WO2020216981A1 - Procedimiento de obtención de heparinas de bajo peso molecular por filtración de flujo tangencial - Google Patents

Procedimiento de obtención de heparinas de bajo peso molecular por filtración de flujo tangencial Download PDF

Info

Publication number
WO2020216981A1
WO2020216981A1 PCT/ES2020/070263 ES2020070263W WO2020216981A1 WO 2020216981 A1 WO2020216981 A1 WO 2020216981A1 ES 2020070263 W ES2020070263 W ES 2020070263W WO 2020216981 A1 WO2020216981 A1 WO 2020216981A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
tff
carried out
heparin
process according
Prior art date
Application number
PCT/ES2020/070263
Other languages
English (en)
French (fr)
Inventor
Guillermo Franco Rodríguez
Ibon Gutierro Aduriz
Original Assignee
Laboratorios Farmacéuticos Rovi, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to SG11202111009WA priority Critical patent/SG11202111009WA/en
Priority to ES202090025A priority patent/ES2888148B2/es
Application filed by Laboratorios Farmacéuticos Rovi, S.A. filed Critical Laboratorios Farmacéuticos Rovi, S.A.
Priority to CA3134458A priority patent/CA3134458C/en
Priority to CN202080001040.1A priority patent/CN112673027A/zh
Priority to MX2021011671A priority patent/MX2021011671A/es
Priority to AU2020263142A priority patent/AU2020263142A1/en
Priority to JP2021559706A priority patent/JP2022530321A/ja
Priority to KR1020217032026A priority patent/KR20220005441A/ko
Priority to PE2021001650A priority patent/PE20212330A1/es
Priority to BR112021020048A priority patent/BR112021020048A2/pt
Priority to EP20794489.3A priority patent/EP3943513A4/en
Publication of WO2020216981A1 publication Critical patent/WO2020216981A1/es
Priority to IL286931A priority patent/IL286931A/en
Priority to CONC2021/0013320A priority patent/CO2021013320A2/es
Priority to US17/509,255 priority patent/US20220112315A1/en
Priority to ZA2021/09022A priority patent/ZA202109022B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0075Heparin; Heparan sulfate; Derivatives thereof, e.g. heparosan; Purification or extraction methods thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0075Heparin; Heparan sulfate; Derivatives thereof, e.g. heparosan; Purification or extraction methods thereof
    • C08B37/0078Degradation products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/16Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/10Heparin; Derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2649Filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/10Cross-flow filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/16Diafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range

Definitions

  • the present invention relates to a process for obtaining low molecular weight heparins with a specific molecular weight distribution, which comprises at least one concentration step by tangential flow filtration. Apart from concentration by tangential flow filtration, the process can encompass other steps such as diafiltration or treatment with hydrogen peroxide. Therefore, the present invention can be included in the field of pharmaceutical technology.
  • Heparin is a polysaccharide of the family of glycosaminoglycans, formed by uronic acid (L-iduronic acid or D-glucuronic acid) and D-glucosamine, linked alternately.
  • L-iduronic acid can be 2-O-sulphated and D-glucosamine can be / V-sulphated and / or 6-O-sulphated, and to a lesser extent / V-acetylated or 3-O-sulphated.
  • Heparin is preferably used as a sodium salt, but it can also be used as a salt of other alkali or alkaline earth metals and is mainly used as an antithrombotic and anticoagulant drug.
  • Heparins can be classified according to their molecular weight into unfractionated heparin (UFH), low molecular weight heparin (LMWH) and very low molecular weight heparin (HMBPM).
  • UH unfractionated heparin
  • LMWH low molecular weight heparin
  • HMBPM very low molecular weight heparin
  • patent CN 103342761 describes a process for the preparation of enoxaparin sodium which includes two ultrafiltrations in series by membranes of 8 KDa and 2 KDa respectively, with the aim of eliminating degradation products and low molecular weight impurities and control the molecular weight and the molecular weight distribution of the product in the presence of alcoholic solvents.
  • the purified product Once the purified product has been obtained, it is lyophilized to obtain sodium enoxaparin. In this case, lyophilization is used to eliminate solvents and moisture that could have been lodged in the structure of the enoxaparin sodium obtained from the process of this patent.
  • Patent CN 102050888 also describes a final purification process for enoxaparin sodium in the presence of alcoholic solvents with a membrane concentration step of ⁇ 1 KDa and subsequent lyophilization in which the molecular weight and molecular weight distribution of the product are also controlled. .
  • lyophilization is used to eliminate solvents and humidity that could have been lodged in the structure of the enoxaparin sodium obtained from the process of this patent.
  • a tangential filtration methodology (or TFF for its acronym in English) is used using non-alcoholic diafiltration buffers, which represents a significant advantage over the procedures described in the prior art since in addition the content of residual solvents in the product obtained is minimized, therefore improving the purity profile with respect to these.
  • the method designed in the present invention provides a process that can be carried out continuously since it allows the profiling of the product obtained without the need for structural adjustments. This means that with respect to the production processes that involve purification by fractional precipitations, the production time is minimized with the consequent improvement in terms of cost reduction and increased production capacity.
  • the crude depolymerized heparin is the product of a heparin depolymerization process.
  • the process of the invention excludes the use of fractional precipitation of depolymerized heparin, in particular the use of fractional precipitation of depolymerized heparin produced by depolymerization of heparin is excluded.
  • the invention provides embodiments in which low molecular weight heparin is prepared in two main steps: a) depolymerization of heparin to form crude depolymerized heparin; and b) purification of the crude depolymerized heparin by means of TFF (concentration and / or diafiltration using membranes as described below) and without the use of fractional precipitation.
  • TFF concentration and / or diafiltration using membranes as described below
  • the depolymerized heparin is enoxaparin sodium or bemiparin sodium; preferably enoxaparin sodium.
  • crude enoxaparin sodium (or bemiparin sodium) is the product of a heparin depolymerization process.
  • the process of the invention excludes the use of fractional precipitation of enoxaparin sodium (or bemiparin sodium), in particular the use of fractional precipitation of enoxaparin sodium (or bemiparin sodium) produced by depolymerization of heparin is excluded.
  • the invention provides embodiments in which pure enoxaparin sodium (or bemiparin sodium) is prepared in two steps.
  • SUBSTITUTE SHEET (RULE 26) Main: a) depolymerization of heparin to form crude enoxaparin sodium (or bemiparin sodium) without fractional precipitation; and b) purification of crude enoxaparin sodium (or bemiparin sodium) by means of TFF (concentration and / or diafiltration using membranes as described below) and without the use of fractional precipitation.
  • TFF concentration and / or diafiltration using membranes as described below
  • the molecular weight (Mw) of enoxaparin falls within the following ranges.
  • the molecular weight (Mw) of bemiparin falls within the following ranges.
  • certain filtration membranes are selected with a defined pore size that allows their use on products in a wide range of molecular weights.
  • Generally available membranes range from 1 kDa to 1000 kDa (or ⁇ 1 kDa) nominal cutoff.
  • the nominal cutoff or "nominal molecular weight cutoff” (NMWCO) is defined as the minimum molecular weight of a solute that is retained by 90% by the membrane and is determined by evaluating the retention by the membrane of components of different molecular weights ( Figure 6).
  • the inventors of the present invention have developed a method that allows the obtaining of LMWH, and specifically of enoxaparin sodium and bemiparin sodium, by concentration by TFF without the need to use alcohols or other organic solvents, or buffered media with salts, obtaining a product with a better purity profile than those methods described in previous documents, with adequate quality attributes, according to the parameters described in the monograph for this product according to the European Pharmacopoeia (latest edition) and the United States Pharmacopoeia (latest edition) .
  • the product has an average molecular weight profile and an ideal oligosaccharide chain distribution for its possible pharmacological applications.
  • the present invention relates to a process for obtaining low molecular weight heparins (LMWH) with an average molecular weight distribution of between approximately 3.0 and approximately 5.0 KDa, comprising the following steps:
  • the solution of step a) is an aqueous solution.
  • the heparin concentration in step a) is preferably between about 3% and about 4% w / v, more preferably between about 3.5% and about 4% w / v, even more preferably about 4% w / v.
  • the membrane used for concentration by tangential flow filtration has a nominal cut-off of from about 0.7 to about 1 KDa; more preferably from about 0.9 to about 1 KDa. In a particular embodiment, it has a nominal cut of approximately 1 KDa.
  • SUBSTITUTE SHEET (RULE 26) Tangential flow filtration (TFF), as well as the rest of the steps of the method of the invention (clarification, depth filtration, diafiltration, treatment with H2O2), can be carried out in the aqueous phase without alcohol or other organic solvents.
  • Step b) can include at least one concentration step by tangential flow filtration (TFF) in the aqueous phase using a membrane of approximately ⁇ 1 KDa nominal cut-off, for example 1, 2 or 3, until a maximum concentration of the heparin of approximately 25% w / v.
  • TMF tangential flow filtration
  • the concentration of the heparin achieved can be at least 5% w / v, preferably at least 8% w / v.
  • a heparin concentration of at least 10% w / v is achieved, preferably between about 10% and about 25% w / v; more preferably between about 10% and about 22% w / v; even more preferably between about 10% and about 20%.
  • a heparin concentration of between approximately 10% and approximately 22% w / v is achieved.
  • a single concentration step is performed by TFF.
  • a single concentration stage is carried out by means of TFF until a heparin concentration of at least 10% w / v is achieved, preferably between approximately 10% and approximately 22% w / v, plus preferably between about 12% and about 22% w / v.
  • a single concentration step is carried out by means of TFF until achieving a heparin concentration of at least 5% w / v; preferably at least 10% w / v, more preferably between about 5% and about 15% w / v or between about 10% and about 22%.
  • the method of the invention comprises:
  • TMF tangential flow filtration
  • step b) includes two steps of concentration by TFF.
  • a first concentration is carried out by means of TFF until a concentration of the heparin of between approximately 4% and approximately 10% w / v is achieved, preferably between approximately 5% and approximately 10% w / v , and a second concentration step by means of TFF until achieving a heparin concentration of between approximately 10% to approximately 25% w / v.
  • the second concentration step achieves a heparin concentration of between about 12% and about 25%, more preferably between about 12% and about 22% w / v.
  • a concentration is carried out by TFF, in a single step, from approximately 4% w / v to approximately 12-22% w / v (or approximately 10-25% w / v).
  • the process of the invention may include one or more additional steps such as clarification, depth filtration, diafiltration with water, treatment with hydrogen peroxide or lyophilization.
  • step (a) At least one clarification step of the heparin solution of step (a) is carried out.
  • At least one depth filtration step is performed which may be prior or subsequent to any of the TFF concentration steps. For example, before or after the TFF concentration step (if only one is carried out) or the first TFF concentration step in case step b) comprises more than one TFF concentration step in case the step b) comprises more than one TFF concentration step.
  • At least one diafiltration step is carried out with water, which can be before or after any of the TFF concentration steps.
  • the TFF concentration stage or the first TFF concentration stage in case stage b) comprises more than one TFF concentration stage in case stage b) comprises more than one TFF concentration stage.
  • a treatment step with H2O2 is carried out, which may be prior to the TFF concentration step or prior to any of the concentration steps in case step b) comprises more than one TFF concentration step.
  • step b) comprises two TFF concentration steps
  • a treatment step with H2O2 can be carried out prior to the first concentration step or prior to the second concentration step.
  • At least one diafiltration step with water is carried out, which may be prior to the TFF concentration step or the TFF concentration step or the first TFF concentration step (in case step b) comprises more than one TFF concentration step) or prior to the HO treatment step mentioned above.
  • a lyophilization step of the concentrate obtained in step (b) is carried out.
  • BRM is understood to be heparins with an average molecular weight less than about 8000 Da.
  • the membranes available for use are limited since the ideal is that they present a lower cutoff of the average molecular weight of LMWH so as to allow removal of low molecular weight impurities without loss of oligosaccharide chains.
  • the nominal cut-off of the membranes used is ⁇ 1 kDa, although this can be varied depending on the molecular weights to be obtained.
  • the maintenance steps that may be required for cleaning and / or regeneration of the membranes are preferably carried out, using water, NaOH or any other product. in accordance with their specifications.
  • Figure 2 General diagram of the tangential filtration procedure.
  • FIGS 4A and 4B Schemes of the purification process according to the invention.
  • Figures 5A-5D Includes various graphs that represent that the variation both in average molecular weight (FIG. 5A) and in the distribution of molecular weights (FIG. 5B: ⁇ 2000 KDa; FIG. 5C:> 8000KDa; FIG. 5D: 2000-8000 KDa) is linear during the second concentration from 10% to 20% of the nominal concentration of the product in the retentate.
  • tangential flow filtration or “TFF” is understood as the filtration technique in which the solution to be filtered passes tangentially over the filter surface, so that the pressure difference that is generated allows the components that are smaller than pore size pass through (permeate).
  • the oversized components are retained by passing over the filter surface and back into the feed tank (retained).
  • clarification is understood as the filtration that is carried out to eliminate suspended particles present in the solution, such as filtration carried out with filters of between 1-60 microns, preferably between 1-25 microns. .
  • depth filtration is understood as that filtration in which a filter medium with multiple labyrinth-shaped passages is used, which helps to retain the particles. The larger ones will be retained on the surface and the finer ones continue their way towards the interior of the filter medium, being trapped in the internal layers, so that the turbidity of the solution is reduced.
  • it is a filtration carried out with filters of between 1-5 microns, preferably between 2-4 microns. Filtration can be accomplished with the use of water or buffered solution.
  • concentration is understood as the tangential filtration stage in which the retained product increases its concentration in the solution as permeate is eliminated (see Figure 3).
  • diafiltration is understood as the tangential filtration stage in which, while the permeate is eliminated, the solution is fed with
  • a membrane can be used as in concentration by TFF, i.e. a membrane of about ⁇ 1 KDa nominal cutoff, preferably about 0.7 to about 1 KDa, more preferably about 0.9 to about 1 KDa , even more referable about 1 KDa.
  • the heparin (after depolymerization) is a sodium salt of heparin, eg, enoxaparin sodium or bemiparin sodium.
  • Crude enoxaparin sodium can be obtained by alkaline depolymerization (e.g. NaOH) of heparin benzyl ester obtained from porcine intestinal mucosa.
  • the product obtained after the depolymerization of enoxaparin sodium corresponds to a solution that, in addition to containing crude enoxaparin sodium, contains impurities corresponding to the saponification in alkaline medium of the benzyl ester of heparin, in addition to salts corresponding to the adjustments of pH carried out during the breaking process.
  • the TFF process is carried out on this crude enoxaparin sodium solution, so that the concentration of this solution is carried out with the objective, on the one hand, of eliminating low molecular weight impurities, and on the other, to reach the adequate concentration to carry out the bleaching treatment with hydrogen peroxide.
  • the decolorizing treatment with H2O2 could be carried out before the concentration step by TFF.
  • the decolorizing treatment with H2O2 could be carried out before the concentration step by TFF.
  • a diafiltration process for exhaustive removal of low molecular weight impurities, before or after the concentration step.
  • a second concentration is carried out in order to eliminate the saline impurities generated and adjust the content of low molecular weight oligosaccharide chains, for which the average molecular weight of the solution is monitored; Once the optimal value is reached, it is lyophilized to obtain sodium enoxaparin of the appropriate purity.
  • the method of the invention comprises: a) providing a solution of depolymerized enoxaparin sodium with a distribution range of oligosaccharide chains of between approximately 0.6 to approximately 10 KDa and an enoxaparin sodium concentration of up to
  • b) carry out a concentration step by means of TFF in the aqueous phase using a membrane of ⁇ 1 KDa of nominal cut-off until achieving a heparin concentration of up to approximately 25% w / v, up to approximately 10% w / v, or preferably between about 5% and about 10% w / v; c) optionally, carry out a diafiltration step with water (eg non-buffered water) before or after step b),
  • water eg non-buffered water
  • step d) carry out a treatment step with H2O2 before or after step b), e) optionally, carry out a second concentration step by means of TFF in the aqueous phase using a membrane of ⁇ 1 KDa of nominal cut-off until a heparin concentration is achieved up to about 25% w / v, preferably between about 12% and about 25% w / v, and f) carrying out a lyophilization step of the product obtained.
  • the method of the invention comprises:
  • b) carry out a concentration step by means of TFF in the aqueous phase using a membrane of ⁇ 1 KDa of nominal cut-off until achieving a heparin concentration of up to approximately 25% w / v, up to approximately 10% w / v, or preferably between about 5% and about 10% w / v; c) carry out a treatment step with H2O2 of the product obtained in step b), d) carry out a second concentration step by means of TFF in the aqueous phase using a membrane of ⁇ 1 KDa of nominal cut-off until a heparin concentration of up to about 25% w / v, preferably between about 12% and about 25% w / v; and e) carrying out a lyophilization step of the product obtained.
  • the method of this embodiment includes a step of
  • the method of the invention comprises:
  • SUBSTITUTE SHEET (RULE 26) b) carry out a concentration step by means of TFF in the aqueous phase using a membrane of ⁇ 1 KDa of nominal cut-off until achieving a heparin concentration of up to approximately 25% w / v, up to approximately 10% w / v, or preferably between about 5% and about 10% w / v; c) carry out a stage of diafiltration with water of the product obtained in stage b), d) carry out a stage of treatment with H2O2 of the product obtained in stage c), e) optionally, carry out a stage of depth filtration of the product obtained in step d),
  • the method of this embodiment includes a step of
  • the method of the invention comprises:
  • b) carry out a concentration step by means of TFF in the aqueous phase using a membrane of ⁇ 1 KDa of nominal cut-off until achieving a heparin concentration of up to 25% w / v, preferably between approximately 5% and approximately 10% w / v ;
  • step d) carry out a treatment step with H2O2 of the product obtained in step c), e) carry out a second concentration step by means of TFF in the aqueous phase using a membrane of ⁇ 1 KDa of nominal cut-off until a heparin concentration of up to about 25% w / v, preferably between about 12% and about 25% w / v; and f) carrying out a lyophilization step of the product obtained.
  • the method of this embodiment includes a step of
  • the method of the invention comprises:
  • b) carry out a stage of diafiltration with water of the solution of stage a), c) carry out a stage of treatment with H2O2 of the product obtained in stage c), d) carry out a concentration stage by means of TFF in aqueous phase using a ⁇ 1 kDa nominal cutoff membrane to achieve a heparin concentration of up to about 25% w / v, preferably between about 5% and about 20% w / v; Y
  • the method of this embodiment includes a step of
  • SUBSTITUTE SHEET (RULE 26) a) first concentration by TFF to obtain a product with a heparin concentration of 4% to 10% w / v;
  • crude enoxaparin sodium was used as the starting product with a product concentration of 40 g / L and an oligosaccharide chain distribution between 0.6 and 10 KDa.
  • This initial product was pre-filtered with a 3.0 pm Clarigard ® filter.
  • Crude Enoxaparin Sodium is a product of the heparin depolymerization process.
  • the first concentration stage was carried out using TFF, aimed at increasing the concentration of enoxaparin to a value between 4% and 10%, as well as reducing the concentration of contaminants (mainly salts with a molecular weight ⁇ 0.5 KDa and other small products resulting from previous manufacturing procedures).
  • a Millipore ® regenerated cellulose membrane with a nominal cutoff of ⁇ 1 KDa was used.
  • the concentration stage started with approximately 2005 g of product with a transmembrane pressure (TMP) of 3.25 bar prior to passing the permeate flow to a separate container, the system was kept in total recirculation for about 15 minutes.
  • TMP transmembrane pressure
  • a second concentration stage was carried out using TFF, destined this time to reach an enoxaparin concentration of between 10% and 20% w / v, also using a Millipore ® regenerated cellulose membrane of ⁇ 1 Nominal cutoff KDa.
  • Table 3 shows the molecular weights of the samples taken during the process described above, analyzed according to the method established by the European Pharmacopoeia (EP).
  • the process of the invention was carried out following the following main steps: a) First concentration by TFF to obtain a product with a heparin concentration from 4% to 10% w / v;
  • SUBSTITUTE SHEET (RULE 26) concentration P8.
  • a sample of the retentate volume was also collected at the end of the concentration (R4), after having depolarized the membrane by leaving the system operating at a low TMP (0.8 bar) for 10 minutes.
  • Table 4 shows the molecular weights of the samples taken during the process described above, analyzed according to the method established by the European Pharmacopoeia (EP).
  • the process of the invention was carried out following the following main steps: a) First concentration by TFF to obtain a product with a heparin concentration from 4% to 10% w / v;
  • the permeate flux ranged from an initial 9.6 to a final 3.9 LMH (41% of the initial flux), for an average flux of 5.8 LMH.
  • a sample of the initial feed (BT) was also taken, before its transfer to the tank.
  • the RT solution was passed through a Millistak + ® HC Pro C0SP depth filter, reducing the turbidity to 0.57 NTU, to be subsequently treated with H2O2. Approximately 0.8 liters of product were transferred to the tank after having been treated with H2O2 and the second concentration step was carried out.
  • This second concentration was performed by taking aliquots sequentially of both the retentate and the permeate, from the initial nominal concentration of 10% (samples R'3 and P'3, respectively) to the final nominal concentration of 20% (samples R'12 and R ⁇ 2, respectively), passing through intermediate concentrations of 1 1, 12, 13, 14, 15, 16, 17, 18 and 19%.
  • Table 5 shows the molecular weights of the samples taken during the process described above, analyzed according to the method established by the European Pharmacopoeia (EP).
  • Example 4 The product obtained in the previous example is analyzed for its anti-FXa and anti-FIla activities. The results obtained were the following:
  • Example 5 The process of the invention was carried out following the following main steps: a) Diafiltration;
  • the permeate flux ranged from an initial 17.7 to a final 13.1 LMH, with an average flux of 12.6 LMH, and for 6 diavolumes.
  • samples of both the permeate (DP1 to DP6) and the retentate (DR1 to DR6) were collected.
  • the permeate is treated with H2O2 and approximately 2720 g of treated product is transferred to the tank.
  • the permeate flux ranged from 12.7 initial to 1.28 final LMH (89.9% reduction), for an average flux of 5.1 LMH.
  • the concentration was made from 4 to 15%, collecting both a permeate sample (CP1 to CP6) and a retentate (CR1 to CR6) from 10%.
  • a sample of the retentate volume was also collected at the end of the concentration (R4), after having depolarized the membrane by leaving the system operating at a low TMP (0.8 bar) for 10 minutes.
  • Table 6 shows the molecular weights of the samples taken during the process described above, analyzed according to the method established by the European Pharmacopoeia (EP).
  • the variation in both the average molecular weight and the molecular weight distribution is linear from 10% to 15% of the nominal concentration of the product in the retentate, so that, adjusting the final value of the concentration of the product in the solution of the retained, it is possible to define a certain profile of molecular weights and distribution of oligosaccharide chains to obtain enoxaparin sodium.
  • the retentate solution is lyophilized to obtain dry enoxaparin sodium.
  • Example 6 The product obtained in the previous example is analyzed for its anti-FXa and anti-FIla activities. The results obtained were as follows.
  • the term "about” is taken to mean ⁇ 10%, ⁇ 5%, or ⁇ 1% of a specified value, preferably ⁇ 10%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Procedimiento de obtención de heparinas de bajo peso molecular (HBPM) con una distribución de peso molecular de entre 3,0 y 5,0 KDa que comprende al menos una etapa de concentración mediante filtración de flujo tangencial (TFF). El proceso es útil en particular para la preparación de bemiparina y enoxaparina sin el uso de precipitación fraccionada ni el uso de soluciones alcohólicas. En particular, la preparación de HBPM se logra a través de despolimerización de heparina y filtración (ultrafiltración y/o diafiltraciónfor TFF) de la heparina despolimerizada sin uso de precipitación fraccionada y sin solución alcohólica.

Description

PROCEDIMIENTO DE OBTENCIÓN DE HEPARINAS DE BAJO PESO MOLECULAR POR FILTRACIÓN DE FLUJO TANGENCIAL
Sector de la técnica
La presente invención se refiere a un procedimiento de obtención de heparinas de bajo peso molecular con una distribución de peso molecular concreta, que comprende al menos una etapa de concentración por filtración de flujo tangencial. Aparte de la concentración por filtración de flujo tangencial, el procedimiento puede englobar otras etapas como la diafiltración o el tratamiento con peróxido de hidrógeno. Por tanto, la presente invención se puede incluir en el sector de la tecnología farmacéutica.
Antecedentes de la invención
La heparina es un polisacárido de la familia de los glicosaminoglicanos, formado por ácido urónico (ácido L-idurónico o D-glucurónico) y D-glucosamina, unidos de forma alternada. El ácido L-idurónico puede estar 2-O-sulfatado y la D-glucosamina, puede estar /V-sulfatada y/o 6-O-sulfatada, y en menor extensión /V-acetilada o 3-O-sulfatada. La heparina se usa preferentemente como sal sódica, pero también puede usarse como sal de otros metales alcalinos o alcalinotérreos y se utiliza principalmente como medicamento antitrombótico y anticoagulante.
Las heparinas se pueden clasificar en función de su peso molecular en, heparina no fraccionada (HNF), heparina de bajo peso molecular (HBPM) y heparina de muy bajo peso molecular (HMBPM). Las HBPM y HMBPM provienen de la despolimerización de la molécula original de HNF.
En cualquier caso, para la HNF así como para las diversas HBPM ó HMBPM obtenidas por los métodos conocidos de despolimerización (enzimática, ácido nitroso, b- eliminación, etc.), los procedimientos actuales de purificación se realizan por precipitación selectiva de sus cadenas oligosacarídicas con alcoholes (principalmente metanol y etanol) y en menor medida con otros solventes como acetona. Teniendo en cuenta que se emplean varios volúmenes de alcohol con respecto al volumen de la disolución acuosa que contiene el producto de interés y que además generalmente son varias las purificaciones que son necesarias realizar, desde un punto de vista industrial esta estrategia de purificación plantea un problema en cuanto al volumen de residuos alcohólicos generados en relación a su gestión, almacenamiento y reciclaje.
Así, desde un punto de vista de gestión de residuos, son más interesantes otras alternativas de purificación donde no sea necesario el uso de alcohol. Dializar la solución acuosa que contiene el producto de interés frente a una membrana del tamaño de poro adecuado es una alternativa, pero presenta el inconveniente que hay que dializar frente
HOJA DE REEMPLAZO (REGLA 26) a grandes cantidades de agua y además es complicado escalar procesos optimizados de escala de laboratorio a escala industrial.
Si analizamos el estado del arte previo, observamos que hay numerosos procedimientos de obtención de enoxaparina sódica, aunque mucho más complejos que el de la presente invención o con presencia de disolventes alcohólicos.
Así, en la patente CN 103342761 se describe un procedimiento de preparación de enoxaparina sódica en el que se incluyen dos ultrafiltraciones en serie por membranas de 8 KDa y 2 KDa respectivamente, con el objetivo de eliminar productos de degradación e impurezas de bajo peso molecular y controlar el peso molecular y la distribución de pesos moleculares del producto en presencia de disolventes alcohólicos. Una vez obtenido el producto purificado, se liofiliza para obtener enoxaparina sódica. En este caso, la liofilización se utiliza para eliminación de los disolventes y humedad que pudieran haberse quedado alojados en la estructura de la enoxaparina sódica obtenida a partir del proceso de esta patente.
La patente CN 102050888 también describe un proceso de purificación final de enoxaparina sódica en presencia de disolventes alcohólicos con una etapa de concentración en membrana de <1 KDa y posterior liofilización en el que además se controla el peso molecular y la distribución de pesos moleculares del producto. Del mismo modo que la patente anterior, la liofilización se utiliza para eliminación de los disolventes y humedad que pudieran haberse quedado alojados en la estructura de la enoxaparina sódica obtenida a partir del proceso de esta patente.
Otros procesos de preparación y/o purificación de polisacáridos están descritos en el arte: ES2161615A1 de Laboratorios Farmacéuticos ROVI, S.A., US2009105194A1 de Flengsrud, US5767269 de Hirsh, W02010/11 1710A1 de Solazyme, Inc., US2007/0154492A1 de Michon, Griffin et al. (“Isolation and characterization of heparan sulfate from crude porcine intestinal mucosal peptidoglycan heparin” en Carbohyd. Res. (1995), 276, 183-197), y US5110918 de Casu. Esos procesos requieren la precipitación fraccionada de la heparina despolimerizada.
Teniendo en cuenta el estado del arte más próximo, es reseñable que todos los documentos anteriores adolecen de inconveniencia de utilizar alcoholes en unas u otras etapas del procedimiento, lo que actualmente es algo indeseable a causa de una mayor preocupación existente por el medio ambiente. Algún documento además hace uso de medios tamponados con sales durante alguna de las etapas de filtración tangencial. Sin embargo, el control de pesos moleculares mediante el tamaño de poro empleado y los parámetros indicados por los documentos del estado del arte es poco específico y no permite definir un determinado perfil estructural de la enoxaparina sódica obtenida. En
HOJA DE REEMPLAZO (REGLA 26) consecuencia, sería deseable proporcionar un procedimiento de obtención de HBPM simplificado y eficiente, que elimine el uso de alcoholes, que además permita un control sobre el perfil del producto obtenido de tal manera que pueda ponerse en práctica en continuo.
Resumen de la invención
Como alternativa, en la presente invención se utiliza una metodología por filtración tangencial (o TFF por sus siglas en inglés) utilizando tampones de diafiltración no alcohólicos, lo que representa una ventaja significativa respecto a los procedimientos descritos en el estado del arte previo ya que además se minimiza el contenido en solventes residuales en el producto obtenido mejorando por tanto el perfil de pureza con respecto a estos. Además, el método diseñado en la presente invención proporciona un procedimiento que puede realizarse en continuo ya que permite el perfilado del producto obtenido sin necesidad de realizar ajustes estructurales. Ello hace que con respecto a los procedimientos de obtención que implican purificación por precipitaciones fraccionadas, se minimice el tiempo de producción con la consiguiente mejora en cuanto a la reducción de costes y el aumento de la capacidad de producción.
En unas realizaciones del proceso de la invención, la heparina despolimerizada cruda es producto de un proceso de despolimerización de heparina. En unas realizaciones, el proceso de la invención excluye el uso de precipitación fraccionada de la heparina despolimerizada, en particular se excluye el uso de precipitación fraccionada de la heparina despolimerizada producida por despolimerización de heparina. También, la invención provee realizaciones en la cuales la heparina de bajo peso molecular es preparada en dos etapas principales: a) despolimerización de heparina para formar heparina despolimerizada cruda; y b) purificación de la heparina despolimerizada cruda por medio de TFF (concentración y/o diafiltración usando membranas tal como están descritas a continuación) y sin uso de precipitación fraccionada.
En unas realizaciones, la heparina despolimerizada es enoxaparina sódica o bemiparina sódica; preferiblemente enoxaparina sódica.
En unas realizaciones del proceso de la invención, la enoxaparina sódica (o bemiparina sódica) cruda es producto de un proceso de despolimerización de heparina. En unas realizaciones, el proceso de la invención excluye el uso de precipitación fraccionada de la enoxaparina sódica (o bemiparina sódica), en particular se excluye el uso de precipitación fraccionada de la enoxaparina sódica (o bemiparina sódica) producida por despolimerización de heparina. También, la invención provee realizaciones en la cuales la enoxaparina sódica (o bemiparina sódica) pura es preparada en dos etapas
HOJA DE REEMPLAZO (REGLA 26) principales: a) despolimerización de heparina para formar enoxaparina sódica (o bemiparina sódica) cruda sin precipitación fraccionada; y b) purificación de la enoxaparina sódica (o bemiparina sódica) cruda por medio de TFF (concentración y/o diafiltración usando membranas tal como están descritas a continuación) y sin uso de precipitación fraccionada.
En algunas realizaciones, el peso molecular (Mw) de la enoxaparina cae dentro de los rangos siguientes.
Figure imgf000005_0001
En algunas realizaciones, el peso molecular (Mw) de la bemiparina cae adentro de los rangos siguientes.
Figure imgf000005_0002
Para controlar los parámetros que permiten la puesta en práctica del método empleado en la presente invención, se seleccionan determinadas membranas de filtración con un tamaño de poro definido que permite su utilización sobre productos en un amplio rango de pesos moleculares. Generalmente las membranas disponibles varían entre 1 KDa y 1000 KDa (o < 1 KDa) de corte nominal. El corte nominal o“nominal molecular weight cutoff” (NMWCO), se define como el peso molecular mínimo de un soluto que se retiene en un 90% por la membrana y se determina evaluando la retención por la membrana de componentes de diferentes pesos moleculares (Figura 6).
HOJA DE REEMPLAZO (REGLA 26) En HBPM tales como la bemiparina sódica o la enoxaparina sódica, con pesos moleculares medios de 3600 y 4400 Da, respectivamente, el rango de membranas disponibles se limita por tanto a aquellas con corte nominal aproximadamente <1 KDa, ya que tamaños de poro superiores conllevarían la pérdida de las cadenas oligosacarídicas de más bajo peso molecular.
Los inventores de la presente invención han desarrollado un método que permite la obtención de HBPM, y en concreto de enoxaparina sódica y bemiparina sódica, mediante concentración por TFF sin necesidad de utilizar alcoholes u otros solventes orgánicos, ni medios tamponados con sales, obteniéndose un producto con un mejor perfil de pureza que aquellos métodos descritos en documentos anteriores, con atributos de calidad adecuados, de acuerdo con los parámetros descritos en la monografía de este producto según la Farmacopea Europea (última edición) y la Farmacopea de Estados Unidos (última edición). Además, el producto presenta un perfil de peso molecular medio y una distribución de cadenas oligosacarídicas idóneo para sus posibles aplicaciones farmacológicas.
En un primer aspecto, la presente invención se refiere a un procedimiento de obtención de heparinas de bajo peso molecular (HBPM) con una distribución de peso molecular medio de entre aproximadamente 3,0 y aproximadamente 5,0 KDa, que comprende las siguientes etapas:
a) proporcionar una solución de heparina despolimerizada con un rango de distribución de cadenas oligosacarídicas de entre aproximadamente 0,6 a aproximadamente 10 KDa y una concentración de heparina de hasta aproximadamente 4% p/v;
b) realizar una etapa de concentración mediante filtración de flujo tangencial (TFF) en fase acuosa utilizando una membrana con corte nominal de aproximadamente < 1 KDa de corte nominal hasta conseguir una concentración de la heparina de hasta aproximadamente el 25% p/v.
Preferiblemente, la solución de la etapa a) es una disolución acuosa.
La concentración de heparina en la etapa a) es preferiblemente de entre aproximadamente 3% y aproximadamente 4% p/v, más preferiblemente de entre aproximadamente 3,5% y aproximadamente 4% p/v, incluso más preferiblemente de aproximadamente 4% p/v.
Preferiblemente, la membrana utilizada para la concentración mediante filtración de flujo tangencial presenta un corte nominal de aproximadamente 0,7 a aproximadamente 1 KDa; más preferiblemente de aproximadamente 0,9 a aproximadamente 1 KDa. En una realización particular, presenta un corte nominal de aproximadamente 1 KDa.
HOJA DE REEMPLAZO (REGLA 26) La filtración de flujo tangencial (TFF), así como el resto de etapas del método de la invención (clarificación, filtración de profundidad, diafiltración, tratamiento con H2O2), pueden llevarse a cabo en fase acuosa sin alcohol ni otros disolventes orgánicos.
La etapa b) puede incluir al menos una etapa de concentración mediante filtración de flujo tangencial (TFF) en fase acuosa utilizando una membrana de aproximadamente <1 KDa de corte nominal, por ejemplo 1 , 2 o 3, hasta conseguir una concentración máxima de la heparina de aproximadamente 25% p/v.
En la etapa b) la concentración de la heparina conseguida puede ser de al menos 5% p/v, preferiblemente al menos 8% p/v. Preferiblemente, en la etapa b) se consigue una concentración de la heparina de al menos 10% p/v, preferiblemente entre aproximadamente 10% y aproximadamente 25% p/v; más preferiblemente entre aproximadamente 10% y aproximadamente 22% p/v; incluso más preferiblemente entre aproximadamente 10% y aproximadamente 20%. En una realización particular, en la etapa b) se consigue una concentración de la heparina de entre aproximadamente 10% y aproximadamente 22% p/v.
En una realización, en la etapa b) se realiza una única etapa de concentración mediante TFF. En una realización particular, en la etapa b) se realiza una única etapa de concentración mediante TFF hasta conseguir una concentración de la heparina de al menos 10% p/v, preferiblemente de entre aproximadamente 10% y aproximadamente 22% p/v, más preferiblemente de entre aproximadamente 12% y aproximadamente 22% p/v.
De acuerdo con otra realización de la invención, en la etapa b) se realiza una única etapa de concentración mediante TFF hasta conseguir una concentración de la heparina de al menos un 5% p/v; preferiblemente al menos un 10% p/v, más preferiblemente entre aproximadamente el 5% y aproximadamente el 15% p/v o entre aproximadamente el 10% y aproximadamente el 22%.
En una realización adicional, el procedimiento de la invención comprende:
a) proporcionar una solución de heparina despolimerizada con un rango de distribución de cadenas oligosacarídicas de entre 0,6 a 10 KDa y una concentración de heparina de entre aproximadamente 3% y aproximadamente 4% p/v, preferiblemente aproximadamente 4% p/v; b) realizar una única etapa de concentración mediante filtración de flujo tangencial (TFF) en fase acuosa utilizando una membrana de aproximadamente <1 KDa de corte nominal hasta conseguir una concentración de la heparina de hasta aproximadamente 25% p/v, preferiblemente entre aproximadamente 12% y aproximadamente 22% p/v.
HOJA DE REEMPLAZO (REGLA 26) En otra realización, la etapa b) incluye dos etapas de concentración mediante TFF.
En una realización preferida, en la etapa (b) se realiza una primera concentración mediante TFF hasta conseguir una concentración de la heparina de entre aproximadamente 4% y aproximadamente 10% p/v, preferiblemente entre aproximadamente 5% y aproximadamente 10% p/v, y una segunda etapa de concentración mediante TFF hasta conseguir una concentración de la heparina de entre aproximadamente 10% a aproximadamente 25% p/v. En una realización más preferida, con la segunda etapa de concentración se consigue una concentración de la heparina de entre aproximadamente 12% y aproximadamente 25%, más preferiblemente entre aproximadamente 12% y aproximadamente 22% p/v.
En otra realización preferida se realiza una concentración mediante TFF, en una única etapa, desde aproximadamente el 4% p/v hasta aproximadamente el 12-22% p/v (o aproximadamente 10-25% p/v).
El procedimiento de la invención puede incluir una o varias etapas adicionales tal como clarificación, filtración de profundidad, diafiltración con agua, tratamiento con peróxido de hidrógeno o liofilización.
En otra realización preferida, se realiza al menos una etapa de clarificación de la solución de heparina de la etapa (a).
En otra realización preferida, se realiza al menos una etapa de filtración de profundidad que puede ser previa o posterior a cualquiera de las etapas de concentración de TFF. Por ejemplo, previa o posterior a la etapa de concentración de TFF (si sólo se realiza una) o a la primera etapa de concentración de TFF en caso de que la etapa b) comprenda más de una etapa de concentración de TFF en caso de que la etapa b) comprenda más de una etapa de concentración de TFF.
En otra realización preferida, se realiza al menos una etapa de diafiltración con agua que puede ser previa o posteriormente a cualquiera de las etapas de concentración de TFF. Por ejemplo, previa o posterior a la etapa de concentración de TFF o a la primera etapa de concentración de TFF en caso de que la etapa b) comprenda más de una etapa de concentración de TFF en caso de que la etapa b) comprenda más de una etapa de concentración de TFF.
En una realización preferida, se realiza una etapa de tratamiento con H2O2 que puede ser previa a la etapa de concentración de TFF o previa a cualquiera de las etapas de concentración en caso de que la etapa b) comprenda más de una etapa de concentración de TFF. Por ejemplo, en caso de que la etapa b) comprenda dos etapas de concentración de TFF, se puede realizar una etapa de tratamiento con H2O2 previa a la primera etapa de concentración o previa a la segunda etapa de concentración.
HOJA DE REEMPLAZO (REGLA 26) En otra realización preferida, se realiza al menos una etapa de diafiltración con agua que puede ser previa a la etapa de concentración de TFF o a la etapa de concentración de TFF o a la primera etapa de concentración mediante TFF (en caso de que la etapa b) comprenda más de una etapa de concentración de TFF) o previa a la etapa de tratamiento con H O anteriormente mencionada.
En otra realización preferida, se realiza una etapa de liofilización del concentrado obtenido en la etapa (b).
En la presente invención, se entiende como ΉBRM” a las heparinas con un peso molecular medio menor de aproximadamente 8000 Da. Teniendo en cuenta que uno de los objetivos del procedimiento de la invención es eliminar impurezas asociados al proceso de fabricación, que generalmente son de bajo peso molecular (< 500 Da), las membranas disponibles para su uso son limitadas ya que lo ideal es que presenten un corte menor del peso molecular medio de la HBPM de modo que permita eliminar impurezas de bajo peso molecular sin pérdida de cadenas oligosacarídicas. Preferiblemente, el corte nominal de las membranas empleadas es de <1 KDa, aunque éste puede variarse en función de los pesos moleculares que interese obtener.
Como el experto en la materia conoce, entre las distintas etapas de concentración por TFF se llevan a cabo preferiblemente las etapas de mantenimiento que puedan ser requeridas para la limpieza y/o regeneración de las membranas, utilizando para ello agua, NaOH o cualquier otro producto de acuerdo con las especificaciones de las mismas.
La especificación describe una o más realizaciones que incorporan características de esta invención. El alcance de la presente invención no se limita únicamente a las realizaciones descritas. La invención incluye todas las combinaciones y subcombinaciones de los diversos aspectos y realizaciones descritos en este documento. Estos y otros aspectos de esta invención serán evidentes con referencia a la siguiente descripción detallada, ejemplos, reivindicaciones y figuras adjuntas.
Breve descripción de los dibujos
Las figuras adjuntas, que se incorporan aquí y forman parte de la especificación, ilustran una o más realizaciones de la presente invención y, junto con la descripción, sirven además para explicar los principios de la presente invención y para permitir a una persona experto en la técnica pertinente hacer y usar la invención. Los siguientes dibujos se proporcionan solo a modo de ilustración, y por lo tanto no pretenden limitar el alcance completo de la presente invención.
HOJA DE REEMPLAZO (REGLA 26) Figura 1 : Esquema comparativo entre la filtración de flujo normal y la filtración de flujo tangencial.
Figura 2: Esquema general del procedimiento de filtración tangencial.
Figura 3: Comparación de los procesos de concentración y diafiltración
Figuras 4A y 4B: Esquemas del procedimiento de purificación de acuerdo con la invención.
Figuras 5A-5D: Comprende diversos gráficos que representan que la variación tanto en peso molecular medio (FIG. 5A) como en la distribución de pesos moleculares (FIG. 5B: <2000 KDa; FIG. 5C: >8000KDa; FIG. 5D: 2000-8000 KDa) es lineal durante la segunda concentración desde el 10% hasta el 20% de concentración nominal del producto en el retenido.
Figura 6: Corte nominal: definición.
Descripción de la invención
En la presente invención se entiende como“filtración de flujo tangencial” o“TFF” a la técnica de filtración en la que la solución a filtrar pasa tangencialmente sobre la superficie del filtro, de modo que la diferencia de presión que se genera permite que los componentes que son más pequeños que el tamaño de poro pasen a través de ellos (permeado). Los componentes con un tamaño mayor se retienen pasando sobre la superficie del filtro y vuelven al tanque de alimentación (retenido).
En la presente invención se entiende como“clarificación”, la filtración que se realiza para eliminar las partículas en suspensión presentes en la disolución, tal como la filtración llevada a cabo con filtros de entre 1-60 mieras, preferiblemente de entre 1-25 mieras.
En la presente invención se entiende como “filtración de profundidad”, como aquella filtración en la que se usa un medio filtrante con múltiples pasos en forma de laberinto, que ayuda a retener las partículas. Las de mayor tamaño quedarán retenidas en la superficie y las más finas siguen su camino hacia el interior del medio filtrante quedando atrapadas en las capas internas, de modo que se consigue disminuir la turbidez de la disolución. En una realización particular, es una filtración llevada a cabo con filtros de entre 1-5 mieras, preferiblemente de entre 2-4 mieras. La filtración se puede llegar a cabo con uso de agua o solución tamponada.
En la presente invención se entiende como“concentración”, la etapa de filtración tangencial en la que el producto retenido va aumentando su concentración en la disolución al irse eliminando permeado (ver Figura 3).
En la presente invención se entiende como“diafiltración”, la etapa de filtración tangencial en la que a la vez que se va eliminando el permeado, la disolución se va alimentando con
HOJA DE REEMPLAZO (REGLA 26) el mismo caudal de agua o solución tamponada (buffer), de modo que no se modifica la concentración del retenido en la disolución (ver Figura 3). En este caso se puede emplear una membrana como en la concentración mediante TFF, es decir una membrana de aproximadamente <1 KDa de corte nominal, preferiblemente de aproximadamente 0,7 a aproximadamente 1 KDa, más preferiblemente de aproximadamente 0,9 a aproximadamente 1 KDa, incluso más referiblemente de aproximadamente 1 KDa.
En una realización, la heparina (después de despolimerización) es una sal sódica de heparina, p.ej. enoxaparina sódica o bemiparina sódica.
La enoxaparina sódica cruda puede obtenerse mediante despolimerización alcalina (e.g. NaOH) del éster bencílico de heparina obtenida de la mucosa intestinal porcina.
En una realización particular, el producto obtenido tras la despolimerización de la enoxaparina sódica corresponde a una disolución que, además de contener enoxaparina sódica cruda, contiene impurezas correspondientes a la saponificación en medio alcalino del éster bencílico de heparina, además de sales correspondientes a los ajustes de pH realizados durante el proceso de rotura. Según una realización de la invención, el proceso de TFF se realiza sobre esta solución de enoxaparina sódica cruda, de modo que se lleva a cabo la concentración de esta solución con el objetivo, por un lado, de eliminar las impurezas de bajo peso molecular, y por otro, de alcanzar la concentración adecuada para llevar a cabo el tratamiento decolorante con peróxido de hidrógeno. Alternativamente, el tratamiento decolorante con H2O2 podría llevarse a cabo antes de la etapa de concentración mediante TFF. Estas etapas se pueden lograr sin uso de precipitación fraccionada del producto crudo (la heparina despolimerizada cruda).
Alternativamente, el tratamiento decolorante con H2O2 podría llevarse a cabo antes de la etapa de concentración mediante TFF.
Adicionalmente, es posible llevar a cabo un proceso de diafiltración (opcional) para una eliminación exhaustiva de impurezas de bajo peso molecular, anterior o posterior a la etapa de concentración. Una vez finalizada esta etapa, opcionalmente, se realiza una segunda concentración con objeto de eliminar las impurezas salinas generadas y ajustar el contenido en cadenas oligosacarídicas de bajo peso molecular, para lo que se realiza seguimiento del peso molecular medio de la disolución; una vez alcanzado el valor óptimo se liofiliza para obtener enoxaparina sódica de la pureza adecuada.
Por lo tanto, en una realización particular el procedimiento de la invención comprende: a) proporcionar una solución de enoxaparina sódica despolimerizada con un rango de distribución de cadenas oligosacarídicas de entre aproximadamente 0,6 a aproximadamente 10 KDa y una concentración de enoxaparina sódica de hasta
HOJA DE REEMPLAZO (REGLA 26) aproximadamente 4% p/v;
b) realizar una etapa de concentración mediante TFF en fase acuosa utilizando una membrana de <1 KDa de corte nominal hasta conseguir una concentración de la heparina de hasta aproximadamente 25% p/v, de hasta aproximadamente 10% p/v, o preferiblemente entre aproximadamente 5% y aproximadamente 10% p/v; c) opcionalmente, realizar una etapa de diafiltración con agua (p.ej. agua no tamponada) antes o después de la etapa b),
d) realizar una etapa de tratamiento con H2O2 antes o después de la etapa b), e) opcionalmente, realizar una segunda etapa de concentración mediante TFF en fase acuosa utilizando una membrana de <1 KDa de corte nominal hasta conseguir una concentración de la heparina de hasta aproximadamente 25% p/v, preferiblemente entre aproximadamente 12% y aproximadamente 25% p/v, y f) realizar una etapa de liofilización del producto obtenido.
En una realización particular, el procedimiento de la invención comprende:
a) proporcionar una solución de enoxaparina sódica despolimerizada con un rango de distribución de cadenas oligosacarídicas de entre aproximadamente 0,6 a aproximadamente 10 KDa y una concentración de enoxaparina sódica de hasta el 4% p/v;
b) realizar una etapa de concentración mediante TFF en fase acuosa utilizando una membrana de <1 KDa de corte nominal hasta conseguir una concentración de la heparina de hasta aproximadamente 25% p/v, de hasta aproximadamente 10% p/v, o preferiblemente entre aproximadamente 5% y aproximadamente 10% p/v; c) realizar una etapa de tratamiento con H2O2 del producto obtenido en la etapa b), d) realizar una segunda etapa de concentración mediante TFF en fase acuosa utilizando una membrana de <1 KDa de corte nominal hasta conseguir una concentración de la heparina de hasta aproximadamente 25% p/v, preferiblemente entre aproximadamente 12% y aproximadamente 25% p/v; y e) realizar una etapa de liofilización del producto obtenido.
Preferiblemente, el procedimiento de esta realización incluye una etapa de
clarificación y/o de filtración de profundidad antes de la etapa b).
En una realización particular, el procedimiento de la invención comprende:
a) proporcionar una solución de enoxaparina sódica despolimerizada con un rango de distribución de cadenas oligosacarídicas de entre aproximadamente 0,6 a aproximadamente 10 KDa y una concentración de enoxaparina sódica de hasta el 4% p/v;
HOJA DE REEMPLAZO (REGLA 26) b) realizar una etapa de concentración mediante TFF en fase acuosa utilizando una membrana de <1 KDa de corte nominal hasta conseguir una concentración de la heparina de hasta aproximadamente 25% p/v, de hasta aproximadamente 10% p/v, o preferiblemente entre aproximadamente 5% y aproximadamente 10% p/v; c) realizar una etapa de diafiltración con agua del producto obtenido en la etapa b), d) realizar una etapa de tratamiento con H2O2 del producto obtenido en la etapa c), e) opcionalmente, realizar una etapa de filtración de profundidad del producto obtenido en la etapa d),
f) realizar una segunda etapa de concentración mediante TFF en fase acuosa utilizando una membrana de <1 KDa de corte nominal hasta conseguir una concentración de la heparina de hasta aproximadamente 25% p/v, preferiblemente entre aproximadamente 12% y aproximadamente 25% p/v; y g) realizar una etapa de liofilización del producto obtenido.
Preferiblemente, el procedimiento de esta realización incluye una etapa de
clarificación y/o de filtración de profundidad antes de la etapa b).
En una realización particular, el procedimiento de la invención comprende:
a) proporcionar una solución de enoxaparina sódica despolimerizada con un rango de distribución de cadenas oligosacarídicas de entre aproximadamente 0,6 a aproximadamente 10 KDa y una concentración de enoxaparina sódica de hasta aproximadamente 4% p/v;
b) realizar una etapa de concentración mediante TFF en fase acuosa utilizando una membrana de <1 KDa de corte nominal hasta conseguir una concentración de la heparina de hasta el 25% p/v, preferiblemente entre aproximadamente 5% y aproximadamente 10% p/v;
c) realizar una etapa de filtración en profundidad del producto obtenido en la etapa b),
d) realizar una etapa de tratamiento con H2O2 del producto obtenido en la etapa c), e) realizar una segunda etapa de concentración mediante TFF en fase acuosa utilizando una membrana de <1 KDa de corte nominal hasta conseguir una concentración de la heparina de hasta aproximadamente 25% p/v, preferiblemente entre aproximadamente 12% y aproximadamente 25% p/v; y f) realizar una etapa de liofilización del producto obtenido.
Preferiblemente, el procedimiento de esta realización incluye una etapa de
clarificación y/o de filtración de profundidad antes de la etapa b).
HOJA DE REEMPLAZO (REGLA 26) En una realización particular, el procedimiento de la invención comprende:
a) proporcionar una solución de enoxaparina sódica despolimerizada con un rango de distribución de cadenas oligosacarídicas de entre 0,6 a 10 KDa y una concentración de enoxaparina sódica de hasta aproximadamente 4% p/v;
b) realizar una etapa de diafiltración con agua de la solución de la etapa a), c) realizar una etapa de tratamiento con H2O2 del producto obtenido en la etapa c), d) realizar una etapa de concentración mediante TFF en fase acuosa utilizando una membrana de <1 KDa de corte nominal hasta conseguir una concentración de la heparina de hasta aproximadamente 25% p/v, preferiblemente entre aproximadamente 5% y aproximadamente 20% p/v; y
e) realizar una etapa de liofilización del producto obtenido.
Preferiblemente, el procedimiento de esta realización incluye una etapa de
clarificación y/o de filtración de profundidad antes de la etapa b).
Ejemplos de la invención
Los siguientes ejemplos específicos que se proporcionan a continuación sirven para ilustrar la naturaleza de la presente invención. Estos ejemplos se incluyen solamente con fines ilustrativos y no han de ser interpretados como limitaciones a la invención que aquí se reivindica. La enoxaparina sódica cruda y la bemiparina sódica cruda fueron preparadas a través la despolimerización de heparina sin uso de precipitación fraccionada.
A continuación, se detalla el proceso de obtención de la enoxaparina sódica cruda, producto de partida utilizado en los ejemplos 1 , 2, 3, 4 y 5 descritos. Se disuelven 10 g de heparina sódica en agua purificada y bajo agitación se añade cloruro de bencetonio, formándose el heparinato de bencetonio. El producto formado se lava varias veces con agua para eliminar el exceso de cloruros y finalmente el producto se seca por liofilización. El heparinato de bencetonio se disuelve en cloruro de metileno y se ajusta la temperatura. Se añade cloruro de bencilo y se deja reaccionar. El producto obtenido es éster bencílico de heparina. El éster bencílico de heparina se disuelve en agua y se añade hidróxido de sodio. Una vez finalizada la reacción se neutraliza la solución y el producto formado es enoxaparina sódica cruda. Una vez obtenida la enoxaparina sódica cruda, se procede a la realización de los ejemplos descritos a continuación.
Ejemplo 1
Se realizó el procedimiento de la invención siguiendo las siguientes etapas principales:
HOJA DE REEMPLAZO (REGLA 26) a) primera concentración por TFF para obtener un producto con una concentración de heparina de 4% a 10% p/v;
b) diafiltración y tratamiento con H2O2;
c) segunda concentración por TFF para obtener un producto final con una concentración de heparina de 10% al 20% p/v.
Inicialmente, se utilizó como producto de partida enoxaparina sódica cruda con una concentración de producto de 40 g/L y una distribución de cadenas oligosacarídicas entre 0,6 y 10 KDa. Este producto inicial se prefiltró con un filtro Clarigard® de 3,0 pm. La enoxaparina sódica cruda es producto del proceso de despolimerización de heparina. A continuación, se llevó a cabo la primera etapa de concentración mediante TFF, destinada a incrementar la concentración de enoxaparina hasta un valor entre el 4% y el 10%, así como para reducir la concentración de contaminantes (principalmente sales con un peso molecular < 0,5 KDa y otros pequeños productos resultantes de procedimientos de fabricación previos). Para ello, se utilizó una membrana de celulosa regenerada Millipore® de <1 KDa de corte nominal. La etapa de concentración se inició con aproximadamente 2005 g de producto con una presión transmembrana (TMP) de 3,25 bar previamente a pasar el flujo de permeado a un contenedor separado, el sistema se mantuvo en recirculación total durante unos 15 minutos.
Durante la concentración, el flujo de permeado varió de 9 inicial a 4,8 LMH (L/m2/h) final (53% del flujo inicial), para un flujo promedio de 6,2 LMH. Se recogieron 2 x muestras de permeado, una en VCF (factor de concentración de volumen) = 1 ,26X (P1) y la otra del volumen de permeado al final de la concentración (P2). También se tomó una muestra del volumen del material retenido al final de la concentración (R1), así como una muestra de la alimentación inicial, después de la prefiltración por el filtro de 3,0 pm (B1). Los datos principales del estudio de concentración se presentan en la Tabla 1.
Figure imgf000015_0001
HOJA DE REEMPLAZO (REGLA 26) Posteriormente, se llevó a cabo una etapa de diafiltración utilizando agua purificada, destinada a clarificar el producto resultante. Durante la diafiltración, el flujo de permeado disminuyó continuamente de un 8,4 inicial a un 2,4 LMH final (aprox. 29%), para un flujo promedio de 5,03 LMH. Se recogieron 3 x muestras de permeado, cada una al finalizar cada diavolumen (D1 , D2 y D3 respectivamente) y otro a partir del volumen del material retenido al final de la diafiltración (D5). En la Tabla 2 se pueden apreciar las condiciones con las que se llevó a cabo el estudio de diafiltración:
Figure imgf000016_0001
Los aproximadamente 0,8 L de producto obtenido tras la diafiltración se sometieron posteriormente a reacción química con H2O2.
Antes de continuar con la segunda etapa de concentración mediante TFF, se llevó a cabo una etapa adicional (opcional) de clarificación, utilizando para ello nuevamente un filtro Clarigard® de 3,0 pm, destinado a retirar las eventuales partículas que hayan podido decantar al fondo del recipiente.
A continuación, se llevó a cabo una segunda etapa de concentración mediante TFF, destinada en esta ocasión a alcanzar una concentración de enoxaparina de entre el 10% y el 20% p/v, utilizando igualmente una membrana de celulosa regenerada Millipore® de <1 KDa de corte nominal.
Durante la concentración, el flujo de permeado varió de 3 inicial a 0,75 LMH final (25%), para un flujo promedio de 1 ,5 LMH. Se recogieron 2 x muestras de permeado, una en VCF = 1 ,34X (P3) y la otra en el volumen de permeado al final de la concentración (P4). También se tomó una muestra del volumen del material retenido tras la concentración (R2), después de haber despolarizado la membrana dejando el sistema funcionando a una TMP baja (1 ,2 bar) por 10 minutos.
En la siguiente Tabla 3 se muestran los pesos moleculares de las muestras tomadas durante el proceso anteriormente descrito, analizadas según el método establecido por la farmacopea europea (EP).
HOJA DE REEMPLAZO (REGLA 26)
Figure imgf000017_0001
Como se muestra en los porcentajes de las fracciones de MW del producto objetivo (menos de 2000 Da, 2000 a 8000 Da y más de 8000 Da) en la tabla anterior, parece que la primera etapa de concentración no afecta negativamente al perfil del producto (no hay pérdida de ninguna fracción en el permeado según se ve en las muestras P1 y P2). Respecto a las muestras tomadas durante la diafiltración, D1 , D2, D3 y D5, indican que:
- básicamente no hay pérdida de la fracción más alta de MW en el permeado, a lo largo de la diafiltración; - hay una cierta pérdida de las fracciones de MW más pequeñas y medias en el permeado, la pérdida más alta es siempre relativa a la fracción más baja;
- la tasa de pérdida de las fracciones más pequeñas y medias disminuyen, respectivamente, a lo largo de la diafiltración;
HOJA DE REEMPLAZO (REGLA 26) - en general, hay una cierta reducción y enriquecimiento a lo largo de la diafiltración de fracciones más pequeñas y de fracciones media-altas respectivamente (de acuerdo con el corte de la membrana de <1 KDa).
Los números relativos a las muestras instantáneas de permeado P3, P4 y la muestra R2 del final de la segunda etapa de concentración, indican que:
- básicamente no hay pérdida de la fracción más alta de MW en el permeado, a lo largo de esta etapa;
- hay una cierta pérdida de las fracciones de MW más pequeñas y medias en el permeado, la pérdida más alta siempre es relativa a la fracción más pequeña (como en la diafiltración);
- la tasa de pérdida de la fracción media aumenta en esta segunda etapa de concentración (como en la diafiltración).
Ejemplo 2
Se realizó el procedimiento de la invención siguiendo las siguientes etapas principales: a) Primera concentración por TFF para obtener un producto con una concentración de heparina desde 4% a 10% p/v;
b) Tratamiento con H2O2;
c) Segunda concentración por TFF para obtener un producto final con una concentración de heparina desde el 10% al 20% p/v.
Aproximadamente 1936 g de producto de partida se transfirieron al tanque y el sistema se operó en recirculación total a un TMP = 3,2 bar durante 10 minutos a un flujo cruzado de 5, 1 LMM.
Durante la concentración, el flujo de permeado varió desde un 9,6 inicial hasta un 4,2 LMH final (44%), para un flujo promedio de 6 LMH. Se recolectó una muestra de permeado instantáneo en VCF = 1 ,43X (P5), otra del permeado tras finalizar la concentración (P6) y finalmente del retenido (R3) al final de la concentración, después de dejar el filtro en total recirculación a TMP = 0,6 bar para 10' (despolarización de membrana). También se tomó una muestra de la disolución de partida (B2), antes de su transferencia al tanque.
Se transfirieron aproximadamente 794 g de producto al tanque tras haber sido tratados con H2O2 y se procedió con la segunda etapa de concentración.
Durante la concentración, el flujo de permeado varió de 5,7 inicial a 0,9 LMH final (16,0%), para un flujo promedio de 2,5 LMH. 1 x muestra de permeado instantáneo fue recolectada en VCF = 1 ,33X (P7) y otra del volumen de permeado al final de la
HOJA DE REEMPLAZO (REGLA 26) concentración (P8). También se recolectó una muestra del volumen de retenido al final de la concentración (R4), después de haber despolarizado la membrana dejando el sistema funcionando a una TMP baja (0,8 bar) durante 10 minutos.
Figure imgf000019_0001
En la Tabla 4 se muestran los pesos moleculares de las muestras tomadas durante el proceso anteriormente descrito, analizadas según el método establecido por la farmacopea europea (EP).
Como lo muestran los números en la tabla anterior, parece que la primera etapa de concentración no afecta negativamente el perfil del producto (sin pérdida de ninguna fracción en el permeado, muestras P5 y P6, como en muestras P1 y P2).
Los números relativos a las muestras de permeado P7, P8 y la muestra del volumen de retenido R4 al final de la segunda etapa de concentración indican que:
no hay pérdida de la fracción más alta de MW en el permeado, a lo largo de dicha etapa;
hay una cierta pérdida de las fracciones de MW más pequeñas y medias en el permeado, la pérdida más alta siempre es relativa a la fracción más pequeña (como en el primer ensayo con diafiltración);
HOJA DE REEMPLAZO (REGLA 26) la tasa de pérdida de la fracción media aumenta en la segunda concentración (como en el proceso con diafiltración).
Finalmente, la solución de retenido se liofiliza para obtener enoxaparina sódica seca.
Ejemplo 3
Se realizó el procedimiento de la invención siguiendo las siguientes etapas principales: a) Primera concentración por TFF para obtener un producto con una concentración de heparina desde 4% a 10% p/v;
b) Filtración en profundidad;
c) Tratamiento con H2O2;
d) Segunda concentración por TFF para obtener un producto final con una concentración de heparina desde el 10% al 20% p/v.
Aproximadamente 2000 g de producto de partida (turbidez > 1000 NTU) se transfirieron al tanque y el sistema se operó en recirculación total a un TMP = 3,2 bar durante 15 minutos a un flujo cruzado de 5,2 LMM.
Durante la concentración, el flujo de permeado varió desde un 9,6 inicial hasta un 3,9 LMH final (41 % del flujo inicial), para un flujo promedio de 5,8 LMH. Se recolectó una muestra de permeado en VCF = 1 ,43X (PT) y otra al final de la concentración (P2’), así como del retenido (RT) al final de la concentración después de dejar el filtro en total recirculación a TMP = 0,7 bar para 15' (despolarización de membrana). También se tomó una muestra de la alimentación inicial (BT), antes de su transferencia al tanque. La solución RT se pasó por un filtro de profundidad Millistak +® HC Pro C0SP, reduciéndose la turbidez hasta 0,57 NTU, para ser posteriormente tratada con H2O2. Se transfirieron aproximadamente 0,8 litros de producto al tanque tras haber sido tratados con H2O2 y se procedió con la segunda etapa de concentración.
Esta segunda concentración se realizó tomando alícuotas de forma secuencial tanto del retenido como del permeado, desde la concentración nominal inicial del 10% (muestras R’3 y P’3, respectivamente) hasta la concentración nominal final del 20% (muestras R’12 y RΊ2, respectivamente), pasando por las concentraciones intermedias de 1 1 , 12, 13, 14, 15, 16, 17, 18 y 19%.
En la siguiente Tabla 5 se muestran los pesos moleculares de las muestras tomadas durante el proceso anteriormente descrito, analizadas según el método establecido por la farmacopea europea (EP).
HOJA DE REEMPLAZO (REGLA 26)
Figure imgf000021_0001
HOJA DE REEMPLAZO (REGLA 26)
Figure imgf000022_0001
La variación tanto en peso molecular medio como en la distribución de pesos moleculares es lineal durante la 2a concentración desde el 10% hasta el 20% de concentración nominal del producto en el retenido, de modo que, ajustando el valor final de la concentración del producto en la solución del retenido, es posible definir un determinado perfil de pesos moleculares y distribución de cadenas oligosacarídicas para la obtención de enoxaparina sódica. Este hecho se puede observar en la Figura 5. Finalmente, la solución de retenido se liofiliza para obtener enoxaparina sódica seca.
Ejemplo 4 El producto obtenido en el ejemplo anterior se analiza para determinación de sus actividades anti-FXa y anti-FI la. Los resultados obtenidos fueron los siguientes:
Figure imgf000022_0002
Este atributo de calidad cumple adecuadamente con los rangos definidos tanto por la Farmacopea Europea como por la de Estados Unidos para enoxaparina sódica:
- Actividad anti-FXa: 90 - 125 Ul/mg sss
- Actividad anti-FI la: 20,0 - 35,0 Ul/mg sss
- Ratio aFXa/aFlla: 3,3 - 5,3
Ejemplo 5 Se realizó el procedimiento de la invención siguiendo las siguientes etapas principales: a) Diafiltración;
b) Tratamiento con H2O2; y
HOJA DE REEMPLAZO (REGLA 26) c) Concentración por TFF para obtener un producto final con una concentración de heparina desde el 4% al 15% p/v.
Aproximadamente 3010 g de producto de partida se transfirieron al tanque y el sistema se operó en recirculación total a un TMP = 4,9 bar durante 15 minutos a un flujo cruzado de 2,0 LMM.
Durante la diafiltración, el flujo de permeado varió desde un 17,7 inicial hasta un 13,1 LMH final, con un flujo promedio de 12,6 LMH, y para 6 diavolúmenes. Tras cada volumen diafiltrado se recolectaron muestras tanto del permeado (DP1 a DP6) como del retenido (DR1 a DR6). El permeado se trata con H2O2 y aproximadamente 2720 g de producto tratado se transfieren al tanque.
Durante la concentración, el flujo de permeado varió de 12,7 inicial a 1 ,28 LMH final (89,9% de reducción), para un flujo promedio de 5,1 LMH. La concentración se realizó desde el 4 al 15%, recogiéndose tanto una muestra de permeado (CP1 a CP6) como de retenido (CR1 a CR6) a partir del 10%. 1 x muestra de permeado instantáneo fue recolectada en VCF = 1 ,33X (P7) y otra del volumen de permeado al final de la concentración (P8). También se recolectó una muestra del volumen de retenido al final de la concentración (R4), después de haber despolarizado la membrana dejando el sistema funcionando a una TMP baja (0,8 bar) durante 10 minutos.
En la siguiente Tabla 6 se muestran los pesos moleculares de las muestras tomadas durante el proceso anteriormente descrito, analizadas según el método establecido por la farmacopea europea (EP).
Figure imgf000023_0001
HOJA DE REEMPLAZO (REGLA 26)
Figure imgf000024_0001
La variación tanto en peso molecular medio como en la distribución de pesos moleculares es lineal desde el 10% hasta el 15% de concentración nominal del producto en el retenido, de modo que, ajustando el valor final de la concentración del producto en la solución del retenido, es posible definir un determinado perfil de pesos moleculares y distribución de cadenas oligosacarídicas para la obtención de enoxaparina sódica. La solución de retenido se liofiliza para obtener enoxaparina sódica seca.
Ejemplo 6 El producto obtenido en el ejemplo anterior se analiza para determinación de sus actividades anti-FXa y anti-FI la. Los resultados obtenidos fueron los siguientes.
Figure imgf000024_0002
En vista de la descripción anterior y los ejemplos, un experto en la materia podrá practicar la invención como se reivindica sin experimentación indebida. Lo anterior se entenderá mejor con referencia a los ejemplos anteriores que detallan ciertos procedimientos para la preparación de realizaciones de la presente invención. Todas las referencias hechas a estos ejemplos tienen fines ilustrativos. Los ejemplos no deben considerarse exhaustivos, sino meramente ilustrativos de solo algunas de las muchas realizaciones contempladas por la presente invención.
Como se usa en el presente documento, el término "aproximadamente" se toma para significar ± 10%, ± 5% o ± 1% de un valor especificado, preferiblemente ± 10%. Además,
HOJA DE REEMPLAZO (REGLA 26) todos los rangos especificados en el presente documento incluyen los límites del rango y todos los valores enteros y fraccionarios, especialmente según la definición del término "aproximadamente".
HOJA DE REEMPLAZO (REGLA 26)

Claims

Reivindicaciones
1. Procedimiento de obtención de heparinas de bajo peso molecular (HBPM) con una distribución de peso molecular medio de entre aproximadamente 3,0 y aproximadamente 5,0 KDa que comprende las siguientes etapas: a) proporcionar una solución de heparina despolimerizada cruda con un rango de distribución de cadenas oligosacarídicas de entre aproximadamente 0,6 a aproximadamente 10 KDa y una concentración de heparina de hasta aproximadamente 4% p/v; b) realizar al menos una etapa de concentración mediante filtración de flujo tangencial (TFF) en fase acuosa utilizando una membrana de <1 KDa de corte nominal hasta conseguir una concentración de la heparina de hasta aproximadamente 25% p/v, proporcionando así dicha HBPM.
2. Procedimiento según la reivindicación 1 , en el que la etapa (b) se realiza una primera etapa de concentración mediante TFF hasta conseguir una concentración de la heparina de hasta aproximadamente 10% p/v y una segunda etapa de concentración mediante TFF hasta conseguir una concentración de la heparina de entre aproximadamente 10% a aproximadamente 25% p/v.
3. Procedimiento según la reivindicación 2, en el que la segunda etapa de concentración se realiza hasta una concentración de heparina de entre aproximadamente 12% a aproximadamente 22% p/v.
4. Procedimiento según una cualquiera de las reivindicaciones 1 a 3, en el que se realiza una etapa de clarificación de la solución de heparina de la etapa (a).
5. Procedimiento según una cualquiera de las reivindicaciones 1 a 4, en el que se realiza al menos una etapa de filtración de profundidad.
6. Procedimiento según la reivindicación 5, en el que la etapa de filtración de profundidad se realiza previamente a la etapa de concentración mediante TFF si sólo se realiza una o previamente a la primera etapa de concentración mediante TFF si se realiza más de una etapa de concentración mediante TFF.
7. Procedimiento según la reivindicación 6, en el que la etapa de filtración de
HOJA DE REEMPLAZO (REGLA 26) profundidad se realiza posteriormente a la etapa de concentración mediante TFF si sólo se realiza una o previamente a la primera etapa de concentración mediante TFF si se realiza más de una etapa de concentración mediante TFF.
8. Procedimiento según una cualquiera de las reivindicaciones 1 a 7, en el que se realiza al menos una etapa de diafiltración con agua.
9. Procedimiento de obtención de heparinas según la reivindicación 8, en el que la etapa de diafiltración se realiza previamente a la etapa de concentración mediante TFF si sólo se realiza una o previamente a la primera etapa de concentración mediante TFF si se realiza más de una etapa de concentración mediante TFF.
10. Procedimiento según una cualquiera de las reivindicaciones 1 a 9, que comprende al menos una etapa de tratamiento con H2O2.
11. Procedimiento según la reivindicación 10, en el que la etapa de tratamiento con H2O2 se realiza posteriormente a la etapa de concentración mediante TFF si sólo se realiza una o previamente a la primera etapa de concentración mediante TFF si se realiza más de una etapa de concentración mediante TFF.
12. Procedimiento según la reivindicación 10, en el que la etapa de tratamiento con H2C>2se realiza previamente a la etapa de concentración mediante TFF si sólo se realiza una o previamente a la primera etapa de concentración mediante TFF si se realiza más de una etapa de concentración mediante TFF.
13. Procedimiento según una cualquiera de las reivindicaciones 1 a 12, en el que se realiza una etapa de liofilización del concentrado obtenido.
14. Procedimiento según una cualquiera de las reivindicaciones 1 a 13, en el que la heparina despolimerizada cruda no haya sido preparada por precipitación fraccionada.
15. Procedimiento según una cualquiera de las reivindicaciones 1 a 14, en el que procedimiento entero excluye precipitación fraccionada de la heparina.
16. Procedimiento según una cualquiera de las reivindicaciones 1 a 15, en el que el peso molecular (Mw) de la HBPM obtenida cae dentro de los rangos siguientes
HOJA DE REEMPLAZO (REGLA 26)
Figure imgf000028_0001
17. Procedimiento según una cualquiera de las reivindicaciones 1 a 16, en el que el peso molecular (Mw) de la heparina despolimerizada cruda cae dentro de los rangos siguientes
Figure imgf000028_0002
18. Procedimiento según una cualquiera de las reivindicaciones 1 a 15, en el que el peso molecular (Mw) de la HBPM obtenida cae dentro de los rangos siguientes
Figure imgf000028_0003
19. Procedimiento según una cualquiera de las reivindicaciones 1 a 15 o 18, en el que el peso molecular (Mw) de la heparina despolimerizada cruda cae dentro de los rangos siguientes
Figure imgf000028_0004
20. Procedimiento según una cualquiera de las reivindicaciones 1 a 19, en el que en la concentración mediante filtración de flujo tangencial (TFF) se utiliza una membrana de 0,7 a 1 KDa.
21. Procedimiento según la reivindicación 20, en el que se utiliza una membrana de
HOJA DE REEMPLAZO (REGLA 26) 0,9 a 1 KDa, preferiblemente de 1 KDa.
22. Procedimiento según una cualquiera de las reivindicaciones 1 a 21 , en el que la heparina es enoxaparina sódica.
HOJA DE REEMPLAZO (REGLA 26)
PCT/ES2020/070263 2019-04-26 2020-04-24 Procedimiento de obtención de heparinas de bajo peso molecular por filtración de flujo tangencial WO2020216981A1 (es)

Priority Applications (15)

Application Number Priority Date Filing Date Title
PE2021001650A PE20212330A1 (es) 2019-04-26 2020-04-24 Procedimiento de obtencion de heparinas de bajo peso molecular por filtracion de flujo tangencial
KR1020217032026A KR20220005441A (ko) 2019-04-26 2020-04-24 접선유동여과법에 의해 저분자량 헤파린을 얻는 방법
CA3134458A CA3134458C (en) 2019-04-26 2020-04-24 Method for obtaining low-molecular-weight heparins by means of tangential flow filtration
ES202090025A ES2888148B2 (es) 2019-04-26 2020-04-24 Procedimiento de obtencion de heparinas de bajo peso molecular por filtracion de flujo tangencial
MX2021011671A MX2021011671A (es) 2019-04-26 2020-04-24 Procedimiento de obtencion de heparinas de bajo peso molecular por filtracion de flujo tangencial.
AU2020263142A AU2020263142A1 (en) 2019-04-26 2020-04-24 Method for obtaining low-molecular-weight heparins by means of tangential flow filtration
BR112021020048A BR112021020048A2 (pt) 2019-04-26 2020-04-24 Método para obtenção de heparinas de baixo peso molecular através de filtração de fluxo tangencial
SG11202111009WA SG11202111009WA (en) 2019-04-26 2020-04-24 Method for obtaining low-molecular-weight heparins by means of tangential flow filtration
CN202080001040.1A CN112673027A (zh) 2019-04-26 2020-04-24 通过切向流过滤获得低分子量肝素的方法
JP2021559706A JP2022530321A (ja) 2019-04-26 2020-04-24 タンジェンシャルフロー濾過により低分子量ヘパリンを得る方法
EP20794489.3A EP3943513A4 (en) 2019-04-26 2020-04-24 METHOD FOR OBTAINING LOW MOLECULAR WEIGHT HEPARIN BY TANGENTIAL FLOW FILTRATION
IL286931A IL286931A (en) 2019-04-26 2021-10-03 A method for obtaining low molecular weight heparins using tangential flow filtration
CONC2021/0013320A CO2021013320A2 (es) 2019-04-26 2021-10-05 Procedimiento de obtención de heparinas de bajo peso molecular por filtración de flujo tangencial
US17/509,255 US20220112315A1 (en) 2019-04-26 2021-10-25 Method for Obtaining Low Molecular Weight Heparins by Tangential Flow Filtration
ZA2021/09022A ZA202109022B (en) 2019-04-26 2021-11-12 Method for obtaining low-molecular-weight heparins by means of tangential flow filtration

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ES201930373 2019-04-26
ESP201930373 2019-04-26
CN202010078241 2020-01-23
CN202010078241.3 2020-01-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/509,255 Continuation-In-Part US20220112315A1 (en) 2019-04-26 2021-10-25 Method for Obtaining Low Molecular Weight Heparins by Tangential Flow Filtration

Publications (1)

Publication Number Publication Date
WO2020216981A1 true WO2020216981A1 (es) 2020-10-29

Family

ID=72941056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2020/070263 WO2020216981A1 (es) 2019-04-26 2020-04-24 Procedimiento de obtención de heparinas de bajo peso molecular por filtración de flujo tangencial

Country Status (18)

Country Link
US (1) US20220112315A1 (es)
EP (1) EP3943513A4 (es)
JP (1) JP2022530321A (es)
KR (1) KR20220005441A (es)
AU (1) AU2020263142A1 (es)
BR (1) BR112021020048A2 (es)
CA (1) CA3134458C (es)
CL (1) CL2021002647A1 (es)
CO (1) CO2021013320A2 (es)
ES (1) ES2888148B2 (es)
GE (1) GEP20247598B (es)
IL (1) IL286931A (es)
MA (1) MA55388A (es)
MX (1) MX2021011671A (es)
PE (1) PE20212330A1 (es)
SG (1) SG11202111009WA (es)
WO (1) WO2020216981A1 (es)
ZA (1) ZA202109022B (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240006648A (ko) * 2021-05-12 2024-01-15 넥서스 다이애그노스틱스, 인코포레이티드 고분자량 헤파린 화합물의 제조 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110918A (en) 1986-05-16 1992-05-05 Sanofi S.A. Process for preparing EDTA-free heparins, heparin fractions and fragments
US5767269A (en) 1996-10-01 1998-06-16 Hamilton Civic Hospitals Research Development Inc. Processes for the preparation of low-affinity, low molecular weight heparins useful as antithrombotics
ES2161615A1 (es) 1999-07-23 2001-12-01 Rovi Lab Farmaceut Sa Composiciones de heparinas de muy bajo peso molecular.
US20070154492A1 (en) 2006-01-13 2007-07-05 Baxter International Inc. Method for Purifying Polysaccharides
US20090105194A1 (en) 2005-05-09 2009-04-23 Universitetet For Miljo-Og Biovitenskap Process for the production of a low molecular weight heparin
WO2010111710A1 (en) 2009-03-27 2010-09-30 Solazyme, Inc. Microalgal polysaccharide compositions
CN102050888A (zh) 2010-12-13 2011-05-11 河北常山生化药业股份有限公司 一种依诺肝素钠的制备方法
CN103342761A (zh) 2013-07-15 2013-10-09 河北常山生化药业股份有限公司 一种膜分离制备依诺肝素钠工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102731683A (zh) * 2012-07-17 2012-10-17 湖北亿诺瑞生物制药有限公司 一种从肝素废液中分离天然低分子肝素的方法
CN103936889A (zh) * 2014-03-19 2014-07-23 苏州英诺凯生物医药科技有限公司 一种使用切向流过滤纯化依诺肝素的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110918A (en) 1986-05-16 1992-05-05 Sanofi S.A. Process for preparing EDTA-free heparins, heparin fractions and fragments
US5767269A (en) 1996-10-01 1998-06-16 Hamilton Civic Hospitals Research Development Inc. Processes for the preparation of low-affinity, low molecular weight heparins useful as antithrombotics
ES2161615A1 (es) 1999-07-23 2001-12-01 Rovi Lab Farmaceut Sa Composiciones de heparinas de muy bajo peso molecular.
US20090105194A1 (en) 2005-05-09 2009-04-23 Universitetet For Miljo-Og Biovitenskap Process for the production of a low molecular weight heparin
US20070154492A1 (en) 2006-01-13 2007-07-05 Baxter International Inc. Method for Purifying Polysaccharides
WO2010111710A1 (en) 2009-03-27 2010-09-30 Solazyme, Inc. Microalgal polysaccharide compositions
CN102050888A (zh) 2010-12-13 2011-05-11 河北常山生化药业股份有限公司 一种依诺肝素钠的制备方法
CN103342761A (zh) 2013-07-15 2013-10-09 河北常山生化药业股份有限公司 一种膜分离制备依诺肝素钠工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Isolation and characterization of heparan sulfate from crude porcine intestinal mucosal peptidoglycan heparin", CARBOHYD. RES., vol. 276, 1995, pages 183 - 197
ANONYMOUS: "Protein Concentration and Diafiltration by Tangential Flow Filtration", MILLIPORE TECHNICAL BRIEF., 1 January 2003 (2003-01-01), XP055553019, Retrieved from the Internet <URL:http://wolfson.huji.ac.il/purification/PDF/dialysis/MILLIPORE_TFF.pdf> [retrieved on 20200220] *

Also Published As

Publication number Publication date
JP2022530321A (ja) 2022-06-29
MA55388A (fr) 2022-01-26
EP3943513A4 (en) 2022-12-21
CA3134458A1 (en) 2020-10-29
US20220112315A1 (en) 2022-04-14
CO2021013320A2 (es) 2022-03-18
MX2021011671A (es) 2021-10-22
KR20220005441A (ko) 2022-01-13
CL2021002647A1 (es) 2022-05-13
EP3943513A1 (en) 2022-01-26
ES2888148B2 (es) 2022-11-14
PE20212330A1 (es) 2021-12-14
IL286931A (en) 2021-10-31
BR112021020048A2 (pt) 2021-12-07
GEP20247598B (en) 2024-02-26
ES2888148A1 (es) 2021-12-30
CA3134458C (en) 2023-11-21
AU2020263142A1 (en) 2021-10-28
ZA202109022B (en) 2023-10-25
SG11202111009WA (en) 2021-11-29

Similar Documents

Publication Publication Date Title
CN103275246B (zh) 一种那曲肝素钙生产方法
KR100528551B1 (ko) 이눌린생성물의제조방법
BR112012003128B1 (pt) Processos para recuperar um ácido inorgânico de licor residual aquoso, e para produzir celulose nanocristalina.
JP2886127B2 (ja) 水溶性シクロデキストリン誘導体の浄化方法
CN102731683A (zh) 一种从肝素废液中分离天然低分子肝素的方法
EA039639B1 (ru) Способ экстракции и очистки гиалуроновой кислоты
WO2018043668A1 (ja) ポリ硫酸ペントサンの製造方法
ES2888148B2 (es) Procedimiento de obtencion de heparinas de bajo peso molecular por filtracion de flujo tangencial
PL200677B1 (pl) Sposób oczyszczania wysokocząsteczkowego kwasu hialuronowego
KR101638662B1 (ko) 히알루론산 및/또는 그의 염의 정제 방법
JPH0631144A (ja) 酢酸セルロースまたは酢酸セルロース誘導体からなる貫通する内部空隙を有する中空糸の形の透析膜およびその製造法
DE19750527C2 (de) Cellulosische Trennmembran
WO2019000336A1 (zh) 低分子肝素那曲肝素钙标准品库及其制备方法
JPS59149901A (ja) ヘパリンの精製および分別方法
WO2007013123A1 (en) Cyclodextrins for blood detoxification
CN112673027A (zh) 通过切向流过滤获得低分子量肝素的方法
OA20550A (en) Method for obtaining low molecular weight heparins by tangential flow filtration.
WO2019000335A1 (zh) 一种低分子肝素达肝素钠标准品库及其制备方法
JP2893451B2 (ja) 高分子量のヒアルロン酸を製造する方法
JP5516835B2 (ja) 多段積多層平膜
JPH0734750B2 (ja) エリスリトールの分離・回収方法
JP3372638B2 (ja) ウイルスの通過を阻止する物質からなる濾過助剤およびそれを使用した濾過方法
WO2022062011A1 (zh) 一种使用切向流超滤纯化低分子量岩藻糖化糖胺聚糖的方法
CN102988989B (zh) 一种代血浆的膜分离精制提纯方法
CN114249843A (zh) 一种使用切向流超滤纯化低分子量岩藻糖化糖胺聚糖的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794489

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3134458

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 15747

Country of ref document: GE

ENP Entry into the national phase

Ref document number: 2021559706

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021020048

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020794489

Country of ref document: EP

Effective date: 20211019

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020263142

Country of ref document: AU

Date of ref document: 20200424

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112021020048

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211005

WWE Wipo information: entry into national phase

Ref document number: 521430496

Country of ref document: SA