WO2020215706A1 - 一种结合渣浆处理与裂解反应的氯硅烷高沸物回收工艺 - Google Patents
一种结合渣浆处理与裂解反应的氯硅烷高沸物回收工艺 Download PDFInfo
- Publication number
- WO2020215706A1 WO2020215706A1 PCT/CN2019/119207 CN2019119207W WO2020215706A1 WO 2020215706 A1 WO2020215706 A1 WO 2020215706A1 CN 2019119207 W CN2019119207 W CN 2019119207W WO 2020215706 A1 WO2020215706 A1 WO 2020215706A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tower
- chlorosilane
- cracking
- silicon tetrachloride
- cracking reaction
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/08—Compounds containing halogen
- C01B33/107—Halogenated silanes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/08—Compounds containing halogen
- C01B33/107—Halogenated silanes
- C01B33/1071—Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Definitions
- the invention relates to the field of chlorosilane production, in particular to a chlorosilane high-boiling material recovery process combining slurry treatment and cracking reaction.
- the domestic polysilicon production process mainly adopts the modified Siemens method, and its process mainly includes: trichlorosilane preparation process, trichlorosilane refining process, trichlorosilane reduction process and reduction recovery process.
- trichlorosilane preparation process Due to the constraints of the purity of silicon powder raw materials, catalysts and process conditions, a small amount of Si-C, Si-Si, Si-C-Si, Si-C-Si, Si-O-Si bond compound and high boilers composed of residual silicon powder, catalyst and metal chloride.
- High boiling material is a sauce-colored, pungent odor and strong corrosive mixed liquid. It is flammable, explosive and not easy to store. In addition, the market capacity is limited. If it is not processed in time, it will cause a large amount of backlog and block storage, which will bring safety and environmental protection. There is a big hidden danger.
- the organic amine catalyst and hydrogen chloride are mixed as one feed, and the chlorosilane high boiler is the other feed, and it enters the cracking reaction tower for cracking. reaction.
- the method does not pre-treat the chlorosilane high boilers, and does not recover the silicon tetrachloride in the raw materials in advance. It is one of the cracked products and is limited by the reaction equilibrium, and the cracking rate of the high boilers cannot be improved. More importantly, the solid impurities in the high boilers are not removed, which will lead to catalyst deactivation, requiring more catalysts and increasing production costs.
- the present invention proposes a chlorosilane high-boiling material recovery process combining slurry treatment and cracking reaction.
- the high-boiling material is pretreated by a slurry treatment device, after removing silicon tetrachloride and solid impurities. After separation and cracking reaction of the high boilers of chlorosilanes, monosilane products are obtained.
- the present invention integrates two different devices, improves the cracking rate of high boiling substances and the service life of the catalyst, reduces the subsequent hazardous waste treatment volume, and improves the economic benefits of the enterprise.
- the purpose of the present invention is to provide a process for recovering chlorosilane high-boiling substances in a slurry treatment device combined with cracking technology.
- the slurry treatment device is used to pretreat the high-boiling substances to remove silicon tetrachloride and solid impurities.
- the silane high boilers are separated and cracked to obtain monosilane products.
- a chlorosilane high-boiling material recovery process that combines slurry treatment and cracking reaction.
- the chlorosilane high-boiling material slurry passes through the silicon tetrachloride recovery equipment of the slurry processing unit to recover silicon tetrachloride, and then undergoes deslagging and drying
- the equipment removes solid impurities, and the obtained liquid phase passes through the tetrachloride separation tower and the high boiler separation tower in order to recover silicon tetrachloride, remove high polymers and residual solid impurities, and obtain chlorosilane oligomers Together with hydrogen chloride, it enters a continuous cracking reactor equipped with a catalyst for cracking reaction.
- the slurry treatment device of the present invention is combined with cracking technology to recover the chlorosilane high boiler:
- the main equipment of the continuous cracking reactor (E) is one of a jacketed reactor or a fixed bed reactor structure, and the reactor is filled with a catalyst containing an ammonium salt functional group.
- the pyrolysis reaction rectification tower (F) is provided with two feed ports on the tower body, which are respectively used for the feed of gas phase hydrogen chloride and the reaction product of the continuous cracking reactor (E).
- the chlorosilane oligomerization can be carried out in the tower. There are two processes for separating the reaction products at the same time as the cleavage reaction of the chemical compound and hydrogen chloride.
- the hydrogen chloride feed port of the cracking reaction rectification tower (F) adopts a gas-phase tubular distributor.
- the chlorosilane high-boiler slurry enters the silicon tetrachloride recovery equipment (A) of the slurry processing unit to recover the silicon tetrachloride in the material.
- the slurry is allowed to contain Part of silicon tetrachloride;
- the high boiling material slurry after the recovery of silicon tetrachloride enters the deslagging drying equipment (B) to remove solid impurities in the material, and the obtained liquid phase material enters the silicon tetrachloride separation tower of the high boiling cracking unit ;
- silicon tetrachloride separation tower C
- silicon tetrachloride is recovered from the top of the tower; the tower bottom material enters the high-boiler separation tower;
- the material extracted from the bottom of the silicon tetrachloride separation tower (C) enters the high-boiler separation tower (D), and the chlorosilane oligomer obtained from the top of the tower enters the continuous cracking reactor, and the lower part of the tower is extracted Chlorosilane polymer, solid materials are discharged from the tower intermittently and returned to the slurry system for recovery;
- silicon chloride oligomers and gas phase hydrogen chloride enter the continuous cracking reactor (E) filled with the above-mentioned catalyst for cracking reaction, and the reaction products enter the cracking reaction rectification tower;
- the reacted materials in the continuous cracking reactor (E) enter from the upper part of the cracking reaction rectification tower (F), and the gas phase hydrogen chloride enters from the middle and lower part of the tower (F).
- the oligomer cracking reaction and In the separation process of reaction products monosilane products are extracted from the top of the tower, hydrogen chloride is recovered from the tail gas, and the materials obtained from the tower bottom are returned to the high boiler separation tower (D) to recover oligomers.
- the high-boiler cracking unit is connected in series with the slurry processing unit.
- the slurry processing unit is used to pretreat the chlorosilane high-boiling substance, and part of the silicon tetrachloride is recovered to increase the cracking rate of oligomers and remove the Solid impurities, especially metal chlorides that are easily poisoned by the cracking catalyst, will prolong the service life of the catalyst.
- the high-boiler separation tower (D) adopts a structure with lateral extraction.
- the top of the tower extracts chlorosilane oligomers, the middle and lower lateral lines extract chlorosilane polymers, and the tower still discharges solid materials intermittently.
- the accumulation of chlorosilane polymers is avoided, and the solid materials discharged from the tower kettle intermittently can be returned to the slurry processing unit for recovery.
- the cracking reaction rectification tower (F) can simultaneously carry out the cracking reaction of chlorosilane oligomers and the separation of reaction products, which is beneficial to increase the cracking rate of chlorosilane oligomers.
- Figure 1 Process flow diagram of the present invention.
- FIG. 2 Process flow and material balance diagram of Example 1 of the present invention "1000kg/h chlorosilane high-boiler slurry treatment device".
- Figure 3 The process flow and material balance diagram of Example 2 of the present invention "the device for treating 2000 kg/h chlorosilane high-boiler slurry".
- A-silicon tetrachloride recovery equipment B-slag removal drying equipment; C-silicon tetrachloride separation tower, D-high boiler separation tower, E-continuous cracking reactor, F-cracking reaction rectification tower.
- 1-Chlorosilane high-boiling matter slurry 2-High-boiling matter slurry after removing silicon tetrachloride; 3-Silicon tetrachloride one; 4-High-boiling matter after removing solid impurities; 5-solid residue Material; 6-Silicon tetrachloride II; 7-Mixed high boilers; 8-chlorosilane oligomer; 9-chlorosilane polymer; 10-solid-containing material; 11-gas phase hydrogen chloride; 12-cracked product; 13 -Monosilane products and hydrogen chloride; 14-chlorosilane oligomers and by-products.
- the chlorosilane high-boiler after removing solid impurities mainly contains compounds containing Si-C, Si-Si, Si-C-Si, Si-O-Si bonds.
- Si-C and Si-Si bonds can be broken under the action of halogen, alcohol, hydrogen, halide, hydrogen chloride, etc. to generate monosilanes containing various functional groups.
- the present invention takes CH 3 SiCl 3 , Si 2 Cl 6 and (CH 3 ) 2 Si 2 Cl 4 as examples, and the reaction equations involved are as follows:
- the cracking mechanism of this reaction is:
- the electronegativity of the Cl atom is relatively large, which causes the Si-Cl bond electron cloud to shift to Cl, and Si ⁇ + is positively charged.
- the electron-rich nucleophile is used as a catalyst to attack Si ⁇ + , and the Si-C bond or Si -Si bond polarization breaks and protonation occurs under the action of hydrogen chloride.
- the device of the present invention combining slurry treatment and cracking reaction of chlorosilane high boiler recovery process:
- the main equipment of the continuous cracking reactor (E) is one of a jacketed reactor or a fixed bed reactor structure, and the reactor is filled with a catalyst containing an ammonium salt functional group.
- the pyrolysis reaction rectification tower (F) is provided with two feed ports on the tower body, which are respectively used for the feed of gas phase hydrogen chloride and the reaction product of the continuous cracking reactor (E).
- the chlorosilane oligomerization can be carried out in the tower. There are two processes for separating the reaction products at the same time as the cleavage reaction of the chemical compound and hydrogen chloride.
- the hydrogen chloride feed port of the cracking reaction rectification tower (F) adopts a gas-phase tubular distributor.
- the chlorosilane high-boiler slurry enters the silicon tetrachloride recovery equipment (A) of the slurry treatment device to recover the silicon tetrachloride in the material.
- the slurry is allowed to contain Part of silicon tetrachloride;
- the high boiling material slurry after the recovery of silicon tetrachloride enters the deslagging drying equipment (B) to remove solid impurities in the material, and the obtained liquid phase material enters the silicon tetrachloride separation tower of the high boiling cracking device ;
- silicon tetrachloride separation tower C
- silicon tetrachloride is recovered from the top of the tower; the tower bottom material enters the high-boiler separation tower;
- the material extracted from the bottom of the silicon tetrachloride separation tower (C) enters the high-boiler separation tower (D), and the chlorosilane oligomer obtained from the top of the tower enters the continuous cracking reactor, and the lower part of the tower is extracted Chlorosilane polymer, solid materials are discharged from the tower intermittently and returned to the slurry system for recovery;
- silicon chloride oligomers and gas phase hydrogen chloride enter the continuous cracking reactor (E) filled with the above-mentioned catalyst for cracking reaction, and the reaction products enter the cracking reaction rectification tower;
- the reacted materials in the continuous cracking reactor (E) enter from the upper part of the cracking reaction rectification tower (F), and the gas phase hydrogen chloride enters from the middle and lower part of the tower (F).
- the oligomer cracking reaction and In the separation process of reaction products monosilane products are extracted from the top of the tower, hydrogen chloride is recovered from the tail gas, and the materials obtained from the tower bottom are returned to the high boiler separation tower (D) to recover oligomers.
- the processing capacity of chlorosilane high-boiler slurry is 1000kg/h, in which the content of silicon tetrachloride is 70%, the content of chlorosilane oligomer represented by Si 2 Cl 6 is 12%, and the content of chlorosilane high polymer is Take the material with 10%, solid impurity content of 8% as an example, and make accounting instructions.
- the specific process flow and material balance are shown in Figure 2.
- the 1000kg/h chlorosilane high-boiler slurry enters the silicon tetrachloride recovery equipment (A), and the amount of silicon tetrachloride recovered is 350kg/h, and the remaining 650kg/h material enters the deslagging drying equipment (B). 80kg of solid impurities are removed per hour through equipment (B), and 570kg of liquid phase high boiler is sent to the silicon tetrachloride recovery tower (C) of the high boiling cracking device.
- the operating pressure of the tower (C) is 0.1MPa(G).
- the amount of silicon tetrachloride recovered from the top of the tower is 340kg/h, and the tower bottom discharges high boilers containing a small amount of silicon tetrachloride 230kg/h enters the high boiler separation tower (D).
- the feed of tower (D) is also the bottom material of cracking reaction rectification tower (F).
- the operating pressure of tower (D) is 0.1MPa(G), and 170kg/h of material (including tetrachloride) is extracted from the top of the tower.
- the material extracted from the top of the tower (D) is sent to the continuous cracking reactor (E), and the gas-phase hydrogen chloride as a reactant is also continuously passed into the reactor at a flow rate of 24kg/h; the structure of the continuous cracking reactor is agitated Jacketed reactor type, in which macroporous weakly basic anion exchange resin is added as catalyst; the operating pressure of the reactor is controlled to 0.25MPa (G) and the temperature is 90°C.
- the materials enter the cracking reaction rectification tower (F ).
- the middle and lower part of the tower (F) is continuously fed with gaseous hydrogen chloride at a flow rate of 10kg/h, the oligomer cracking reaction and the separation of the reaction products are carried out simultaneously in the tower (F), and 146kg/h is extracted from the liquid phase at the top of the tower
- the monochlorosilane product is returned to the crude distillation unit, and the unreacted gas phase hydrogen chloride is recovered from the tail gas at the top of the tower for 24kg/h recycling, and the tower bottom is discharged at a flow rate of 40kg/h (among which, silicon tetrachloride 5kg/h, oligomer 30kg /h, polymer 5kg/h) return to high boiler separation tower (D) for material recovery.
- the processing capacity of chlorosilane high-boiler slurry is 2000kg/h, in which the content of silicon tetrachloride is 65%, the content of chlorosilane oligomer represented by Si 2 Cl 6 is 15%, and the content of chlorosilane high polymer is 10%, the material with 10% solid impurity content is taken as an example, and the calculation is explained.
- the specific process flow and material balance are shown in Figure 3.
- the 2000kg/h chlorosilane high-boiler slurry enters the silicon tetrachloride recovery equipment (A) to recover 650kg/h of silicon tetrachloride, and the remaining 1350kg/h material enters the deslagging and drying equipment (B).
- A silicon tetrachloride recovery equipment
- B deslagging and drying equipment
- 200 kg of solid impurities are removed per hour, and 1150 kg of liquid phase high boilers are obtained and sent to the silicon tetrachloride recovery tower (C) of the high boiling cracking device.
- the operating pressure of the tower (C) is 0.1MPa(G).
- the amount of silicon tetrachloride recovered from the top of the tower is 635kg/h, and the tower bottom discharges high boilers containing a small amount of silicon tetrachloride 515kg/h enters the high boiler separation tower (D).
- the feed of tower (D) is also the bottom material of cracking reaction rectification tower (F).
- the operating pressure of tower (D) is 0.1MPa(G), and 410kg/h of material (including tetrachloride Silica 25kg/h, oligomer 375kg/h, high polymer 10kg/h), the bottom side of the tower produces 200kg/h of high polymer, and part of the solid material is discharged from the tower intermittently and returned to the slurry treatment device .
- the material extracted from the top of the tower (D) is sent to the continuous cracking reactor (E), and the gas-phase hydrogen chloride as the reactant is continuously passed into the reactor at a flow rate of 60kg/h; the structure of the continuous cracking reactor is a fixed bed reactor , The reactor is filled with a macroporous weakly basic anion exchange resin as a catalyst.
- the two ends of the fixed bed adopt proprietary catalyst retention parts to ensure that the catalyst does not leak; the operating pressure of the reactor is controlled to 0.25MPa(G) and the temperature is At 90°C, the materials after the cracking reaction enter the cracking reaction rectification tower (F).
- the middle and lower parts of the tower (F) are continuously fed with gaseous hydrogen chloride at a flow rate of 20kg/h, and the oligomer cracking reaction and the separation of the reaction products are carried out simultaneously in the tower (F), and 355kg/h is extracted from the liquid phase at the top of the tower
- the monochlorosilane product is returned to the crude distillation unit, the unreacted gas phase hydrogen chloride 40kg/h is recycled from the tail gas at the top of the tower, and the tower bottom is discharged at a flow rate of 95kg/h (among which, silicon tetrachloride 10kg/h, oligomer 75kg /h, polymer 10kg/h) return to the high boiler separation tower (D) for material recovery.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
Abstract
一种结合渣浆处理与裂解反应的氯硅烷高沸物回收工艺。氯硅烷高沸物浆料经渣浆处理装置预处理后回收的物料经过分离后,氯硅烷低聚物进入装有催化剂的裂解反应器与氯化氢反应得到裂解产物,经后续分离而得到单硅烷产品。结合渣浆处理与裂解反应的氯硅烷高沸物回收工艺具有如下优势:渣浆处理装置能够有效去除物料中含有的金属氯化物等固体杂质,避免裂解催化剂的失活和结焦现象;高沸物分离塔带有侧线采出,能够分离出液相高聚物,避免累积;裂解反应精馏塔同时进行裂解反应和分离过程,可提高裂解率。
Description
本发明涉及氯硅烷生产领域,特别涉及一种结合渣浆处理与裂解反应的氯硅烷高沸物回收工艺。
目前,国内的多晶硅生产工艺主要是采用改良西门子法,其工艺过程主要包括:三氯氢硅制备工序、三氯氢硅精制工序、三氯氢硅还原工序和还原回收工序。由于硅粉原料纯度、催化剂和工艺条件等因素的制约,在三氯氢硅制备工序和三氯氢硅还原工序中,会产生少量由含有Si-C、Si-Si、Si-C-Si、Si-O-Si键的化合物以及反应残留的硅粉、催化剂和金属氯化物等组成的高沸物。高沸物是一种酱色、带有刺激性气味并具有强烈腐蚀性的混合液体,易燃易爆不易存贮,加之市场容量有限,不及时处理将会造成大量积压堵库,给安全环保带来很大隐患。
“多晶硅生产中氯硅烷高沸物裂解回收方法及装置”的专利中将有机胺催化剂与氯化氢混合作为一股进料,氯硅烷高沸物为另一股进料,同时进入裂解反应塔进行裂解反应。该方法没有对氯硅烷高沸物进行预处理,无预先回收原料中的四氯化硅,其为裂解产物之一,受到反应平衡限制,高沸物的裂解率无法提高。更重要的是没有脱除高沸物中的固体杂质,将导致催化剂失活,需要采用更多的催化剂,增加生产成本。
发明内容
为解决以上问题,本发明提出了一种结合渣浆处理与裂解反应的氯硅烷高沸物回收工艺,利用渣浆处理装置对高沸物进行预处理,脱除四氯化硅和固体杂质后的氯硅烷高沸物经过分离和裂解反应后得到单硅烷产品。本发明 将两个不同的装置进行整合,提高了高沸物的裂解率和催化剂的使用寿命,减少了后续的危废处理量,提高了企业的经济效益。
本发明的目的是提供一种渣浆处理装置与裂解技术结合回收氯硅烷高沸物的工艺,利用渣浆处理装置对高沸物进行预处理,脱除四氯化硅和固体杂质后的氯硅烷高沸物经过分离和裂解反应后得到单硅烷产品。
为实现以上目的,本发明的技术方案如下:
一种结合渣浆处理与裂解反应的氯硅烷高沸物回收工艺,包括氯硅烷高沸物浆料经过渣浆处理单元的四氯化硅回收设备回收四氯化硅后,再经过脱渣干燥设备脱除固体杂质,得到的液相依次通过四氯化过分离塔和高沸物分离塔用于回收四氯化硅、脱除高聚物以及残留的固体杂质,得到的氯硅烷低聚物与氯化氢一并进入装有催化剂的连续裂解反应器进行裂解反应,反应后的物料进入裂解反应精馏塔进行反应精馏操作,最终从塔顶采出单硅烷产品,尾气回收氯化氢,塔釜物料返回高沸物分离塔回收未反应的低聚物。
本发明的渣浆处理装置与裂解技术结合回收氯硅烷高沸物的装置:
由四氯化硅回收设备(A)、脱渣干燥设备(B)、四氯化硅分离塔(C)、高沸物分离塔(D)、连续裂解反应器(E)和裂解反应精馏塔(F)连接而成。
所述的连续裂解反应器(E)的主体设备为夹套反应釜或固定床反应器结构之一,反应器内装填含有铵盐官能团的催化剂。
所述的裂解反应精馏塔(F)的塔体上设置两个进料口,分别用于气相氯化氢和连续裂解反应器(E)反应产物的进料,可在塔内进行氯硅烷低聚物与氯化氢的裂解反应的同时对反应产物分离的两种过程。
所述的裂解反应精馏塔(F)的氯化氢进料口采用气相管式分布器。
本发明的渣浆处理装置与裂解技术结合回收氯硅烷高沸物的方法:
1、氯硅烷高沸物浆料进入渣浆处理单元的四氯化硅回收设备(A),对物料中的四氯化硅进行回收,为了保证剩余浆料的流动性,浆料中允许含有部分四氯化硅;
2、回收四氯化硅后的高沸物浆料进入脱渣干燥设备(B),用于脱除物料中的固体杂质,得到的液相物料进入高沸裂解单元的四氯化硅分离塔;
3、经过四氯化硅分离塔(C)的提纯,从塔顶回收四氯化硅;塔釜物料进入高沸物分离塔;
4、从四氯化硅分离塔(C)塔釜采出的物料进入高沸物分离塔(D),从塔顶得到氯硅烷低聚物进入连续裂解反应器,塔的中下部侧采出氯硅烷高聚物,塔釜间歇排出含固物料返回渣浆系统进行回收;
5、氯化硅低聚物与气相氯化氢作为反应物,进入装填如上所述催化剂的连续裂解反应器(E)进行裂解反应,反应产物进入裂解反应精馏塔;
6、连续裂解反应器(E)反应后的物料从裂解反应精馏塔(F)的中上部进入,气相氯化氢从塔(F)的中下部进入,在塔内同时发生低聚物裂解反应和反应产物的分离过程,从塔顶采出单硅烷产品,尾气回收氯化氢,塔釜得到的物料返回高沸物分离塔(D)回收低聚物。
本发明具有以下优点:
1、高沸物裂解单元与渣浆处理单元串联,利用渣浆处理单元对氯硅烷高沸物进行预处理,回收部分四氯化硅以提高低聚物的裂解率,并脱除物料中的固体杂质,特别极易造成裂解催化剂中毒的金属氯化物,将延长催化剂的使用寿命。
2、高沸物分离塔(D)采用带有侧线采出的结构,塔顶采出氯硅烷低聚 物,中下部侧线采出氯硅烷高聚物,塔釜间歇排出含固物料。通过侧线采出的设置,避免氯硅烷高聚物的累积,同时塔釜间歇排出的含固物料可返回渣浆处理单元进行回收。
3、裂解反应精馏塔(F)的塔内可同时进行氯硅烷低聚物的裂解反应和反应产物分离的两个过程,有利于提高氯硅烷低聚物的裂解率。
图1:本发明工艺流程图。
图2:本发明的实例1“1000kg/h的氯硅烷高沸物浆料的处理装置”的工艺流程及物料平衡图。
图3:本发明的实例2“2000kg/h的氯硅烷高沸物浆料的处理装置”的工艺流程及物料平衡图。
附图标记说明:
A-四氯化硅回收设备;B-脱渣干燥设备;C-四氯化硅分离塔,D-高沸物分离塔,E-连续裂解反应器,F-裂解反应精馏塔。
1-氯硅烷高沸物浆料;2-脱除四氯化硅后的高沸物浆料;3-四氯化硅一;4-脱除固体杂质后的高沸物;5-固体渣料;6-四氯化硅二;7-混合高沸物;8-氯硅烷低聚物;9-氯硅烷高聚物;10-含固物料;11-气相氯化氢;12-裂解产物;13-单硅烷产品和氯化氢;14-氯硅烷低聚物和副产物。
下面通过实例并结合附图对发明实施例中的技术方案作进一步说明,附图是为说明本发明而绘制的,不对本发明的具体应用形式构成限制。
脱除固体杂质后的氯硅烷高沸物中主要包含由含有Si-C、Si-Si、Si-C-Si、Si-O-Si键的化合物。通过实验表明Si-C和Si-Si键可以在卤素、醇、氢气、 卤化物和氯化氢等的作用下断裂,生成含有各种官能团的单硅烷。本发明分别以CH
3SiCl
3、Si
2Cl
6和(CH
3)
2Si
2Cl
4为例,涉及的反应方程如下:
该反应的裂解机理为:
Cl原子的电负性较大,使Si-Cl键电子云向Cl偏移,Si
δ+具有正电性, 选用富电子的亲核试剂作为催化剂进攻Si
δ+,将Si-C键或Si-Si键极化断裂,在氯化氢的作用下发生质子化作用。
本发明的结合渣浆处理与裂解反应的氯硅烷高沸物回收工艺的装置:
由四氯化硅回收设备(A)、脱渣干燥设备(B)、四氯化硅分离塔(C)、高沸物分离塔(D)、连续裂解反应器(E)和裂解反应精馏塔(F)连接而成。
所述的连续裂解反应器(E)的主体设备为夹套反应釜或固定床反应器结构之一,反应器内装填含有铵盐官能团的催化剂。
所述的裂解反应精馏塔(F)的塔体上设置两个进料口,分别用于气相氯化氢和连续裂解反应器(E)反应产物的进料,可在塔内进行氯硅烷低聚物与氯化氢的裂解反应的同时对反应产物分离的两种过程。
所述的裂解反应精馏塔(F)的氯化氢进料口采用气相管式分布器。
本发明的结合渣浆处理与裂解反应的氯硅烷高沸物回收工艺的方法:
1、氯硅烷高沸物浆料进入渣浆处理装置的四氯化硅回收设备(A),对物料中的四氯化硅进行回收,为了保证剩余浆料的流动性,浆料中允许含有部分四氯化硅;
2、回收四氯化硅后的高沸物浆料进入脱渣干燥设备(B),用于脱除物料中的固体杂质,得到的液相物料进入高沸裂解装置的四氯化硅分离塔;
3、经过四氯化硅分离塔(C)的提纯,从塔顶回收四氯化硅;塔釜物料进入高沸物分离塔;
4、从四氯化硅分离塔(C)塔釜采出的物料进入高沸物分离塔(D),从塔顶得到氯硅烷低聚物进入连续裂解反应器,塔的中下部侧采出氯硅烷高聚物,塔釜间歇排出含固物料返回渣浆系统进行回收;
5、氯化硅低聚物与气相氯化氢作为反应物,进入装填如上所述催化剂的连续裂解反应器(E)进行裂解反应,反应产物进入裂解反应精馏塔;
6、连续裂解反应器(E)反应后的物料从裂解反应精馏塔(F)的中上部进入,气相氯化氢从塔(F)的中下部进入,在塔内同时发生低聚物裂解反应和反应产物的分离过程,从塔顶采出单硅烷产品,尾气回收氯化氢,塔釜得到的物料返回高沸物分离塔(D)回收低聚物。
具体应用案例如下:
实例1
以氯硅烷高沸物浆料处理量为1000kg/h,其中四氯化硅含量为70%,以Si
2Cl
6为代表的氯硅烷低聚物含量为12%,氯硅烷高聚物含量为10%,固体杂质含量为8%的物料为例,进行核算说明。具体的工艺流程及物料平衡如附图2所示。
1000kg/h的氯硅烷高沸物浆料进入四氯化硅回收设备(A)回收的四氯化硅量为350kg/h,剩余的650kg/h物料进入脱渣干燥设备(B)。通过设备(B)每小时脱除80kg的固体杂质,得到570kg的液相高沸物送至高沸裂解装置的四氯化硅回收塔(C)。塔(C)的操作压力为0.1MPa(G),通过塔(C)的分离,从塔顶再次回收四氯化硅量为340kg/h,塔釜排出含有少量四氯化硅的高沸物230kg/h进入高沸物分离塔(D)。塔(D)的进料还有裂解反应精馏塔(F)的塔釜物料,塔(D)的操作压力为0.1MPa(G),从塔顶采出170kg/h的物料(其中四氯化硅15kg/h,低聚物150kg/h,高聚物5kg/h),塔中下部侧线采出量为100kg/h的高聚物,塔釜间歇排出部分含固物料返回渣浆处理装置。塔(D)的塔顶采出物料送至连续裂解反应器(E),气相氯化氢作为反应物按照24kg/h的流量也连续通入反应器内;连续裂解反应器的结构为带有搅拌的夹套反应釜式,釜内加入大孔弱碱性阴离子交换树 脂作为催化剂;控制反应釜的操作压力为0.25MPa(G),温度为90℃,裂解反应后物料进入裂解反应精馏塔(F)。塔(F)的中下部按照10kg/h的流量连续通入气相氯化氢,在塔(F)内同时进行低聚物的裂解反应和反应产物的分离过程,从塔顶液相采出146kg/h的单氯硅烷产品返回粗馏单元,从塔顶尾气回收未反应的气相氯化氢24kg/h循环使用,塔釜按照40kg/h的流量排出(其中,四氯化硅5kg/h,低聚物30kg/h,高聚物5kg/h)返回高沸物分离塔(D)进行物料回收。
实例2
以氯硅烷高沸物浆料处理量为2000kg/h,其中四氯化硅含量为65%,以Si
2Cl
6为代表的氯硅烷低聚物含量为15%,氯硅烷高聚物含量为10%,固体杂质含量为10%的物料为例,进行核算说明。具体的工艺流程及物料平衡如附图3所示。
2000kg/h的氯硅烷高沸物浆料进入四氯化硅回收设备(A)回收的四氯化硅量为650kg/h,剩余的1350kg/h物料进入脱渣干燥设备(B)。通过设备(B)每小时脱除200kg的固体杂质,得到1150kg的液相高沸物送至高沸裂解装置的四氯化硅回收塔(C)。塔(C)的操作压力为0.1MPa(G),通过塔(C)的分离,从塔顶再次回收四氯化硅量为635kg/h,塔釜排出含有少量四氯化硅的高沸物515kg/h进入高沸物分离塔(D)。塔(D)的进料还有裂解反应精馏塔(F)的塔釜物料,塔(D)的操作压力为0.1MPa(G),从塔顶采出410kg/h的物料(其中四氯化硅25kg/h,低聚物375kg/h,高聚物10kg/h),塔中下部侧线采出量为200kg/h的高聚物,塔釜间歇排出部分含固物料返回渣浆处理装置。塔(D)的塔顶采出物料送至连续裂解反应器(E),气相氯化氢作为反应物按照60kg/h的流量也连续通入反应器内;连续裂解反应器的结构为固定床反应器,反应器内装填大孔弱碱性阴离子交换 树脂作为催化剂,固定床的两端采用专有的催化剂截留部件,保证催化剂的无泄漏;控制反应釜的操作压力为0.25MPa(G),温度为90℃,裂解反应后物料进入裂解反应精馏塔(F)。塔(F)的中下部按照20kg/h的流量连续通入气相氯化氢,在塔(F)内同时进行低聚物的裂解反应和反应产物的分离过程,从塔顶液相采出355kg/h的单氯硅烷产品返回粗馏单元,从塔顶尾气回收未反应的气相氯化氢40kg/h循环使用,塔釜按照95kg/h的流量排出(其中,四氯化硅10kg/h,低聚物75kg/h,高聚物10kg/h)返回高沸物分离塔(D)进行物料回收。
本发明提出的结合渣浆处理与裂解反应的氯硅烷高沸物回收工艺,已通过实施例进行了描述,相关技术人员明显能在不脱离本发明的内容、精神和范围内对本文所述的系统和方法进行改动或适当变更与组合,来实现本发明的技术。特别需要指出的是,所有相类似的替换和改动对本领域技术人员来说是显而易见的,他们都被视为包括在本发明的精神、范围和内容中。
Claims (4)
- 一种结合渣浆处理与裂解反应的氯硅烷高沸物回收工艺,工艺设备包括四氯化硅回收设备(A)、脱渣干燥设备(B)、四氯化硅分离塔(C)、高沸物分离塔(D)、连续裂解反应器(E)和裂解反应精馏塔(F),其特征是在氯硅烷渣浆处理单元后串联高沸裂解单元,经渣浆处理单元预处理后的物料经高沸裂解单元分离后得到的氯硅烷低聚物进入装有催化剂的裂解装置进行连续裂解反应,并经后续分离得到单硅烷产品;氯硅烷高沸物浆料进入四氯化硅回收设备(A)回收四氯化硅,剩余物料进入脱渣干燥设备(B);设备(B)用于脱除物料中的固体杂质,得到的液相物料进入四氯化硅分离塔(C);四氯化硅分离塔(C)塔顶回收四氯化硅,塔釜物料进入高沸物分离塔(D);高沸物分离塔(D)塔顶得到氯硅烷低聚物进入连续裂解反应器(E),塔中下部设置侧线排出氯硅烷高聚物,塔釜间歇排出含固物料返回脱渣干燥设备(B);氯硅烷低聚物与氯化氢在连续裂解反应器(E)进行裂解反应;裂解反应产物和气相氯化氢进入裂解反应精馏塔(F),塔内同时进行低聚物裂解反应和反应产物分离,从塔顶采出单硅烷产品,尾气回收氯化氢,塔釜物料返回高沸物分离塔(D)进行物料回收。
- 如权利要求1所述的方法,其特征在于高沸物分离塔(D)还包括有中下部侧线采出的结构,塔顶采出氯硅烷低聚物,中下部侧线采出氯硅烷高聚物,塔釜间歇排出含固物料。
- 如权利要求1所述的方法,其特征在于连续裂解反应器(E)装填的催化剂为含有铵盐类官能团的催化剂,所述含有铵盐类官能团的催化剂为大孔型强碱性阴离子交换树脂或大孔型弱碱性阴离子交换树脂。
- 如权利要求1所述的方法,其特征在于裂解反应精馏塔(F)的塔内同时进行低聚物裂解反应和反应产物分离,从塔顶采出单硅烷产品,尾气回收氯化氢,塔釜得到未反应的氯硅烷低聚物和其他副产物。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910357954.0 | 2019-04-26 | ||
CN201910357954.0A CN110078080B (zh) | 2019-04-26 | 2019-04-26 | 一种结合渣浆处理与裂解反应的氯硅烷高沸物回收工艺 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020215706A1 true WO2020215706A1 (zh) | 2020-10-29 |
Family
ID=67417852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/119207 WO2020215706A1 (zh) | 2019-04-26 | 2019-11-18 | 一种结合渣浆处理与裂解反应的氯硅烷高沸物回收工艺 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110078080B (zh) |
WO (1) | WO2020215706A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114437125A (zh) * | 2022-01-25 | 2022-05-06 | 杭州四马化工科技有限公司 | 一种线环体硅烷连续裂解工艺 |
CN116282036A (zh) * | 2023-02-03 | 2023-06-23 | 新特能源股份有限公司 | 多晶硅冷氢化催化剂回收分离设备以及多晶硅生产系统 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110078080B (zh) * | 2019-04-26 | 2022-09-02 | 天津科技大学 | 一种结合渣浆处理与裂解反应的氯硅烷高沸物回收工艺 |
CN110950342A (zh) * | 2019-11-29 | 2020-04-03 | 天华化工机械及自动化研究设计院有限公司 | 一种多晶硅渣浆无水化处理工艺 |
CN111643916B (zh) * | 2020-05-22 | 2022-07-15 | 湖北晶星科技股份有限公司 | 一种制备高纯度六氯乙硅烷的工艺 |
CN111875800B (zh) * | 2020-06-30 | 2022-04-26 | 鲁西化工集团股份有限公司硅化工分公司 | 一种有机硅裂解渣回收系统与工艺及有机硅生产系统 |
CN113772677B (zh) * | 2021-09-30 | 2023-03-28 | 四川永祥新能源有限公司 | 一种多晶硅生产副产氯硅烷高沸物的裂解反应柱及裂解工艺 |
CN115106045B (zh) * | 2022-07-26 | 2024-03-29 | 乐山协鑫新能源科技有限公司 | 一种渣浆高沸处理系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4743344A (en) * | 1986-03-26 | 1988-05-10 | Union Carbide Corporation | Treatment of wastes from high purity silicon process |
JP4620694B2 (ja) * | 2007-01-31 | 2011-01-26 | 株式会社大阪チタニウムテクノロジーズ | 高純度トリクロロシランの製造方法 |
CN105060298A (zh) * | 2015-08-12 | 2015-11-18 | 四川永祥多晶硅有限公司 | 一种多晶硅生产中高沸物制备有机硅的处理方法和装置 |
CN106927470A (zh) * | 2017-04-12 | 2017-07-07 | 中国恩菲工程技术有限公司 | 氯硅烷废液的回收方法 |
CN108516555A (zh) * | 2018-07-10 | 2018-09-11 | 天津科技大学 | 一种电子级二氯二氢硅的制备方法及设备 |
CN109179426A (zh) * | 2018-11-19 | 2019-01-11 | 天津科技大学 | 一种反应精馏去除三氯氢硅中甲基二氯硅烷的装置和方法 |
CN110078080A (zh) * | 2019-04-26 | 2019-08-02 | 天津科技大学 | 一种结合渣浆处理与裂解反应的氯硅烷高沸物回收工艺 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1151395A (en) * | 1978-08-23 | 1983-08-09 | William C. Breneman | High purity silane and silicone production |
JPH0791049B2 (ja) * | 1988-01-21 | 1995-10-04 | 大阪チタニウム製造株式会社 | 多結晶シリコンの製造におけるポリマーのトリクロロシラン転化方法 |
DE10061682A1 (de) * | 2000-12-11 | 2002-07-04 | Solarworld Ag | Verfahren zur Herstellung von Reinstsilicium |
CN101070384A (zh) * | 2007-06-20 | 2007-11-14 | 胡孟进 | 有机硅专用不沾树脂的制备工艺 |
DE102008000052A1 (de) * | 2008-01-14 | 2009-07-16 | Wacker Chemie Ag | Verfahren zur Abscheidung von polykristallinem Silicium |
CN103101914B (zh) * | 2013-02-26 | 2014-11-12 | 天津大学 | 从氯硅烷残液中回收和提纯六氯乙硅烷的间歇操作方法及装置 |
CN104986770B (zh) * | 2015-07-14 | 2017-12-12 | 天津市净纯科技有限公司 | 三氯氢硅歧化反应精馏生产硅烷的装置及方法 |
CN108658082B (zh) * | 2018-08-31 | 2020-09-01 | 内蒙古通威高纯晶硅有限公司 | 多晶硅生产中高沸物裂解工艺 |
CN108970163A (zh) * | 2018-10-09 | 2018-12-11 | 唐山三友硅业有限责任公司 | 高沸物精馏塔及精馏法提纯高沸物的工艺 |
-
2019
- 2019-04-26 CN CN201910357954.0A patent/CN110078080B/zh active Active
- 2019-11-18 WO PCT/CN2019/119207 patent/WO2020215706A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4743344A (en) * | 1986-03-26 | 1988-05-10 | Union Carbide Corporation | Treatment of wastes from high purity silicon process |
JP4620694B2 (ja) * | 2007-01-31 | 2011-01-26 | 株式会社大阪チタニウムテクノロジーズ | 高純度トリクロロシランの製造方法 |
CN105060298A (zh) * | 2015-08-12 | 2015-11-18 | 四川永祥多晶硅有限公司 | 一种多晶硅生产中高沸物制备有机硅的处理方法和装置 |
CN106927470A (zh) * | 2017-04-12 | 2017-07-07 | 中国恩菲工程技术有限公司 | 氯硅烷废液的回收方法 |
CN108516555A (zh) * | 2018-07-10 | 2018-09-11 | 天津科技大学 | 一种电子级二氯二氢硅的制备方法及设备 |
CN109179426A (zh) * | 2018-11-19 | 2019-01-11 | 天津科技大学 | 一种反应精馏去除三氯氢硅中甲基二氯硅烷的装置和方法 |
CN110078080A (zh) * | 2019-04-26 | 2019-08-02 | 天津科技大学 | 一种结合渣浆处理与裂解反应的氯硅烷高沸物回收工艺 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114437125A (zh) * | 2022-01-25 | 2022-05-06 | 杭州四马化工科技有限公司 | 一种线环体硅烷连续裂解工艺 |
CN116282036A (zh) * | 2023-02-03 | 2023-06-23 | 新特能源股份有限公司 | 多晶硅冷氢化催化剂回收分离设备以及多晶硅生产系统 |
Also Published As
Publication number | Publication date |
---|---|
CN110078080A (zh) | 2019-08-02 |
CN110078080B (zh) | 2022-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020215706A1 (zh) | 一种结合渣浆处理与裂解反应的氯硅烷高沸物回收工艺 | |
JP4465961B2 (ja) | 六塩化二珪素の製造方法 | |
CN101445240B (zh) | 转换反应气体的分离回收方法 | |
TWI602780B (zh) | 受碳化合物污染的氯矽烷或氯矽烷混合物的後處理方法 | |
EP2654912B1 (en) | Production of polycrystalline silicon in substantially closed-loop processes that involve disproportionation operations | |
US20090220403A1 (en) | Method and apparatus for manufacturing trichlorosilane | |
JPS63367B2 (zh) | ||
US20090060819A1 (en) | Process for producing trichlorosilane | |
RU2499801C2 (ru) | Способ получения трихлорсилана и тетрахлорсилана | |
JP2009062211A (ja) | トリクロロシランの製造方法および多結晶シリコンの製造方法 | |
CN112678829A (zh) | 一种高纯乙硅烷连续生产系统及制备工艺 | |
EP2630081B1 (en) | Production of polycrystalline silicon in closed-loop processes and systems | |
JP2015089859A (ja) | テトラクロロシラン回収方法及び多結晶シリコン製造方法 | |
US20180086645A1 (en) | Trichlorosilane purification system and method for producing polycrystalline silicon | |
CN101497442B (zh) | 一种多晶硅的制备方法 | |
CN109384233B (zh) | 一种用于处理硅聚合物的方法 | |
CN219730550U (zh) | 一种多晶硅生产中氯硅烷精馏除杂系统 | |
WO2009029794A1 (en) | Process for producing trichlorosilane | |
US20130121908A1 (en) | Method for producing trichlorosilane with reduced boron compound impurities | |
JP5742622B2 (ja) | トリクロロシラン製造方法及び製造装置 | |
JP5657493B2 (ja) | ホウ素化合物の不純物を減じたトリクロロシラン製造方法 | |
CN213912399U (zh) | 一种处理多晶硅副产高沸物的反应精馏系统 | |
CN114956092A (zh) | 一种分离三氯氢硅中一甲基二氯硅烷杂质的方法 | |
CN109503646B (zh) | 一种用于处理多晶硅与有机硅副产高沸点聚合物的方法 | |
CN213527475U (zh) | 一种处理多硅化合物的隔板反应精馏系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19925856 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19925856 Country of ref document: EP Kind code of ref document: A1 |