WO2018043668A1 - ポリ硫酸ペントサンの製造方法 - Google Patents

ポリ硫酸ペントサンの製造方法 Download PDF

Info

Publication number
WO2018043668A1
WO2018043668A1 PCT/JP2017/031434 JP2017031434W WO2018043668A1 WO 2018043668 A1 WO2018043668 A1 WO 2018043668A1 JP 2017031434 W JP2017031434 W JP 2017031434W WO 2018043668 A1 WO2018043668 A1 WO 2018043668A1
Authority
WO
WIPO (PCT)
Prior art keywords
polysulfate pentosan
polysulfate
pentosan
producing
oligosaccharide
Prior art date
Application number
PCT/JP2017/031434
Other languages
English (en)
French (fr)
Inventor
稿太郎 石川
卓朗 柏村
加藤 卓也
古賀 徹
傑 石川
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2017321818A priority Critical patent/AU2017321818B2/en
Priority to EP17846672.8A priority patent/EP3677599A4/en
Priority to SG11202001822WA priority patent/SG11202001822WA/en
Priority to JP2018516079A priority patent/JP6432709B2/ja
Priority to BR112020003899-7A priority patent/BR112020003899B1/pt
Priority to KR1020207008632A priority patent/KR102591794B1/ko
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Priority to CN201780094371.2A priority patent/CN111065654B/zh
Priority to CA3074419A priority patent/CA3074419C/en
Priority to MX2020002287A priority patent/MX2020002287A/es
Priority to US16/643,265 priority patent/US11312790B2/en
Publication of WO2018043668A1 publication Critical patent/WO2018043668A1/ja
Priority to ZA2020/01443A priority patent/ZA202001443B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0003General processes for their isolation or fractionation, e.g. purification or extraction from biomass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0057Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Xylans, i.e. xylosaccharide, e.g. arabinoxylan, arabinofuronan, pentosans; (beta-1,3)(beta-1,4)-D-Xylans, e.g. rhodymenans; Hemicellulose; Derivatives thereof

Definitions

  • the present invention relates to a method for producing polysulfate pentosan.
  • heparin has been used as a therapeutic agent for thrombosis and osteoarthritis.
  • heparin is a substance that is isolated from animal organs such as cattle and pigs, it has difficulty in quality control.
  • due to religious ethics, its use may be discouraged during treatment. For this reason, development of an animal-derived component-free alternative therapeutic agent that replaces heparin is required.
  • polysulfate pentosan As a substance replacing heparin, for example, polysulfate pentosan is known. Polysulfate pentosan can be obtained by sulfating plant-derived xylooligosaccharides. Since such polysulfate pentosan is an animal-derived component-free substance, its application is expected as a therapeutic agent replacing heparin (for example, Patent Documents 1 and 2).
  • Patent Documents 1 and 2 disclose a method for producing polysulfate pentosan including a step of sulfating xylan.
  • Hardwood xylan is known to have an acetyl group at the 2nd or 3rd position in a ratio of 5-7 to 10 xylose in the natural state (Non-patent Document 1).
  • Patent Document 3 discloses that polysulfate pentosan used for pharmaceutical use contains a xylose unit in which uronic acid is bonded to the 4-position and the 3-position is acetylated.
  • An object of the present invention is to provide an inexpensive and efficient production method as a production method of polysulfate pentosan.
  • polysulfuric acid is obtained by providing a depolymerization step and a sulfation step for plant-derived raw materials in this order in the method for producing polysulfate pentosan. It has been found that the production method of pentosan can be greatly improved. Furthermore, it has been found that by providing a deacetylation step after the depolymerization step, the yield of polysulfate pentosan is higher than that of polysulfate pentosan without the deacetylation step. Specifically, the present invention has the following configuration.
  • [1] including a first step of obtaining an acidic xylo-oligosaccharide from a plant-derived raw material and a second step of obtaining polysulfate pentosan from the acidic xylo-oligosaccharide,
  • the first step includes a depolymerization step of the plant-derived raw material
  • the second step includes a sulfation step of the acidic xylooligosaccharide
  • the manufacturing method of polysulfate pentosan including the deacetylation process which adds a base in order to set it as pH11 or more as a process after the said depolymerization process.
  • [2] The method for producing a polysulfate pentosan according to [1], wherein in the deacetylation step, the solution containing the acidic xylo-oligosaccharide is stirred at a pH of 11 or more for 1 hour or more.
  • [3] The method for producing a polysulfate pentosan according to [1], wherein in the deacetylation step, the solution containing the acidic xylo-oligosaccharide is stirred at a pH of 12 or more for 0.5 hour or more.
  • [4] The method for producing polysulfate pentosan according to any one of [1] to [3], wherein the base is sodium hydroxide.
  • a process for producing a polysulfate pentosan having a low acetyl group content is provided.
  • polysulfate pentosan can be efficiently produced in high yield.
  • FIG. 1 is a diagram for explaining a production process of polysulfate pentosan.
  • FIG. 2 is a diagram for explaining a production process of polysulfate pentosan. It is a graph which shows the anti- IIa activity and anti- Xa activity of the polysulfate pentosan from which an acetyl group content differs in an Example and a comparative example.
  • the present invention relates to a method for producing polysulfate pentosan derived from acidic xylo-oligosaccharides.
  • the present invention relates to a method for producing polysulfate pentosan, which further comprises a deacetylation step in a production method comprising a first step of obtaining acidic xylooligosaccharides from plant-derived raw materials and a second step of obtaining polysulfate pentosans from acidic xylooligosaccharides.
  • polysulfate pentosan can be efficiently produced by the depolymerization step and the sulfation step of the plant-derived raw material in this order. Furthermore, in the method of the present invention, polysulfate pentosan can be produced in high yield by including a deacetylation step.
  • Polysulfate pentosan is a compound obtained by sulfating at least one hydroxyl group of xylooligosaccharide.
  • polysulfate pentosan also includes polysulfate pentosan salts and polysulfate pentosan solvates and polysulfate pentosan salt solvates. That is, the production method of the present invention includes a production method of a polysulfate pentosan salt, a polysulfate pentosan, or a solvate of the salt.
  • the polysulfate pentosan salt is preferably a pharmaceutically acceptable salt, and examples include sodium polysulfate sodium pentosan, potassium pentosan polysulfate, and calcium pentosan polysulfate.
  • the solvate is preferably a pharmaceutically acceptable solvate, and examples of the solvent include water.
  • Polysulfate pentosan derived from acidic xylo-oligosaccharide has a structure represented by the following general formula.
  • the polysulfate pentosan may contain one structure represented by the following general formula, or may contain two or more structures represented by the following general formula. When two or more structures represented by the following general formula are included, the following structure is a structure representing a repeating unit of polysulfate pentosan.
  • each R is independently a hydrogen atom, —COCH 3 , —SO 3 X 1 , and at least one R is —SO 3 X 1 .
  • X 1 is a hydrogen atom or a monovalent or divalent metal, preferably a hydrogen atom, sodium, potassium or calcium, more preferably sodium, potassium or calcium, and particularly preferably sodium.
  • X is a hydrogen atom or a monovalent or divalent metal, preferably sodium, potassium or calcium, particularly preferably sodium.
  • N1 and n2 each independently represents an integer of 0 or more and 30 or less, and at least one of n1 and n2 is an integer of 1 or more.
  • n1 + n2 is preferably 1 to 27, more preferably 2 to 18, and further preferably 3 to 10.
  • X is preferably a monovalent or divalent metal, and is preferably a pharmaceutically acceptable salt of polysulfate pentosan.
  • X is preferably sodium, potassium or calcium, and in this case, the salt of polysulfate pentosan is sodium polysulfate sodium pentosan, potassium pentosan polysulfate, and calcium pentosan polysulfate.
  • the polysulfate pentosan salt is particularly preferably sodium polysulfate sodium.
  • the polysulfate pentosan may contain one structure represented by the above general formula, or may contain two or more structures represented by the above general formula.
  • the structure is a structure representing a repeating unit of polysulfate pentosan.
  • the terminal of the structure represented by the above general formula and not bonded to the structure represented by the above general formula may be —OR. That is, it is sufficient that —OR is bonded to the left end (n1 side) of the above general formula and —R is bonded to the right end (n2 side) of the above general formula.
  • polysulfate pentosan can be obtained by sulfating acidic xylo-oligosaccharides.
  • the acidic xylooligosaccharide which is a kind of xylooligosaccharide, is obtained by binding at least one uronic acid to at least one xylose unit in one molecule of the xylooligosaccharide. That is, an acidic xylo-oligosaccharide has at least one uronic acid residue as a side chain in one molecule of xylo-oligosaccharide.
  • the average number of uronic acid residues per molecule of acidic xylo-oligosaccharide is preferably 1 or more and 3 or less, and more preferably 1 or more and 2 or less.
  • the number of uronic acid residues contained in one molecule of acidic xylo-oligosaccharide can be measured by a carbazole sulfate method or a colorimetric method using sodium tetraborate.
  • the known polysulfate pentosan has a xylose unit to which an acetyl group (—COCH 3 ) is bonded together with a uronic acid residue. It is thought that it contains a certain amount.
  • the polysulfate pentosan obtained by the production method of the present invention has a reduced acetyl group content, and particularly a reduced acetyl group content bound to a specific xylose unit as described above.
  • the polysulfate pentosan obtained by the production method of the present invention has an acetyl group content of 0 to 2.0% by mass.
  • the acetyl group content of the polysulfate pentosan is preferably 0 to 1.0% by mass, more preferably 0 to 0.4% by mass, still more preferably 0 to 0.3% by mass, In particular, it is particularly preferably 0% by mass. That is, the polysulfate pentosan obtained by the production method of the present invention particularly preferably does not contain R which is —COCH 3 in the above general formula.
  • the acetyl group content in the polysulfate pentosan can be calculated from the peak integration ratio in 1 H-NMR measurement, as shown in the Examples. Specifically, first, 1 H-NMR measurement is performed using a 1 H-NMR measurement solution containing a specific amount of polysulfate pentosan and a specific amount of an internal standard substance. In the obtained spectrum, the integration ratio between the peak of the specific group of the internal standard substance and the peak of the acetyl group is compared to determine the molar amount of the acetyl group in the solution. Thereafter, mass% can be determined from the value obtained by multiplying the acetyl group molar amount by 43 by the average molecular weight obtained separately.
  • the acidic xylo-oligosaccharide is obtained by depolymerizing a plant-derived raw material.
  • plant-derived materials include wood-derived materials, seed-derived materials, grain-derived materials, fruit-derived materials, and the like.
  • cotton plants such as cotton linter and cotton lint
  • herbaceous plants such as kenaf, hemp, ramie, rice straw and the like can also be used.
  • plant-derived materials the above-described derived materials may be used in combination.
  • wood-derived materials as plant-derived materials.
  • the wood-derived material include wood materials such as conifers and hardwoods.
  • the wood-derived material it is preferable to use at least one selected from coniferous trees and hardwoods, and it is more preferable to use hardwoods.
  • Examples of broadleaf trees include beech, eucalyptus globulas, eucalyptus grandis, eucalyptus eurograndis, eucalyptus perita, eucalyptus brushana, acacia melanci and the like.
  • Examples of conifers include cedar, hinoki, pine, hiba, and tsuga.
  • the bulk weight of the wood-derived raw material is preferably 450 kg / m 3 or more and 700 kg / m 3 or less, and more preferably 500 kg / m 3 or more and 650 kg / m 3 or less.
  • the wood-derived material is preferably a wood chip obtained by crushing the above-described wood.
  • wood chips By using wood chips as plant-derived materials, the depolymerization of plant-derived materials can be advanced efficiently, and the production efficiency of acidic xylooligosaccharides can be increased.
  • the manufacturing method of the polysulfate pentosan of this invention includes the 1st process of obtaining acidic xylo-oligosaccharide from a plant-derived raw material, as FIG. 1 shows.
  • the process of depolymerizing a plant-derived raw material in a 1st process is included.
  • the plant-derived raw material is chemically and / or physically decomposed to produce an acidic xylooligosaccharide.
  • Examples of the chemical and / or physical decomposition step include a heat treatment step, an alkali treatment step, an acid treatment step, an enzyme treatment step, an ionic liquid treatment step, and a catalyst treatment step.
  • the depolymerization step is preferably at least one selected from a heat treatment step and an enzyme treatment step, and more preferably a heat treatment step.
  • the heat treatment process may be a heating and pressing process.
  • the depolymerization step is preferably carried out under non-alkaline conditions (in this specification, pH 9 or lower, preferably pH 8 or lower, more preferably pH 7 or lower).
  • the heat treatment step is a step of heating the plant-derived raw material in the presence of the solution.
  • the heat treatment step since the plant-derived raw material is hydrolyzed, the heat treatment step may be referred to as a hydrolysis treatment step or a prehydrolysis treatment step.
  • the solution used in the heat treatment step is preferably water, and the ratio (mass ratio) of water to the plant-derived raw material is preferably 1: 1 to 1:10. By making the ratio of the water with respect to a plant-derived raw material in the said range, a hydrolysis reaction can be advanced efficiently.
  • the water used in the heat treatment step may be water added separately from the plant-derived raw material, but a part thereof may be water originally contained in the plant-derived raw material.
  • other chemicals may be added in addition to the plant-derived raw material and water.
  • other chemicals include alkalis, acids, and chelating agents.
  • chemicals that directly or indirectly assist the depolymerization of polysaccharides such as scale inhibitors, pitch control agents, and ionic liquids may be added.
  • the heat treatment step is a step of heating the plant-derived raw material in the presence of water, and the heating temperature (liquid temperature) at this time is preferably 30 ° C. or higher, more preferably 50 ° C. or higher. 75 ° C. or higher, more preferably 90 ° C. or higher, particularly preferably 100 ° C. or higher, and most preferably 120 ° C. or higher.
  • heating temperature (liquid temperature) is 300 degrees C or less, It is more preferable that it is 250 degrees C or less, It is further more preferable that it is 200 degrees C or less.
  • the treatment time in the heat treatment step can be appropriately determined according to the treatment temperature.
  • the treatment time is, for example, preferably 5 minutes or more, more preferably 10 minutes or more, and further preferably 20 minutes or more.
  • the P factor represented by the following formula is the product of temperature and time during the heat treatment, and it is preferable to adjust the P factor within a preferable range.
  • P represents the P factor
  • T represents the absolute temperature (° C. + 273.5)
  • t represents the heat treatment time
  • K H1 (T) / K 100 ° C. is the relative rate of hydrolysis of the glycosidic bond. Represents.
  • the P factor is preferably 200 or more, more preferably 250 or more, and even more preferably 300 or more.
  • the P factor is preferably 1000 or less.
  • the average degree of polymerization of the acidic xylo-oligosaccharide can be set within a desired range by appropriately adjusting the P factor, and thereby the molecular weight of the resulting polysulfate pentosan can be adjusted.
  • the pH of the solution containing the plant-derived raw material is preferably 9 or less, more preferably 8 or less, and even more preferably 7 or less. That is, the heat treatment step is preferably performed under non-alkaline conditions. Note that the above pH value is the pH of the solution before the heat treatment.
  • the acid derived from the raw material may be dissociated and acid hydrolysis may be performed at least partially.
  • the acid derived from plant materials include organic acids such as acetic acid and formic acid.
  • the pH of the solution containing the plant-derived raw material after acid hydrolysis is further lowered.
  • a heat treatment step as the first step.
  • the production efficiency of acidic xylo-oligosaccharide can be improved, and also the production efficiency of polysulfate pentosan can be improved.
  • the number of steps required to obtain acidic xylo-oligosaccharide can be greatly reduced as compared with the conventional method.
  • the depolymerization step is preferably a heat treatment step, but steps other than the heat treatment step may be employed.
  • the depolymerization step is an enzyme treatment step
  • the depolymerization step includes a step of mixing the plant-derived raw material and the enzyme.
  • the enzyme for example, hemicellulase can be used.
  • the trade name Cellulosin HC100 (manufactured by HI Corporation), the trade name Celulosin TP25 (manufactured by HI Corporation), the trade name Cellulosin HC (manufactured by HI Corporation), the trade name Caltazyme (manufactured by Clariant), the trade name Ecopulp (Rohm Enzyme), trade name Sumiteam (New Nippon Chemical Industries), Pulpzyme (Novo Nordics), Multifect 720 (Genencor), Trichoderma, Thermomyces, Oreobashi Xylanases produced by microorganisms such as Dium, Streptomyces, Aspergillus, Clostridium, Bacillus, Thermotoga, Termoiscus, Cardoseram, and Thermomonospora can be used.
  • an enzyme is added to a solution obtained by mixing plant-derived materials and water.
  • the temperature of the solution at this time is preferably 10 ° C. or higher and 90 ° C. or lower, and more preferably 30 ° C. or higher and 60 ° C. or lower.
  • the temperature of the solution is preferably close to the optimum temperature of the enzyme used.
  • the depolymerization step when the depolymerization step is an alkali treatment step or an acid treatment step, it includes a step of mixing a plant-derived raw material with an alkali solution or an acid solution.
  • the alkali treatment step it is preferable to add sodium hydroxide or potassium hydroxide.
  • the acid treatment step it is preferable to add hydrochloric acid, sulfuric acid, acetic acid or the like. In this case, heating and pressurization may be performed as appropriate.
  • the depolymerization step is at least one selected from an enzyme treatment step, an alkali treatment step and an acid treatment step
  • a pressing step after the treatment step, a pressing step, an extraction step, a heating step, a filtration step, a separation step, A purification process, a concentration process, a desalting process, etc. may be provided. Further, it may be necessary to provide a molecular weight reduction step after the treatment step.
  • the steps described in Japanese Patent Application Laid-Open No. 2003-183303 can be cited, and the contents thereof are incorporated in this specification.
  • the first step may further include a filtration step after the depolymerization step described above.
  • a filtration process it isolates into the solid content of a plant-derived raw material, and the solution except solid content.
  • solid content as a pulp raw material and the filtrate are separated.
  • solid content used as a pulp raw material turns into a cellulose raw material (dissolving pulp) through a cooking process etc. as a post process.
  • the collected filtrate can be divided into a gas layer and a liquid layer. Since the gas layer contains a large amount of furfurals, the furfurals can be isolated by collecting them. On the other hand, the liquid layer is rich in hemicellulose containing acidic xylo-oligosaccharides and neutral xylo-oligosaccharides. In the step described later, acidic xylo-oligosaccharides contained in this liquid layer can be separated and purified.
  • the first step may further include a separation and purification step after the depolymerization step described above.
  • the separation and purification step is preferably provided after the filtration step.
  • FIG. 2 shows a flow diagram in which a filtration step is provided after the depolymerization step, and further a separation and purification step is provided after the filtration step.
  • a separation and purification step may be provided immediately after the depolymerization step, but a filtration step may be provided after the depolymerization step, and a step of separating and purifying the acidic xylooligosaccharide from the obtained filtrate may be provided.
  • the filtration step may be provided as a part of the separation / purification step, or may be provided as one step independent of the separation / purification step, as shown in FIG.
  • the separation and purification step is a step of separating and purifying acidic xylo-oligosaccharides.
  • the separation and purification step is also a step of removing these saccharides as necessary.
  • the separation and purification step for example, methods such as ion exchange chromatography, affinity chromatography, gel filtration, ion exchange treatment, NF membrane treatment, UF membrane treatment, RO membrane treatment, and activated carbon treatment are preferably employed.
  • the separation and purification step it is also preferable to carry out a combination of the above methods.
  • acidic xylo-oligosaccharides can be selectively separated and purified by performing ion exchange chromatography in the separation and purification step.
  • ion exchange chromatography acidic xylo-oligosaccharides can be mainly extracted from the sugar solution (filtrate) by adsorbing acidic xylo-oligosaccharides.
  • the sugar solution is first treated with a strong cation exchange resin to remove metal ions in the sugar solution.
  • sulfate ions and the like in the sugar solution are removed using a strong anion exchange resin.
  • acid xylo-oligosaccharide is made to adsorb
  • a low-concentration salt NaCl, CaCl 2 , KCl, MgCl 2, etc.
  • the first step may further include a concentration step.
  • the concentration step is preferably provided after the filtration step and before the separation and purification step, for example.
  • concentration step examples include a membrane treatment step using an NF membrane, an ultrafiltration membrane, a reverse osmosis membrane and the like, a concentration step using evaporation, and the like.
  • the concentration step it is preferable to concentrate so that the content of acidic xylo-oligosaccharide is 10% or more and 80% or less with respect to the total mass of the concentrate, and it is preferably concentrated so as to be 20% or more and 60% or less. preferable.
  • the acidic xylo-oligosaccharide obtained in the first step may be obtained as an acidic xylo-oligosaccharide solution, but may be obtained as an acidic xylo-oligosaccharide concentrate or acidic xylo-oligosaccharide powder through a dehydration step.
  • sulfation in the sulfation step described later can be efficiently advanced.
  • the acidic xylooligosaccharide liquid obtained in the separation and purification step is treated with, for example, a spray dryer, a freeze dryer, a hot air dryer, a water-soluble organic solvent, etc. Obtainable.
  • the method for producing polysulfate pentosan of the present invention includes a first step and a second step, and the acid xylooligosaccharide obtained in the first step is sulfated in the second step.
  • the second step includes a sulfation step.
  • the average degree of polymerization of the acidic xylo-oligosaccharide subjected to sulfation is preferably adjusted as appropriate depending on the molecular weight of the polysulfate pentosan obtained as the final product.
  • the average polymerization degree of acidic xylo-oligosaccharide can be calculated by dividing the total amount of acidic xylo-oligosaccharide by the amount of reducing sugar. In calculating the total amount of sugar, first, the acidic xylooligosaccharide solution is kept at 50 ° C. and centrifuged at 15000 rpm for 15 minutes. Thereafter, the total amount of sugar in the supernatant is quantified by the phenol-sulfuric acid method (published by the “Reducing Sugar Quantification Method” published by the Japan Society for the Press). At this time, a calibration curve to be used is prepared using D-xylose (Wako Pure Chemical Industries).
  • the amount of reducing sugar is quantified by the Somogene Nelson method (published by the “Reducing Sugar Quantification Method” published by the Japan Society for the Press). Also in this case, the calibration curve to be used is prepared using D-xylose (Wako Pure Chemical Industries).
  • sulfuric acid or a sulfuric acid derivative is added to the acidic xylo-oligosaccharide solution to perform sulfation.
  • the sulfuric acid derivative include sulfur trioxide / pyridine complex and chlorosulfonic acid.
  • the concentration of the acidic xylo-oligosaccharide liquid is preferably 0.1% by mass or more and 20% by mass or less, and sulfuric acid is added to the acidic xylo-oligosaccharide liquid having such a concentration by 0.1% by mass or more and 50% by mass or less. It is preferable to add so that it becomes.
  • the pH of the acidic xylo-oligosaccharide solution after adding sulfuric acid is preferably 1 or more and 9 or less.
  • the second step may further include a purification step after sulfation after sulfation.
  • a purification step after sulfation polysulfate pentosan having high purity can be obtained.
  • the purification step after sulfation it is preferable to employ methods such as centrifugation, membrane filtration, dialysis, water-soluble organic solvent treatment, activated carbon treatment, and the like.
  • water-soluble organic solvent treatment and activated carbon treatment are preferably used because sulfated polysulfate pentosan can be selectively separated and purified.
  • the sulfated polysulfate pentosan may be obtained as a polysulfate pentosan solution, but may be obtained as a polysulfate pentosan powder through a powdering step.
  • the polysulfate pentosan solution obtained in the purification step after sulfation is treated with, for example, a spray dryer, a freeze dryer, a hot air dryer, a water-soluble organic solvent, etc.
  • Pentosan powder can be obtained.
  • Polysulfate pentosan is obtained through the second step as described above.
  • the sulfur content of the polysulfate pentosan obtained here is preferably 10% by mass or more and 20% by mass or less based on the total mass of the polysulfate pentosan.
  • the sulfur content of polysulfate pentosan can be measured by the oxygen flask combustion method of the Japanese Pharmacopoeia general test method.
  • the method for producing polysulfate pentosan of the present invention includes a deacetylation step at any stage after the depolymerization step.
  • the deacetylation step is a step for reducing the acetyl group content of polysulfate pentosan.
  • the deacetylation step is also referred to as a solution containing a substance obtained from a plant-derived raw material, such as acidic xylo-oligosaccharide (in this specification, also referred to as “solution containing acidic xylo-oligosaccharide”).
  • the solution obtained after depolymerization, the filtrate obtained in the filtration step, the solution containing the acidic xylo-oligosaccharide after the separation and purification step and before the sulfation step, or the acid xylo-oligosaccharide (polyester after the sulfation step) It suffices if the solution containing pentosan sulfate has a pH of 11 or more.
  • the solution containing acidic xylo-oligosaccharide and the like is preferably an aqueous solution.
  • a solution containing an acidic xylo-oligosaccharide is sometimes referred to as an acidic xylo-oligosaccharide solution.
  • the pH applied in the deacetylation step is preferably 11 to 14, and more preferably 12 to 13.
  • the solution subjected to the deacetylation step is preferably maintained at pH 11 or more for 0.5 hours or more, more preferably maintained at pH 11 or more for 1.0 hour or more, and maintained at pH 11 or more for 2.0 hours or more. More preferably, it is particularly preferably maintained at pH 11 or more for 3.0 hours or more. In particular, when the pH is less than 12, it is preferably maintained for 1.0 hour or longer.
  • Particularly preferable conditions include a condition of maintaining at pH 12 to 13 for 3 hours or more.
  • the solution While maintaining the above pH, the solution is preferably stirred.
  • the temperature condition during the maintenance of the above pH is not particularly limited, but is preferably room temperature.
  • a base may be added to a solution (such as a solution containing acidic xylo-oligosaccharide) subjected to the deacetylation step.
  • the base to be added is not particularly limited as long as the desired pH can be achieved, but sodium hydroxide is preferable.
  • the deacetylation step may include a pH adjustment step of adjusting the solution having a pH of 11 or more by the addition of a base after the maintenance at the above pH to less than pH 11.
  • the pH may be adjusted to 9 or less, pH 8 or less, pH 7 or less, pH 6 or less, pH 5 or less, pH 4 or less, and the like. Adjustment may be performed by addition of an acid. Examples of the acid include hydrochloric acid.
  • the deacetylation step preferably includes a desalting step after the pH adjustment step.
  • Desalting can be performed using, for example, a dialysis membrane or an NF membrane.
  • the deacetylation step may further include a step of pulverizing the product for subsequent processing.
  • the method for producing polysulfate pentosan of the present invention may further include a molecular weight adjusting step between the first step and the second step described above.
  • the molecular weight adjustment step may be before or after the deacetylation step.
  • FIG. 2 shows a flow diagram including a molecular weight adjustment step between the first step and the second step.
  • the molecular weight of the acidic xylo-oligosaccharide obtained in the first step is adjusted.
  • acidic xylo-oligosaccharide can be reduced in molecular weight.
  • the molecular weight adjusting step for example, acid treatment, alkali treatment, enzyme treatment, NF membrane treatment, UF membrane treatment, RO membrane treatment, gel filtration treatment, activated carbon treatment, ion exchange treatment, electrodialysis treatment, etc.
  • a polysulfate pentosan having a molecular weight of 1000 or more and 30000 or less can be obtained.
  • a method of selectively recovering polysulfate pentosan having a desired weight average molecular weight by performing a membrane treatment or the like may be employed.
  • the method for producing polysulfate pentosan of the present invention may further include a separation and purification step after molecular weight adjustment after the molecular weight adjustment step.
  • the separation and purification step after molecular weight adjustment include gel filtration, ion exchange treatment, NF membrane treatment, UF membrane treatment, RO membrane treatment, electrodialysis treatment, activated carbon treatment, water-soluble organic solvent treatment, chromatography treatment and the like. Can do.
  • acidic xylooligosaccharides having a desired molecular weight obtained in the molecular weight adjustment step can be selectively recovered, and polysulfate pentosan having a narrow molecular weight distribution can be obtained efficiently. be able to.
  • the weight average molecular weight (Mw) of the polysulfate pentosan obtained by the production method of the present invention is not particularly limited, but may be, for example, 5000 or less, 4000 or less, and 3900 or less. It may be 3800 or less, or 3750 or less. In this case, it is preferable that the lower limit of the weight average molecular weight (Mw) of polysulfate pentosan is 1000.
  • the weight average molecular weight (Mw) of polysulfate pentosan may be more than 5000, 6000 or more, 7000 or more, 10,000 or more, or 15000 or more. It may be 20000 or more.
  • the number average molecular weight (Mn) of the polysulfate pentosan is not particularly limited, but may be, for example, 5000 or less, 4000 or less, 3900 or less, or 3800 or less. It may be 3750 or less.
  • the lower limit of the number average molecular weight (Mn) of the polysulfate pentosan is preferably 300.
  • the number average molecular weight (Mn) of polysulfate pentosan may be more than 5000, 6000 or more, 7000 or more, 10,000 or more, or 15000 or more. It may be 20000 or more.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polysulfate pentosan obtained by the production method of the present invention can be measured by GPC (gel permeation chromatography).
  • GPC column YMC-Pack Diol-300 and YMC-Pack Diol-60 manufactured by YMC Co., Ltd. can be used together.
  • GPC conditions for example, the following conditions are adopted. Eluent: 25 mM potassium dihydrogen phosphate / 25 mM dipotassium hydrogen phosphate / 50 mM potassium chloride Flow rate: 0.7 mL / min Measurement temperature: 40 ° C.
  • Detector Differential refractive index detector Analysis time: 40 minutes
  • the polysulfate pentosan obtained by the production method of the present invention preferably has a dispersity of 1.00 to 1.40, more preferably 1.00 to 1.35. Further, the dispersity of the polysulfate pentosan is also preferably 1.00 or more and 1.20 or less.
  • the polysulfate pentosan obtained by the production method of the present invention tends to have a high purity and a narrow molecular weight distribution. Moreover, the polysulfate pentosan obtained by the production method of the present invention is excellent in quality stability.
  • the polysulfate pentosan obtained by the production method of the present invention can be used for applications such as pharmaceuticals, foods and cosmetics.
  • a pharmaceutical composition containing polysulfate pentosan (polysulfate pentosan or a pharmaceutically acceptable salt thereof or a solvate thereof) obtained by the production method of the present invention as an active ingredient can be provided.
  • polysulfate pentosan has anticoagulant activity
  • the above pharmaceutical composition can be used as an anticoagulant.
  • anticoagulant activity is based on the inhibitory activity of blood coagulation factors. That is, in a state where the anticoagulant activity is high, the blood coagulation reaction is inhibited.
  • a blood coagulation factor is a series of molecular action systems that allow a living body to coagulate blood when it bleeds, etc.A number of blood coagulation factors are activated one after another to agglutinate fibrin and cause hemostasis in the bleeding site. Do.
  • Representative examples of blood coagulation factors include factor Xa and factor IIa, and blood can be coagulated by inhibiting the activity of these factors.
  • the factor Xa inhibitory activity (anti-Xa activity) of polysulfate pentosan is preferably 0.10 IU / mg or more, more preferably 0.12 IU / mg or more. Further, the inhibitory activity (anti-IIa activity) of polysulfate pentosan on factor IIa is preferably 0.50 IU / mg or less, more preferably 0.40 IU / mg or less, and 0.30 IU / mg or less. More preferably it is.
  • the inhibitory activity (anti-Xa activity) of factor Xa can be measured using Test Team (registered trademark) Heparin S (manufactured by Sekisui Medical).
  • the inhibitory activity of factor IIa (anti-IIa activity) can be measured using Biophen heparin anti-IIa (manufactured by Hyphen Biomed).
  • the activity ratio of polysulfate pentosan between the inhibitory activity of factor Xa (anti-Xa activity) and the inhibitory activity of factor IIa (anti-IIa activity) is within a predetermined range.
  • the value of anti-Xa activity / anti-IIa activity is preferably 0.50 or more, more preferably 1.00 or more, further preferably 1.10 or more. More preferably, it is 20 or more.
  • polysulfate pentosan having anti-Xa activity, anti-IIa activity, and anti-Xa activity / anti-IIa activity values controlled within the above ranges can be obtained.
  • a polysulfate pentosan having an anti-IIa activity lower than the anti-Xa activity can be obtained.
  • the anticoagulant activity can be increased more effectively and the occurrence of side effects such as increased bleeding risk and decreased platelets can be suppressed. can do.
  • the pharmaceutical composition containing polysulfate pentosan obtained by the production method of the present invention can be used, for example, as a surface treatment agent for medical devices or medical materials.
  • it can be used as a surface treatment agent for implantable artificial organs, artificial blood vessels, catheters, stents, blood bags, contact lenses, intraocular lenses, and surgical aids.
  • the method for fixing the pharmaceutical composition on the surface of the medical device or medical material include a method in which the pharmaceutical composition is brought into contact with the medical device or medical material and then irradiated with radiation.
  • the pharmaceutical composition can also be used as an oral administration agent or an external preparation.
  • Example 1 ⁇ Production of acidic xylooligosaccharides> 40 parts by mass of water was added to 10 parts by mass of wood chips (hardwood), and heat treatment was performed at 160 ° C. for 3 hours. Thereafter, solid-liquid separation was performed with a screw press (manufactured by Shinryo Seisakusho: 250 ⁇ 1000 SPH-EN), and the filtrate was recovered. The filtrate was filtered with a bag filter (manufactured by ISP Filters) having a micron rate of 1 ⁇ m, and 5 parts by mass of activated carbon (manufactured by Mikura Kasei Co., Ltd .: PM-SX) was added and treated at 50 ° C. for 2 hours.
  • a bag filter manufactured by ISP Filters
  • the activated carbon was filtered through a 2 ⁇ m ceramic filter (manufactured by Nippon Pole Co., Ltd.) and a clear filtrate was recovered.
  • the clarified filtrate was concentrated 20 times with a reverse osmosis membrane (manufactured by Nitto Denko Corporation: NTR-7450) to obtain a concentrated sugar solution, and then the concentrated sugar solution was subjected to a strong cationic resin (manufactured by Mitsubishi Chemical Corporation: SV1.5) PK-218), weak anion resin (Mitsubishi Chemical Co .: WA30), strong cationic resin (Mitsubishi Chemical Co .: PK-218), weak anion resin (Mitsubishi Chemical Co .: WA30) By passing the solution through an ion exchange resin, adsorbing acidic xylo-oligosaccharides to the weak anion resin in the second and fourth towers, and then passing 50 mM sodium chloride aqueous solution through the second and fourth towers at SV1.5.
  • An acidic xylooligosaccharide solution having an average degree of polymerization of less than 8 was recovered.
  • Sodium hydroxide was added to the obtained acidic xylo-oligosaccharide solution so as to have the pH shown in the table, and the mixture was stirred for the time shown in the table for deacetylation.
  • Hydrochloric acid was added to the resulting liquid so that the pH was less than 5, and desalting was performed with a dialysis membrane (SPECTRUM, Inc .: Spectra / pore).
  • the obtained acidic xylooligosaccharide solution was pulverized using a freeze dryer (manufactured by EYELA).
  • ⁇ Weight average molecular weight of sodium polytosulfate> The weight average molecular weight (Mw) of polysulfate sodium pentosan shown in Table 1 was measured by GPC (gel permeation chromatography). As the GPC column, YMC-Pack Diol-300 and YMC-Pack Diol-60 manufactured by YMC Co. were used. The following conditions were adopted as GPC conditions. Eluent: 25 mM potassium dihydrogen phosphate / 25 mM dipotassium hydrogen phosphate / 50 mM potassium chloride Flow rate: 0.7 mL / min Measurement temperature: 40 ° C. Detector: Differential refractive index detector Analysis time: 40 minutes
  • the anti-IIa activity and anti-Xa activity in Table 1 are also shown in the graph (FIG. 1).
  • the low acetyl group-containing polysulfate sodium pentosan obtained by the production method of the example shows a preferable anti-Xa / anti-IIa activity ratio and a comparison of anti-Xa activity. Higher than the example.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Diabetes (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Sustainable Development (AREA)
  • Epidemiology (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Cosmetics (AREA)

Abstract

本発明により、植物由来原料から酸性キシロオリゴ糖を得る第1工程と上記酸性キシロオリゴ糖からポリ硫酸ペントサンを得る第2工程とを含み、第1工程は上記植物由来原料の解重合工程を含み、第2工程は上記酸性キシロオリゴ糖の硫酸化工程を含み、上記解重合工程より後の工程としてpH11以上とするために塩基を添加する脱アセチル化工程を含むポリ硫酸ペントサンの製造方法が提供される。本発明の製造方法により、低アセチル基含量のポリ硫酸ペントサンを得ることができる。また、本発明の製造方法により、ポリ硫酸ペントサンを安価で効率的よく高収率で得ることができる。

Description

ポリ硫酸ペントサンの製造方法
 本発明は、ポリ硫酸ペントサンの製造方法に関する。
 従来、血栓症や骨関節症等の治療薬としてヘパリンが用いられている。しかし、ヘパリンは牛や豚などの動物性器官から分離される物質であるため、品質管理上の難しさがある。また、宗教上の倫理観などにより、治療の際にその使用が躊躇される場合がある。このため、ヘパリンに替わる動物由来成分フリーの代替治療薬の開発が求められている。
 ヘパリンに替わる物質としては、例えば、ポリ硫酸ペントサンが知られている。ポリ硫酸ペントサンは植物由来のキシロオリゴ糖を硫酸化することで得られる。このようなポリ硫酸ペントサンは、動物由来成分フリーの物質であることから、ヘパリンに替わる治療薬としてその応用が期待されている(例えば、特許文献1及び2)。
 特許文献1及び2には、キシランを硫酸化する工程を含むポリ硫酸ペントサンを製造する方法が開示されている。
 広葉樹のキシランは、天然状態ではキシロース10個に対して、5-7個の比率で2位又は3位にアセチル基を持つことが知られている(非特許文献1)。また、特許文献3には、医薬用途に用いられているポリ硫酸ペントサンが、4位にウロン酸が結合しているとともに3位がアセチル化しているキシロース単位を含むことが開示されている。
国際公開第2010/000013号 特公昭48-043100号公報 国際公開第2014/114723号
株式会社シーエムシー出版、「ウッドケミカルスの技術」、2007年初版発行、第108頁
 本発明はポリ硫酸ペントサンの製造方法として、安価で効率的な製造方法を提供することを課題とする。
 上記の課題を解決するために鋭意検討を行った結果、本発明者らは、ポリ硫酸ペントサンの製造方法において、植物由来原料の解重合工程と硫酸化工程とをこの順で設けることによりポリ硫酸ペントサンの製造方法を大幅に効率化し得ることを見出した。さらに、解重合工程の後に脱アセチル化工程を設けることにより、ポリ硫酸ペントサンの収率が脱アセチル化工程を設けないポリ硫酸ペントサンの収率と比較して高くなることを見出した。
 具体的に、本発明は、以下の構成を有する。
[1]植物由来原料から酸性キシロオリゴ糖を得る第1工程と上記酸性キシロオリゴ糖からポリ硫酸ペントサンを得る第2工程とを含み、
第1工程は上記植物由来原料の解重合工程を含み、
第2工程は上記酸性キシロオリゴ糖の硫酸化工程を含み、
上記解重合工程より後の工程としてpH11以上とするために塩基を添加する脱アセチル化工程を含む、ポリ硫酸ペントサンの製造方法。
[2]上記脱アセチル化工程において、上記酸性キシロオリゴ糖を含む溶液をpH11以上で1時間以上攪拌する[1]に記載のポリ硫酸ペントサンの製造方法。
[3]上記脱アセチル化工程において、上記酸性キシロオリゴ糖を含む溶液をpH12以上で0.5時間以上攪拌する[1]に記載のポリ硫酸ペントサンの製造方法。
[4]上記塩基が水酸化ナトリウムである[1]~[3]のいずれかに記載のポリ硫酸ペントサンの製造方法。
[5]上記解重合工程が非アルカリ性条件下で行われる[1]~[4]のいずれかに記載のポリ硫酸ペントサンの製造方法。
[6]上記解重合工程が加熱処理工程である[1]~[5]のいずれかに記載のポリ硫酸ペントサンの製造方法。
[7]上記加熱処理工程が非アルカリ性条件下で120℃以上に加熱する工程である[6]に記載のポリ硫酸ペントサンの製造方法。
[8]上記植物由来原料が木材由来原料である[1]~[7]のいずれかに記載のポリ硫酸ペントサンの製造方法。
[9]第1工程と第2工程との間に、分子量調整工程をさらに含む[1]~[8]のいずれかに記載のポリ硫酸ペントサンの製造方法。
[10]上記分子量調整工程の後に、分子量調整後分離精製工程をさらに含む[9]に記載のポリ硫酸ペントサンの製造方法。
[11]第2工程が、上記硫酸化工程の後に、硫酸化後精製工程をさらに含む[1]~[10]のいずれかに記載のポリ硫酸ペントサンの製造方法。
[12]第2工程が、上記硫酸化後精製工程の後に粉末化工程をさらに含む[11]に記載のポリ硫酸ペントサンの製造方法。
[13][1]~[12]のいずれかに記載の製造方法で製造されたポリ硫酸ペントサン。
[14]アセチル基含量が0~2.0質量%である、[13]に記載のポリ硫酸ペントサン。
[15][13]又は[14]に記載のポリ硫酸ペントサンを含む抗凝固剤。
 本発明により、低アセチル基含量のポリ硫酸ペントサンの製造方法が提供される。本発明の製造方法により、ポリ硫酸ペントサンを効率良く高収率で製造することができる。
図1は、ポリ硫酸ペントサンの製造工程を説明する図である。 図2は、ポリ硫酸ペントサンの製造工程を説明する図である。 実施例及び比較例で得られたアセチル基含量の異なるポリ硫酸ペントサンの抗IIa活性及び抗Xa活性を示すグラフである。
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。
(ポリ硫酸ペントサンの製造方法)
 本発明は、酸性キシロオリゴ糖から誘導されるポリ硫酸ペントサンの製造方法に関する。
 本発明は、植物由来原料から酸性キシロオリゴ糖を得る第1工程と酸性キシロオリゴ糖からポリ硫酸ペントサンを得る第2工程とを含む製造方法においてさらに脱アセチル化工程を含むポリ硫酸ペントサンの製造方法に関する。本発明の製造方法においては、植物由来原料の解重合工程と硫酸化工程とがこの順であることにより、ポリ硫酸ペントサンを効率良く製造することができる。さらに本発明の方法では脱アセチル化工程を含むことにより、ポリ硫酸ペントサンを高収率で製造することができる。
 ポリ硫酸ペントサンは、キシロオリゴ糖の水酸基の少なくとも1つを硫酸化することで得られる化合物である。本明細書においては、ポリ硫酸ペントサンには、ポリ硫酸ペントサンの塩ならびにポリ硫酸ペントサンの溶媒和物及びポリ硫酸ペントサンの塩の溶媒和物も含まれる。すなわち、本発明の製造方法には、ポリ硫酸ペントサンの塩やポリ硫酸ペントサン又はその塩の溶媒和物の製造方法も含まれる。ポリ硫酸ペントサン塩は、薬学的に許容される塩であることが好ましく、例えば、ポリ硫酸ペントサンナトリウム、ポリ硫酸ペントサンカリウム、ポリ硫酸ペントサンカルシウム等を挙げることができる。溶媒和物は薬学的に許容される溶媒和物であることが好ましく、溶媒としては、例えば水を挙げることができる。
 酸性キシロオリゴ糖から誘導されるポリ硫酸ペントサンは、以下の一般式で表される構造を有するものである。ポリ硫酸ペントサンは以下の一般式で表される構造を1つ含むものであってもよく、以下の一般式で表される構造を2つ以上含むものであってもよい。以下の一般式で表される構造を2つ以上含む場合、以下の構造は、ポリ硫酸ペントサンの繰り返し単位を表す構造となる。
Figure JPOXMLDOC01-appb-C000001
 ここで、上記一般式において、Rはそれぞれ独立に、水素原子、-COCH3、-SO31であり、少なくとも1つのRは-SO31である。X1は、水素原子又は一価もしくは二価の金属であり、水素原子、ナトリウム、カリウム又はカルシウムであることが好ましく、ナトリウム、カリウム又はカルシウムであることがより好ましく、ナトリウムであることが特に好ましい。Xは、水素原子又は一価もしくは二価の金属であり、ナトリウム、カリウム又はカルシウムであることが好ましく、ナトリウムであることが特に好ましい。また、n1及びn2はそれぞれ独立に0以上30以下の整数を表し、n1及びn2の少なくとも一方は1以上の整数である。
 上記一般式において、n1+n2は1~27が好ましく、2~18がより好ましく、3~10がさらに好ましい。
 上記一般式において、Xは一価もしくは二価の金属であることが好ましく、医薬的に許容されるポリ硫酸ペントサンの塩であることが好ましい。例えば、Xはナトリウム、カリウム又はカルシウムであることが好ましく、この場合、ポリ硫酸ペントサンの塩は、ポリ硫酸ペントサンナトリウム、ポリ硫酸ペントサンカリウム、ポリ硫酸ペントサンカルシウムとなる。中でも、ポリ硫酸ペントサンの塩は、ポリ硫酸ペントサンナトリウムであることが特に好ましい。
 ポリ硫酸ペントサンは上記一般式で表される構造を1つ含むものであってもよく、上記一般式で表される構造を2つ以上含むものであってもよい。上記一般式で表される構造を2つ以上含む場合、上記構造は、ポリ硫酸ペントサンの繰り返し単位を表す構造となる。
 上記一般式で表される構造の末端であって、上記一般式で表される構造に結合していない部分は、-ORとなっていればよい。すなわち、上記一般式の左末端(n1側)には-ORが結合し、上記一般式の右末端(n2側)には-Rが結合していればよい。
 本発明においては、ポリ硫酸ペントサンは、酸性キシロオリゴ糖を硫酸化することで得られる。ここで、キシロオリゴ糖の一種である酸性キシロオリゴ糖は、キシロオリゴ糖1分子中の少なくともいずれかのキシロース単位に、少なくとも1つのウロン酸が結合したものである。すなわち、酸性キシロオリゴ糖は、キシロオリゴ糖1分子中に少なくとも1つ以上のウロン酸残基を側鎖として有するものである。なお、酸性キシロオリゴ糖1分子当たりのウロン酸残基平均数は、1以上3以下であることが好ましく、1以上2以下であることがより好ましい。ここで、酸性キシロオリゴ糖1分子中に含まれるウロン酸残基の数は、カルバゾール硫酸法や四ホウ酸ナトリウムを使用した比色法で測定することができる。
 上述の国際公開第2014/114723号及びウッドケミカルスの技術(シーエムシー出版)の記載に基づけば、公知のポリ硫酸ペントサンは、ウロン酸残基とともにアセチル基(-COCH3)が結合したキシロース単位を一定量含んでいると考えられる。本発明の製造方法で得られるポリ硫酸ペントサンは、アセチル基の含量が低減されており、特に上記のように特定のキシロース単位に結合しているアセチル基含量も低減されている。
 具体的には、本発明の製造方法で得られるポリ硫酸ペントサンはアセチル基含量が0~2.0質量%である。ポリ硫酸ペントサンのアセチル基含量は0~1.0質量%であることが好ましく、0~0.4質量%であることがより好ましく、0~0.3質量%であることがさらに好ましく、実質的に0質量%であることが特に好ましい。すなわち、本発明の製造方法で得られるポリ硫酸ペントサンは、上記の一般式において、-COCH3であるRを含まないものが特に好ましい。
 ポリ硫酸ペントサン中のアセチル基含量は、実施例で示すように、1H-NMR測定におけるピークの積分比から算出することができる。具体的には、まず、特定量のポリ硫酸ペントサンと特定量の内標準物質とを含む1H-NMR測定溶液を用いて1H-NMR測定を行なう。得られるスペクトルにおいて内標準物質の特定の基のピークと、アセチル基のピークとの積分比を比較して、溶液中のアセチル基モル量を求める。その後、アセチル基モル量に43を乗じたものを別に得られる平均分子量で割った値から質量%を求めることができる。
(植物由来原料)
 本発明において、酸性キシロオリゴ糖は、植物由来原料を解重合することで得られるものである。植物由来原料としては、例えば、木材由来原料、種子由来原料、穀物由来原料、果実由来原料等を挙げることができる。また、植物由来原料としては、コットンリンターやコットンリント等のコットン、ケナフや麻、ラミー、稲ワラ等の草本系植物等を用いることもできる。植物由来原料としては、上述した各由来原料を組み合わせて使用してもよい。
 中でも、植物由来原料としては、木材由来原料を用いることが好ましい。木材由来原料としては、例えば、針葉樹や広葉樹のような木材原料を挙げることができる。木材由来原料としては、針葉樹及び広葉樹から選択される少なくとも1種を用いることが好ましく、広葉樹を用いることがより好ましい。なお、木材由来原料として、針葉樹と広葉樹を混合したものを用いてもよい。また、木材由来原料としては、樹皮を用いてもよい。
 広葉樹としては、ブナ、ユーカリ・グロブラス、ユーカリ・グランディス、ユーカリ・ユーログランディス、ユーカリ・ペリータ、ユーカリ・ブラシアーナ、アカシア・メランシ等を挙げることができる。針葉樹としては、スギ、ヒノキ、マツ、ヒバ、ツガ等が挙げられる。
 木材由来原料の容積重は、450kg/m3以上700kg/m3以下であることが好ましく、500kg/m3以上650kg/m3以下であることがより好ましい。木材由来原料の容積重を上記範囲内とすることにより、酸性キシロオリゴ糖の生産効率をより高めることができる。
 木材由来原料は、上述した木材を破砕した木材チップであることが好ましい。植物由来原料として木材チップを用いることにより、植物由来原料の解重合を効率よく進めることができ、酸性キシロオリゴ糖の生産効率を高めることができる。
(第1工程)
<解重合工程>
 本発明のポリ硫酸ペントサンの製造方法は、図1に示されているように、植物由来原料から酸性キシロオリゴ糖を得る第1工程を含む。本発明のポリ硫酸ペントサンの製造方法では、第1工程において植物由来原料を解重合する工程を含む。植物由来原料を解重合する工程では、植物由来原料を化学的及び/又は物理的に分解し、酸性キシロオリゴ糖を生成させる。化学的及び/又は物理的に分解する工程としては、例えば、加熱処理工程、アルカリ処理工程、酸処理工程、酵素処理工程、イオン液体処理工程、触媒処理工程等が挙げられる。中でも、解重合工程は、加熱処理工程、及び酵素処理工程から選択される少なくともいずれかであることが好ましく、加熱処理工程であることがより好ましい。また、加熱処理工程は、加熱加圧工程であってもよい。
 解重合工程は、非アルカリ性条件下(本明細書では、pH9以下、好ましくはpH8以下、より好ましくはpH7以下をいう。)で行なわれることが好ましい。
 加熱処理工程は、植物由来原料を溶液の存在下で加熱する工程である。このような加熱処理工程では植物由来原料が加水分解されるため、加熱処理工程は加水分解処理工程や前加水分解処理工程と呼ばれることがある。加熱処理工程で用いる溶液は水であることが好ましく、植物由来原料に対する水の割合(質量比)は1:1~1:10であることが好ましい。植物由来原料に対する水の割合を上記範囲内とすることにより加水分解反応を効率よく進行させることができる。なお、加熱処理工程で用いられる水は、植物由来原料とは別に添加した水分であってもよいが、その一部は植物由来原料に元々含まれる水分であってもよい。
 加熱処理工程では、植物由来原料と水の他に、他の薬品を添加してもよい。他の薬品としては、例えば、アルカリ、酸、キレート剤を挙げることができる。また、スケール防止剤や、ピッチコントロール剤、イオン液体といった多糖の解重合を直接的・間接的に補助する薬品を添加してもよい。
 加熱処理工程は、植物由来原料を水の存在下で加熱する工程であるが、この際の加熱温度(液温)は、30℃以上であることが好ましく、50℃以上であることがより好ましく、75℃以上であることがさらに好ましく、90℃以上であることがよりさらに好ましく、100℃以上であることが特に好ましく、120℃以上であることが最も好ましい。また、加熱温度(液温)は、300℃以下であることが好ましく、250℃以下であることがより好ましく、200℃以下であることがさらに好ましい。
 加熱処理工程における処理時間は処理温度に応じて適宜決定することができる。処理時間は、例えば、5分以上であることが好ましく、10分以上であることがより好ましく、20分以上であることがさらに好ましい。なお、下記式で表されるPファクターは加熱処理時の温度と時間の積でありPファクターを好ましい範囲内に調整することが好ましい。
Figure JPOXMLDOC01-appb-M000002
 上記式において、PはPファクターを表し、Tは絶対温度(℃+273.5)を表し、tは加熱処理時間を表し、KH1(T)/K100℃はグリコシド結合の加水分解の相対速度を表す。
 加熱処理工程では、Pファクターを200以上とすることが好ましく、250以上とすることがより好ましく、300以上とすることがさらに好ましい。なお、Pファクターは1000以下であることが好ましい。加熱処理工程ではPファクターを適宜調整することで酸性キシロオリゴ糖の平均重合度を所望の範囲内とすることができ、これにより、得られるポリ硫酸ペントサンの分子量を調整することができる。
 加熱処理工程では、植物由来原料を含む溶液のpHは9以下であることが好ましく、8以下であることがより好ましく、7以下であることがさらに好ましい。すなわち、加熱処理工程は、非アルカリ性条件下で行うことが好ましい。なお、上記のpHの値は、加熱処理を行う前の溶液のpHである。
 加熱処理工程では、原料由来の酸が解離し、少なくとも一部で酸加水分解が行われてもよい。植物原料由来の酸としては、例えば、酢酸やギ酸等の有機酸を挙げることができる。この場合、酸加水分解後の植物由来原料を含む溶液のpHはさらに低下することとなる。
 本発明のポリ硫酸ペントサンの製造方法においては、最初の工程として加熱処理工程を設けることが好ましい。これにより、酸性キシロオリゴ糖の生産効率を高めることができ、さらにはポリ硫酸ペントサンの製造効率を高めることができる。最初の工程として加熱処理工程を設けることにより、従来法と比較して酸性キシロオリゴ糖を得るまでの工程数を大幅に削減することができる。また、最初の工程として非アルカリ性条件下で加熱処理工程を設けることにより、酸性キシロオリゴ糖にヘキセンウロン酸が置換することがなく、着色が抑制された酸性キシロオリゴ糖を効率よく生産することができる。
 本発明においては、解重合工程は加熱処理工程であることが好ましいが、加熱処理工程以外の工程を採用することもできる。例えば、解重合工程が酵素処理工程である場合は、解重合工程は植物由来原料と酵素を混合する工程を含む。酵素としては、例えば、ヘミセルラーゼ等用いることができる。具体的には、商品名セルロシンHC100(エイチビィアイ社製)、商品名セルロシンTP25(エイチビィアイ社製)、商品名セルロシンHC(エイチビィアイ社製)、商品名カルタザイム(クラリアント社製)、商品名エコパルプ(ローム・エンザイム社製)、商品名スミチーム(新日本化学工業社製)、パルプザイム(ノボノルディクス社製)、マルチフェクト720(ジェネンコア社)などの市販の酵素製剤や、トリコデルマ属、テルモミセス属、オウレオバシヂウム属、ストレプトミセス属、アスペルギルス属、クロストリジウム属、バチルス属、テルモトガ属、テルモアスクス属、カルドセラム属、テルモモノスポラ属などの微生物により生産されるキシラナーゼを使用することができる。
 酵素処理工程では、植物由来原料と水を混合した溶液に酵素を添加する。この際の溶液の温度は、10℃以上90℃以下であることが好ましく、30℃以上60℃以下であることがより好ましい。なお、溶液の温度は、用いる酵素の至適温度に近い温度であることが好ましい。また、溶液のpHも酵素の活性が高まるような範囲に調整することが好ましく、例えばpHを3以上10以下に調整することが好ましい。
 また、解重合工程がアルカリ処理工程や酸処理工程である場合は、植物由来原料と、アルカリ溶液又は酸溶液を混合する工程を含む。アルカリ処理工程では、水酸化ナトリウムや水酸化カリウムを添加することが好ましい。また、酸処理工程では、塩酸、硫酸、酢酸等を添加することが好ましい。なお、この場合も適宜加熱や加圧を行ってもよい。
 解重合工程が、酵素処理工程、アルカリ処理工程及び酸処理工程から選択される少なくともいずれかである場合は、該処理工程の後に、さらに圧搾工程、抽出工程、加熱工程、濾過工程、分離工程、精製工程、濃縮工程、脱塩工程等が設けられる場合がある。また、該処理工程の後に、低分子化工程を設ける必要がある場合もある。なお、その他の工程としては、特開2003-183303号公報に記載された工程を挙げることができ、これらの内容は本明細書に取り込まれる。
<濾過工程>
 本発明のポリ硫酸ペントサンの製造方法において第1工程は、上述した解重合工程の後にさらに濾過工程を含んでもよい。濾過工程では、植物由来原料の固形分と、固形分を除く溶液に分離される。具体的には、解重合工程の後に濾過工程を設けることにより、パルプ原料となる固形分と、濾液に分離される。なお、パルプ原料となる固形分は、後工程として蒸解工程等を経ることでセルロース原料(溶解パルプ)となる。
 回収した濾液は、ガス層と液層に分けることができる。ガス層には、フルフラール類が多く含まれるため、これらを回収することでフルフラール類を単離することができる。一方、液層には、酸性キシロオリゴ糖や中性キシロオリゴ糖を含むヘミセルロースが多く含まれている。後述する工程において、この液層に含まれる酸性キシロオリゴ糖を分離精製することができる。
<分離精製工程>
 本発明のポリ硫酸ペントサンの製造方法において第1工程は、上述した解重合工程の後にさらに分離精製工程を含んでもよい。第1工程が上述した濾過工程を含む場合、分離精製工程は、濾過工程の後に設けられることが好ましい。
 図2においては、解重合する工程の後に、濾過工程を設け、さらに、濾過工程の後に分離精製工程を設けたフロー図が示されている。第1工程では、解重合する工程の直後に分離精製工程を設けてもよいが、解重合する工程の後に濾過工程を設け、得られた濾液から酸性キシロオリゴ糖を分離精製する工程を設けることが好ましい。なお、濾過工程は分離精製工程の一部として設けられていてもよいし、図2に示されるように、分離精製工程とは独立した1工程として設けられていてもよい。分離精製工程は、酸性キシロオリゴ糖を分離精製する工程である。濾過工程で得られた濾液には、酸性キシロオリゴ糖の他に中性キシロオリゴ糖などの種々の糖類が含まれているため、分離精製工程はこれらの糖類を必要に応じて除去する工程でもある。
 分離精製工程では、例えば、イオン交換クロマトグラフィー、アフィニティークロマトグラフィー、ゲル濾過、イオン交換処理、NF膜処理、UF膜処理、RO膜処理、活性炭処理等の方法を採用することが好ましい。分離精製工程では、上記方法を複数組み合わせて行うことも好ましい。中でも、分離精製工程においてイオン交換クロマトグラフィーを行うことにより、酸性キシロオリゴ糖を選択的に分離精製することができる。イオン交換クロマトグラフィーでは、酸性キシロオリゴ糖を吸着することにより、糖液(濾液)から酸性キシロオリゴ糖を主に取り出すことができる。具体的には、糖液をまず強陽イオン交換樹脂にて処理し、糖液中の金属イオンを除去する。次いで、強陰イオン交換樹脂を用いて糖液中の硫酸イオンなどを除去する。そして、弱陰イオン交換樹脂で処理し、酸性キシロオリゴ糖を樹脂に吸着させる。樹脂に吸着した酸性オリゴ糖を、低濃度の塩(NaCl、CaCl2、KCl、MgCl2など)によって溶出させることにより、夾雑物の少ない酸性キシロオリゴ糖液を得ることができる。
<濃縮工程>
 本発明のポリ硫酸ペントサンの製造方法において第1工程は、さらに濃縮工程を含んでいてもよい。濃縮工程は、図2に示されているように、例えば、濾過工程の後であって、分離精製工程の前に設けられることが好ましい。このような濃縮工程を設けることにより、分離精製工程をより効率良く行うことができ、ポリ硫酸ペントサンの生産効率を高めることができる。
 濃縮工程としては、例えば、NF膜、限外濾過膜、逆浸透膜等を用いた膜処理工程や、エバポレーション等を用いた濃縮工程等を挙げることができる。
 濃縮工程では、酸性キシロオリゴ糖の含有量が、濃縮液の全質量に対して10%以上80%以下となるように濃縮することが好ましく、20%以上60%以下となるように濃縮することが好ましい。
<脱水工程>
 第1工程で得られる酸性キシロオリゴ糖は、酸性キシロオリゴ糖液として得てもよいが、脱水工程を経ることにより、酸性キシロオリゴ糖濃縮物や酸性キシロオリゴ糖粉末として得てもよい。酸性キシロオリゴ糖粉末を製造する場合は、分離精製工程の後に、さらに粉末化工程を設けることが好ましい。本発明において、脱水工程を設けることにより、後述する硫酸化工程における硫酸化を効率よく進めることができる。
 粉末化工程では、分離精製工程で得られた酸性キシロオリゴ糖液を、例えば、スプレードライヤー、凍結乾燥機、熱風乾燥機、水溶性の有機溶媒等を用いて処理することにより、酸性キシロオリゴ糖粉末を得ることができる。
(第2工程)
<硫酸化工程>
 図1に示されているように、本発明のポリ硫酸ペントサンの製造方法は、第1工程と第2工程とを含み、第1工程で得られた酸性キシロオリゴ糖を第2工程において硫酸化することでポリ硫酸ペントサンを得る。すなわち、第2工程は硫酸化工程を含む。
 硫酸化に供される酸性キシロオリゴ糖の平均重合度は、最終生成物として得られるポリ硫酸ペントサンの分子量によって適宜調整することが好ましい。
 酸性キシロオリゴ糖の平均重合度は、酸性キシロオリゴ糖の全糖量を、還元糖量で除すことで算出することができる。全糖量を算出する際には、まず、酸性キシロオリゴ糖液を50℃に保ち、15000rpmにて15分間遠心分離を行う。その後、上清液の全糖量をフェノール硫酸法(「還元糖の定量法」学会出版センター発行)にて定量する。この際、使用する検量線はD-キシロース(和光純薬工業)を用いて作成する。また、還元糖量は、ソモジーネルソン法(「還元糖の定量法」学会出版センター発行)にて定量する。この際にも、使用する検量線はD-キシロース(和光純薬工業)を用いて作成する。
 硫酸化工程では、酸性キシロオリゴ糖液に硫酸又は硫酸誘導体を加え、硫酸化を行う。硫酸誘導体としては、例えば、三酸化硫黄・ピリジン錯体やクロロスルホン酸等を挙げることができる。この際、酸性キシロオリゴ糖液の濃度は、0.1質量%以上20質量%以下であることが好ましく、このような濃度の酸性キシロオリゴ糖液に硫酸を0.1質量%以上50質量%以下となるように添加することが好ましい。硫酸を添加した後の酸性キシロオリゴ糖液のpHは1以上9以下であることが好ましい。
<硫酸化後精製工程>
 本発明のポリ硫酸ペントサンの製造方法において、第2工程は、硫酸化の後に、硫酸化後精製工程をさらに含んでもよい。このような硫酸化後精製工程を設けることにより、純度の高いポリ硫酸ペントサンを得ることができる。
 硫酸化後精製工程では、例えば、遠心分離、膜濾過、透析、水溶性有機溶媒処理、活性炭処理等の方法を採用することが好ましい。中でも、水溶性有機溶媒処理及び活性炭処理は、硫酸化されたポリ硫酸ペントサンを選択的に分離精製することができるため、好ましく用いられる。
<粉末化工程>
 第2工程では、硫酸化されたポリ硫酸ペントサンは、ポリ硫酸ペントサン溶液として得てもよいが、粉末化工程を経ることにより、ポリ硫酸ペントサン粉末として得てもよい。ポリ硫酸ペントサン粉末を製造する場合は、硫酸化後精製工程の後に、さらに粉末化する工程を設けることが好ましい。
 粉末化工程としては、硫酸化後精製工程で得られたポリ硫酸ペントサン溶液を、例えば、スプレードライヤー、凍結乾燥機、熱風乾燥機、水溶性の有機溶媒等を用いて処理することにより、ポリ硫酸ペントサン粉末を得ることができる。
 上述したような第2工程を経ることで、ポリ硫酸ペントサンが得られる。ここで得られるポリ硫酸ペントサンの硫黄含量は、ポリ硫酸ペントサンの全質量に対して10質量%以上20質量%以下が好ましい。ポリ硫酸ペントサンの硫黄含量は、日本薬局方一般試験法の酸素フラスコ燃焼法などにより測定できる。
(脱アセチル化工程)
 本発明のポリ硫酸ペントサンの製造方法は、解重合工程の後のいずれかの段階で脱アセチル化工程を含む。脱アセチル化工程は、ポリ硫酸ペントサンが有するアセチル基含量を低減させるための工程である。具体的には、脱アセチル化工程は、酸性キシロオリゴ糖等の、植物由来原料をもとに得られた物質を含む溶液(本明細書においては、「酸性キシロオリゴ糖等を含む溶液」とも呼ぶ。)をpH11以上とするために塩基を添加する工程である。脱アセチル化工程においては、解重合後に得られる溶液、濾過工程で得られた濾液、分離精製工程後かつ硫酸化工程前の酸性キシロオリゴ糖を含む溶液、又は硫酸化工程後の酸性キシロオリゴ糖(ポリ硫酸ペントサン)を含む溶液等がpH11以上とされていればよい。これらのうち、分離精製工程後かつ硫酸化工程前の酸性キシロオリゴ糖を含む溶液をpH11以上とした場合には、安定した品質でアセチル基含量が低減したポリ硫酸ペントサンを得ることができ、また、アセチル基が結合していた部位も硫酸化することができるため、硫酸化の効率、ひいてはポリ硫酸ペントサンの製造効率を向上させることが可能である。また、硫酸化工程後の酸性キシロオリゴ糖(ポリ硫酸ペントサン)を含む溶液をpH11以上とした場合には、精製工程を効率化することができる。酸性キシロオリゴ糖等を含む溶液は水溶液であることが好ましい。本明細書において酸性キシロオリゴ糖を含む溶液を酸性キシロオリゴ糖液ということもある。
 脱アセチル化工程で適用されるpHは11~14であることが好ましく、12~13がより好ましい。脱アセチル化工程に付される溶液は、0.5時間以上pH11以上で維持することが好ましく、1.0時間以上pH11以上で維持することがより好ましく、2.0時間以上pH11以上で維持することがさらに好ましく、3.0時間以上pH11以上で維持することが特に好ましい。特にpHが12未満のときは1.0時間以上維持することが好ましい。特に好ましい条件としてはpH12~13で3時間以上維持する条件を挙げることができる。
 上記のpHに維持する間、上記溶液は、撹拌されていることが好ましい。上記のpHに維持する間の温度条件は特に限定されないが、室温であることが好ましい。
 脱アセチル化工程においては、脱アセチル化工程に付される溶液(酸性キシロオリゴ糖を含む溶液等)に塩基が添加されればよい。添加される塩基は目的のpHが達成できる限り特に限定されないが、水酸化ナトリウムが好ましい。
 脱アセチル化工程は、上記のpHでの維持後、塩基の添加によりpH11以上となった溶液を、pH11未満に調整するpH調整工程を含んでいてもよい。pH調整工程では、例えば、pH9以下、pH8以下、pH7以下、pH6以下、pH5以下、pH4以下等に調整されればよい。調整は酸の添加により行なわれればよい。酸としては塩酸が挙げられる。
 脱アセチル化工程は、上記pH調整工程の後に脱塩工程を含むことも好ましい。脱塩は例えば透析膜やNF膜を用いて行なうことができる。
 脱アセチル化工程は、さらにその後の処理のために生成物を粉末化する工程を含んでいてもよい。
(その他の工程)
<分子量調整工程>
 本発明のポリ硫酸ペントサンの製造方法は、上述した第1工程と第2工程の間に、分子量調整工程をさらに含んでもよい。分子量調整工程は脱アセチル化工程の前であってもよく、後であってもよい。図2には、第1工程と第2工程の間に、分子量調整工程を含むフロー図が示されている。図2に示されているように、分子量調整工程では、第1工程で得られる酸性キシロオリゴ糖の分子量を調整する。例えば、分子量調整工程では、酸性キシロオリゴ糖を低分子化することができる。
 分子量調整工程では、例えば、酸処理やアルカリ処理、酵素処理、NF膜処理、UF膜処理、RO膜処理、ゲル濾過処理、活性炭処理、イオン交換処理、電気透析処理等を行うことにより、重量平均分子量が1000以上30000以下のポリ硫酸ペントサンを得ることができる。また、分子量調整工程では、膜処理等を行うことにより、所望の重量平均分子量であるポリ硫酸ペントサンを選択的に回収する方法を採用してもよい。
<分子量調整後分離精製工程>
 本発明のポリ硫酸ペントサンの製造方法は、分子量調整工程の後に、分子量調整後分離精製工程をさらに含んでもよい。分子量調整後分離精製工程としては、例えば、ゲルろ過、イオン交換処理、NF膜処理、UF膜処理、RO膜処理、電気透析処理、活性炭処理、水溶性有機溶媒処理、クロマトグラフィー処理等を挙げることができる。このような分子量調整後分離精製工程を設けることにより、分子量調整工程で得られた所望の分子量を有する酸性キシロオリゴ糖を選択的に回収することができ、分子量分布の狭いポリ硫酸ペントサンを効率よく得ることができる。
 本発明の製造方法で得られるポリ硫酸ペントサンの重量平均分子量(Mw)は、特に限定されるものではないが、例えば、5000以下であってもよく、4000以下であってもよく、3900以下であってもよく、3800以下であってもよく、3750以下であってもよい。この場合、ポリ硫酸ペントサンの重量平均分子量(Mw)の下限値は1000であることが好ましい。
 また、ポリ硫酸ペントサンの重量平均分子量(Mw)は、5000超であってもよく、6000以上であってもよく、7000以上であってもよく、10000以上であってもよく、15000以上であってもよく、20000以上であってもよい。
 ポリ硫酸ペントサンの数平均分子量(Mn)は、特に限定されるものではないが、例えば、5000以下であってもよく、4000以下であってもよく、3900以下であってもよく、3800以下であってもよく、3750以下であってもよい。この場合、ポリ硫酸ペントサンの数平均分子量(Mn)の下限値は300であることが好ましい。
 また、ポリ硫酸ペントサンの数平均分子量(Mn)は、5000超であってもよく、6000以上であってもよく、7000以上であってもよく、10000以上であってもよく、15000以上であってもよく、20000以上であってもよい。
 本発明の製造方法で得られるポリ硫酸ペントサンの重量平均分子量(Mw)と数平均分子量(Mn)は、GPC(ゲルパ-ミエーションクロマトグラフィー)により測定することができる。GPCカラムとしては、ワイエムシィ社製のYMC-Pack Diol-300とYMC-Pack Diol-60を連結して用いることができる。また、GPCの条件としては、例えば、下記の条件を採用する。
 溶離液: 25mMリン酸二水素カリウム/25mMリン酸水素二カリウム/50mM塩化カリウム
 流速:0.7mL/分
 測定温度:40℃
 検出器:示差屈折率検出器
 分析時間:40分
 本発明の製造方法で得られるポリ硫酸ペントサンの分散度は、1.00以上1.40以下であることが好ましく、1.00以上1.35以下であることがより好ましい。また、ポリ硫酸ペントサンの分散度は、1.00以上1.20以下であることも好ましい。ここで、ポリ硫酸ペントサンの分散度(D)は以下の式で算出される。
 分散度(D)=重量平均分子量(Mw)/数平均分子量(Mn)
 本発明の製造方法で得られるポリ硫酸ペントサンは、純度が高く、分子量分布が狭い傾向が見られる。また、本発明の製造方法で得られるポリ硫酸ペントサンは、品質安定性に優れている。
(ポリ硫酸ペントサンの用途)
 本発明の製造方法により得られるポリ硫酸ペントサンは、医薬品、食品や化粧品等の用途に用いることができる。例えば、本発明の製造方法により得られるポリ硫酸ペントサン(ポリ硫酸ペントサンもしくはその薬学的に許容される塩又はそれらの溶媒和物)を有効成分として含む医薬組成物を提供することができる。特にポリ硫酸ペントサンは抗凝固活性を有するため、上記医薬組成物は抗凝固剤として用いることができる。
 一般的に、抗凝固活性は、血液凝固因子の阻害活性に基づく。すなわち、抗凝固活性が高い状態においては、血液の凝固反応が阻害される。血液凝固因子とは、出血した際などに生体が血液を凝固させるための一連の分子の作用系であり、多数の血液凝固因子が次々に活性化することでフィブリンを凝集させ出血部の止血を行う。血液凝固因子の代表的なものとしては、例えば、Xa因子やIIa因子などが挙げられ、これらの因子の活性を阻害することで血液の凝固することができる。
 ポリ硫酸ペントサンのXa因子の阻害活性(抗Xa活性)は、0.10IU/mg以上であることが好ましく、0.12IU/mg以上であることがより好ましい。
 また、ポリ硫酸ペントサンのIIa因子の阻害活性(抗IIa活性)は、0.50IU/mg以下であることが好ましく、0.40IU/mg以下であることがより好ましく、0.30IU/mg以下であることがさらに好ましい。
 ここで、Xa因子の阻害活性(抗Xa活性)は、テストチーム(登録商標)ヘパリンS(積水メディカル社製)を使用して測定することができる。
 また、IIa因子の阻害活性(抗IIa活性)は、Biophen heparin anti-IIa(Hyphen Biomed社製)を使用して測定することができる。
 また、ポリ硫酸ペントサンの、Xa因子の阻害活性(抗Xa活性)とIIa因子の阻害活性(抗IIa活性)との活性比は所定の範囲内であることが好ましい。具体的には、抗Xa活性/抗IIa活性の値は、0.50以上であることが好ましく、1.00以上であることがより好ましく、1.10以上であることがさらに好ましく、1.20以上であることが一層好ましい。
 本発明の製造方法により、抗Xa活性、抗IIa活性、及び抗Xa活性/抗IIa活性の値が上記範囲内に制御されたポリ硫酸ペントサンを得ることができる。すなわち、抗Xa活性よりも抗IIa活性を低く抑えたポリ硫酸ペントサンを得ることができる。抗Xa活性/抗IIa活性の値を上記範囲内に制御することで、抗凝固活性をより効果的に高めることができ、出血リスクが増大したり、血小板が減少する等の副作用の発生を抑制することができる。
 本発明の製造方法により得られるポリ硫酸ペントサンを含む医薬組成物は、例えば、医療器材又は医療材料の表面処理剤として用いることができる。例えば、埋め込み型人工臓器、人工血管、カテーテル、ステント、血液バッグ、コンタクトレンズ、眼内レンズ、手術用補助器具の表面処理剤として用いることができる。医薬組成物を医療器材又は医療材料の表面に固定する方法としては、例えば、医療器材又は医療材料に医薬組成物を接触させておき、そこへ放射線を照射する方法等が挙げられる。
 また、医薬組成物は、経口投与剤や外用剤として用いることもできる。
 以下に製造例を挙げて本発明の特徴をさらに具体的に説明する。以下の製造例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
(実施例1)
<酸性キシロオリゴ糖の製造>
 木材 チップ(広葉樹)10質量部に対して、水を40質量部添加し、160℃で3時間加熱処理を行った。その後、スクリュープレス(新菱製作所製:250×1000SPH-EN)にて固液分離を行い、濾液を回収した。濾液をミクロンレート1μmのバッグフィルター(ISPフィルターズ社製)で濾過し、活性炭(三倉化成社製:PM-SX)を5質量部添加して50℃で2時間処理した後、更にミクロンレート0.2μmのセラミックフィルター(日本ポール社製)で活性炭ごと濾過し、清澄な濾液を回収した。清澄濾液を逆浸透膜(日東電工社製:NTR-7450)で20倍に濃縮して濃縮糖液を得た後、その濃縮糖液を、SV1.5で強カチオン樹脂(三菱化学社製:PK-218)、弱アニオン樹脂(三菱化学社製:WA30)、強カチオン樹脂(三菱化学社製:PK-218)、弱アニオン樹脂(三菱化学社製:WA30)からなる4床4塔式のイオン交換樹脂に通液し、2塔目及び4塔目の弱アニオン樹脂に酸性キシロオリゴ糖を吸着させ、その後50mM塩化ナトリウム水溶液をSV1.5で2塔目及び4塔目に通液することにより、平均重合度が8未満の酸性キシロオリゴ糖溶液を回収した。得られた酸性キシロオリゴ糖溶液に、表に記載のpHとなるように水酸化ナトリウムを添加し、表に記載の時間撹拌して脱アセチル化を行った。得られた液に、pH5未満となるように塩酸を添加し透析膜(SPECTRUM社製:スペクトラ/ポア)で脱塩を行った。得られた酸性キシロオリゴ糖液は凍結乾燥機(EYELA社製)を用いて粉末化した。
<ポリ硫酸ペントサンナトリウムの製造>
 100mLセパラブルフラスコにN,N-ジメチルホルムアミド10mL、三酸化硫黄・ピリジン錯体2.4g及び前述の方法で製造した酸性キシロオリゴ糖粉末0.3gを加えて40℃で3時間反応を行った。冷却後、得られた反応混合物を500mLのエタノール中に滴下し、生成した沈殿物をろ別し、水30mLを加えて溶かした。この液に水酸化ナトリウム溶液を加えてpHが10になるように調整した。この液を500mLのエタノール中に滴下して得られた析出物をろ別した。その後、析出物を50mLの水を加えて溶解し、活性炭を加えて攪拌した後ろ過した。ろ液をエバポレーターで濃縮し、凍結乾燥機(EYELA社製)を用いて粉末化した。
<アセチル基含量>
 3-トリメチルシリルプロピオン酸ナトリウムー2,2,3,3―d4(ISOTEC社)35mgを重水(関東化学社)に溶解し、25mLメスフラスコを用いてメスアップし、内標準溶液を作成した。実施例及び比較例のペントサンポリ硫酸ナトリウムを30mg秤量し、内標準溶液1mLに溶解してNMR用溶液を調整した。得られた溶液をNMRサンプルチューブ(関東化学社)に移し、FT-NMR(JNM-LA400:日本電子社)により1H-NMR測定を行った。内標準物質のトリメチルシリル基ピークと、ペントサンポリ硫酸ナトリウムのアセチル基ピークの積分比より、アセチル基含量を算出した。
<ポリ硫酸ペントサンナトリウムの重量平均分子量>
 表1に記載のポリ硫酸ペントサンナトリウムの重量平均分子量(Mw)は、GPC(ゲルパ-ミエーションクロマトグラフィー)により測定した。GPCカラムとしては、ワイエムシィ社製のYMC-Pack Diol-300とYMC-Pack Diol-60を連結して用いた。GPCの条件としては、下記の条件を採用した。
 溶離液: 25mMリン酸二水素カリウム/25mMリン酸水素二カリウム/50mM塩化カリウム
 流速:0.7mL/分
 測定温度:40℃
 検出器:示差屈折率検出器
 分析時間:40分
<硫黄含量>
 日本薬局方に収載されている酸素フラスコ燃焼法にてポリ硫酸ペントサンナトリウムの硫黄含量を測定した。
<抗Xa活性の測定>
 テストチーム(登録商標)ヘパリンS(積水メディカル社製)を使用してポリ硫酸ペントサンナトリウムの抗Xa活性を測定した。
<抗IIa活性の測定>
 Biophen heparin anti-IIa(Hyphen Biomed社製)を使用してポリ硫酸ペントサンナトリウムの抗IIa活性を測定した。
Figure JPOXMLDOC01-appb-T000003
 表1中の抗IIa活性及び抗Xa活性はグラフにおいても示した(図1)。
表1及び図1に示す結果から分るように、実施例の製造方法で得られた低アセチル基含量のポリ硫酸ペントサンナトリウムは、好ましい抗Xa/抗IIa活性比を示すとともに抗Xa活性が比較例よりも高い。
 比較例1及び実施例5の条件での、酸性キシロオリゴ糖粉末からポリ硫酸ペントサンナトリウム粉末を得る際の収率は、それぞれ表2に示すとおりであった。
Figure JPOXMLDOC01-appb-T000004
 表1及び表2に示す結果から分るように、本発明の製造方法によって、好ましい抗Xa/抗IIa活性比を示すとともに抗Xa活性が十分に高いポリ硫酸ペントサンナトリウムを高収率で得ることができる。

Claims (15)

  1.  植物由来原料から酸性キシロオリゴ糖を得る第1工程と前記酸性キシロオリゴ糖からポリ硫酸ペントサンを得る第2工程とを含み、
    第1工程は前記植物由来原料の解重合工程を含み、
    第2工程は前記酸性キシロオリゴ糖の硫酸化工程を含み、
    前記解重合工程より後の工程としてpH11以上とするために塩基を添加する脱アセチル化工程を含む、ポリ硫酸ペントサンの製造方法。
  2.  前記脱アセチル化工程において、前記酸性キシロオリゴ糖を含む溶液をpH11以上で1時間以上攪拌する請求項1に記載のポリ硫酸ペントサンの製造方法。
  3.  前記脱アセチル化工程において、前記酸性キシロオリゴ糖を含む溶液をpH12以上で0.5時間以上攪拌する請求項1に記載のポリ硫酸ペントサンの製造方法。
  4.  前記塩基が水酸化ナトリウムである請求項1~3のいずれか1項に記載のポリ硫酸ペントサンの製造方法。
  5.  前記解重合工程が非アルカリ性条件下で行われる請求項1~4のいずれか1項に記載のポリ硫酸ペントサンの製造方法。
  6.  前記解重合工程が加熱処理工程である請求項1~5のいずれか1項に記載のポリ硫酸ペントサンの製造方法。
  7.  前記加熱処理工程が非アルカリ性条件下で120℃以上に加熱する工程である請求項6に記載のポリ硫酸ペントサンの製造方法。
  8.  前記植物由来原料が木材由来原料である請求項1~7のいずれか1項に記載のポリ硫酸ペントサンの製造方法。
  9.  第1工程と第2工程との間に、分子量調整工程をさらに含む請求項1~8のいずれか1項に記載のポリ硫酸ペントサンの製造方法。
  10.  前記分子量調整工程の後に、分子量調整後分離精製工程をさらに含む請求項9に記載のポリ硫酸ペントサンの製造方法。
  11.  第2工程が、前記硫酸化工程の後に、硫酸化後精製工程をさらに含む請求項1~10のいずれか1項に記載のポリ硫酸ペントサンの製造方法。
  12.  第2工程が、前記硫酸化後精製工程の後に粉末化工程をさらに含む請求項11に記載のポリ硫酸ペントサンの製造方法。
  13.  請求項1~12のいずれか1項に記載の製造方法で製造されたポリ硫酸ペントサン。
  14.  アセチル基含量が0~2.0質量%である、請求項13に記載のポリ硫酸ペントサン。
  15.  請求項13又は14に記載のポリ硫酸ペントサンを含む抗凝固剤。
PCT/JP2017/031434 2016-08-31 2017-08-31 ポリ硫酸ペントサンの製造方法 WO2018043668A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP17846672.8A EP3677599A4 (en) 2016-08-31 2017-08-31 PENTOSANE POLYSULFATE MANUFACTURING PROCESS
SG11202001822WA SG11202001822WA (en) 2016-08-31 2017-08-31 Production method for pentosan polysulfate
JP2018516079A JP6432709B2 (ja) 2016-08-31 2017-08-31 ポリ硫酸ペントサンの製造方法
BR112020003899-7A BR112020003899B1 (pt) 2016-08-31 2017-08-31 Método para produzir polissulfato de pentosano, polissulfato de pentosano, e, anticoagulante
KR1020207008632A KR102591794B1 (ko) 2016-08-31 2017-08-31 폴리황산펜토산의 제조 방법
AU2017321818A AU2017321818B2 (en) 2016-08-31 2017-08-31 Production method for pentosan polysulfate
CN201780094371.2A CN111065654B (zh) 2016-08-31 2017-08-31 戊聚糖多硫酸酯的生产方法
CA3074419A CA3074419C (en) 2016-08-31 2017-08-31 Production method for pentosan polysulfate
MX2020002287A MX2020002287A (es) 2016-08-31 2017-08-31 Metodo de produccion para polisulfato de pentosan.
US16/643,265 US11312790B2 (en) 2016-08-31 2017-08-31 Production method for pentosan polysulfate
ZA2020/01443A ZA202001443B (en) 2016-08-31 2020-03-06 Production method for pentosan polysulfate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016169710 2016-08-31
JP2016-169710 2016-08-31
JP2017035917 2017-02-28
JP2017-035917 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018043668A1 true WO2018043668A1 (ja) 2018-03-08

Family

ID=61305336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031434 WO2018043668A1 (ja) 2016-08-31 2017-08-31 ポリ硫酸ペントサンの製造方法

Country Status (11)

Country Link
US (1) US11312790B2 (ja)
EP (1) EP3677599A4 (ja)
JP (2) JP6225321B1 (ja)
KR (1) KR102591794B1 (ja)
CN (1) CN111065654B (ja)
AU (1) AU2017321818B2 (ja)
BR (1) BR112020003899B1 (ja)
CA (1) CA3074419C (ja)
MX (1) MX2020002287A (ja)
SG (1) SG11202001822WA (ja)
WO (1) WO2018043668A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159580A1 (ja) * 2017-02-28 2018-09-07 王子ホールディングス株式会社 ポリ硫酸ペントサン、医薬組成物及び抗凝固剤
WO2020039480A1 (ja) * 2018-08-20 2020-02-27 株式会社レクメド 新規ポリ硫酸ペントサンナトリウム製剤
US11278485B2 (en) 2017-05-31 2022-03-22 Oji Holdings Corporation Moisturizing topical preparation
US11286272B2 (en) 2016-08-31 2022-03-29 Oji Holdings Corporation Production method for acidic xylooligosaccharide, and acidic xylooligosaccharide
US11312790B2 (en) 2016-08-31 2022-04-26 Oji Holdings Corporation Production method for pentosan polysulfate
US11344570B2 (en) 2017-12-20 2022-05-31 Oji Holdings Corporation Pentosan polysulfate and medicine containing pentosan polysulfate
US11390693B2 (en) 2017-09-12 2022-07-19 Oji Holdings Corporation Pentosan polysulfate and method for producing pentosan polysulfate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843100A (ja) 1971-09-30 1973-06-22
JP2003183303A (ja) 2001-12-20 2003-07-03 Oji Paper Co Ltd 酸性キシロオリゴ糖組成物及びその製造方法
WO2005117912A1 (en) * 2004-05-27 2005-12-15 Avigen, Inc. Methods for treating bleeding disorders using sulfated polysaccharides
WO2007138263A1 (en) * 2006-05-25 2007-12-06 Ulive Enterprises Limited Prevention and/or treatment of neurodegenerative disorders
WO2010000013A1 (en) 2008-07-04 2010-01-07 Parnell Laboratories (Aust) Pty Ltd A sulfated polysaccharide compound and the preparation and use thereof
WO2014114723A1 (en) 2013-01-24 2014-07-31 Chemi S.P.A. Method for the qualification of preparations of pentosan polysulfate, raw materials and production processes thereof
WO2016184887A1 (en) * 2015-05-20 2016-11-24 Chemi Spa Process for the preparation of polysaccharides

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843100B1 (ja) 1969-09-05 1973-12-17
US4168742A (en) 1978-03-27 1979-09-25 Hudson Products Corporation Tube bundle
FR2538404B1 (ja) 1982-12-28 1985-08-23 Anic Spa
FR2543145B1 (fr) 1983-03-24 1986-10-17 Sanofi Sa Nouveaux sulfates de xylanes, leur procede de preparation et leur activite anti-thrombotique et hypolipemiante
JPS60112708A (ja) 1983-11-24 1985-06-19 Maruho Kk 皮膚用保湿剤
FR2572731B1 (fr) 1984-11-07 1987-03-06 Sanofi Sa Nouveaux sulfates de xylanes de bas poids moleculaires, leur procede de preparation et leur activite antithrombotique et hypolipemiante par voie orale
JPS61130302A (ja) 1984-11-30 1986-06-18 Tokyo Univ 抗凝血活性を有する硫酸化リボフラナン及びその製造法
JPS61130301A (ja) 1984-11-30 1986-06-18 Tokyo Univ 抗凝血活性を有する硫酸化キシロフラナン及びその製造法
US5672334A (en) 1991-01-16 1997-09-30 Access Pharmaceuticals, Inc. Invivo agents comprising cationic metal chelators with acidic saccharides and glycosaminoglycans
FR2645745B1 (fr) 1989-04-12 1991-09-27 Anben Ste Civile Compositions therapeutiques pour le traitement ou la prevention du ronflement
DE3917982A1 (de) 1989-06-02 1990-12-06 Behringwerke Ag Verwendung von xylanpolyhydrogensulfaten zur therapie von zellproliferations-bedingten erkrankungen
FR2648463B1 (fr) 1989-06-14 1993-01-22 Inst Fs Rech Expl Mer Polysaccharides sulfates, agent anticoagulant et agent anticomplementaire obtenus a partir de fucanes d'algues brunes et leur procede d'obtention
BR9106377A (pt) 1990-04-26 1993-04-27 Cytrx Corp Composicao e processo para o tratamento topico de tecido lesado ou enfermo
US20010005720A1 (en) * 1995-06-07 2001-06-28 U.S.A. As Represented By The Secretary Department Of Health And Human Services Method of treating chronic progressive vascular scarring diseases
DE19632840A1 (de) 1996-08-14 1998-02-19 Landsberger Albert Vitamin A-haltige Zusammensetzung
JPH10195107A (ja) 1997-01-10 1998-07-28 Shiseido Co Ltd オリゴ硫酸化ヒアルロン酸
JP4336905B2 (ja) 1997-12-19 2009-09-30 マルホ株式会社 硫酸化多糖類含有皮膚保湿乳剤性ローション剤
US6593310B1 (en) 2000-11-21 2003-07-15 Arthropharm Pty. Ltd. Treatment of osteoporosis
DE10141106A1 (de) 2001-08-22 2003-03-13 Aventis Pharma Gmbh Verwendung von Heparinoid-Derivaten zur Behandlung und Diagnose von mit Heparinoiden behandelbaren Erkrankungen
JP3772749B2 (ja) 2002-01-25 2006-05-10 王子製紙株式会社 メラニン生成抑制剤
JP2003221339A (ja) 2002-01-29 2003-08-05 Oji Paper Co Ltd 抗炎症剤
ITMI20031618A1 (it) 2003-08-06 2005-02-07 Inalco Spa Derivati polisaccaridici dotati di alta attivita'
RU2413734C2 (ru) 2004-08-05 2011-03-10 Ивакс Драг Рисерч Инститьют Лтд Полисульфатированные гликозиды и их соли
US20060194759A1 (en) 2005-02-25 2006-08-31 Eidelson Stewart G Topical compositions and methods for treating pain and inflammation
BRPI0613677A2 (pt) 2005-07-22 2011-01-25 Trf Pharma Inc método para tratar doença de célula falsiforme e sequelas da doença de célula falsiforme
EP2010220B1 (en) 2006-04-03 2022-02-16 Ceva Animal Health Pty Ltd Stabilized pentosan polysulfate (pps) formulations
EP2116224B1 (en) 2006-11-27 2016-01-27 JNC Corporation Cosmetic composition
WO2008107906A1 (en) 2007-03-06 2008-09-12 Alembic Limited Process for the preparation of pentosan polysulfate or salts thereof
FI121811B (fi) 2007-06-01 2011-04-29 Upm Kymmene Corp Uudet dispersiot ja menetelmä niiden valmistamiseksi
HUP0900072A2 (hu) 2009-02-06 2010-09-28 Egis Gyogyszergyar Nyilvanosan Transzdermális gyógyszerkészítmények
WO2009087581A1 (en) 2008-01-04 2009-07-16 Alembic Limited An improved process for the preparation of pentosan polysulfate or salts thereof
JP2009196915A (ja) 2008-02-20 2009-09-03 Ezaki Glico Co Ltd 化粧品用組成物
FR2935386B1 (fr) 2008-08-26 2010-09-10 Sanofi Aventis Nouveaux polysaccharides a activite antithrombotique comprenant une liaion covalente avec une chaine amine
KR101678429B1 (ko) 2009-02-02 2016-11-22 오츠카 세이야쿠 가부시키가이샤 저분자량 다황산화 히알루론산 유도체 및 이를 함유하는 의약
CN102061323B (zh) * 2010-11-10 2013-09-25 山东龙力生物科技股份有限公司 一种植物木质纤维素的综合利用工艺
WO2012101544A1 (en) * 2011-01-29 2012-08-02 Alembic Pharmaceuticals Limited An improved process for the preparation of pentosan polysulfate or salts thereof
WO2012114349A1 (en) 2011-02-23 2012-08-30 Cadila Healthcare Limited An improved process for the preparation of pentosan polysulfate sodium
CN102766225B (zh) 2011-05-06 2015-08-05 上海医药工业研究院 一种戊聚糖聚硫酸钠的制备方法以及一种寡聚木糖
WO2013186857A1 (ja) 2012-06-12 2013-12-19 株式会社リボミック Fgf2に対するアプタマー及びその使用
JO3529B1 (ar) * 2013-02-08 2020-07-05 Amgen Res Munich Gmbh مضاد التصاق خلايا الدم البيض من أجل التخفيف من الاثار السلبية الممكنة الناتجة عن مجالات ارتباط cd3- المحدد
JP6132302B2 (ja) 2013-05-28 2017-05-24 リーディアント・バイオサイエンシーズ・ソシエタ・アノニマLeadiant Biosciences S.A. 抗血管新生活性を有し、抗凝血効果を有さない、ヘパラナーゼ阻害剤としての部分的に脱硫酸化されたグリコサミノグリカンの誘導体
CN103320548A (zh) * 2013-06-24 2013-09-25 稼禾生物股份有限公司 一种利用农作物秸秆制备低聚木糖和纤维素的方法
JP6403317B2 (ja) 2013-07-19 2018-10-10 学校法人慶應義塾 抗腫瘍剤
EP3302705A4 (en) 2015-05-27 2019-01-23 Vanguard Therapeutics, Inc. PENTOSAN SODIUM POLYSULFATE FOR THE TREATMENT OF DRÉPANOCYTOSE
CN106832020A (zh) 2015-12-04 2017-06-13 长春工业大学 一种玉米秸秆戊聚糖硫酸酯的制备工艺
CN105907896B (zh) 2016-05-16 2019-11-12 中国科学院广州能源研究所 一种利用木质纤维原料联产高浓度木糖和低聚木糖的方法
JP6225321B1 (ja) 2016-08-31 2017-11-08 王子ホールディングス株式会社 ポリ硫酸ペントサンの製造方法
MX2020002288A (es) 2016-08-31 2020-07-14 Oji Holdings Corp Metodo de produccion para xilooligosacarido acido y xilooligosacarido acido.
JP6281659B1 (ja) 2017-02-28 2018-02-21 王子ホールディングス株式会社 ポリ硫酸ペントサン、医薬組成物及び抗凝固剤

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843100A (ja) 1971-09-30 1973-06-22
JP2003183303A (ja) 2001-12-20 2003-07-03 Oji Paper Co Ltd 酸性キシロオリゴ糖組成物及びその製造方法
WO2005117912A1 (en) * 2004-05-27 2005-12-15 Avigen, Inc. Methods for treating bleeding disorders using sulfated polysaccharides
WO2007138263A1 (en) * 2006-05-25 2007-12-06 Ulive Enterprises Limited Prevention and/or treatment of neurodegenerative disorders
WO2010000013A1 (en) 2008-07-04 2010-01-07 Parnell Laboratories (Aust) Pty Ltd A sulfated polysaccharide compound and the preparation and use thereof
WO2014114723A1 (en) 2013-01-24 2014-07-31 Chemi S.P.A. Method for the qualification of preparations of pentosan polysulfate, raw materials and production processes thereof
WO2016184887A1 (en) * 2015-05-20 2016-11-24 Chemi Spa Process for the preparation of polysaccharides

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Wood Chemicals no Gijyutsu (Techniques of Wood Chemicals", 2007, CMC PUBLISHING CO., LTD., pages: 108
KABEL, M. A. ET AL.: "Complex xylo- oligosaccharides identified from hydrothermally treated Eucalyptus wood and brewery's spent grain", CARBOHYDRATE POLYMERS, vol. 50, no. 2, 2002, pages 191 - 200, XP004367044, DOI: doi:10.1016/S0144-8617(02)00022-X *
KABEL, M. A. ET AL.: "Hydrothermally treated xylan rich by-products yield different classes of xylo-oligosaccharides", CARBOHYDRATE POLYMERS, vol. 50, no. 1, 2002, pages 47 - 56, XP004357942, DOI: doi:10.1016/S0144-8617(02)00045-0 *
KOUTANIEMI, S. ET AL.: "Distinct roles of carbohydrate esterase family CE16 acetyl esterases and polymer-acting acetyl xylan esterases in xylan deacetylation", JOURNAL OF BIOTECHNOLOGY, vol. 168, no. 4, 2013, pages 684 - 92, XP028789075, DOI: doi:10.1016/j.jbiotec.2013.10.009 *
MITSURO ISHIHARA ET AL.: "Isolation of Xylan from Hardwood by Alkali Extraction and Steam Treatment", JOURNAL OF WOOD SCIENCE, vol. 42, no. 12, 1996, pages 1211 - 1220, XP055581018, ISSN: 0021-4795 *
PAWAR, P. M. A. ET AL.: "Acetylation of woody lignocellulose: significance and regulation", FRONTIERS IN PLANT SCIENCE, vol. 4, no. 118, 2013, pages 1 - 8, XP055471705, DOI: 10.3389/fpls.2013.00118 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11286272B2 (en) 2016-08-31 2022-03-29 Oji Holdings Corporation Production method for acidic xylooligosaccharide, and acidic xylooligosaccharide
US11312790B2 (en) 2016-08-31 2022-04-26 Oji Holdings Corporation Production method for pentosan polysulfate
WO2018159580A1 (ja) * 2017-02-28 2018-09-07 王子ホールディングス株式会社 ポリ硫酸ペントサン、医薬組成物及び抗凝固剤
US11274165B2 (en) 2017-02-28 2022-03-15 Oji Holdings Corporation Pentosan polysulfate, pharmaceutical composition, and anticoagulant
US11278485B2 (en) 2017-05-31 2022-03-22 Oji Holdings Corporation Moisturizing topical preparation
US11390693B2 (en) 2017-09-12 2022-07-19 Oji Holdings Corporation Pentosan polysulfate and method for producing pentosan polysulfate
US11344570B2 (en) 2017-12-20 2022-05-31 Oji Holdings Corporation Pentosan polysulfate and medicine containing pentosan polysulfate
WO2020039480A1 (ja) * 2018-08-20 2020-02-27 株式会社レクメド 新規ポリ硫酸ペントサンナトリウム製剤
AU2018437600B2 (en) * 2018-08-20 2022-11-17 Reqmed Company, Ltd. Novel pentosan polysulfate sodium preparation

Also Published As

Publication number Publication date
CA3074419C (en) 2023-09-26
JPWO2018043668A1 (ja) 2018-08-30
SG11202001822WA (en) 2020-04-29
CN111065654B (zh) 2022-08-26
CN111065654A (zh) 2020-04-24
CA3074419A1 (en) 2018-03-08
JP2018039973A (ja) 2018-03-15
US11312790B2 (en) 2022-04-26
BR112020003899B1 (pt) 2023-04-18
AU2017321818B2 (en) 2022-12-08
AU2017321818A1 (en) 2020-03-26
MX2020002287A (es) 2020-07-14
EP3677599A1 (en) 2020-07-08
JP6432709B2 (ja) 2018-12-05
KR20200044896A (ko) 2020-04-29
US20200332027A1 (en) 2020-10-22
BR112020003899A2 (pt) 2020-09-01
JP6225321B1 (ja) 2017-11-08
BR112020003899A8 (pt) 2023-03-07
KR102591794B1 (ko) 2023-10-19
EP3677599A4 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
JP6432709B2 (ja) ポリ硫酸ペントサンの製造方法
JP6281659B1 (ja) ポリ硫酸ペントサン、医薬組成物及び抗凝固剤
JP6544475B2 (ja) 酸性キシロオリゴ糖の製造方法及び酸性キシロオリゴ糖
JP2022180509A (ja) ポリ硫酸ペントサン及びポリ硫酸ペントサンの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018516079

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WPC Withdrawal of priority claims after completion of the technical preparations for international publication

Ref document number: 2016-169710

Country of ref document: JP

Date of ref document: 20190204

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 2017-035917

Country of ref document: JP

Date of ref document: 20190204

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

ENP Entry into the national phase

Ref document number: 3074419

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020003899

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20207008632

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017321818

Country of ref document: AU

Date of ref document: 20170831

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017846672

Country of ref document: EP

Effective date: 20200331

ENP Entry into the national phase

Ref document number: 112020003899

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200227