WO2020218052A1 - 歯周病原因菌の検出方法 - Google Patents

歯周病原因菌の検出方法 Download PDF

Info

Publication number
WO2020218052A1
WO2020218052A1 PCT/JP2020/016256 JP2020016256W WO2020218052A1 WO 2020218052 A1 WO2020218052 A1 WO 2020218052A1 JP 2020016256 W JP2020016256 W JP 2020016256W WO 2020218052 A1 WO2020218052 A1 WO 2020218052A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
periodontal disease
minutes
detection sensitivity
causing bacteria
Prior art date
Application number
PCT/JP2020/016256
Other languages
English (en)
French (fr)
Inventor
友里 山下
板垣 はつえ
専太 森若
小林 薫
行治 小林
Original Assignee
アドテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アドテック株式会社 filed Critical アドテック株式会社
Priority to US17/605,407 priority Critical patent/US20220205011A1/en
Priority to CN202080031197.9A priority patent/CN113748214A/zh
Priority to EP20794443.0A priority patent/EP3940081A4/en
Priority to KR1020217032903A priority patent/KR102645488B1/ko
Priority to JP2021515997A priority patent/JP7370616B2/ja
Publication of WO2020218052A1 publication Critical patent/WO2020218052A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/37Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving peptidase or proteinase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • G01N33/56955Bacteria involved in periodontal diseases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/20Assays involving biological materials from specific organisms or of a specific nature from bacteria from Spirochaetales (O), e.g. Treponema, Leptospira
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/948Hydrolases (3) acting on peptide bonds (3.4)
    • G01N2333/95Proteinases, i.e. endopeptidases (3.4.21-3.4.99)
    • G01N2333/952Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from bacteria

Definitions

  • the present invention is a method for detecting periodontal disease-causing bacteria. Specifically, it is possible to detect periodontal disease-causing bacteria measured under high temperature conditions at room temperature of less than 10 minutes (about 2 to 8 minutes), and is a special device. The present invention relates to a method for detecting periodontal disease-causing bacteria that does not require.
  • Periodontal disease is said to affect about 80% of adults in Japan. It has been clarified that periodontal disease causes tooth loss, which not only causes dysgeusia and abnormal salivation, but also causes abnormalities in the central nervous system and the autonomic nervous system. Furthermore, in recent years, it has been pointed out that periodontal disease has become a risk factor for various systemic diseases such as coronary heart disease and cerebral infarction.
  • the inspection items for periodontal disease as a method for inspecting bacterial infection and inflammation, a method for visually judging the stained tooth surface using a plaque staining solution, a periodontal probe, a dental probe, etc. without staining, etc.
  • Plaque adhesion status test to determine the presence or absence of plaque adhesion by scraping the tooth surface with the tip of the periodontal disease, collecting subperitoneal plaque at paper points, and requesting an inspection agency to measure the number of bacteria by DNA quantification method etc.
  • peripathogenic bacteria test antibody test method for measuring IgG antibody titer in serum against periodontopathic bacteria, and the like. Not only are these methods time-consuming, labor-intensive, and costly, but they also require special facilities and techniques, which makes it impossible to test multiple patients at the same time easily and quickly, and also burdens the patients. Is also big.
  • Porphyromonas gingivalis P.g
  • Treponema denticola T.d
  • Tannerella forsythia T.f
  • Red Complex a bacterial species group that causes.
  • These three bacterial species have arginine-specific peptidase activity (trypsin-like enzyme activity), and methods for detecting trypsin-like enzyme activity using a synthetic substrate have been reported in Patent Documents 1 to 4. It is also known that this enzyme activity is activated by a reducing agent (Patent Documents 3 to 4, Non-Patent Document 1). Furthermore, it has been reported that this enzyme activity can be analyzed at room temperature in 10 minutes. (Patent Document 4) If the trypsin-like enzyme activity can be easily analyzed and determined in a shorter time and easily for the presence of three important bacterial species causing periodontal disease, it is a useful method for screening for periodontal disease.
  • trypsin-like enzyme activity cannot obtain sufficient sensitivity unless the optimum temperature is 50 to 60 ° C., and special equipment capable of maintaining the optimum temperature is required for measurement, and periodontal disease. It hinders the spread of testing for causative bacteria.
  • the enzyme activity is left at room temperature for 10 minutes before analysis, the time constraint on the patient becomes longer accordingly. For this reason, it has been necessary to immediately detect the periodontal disease-causing bacteria on the spot when a sample is collected from a patient.
  • the present inventors have described P.I. g, T.I. d, T. Focusing on the chemical properties of f, by allowing a compound having an antioxidant effect or a compound having an effect of protecting an SH group (mercapto group) and cleaving a disulfide bond to be present when analyzing trypsin-like enzyme activity. , It was found that the trypsin-like enzyme activity can be analyzed with high sensitivity at room temperature of less than 10 minutes, and the present invention was completed.
  • the present invention among the periodontal disease-causing bacteria measured under high temperature conditions, P.I. g, T.I. d, T. It is possible to analyze the trypsin-like enzyme activity peculiar to the three bacterial species of f with high sensitivity at room temperature of less than 10 minutes (about 2 to 8 minutes), and an analysis method for periodontal disease-causing bacteria that does not require special equipment. The purpose is to provide.
  • the invention according to claim 1 is a method for detecting a periodontal disease-causing bacterium contained in a sample at room temperature in less than 10 minutes, the first compound having an antioxidant effect and Alternatively, a second compound that protects the SH group and cleaves the disulfide bond is contacted with the sample together with N- ⁇ -benzoyl-DL-arginine-2-naphthylamide hydrochloride at room temperature for less than 10 minutes at room temperature. By leaving it to stand, the periodontal disease-causing bacteria can be detected in the subsequent color analysis using a color-developing reagent, and the first compound is at least one of L-ascorbic acid, L-cysteine hydrochloride, and glutathione.
  • the second compound is a method for detecting a periodontal disease-causing bacterium, which is at least one of DTT, thioglycolic acid, thioglycerol, mercaptoethanol, and TCEP.
  • the invention according to claim 2 is a method for detecting periodontal disease-causing bacteria contained in a sample at room temperature and in less than 10 minutes, the first compound having an antioxidant effect and Alternatively, a sample containing a second compound that protects the SH group and cleaves the disulfide bond is added to N- ⁇ -benzoyl-DL-arginine-2-naphthylamide hydrochloride and at room temperature for less than 10 minutes. By leaving it to stand, the periodontal disease-causing bacteria can be detected in the subsequent color analysis using a color-developing reagent, and the first compound is at least one of L-ascorbic acid, L-cysteine hydrochloride, and glutathione.
  • the second compound is a method for detecting a periodontal disease-causing bacterium, which is at least one of DTT, thioglycolic acid, thioglycerol, mercaptoethanol, and TCEP.
  • the invention according to claim 3 is a method for detecting a periodontal disease-causing bacterium contained in a sample at room temperature and in less than 10 minutes, the first compound having an antioxidant effect and A second compound that protects the SH group and has the effect of cleaving disulfide bonds is mixed and incorporated into the absorbent substance together with N- ⁇ -benzoyl-DL-arginine-2-naphthylamide hydrochloride, and this water-absorbent substance.
  • the first compound is L-ascorbic acid, L-.
  • At least one of cysteine hydrochloride and glutathione, and the second compound is a method for detecting a periodontal disease-causing bacterium, which is at least one of DTT, thioglycolic acid, thioglycerol, mercaptoethanol, and TCEP. ..
  • the invention according to claim 4 is a method for detecting a periodontal disease-causing bacterium contained in a sample at room temperature in less than 10 minutes, the first compound having an antioxidant effect and A second compound that protects the SH group and has the effect of cleaving disulfide bonds is mixed, then the mixture is included in the sample, and then this sample is charged with N- ⁇ -benzoyl-DL-arginine-2. -By adding naphthylamide hydrochloride and leaving it at room temperature for less than 10 minutes, the bacteria causing periodontal disease can be detected in the subsequent color development analysis using a color-developing reagent, and the first compound is L-ascorbic acid, L-.
  • At least one of cysteine hydrochloride and glutathione, and the second compound is a method for detecting a periodontal disease-causing bacterium, which is at least one of DTT, thioglycolic acid, thioglycerol, mercaptoethanol, and TCEP. ..
  • the first compound is a chemical substance having an antioxidant effect, and is selected from L-ascorbic acid, L-cysteine hydrochloride, and glutathione.
  • the first compound may be one kind or a combination of a plurality of kinds.
  • the second compound is a chemical substance that protects the SH group and cleaves disulfide bonds, and is DTT (dithiothreitol), thioglycolic acid, thioglycerol, mercaptoethanol, TCEP (tris (2-carboxyethyl)). ) Phosphine hydrochloride) is selected.
  • the second compound may be one kind or a combination of a plurality of kinds. Either one of the first compound and the second compound may be present in the analysis of trypsin-like protease activity, or both the first compound and the second compound may be mixed.
  • Room temperature refers to a state in which neither heating nor cooling is performed from the external system. It is approximately 20 ° C to 30 ° C.
  • Specimens are oral wiping samples, plaque samples, tongue wipes and tongue moss samples, saliva, etc., and samples to be analyzed such as implants, bridges, denture wipes removed from the oral cavity, etc. This is an extract obtained by extracting the bacteria causing periodontal disease from a sample using an appropriate medium.
  • the first compound and the second compound can be included in the water-absorbent substance together with the substrate (dry retention method).
  • the substrate N- ⁇ -benzoyl-DL-arginine-2-naphthylamide hydrochloride, which is a substance that causes a chemical reaction under the action of an enzyme contained in a sample that causes periodontal disease, is used.
  • This reagent is contained in a water-absorbent substance (test piece, carrier), and the sample to be analyzed is brought into direct contact with the water-absorbent substance to analyze the presence or absence of a color-developing substance released by the enzymatic activity of the periodontal disease-causing bacteria.
  • a coloring reagent can be used if necessary.
  • color-developing reagent various known reagents can be used.
  • 4-hydroxy-3-[(2,4-dihydroxy-3-quinolyl) azo] sodium benzenesulfonate, 4-benzoylamino-2,5-diethoxybenzenediazonium, 4- (dimethylamino) cinnamaldehyde, etc. can be used.
  • the water-absorbent substance is not particularly limited as long as it is a carrier that has water absorbency and can contain the first compound and the second compound.
  • a carrier that has water absorbency and can contain the first compound and the second compound.
  • paper, filter paper, cellulose, non-woven fabric, glass fiber, porous filter, cotton and the like can be mentioned.
  • a substrate can be included in this water-absorbent substance.
  • This water-absorbent substance can be used as it is, or it can be provided on a suitable member such as waterproof paper, glass, plastic, wood or metal to facilitate handling.
  • the shape, length, and thickness of the water-absorbent substance are not particularly limited as long as the sample can be contacted.
  • the first compound and the second compound can be dissolved or dispersed in a suitable solvent together with or separately from the substrate, and the solution (or dispersion) thereof can be contained in the water-absorbent substance.
  • a suitable solvent for example, Tris-hydrochloric acid buffer solution, Trismaleic acid buffer solution, phosphate buffer solution, glycine buffer solution, sodium borate buffer solution, carbonic acid-bicarbonate buffer solution, Good buffer solution, purified water or the like should be used. Can be done. Further, those obtained by adding an appropriate surfactant such as polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monooleate, octylphenol ethoxylate, etc. to these solvents can be used.
  • a 1 mM to 100 mM solution (dispersion) of the first compound and the second compound is impregnated with a water-absorbent substance of 10 ⁇ L to 500 ⁇ L, and then dried by natural drying, blast drying, vacuum vacuum drying under reduced pressure, or freeze drying. Can be used.
  • the first compound and the second compound can be dissolved in a suitable solvent and then added to the sample (solution method). Further, the first compound and the second compound can be added directly to the sample.
  • the solvent for example, Tris-hydrochloric acid buffer solution, Trismaleic acid buffer solution, phosphate buffer solution, glycine buffer solution, sodium borate buffer solution, carbonic acid-bicarbonate buffer solution, Good buffer solution, purified water or the like should be used. Can be done. Further, those obtained by adding an appropriate surfactant such as polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monooleate, octylphenol ethoxylate, etc. to these solvents can be used.
  • a 10 mM to 1000 mM solution of the first compound and the second compound can be added to the sample in an amount of 1/10 of the volume of the sample.
  • the amount added is approximately 1 mM to 100 mM.
  • the invention according to claim 5 is the method for detecting a periodontal disease-causing bacterium according to any one of claims 1 to 4, wherein the concentration of the first compound is 6.25 mM to 100 mM. ..
  • the invention according to claim 6 has a concentration of the second compound (excluding TCEP) of 6.25 mM to 100 mM, which is the cause of periodontal disease according to any one of claims 1 to 5.
  • This is a method for detecting bacteria.
  • the invention according to claim 7 is the method for detecting a periodontal disease-causing bacterium according to any one of claims 1 to 6, wherein the concentration of TCEP is 6.25 mM to 25 mM.
  • the concentration of the first compound is in the range of 6.25 mM to 100 mM and the second compound is DTT, thioglycolic acid, thioglycerol, or mercaptoethanol
  • the concentration is in the range of 6.25 mM to 100 mM, and the second compound.
  • the compound is TCEP and its concentration is 6.25 mM to 25 mM, the periodontal disease-causing bacteria can be detected in about 2 minutes. Therefore, it is possible to analyze and determine the presence or absence of periodontal disease-causing bacteria in an extremely short time, which is extremely effective as a screening for periodontal disease.
  • a first compound having an antioxidant effect and / or a second compound having an effect of protecting an SH group and cleaving a disulfide bond is included in a sample, so that the measurement is conventionally performed under high temperature conditions.
  • P. g, T.I. d, T. It is possible to analyze the trypsin-like enzyme activity peculiar to the three bacterial species of f at room temperature in less than 10 minutes (about 2 to 8 minutes). As a result, trypsin-like enzyme activity can be easily analyzed and determined in a short time, which is useful as a screening for periodontal disease.
  • Example 1 In the method for analyzing periodontal disease-causing bacteria according to the dry retention method using DTT 12.5 mM (Example 1). It is a graph which shows the detection sensitivity for each analysis time of g. P. et al. In the method for analyzing periodontal disease-causing bacteria (Example 1) according to the dry retention method using DTT 25 mM. It is a graph which shows the detection sensitivity for each analysis time of g. P.M. in the method for analyzing periodontal disease-causing bacteria (Example 1) according to the dry retention method using DTT 50 mM. It is a graph which shows the detection sensitivity for each analysis time of g. P.M.
  • Example 2 In the method for analyzing periodontal disease-causing bacteria (Example 2) according to the solution method using TCEP 50 mM. It is a graph which shows the detection sensitivity for each analysis time of g. In the method for analyzing periodontal disease-causing bacteria according to the solution method using TCEP 100 mM (Example 2), P.I. It is a graph which shows the detection sensitivity for each analysis time of g. P. et al. In the method for analyzing periodontal disease-causing bacteria according to the dry retention method using a mixture of L-ascorbic acid 25 mM and DTT 25 mM (Example 3). It is a graph which shows the detection sensitivity for each analysis time of g. P.I.
  • first compound As a compound having an antioxidant effect (first compound), L-ascorbic acid, L-cysteine hydrochloride, and glutathione were collected at 62.5 mM, 125 mM, 250 mM, 500 mM, and 1000 mM, respectively, and the collected first compound was 50 mM. After dissolving in the trismaleic acid buffer pH 8.5, the pH was adjusted so that the pH became 8.5.
  • DTT As a compound (second compound) that protects SH groups and cleaves disulfide bonds, DTT, thioglycolic acid, thioglycerol, mercaptoethanol, and TCEP are added to 62.6 mM, 125 mM, 250 mM, 500 mM, and 1000 mM concentrations. After dissolving in 50 mM trismaleic acid buffer pH 8.5, the pH was adjusted so that the pH became 8.5.
  • N- ⁇ -benzoyl-DL-arginine-2-naphthylamide hydrochloride obtained from Sigma-Aldrich Japan LLC was dissolved in 50 mM trismaleic acid buffer pH 8.5.
  • the substrate concentration is 0.11% by weight.
  • the hemin solution is obtained by dissolving 0.005 g of hemin and 0.0174 g of potassium hydrogen phosphate in 1 mL of distilled water.
  • the vitamin K1 solution is a solution of vitamin K1 in 5 mg and 1 mL of ethanol.
  • the bouillon culture solution after anaerobic culture is diluted 10-fold with sterile physiological saline, inoculated into a CDC anaerobic sheep blood agar medium (obtained from Becton Deckonson), and then 37 ° C. , 48 hours of anaerobic culture was performed, and the number of bacteria was measured by visually measuring the colonies that grew on the medium.
  • Example 1 Implementation of a dry retention method by adding the first compound and the second compound alone
  • A Dry retention of the substrate and the first compound, the second compound
  • the prepared first compound or the second compound The compound and the substrate were mixed at a ratio of 1: 9 and impregnated with 80 ⁇ L per 10 mm paper disk (obtained from Advantech). Then, the paper disc was dried at 25 ° C. overnight.
  • 7 to 11 show the detection time and the detection sensitivity in the presence of the first compound, L-cysteine hydrochloride.
  • 12 to 16 show the detection time and detection sensitivity in the presence of the first compound, glutathione.
  • 17 to 21 show the detection time and the detection sensitivity in the presence of the second compound, DTT. 22 to 26 show the detection time and detection sensitivity in the presence of the second compound, thioglycolic acid.
  • 27 to 31 show the detection time and detection sensitivity in the presence of the second compound, thioglycerol.
  • 32 to 36 show the detection time and detection sensitivity in the presence of the second compound, mercaptoethanol.
  • 37 to 41 show the detection time and detection sensitivity in the presence of the second compound, TCEP.
  • the sensitivity obtained in the 50 ° C. analysis was similarly obtained in the room temperature analysis in an analysis time of less than 10 minutes. That is, in the absence of the first compound and the second compound, a 100-fold difference in sensitivity was observed between the room temperature analysis and the 50 ° C. analysis, and the minimum bacterial concentration (P.g 1 ⁇ 10 4 cfu / mL) even in 20 minutes. Although the minimum reaction time differs depending on the type of compound due to the presence of the first compound and the second compound, all compounds are minimized to less than 10 minutes, which is equivalent to 50 ° C analysis at room temperature analysis. It was found that the bacterial concentration could be detected.
  • Table 1 compares the minimum analysis time at which the minimum bacterial concentration obtained by the presence of the first compound and the second compound at each concentration can be detected between the room temperature analysis and the 50 ° C. analysis. As shown in Table 1, the minimum analysis time differs depending on the type and concentration of the compound, but the effects of the first compound and the second compound have a wide optimum concentration, and the minimum bacterial concentration is set to less than 10 minutes at room temperature. It was confirmed that it could be detected. Furthermore, depending on the type and concentration of the compound, surprising results were obtained in which the minimum bacterial concentration could be detected at room temperature for 2 minutes. In addition, when the substrate concentration is sufficient, the reaction rate of the enzymatic reaction changes depending on the concentration of the detected substance. It takes time for the reaction to reach a steady state.
  • Example 2 Implementation of a solution method by adding the first compound and the second compound alone
  • A Drying and retaining the substrate
  • the prepared substrate is added to a 50 mM trismalate buffer pH 8.5 in a volume ratio of 9: 1.
  • the mixture was soaked in 80 ⁇ L per 10 mm paper disk (obtained from Advantech). Then, the paper disc was dried at 25 ° C. overnight.
  • (B) P. Preparation of bacterium g The prepared first compound or second compound is diluted 9-fold with 50 mM Trismalate buffer pH 8.5 to prepare a diluted solution of the compound. After culturing for 24 hours, the bacterial culture solution was diluted 10-fold stepwise with a diluted solution of the compound, and 1.0 ⁇ 10 6 cfu / mL, 1.0 ⁇ 10 5 cfu / mL, 1.0 ⁇ 10 4 cfu / A bacterial solution of mL, 1.0 ⁇ 10 3 cfu / mL was prepared.
  • 48 to 52 show the detection time and detection sensitivity in the presence of the first compound, L-cysteine hydrochloride.
  • 53 to 57 show the detection time and the detection sensitivity in the presence of the first compound, glutathione.
  • 58 to 62 show the detection time and detection sensitivity in the presence of the second compound, DTT.
  • 63 to 67 show the detection time and detection sensitivity in the presence of the second compound, thioglycolic acid.
  • 68 to 72 show the detection time and detection sensitivity in the presence of the second compound, thioglycerol.
  • 73 to 77 show the detection time and detection sensitivity in the presence of the second compound, mercaptoethanol.
  • 78 to 82 show the detection time and detection sensitivity in the presence of the second compound, TCEP.
  • the sensitivity obtained in the 50 ° C. analysis can be obtained in the same reaction time of less than 10 minutes even at room temperature. did. That is, in the absence of the first compound and the second compound, a sensitivity difference of 100 times was observed between the room temperature analysis and the 50 ° C. analysis, and the minimum bacterial concentration (P.g 1 ⁇ 10 4 cfu / mL) even in 20 minutes. Although the minimum analysis time differs depending on the type of compound due to the presence of the first compound and the second compound, all compounds are minimized to less than 10 minutes, which is equivalent to 50 ° C analysis at room temperature analysis. It was found that the bacterial concentration could be detected.
  • Table 2 compares the minimum analysis time at which the minimum bacterial concentration obtained by the presence of the first compound and the second compound at each concentration can be detected between the room temperature analysis and the 50 ° C. analysis. As shown in Table 2, the minimum analysis time differs depending on the type and concentration of the compound, but the effects of the first compound and the second compound have a wide optimum concentration, and the minimum bacterial concentration is set to less than 10 minutes at room temperature. It was confirmed that it could be detected. However, thioglycolic acid and TCEP could be detected by the dry retention method in Example 1 at the minimum bacterial concentration in less than 10 minutes, but could not be detected by this solution method. This seems to be the effect of adding the second compound directly to the bacterial culture solution.
  • the enzyme activity at an optimum temperature of 50 to 60 ° C. which is not sufficiently sensitive in room temperature analysis, protects the first compound or SH group having an antioxidant effect and cleaves the disulfide bond. It was clarified that by keeping the compound having an action dry on the water-absorbent substance or adding it to the sample, the analysis can be performed at room temperature with the same sensitivity as the 50 ° C. analysis in less than 10 minutes.
  • Example 3 Implementation of a drying retention method by mixing and adding the first compound and the second compound
  • Table 3 shows the first compound and the second compound. The mixture was mixed in the combination shown in. The mixing concentration is such that 500 mM of each of the first compound and the second compound is dissolved in 50 mM Trismalate buffer pH 8.5, and then the first compound and the second compound are mixed in equal amounts so that each becomes 250 mM. Prepared.
  • (D) Test method P.I. prepared on a paper disk impregnated with a mixture of the first compound and the second compound and a substrate. Two g-bacterial solutions impregnated with 80 ⁇ L were prepared, and one was allowed to stand at room temperature and the other at 50 ° C. for 2 minutes, 5 minutes, 8 minutes, 10 minutes, 15 minutes, and 20 minutes, respectively. The former is called room temperature analysis and the latter is called 50 ° C analysis. Then, 30 ⁇ L of the color-developing liquid was dropped on the paper disc, and the color development of the paper disc was visually observed and judged.
  • Example 4 Implementation of a solution method by mixing and adding a first compound and a second compound
  • A Mixing preparation of a first compound and a second compound Table 3 shows the first compound and the second compound. The mixture was mixed as shown. As for the mixed concentration, 55.5 mM of each of the first compound and the second compound was dissolved in 50 mM Trismalate buffer pH 8.5, and then the first compound and the second compound were mixed in equal amounts, and each was 27.75 mM. It was prepared to be.
  • the enzyme activity at an optimum temperature of 50 to 60 ° C. cannot be sufficiently sensitive by room temperature analysis, and the analysis time is long, but the first compound or SH group having an antioxidant effect is protected. It was clarified that by drying and holding the compound having an action of cleaving the disulfide bond in the water-absorbent substance or adding it to the sample, the analysis can be performed at room temperature with the same sensitivity as the 50 ° C. analysis in less than 10 minutes.
  • the present invention is useful in a technique for easily grasping the risk determination of periodontal disease, confirmation of the degree of progression, confirmation of therapeutic effect, etc. in detection and diagnosis of periodontal disease-causing bacteria.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

簡便・迅速かつ高感度に歯周病原因菌を室温でかつ10分未満(2~8分程度)で検出可能とする。歯周病原因菌のうちPorphyromonas gingivalis, Treponema denticola, Tannerella forsythiaの3種類のアルギニン特異的ペプチダーゼ活性を室温で10分未満にかつ高感度に分析する。その際に、抗酸化作用を有する第1の化合物およびまたはSH基(メルカプト基)を保護し、ジスルフィド結合を切断する作用を有する第2の化合物を、検体分析時に存在させて おく。第1の化合物は、L-アスコルビン酸、L-システイン塩酸塩、グルタチオンのうち少なくとも1種類であり、第2の化合物は、DTT、チオグリコール酸、チオグリセロール、メルカプトエタノール、TCEPのうち少なくとも1種類である。

Description

歯周病原因菌の検出方法
 この発明は歯周病原因菌の検出方法、詳しくは、高温条件下で測定される歯周病原因菌を室温10分未満(2~8分程度)で検出することが可能であり、特殊機器を必要としない歯周病原因菌の検出方法に関する。
 歯周病は、わが国の成人の約80%が罹患しているといわれている。歯周病は、歯牙喪失を引き起こし、それに伴い味覚異常や唾液分泌異常が生じるだけでなく、中枢神経並びに自律神経系の異常を招くことが明らかとなっている。さらに、近年、歯周病が冠動脈性心疾患や脳梗塞などの様々な全身性疾患のリスクファクターになっていることが指摘されるようになった。
 歯周病の検査項目のうち、細菌感染や炎症を検査する方法として、プラーク染色液を使用して染色歯面を目視で判定する方法や、染色せずに歯周プローブや歯科用探針等の先端で歯面を擦過してプラーク付着の有無を判定するするプラーク付着状況検査、歯肉縁下プラークをペーパポイントで採取し、検査機関に依頼してDNA定量法等により細菌数を測定する歯周病原細菌検査、歯周病原細菌に対する血清中のIgG抗体価を測定する抗体検査法等がある。これらの方法は、時間と労力、費用がかかるだけでなく、特殊な施設や技術を必要とするため、簡便、迅速に複数人の患者を同時に検査することができず、また、患者への負担も大きい。
 歯周病原因菌のうちPorphyromonas gingivalis(P.g)、Treponema denticola(T.d)、Tannerella forsythia(T.f)の3菌種はRed Complex(レッドコンプレックス)と呼ばれ、重症な歯周病を引き起こす最も危険な菌種群であるとされている。この3菌種はアルギニン特異的ペプチダーゼ活性(トリプシン様酵素活性)を有しており、トリプシン様酵素活性を、合成基質を用いて検出する方法が特許文献1~4において報告されている。
 また、この酵素活性は還元剤により活性化されることも知られている(特許文献3~4、非特許文献1)。さらに、この酵素活性は室温にて10分で分析できることが報告されている。(特許文献4)
 歯周病原因菌の重要な3菌種の存在をより短時間で簡便にトリプシン様酵素活性を分析、判定することができれば、歯周病のスクリーニングとして有用な方法である。
特表平8-500241号公報 特開平5-317095号公報 国際公開第2004/106541号 特開2017-93358号公報 Wendy E. Kaman et al.「Highly Specific Protease-Based Approach for Detection of Porphyromonus gingivalis in Diagnosis of periodontitis」、Journal of Clinical Microbiology、vol.50、Number 1、p.104-112、2012年
 しかしながら、トリプシン様酵素活性は、その至適温度が50~60℃でなければ十分な感度を得ることができず、測定には至適温度を維持できる特殊な機器が必要であり、歯周病原因菌の検査の普及の障害となる。また、酵素活性を室温で10分放置してから分析する場合には、その分、患者に対する時間的拘束が長くなる。このため、患者から検体を採取したその場で即時に歯周病原因菌を検出することが必要とされていた。
 そこで、本発明者らは、P.g、T.d、T.fの化学的特性に着目し、抗酸化作用を有する化合物またはSH基(メルカプト基)を保護し、ジスルフィド結合を切断する作用を有する化合物を、トリプシン様酵素活性を分析する際に存在させることで、トリプシン様酵素活性を室温10分未満で高感度に分析することが可能であることを知見し、この発明を完成させた。
 この発明は、高温条件下で測定される歯周病原因菌のうちP.g、T.d、T.fの3菌種に特有のトリプシン様酵素活性を室温10分未満(2~8分程度)で高感度に分析することが可能であり、特殊機器を必要としない歯周病原因菌の分析方法を提供することを目的とする。
 請求項1に記載の発明は、検体に含まれる歯周病原因菌を室温でかつ10分未満に検出する歯周病原因菌の検出方法であって、抗酸化作用を有する第1の化合物およびまたはSH基を保護し、ジスルフィド結合を切断する作用を有する第2の化合物を、N-α-ベンゾイル-DL-アルギニン-2-ナフチルアミド塩酸塩とともに検体と室温で接触させ、室温で10分未満放置することにより、その後の発色試薬による発色分析において歯周病原因菌を検出可能とし、前記第1の化合物は、L-アスコルビン酸、L-システイン塩酸塩、グルタチオンのうち少なくとも1種類であり、前記第2の化合物は、DTT、チオグリコール酸、チオグリセロール、メルカプトエタノール、TCEPのうち少なくとも1種類である歯周病原因菌の検出方法である。
 請求項2に記載の発明は、検体に含まれる歯周病原因菌を室温でかつ10分未満に検出する歯周病原因菌の検出方法であって、抗酸化作用を有する第1の化合物およびまたはSH基を保護し、ジスルフィド結合を切断する作用を有する第2の化合物が含まれた検体を、N-α-ベンゾイル-DL-アルギニン-2-ナフチルアミド塩酸塩に加え、室温で10分未満放置することにより、その後の発色試薬による発色分析において歯周病原因菌を検出可能とし、前記第1の化合物は、L-アスコルビン酸、L-システイン塩酸塩、グルタチオンのうち少なくとも1種類であり、前記第2の化合物は、DTT、チオグリコール酸、チオグリセロール、メルカプトエタノール、TCEPのうち少なくとも1種類である歯周病原因菌の検出方法である。
 請求項3に記載の発明は、検体に含まれる歯周病原因菌を室温でかつ10分未満に検出する歯周病原因菌の検出方法であって、抗酸化作用を有する第1の化合物およびSH基を保護し、ジスルフィド結合を切断する作用を有する第2の化合物を混合し、N-α-ベンゾイル-DL-アルギニン-2-ナフチルアミド塩酸塩とともに吸収性物質に含ませ、この吸水性物質に検体を接触させた後、室温で10分未満放置することにより、その後の発色試薬による発色分析において歯周病原因菌を検出可能とし、前記第1の化合物は、L-アスコルビン酸、L-システイン塩酸塩、グルタチオンのうち少なくとも1種類であり、前記第2の化合物は、DTT、チオグリコール酸、チオグリセロール、メルカプトエタノール、TCEPのうち少なくとも1種類である歯周病原因菌の検出方法である。
 請求項4に記載の発明は、検体に含まれる歯周病原因菌を室温でかつ10分未満に検出する歯周病原因菌の検出方法であって、抗酸化作用を有する第1の化合物およびSH基を保護し、ジスルフィド結合を切断する作用を有する第2の化合物を混合し、その後、その混合物を前記検体に含ませ、その後、この検体に、N-α-ベンゾイル-DL-アルギニン-2-ナフチルアミド塩酸塩を加え、室温で10分未満放置することにより、その後の発色試薬による発色分析において歯周病原因菌を検出可能とし、前記第1の化合物は、L-アスコルビン酸、L-システイン塩酸塩、グルタチオンのうち少なくとも1種類であり、前記第2の化合物は、DTT、チオグリコール酸、チオグリセロール、メルカプトエタノール、TCEPのうち少なくとも1種類である歯周病原因菌の検出方法である。
 第1の化合物は、抗酸化作用を有する化学物質であり、L-アスコルビン酸、L-システイン塩酸塩、グルタチオンの中から選ばれる。第1の化合物は1種類でも、複数種類を組み合わせてもよい。
 第2の化合物は、SH基を保護し、ジスルフィド結合を切断する作用を有する化学物質であり、DTT(ジチオトレイトール)、チオグリコール酸、チオグリセロール、メルカプトエタノール、TCEP(トリス(2-カルボキシエチル)ホスフィン塩酸塩)の中から選ばれる。第2の化合物は1種類でも複数種類を組み合わせてもよい。
 トリプシン様プロテアーゼ活性の分析の際に第1の化合物、第2の化合物のいずれか一方を存在させてもよく、第1の化合物、第2の化合物の両方を混在させてもよい。
 室温とは、外部系から加熱も冷却もしていない状態のことを指す。おおよそ20℃~30℃である。
 検体は、口腔内ふき取り試料、プラーク試料、舌ぬぐいおよび舌苔試料、唾液等、および口腔内から取り外したインプラント、ブリッジ、入れ歯のふき取り等の分析対象試料を適当な媒体で希釈した希釈液または分析対象試料から歯周病原因菌を適当な媒体を用いて抽出した抽出液である。
 第1の化合物、第2の化合物は、基質とともに吸水性物質に含ませることができる(乾燥保持法)。基質としては、検体中に含まれる歯周病原因菌の有する酵素の作用を受けて化学反応を起こす物質であるN-α-ベンゾイル-DL-アルギニン-2-ナフチルアミド塩酸塩を用いる。この試薬を吸水性物質(試験片、担体)に含ませておき、分析対象検体と吸水性物質とを直接接触させ、歯周病原因菌の酵素活性により遊離する発色物質の有無を分析する。この場合、必要に応じて発色試薬を用いることができる。
 発色試薬としては、種々の公知の試薬を用いることができる。例えば、4-ヒドロキシ-3-[(2,4-ジヒドロキシ-3-キノリル)アゾ]ベンゼンスルホン酸ナトリウム、4-ベンゾイルアミノ-2,5-ジエトキシベンゼンジアゾニウム、4-(ジメチルアミノ)シンナムアルデヒド等を用いることができる。
 吸水性物質は、吸水性を有し、第1の化合物、第2の化合物を含むことが可能な担体であれば特に限定されない。例えば、紙、ろ紙、セルロース、不織布、ガラス繊維、多孔質フィルターまたは綿等を挙げることができる。この吸水性物質に基質を含ませておくこともできる。この吸水性物質は、そのまま使用することもでき、あるいは、適当な部材、例えば防水性紙、ガラス、プラスチック、木材または金属等に具備させ、取り扱いを容易にすることもできる。吸水性物質の形状ならびに長さ、太さは検体を接触することができれば特に限定されるものではない。
 乾燥保持法として、第1の化合物、第2の化合物を基質とともにあるいは別々に適当な溶媒に溶解または分散させ、その溶解液(または分散液)を吸水性物質に含ませることができる。溶媒としては、例えばトリス塩酸緩衝液、トリスマレイン酸緩衝液、リン酸緩衝液、グリシン緩衝液、ホウ酸ナトリウム緩衝液、炭酸-重炭酸緩衝液、グッド緩衝液、または精製水等を使用することができる。さらにこれらの溶媒に適当な界面活性剤、例えばポリオキシエチレンソルビタンモノラウラート、ポリオキシエチレンソルビタンモノオレアート、オクチルフェノールエトキシレート等を添加したものを使用することができる。
 第1の化合物、第2の化合物の1mM~100mMの溶解液(分散液)を吸水性物質に10μL~500μLを染み込ませ、その後、自然乾燥、送風乾燥、減圧真空乾燥または凍結乾燥により乾燥させて用いることができる。
 第1の化合物、第2の化合物を適当な溶媒に溶解した後、検体に添加することができる(溶液法)。また、第1の化合物、第2の化合物を直接検体に添加することもできる。
 溶媒としては、例えばトリス塩酸緩衝液、トリスマレイン酸緩衝液、リン酸緩衝液、グリシン緩衝液、ホウ酸ナトリウム緩衝液、炭酸-重炭酸緩衝液、グッド緩衝液、または精製水等を使用することができる。さらにこれらの溶媒に適当な界面活性剤、例えばポリオキシエチレンソルビタンモノラウラート、ポリオキシエチレンソルビタンモノオレアート、オクチルフェノールエトキシレート等を添加したものを使用することができる。
 第1の化合物、第2の化合物の10mM~1000mMの溶解液を検体に、検体の体積の1/10容量を添加することができる。また、第1の化合物、第2の化合物を直接検体に添加する場合、添加量はおよそ1mM~100mMである。
 請求項5に記載の発明は、前記第1の化合物の濃度は、6.25mM~100mMである請求項1~請求項4のいずれか1項に記載の歯周病原因菌の検出方法である。
 請求項6に記載の発明は、前記第2の化合物(TCEPを除く。)の濃度は、6.25mM~100mMである請求項1~請求項5のいずれか1項に記載の歯周病原因菌の検出方法である。
請求項7に記載の発明は、前記TCEPの濃度は、6.25mM~25mMである請求項1~請求項6のいずれか1項に記載の歯周病原因菌の検出方法である。
 第1の化合物の濃度を6.25mM~100mMの範囲内、第2の化合物がDTT、チオグリコール酸、チオグリセロール、メルカプトエタノールの場合、その濃度が6.25mM~100mMの範囲内、第2の化合物がTCEPのとき、その濃度が6.25mM~25mMであれば、歯周病原因菌を2分程度で検出可能となる。したがって、きわめて短時間で歯周病原因菌の有無を分析、判定することが可能となり、歯周病のスクリーニングとして極めて有効である。
 本発明によれば、抗酸化作用を有する第1の化合物およびまたはSH基を保護し、ジスルフィド結合を切断する作用を有する第2の化合物を検体に含ませることにより、従来高温条件下で測定されていたP.g、T.d、T.fの3菌種に特有のトリプシン様酵素活性を室温で、10分未満(2~8分程度)で分析することが可能となる。これにより、トリプシン様酵素活性を短時間で簡便に分析、判定することができ、歯周病のスクリーニングとして有用である。
本発明の実施例1及び実施例3に係る歯周病原因菌の分析方法と同条件において第1の化合物および第2の化合物を含まないとき(比較例1)の検出感度を示すグラフである。 L-アスコルビン酸6.25mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-アスコルビン酸12.5mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-アスコルビン酸25mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-アスコルビン酸50mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-アスコルビン酸100mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-システイン塩酸塩6.25mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-システイン塩酸塩12.5mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-システイン塩酸塩25mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-システイン塩酸塩50mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-システイン塩酸塩100mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 グルタチオン6.25mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 グルタチオン12.5mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 グルタチオン25mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 グルタチオン50mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 グルタチオン100mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 DTT(ジチオトレイトール)6.25mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 DTT12.5mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 DTT25mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 DTT50mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 DTT100mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 チオグリコール酸6.25mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 チオグリコール酸12.5mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 チオグリコール酸25mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 チオグリコール酸50mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 チオグリコール酸100mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 チオグリセロール6.25mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 チオグリセロール12.5mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 チオグリセロール25mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 チオグリセロール50mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 チオグリセロール100mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 メルカプトエタノール6.25mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 メルカプトエタノール12.5mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 メルカプトエタノール25mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 メルカプトエタノール50mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 メルカプトエタノール100mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 TCEP(トリス(2-カルボキシエチル)ホスフィン塩酸塩)6.25mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 TCEP12.5mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 TCEP25mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 TCEP50mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 TCEP100mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.gの分析時間ごとの検出感度を示すグラフである。 本発明の実施例2及び実施例4に係る歯周病原因菌の分析方法と同条件において第1の化合物および第2の化合物を含まないとき(比較例2)の検出感度を示すグラフである。 L-アスコルビン酸6.25mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-アスコルビン酸12.5mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-アスコルビン酸25mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-アスコルビン酸50mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-アスコルビン酸100mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-システイン塩酸塩6.25mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-システイン塩酸塩12.5mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-システイン塩酸塩25mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-システイン塩酸塩50mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-システイン塩酸塩100mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 グルタチオン6.25mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 グルタチオン12.5mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 グルタチオン25mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 グルタチオン50mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 グルタチオン100mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 DTT6.25mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 DTT12.5mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 DTT25mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 DTT50mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 DTT100mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 チオグリコール酸6.25mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 チオグリコール酸12.5mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 チオグリコール酸25mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 チオグリコール酸50mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 チオグリコール酸100mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 チオグリセロール6.25mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 チオグリセロール12.5mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 チオグリセロール25mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 チオグリセロール50mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 チオグリセロール100mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 メルカプトエタノール6.25mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 メルカプトエタノール12.5mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 メルカプトエタノール25mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 メルカプトエタノール50mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 メルカプトエタノール100mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 TCEP6.25mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 TCEP12.5mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 TCEP25mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 TCEP50mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 TCEP100mMによる溶液法に係る歯周病原因菌の分析方法(実施例2)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-アスコルビン酸25mM及びDTT25mMとの混合物による乾燥保持法に係る歯周病原因菌の分析方法(実施例3)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-アスコルビン酸25mM及びチオグリコール酸25mMとの混合物による乾燥保持法に係る歯周病原因菌の分析方法(実施例3)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-アスコルビン酸25mM及びチオグリセロール25mMとの混合物による乾燥保持法に係る歯周病原因菌の分析方法(実施例3)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-アスコルビン酸25mM及びメルカプトエタノール25mMとの混合物による乾燥保持法に係る歯周病原因菌の分析方法(実施例3)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-アスコルビン酸25mM及びTCEP25mMとの混合物による乾燥保持法に係る歯周病原因菌の分析方法(実施例3)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-システイン塩酸塩25mM及びDTT25mMとの混合物による乾燥保持法に係る歯周病原因菌の分析方法(実施例3)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-システイン塩酸塩25mM及びチオグリコール酸25mMとの混合物による乾燥保持法に係る歯周病原因菌の分析方法(実施例3)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-システイン塩酸塩25mM及びチオグリセロール25mMとの混合物による乾燥保持法に係る歯周病原因菌の分析方法(実施例3)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-システイン塩酸塩25mM及びメルカプトエタノール25mMとの混合物による乾燥保持法に係る歯周病原因菌の分析方法(実施例3)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-システイン塩酸塩25mM及びTCEP25mMとの混合物による乾燥保持法に係る歯周病原因菌の分析方法(実施例3)におけるP.gの分析時間ごとの検出感度を示すグラフである。 グルタチオン25mM及びDTT25mMとの混合物による乾燥保持法に係る歯周病原因菌の分析方法(実施例3)におけるP.gの分析時間ごとの検出感度を示すグラフである。 グルタチオン25mM及びチオグリコール酸25mMとの混合物による乾燥保持法に係る歯周病原因菌の分析方法(実施例3)におけるP.gの分析時間ごとの検出感度を示すグラフである。 グルタチオン25mM及びチオグリセロール25mMとの混合物による乾燥保持法に係る歯周病原因菌の分析方法(実施例3)におけるP.gの分析時間ごとの検出感度を示すグラフである。 グルタチオン25mM及びメルカプトエタノール25mMとの混合物による乾燥保持法に係る歯周病原因菌の分析方法(実施例3)におけるP.gの分析時間ごとの検出感度を示すグラフである。 グルタチオン25mM及びTCEP25mMとの混合物による乾燥保持法に係る歯周病原因菌の分析方法(実施例3)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-アスコルビン酸25mM及びDTT25mMとの混合物による溶液法に係る歯周病原因菌の分析方法(実施例4)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-アスコルビン酸25mM及びチオグリコール酸25mMとの混合物による溶液法に係る歯周病原因菌の分析方法(実施例4)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-アスコルビン酸25mM及びチオグリセロール25mMとの混合物による溶液法に係る歯周病原因菌の分析方法(実施例4)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-アスコルビン酸25mM及びメルカプトエタノール25mMとの混合物による溶液法に係る歯周病原因菌の分析方法(実施例4)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-アスコルビン酸25mM及びTCEP25mMとの混合物による溶液法に係る歯周病原因菌の分析方法(実施例4)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-システイン塩酸塩25mM及びDTT25mMとの混合物による溶液法に係る歯周病原因菌の分析方法(実施例4)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-システイン塩酸塩25mM及びチオグリコール酸25mMとの混合物による溶液法に係る歯周病原因菌の分析方法(実施例4)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-システイン塩酸塩25mM及びチオグリセロール25mMとの混合物による溶液法に係る歯周病原因菌の分析方法(実施例4)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-システイン塩酸塩25mM及びメルカプトエタノール25mMとの混合物による溶液法に係る歯周病原因菌の分析方法(実施例4)におけるP.gの分析時間ごとの検出感度を示すグラフである。 L-システイン塩酸塩25mM及びTCEP25mMとの混合物による溶液法に係る歯周病原因菌の分析方法(実施例4)におけるP.gの分析時間ごとの検出感度を示すグラフである。 グルタチオン25mM及びDTT25mMとの混合物による溶液法に係る歯周病原因菌の分析方法(実施例4)におけるP.gの分析時間ごとの検出感度を示すグラフである。 グルタチオン25mM及びチオグリコール酸25mMとの混合物による溶液法に係る歯周病原因菌の分析方法(実施例4)におけるP.gの分析時間ごとの検出感度を示すグラフである。 グルタチオン25mM及びチオグリセロール25mMとの混合物による溶液法に係る歯周病原因菌の分析方法(実施例4)におけるP.gの分析時間ごとの検出感度を示すグラフである。 グルタチオン25mM及びメルカプトエタノール25mMとの混合物による溶液法に係る歯周病原因菌の分析方法(実施例4)におけるP.gの分析時間ごとの検出感度を示すグラフである。 グルタチオン25mM及びTCEP25mMとの混合物による溶液法に係る歯周病原因菌の分析方法(実施例4)におけるP.gの分析時間ごとの検出感度を示すグラフである。 (a)~(b)第1の化合物、第2の化合物を添加していないときの乾燥保持法に係る歯周病原因菌の分析方法(比較例1)におけるP.g菌濃度ごとの分析経時変化を示すグラフである。(c)~(d)L-アスコルビン酸25mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.g菌濃度ごとの分析経時変化を示すグラフである。(e)~(f)チオグリコール酸25mMによる乾燥保持法に係る歯周病原因菌の分析方法(実施例1)におけるP.g菌濃度ごとの分析経時変化を示すグラフである。
 以下、この発明の実施例を具体的に説明するが、これらは本発明の範囲を限定するものではない。
(第1の化合物、第2の化合物の調製)
 抗酸化作用を有する化合物(第1の化合物)として、L-アスコルビン酸、L-システイン塩酸塩、グルタチオンをそれぞれ62.5mM、125mM、250mM、500mM、1000mM採取し、採取した第1の化合物を50mMトリスマレインン酸緩衝液pH8.5に溶解後、pHが8.5となるようにpH調整を行った。
 SH基を保護し、ジスルフィド結合を切断する作用を有する化合物(第2の化合物)として、DTT、チオグリコール酸、チオグリセロール、メルカプトエタノール、TCEPを62.6mM、125mM、250mM、500mM、1000mM濃度に、50mMトリスマレイン酸緩衝液pH8.5に溶解後、pHが8.5となるようにpH調整を行った。
(基質の調製)
 基質として、N-α-ベンゾイル-DL-アルギニン-2-ナフチルアミド塩酸塩(シグマアルドリッチジャパン合同会社から入手)を50mMトリスマレイン酸緩衝液pH8.5に溶解した。基質濃度は0.11重量%である。
(発色液の調製)
 4-(ジメチルアミノ)シンナムアルデヒド(DMAC)(シグマアルドリッチジャパン合同会社から入手)を1mol/L塩酸に溶解した。DMACの濃度は0.1重量%である。
(P.g菌(検体)の培養)
 調製Porphyromonas gingivalis(P.g菌)JCM12257を、ブイヨン培地に接種し、37℃、24時間嫌気培養し、1.0×10cfu/mLの菌培養液を得た。
 ブイヨン培地は、トリプチケースソイブロス3.0g、イーストエクストラクト0.5g、L-システイン塩酸塩0.05g、ヘミン溶液0.1mL、ビタミンK1溶液0.02mL、蒸留水100mLによって調製し、調製に121℃、15分間殺菌処理を行った。
 ヘミン溶液はヘミン0.005g、リン酸水素カリウム0.0174gを蒸留水1mLに溶解したものである。ビタミンK1溶液は、ビタミンK1を5mg、エタノール1mLに溶解したものである。
 菌数の測定方法は、嫌気培養後のブイヨン培養液を滅菌生理食塩水にて10倍段階希釈し、CDC嫌気性菌用ヒツジ血液寒天培地(ベクトンデッキンソン社から入手)に接種後、37℃、48時間嫌気培養し、培地上に発育した集落を肉眼にて計測することで菌数測定を行った。
(実施例1)第1の化合物および第2の化合物の単独添加による乾燥保持法の実施
(A)基質及び第1の化合物、第2の化合物の乾燥保持
 調製した第1の化合物または第2の化合物と、基質とを1:9の割合で混合し、10mmのペーパディスク(アドバンテック社から入手)1枚あたり80μL染み込ませた。その後、ペーパディスクを25℃、一晩乾燥させた。
(B)P.gの調製
 24時間培養後の菌培養液を50mMトリスマレイン酸緩衝液pH8.5にて10倍段階希釈し、1.0×10cfu/mL、1.0×10cfu/mL、1.0×10cfu/mL、1.0×10cfu/mLの菌液を調製した。
(C)試験方法
 各濃度の第1の化合物または第2の化合物と、基質とを染み込ませたペーパディスクに調製後のP.g菌液を80μL染み込ませたものを2つ用意し、一方を室温で、他方を50℃にてそれぞれ2分、5分、8分、10分、15分、20分間静置した。前者を室温分析、後者を50℃分析と称する。その後、ペーパディスクに発色液を30μL滴下し、ペーパディスクの発色を肉眼にて観察、判定を行った。
(D)結果
 第1の化合物、第2の化合物を含まない場合のP.gの検出感度を図1に示す。図1に示すように第1の化合物、第2の化合物が存在しない室温分析では、20分後も1.0×10cfu/mLしか検出できていないが、50℃分析では、5分で1.0×10cfu/mLまで検出でき、50℃分析は室温と比較すると短時間に100倍の検出感度であることがいえる。
図2から図6は第1の化合物であるL-アスコルビン酸が存在した場合の検出時間と検出感度を示す。図7から図11は第1の化合物であるL-システイン塩酸塩が存在した場合の検出時間と検出感度を示す。図12から図16は第1の化合物であるグルタチオンが存在した場合の検出時間と検出感度を示す。図17から図21は第2の化合物であるDTTが存在した場合の検出時間と検出感度を示す。図22から図26は第2の化合物であるチオグリコール酸が存在した場合の検出時間と検出感度を示す。図27から図31は第2の化合物であるチオグリセロールが存在した場合の検出時間と検出感度を示す。図32から図36は第2の化合物であるメルカプトエタノールが存在した場合の検出時間と検出感度を示す。図37から図41は第2の化合物であるTCEPが存在した場合の検出時間と検出感度を示す。第1の化合物、第2の化合物を存在させると50℃分析で得られる感度が室温分析でも同等に10分未満の分析時間で得られることが判明した。すなわち、第1の化合物、第2の化合物が存在しない場合、室温分析と50℃分析では100倍の感度差が認められ、20分でも最小菌濃度(P.g 1×10cfu/mL)を検出できないが、第1の化合物、第2の化合物を存在させることで化合物の種類により最小反応時間に違いはあるものの、どの化合物も室温分析にて50℃分析と同等の10分未満に最小菌濃度を検出できることが判明した。第1の化合物、第2の化合物を各濃度で存在させることで得られる最小菌濃度の検出が可能な最小分析時間を室温分析と50℃分析とで比較し表1に示す。表1に示すように、化合物の種類や濃度により最小分析時間は異なるが、第1の化合物、第2の化合物の効果は広い至適濃度を有し、室温で10分未満に最小菌濃度を検出できることが確認できた。さらに、化合物の種類および濃度によっては室温2分で最小菌濃度を検出できる驚くべき結果が得られた。
また、酵素反応は基質濃度が十分量ある場合、検出物質の濃度により反応速度が変わり、検出物質の濃度が高いほど短時間に反応が定常状態に達し、逆に検出物質の濃度が低いと、反応が定常状態に達するまでの時間を要する。しかし図113に示すように、第1の化合物および第2の化合物が存在すると、菌濃度が低い場合も、高い場合と同様の時間で定常状態に達することが確認された。図の縦軸は本発明の分析における発色の強さ(数字が高くなるほど発色が強いことを示す)、横軸に反応時間を示している。第1の化合物および第2の化合物が存在しない場合、室温分析では1×10cfu/mLのみ反応が認められたが、20分後も定常状態には至っていない。しかし、第1の化合物および第2の化合物が存在すると、室温分析においても1×10cfu/mLのP.g菌濃度で反応が認められ、どの菌濃度でもほぼ同等の反応時間で定常状態になっていることが確認された。さらに50℃分析においても第1の化合物および第2の化合物が存在した場合は存在しない場合よりも早期に定常状態に達することも確認された。すなわち、第1の化合物および第2の化合物の存在は室温分析においてどの菌濃度でも同等の時間で定常状態に達することが判明した。
Figure JPOXMLDOC01-appb-T000001
(実施例2)第1の化合物および第2の化合物の単独添加による溶液法の実施
(A)基質乾燥保持
 調製した基質を50mMトリスマレイン酸緩衝液pH8.5に体積割合で9:1となるように混合し、10mmのペーパディスク(アドバンテック社から入手)1枚あたり80μL染み込ませた。その後、ペーパディスクを25℃、一晩乾燥させた。
(B)P.g菌の調製
 調製した第1の化合物または第2の化合物を50mMトリスマレイン酸緩衝液pH8.5にて9倍希釈して化合物の希釈液を調製する。
 24時間培養後の菌培養液を化合物の希釈液を用いて10倍段階希釈し、1.0×10cfu/mL、1.0×10cfu/mL、1.0×10cfu/mL、1.0×10cfu/mLの菌液を調製した。
(C)試験方法
 基質を染み込ませたペーパディスクに調製後のP.g菌液を80μL染み込ませたものを2つ用意し、一方を室温で、他方を50℃にてそれぞれ2分、5分、8分、10分、15分、20分間静置した。前者を室温分析、後者を50℃分析と称する。その後、ペーパディスクに発色液を30μL滴下し、ペーパディスクの発色を肉眼にて観察、判定を行った。
(D)結果
 第1の化合物、第2の化合物を含まない場合のP.gの検出感度を図42に示す。図42に示すように第1の化合物、第2の化合物が存在しない室温分析では、20分後も1.0×10cfu/mLしか検出できていないが、50℃分析では、5分で1.0×10cfu/mLまで検出でき、50℃分析は室温と比較すると短時間に100倍の検出感度であることがいえる。
図43から図47は第1の化合物であるL-アスコルビン酸が存在した場合の検出時間と検出感度を示す。図48から図52は第1の化合物であるL-システイン塩酸塩が存在した場合の検出時間と検出感度を示す。図53から図57は第1の化合物であるグルタチオンが存在した場合の検出時間と検出感度を示す。図58から図62は第2の化合物であるDTTが存在した場合の検出時間と検出感度を示す。図63から図67は第2の化合物であるチオグリコール酸が存在した場合の検出時間と検出感度を示す。図68から図72は第2の化合物であるチオグリセロールが存在した場合の検出時間と検出感度を示す。図73から図77は第2の化合物であるメルカプトエタノールが存在した場合の検出時間と検出感度を示す。図78から図82は第2の化合物であるTCEPが存在した場合の検出時間と検出感度を示す。
実施例1に示した乾燥保持法と同様に、第1の化合物、第2の化合物を存在させると50℃分析で得られる感度が室温でも同等に10分未満の反応時間で得られることが判明した。すなわち、第1の化合物、第2の化合物が存在しない場合、室温分析と50℃分析では100倍の感度差が認められ、20分でも最小菌濃度(P.g 1×10cfu/mL)を検出できないが、第1の化合物、第2の化合物を存在させることで化合物の種類により最小分析時間に違いはあるものの、どの化合物も室温分析にて50℃分析と同等の10分未満に最小菌濃度を検出できることが判明した。第1の化合物、第2の化合物を各濃度で存在させることで得られる最小菌濃度の検出が可能な最小分析時間を室温分析と50℃分析とで比較し表2に示す。表2に示すように、化合物の種類や濃度により最小分析時間は異なるが、第1の化合物、第2の化合物の効果は広い至適濃度を有し、室温で10分未満に最小菌濃度を検出できることが確認できた。ただし、チオグリコール酸とTCEPは実施例1における乾燥保持法では最小菌濃度を10分未満で検出可能であったが、本溶液法では検出することはできなかった。これは、菌培養液に直接、第2の化合物を添加した影響と思われる。
Figure JPOXMLDOC01-appb-T000002
 本発明は、至適温度が50~60℃の酵素活性が、室温分析では十分な感度が得られないものが、抗酸化作用を有する第1の化合物またはSH基を保護しジスルフィド結合を切断する作用を有する化合物を吸水性物質に乾燥保持、または検体に添加することで、室温分析でも50℃分析と同等の感度でかつ10分未満で分析できることが明らかとなった。
(実施例3)第1の化合物と第2の化合物の混合添加による乾燥保持法の実施
(A)第1の化合物と第2の化合物の混合調製
 第1の化合物と第2の化合物を表3に示す組合せで混合した。混合濃度は第1の化合物および第2の化合物それぞれ500mMを50mMトリスマレイン酸緩衝液pH8.5に溶解後、第1の化合物と第2の化合物を等量混合し、それぞれが250mMになるように調製した。
Figure JPOXMLDOC01-appb-T000003
(B)基質及び第1の化合物と第2の化合物の混合物の乾燥保持
 第1の化合物と第2の化合物を混合した溶液と調製した基質とを1:9の割合で混合し、10mmのペーパーディスクに1枚あたり80μL染み込ませた。その後、ペーパーディスクを25℃、一晩乾燥させた。(混合した第1の化合物および第2の化合物はそれぞれ終濃度25mM)
(C)P.g菌の調製
 24時間培養後の菌培養液を50mMトリスマレイン酸緩衝液pH8.5にて10倍段階希釈し、1.0×10cfu/mL、1.0×10cfu/mL、1.0×10cfu/mL、1.0×10cfu/mLの菌液を調製した。
(D)試験方法
 第1の化合物と第2の化合物の混合物と基質とを染み込ませたペーパディスクに調製後のP.g菌液を80μL染み込ませたものを2つ用意し、一方を室温で、他方を50℃にてそれぞれ2分、5分、8分、10分、15分、20分間静置した。前者を室温分析、後者を50℃分析と称する。その後、ペーパディスクに発色液を30μL滴下し、ペーパディスクの発色を肉眼にて観察、判定を行った。
(E)結果
 第1の化合物と第2の化合物を混合添加したP.gの検出感度を図83から図97に示す。
また、第1の化合物と第2の化合物を混合添加した組合せにおける、最小菌濃度が検出できた最小分析時間を表4に示す。これらの図と表に示すようにグルタチオンとTCEPの組合せ以外は、第1の化合物または第2の化合物を単独で添加した場合と同様に、最小菌濃度を10分未満に検出することができた。このことから、第1の化合物と第2の化合物を混合して使用しても、単独使用の場合と同様に室温分析と50℃分析で同等の感度で10分未満に検出できる結果が得られた。
Figure JPOXMLDOC01-appb-T000004
(実施例4)第1の化合物と第2の化合物の混合添加による溶液法の実施
(A)第1の化合物と第2の化合物の混合調製
 第1の化合物と第2の化合物を表3に示す組合せで混合した。混合濃度は第1の化合物および第2の化合物それぞれ55.5mMを50mMトリスマレイン酸緩衝液pH8.5に溶解後、第1の化合物と第2の化合物を等量混合し、それぞれが27.75mMになるように調製した。
(B)基質乾燥保持
 調製した基質は50mMトリスマレイン酸緩衝液pH8.5を体積割合で9:1となるように混合し、10mmのペーパディスク(アドバンテック社から入手)1枚あたり80μL染み込ませた。その後、ペーパディスクを25℃、一晩乾燥させた。
(C)P.gの調製
 24時間培養後の菌培養液を、調製した第1の化合物と第2の化合物の混合液で10倍段階希釈し、1.0×10cfu/mL、1.0×10cfu/mL、1.0×10cfu/mL、1.0×10cfu/mLの菌液を調製した。
(D)試験方法
 基質を染み込ませたペーパディスクに調製後のP.g菌液を80μL染み込ませたものを2つ用意し、一方を室温で、他方を50℃にてそれぞれ2分、5分、8分、10分、15分、20分間静置した。前者を室温分析、後者を50℃分析と称する。その後、ペーパディスクに発色液を30μL滴下し、ペーパディスクの発色を肉眼にて観察、判定を行った。
(E)結果
 第1の化合物と第2の化合物を混合添加したP.gの検出感度を図98から図112に示す。また、第1の化合物と第2の化合物を混合添加した組合せにおける、最小菌濃度が検出できた最小分析時間を表5に示す。これらの図と表に示すようにL-アスコルビン酸とDTT,L-アスコルビン酸とTCEP,L-システイン塩酸塩とDTT,L-システイン塩酸塩とTCEP,グルタチオンとDTTおよびグルタチオンとTCEPの組合せ以外は、第1の化合物または第2の化合物を単独で添加した場合と同様に、室温分析と50℃分析において同等の感度となること、10分未満に最小菌濃度を検出できることが確認できた。
Figure JPOXMLDOC01-appb-T000005
 本発明は、至適温度が50~60℃の酵素活性を、室温分析では十分な感度が得られず、分析時間も長くなるものが、抗酸化作用を有する第1の化合物またはSH基を保護しジスルフィド結合を切断する作用を有する化合物を吸水性物質に乾燥保持、または検体に添加することで、室温分析でも50℃分析と同等の感度でかつ10分未満に分析できることが明らかとなった。
 この発明は、歯周病原因菌検出や診断において、歯周病のリスク判定及び進行度合いの確認、更には治療効果の確認等を簡便に把握する技術に有用である。

Claims (7)

  1.  検体に含まれる歯周病原因菌を室温でかつ10分未満に検出する歯周病原因菌の検出方法であって、
     抗酸化作用を有する第1の化合物およびまたはSH基を保護し、ジスルフィド結合を切断する作用を有する第2の化合物を、N-α-ベンゾイル-DL-アルギニン-2-ナフチルアミド塩酸塩とともに検体と室温で接触させ、室温で10分未満放置することにより、その後の発色試薬による発色分析において歯周病原因菌を検出可能とし、
     前記第1の化合物は、L-アスコルビン酸、L-システイン塩酸塩、グルタチオンのうち少なくとも1種類であり、
     前記第2の化合物は、DTT、チオグリコール酸、チオグリセロール、メルカプトエタノール、TCEPのうち少なくとも1種類である歯周病原因菌の検出方法。
  2.  検体に含まれる歯周病原因菌を室温でかつ10分未満に検出する歯周病原因菌の検出方法であって、
     抗酸化作用を有する第1の化合物およびまたはSH基を保護し、ジスルフィド結合を切断する作用を有する第2の化合物が含まれた検体を、N-α-ベンゾイル-DL-アルギニン-2-ナフチルアミド塩酸塩に加え、室温で10分未満放置することにより、その後の発色試薬による発色分析において歯周病原因菌を検出可能とし、
     前記第1の化合物は、L-アスコルビン酸、L-システイン塩酸塩、グルタチオンのうち少なくとも1種類であり、
     前記第2の化合物は、DTT、チオグリコール酸、チオグリセロール、メルカプトエタノール、TCEPのうち少なくとも1種類である歯周病原因菌の検出方法。
  3.  検体に含まれる歯周病原因菌を室温でかつ10分未満に検出する歯周病原因菌の検出方法であって、
     抗酸化作用を有する第1の化合物およびSH基を保護し、ジスルフィド結合を切断する作用を有する第2の化合物を混合し、N-α-ベンゾイル-DL-アルギニン-2-ナフチルアミド塩酸塩とともに吸収性物質に含ませ、この吸水性物質に検体を接触させた後、室温で10分未満放置することにより、その後の発色試薬による発色分析において歯周病原因菌を検出可能とし、
     前記第1の化合物は、L-アスコルビン酸、L-システイン塩酸塩、グルタチオンのうち少なくとも1種類であり、
     前記第2の化合物は、DTT、チオグリコール酸、チオグリセロール、メルカプトエタノール、TCEPのうち少なくとも1種類である歯周病原因菌の検出方法。
  4.  検体に含まれる歯周病原因菌を室温でかつ10分未満に検出する歯周病原因菌の検出方法であって、
     抗酸化作用を有する第1の化合物およびSH基を保護し、ジスルフィド結合を切断する作用を有する第2の化合物を混合し、その後、その混合物を前記検体に含ませ、その後、この検体に、N-α-ベンゾイル-DL-アルギニン-2-ナフチルアミド塩酸塩を加え、室温で10分未満放置することにより、その後の発色試薬による発色分析において歯周病原因菌を検出可能とし、
     前記第1の化合物は、L-アスコルビン酸、L-システイン塩酸塩、グルタチオンのうち少なくとも1種類であり、
     前記第2の化合物は、DTT、チオグリコール酸、チオグリセロール、メルカプトエタノール、TCEPのうち少なくとも1種類である歯周病原因菌の検出方法。
  5.  前記第1の化合物の濃度は、6.25mM~100mMである請求項1~請求項4のいずれか1項に記載の歯周病原因菌の検出方法。
  6.  前記第2の化合物(TCEPを除く。)の濃度は、6.25mM~100mMである請求項1~請求項5のいずれか1項に記載の歯周病原因菌の検出方法。
  7.  前記TCEPの濃度は、6.25mM~25mMである請求項1~請求項6のいずれか1項に記載の歯周病原因菌の検出方法。
PCT/JP2020/016256 2019-04-25 2020-04-13 歯周病原因菌の検出方法 WO2020218052A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/605,407 US20220205011A1 (en) 2019-04-25 2020-04-13 Method for detecting periodontopathic bacteria
CN202080031197.9A CN113748214A (zh) 2019-04-25 2020-04-13 牙周病细菌检测方法
EP20794443.0A EP3940081A4 (en) 2019-04-25 2020-04-13 METHOD FOR DETECTING PERIODONTAL BACTERIA
KR1020217032903A KR102645488B1 (ko) 2019-04-25 2020-04-13 치주병 원인균의 검출 방법
JP2021515997A JP7370616B2 (ja) 2019-04-25 2020-04-13 歯周病原因菌の検出方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-083482 2019-04-25
JP2019083482 2019-04-25

Publications (1)

Publication Number Publication Date
WO2020218052A1 true WO2020218052A1 (ja) 2020-10-29

Family

ID=72942101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016256 WO2020218052A1 (ja) 2019-04-25 2020-04-13 歯周病原因菌の検出方法

Country Status (7)

Country Link
US (1) US20220205011A1 (ja)
EP (1) EP3940081A4 (ja)
JP (1) JP7370616B2 (ja)
KR (1) KR102645488B1 (ja)
CN (1) CN113748214A (ja)
TW (1) TW202104597A (ja)
WO (1) WO2020218052A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317095A (ja) 1991-01-18 1993-12-03 Sunstar Inc 歯周疾患検査剤および検査キット
JPH08500241A (ja) 1992-05-22 1996-01-16 ユニヴァーシティ オブ ミシガン 歯周病病原性細菌のタンパク質加水分解活性の測定系
WO2004106541A1 (ja) 2003-05-30 2004-12-09 Kyushu Tlo Company, Limited 歯周病マーカー
JP2017093358A (ja) 2015-11-25 2017-06-01 アドテック株式会社 歯周病原因菌の分析方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2662228B2 (ja) * 1987-11-30 1997-10-08 サンスター株式会社 歯周病原性菌検査薬
JP2662227B2 (ja) * 1987-11-30 1997-10-08 サンスター株式会社 歯周病原性菌検査薬
ATE141334T1 (de) * 1990-10-15 1996-08-15 Maude Birgitta Wikstroem Verfahren zur bestimmung von porphyromonas gingivalis
JP3413199B2 (ja) * 1992-05-22 2003-06-03 ジェイ. ロッシュ、ウォルター 歯周病病原性細菌のタンパク質加水分解活性の測定系
SE0400191D0 (sv) * 2004-01-30 2004-01-30 Tendera Ab A test kit for detecting periodontal disease
JP5653998B2 (ja) * 2009-04-01 2015-01-14 コルゲート・パーモリブ・カンパニーColgate−Palmolive Company 口の健康のための代謝産物およびその使用
CN102802602B (zh) * 2009-06-08 2014-08-06 狮王株式会社 口腔用组合物
CN102978276B (zh) * 2012-12-24 2015-11-04 丁兆明 一种快速检测细胞中谷胱甘肽的方法
JP2017023093A (ja) * 2015-07-27 2017-02-02 三菱レイヨン株式会社 歯周病及び齲蝕のリスクの判定方法
KR20220026367A (ko) * 2020-08-25 2022-03-04 주식회사 덴오믹스 구강질환 유발 세균 검출용 조성물
KR20230055474A (ko) * 2021-10-19 2023-04-26 아주대학교산학협력단 치은열구액 내 세균의 군집을 이용한 치주질환 진단용 조성물 및 이의 용도

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317095A (ja) 1991-01-18 1993-12-03 Sunstar Inc 歯周疾患検査剤および検査キット
JPH08500241A (ja) 1992-05-22 1996-01-16 ユニヴァーシティ オブ ミシガン 歯周病病原性細菌のタンパク質加水分解活性の測定系
WO2004106541A1 (ja) 2003-05-30 2004-12-09 Kyushu Tlo Company, Limited 歯周病マーカー
JP2017093358A (ja) 2015-11-25 2017-06-01 アドテック株式会社 歯周病原因菌の分析方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3940081A4
WENDY E. KAMAN ET AL.: "Highly Specific Protease-Based Approach for Detection of Porphyromonus gingivalis in Diagnosis of periodontitis", JOURNAL OF CLINICAL MICROBIOLOGY, vol. 50, no. 1, 2012, pages 104 - 112, XP002689489, DOI: 10.1128/JCM.05313-11

Also Published As

Publication number Publication date
JPWO2020218052A1 (ja) 2020-10-29
US20220205011A1 (en) 2022-06-30
KR20210139351A (ko) 2021-11-22
CN113748214A (zh) 2021-12-03
EP3940081A1 (en) 2022-01-19
TW202104597A (zh) 2021-02-01
KR102645488B1 (ko) 2024-03-08
JP7370616B2 (ja) 2023-10-30
EP3940081A4 (en) 2023-01-11

Similar Documents

Publication Publication Date Title
JP2763635B2 (ja) 生体液中のジアミンの検出
KR960007744B1 (ko) 아스파르테이트 아미노트랜스퍼라제(ast)와 연관된 질환의 검출방법 및 분석킷트
US7435558B2 (en) Ascertaining the patient related risk of caries
WO2021239120A1 (zh) 一种快速检测幽门螺旋杆菌耐药性的试剂盒及方法
Tanaka et al. Detecting bacterial infections in wounds: a review of biosensors and wearable sensors in comparison with conventional laboratory methods
JP2009523029A (ja) 炎症の予防または軽減のために、細胞表面受容体を調節する方法
WO2020218052A1 (ja) 歯周病原因菌の検出方法
JP6449136B2 (ja) 歯周病原因菌の分析方法
EP0491936A1 (en) VERY FAST DETECTION OF FUNGAL ORIGIN INFECTIONS.
Gürdöl et al. Gamma-glutamyl transferase activity in human platelets: quantification of activity, isoenzyme characterization and potential clinical relevance
JPH03500369A (ja) 内毒素及び炎症物質を監視することによる歯周病監視方法
JP4792585B2 (ja) 口腔細菌の迅速検出方法
JP2662227B2 (ja) 歯周病原性菌検査薬
FI93026C (fi) In vitro -diagnostinen menetelmä periodontaalisten sairauksien toteamiseksi
Heilbronn An electrometric method for the determination of cholinesterase activity
Malagi Chairside diagnostic test kits in periodontics–a review
JP4284131B2 (ja) 口腔内微生物の分析方法
JP2662228B2 (ja) 歯周病原性菌検査薬
JPH08500241A (ja) 歯周病病原性細菌のタンパク質加水分解活性の測定系
CA1276531C (en) Diagnostic saliva test for detecting periodontal disease
JP4074163B2 (ja) 口腔内感染診断用培地組成物
JP3413199B2 (ja) 歯周病病原性細菌のタンパク質加水分解活性の測定系
JPH05317095A (ja) 歯周疾患検査剤および検査キット
KR20220166484A (ko) 단백질 분해효소를 이용한 전기화학적 박테리아 검출 센서
JP3653575B2 (ja) 血中のd−アラビニトールの直接比色定量法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794443

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217032903

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020794443

Country of ref document: EP

Effective date: 20211011

WWE Wipo information: entry into national phase

Ref document number: 2021515997

Country of ref document: JP