圧着させ、10分後に250℃に7℃/minで降温、250℃到達後急冷により50℃になったことを確認し、真空を開放し、熱可塑性液晶ポリマーフィルム1と金属箔2とを備える金属張積層板3を作製した。
 (耐熱性-積層フロー/プロセス窓)
 積層フローによる耐熱性は、多層積層基板四隅の熱可塑性液晶ポリマーフィルム形状変化を観察し評価した。図2に示すように、図1で得られた金属張積層板3を2枚、互いの熱可塑性液晶ポリマーフィルム1が合わさるように重ね合わせ、組立体を作製した。この組立体の上下面に、SUS板4およびクッション材5をそれぞれ配設して組立体を挟み込み、真空プレス機において、310℃、面圧2MPaの条件で熱圧着させ、多層積層基板を作製した。作製した多層積層基板四隅の熱可塑性液晶ポリマーフィルム形状変化を目視により観察し、以下の基準により評価した。
 A:積層条件において、熱可塑性液晶ポリマーはほとんど流動せず、金属層から0.7mm以下のバリしか認められなかった。
 B:積層条件において、熱可塑性液晶ポリマーはほとんど流動せず、金属層から0.7mmより大きく、1mm以下のバリしか認められなかった。
 C:積層条件において、熱可塑性液晶ポリマーの流動により金属層から1mmより大きなバリが認められた。
 (熱可塑性液晶ポリマーの作製)
 熱可塑性液晶ポリマーの重合の代表例として実施例1の方法は以下である。p-ヒドロキシ安息香酸6.1kg(23モル部)、2-ヒドロキシ-6-ナフトエ酸28.1kg(77モル部)、および無水酢酸20.1kgを投入し、アセチル化(160℃、還流下約2時間)後、1℃/minで昇温し340℃で保持し、60分間減圧処理(1000Pa)を行い、溶融重縮合を行った。
<実施例1>
(1)6-ヒドロキシ-2-ナフトエ酸単位23モル部、p-ヒドロキシ安息香酸単位77モル部のモル比率からなるサーモトロピック液晶性ポリエステルを重合し、インフレーションダイより押出成形し、厚さ50μmの熱可塑性液晶ポリマーフィルム(耐熱化前フィルム)を得た。得られた熱可塑性液晶ポリマーフィルム(耐熱化前フィルム)を構成する熱可塑性液晶ポリマーのTmは310℃であった。
(2)上記で得られた熱可塑性液晶ポリマーフィルム(耐熱化前フィルム)について、280℃で3時間熱処理した。得られた熱可塑性液晶ポリマーフィルムのTmは317℃であった。
(3)上記(2)で得られた熱可塑性液晶ポリマーフィルムを用いて金属張積層板、多層積層基板を作製した。得られた熱可塑性液晶ポリマーフィルムと多層積層基板について、示差走査熱量測定、動的粘弾性測定、広角X線回折測定、および積層フローについての評価を行った結果は、表7に示す通りである。なお、図3は、実施例1で得られた熱処理後の熱可塑性液晶ポリマーフィルムの動的粘弾性測定による貯蔵弾性率の温度依存性に関するプロファイルを示すグラフであり、貯蔵弾性率E’は245℃における貯蔵弾性率の数値を表す。
<実施例2>
(1)6-ヒドロキシ-2-ナフトエ酸単位20モル部、p-ヒドロキシ安息香酸単位80モル部、テレフタル酸単位1モル部のモル比率からなるサーモトロピック液晶性ポリエステルを重合し、インフレーションダイより押出成形し、厚さ50μmの熱可塑性液晶ポリマーフィルム(耐熱化前フィルム)を得た。得られた熱可塑性液晶ポリマーフィルム(耐熱化前フィルム)を構成する熱可塑性液晶ポリマーのTmは320℃であった。
(2)上記で得られた熱可塑性液晶ポリマーフィルム(耐熱化前フィルム)について、300℃で1時間熱処理した。得られた熱可塑性液晶ポリマーフィルムのTmは334℃であった。
(3)上記(2)で得られた熱可塑性液晶ポリマーフィルムを用いて金属張積層板、多層積層基板を作製した。得られた熱可塑性液晶ポリマーフィルムと多層積層基板について、示差走査熱量測定、動的粘弾性測定、広角X線回折測定、および積層フローについての評価を行った結果は、表7に示す通りである。なお、貯蔵弾性率E’は265℃における貯蔵弾性率の数値を表す。
<実施例3>
(1)6-ヒドロキシ-2-ナフトエ酸単位20モル部、p-ヒドロキシ安息香酸単位80モル部、テレフタル酸単位1モル部のモル比率からなるサーモトロピック液晶性ポリエステルを重合し、インフレーションダイより押出成形し、厚さ50μmの熱可塑性液晶ポリマーフィルム(耐熱化前フィルム)を得た。得られた熱可塑性液晶ポリマーフィルム(耐熱化前フィルム)を構成する熱可塑性液晶ポリマーのTmは320℃であった。
(2)上記で得られた熱可塑性液晶ポリマーフィルム(耐熱化前フィルム)について、310℃で1時間熱処理した。得られた熱可塑性液晶ポリマーフィルムのTmは347℃であった。
(3)上記(2)で得られた熱可塑性液晶ポリマーフィルムを用いて金属張積層板、多層積層基板を作製した。得られた熱可塑性液晶ポリマーフィルムと多層積層基板について、示差走査熱量測定、動的粘弾性測定、広角X線回折測定、および積層フローについての評価を行った結果は、表7に示す通りである。なお、貯蔵弾性率E’は265℃における貯蔵弾性率の数値を表す。
<比較例1>
(1)6-ヒドロキシ-2-ナフトエ酸単位27モル部、p-ヒドロキシ安息香酸単位73モル部のモル比率からなるサーモトロピック液晶性ポリエステルを重合し、インフレーションダイより押出し、厚さ50μmの熱可塑性液晶ポリマーフィルムを得た。得られた熱可塑性液晶ポリマーフィルムを構成する熱可塑性液晶ポリマーのTmは280℃であった。
(2)上記(1)で得られた熱可塑性液晶ポリマーフィルムを用いて金属張積層板、多層積層基板を作製した。得られた熱可塑性液晶ポリマーフィルムと多層積層基板について、示差走査熱量測定、動的粘弾性測定、広角X線回折測定、および積層フローについての評価を行った結果は、表7に示す通りである。なお、動的粘弾性測定において、180℃以上の温度で貯蔵弾性率のゴム状平坦領域は検出されなかった。
<比較例2>
(1)6-ヒドロキシ-2-ナフトエ酸単位23モル部、p-ヒドロキシ安息香酸単位77モル部のモル比率からなるサーモトロピック液晶性ポリエステルを重合し、インフレーションダイより押出し、厚さ50μmの熱可塑性液晶ポリマーフィルムを得た。得られた熱可塑性液晶ポリマーフィルムを構成する熱可塑性液晶ポリマーのTmは310℃であった。
(2)上記(1)で得られた熱可塑性液晶ポリマーフィルムを用いて金属張積層板、多層積層基板を作製した。得られた熱可塑性液晶ポリマーフィルムと多層積層基板について、示差走査熱量測定、動的粘弾性測定、広角X線回折測定、および積層フローについての評価を行った結果は、表7に示す通りである。なお、図4は、比較例2で得られた熱可塑性液晶ポリマーフィルムの動的粘弾性測定による貯蔵弾性率の温度依存性に関するプロファイルを示すグラフであるが、この図に示すように、180℃以上の温度で貯蔵弾性率のゴム状平坦領域は検出されなかった。
<比較例3>
(1)6-ヒドロキシ-2-ナフトエ酸単位20モル部、p-ヒドロキシ安息香酸単位80モル部、テレフタル酸1モル部のモル比率からなるサーモトロピック液晶性ポリエステルを重合し、インフレーションダイより押出し、厚さ50μmの熱可塑性液晶ポリマーフィルムを得た。得られた熱可塑性液晶ポリマーフィルムを構成する熱可塑性液晶ポリマーのTmは320℃であった。
(2)上記(1)で得られた熱可塑性液晶ポリマーフィルムを用いて金属張積層板、多層積層基板を作製した。得られた熱可塑性液晶ポリマーフィルムと多層積層基板について、示差走査熱量測定、動的粘弾性測定、広角X線回折測定、および積層フローについての評価を行った結果は、表7に示す通りである。なお、動的粘弾性測定において、180℃以上の温度で貯蔵弾性率のゴム状平坦領域は検出されなかった。
<比較例4>
(1)比較例1の材料を280℃で3時間熱処理した。得られた熱可塑性液晶ポリマーフィルムのTmは313℃であった。
(2)上記(1)で得られた熱可塑性液晶ポリマーフィルムを用いて金属張積層板、多層積層基板を作製した。得られた熱可塑性液晶ポリマーフィルムと多層積層基板について、示差走査熱量測定、動的粘弾性測定、広角X線回折測定、および積層フローについての評価を行った結果は、表7に示す通りである。なお、図5は、比較例4で得られた熱処理後の熱可塑性液晶ポリマーフィルムの動的粘弾性測定による貯蔵弾性率の温度依存性に関するプロファイルを示すグラフであり、貯蔵弾性率E’は245℃における貯蔵弾性率の数値を表す。
Figure JPOXMLDOC01-appb-T000007
 表7から明らかなように、比較例1~3で得られた熱可塑性液晶ポリマーフィルムでは、ゴム状平坦領域が存在していないため、積層フローを満足することはできなかった。また、比較例4では、熱処理を施すことでゴム状平坦領域が生じているが、比較例4のようにRtmが小さい熱可塑性液晶ポリマーを用いている場合、ゴム状平坦領域の貯蔵弾性率E’を高くできないため、積層フローを満足することはできなかった。
 これに対して、実施例1~3では、ゴム状平坦領域が存在し、かつ特定の範囲のゴム状平坦領域の貯蔵弾性率E’を有しているため、比較例1~4に対し、積層フローを満足している。このようなフィルムを有する金属張積層板を用いると、積層・回路加工の際に広いプロセス窓を有するため、特殊な設備や治具を使用することなく、積層体を低コストで製造することが可能である。
 本発明の熱可塑性液晶ポリマーフィルムおよび積層板は、各種成形体(例えば、配線板)の材料として、特に多層積層回路材料などとして好適であり、例えば、電子・電気・通信工業分野におけるプリント配線板として、高周波用回路基板、車載用センサ、モバイル用回路基板、アンテナなどの用途において有用である。
 以上のとおり、本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲で、種々の追加、変更または削除が可能であり、そのようなものも本発明の範囲内に含まれる。
 1・・・熱可塑性液晶ポリマーフィルム
 2・・・金属層(銅箔)
 3・・・金属張積層板
 4・・・SUS板
 5・・・クッション材

Claims (17)

  1.  光学的に異方性の溶融相を形成し得るポリマー(以下、熱可塑性液晶ポリマーと称する)で構成されたフィルムであって、動的粘弾性測定で求められる貯蔵弾性率のプロファイルにおいて、180℃以上の温度でゴム状平坦領域が存在し、200~280℃におけるゴム状平坦領域の貯蔵弾性率E’が80MPa以上である、熱可塑性液晶ポリマーフィルム。
  2.  280℃における貯蔵弾性率が60MPa以上である、請求項1に記載の熱可塑性液晶ポリマーフィルム。
  3.  示差走査熱量計を用いて、室温から400℃の温度範囲で10℃/minの速度で昇温した際に現れる吸熱ピーク位置が、310℃以上である、請求項1または2に記載の熱可塑性液晶ポリマーフィルム。
  4.  請求項1~3のいずれか一項に記載の熱可塑性液晶ポリマーフィルムを少なくとも1層備える、積層体。
  5.  さらに、金属層を少なくとも1層備える、請求項4に記載の積層体。
  6.  前記金属層が、銅、銅合金、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、鉄、鉄合金、銀、銀合金、およびこれらの複合金属種から選択される少なくとも一種で構成される、請求項5に記載の積層体。
  7.  請求項1~3のいずれか一項に記載の熱可塑性液晶ポリマーフィルムまたは請求項4~6のいずれか一項に記載の積層体から形成された、成形体。
  8.  配線板である、請求項7に記載の成形体。
  9.  高周波用回路基板、車載用センサ、モバイル用回路基板、またはアンテナである、請求項7または8に記載の成形体。
  10.  融点上昇速度Rtmが0.20℃/min以上の熱可塑性液晶ポリマーから構成される熱可塑性液晶ポリマーフィルムに対して、熱処理を行い耐熱化する、請求項1~3のいずれか一項に記載の熱可塑性液晶ポリマーフィルムの製造方法。
  11.  前記熱処理が、1段階または複数段階の熱処理であり、熱可塑性液晶ポリマーの融点(Tm)とした場合、Tm℃以下で第1の熱処理を行い耐熱化する、請求項10に記載の熱可塑性液晶ポリマーフィルムの製造方法。
  12.  熱源として、熱風オーブン、蒸気オーブン、電気ヒータ、赤外線ヒータ、セラミックヒータ、熱ロール、熱プレス、および電磁波照射機から選択された少なくとも一種が用いられる、請求項10または11に記載の熱可塑性液晶ポリマーフィルムの製造方法。
  13.  前記熱処理が1段階である、請求項10~12のいずれか一項に記載の熱可塑性液晶ポリマーフィルムの製造方法。
  14.  熱可塑性液晶ポリマーで構成されたポリマー層を備える積層体であって、前記ポリマー層が融点上昇速度Rtmが0.20℃/min以上の熱可塑性液晶ポリマーから構成される積層体に対して、熱処理を行い耐熱化する、請求項4~6のいずれか一項に記載の積層体の製造方法。
  15.  前記熱処理が、1段階または複数段階の熱処理であり、熱可塑性液晶ポリマーの融点(Tm)とした場合、Tm℃以下で第1の熱処理を行い耐熱化する、請求項14に記載の積層体の製造方法。
  16.  熱源として、熱風オーブン、蒸気オーブン、電気ヒータ、赤外線ヒータ、セラミックヒータ、熱ロール、熱プレス、および電磁波照射機から選択された少なくとも一種が用いられる、請求項14または15に記載の積層体の製造方法。
  17.  請求項1~3のいずれか一項に記載の熱可塑性液晶ポリマーフィルム、および/または請求項4~6のいずれか一項に記載の積層体に後加工を行うことにより、成形体を製造する方法。
PCT/JP2020/016681 2019-04-23 2020-04-16 熱可塑性液晶ポリマーフィルム、積層体、および成形体、ならびにそれらの製造方法 WO2020218140A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021516048A JP7024142B2 (ja) 2019-04-23 2020-04-16 熱可塑性液晶ポリマーフィルム、積層体、および成形体、ならびにそれらの製造方法
CN202080030367.1A CN113727843B (zh) 2019-04-23 2020-04-16 热塑性液晶聚合物膜、层叠体和成形体以及它们的制造方法
KR1020217036849A KR102518009B1 (ko) 2019-04-23 2020-04-16 열가소성 액정 폴리머 필름, 적층체, 및 성형체, 그리고 그것들의 제조 방법
JP2022018582A JP2022070937A (ja) 2019-04-23 2022-02-09 熱可塑性液晶ポリマーフィルム、積層体、および成形体、ならびにそれらの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-082064 2019-04-23
JP2019082064 2019-04-23

Publications (1)

Publication Number Publication Date
WO2020218140A1 true WO2020218140A1 (ja) 2020-10-29

Family

ID=72942023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016681 WO2020218140A1 (ja) 2019-04-23 2020-04-16 熱可塑性液晶ポリマーフィルム、積層体、および成形体、ならびにそれらの製造方法

Country Status (5)

Country Link
JP (2) JP7024142B2 (ja)
KR (1) KR102518009B1 (ja)
CN (1) CN113727843B (ja)
TW (1) TWI799698B (ja)
WO (1) WO2020218140A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022260087A1 (ja) * 2021-06-09 2022-12-15 株式会社村田製作所 多孔質液晶ポリマーシート、金属層付き多孔質液晶ポリマーシート、及び、電子回路基板
WO2022260082A1 (ja) * 2021-06-09 2022-12-15 株式会社村田製作所 多孔質液晶ポリマーシート、金属層付き多孔質液晶ポリマーシート、及び、電子回路基板
WO2022260092A1 (ja) * 2021-06-09 2022-12-15 株式会社村田製作所 液晶ポリマーフィルム、導体層付き液晶ポリマーフィルム、及び、積層基板
KR20230142981A (ko) * 2022-04-04 2023-10-11 동우 화인켐 주식회사 연성 금속 적층 필름 및 이의 제조 방법
WO2024177035A1 (ja) * 2023-02-22 2024-08-29 株式会社クラレ 熱可塑性液晶ポリマーフィルムおよび積層体、ならびにそれらの製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0890570A (ja) * 1994-09-16 1996-04-09 Hoechst Celanese Corp 液晶ポリマーフイルムの処理方法
JP2006137786A (ja) * 2004-11-10 2006-06-01 Kuraray Co Ltd 熱可塑性液晶ポリマーフィルムおよびこれを用いた回路基板
WO2007013330A1 (ja) * 2005-07-27 2007-02-01 Kuraray Co., Ltd. 熱可塑性液晶ポリマーフィルムで被覆した配線板の製造方法
JP2010000795A (ja) * 1998-04-06 2010-01-07 Kuraray Co Ltd 液晶ポリマーフィルムと積層体及びそれらの製造方法並びに多層実装回路基板
WO2014046014A1 (ja) * 2012-09-20 2014-03-27 株式会社クラレ 回路基板およびその製造方法
WO2015064437A1 (ja) * 2013-11-01 2015-05-07 株式会社クラレ 熱可塑性液晶ポリマーフィルムの製造方法、並びに回路基板及びその製造方法
JP2016107507A (ja) * 2014-12-05 2016-06-20 株式会社クラレ 金属張積層板およびその製造方法
WO2018150549A1 (ja) * 2017-02-17 2018-08-23 株式会社クラレ 金属蒸着層付き熱可塑性液晶ポリマーフィルムの製造方法、該製造方法を用いた金属蒸着層付き熱可塑性液晶ポリマーフィルム、金属張積層板の製造方法、及び金属張積層板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158555A (en) 1979-05-29 1980-12-10 Denki Kagaku Keiki Co Ltd Measuring apparatus for hydrogen chloride in exhaust gas
JP3878741B2 (ja) 1998-04-22 2007-02-07 株式会社クラレ ポリマーフィルムの製造方法
JP4138995B2 (ja) 1999-03-31 2008-08-27 株式会社クラレ 回路基板およびその製造方法
JP3893930B2 (ja) 2001-10-12 2007-03-14 株式会社デンソー シート材保持具、シート材保持方法、及び多層基板の製造方法
JP2003292638A (ja) * 2002-03-29 2003-10-15 Kuraray Co Ltd 高耐熱性フィルム
TWI390305B (zh) * 2004-05-31 2013-03-21 Fujifilm Corp 光學用透明薄膜、及使用它之光學補償薄膜、偏光板、液晶顯示裝置
JP5444581B2 (ja) * 2010-02-16 2014-03-19 共同技研化学株式会社 液晶ポリエステルフィルムの製造方法
CN104220236A (zh) * 2012-03-29 2014-12-17 株式会社可乐丽 热塑性液晶聚合物薄膜及其制造方法
JP6205877B2 (ja) * 2013-06-07 2017-10-04 株式会社村田製作所 高耐熱性液晶ポリマーフィルムとその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0890570A (ja) * 1994-09-16 1996-04-09 Hoechst Celanese Corp 液晶ポリマーフイルムの処理方法
JP2010000795A (ja) * 1998-04-06 2010-01-07 Kuraray Co Ltd 液晶ポリマーフィルムと積層体及びそれらの製造方法並びに多層実装回路基板
JP2006137786A (ja) * 2004-11-10 2006-06-01 Kuraray Co Ltd 熱可塑性液晶ポリマーフィルムおよびこれを用いた回路基板
WO2007013330A1 (ja) * 2005-07-27 2007-02-01 Kuraray Co., Ltd. 熱可塑性液晶ポリマーフィルムで被覆した配線板の製造方法
WO2014046014A1 (ja) * 2012-09-20 2014-03-27 株式会社クラレ 回路基板およびその製造方法
WO2015064437A1 (ja) * 2013-11-01 2015-05-07 株式会社クラレ 熱可塑性液晶ポリマーフィルムの製造方法、並びに回路基板及びその製造方法
JP2016107507A (ja) * 2014-12-05 2016-06-20 株式会社クラレ 金属張積層板およびその製造方法
WO2018150549A1 (ja) * 2017-02-17 2018-08-23 株式会社クラレ 金属蒸着層付き熱可塑性液晶ポリマーフィルムの製造方法、該製造方法を用いた金属蒸着層付き熱可塑性液晶ポリマーフィルム、金属張積層板の製造方法、及び金属張積層板

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022260087A1 (ja) * 2021-06-09 2022-12-15 株式会社村田製作所 多孔質液晶ポリマーシート、金属層付き多孔質液晶ポリマーシート、及び、電子回路基板
WO2022260082A1 (ja) * 2021-06-09 2022-12-15 株式会社村田製作所 多孔質液晶ポリマーシート、金属層付き多孔質液晶ポリマーシート、及び、電子回路基板
WO2022260092A1 (ja) * 2021-06-09 2022-12-15 株式会社村田製作所 液晶ポリマーフィルム、導体層付き液晶ポリマーフィルム、及び、積層基板
KR20230142981A (ko) * 2022-04-04 2023-10-11 동우 화인켐 주식회사 연성 금속 적층 필름 및 이의 제조 방법
KR102634204B1 (ko) 2022-04-04 2024-02-07 동우 화인켐 주식회사 연성 금속 적층 필름 및 이의 제조 방법
WO2024177035A1 (ja) * 2023-02-22 2024-08-29 株式会社クラレ 熱可塑性液晶ポリマーフィルムおよび積層体、ならびにそれらの製造方法

Also Published As

Publication number Publication date
JP7024142B2 (ja) 2022-02-22
TWI799698B (zh) 2023-04-21
CN113727843B (zh) 2022-08-16
KR102518009B1 (ko) 2023-04-04
JP2022070937A (ja) 2022-05-13
KR20220005006A (ko) 2022-01-12
TW202104393A (zh) 2021-02-01
JPWO2020218140A1 (ja) 2020-10-29
CN113727843A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
WO2020218140A1 (ja) 熱可塑性液晶ポリマーフィルム、積層体、および成形体、ならびにそれらの製造方法
JP6632541B2 (ja) 回路基板およびその製造方法
WO2013065453A1 (ja) 熱可塑性液晶ポリマーフィルムならびにこれを用いた積層体および回路基板
KR102635625B1 (ko) 금속 피복 적층판 및 그 제조 방법
JP6019012B2 (ja) 高周波回路基板
JP2022070936A (ja) 熱可塑性液晶ポリマーフィルム、積層体、および成形体、ならびにそれらの製造方法
TW202126743A (zh) 電路基板用lcp膜之製造方法、及電路基板用t型模頭熔融押出lcp膜
WO2022065270A1 (ja) 回路基板用絶縁材料、及び金属箔張積層板
JP7024143B2 (ja) 熱可塑性液晶ポリマーフィルム、積層体、および成形体、ならびにそれらの製造方法
WO2022065285A1 (ja) 回路基板用絶縁材料及びその製造方法、並びに金属箔張積層板
CN115279586B (zh) 覆金属层叠体的制造方法
WO2020255871A1 (ja) 金属張積層体の製造方法
CN115298024B (zh) 覆金属层叠体的制造方法
WO2024177035A1 (ja) 熱可塑性液晶ポリマーフィルムおよび積層体、ならびにそれらの製造方法
CA3202677A1 (en) Liquid crystal polymer composite, liquid crystal polymer composite film, and metal-clad laminate including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20796421

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021516048

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20796421

Country of ref document: EP

Kind code of ref document: A1