WO2020213485A1 - 構造体、構造体の製造方法、熱交換機用部材及び熱交換器 - Google Patents

構造体、構造体の製造方法、熱交換機用部材及び熱交換器 Download PDF

Info

Publication number
WO2020213485A1
WO2020213485A1 PCT/JP2020/015720 JP2020015720W WO2020213485A1 WO 2020213485 A1 WO2020213485 A1 WO 2020213485A1 JP 2020015720 W JP2020015720 W JP 2020015720W WO 2020213485 A1 WO2020213485 A1 WO 2020213485A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
compound
polyethyleneimine skeleton
silica
Prior art date
Application number
PCT/JP2020/015720
Other languages
English (en)
French (fr)
Inventor
純平 植野
鈴木 秀也
啓 高野
ヒョンジョン 都
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN202080029257.3A priority Critical patent/CN113710473A/zh
Priority to KR1020217030234A priority patent/KR20210132113A/ko
Priority to JP2021514900A priority patent/JP7031790B2/ja
Publication of WO2020213485A1 publication Critical patent/WO2020213485A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/5406Silicon-containing compounds containing elements other than oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/04Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of rubber; of plastics material; of varnish
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys

Definitions

  • the present invention relates to a structure, a method for manufacturing the structure, a member for a heat exchanger, and a heat exchanger.
  • Heat exchangers are used in air conditioners, coolers (refrigerators, refrigerators), electric vehicles, etc.
  • a structure is adopted in which a member having high thermal conductivity is used and the surface area per unit volume is made as large as possible. Therefore, in heat exchangers, fins in which aluminum plates having high thermal conductivity, light weight, and excellent workability are installed in parallel at narrow intervals are generally used.
  • dew condensation water droplets may adhere to the fin surface.
  • the equipment equipped with a heat exchanger is an outdoor unit of an air conditioner and is in heating operation
  • the dew condensation water on the fin surface freezes due to the low atmospheric temperature, and the frozen ice becomes the core and frost forms. appear.
  • the ventilation resistance increases due to the frost on the fin surface and the heat exchange efficiency of the heat exchanger is significantly lowered.
  • a method for suppressing dew condensation water and frost on the fin surface there is a method of forming a water-repellent coating film on the fin surface.
  • the dew condensation water on the fin surface can be repelled.
  • the water repellency on the fin surface and the water repellency on the fin surface are not necessarily correlated, and even if the fin is water repellent, the water repellency of the fin is insufficient, so that the condensed water may not be sufficiently removed. there were.
  • Patent Document 1-3 A method of forming an uneven shape on the fin surface itself or attaching water-repellent fine particles to the fin surface to form an uneven shape has also been studied (Patent Document 1-3), but it is insufficient for removing condensed water and frost. Met.
  • the problem to be solved by the present invention is to provide a structure having both excellent water repellency and water slipperiness.
  • the present inventors have shown that the layer containing the polymer having a polyethyleneimine skeleton, the fluorine-containing compound and silica on the substrate exhibits both water repellency and water slipperiness. We have found that we can do this and have completed the present invention. As a result of diligent studies to solve the above problems, the present inventors have made a layer containing fluorine-containing compound and silica on the base material, and nanometer-order fibrous silica covers the surface of the base material. The present invention has been completed by finding that a layer covered in a shape or a layer in which silica having a nanometer-order network structure covers the surface of a substrate can exhibit both water repellency and water slipperiness.
  • the present invention relates to a structure having a sliding water-repellent layer on a base material, wherein the sliding water-repellent layer contains a polymer having a polyethyleneimine skeleton, a fluorine-containing compound, and silica.
  • the present invention is a structure having a sliding water-repellent layer on a base material, in which the sliding water-repellent layer contains a fluorine-containing compound and silica, and nanometer-order fibrous silica is used as the base material. It relates to a structure in which a layer covering the surface like a turf or a layer in which silica having a network structure on the order of nanometers covers the surface of a base material.
  • 3 is an SEM photograph of an aluminum flat plate provided with a layer of a polyethyleneimine polymer coated with silica produced in Example 1.
  • 3 is an SEM photograph of an aluminum flat plate provided with a layer of a polyethyleneimine polymer coated with silica produced in Example 1. It is the schematic which shows one Embodiment of the heat exchanger using the structure of this invention.
  • the structure of the present invention is a laminate containing a base material and a sliding water-repellent layer, and has a sliding water-repellent layer on the base material, and the sliding water-repellent layer is a polymer having a polyethyleneimine skeleton and fluorine-containing. Includes compounds and silica.
  • the layer containing the polymer having a polyethyleneimine skeleton, the fluorine-containing compound and silica can simultaneously exhibit both high water repellency and high water slipperiness with respect to water.
  • the base material of the structure of the present invention is not particularly limited, and for example, a base material made of metal (metal base material), a base material made of resin (resin base material), and the like can be used.
  • the metal constituting the metal base material include iron, copper, aluminum, stainless steel, zinc, silver, gold, platinum, and alloys thereof. Of these, aluminum, copper, or alloys thereof are preferable, and aluminum or an aluminum alloy is more preferable.
  • the resin constituting the resin base material include polyethylene, polypropylene, polycarbonate, polyester, polystyrene, polymethacrylate, polyvinyl chloride, polyethylene alcohol, polyimide, polyamide, polyurethane, epoxy resin, and cellulose resin.
  • the base material may be subjected to surface treatment such as etching treatment, plasma treatment, ozone treatment and the like.
  • the shape of the base material is not particularly limited, and examples thereof include a flat plate shape and a curved surface shape, and any shape may be used depending on the intended use.
  • the thickness thereof is not particularly limited, but is, for example, 10 ⁇ m to 1000 ⁇ m, preferably 50 ⁇ m to 500 ⁇ m.
  • the sliding water-repellent layer of the structure of the present invention contains a polymer having a polyethyleneimine skeleton, a fluorine-containing compound, and silica.
  • the polyethyleneimine skeleton portion of the polymer having a polyethyleneimine skeleton may be either linear polyethyleneimine or branched polyethyleneimine, and linear polyethyleneimine is preferable.
  • the polymer having a polyethyleneimine skeleton may be a polymer having a polyethyleneimine skeleton, may be a homopolymer of polyethyleneimine, or is a copolymer having a polyethyleneimine skeleton and other repeating units other than polyethyleneimine. There may be.
  • the structure of the homopolymer of polyethyleneimine is not particularly limited, and may be, for example, a linear structure, a star-like structure, or a comb-like structure. ..
  • the proportion of the polyethyleneimine skeleton in the copolymer is preferably 20 mol% or more.
  • the copolymer having the polyethyleneimine skeleton and other repeating units other than polyethyleneimine is preferably a block copolymer having 10 or more repeating units in the polyethyleneimine skeleton.
  • examples of the polymer serving as the repeating unit other than polyethyleneimine include polyethylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, and polyacrylamide. Examples thereof include poly (N-isopropylacrylamide), polyhydroxyethyl acrylate, polymethyloxazoline, polyethyloxazoline, polypropyleneimine and the like. By using these other polymers, the thickness of the sliding water-repellent layer can be easily adjusted.
  • the polymer having a polyethyleneimine skeleton preferably has a number average molecular weight of a portion corresponding to the polyethyleneimine skeleton in the range of 500 to 1,000,000. When the molecular weight of the portion corresponding to the polyethyleneimine skeleton is in this range, a stable sliding water-repellent layer can be obtained.
  • the polymer having a polyethyleneimine skeleton is preferably a fibrous polymer having a linear polyethyleneimine skeleton having a thickness in the range of 10 to 200 nm and a length in the range of 50 nm to 2 ⁇ m.
  • a polymer having a polyethyleneimine skeleton has extremely high polarity because it is a basic polymer. Therefore, the sliding water-repellent layer containing a polymer having a polyethyleneimine skeleton can exhibit a strong interaction (adhesive force) with various base materials such as a metal base material and a resin base material.
  • the polymer having a polyethyleneimine skeleton is a fibrous polymer having a linear polyethyleneimine skeleton, its major axis is oriented substantially perpendicular to the surface of the base material, or is a mesh on the base material. It is preferable that the structure is formed.
  • the polymer having a polyethyleneimine skeleton contained in the sliding water-repellent layer may be used alone or in combination of two or more.
  • silica examples of the silica contained in the sliding water-repellent layer of the present invention include an alkoxysilane compound, water glass, hexafluorosilicon ammonium, and the like, and among these, an alkoxysilane compound is preferable.
  • alkoxysilane compound examples include tetramethoxysilane, tetramethoxysilane condensate oligomer, tetraethoxysilane, ethoxysilane condensate oligomer, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane.
  • the fluorine-containing compound may be a compound containing a fluorine atom, preferably a silane compound having a perfluoroalkyl group and / or a perfluoropolyether group, and a perfluoroalkyl group represented by C n F 2n + 1 (n). Is an integer greater than or equal to 1), a perfluoropolyether group represented by F (C n F 2n O) m (n is an integer greater than or equal to 1 and m is an integer indicating the number of repetitions), and CF.
  • Si (A) 3 are independently hydrolyzable or non-hydrolyzable groups, and at least one of the 3 A's is a hydrolyzable group) It is more preferable that the compound has. It is presumed that the fluorine-containing compound has a silyl group represented by Si (A) 3 so that the hydroxyl group on the silica surface in the sliding water-repellent layer reacts with the hydrolyzable group to form a bond. Will be done.
  • n is preferably 1 to 10, and more preferably 1 to 6.
  • n is preferably 1 to 6, more preferably 2 to 6, further preferably 1 to 3, and m. Is, for example, an average of 5 to 100, preferably an average of 8 to 80, and more preferably an average of 10 to 60.
  • n is preferably 1 to 6, more preferably 2 to 6, and even more preferably 1 to 3.
  • M is, for example, an average of 5 to 100, preferably an average of 8 to 80, and more preferably an average of 10 to 60.
  • the fluorine-containing compound may contain a perfluoropolyether chain represented by (C n F 2n O) m (n is an integer of 1 or more, and m is an integer indicating the number of repetitions).
  • hydrolyzable group examples include an alkoxy group such as a methoxy group, an ethoxy group and a propoxy group; an alkoxy group substituted alkoxy group such as a methoxyethoxy group; an acyloxy group such as an acetoxy group, a propionyloxy group and a benzoyloxy group; Alkoxyoxy groups such as propenyloxy group and isobutenyloxy group; imineoxy groups such as dimethylketoxim group, methylethylketoxim group, diethylketoxim group, cyclohexaneoxym group; methylamino group, ethylamino group, dimethylamino group, diethylamino Substituent amino groups such as groups; amide groups such as N-methylacetamide group and N-ethylamide group; substituted aminooxy groups such as dimethylaminooxy group and diethylaminooxy group; halogens such as chlorine and the like
  • an alkoxy group is preferable because the hydrolysis rate is high and a film having excellent durability can be formed quickly, and an alkoxy group having 1 to 6 carbon atoms is more preferable, and the number of carbon atoms is more preferable. 1 to 3 alkoxy groups are more preferable, methoxy groups and ethoxy groups are particularly preferable, and methoxy groups are most preferable.
  • non-hydrolyzable group examples include an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms. And so on.
  • an alkyl group having 1 to 3 carbon atoms is preferable because it can avoid steric hindrance and increase the hydrolysis rate, and as a result, a film having excellent durability can be formed quickly.
  • Methyl groups are more preferred.
  • the number of hydrolyzable groups in the silyl group represented by Si (A) 3 is at least one, and two or more are preferable because a film having more excellent durability can be formed, and all three are hydrolyzable groups. Is more preferable.
  • the two or more hydrolyzable groups may be the same or different from each other.
  • at least one silyl group represented by Si (A) 3 may have a hydrolyzable group.
  • the two or more non-hydrolyzable groups in the silyl group represented by Si (A) 3 may be the same or different from each other.
  • the fluorine-containing compound is preferably a compound represented by the following formula (1-1) or (1-2).
  • Rf is a perfluoroalkyl group (n is an integer of 1 or more) independently represented by C n F 2n + 1 .
  • the three A of the silyl group represented by Si (A) 3 are independently hydrolyzable or non-hydrolyzable groups, and at least one of the three A is a hydrolyzable group. .. X is any of the linking groups represented by the following formulas (X-1) to (X-11). )
  • Rf is a perfluoroalkyl group represented by C n F 2n + 1 (n is an integer of 1 or more).
  • R 11 is a direct bond or an alkylene group having 1 to 6 carbon atoms. If there are a plurality of R 11 s, the R 11 s may be the same or different.
  • R 12 is an alkyl group having 1 to 6 carbon atoms.
  • the method for producing the compound represented by the formula (1-1) or (1-2) is not particularly limited, and the compound can be produced by a known method, for example, by the method disclosed in International Publication No. WO2015 / 152265. ..
  • the fluorine-containing compound is preferably a compound represented by the following formulas (2-1), (2-2), (2-3) or (2-4).
  • R 21 is an alkylene group having 1 to 6 carbon atoms.
  • R 23 is a divalent linking group.
  • Z is a trivalent linking group.
  • B is an organic group or a silyl group represented by ⁇ Si (A) 3 independently, and at least one of the two Bs is a silyl group represented by Si (A) 3 .
  • the three A of the silyl group represented by Si (A) 3 are independently hydrolyzable or non-hydrolyzable groups, and at least one of the three A is a hydrolyzable group. .. )
  • the number of repetitions of r is preferably 5 to 100 on average, more preferably 8 to 80 on average. An average of 10-60 is even more preferred.
  • the alkylene group having 1 to 6 carbon atoms of R 21 is preferably an alkylene group having 3 carbon atoms. ..
  • silyl group represented by Si (A) 3 in the formulas (2-1), (2-2), (2-3) and (2-4) are as described above.
  • examples of the organic group include a substituted or unsubstituted alkyl group, an alkenyl group, a phenyl group and the like.
  • examples of the substituted alkyl group include a partially fluorinated alkyl group having 1 to 6 carbon atoms and a perfluoroalkyl group having 1 to 6 carbon atoms.
  • the divalent linking group of R 23 is a linking group represented by the following formula (R-1).
  • a linking group represented by the following formula (R-2) is preferable.
  • R 24 is an alkylene group having 1 to 3 carbon atoms.
  • R 25 is a direct bond or an alkylene group having 1 to 6 carbon atoms.
  • R 26 is an alkylene group having 1 to 5 carbon atoms
  • linking group represented by the formula (R-1) include the following.
  • linking group represented by the formula (R-2) include the following.
  • the linking groups represented by the formulas (R-1) and (R-2) include formulas (R-1-1), (R-1-3), (R-1-4), and (R-2-). 5), (R-2-6), (R-2-8) are preferable, and the linking groups represented by the formulas (R-1-3) and (R-1-4) are preferable. More preferred.
  • the trivalent linking group of Z in the formulas (2-2) and (2-4) is preferably a trivalent cyclic aliphatic group having 4 to 8 carbon atoms, and more preferably a trivalent cyclohexyl group. Is.
  • the method for producing the compound represented by the formulas (2-1), (2-2), (2-3) or (2-4) is not particularly limited, and the compound can be produced by a known method.
  • an embodiment of a method for producing a compound represented by the formulas (2-1), (2-2), (2-3) or (2-4) will be described.
  • the method for producing the compound represented by the formulas (2-1) and (2-2) is, for example, the carboxylic acid represented by the following formula ( ⁇ -1) and the following formula ( ⁇ -2) or the following formula ( ⁇ ).
  • the first step of reacting with the epoxy silane compound represented by -3) to prepare a reaction product having a secondary hydroxyl group derived from an epoxy group, and the reaction product obtained in the first step and the following formula ( ⁇ ). Includes a second step of reacting with the isocyanate compound represented by -4).
  • R 23 is a divalent linking group.
  • the three A of the silyl groups represented by Si (A) 3 are independently hydrolyzable or non-hydrolyzable groups, and at least one of the three A is a hydrolyzable group.
  • R 21 is an alkylene group having 1 to 6 carbon atoms.
  • the three A of the silyl groups represented by Si (A) 3 are independently hydrolyzable or non-hydrolyzable groups, and at least one of the three A is a hydrolyzable group.
  • a compound represented by the following formula ( ⁇ -5) may be used instead of the compound represented by the formula ( ⁇ -2).
  • R 23 is a divalent linking group.
  • G is an organic group.
  • the first step may be included, and the second step can be omitted.
  • R 21 is an alkylene group having 1 to 6 carbon atoms, preferably an alkylene group having 1 to 3 carbon atoms, and more preferably an n-propylene group).
  • the method for producing the compound represented by the formulas (2-1), (2-2), (2-3) or (2-4) may be carried out in the presence of an organic solvent, if necessary.
  • the organic solvent is not particularly limited as long as it can dissolve the above-mentioned compound group as a raw material.
  • a solvent such as acetone, methyl ethyl ketone, toluene, xylene, etc., which does not have reactivity with an isocyanate group, or a fluorine-based solvent is used.
  • An organic solvent can be used.
  • fluorine-based solvent examples include fluorine-containing aromatic hydrocarbon solvents such as 1,3-bis (trifluoromethyl) benzene and trifluorotoluene; and having 3 to 3 carbon atoms such as perfluorohexane and perfluoromethylcyclohexane. Twelve perfluorocarbon-based solvents; 1,1,2,2,3,3,4-heptafluorocyclopentane, 1,1,1,2,2,3,4,4,5,5,6 Hydrofluorocarbon solvents such as 6-tridecafluorooctane; C 3 F 7 OCH 3 , C 4 F 9 OCH 3 , C 4 F 9 OC 2 H 5 , C 2 F 5 CF (OCH 3 ) C 3 F 7 etc.
  • fluorine-containing aromatic hydrocarbon solvents such as 1,3-bis (trifluoromethyl) benzene and trifluorotoluene; and having 3 to 3 carbon atoms such as perfluorohexane and perfluoromethyl
  • Hydrofluoroether-based solvent Perfluoropolyether-based solvent such as Fombulin, Garden (manufactured by Solvay), Demnum (manufactured by Daikin Industries), Kleitox (manufactured by Chemers) and the like can be preferably exemplified.
  • the reaction ratio between the compound ( ⁇ -1) and the compound ( ⁇ -2) or the compound ( ⁇ -3) is the carboxyl group of the compound ( ⁇ -1) and the compound ( ⁇ -2) or
  • the ratio of the equivalent ratio (carboxyl group / epoxy group) of the compound ( ⁇ -3) to the epoxy group is preferably 0.5 to 1.5, more preferably 0.9 to 1.1. A ratio of 0.98 to 1.02 is more preferable.
  • the reaction temperature in the first step is not particularly limited, and is usually 50 to 150 ° C.
  • the reaction time is also not particularly limited, and is usually 1 to 10 hours.
  • the reaction ratio between the reactant having a secondary hydroxyl group derived from the epoxy group obtained in the first step and the compound ( ⁇ -4) is the hydroxyl group and the compound ( ⁇ -4) contained in the reactant.
  • the ratio of the equivalent ratio (hydroxyl group / isocyanate group) to the isocyanate group of is preferably 0.5 to 1.5, more preferably 0.9 to 1.1, and 0.98 to 1.
  • the ratio of 02 is more preferable.
  • the reaction temperature in the second step is not particularly limited, and is usually 30 to 120 ° C.
  • the reaction time is also not particularly limited, and is usually 1 to 10 hours.
  • the fluorine-containing compound is preferably a compound represented by the following formula (3).
  • PFPE is a poly (perfluoroalkylene ether) chain.
  • Y 1 and Y 2 are independently bonded or divalent linking groups, respectively.
  • Z 1 and Z 2 are independently divalent linking groups.
  • the three A of the silyl group represented by Si (A) 3 are independently hydrolyzable or non-hydrolyzable groups, and at least one of the three A is a hydrolyzable group. .. )
  • the compound represented by the formula (3) has a urethane bond in the skeleton.
  • the polarity in the vicinity of the hydrolyzable groups at both ends is improved, and the reactivity with silica is improved.
  • examples of the divalent linking group of Y 1 , Y 2 , Z 1 and Z 2 include an alkylene group having 1 to 22 carbon atoms.
  • examples of the alkylene group include methylene group, ethylene group, n-propylene group, isopropylene group, butylene group, isobutylene group, sec-butylene group, tert-butylene group, 2,2-dimethylpropylene group and 2-methyl.
  • the divalent linking groups of Z 1 and Z 2 of the formula (3) are preferably alkylene groups having 1 to 10 carbon atoms independently, and more preferably alkylene groups having 1 to 6 carbon atoms.
  • the alkylene group of ⁇ 3 is more preferable, and the n-propylene group is particularly preferable.
  • the divalent linking groups of Y 1 and Y 2 of the formula (3) are each independently preferably an alkylene group having 1 to 6 carbon atoms, more preferably an alkylene group having 1 to 3 carbon atoms, and a methylene group. More preferred.
  • Examples of the PFPE (poly (perfluoroalkylene ether) chain) of the formula (3) include a linking group having a structure in which perfluoroalkylene groups having 1 to 3 carbon atoms and oxygen atoms are alternately linked.
  • Examples of the linking group having a structure in which the perfluoroalkylene group having 1 to 3 carbon atoms and the oxygen atom are alternately linked include a linking group represented by the following formula (P-1).
  • X is a perfluoroalkylene group.
  • the plurality of perfluoroalkylene groups of X may be the same or different from each other.
  • two or more kinds of perfluoroalkylene groups may be present randomly or in a block form.
  • n is the number of repetitions. n is, for example, 6 to 300, preferably 12 to 200, more preferably 20 to 150, even more preferably 30 to 100, and most preferably 35 to 70.
  • X is preferably a perfluoromethylene group (a) and a perfluoroethylene group (b), and including the point that it is easily obtained industrially, the perfluoromethylene group (a) and the perfluoroethylene group (b). ) Coexist with).
  • the abundance ratio (a / b) (number ratio) is preferably 1/10 to 10/1, and 3/10 to 3/10. 10/3 is more preferable.
  • the total number of fluorine atoms contained in one poly (perfluoroalkylene ether) chain is preferably in the range of 30 to 600, preferably in the range of 60 to 450. Is more preferable, the range of 90 to 300 is even more preferable, and the range of 100 to 200 is most preferable.
  • the method for producing the compound represented by the formula (3) is not particularly limited, and the compound can be produced by a known method. Hereinafter, an embodiment of a method for producing a compound represented by the formula (3) will be described.
  • the compound represented by the formula (3) can be produced by reacting a diol represented by the following formula ( ⁇ -1) with an isocyanate represented by the following formula ( ⁇ -2).
  • PFPE is a poly (perfluoroalkylene ether) chain.
  • Y 1 and Y 2 are independently bonded or divalent linking groups, respectively.
  • Z is a divalent linking group.
  • the three A of the silyl groups represented by Si (A) 3 are independently hydrolyzable or non-hydrolyzable groups, and at least one of the three A is a hydrolyzable group.
  • Formula (alpha-1) and (alpha-2) in PFPE, Y 1, Y 2, Z and Si (A) 3 is, PFPE of formula (3), Y 1, Y 2, Z 1 and Z 2, and Corresponds to Si (A) 3 respectively.
  • Examples of the diol represented by the formula ( ⁇ -1) include a diol represented by the following formula ( ⁇ -1-1), a diol represented by the following formula ( ⁇ -1-2), and the like.
  • Examples of the isocyanate represented by the formula ( ⁇ -2) include isocyanates represented by the following formulas ( ⁇ -2-1) to ( ⁇ -2-12).
  • Z in the isocyanate compound represented by the formulas ( ⁇ -2-1) to ( ⁇ -2-12) is preferably an alkylene group having 1 to 10 carbon atoms, and more preferably an alkylene group having 1 to 6 carbon atoms.
  • 1 to 3 alkylene groups are more preferable, and n-propylene groups are particularly preferable.
  • the OH contained in the diol represented by the formula ( ⁇ -1) is preferably charged in an amount of 0.5 to 1.5 mol, preferably 0.9 to 1.1 mol, with respect to 1 mol of the group. Is more preferable, and it is most preferable to prepare the mixture so that the amount is 0.98 to 1.02 mol.
  • a tertiary amine such as triethylamine or benzyldimethylamine
  • a tin compound such as dibutyltin dilaurylate, dioctyltin dilaurylate, or tin 2-ethylhexanoate may be added as a catalyst.
  • the amount of the catalyst added is preferably 0.001 to 5.0% by mass, more preferably 0.01 to 1.0% by mass, and further preferably 0.02 to 0.2% by mass with respect to the entire reaction mixture. %.
  • the reaction time is preferably 1 to 10 hours.
  • the reaction system may be a solvent-free system or has no reactivity with the isocyanate group.
  • Organic solvents such as acetone, methyl ethyl ketone, toluene, xylene; C 4 F 9 C 2 H 5 , (CF 3 ) 2 CFCHFCHFCF 3 , C 6 F 13 H, C 6 F 13 C 2 H 5 , C 4 F 9 OCH 3 , C 4 F 9 OC 2 H 5, C 2 F 5 CF (OCH 3 ) C 3 F 7 , HCF 2 CF 2 OCH 2 CF 3 and the like may be a solvent system using a fluorine-based solvent as a reaction solvent.
  • the reaction temperature is preferably 30 to 120 ° C, more preferably 40 to 90 ° C.
  • the fluorine-containing compound is preferably a compound represented by the following formula (4-1), (4-2) or (4-3).
  • R 41 is an alkylene group having 1 to 6 carbon atoms.
  • R 42 is an alkylene aminoalkylene group or an alkylene thioalkylene group.
  • the three A of the silyl group represented by Si (A) 3 are independently hydrolyzable or non-hydrolyzable groups, and at least one of the three A is a hydrolyzable group. .. )
  • the alkylene group having 1 to 6 carbon atoms of R 41 is preferably an alkylene group having 3 carbon atoms.
  • the alkyleneaminoalkylene group of R 42 is a group in which two alkylene groups are linked by an amino bond (-NH-), and is an alkylenethio.
  • An alkylene group is a group in which two alkylene groups are linked by a thio bond (—S—).
  • the alkylene groups of the alkyleneaminoalkylene group and the alkylenethioalkylene group are independently alkylene groups having 1 to 6 carbon atoms.
  • the method for producing the compound represented by the formula (4-1), (4-2) or (4-3) is the formula (2-1), (2-2), (2-3) or (2-2).
  • a method similar to the method for producing the compound represented by 4) can be adopted. For example, by reacting an alcohol represented by the following formula ( ⁇ -1) with an isocyanate compound represented by the above formula ( ⁇ -4), the formula (4-1), (4-2) or ( The compound represented by 4-3) can be produced.
  • the reaction conditions and other raw materials the same reaction conditions and other raw materials as the method for producing the compound represented by the formulas (2-1), (2-2), (2-3) or (2-4) are adopted. It is good to do.
  • the fluorine-containing compound is preferably a compound represented by the following formula (5-1), (5-2) or (5-3).
  • l is an integer indicating the number of repetitions.
  • m is an integer indicating the number of repetitions.
  • R 51 is an alkylene group having 1 to 6 carbon atoms.
  • R 52 is an alkylene aminoalkylene group or an alkylene thioalkylene group.
  • the three A of the silyl group represented by Si (A) 3 are independently hydrolyzable or non-hydrolyzable groups, and at least one of the three A is a hydrolyzable group. .. )
  • Equation (5-1) and (5-2) and (5-3) include alkylene-aminoalkylene radicals of R 52 is a group in which two alkylene groups are linked by amino linkages (-NH-), alkylenethio
  • An alkylene group is a group in which two alkylene groups are linked by a thio bond (—S—).
  • the alkylene groups of the alkyleneaminoalkylene group and the alkylenethioalkylene group are independently alkylene groups having 1 to 6 carbon atoms.
  • the method for producing the compound represented by the formula (5-1), (5-2) or (5-3) is represented by the formula (4-1), (4-2) or (4-3).
  • a method similar to the method for producing a compound can be adopted.
  • the formulas (5-1), (5-2) or (5) can be used.
  • the compound represented by -3) can be produced.
  • the fluorine-containing compound in the sliding water-repellent layer may be used alone or in combination of two or more.
  • the sliding water-repellent layer may contain a polymer having a polyethyleneimine skeleton, a fluorine-containing compound, and silica, and may contain other components as long as the effects of the present invention are not impaired.
  • the sliding water-repellent layer may or may not contain other components in addition to the polymer having a polyethyleneimine skeleton, the fluorine-containing compound, and silica.
  • the sliding water-repellent layer is preferably substantially composed of a polymer having a polyethyleneimine skeleton, a fluorine-containing compound, and silica, and at this time, the sliding water-repellent layer may contain unavoidable impurities.
  • the polymer having a polyethyleneimine skeleton, the fluorine-containing compound, and silica in the sliding water-repellent layer are preferably such that the polymer having the polyethyleneimine skeleton is coated with the silica, and the fluorine-containing compound is bonded to the silica. It forms a polyethyleneimine-silica complex.
  • the polymer having a polyethyleneimine skeleton in the polyethyleneimine-silica composite is a fibrous polymer having the linear polyethyleneimine skeleton
  • the long axis thereof is substantially perpendicular to the surface of the base material.
  • a fibrous composite on the order of nanometers covers the surface of the base material like a turf (this state may be called "nano turf”).
  • the polymer having a polyethyleneimine skeleton in the polyethyleneimine-silica composite is a fibrous polymer having the linear polyethyleneimine skeleton and a network structure is formed on the base material. Is a state in which a network structure on the order of nanometers covers the surface of the base material (this state is sometimes called "nanosponge").
  • the surface of the sliding water-repellent layer has a fine uneven structure, and the water-repellent effect and water-skiing of the structure of the present invention. It is presumed that the effect is enhanced.
  • the structure according to another embodiment of the present invention is a structure having a sliding water-repellent layer containing a fluorine-containing compound and silica on a base material, and the silica in the sliding water-repellent layer has a nano-turf shape or nano. It has a sponge shape.
  • only polyethyleneimine can be removed from the polyethyleneimine-silica composite contained in the sliding water-repellent layer to form nano-turf-shaped or nano-sponge-shaped silica, which is the structure according to the present embodiment.
  • the body can exhibit both water repellency and water repellency even if the sliding water repellent layer does not contain a polymer having a polyethyleneimine skeleton.
  • the structure according to the present embodiment is the same as the structure according to the above-described embodiment except that the sliding water-repellent layer does not contain a polymer having a polyethyleneimine skeleton, and preferred embodiments of a base material, a fluorine-containing compound, silica and the like. Is the same as the above-mentioned base material, fluorine-containing compound, silica and the like.
  • the method for producing a structure of the present invention includes the following steps (1), (2) and (3): A step of contacting a base material with a solution containing a polymer having a polyethyleneimine skeleton to form a layer containing the polymer having a polyethyleneimine skeleton on the surface of the base material (step (1)). A step (step (2)) of contacting a laminate composed of a layer containing the substrate and a polymer having a polyethyleneimine skeleton with a silica source liquid to form silica in the layer containing the polymer having a polyethyleneimine skeleton. ))) A step of treating the layer containing the polymer having the polyethyleneimine skeleton on which the silica is formed with a fluorine-containing compound (step (3)).
  • the polymer having a polyethyleneimine skeleton is the same as the polymer having a polyethyleneimine skeleton included in the sliding water-repellent layer of the structure of the present invention, and the base material is the same as the base material of the structure of the present invention. Is.
  • the solvent used for preparing the solution of the polymer having the polyethyleneimine skeleton is not particularly limited as long as it is a solvent capable of dissolving the polymer having the polyethyleneimine skeleton, and is an organic solvent such as methanol and ethanol, water, and a mixed solvent thereof. Etc. can be used.
  • the concentration of the polymer having a polyethyleneimine skeleton in the solution containing the polymer having a polyethyleneimine skeleton is, for example, 0.5% by mass to 50% by mass, preferably 1.0% by mass to 20% by mass. More preferably, it is 1.0% by mass to 10% by mass.
  • the solution of the polymer having a polyethyleneimine skeleton may or may not contain other polymers other than the polymer having the polyethyleneimine skeleton.
  • the other polymer is preferably compatible with the polymer having a polyethyleneimine skeleton.
  • the concentration of the other polymer can be set as appropriate.
  • the contact between the base material and the solution containing the polymer having the polyethyleneimine skeleton is not particularly limited, and the base material is immersed in the solution containing the polymer having the polyethyleneimine skeleton. It can be carried out by applying a solution containing the polymer having the above, and it is preferable to immerse the base material in the solution containing the polymer having the polyethyleneimine skeleton.
  • the base material When the base material is immersed in a solution containing a polymer having a polyethyleneimine skeleton, it is preferable to immerse the base material in a cleaning liquid for cleaning before immersion.
  • the cleaning solution include organic solvents such as acetone, methyl ethyl ketone and toluene, water, ethanol, isopropanol, sodium hydroxide aqueous solution, tetramethylammonium hydroxide aqueous solution, and a mixture thereof.
  • the temperature of the solution containing the polymer having a polyethyleneimine skeleton may be higher than room temperature, preferably 50 to 90 ° C.
  • the contact time is not particularly limited, and may be appropriately set in the range of several seconds to 1 hour according to the material and size of the base material. For example, when the base material is a metal base material, the contact time may be several seconds to several minutes, and when the base material is a resin base material, the contact time may be several tens of minutes to one hour.
  • the contacted base material After contacting the base material with a solution containing a polymer having a polyethyleneimine skeleton, the contacted base material is left at room temperature (around 25 ° C.) to promote crystallization of the polymer having a polyethyleneimine skeleton.
  • Polymer aggregates (nano turf or nano sponge) having a polyethyleneimine skeleton can be formed on the surface of the base material.
  • Polyethyleneimine can also be placed on the surface of the base material by contacting the base material with a solution containing a polymer having a polyethyleneimine skeleton and then contacting it with water at 4 to 30 ° C. or an aqueous ammonia solution at room temperature to below freezing temperature.
  • An aggregate of polymers having a skeleton can be formed.
  • the silica source solution is a solution of silica contained in the sliding water-repellent layer of the structure of the present invention, preferably a solution of an alkoxysilane compound.
  • the silica source solution include an aqueous solution of silica, an alcohol solution of silica, a mixed solvent solution of silica water and alcohol, and the like.
  • examples of the alcohol include methanol, ethanol, propanol and the like.
  • the concentration of silica in the silica source liquid is, for example, 0.5% by mass to 50% by mass, preferably 1.0% by mass to 20% by mass, and more preferably 1.0% by mass to 10% by mass. Is.
  • silica source solution an aqueous glass solution having a pH value adjusted to the range of 9 to 11 can also be used.
  • silica is an alkoxysilane compound
  • a solvent-free alkoxysilane compound bulk liquid can be used as the silica source liquid.
  • the contact between the laminate composed of the base material and the layer containing the polymer having the polyethyleneimine skeleton and the silica source liquid is not particularly limited, and the polyethyleneimine skeleton of the laminate in which the laminate is immersed in the silica source liquid is used. This can be done by applying a silica source solution to the layer containing the polymer, and it is preferable to immerse the laminate in the silica source solution.
  • the temperature of the silica source liquid may be room temperature or may be heated to a temperature higher than room temperature.
  • the temperature of the silica source liquid is higher than room temperature, it is preferable to set the temperature to 70 ° C. or lower in order to make silica formation regular.
  • the contact time is not particularly limited, and may be appropriately set according to the size of the laminated body and the like, for example, 5 to 60 minutes.
  • the silica source By contacting the silica source liquid with the laminate consisting of the base material and the layer containing the polymer having the polyethyleneimine skeleton, the silica source hydrolyzes and condenses on the surface of the polymer having the polyethyleneimine skeleton to generate silica. be able to. This makes it possible to form silica that covers a part or all of the surface of the polymer having a polyethyleneimine skeleton.
  • silica source liquid After contacting the silica source liquid with the laminate consisting of the base material and the layer containing the polymer having a polyethyleneimine skeleton, for example, it is left at room temperature for several minutes and then dried at 40 to 200 ° C. for 5 to 60 minutes. Silica can be formed to coat part or all of the polymer having a polyethyleneimine skeleton.
  • the drying temperature is preferably 40 to 150 ° C., and the drying time is preferably 30 to 60 minutes.
  • the fluorine-containing compound is the same as the fluorine compound contained in the sliding water-repellent layer of the structure of the present invention.
  • the fluorine-containing compound is preferably in the state of a solution in which the fluorine-containing compound is dissolved in a solvent, for example.
  • a fluorine-containing aromatic hydrocarbon solvent such as 1,3-bis (trifluoromethyl) benzene and trifluorotoluene
  • a solvent having 3 to 12 carbon atoms such as perfluorohexane and perfluoromethylcyclohexane.
  • Perfluorocarbon-based solvent 1,1,2,2,3,3,4-heptafluorocyclopentane, 1,1,1,2,2,3,3,4,5,5,6-6- Hydrofluorocarbon solvents such as tridecafluorooctane; hydro such as C 3 F 7 OCH 3 , C 4 F 9 OCH 3 , C 4 F 9 OC 2 H 5 , C 2 F 5 CF (OCH 3 ) C 3 F 7 Fluoroether-based solvents; perfluoropolyether-based solvents such as Fombulin, Garden (manufactured by Solvay), Demnum (manufactured by Daikin Industries), and Crytox (manufactured by Chemers) can be mentioned.
  • the concentration of the fluorine-containing compound in the solution in which the fluorine-containing compound is dissolved in a solvent is, for example, 0.01% by mass to 10% by mass, preferably 0.1% by mass to 5% by mass.
  • the treatment of the layer containing the polymer having the polyethyleneimine skeleton on which silica is formed is treated with, for example, the contact between the base material and the laminate consisting of the layer containing the silica and the polymer having the polyethyleneimine skeleton and the fluorine-containing compound.
  • the contact between the base material and the laminate composed of the layer including the silica and the polymer having a polyethyleneimine skeleton and the fluorine-containing compound is not particularly limited, and the silica of the laminate is immersed in the fluorine-containing compound solution. This can be done by applying a fluorine-containing compound solution to a layer containing a polymer having a polyethyleneimine skeleton and the like, and it is preferable to immerse the laminate in the fluorine-containing compound solution.
  • the laminate with the fluorine-containing compound After contacting the laminate with the fluorine-containing compound, for example, it is left at room temperature for several minutes and then dried at 40 to 200 ° C. for 5 to 60 minutes to more efficiently bond the fluorine-containing compound to the produced silica. Can be made to.
  • the drying temperature is preferably 40 to 150 ° C.
  • the drying time is preferably 30 to 60 minutes.
  • steps (1), (2), (4) and (5) A step of contacting a base material with a solution containing a polymer having a polyethyleneimine skeleton to form a layer containing the polymer having a polyethyleneimine skeleton on the surface of the base material (step (1)).
  • step (5) A step of treating the layer containing silica from which the polymer having a polyethyleneimine skeleton has been removed with a fluorine-containing compound.
  • a laminate composed of a base material and a layer containing a polymer having a polyethyleneimine skeleton is brought into contact with a silica source liquid to cause a part of the polymer having a polyethyleneimine skeleton.
  • a silica source liquid to cause a part of the polymer having a polyethyleneimine skeleton.
  • the polymer having a polyethyleneimine skeleton is removed by firing.
  • the silica produced can maintain the shape of the polymer having a polyethyleneimine skeleton.
  • nanoturf made of silica when a polymer having a polyethyleneimine skeleton forms nanoturf, nanoturf made of silica can be formed, and when a polymer having a polyethyleneimine skeleton forms nanosponge, nano made of silica.
  • a sponge can be formed when a polymer having a polyethyleneimine skeleton forms nanoturf.
  • the firing conditions for the laminate consisting of the base material and the layer containing the polymer having a polyethyleneimine skeleton and silica are, for example, set the firing temperature in the range of 300 to 600 ° C. and the firing time in the range of 1 to 7 hours. It is good to set.
  • the treatment using the fluorine-containing compound in the step (5) of the method for producing the structure of the present invention according to another embodiment may be the same as the above step (3).
  • the sliding angle of water on the surface of the sliding water-repellent layer is preferably 5 ° or less.
  • the contact angle of water on the surface of the sliding water-repellent layer is preferably 160 ° or more.
  • the sliding angle and the contact angle are each evaluated by the methods described in the examples.
  • the sliding water-repellent layer is a layer containing a polymer having a polyethyleneimine skeleton, silica and a fluorine-containing compound, or the sliding water-repellent layer is a nano-turf-shaped or nano-sponge-shaped silica and a fluorine-containing compound.
  • FIG. 3 is a schematic view showing an embodiment of a heat exchanger using the structure of the present invention.
  • the heat exchanger 1 of FIG. 3 has a plurality of fins 2 arranged side by side with a gap provided, and a heat transfer tube 4 assembled to the plurality of fins 2.
  • the fins 2 correspond to the structure of the present invention.
  • the fins 2 are flat plate members for increasing the heat transfer area in the heat exchanger 1, and the plurality of fins 2 are arranged substantially in parallel with each other with a certain gap.
  • the heat transfer tube 4 is a cylindrical tube through which a refrigerant flows, and has one end 6 and the other end 7.
  • the heat transfer tube 4 is bent a predetermined number of times, and is arranged so as to penetrate the fin 2 a plurality of times.
  • the refrigerant flows into the heat transfer tube 4 from one end 6, while air is sent to the heat exchanger 1. Then, heat exchange between air and the refrigerant is performed in the heat exchanger 1, and the refrigerant flows out from the other end 7.
  • the heat exchanger 1 using the structure of the present invention can repel water and slide down on the surface of the fin 2 even if the temperature of the surface of the fin 2 becomes lower than the dew point and water droplets are generated during operation. it can. As a result, frost formation on the surface of the fin 2 can be suppressed.
  • a plurality of fins 2 are arranged side by side so that the main surfaces face each other.
  • the distance between the main surfaces of the plurality of fins 2 is preferably 0.5 mm or more and 3.0 mm or less, more preferably 1.0 mm or more and 2.0 mm or less, and further preferably 1.5 mm or more. It is 2.0 mm or less.
  • the heat exchanger of the present invention may be of any type, such as a cross fin type or a microchannel type. Further, the heat exchanger of the present invention can be used for, for example, an air conditioner, a cooler (refrigerator, a refrigerator), an electric vehicle, or the like.
  • Synthesis example 1 ⁇ Synthesis of linear polyethyleneimine (L-PEI)> 3 g of commercially available polyethyloxazoline (number average molecular weight 50,000, average degree of polymerization 5,000, manufactured by Aldrich) was dissolved in 15 mL of 5 mol / L hydrochloric acid. The solution was heated to 90 ° C. in an oil bath and stirred at that temperature for 10 hours. 50 mL of acetone was added to the reaction solution to completely precipitate the polymer, and the obtained precipitate was filtered and washed with methanol three times to obtain a white polyethyleneimine powder.
  • L-PEI linear polyethyleneimine
  • the obtained powder was identified by 1 H-NMR (heavy water, manufactured by JEOL Ltd., AL300, 300 MHz) and found to have a peak of 1.2 ppm (CH 3 ) derived from the side chain ethyl group of polyethyloxazoline. It was confirmed that 3 ppm (CH 2 ) had completely disappeared. That is, it was shown that polyethyloxazoline was completely hydrolyzed and converted to polyethyleneimine.
  • This powder was dissolved in 5 mL of distilled water, and 50 mL of 15% aqueous ammonia was added dropwise while stirring the solution. The obtained mixture was allowed to stand overnight, the precipitated polymer aggregate powder was filtered, and the filtered polymer aggregate powder was washed 3 times with cold water.
  • L-PEI linear polyethyleneimine
  • the yield of linear polyethyleneimine was 2.2 g (containing water of crystallization).
  • Polyethylenimine obtained by hydrolysis of polyoxazoline reacts only in the side chain, and there is no change in the main chain. Therefore, the degree of polymerization of L-PEI is the same as 5,000 before hydrolysis.
  • Synthesis example 2 ⁇ Synthesis of silane compound having perfluoropolyether group>
  • a glass flask equipped with a stirrer, a thermometer, a cooling tube, and a dropping device 60.62 g of 1,3-bis (trifluoromethyl) benzene as a solvent and a carboxylic acid represented by the following formula (Krytox 157FS manufactured by Chemers Co., Ltd.) (H)) 87.6 g, ⁇ -glycidoxypropyltrimethoxysilane 3.33 g, and triphenylphosphine 0.273 g as a reaction catalyst were added, stirring was started under a nitrogen stream, and the mixture was heated to 105 ° C. After that, it was reacted for about 5 hours.
  • r is the number of repetitions, which is 43 on average.
  • the reaction solution was diluted with hydrofluoroether (C 4 F 9 OC 2 H 5 ) so that the concentration of the solvent was 80% by mass.
  • the diluted reaction solution was filtered and purified using a polytetrafluoroethylene (PTFE) filter having a pore size of 1 ⁇ m to obtain a hydrofluoroether solution containing a poly (perfluoroalkylene ether) chain-containing silane compound (1a).
  • PTFE polytetrafluoroethylene
  • Synthesis example 3 In a glass flask equipped with a stirrer, a thermometer, a cooling tube, and a dropping device, 36.67 g of 1,3-bis (trifluoromethyl) benzene as a solvent and a carboxylic acid represented by the following formula (Krytox 157FS (L) manufactured by Chemers) )) 50 g, 5.01 g of ⁇ -glycidoxypropyltrimethoxysilane, and 0.165 g of triphenylphosphine as a reaction catalyst were added, stirring was started under a nitrogen stream, and after heating to 105 ° C., about 5 Reacted for time.
  • r is the number of repetitions, which is 13 on average.
  • the reaction solution was diluted with hydrofluoroether (C 4 F 9 OC 2 H 5 ) so that the concentration of the solvent was 80% by mass.
  • the diluted reaction solution was filtered and purified using a polytetrafluoroethylene (PTFE) filter having a pore size of 0.2 ⁇ m to obtain a hydrofluoroether solution containing a poly (perfluoroalkylene ether) chain-containing silane compound (2a). ..
  • PTFE polytetrafluoroethylene
  • Synthesis example 4 In a glass flask equipped with a stirrer, a thermometer, a cooling tube, and a dropping device, 40.0 g of alcohol having a poly (perfluoroalkylene ether) chain represented by the following formula and hydrofluoro ether (C 4 F 9 OC) as a solvent and 2 H 5) 43.77g, tin octoate 0.004g added as a urethane catalyst, stirring was started under a stream of nitrogen. After starting stirring, 3.77 g of 3-isocyanatopropyltrimethoxysilane was added dropwise to the reaction solution over 15 minutes while maintaining the temperature at 50 ° C. After completion of the dropping, the alcohol was reacted with 3-isocyanatopropyltrimethoxysilane by stirring at 50 ° C. for 6 hours to obtain a reaction product.
  • r is the number of repetitions, which is 13 on average.
  • the obtained reaction product was subjected to IR spectrum measurement, and it was confirmed that the isocyanate group had disappeared in the reaction product, and it was confirmed that the following compound (3a) was obtained.
  • the reaction solution was diluted with hydrofluoroether (C 4 F 9 OC 2 H 5 ) so that the concentration of the solvent was 80% by mass.
  • the diluted reaction solution was filtered and purified using a polytetrafluoroethylene (PTFE) filter having a pore size of 0.2 ⁇ m to obtain a hydrofluoroether solution containing a poly (perfluoroalkylene ether) chain-containing silane compound (3a). ..
  • PTFE polytetrafluoroethylene
  • Synthesis example 5 In a glass flask equipped with a stirrer, a thermometer, a cooling tube, and a dropping device, 20 g of alcohol having a poly (perfluoroalkylene ether) chain represented by the following formula and hydrofluoro ether (C 4 F 9 OC 2 H) as a solvent. 5 ) 20 g and 0.006 g of tin octylate as a urethanization catalyst were charged, stirring was started under a nitrogen stream, and 1.31 g of 3-isocyanatopropyltrimethoxysilane was added dropwise over 15 minutes while maintaining 50 ° C. After completion of the dropping, the alcohol was reacted with 3-isocyanatopropyltrimethoxysilane by stirring at 50 ° C. for 6 hours to obtain a reaction product.
  • a poly (perfluoroalkylene ether) chain represented by the following formula and hydrofluoro ether (C 4 F 9 OC 2 H) as a solvent. 5
  • the obtained reaction product was subjected to IR spectrum measurement, and it was confirmed that the isocyanate group had disappeared in the reaction product, and it was confirmed that the following compound (4a) was obtained.
  • the reaction solution was diluted with hydrofluoroether (C 4 F 9 OC 2 H 5 ) so that the concentration of the solvent was 80% by mass.
  • the diluted reaction solution was filtered and purified using a polytetrafluoroethylene (PTFE) filter having a pore size of 0.2 ⁇ m to obtain a hydrofluoroether solution containing a poly (perfluoroalkylene ether) chain-containing silane compound (4a). ..
  • PTFE polytetrafluoroethylene
  • Synthesis example 6 In a glass flask equipped with a stirrer, a thermometer, a cooling tube, and a dropping device, 45.3 g of a diol having a poly (perfluoroalkylene ether) chain represented by the following formula and 0.025 g of tin octylate as a urethanization catalyst are placed. The mixture was charged, stirring was started under a nitrogen stream, and 4.7 g of 3-isocyanatopropyltrimethoxysilane was added dropwise over 15 minutes while maintaining 60 ° C. After completion of the dropping, the mixture was stirred at 60 ° C. for 1 hour, then further heated to 80 ° C. and stirred for 2 hours to react the diol with 3-isocyanatopropyltrimethoxysilane to obtain a reaction product.
  • n is the number of repetitions.
  • Each of the plurality of Xs is independently a perfluoromethylene group or a perfluoroethylene group, and each compound molecule has an average of 21 perfluoromethylene groups and an average of 21 perfluoroethylene groups. The average number is 126. )
  • the obtained reaction product was subjected to IR spectrum measurement, and it was confirmed that the isocyanate group had disappeared in the reaction product, and it was confirmed that the following compound (5a) was obtained.
  • the reaction solution was diluted with hydrofluoroether (C 4 F 9 OC 2 H 5 ) so that the concentration of the solvent was 80% by mass.
  • the diluted reaction solution was filtered and purified using a polytetrafluoroethylene (PTFE) filter having a pore size of 0.2 ⁇ m to obtain a hydrofluoroether solution containing a poly (perfluoroalkylene ether) chain-containing silane compound (5a). ..
  • PTFE polytetrafluoroethylene
  • PFPE corresponds to the above- (XO-) n -X-.
  • Synthesis example 7 In a glass flask equipped with a stirrer, a thermometer, a cooling tube, and a dropping device, 50 g of trifluoroethanol, 157.99 g of hydrofluoroether (C 4 F 9 OC 2 H 5 ) as a solvent, and tin octylate as a urethanization catalyst 0. 047 g was charged, stirring was started under a nitrogen stream, and 107.99 g of 3-isocyanatopropyltrimethoxysilane was added dropwise over 15 minutes while maintaining 50 ° C. After completion of the dropping, the alcohol was reacted with 3-isocyanatopropyltrimethoxysilane by stirring at 50 ° C. for 6 hours to obtain a reaction product.
  • trifluoroethanol 157.99 g of hydrofluoroether (C 4 F 9 OC 2 H 5 ) as a solvent
  • tin octylate as a urethanization catalyst 0. 047 g was charged, stirring
  • the obtained reaction product was subjected to IR spectrum measurement, and it was confirmed that the isocyanate group had disappeared in the reaction product, and it was confirmed that the perfluoroalkyl group-containing silane compound (6a) was obtained.
  • the reaction solution was diluted with hydrofluoroether (C 4 F 9 OC 2 H 5 ) so that the concentration of the solvent was 80% by mass.
  • the diluted reaction solution was filtered and purified using a filter made of polytetrafluoroethylene (PTFE) having a pore size of 0.2 ⁇ m to obtain a hydrofluoroether solution containing a perfluoroalkyl group-containing silane compound (6a).
  • PTFE polytetrafluoroethylene
  • Synthesis example 8 25 g of 2- (perfluorohexyl) ethanol, 39.98 g of hydrofluoroether (C 4 F 9 OC 2 H 5 ) as a solvent, and a urethanization catalyst in a glass flask equipped with a stirrer, a thermometer, a cooling tube, and a dropping device.
  • a stirrer 0.01 g of tin octylate was charged, stirring was started under a nitrogen stream, and 14.98 g of 3-isocyanatopropyltrimethoxysilane was added dropwise over 15 minutes while maintaining 50 ° C. After completion of the dropping, the alcohol was reacted with 3-isocyanatopropyltrimethoxysilane by stirring at 50 ° C. for 6 hours to obtain a reaction product.
  • the obtained reaction product was subjected to IR spectrum measurement, and it was confirmed that the isocyanate group had disappeared in the reaction product, and it was confirmed that the perfluoroalkyl group-containing silane compound (7a) was obtained.
  • the reaction solution was diluted with hydrofluoroether (C 4 F 9 OC 2 H 5 ) so that the concentration of the solvent was 80% by mass.
  • the diluted reaction solution was filtered and purified using a filter made of polytetrafluoroethylene (PTFE) having a pore size of 0.2 ⁇ m to obtain a hydrofluoroether solution containing a perfluoroalkyl group-containing silane compound (7a).
  • PTFE polytetrafluoroethylene
  • Synthesis example 9 In a glass flask equipped with a stirrer, a thermometer, a cooling tube, and a dropping device, 25 g of hexafluoroisopropyl alcohol, 54.9 g of hydrofluoroether (C 4 F 9 OC 2 H 5 ) as a solvent, and tin octylate 0 as a urethanization catalyst. .016 g was charged, stirring was started under a nitrogen stream, and 29.9 g of 3-isocyanatopropyltrimethoxysilane was added dropwise over 15 minutes while maintaining 50 ° C. After completion of the dropping, the alcohol was reacted with 3-isocyanatopropyltrimethoxysilane by stirring at 50 ° C. for 6 hours to obtain a reaction product.
  • hydrofluoroether C 4 F 9 OC 2 H 5
  • the obtained reaction product was subjected to IR spectrum measurement, and it was confirmed that the isocyanate group had disappeared in the reaction product, and it was confirmed that the perfluoroalkyl group-containing silane compound (8a) was obtained.
  • the reaction solution was diluted with hydrofluoroether (C 4 F 9 OC 2 H 5 ) so that the concentration of the solvent was 80% by mass.
  • the diluted reaction solution was filtered and purified using a filter made of polytetrafluoroethylene (PTFE) having a pore size of 0.2 ⁇ m to obtain a hydrofluoroether solution containing a perfluoroalkyl group-containing silane compound (8a).
  • PTFE polytetrafluoroethylene
  • Example 1 An aluminum plate having a length of 2.5 cm, a width of 7.5 cm, and a thickness of 0.5 mm was immersed in a 0.5 mass% sodium hydroxide aqueous solution for 10 minutes, and then washed with water and methanol, respectively. Next, this aluminum flat plate was immersed in a 5% by mass aqueous solution of L-PEI (80 ° C.) and allowed to stand for 30 seconds. The aluminum flat plate was taken out and allowed to stand at room temperature for 5 minutes, soaked in a 10 mass% methyl silicate aqueous solution, and then allowed to stand at room temperature for 30 minutes.
  • L-PEI 80 ° C.
  • the aluminum flat plate taken out from the methyl silicate aqueous solution was dried at 150 ° C. for 30 minutes.
  • the surface of the dried aluminum flat plate (aluminum flat plate A) was observed with a scanning electron microscope (SEM)
  • the aluminum flat plate A was a layer (nano turf) having nanofibers of polyethyleneimine polymer coated with silica as a basic unit. It was confirmed that the entire surface was covered with.
  • SEM photographs are shown in FIG. 1 (20000 times enlarged view) and FIG. 2 (2000 times enlarged view).
  • the surface of the aluminum flat plate was observed with a scanning electron microscope by fixing the dried aluminum flat plate to the sample support with double-sided tape and using the Keyence surface observation device VE-9800.
  • Hydrofluoroether was further added to the hydrofluoroether solution of compound (1a) prepared in Synthesis Example 2 to prepare a 0.1% by mass solution of compound (1a).
  • the aluminum flat plate A was immersed in a 0.1% by mass solution of this compound (1a) and allowed to stand for 1 hour. After standing, the aluminum flat plate was taken out and dried at 150 ° C. for 30 minutes to obtain a nanoturf aluminum flat plate (aluminum flat plate B) treated with a fluorine-containing compound.
  • Table 1 shows the results of the following evaluations of the obtained aluminum flat plate B.
  • sliding angle measurement Using a contact angle / sliding angle measuring device (DM-500 manufactured by Kyowa Interface Science Co., Ltd.), 5 ⁇ L of ultrapure water droplets were dropped onto the nano-turf layer treated with the fluorine-containing compound of the aluminum flat plate B, and 2 degrees / degree. The stage was tilted at a speed of seconds, and the angle at which the water droplets began to move was used as the value of the sliding angle. The measurement was performed 5 times, and the average value of the 5 times was taken as the sliding angle of the aluminum flat plate B.
  • DM-500 manufactured by Kyowa Interface Science Co., Ltd.
  • Example 2-8 Aluminum plates C to I were produced and evaluated in the same manner as in Example 1 except that compounds (2a) to (8a) were used instead of compound (1a). The results are shown in Table 1.
  • Comparative Example 1 The sliding angle and the contact angle of the aluminum flat plate A were evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Comparative Example 2 An aluminum flat plate J was produced and evaluated in the same manner as in Example 1 except that an aluminum flat plate (aluminum flat plate on which nanoturf was not formed) was used instead of the aluminum flat plate A. The results are shown in Table 1.
  • Comparative Example 3 An aluminum flat plate having a length of 2.5 cm, a width of 7.5 cm, and a thickness of 0.5 mm was immersed in a 0.5 mass% sodium hydroxide aqueous solution for 10 minutes, and then washed with water and methanol, respectively. Next, this aluminum flat plate was immersed in a 5 mass% triethanolamine aqueous solution at 90 ° C. for 5 minutes, and then washed with water and methanol, respectively. Hydrofluoroether was further added to the hydrofluoroether solution of compound (1a) prepared in Synthesis Example 2 to prepare a 0.1% by mass solution of compound (1a). An aluminum plate treated with triethanolamine was immersed in a 0.1% by mass solution of this compound (1a) and allowed to stand for 1 hour. After standing, the aluminum flat plate was taken out and dried at 150 ° C. for 30 minutes to obtain an aluminum flat plate K. The obtained aluminum flat plate K was evaluated in the same manner as in Example 1. The results are shown in Table 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Abstract

撥水性と滑水性の両方に優れる構造体を提供する。具体的には、基材上に滑落撥水層を有する構造体であって、前記滑落撥水層が、ポリエチレンイミン骨格を有するポリマーと、含フッ素化合物と、シリカとを含む構造体。

Description

構造体、構造体の製造方法、熱交換機用部材及び熱交換器
 本発明は、構造体、構造体の製造方法、熱交換機用部材及び熱交換器に関する。
 空調機、冷却機(冷蔵機、冷凍機)、電気自動車等には、熱交換器が用いられている。当該熱交換器では、小さなスペースで効率的に熱交換を行うために、熱伝導率の高い部材を用いて、単位容積あたりの表面積をできる限り大きくする構造が採用される。そのため、熱交換器では一般的に、熱伝導率が高く、軽量で加工性に優れるアルミニウム製の板を狭い間隔で並列に設置したフィンが用いられている。
 上記の熱交換器を備える機器の運転中において、フィン表面の温度が露点以下になると、フィン表面に結露した水滴(結露水)が付着する場合がある。特に熱交換器を備える機器が空調機の室外機であって、暖房運転時である場合、大気温度が低いために、フィン表面の結露水が凍結し、凍結した氷が核となって霜が発生する。フィン表面の霜によって通風抵抗が増大し、熱交換器の熱交換効率が著しく低下する問題があった。
 フィン表面の結露水及び霜の抑制方法としては、フィン表面に親水性塗膜を形成する方法がある。フィンを親水性とすることでフィンに付着した結露水がフィン表面に均一に広がり、フィンの潤滑性によって結露水を落下させることができる。しかしながら、フィンを親水性にした場合であっても結露水の付着そのものを防ぐことはできない。
 他のフィン表面の結露水及び霜の抑制方法としては、フィン表面に撥水性塗膜を形成する方法がある。フィンを撥水性とすることでフィン表面の結露水を弾き落とすことができる。しかしながら、フィン表面の撥水性とフィン表面の滑水性は必ずしも相関のあるものでは無く、撥水性のフィンであってもフィンの滑水性が不足しているため、結露水を十分に除去できない場合があった。
 フィン表面そのものに凹凸形状を形成したり、フィン表面に撥水性微粒子を付着させて凹凸形状とする方法も検討されているが(特許文献1-3)、結露水及び霜の除去には不十分であった。
特開2013-147573号公報 特開2013-36733号公報 特開2013-103414号公報
 本発明が解決しようとする課題は、撥水性と滑水性の両方に優れる構造体を提供することである。
 本発明者らは、上記課題を解決するため鋭意検討を行った結果、基材上のポリエチレンイミン骨格を有するポリマーと含フッ素化合物とシリカとを含む層が、撥水性と滑水性の両方を示すことができることを見出し、本発明を完成させた。
 本発明者らは、上記課題を解決するため鋭意検討を行った結果、基材上の含フッ素化合物とシリカとを含む層であって、ナノメートルオーダーの繊維状のシリカが基材表面を芝状に覆った層又はナノメートルオーダーの網目構造のシリカが基材表面を覆った層が、撥水性と滑水性の両方を示すことができることを見出し、本発明を完成させた。
 すなわち、本発明は、基材上に滑落撥水層を有する構造体であって、前記滑落撥水層が、ポリエチレンイミン骨格を有するポリマーと、含フッ素化合物と、シリカとを含む構造体に関するものである。
 すなわち、本発明は、基材上に滑落撥水層を有する構造体であって、前記滑落撥水層が、含フッ素化合物と、シリカとを含み、ナノメートルオーダーの繊維状のシリカが基材表面を芝状に覆った層又はナノメートルオーダーの網目構造のシリカが基材表面を覆った層である構造体に関するものである。
 本発明により、撥水性と滑水性の両方に優れる構造体が提供できる。
実施例1で製造したシリカで被覆されたポリエチレンイミンポリマーの層を備えるアルミ平板のSEM写真である。 実施例1で製造したシリカで被覆されたポリエチレンイミンポリマーの層を備えるアルミ平板のSEM写真である。 本発明の構造体を用いた熱交換器の一実施形態を示す概略図である。
 以下、本発明の一実施形態について説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を損なわない範囲で適宜変更を加えて実施することができる。
<構造体>
 本発明の構造体は、基材と滑落撥水層を含む積層体であって、基材上に滑落撥水層を有し、滑落撥水層は、ポリエチレンイミン骨格を有するポリマーと、含フッ素化合物と、シリカとを含む。
 本発明の構造体では、ポリエチレンイミン骨格を有するポリマーと含フッ素化合物とシリカとを含む層が、水に対して高い撥水性と高い滑水性の両方を同時に示すことができる。
 以下、本発明の構造体の各要素について説明する。
[基材]
 本発明の構造体の基材は、特に限定されず、例えば金属からなる基材(金属基材)、樹脂からなる基材(樹脂基材)等が使用できる。
 前記金属基材を構成する金属としては、鉄、銅、アルミニウム、ステンレス、亜鉛、銀、金、白金、又はこれらの合金等が挙げられる。これらのうち、アルミニウム、銅、又はこれらの合金が好ましく、アルミニウム又はアルミニウム合金がより好ましい。
 前記樹脂基材を構成する樹脂としては、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリエステル、ポリスチレン、ポリメタクリレート、ポリ塩化ビニル、ポリエチレンアルコール、ポリイミド、ポリアミド、ポリウレタン、エポキシ樹脂、セルロース樹脂等が挙げられる。
 基材には、エッチング処理、プラズマ処理、オゾン処理等の表面処理を施してもよい。
 基材の形状は特に限定されず、例えば平板状、曲面状等が挙げられ、用途に応じて任意の形状にするとよい。
 基材の形状が平板状である場合、その厚みは特に限定されないが、例えば10μm~1000μmであり、好ましくは50μm~500μmである。
[滑落撥水層]
 本発明の構造体の滑落撥水層は、ポリエチレンイミン骨格を有するポリマーと含フッ素化合物とシリカとを含む。
(ポリエチレンイミン骨格を有するポリマー)
 ポリエチレンイミン骨格を有するポリマーのポリエチレンイミン骨格部分は、直鎖状のポリエチレンイミン、分岐状のポリエチレンイミンのいずれでもよく、直鎖状のポリエチレンイミンであると好ましい。
 ポリエチレンイミン骨格を有するポリマーは、ポリエチレンイミン骨格を有するポリマーであればよく、ポリエチレンイミンの単独重合体であってもよく、ポリエチレンイミン骨格とポリエチレンイミン以外の他の繰り返し単位とを有する共重合体であってもよい。
 ポリエチレンイミン骨格を有するポリマーが、ポリエチレンイミンの単独重合体である場合、前記ポリエチレンイミンの単独重合体の構造は、特に限定されず、例えば線状構造、星状構造、櫛状構造のいずれでもよい。
 ポリエチレンイミン骨格を有するポリマーが、ポリエチレンイミン骨格とポリエチレンイミン以外の他の繰り返し単位とを有する共重合体である場合、前記共重合体におけるポリエチレンイミン骨格の割合は20モル%以上であると好ましい。
 前記ポリエチレンイミン骨格とポリエチレンイミン以外の他の繰り返し単位とを有する共重合体は、ポリエチレンイミン骨格の繰り返し単位数が10以上であるブロック共重合体であると好ましい。
 前記ポリエチレンイミン骨格とポリエチレンイミン以外の他の繰り返し単位とを有する共重合体について、前記ポリエチレンイミン以外の他の繰り返し単位となるポリマーとしては、例えば、ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ポリ(N-イソプロピルアクリルアミド)、ポリヒドロキシエチルアクリレート、ポリメチルオキサゾリン、ポリエチルオキサゾリン、ポリプロピレンイミン等を挙げることができる。
 これら他のポリマーを用いることにより、滑落撥水層の厚みを容易に調整することができる。
 ポリエチレンイミン骨格を有するポリマーは、ポリエチレンイミン骨格に相当する部分の数平均分子量が500~1,000,000の範囲であると好ましい。ポリエチレンイミン骨格に相当する部分の分子量がこの範囲にあることで安定した滑落撥水層とすることができる。
 ポリエチレンイミン骨格を有するポリマーは、太さが10~200nmの範囲にあり、且つ、長さが50nm~2μmの範囲にある直鎖状ポリエチレンイミン骨格を有する繊維状ポリマーであると好ましい。
 ポリエチレンイミン骨格を有するポリマーは、塩基性のポリマーであるので極めて高い極性を有する。従って、ポリエチレンイミン骨格を有するポリマーを含む滑落撥水層は、金属基材、樹脂基材等の各種基材に対して強い相互作用(吸着力)を示すことができる。
 ポリエチレンイミン骨格を有するポリマーが、直鎖状ポリエチレンイミン骨格を有する繊維状ポリマーである場合には、その長軸が基材の表面に対して略垂直方向に向いている、又は基材上で網目構造を形成していると好ましい。
 滑落撥水層が含むポリエチレンイミン骨格を有するポリマーは、1種単独でもよく、2種以上を併用してもよい。
(シリカ)
 本発明の滑落撥水層が含むシリカとしては、例えば、アルコキシシラン化合物、水ガラス、ヘキサフルオロシリコンアンモニウム等を挙げることができ、これらのなかでもアルコキシシラン化合物が好ましい。
 前記アルコキシシラン化合物としては、テトラメトキシシラン、テトラメトキシシラン縮合体のオリゴマー、テトラエトキシシラン、エトキシシラン縮合体のオリゴマー、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、iso-プロピルトリメトキシシラン、iso-プロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトトリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、3,3,3-トリフルオロプロピルトリエトキシシラン、3-メタクリルオキシプロピルトリメトキシシラン、3-メタクリルオキシプロピルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、p-クロロメチルフェニルトリメトキシシラン、p-クロロメチルフェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン等が挙げられる。これらのうち、テトラメトキシシラン縮合体のオリゴマー(メチルシリケート)が好ましい。
 尚、滑落撥水層が含むシリカは、1種単独でもよく、2種以上を併用してもよい。
(含フッ素化合物)
 含フッ素化合物は、フッ素原子を含む化合物であればよく、パーフルオロアルキル基及び/又はパーフルオロポリエーテル基を有するシラン化合物であると好ましく、C2n+1で表されるパーフルオロアルキル基(nは1以上の整数である)、F(C2nO)で表されるパーフルオロポリエーテル基(nは1以上の整数であり、mは繰り返し数を示す整数である)、及びCFO(C2nO)で表されるパーフルオロポリエーテル基(nは1以上の整数であり、mは繰り返し数を示す整数である)からなる群から選択される1種以上と、Si(A)で表されるシリル基(3つのAは、それぞれ独立に加水分解性基又は非加水分解性基であり、3つのAのうち少なくとも1つは加水分解性基である)を有する化合物であるとより好ましい。
 含フッ素化合物が、Si(A)で表されるシリル基を有することで、滑落撥水層中のシリカ表面の水酸基と前記加水分解性基が反応して結合を形成することができると推測される。
 前記C2n+1で表されるパーフルオロアルキル基において、nは1~10であると好ましく、1~6であるとより好ましい。
 前記F(C2nO)で表されるパーフルオロポリエーテル基において、nは1~6であると好ましく、2~6であるとより好ましく、1~3であるとさらに好ましく、mは、例えば平均5~100であり、平均8~80であると好ましく、平均10~60であるとより好ましい。
 前記CFO(C2nO)で表されるパーフルオロポリエーテル基において、nは1~6であると好ましく、2~6であるとより好ましく、1~3であるとさらに好ましく、mは、例えば平均5~100であり、平均8~80であると好ましく、平均10~60であるとより好ましい。
 含フッ素化合物は、(C2nO)で表されるパーフルオロポリエーテル鎖(nは1以上の整数であり、mは繰り返し数を示す整数である)を含んでもよい。
 前記加水分解性基としては、例えば、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基;メトキシエトキシ基等のアルコキシ基置換アルコキシ基;アセトキシ基、プロピオニルオキシ基、ベンゾイルオキシ基等のアシルオキシ基;イソプロペニルオキシ基、イソブテニルオキシ基等のアルケニルオキシ基;ジメチルケトキシム基、メチルエチルケトキシム基、ジエチルケトキシム基、シクロヘキサンオキシム基等のイミンオキシ基;メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジエチルアミノ基等の置換アミノ基;N-メチルアセトアミド基、N-エチルアミド基等のアミド基;ジメチルアミノオキシ基、ジエチルアミノオキシ基等の置換アミノオキシ基;塩素等のハロゲン等が挙げられる。
 これら加水分解性基の中でも、加水分解の速度が早く、耐久性に優れる被膜を迅速に形成することができることからアルコキシ基が好ましく、炭素原子数1~6のアルコキシ基がより好ましく、炭素原子数1~3のアルコキシ基がさらに好ましく、メトキシ基、エトキシ基が特に好ましく、メトキシ基が最も好ましい。
 前記非加水分解性基としては、例えば、炭素原子数1~20のアルキル基、炭素原子数2~20のアルケニル基、炭素原子数6~20のアリール基、炭素原子数7~20のアラルキル基等が挙げられる。
 これら非加水分解性基の中でも、立体障害を避けて加水分解速度を早くでき、その結果、耐久性に優れる被膜を迅速に形成することができることから炭素原子数1~3のアルキル基が好ましく、メチル基がより好ましい。
 Si(A)で表されるシリル基中の加水分解性基の数は少なくとも1つであり、より耐久性に優れる被膜が形成できることから2つ以上が好ましく、3つ全てが加水分解性基であるとより好ましい。
 尚、Si(A)で表されるシリル基中の加水分解性基が2以上ある場合、2以上の加水分解性基は互いに同じでも異なってもよい。また、Si(A)で表されるシリル基が2以上ある場合、少なくとも1つのSi(A)で表されるシリル基が加水分解性基を有すればよい。同様に、Si(A)で表されるシリル基中の非加水分解性基が2以上ある場合、2以上の非加水分解性基は互いに同じでも異なってもよい。
 前記含フッ素化合物は、好ましくは下記式(1-1)又は(1-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000006
(前記式(1-1)及び(1-2)において、
 Rfは、それぞれ独立に、C2n+1で表されるパーフルオロアルキル基(nは1以上の整数である。)である。
 前記Si(A)で表されるシリル基の3つのAは、それぞれ独立に、加水分解性基又は非加水分解性基であり、3つのAのうち少なくとも1つは加水分解性基である。
 Xは、下記式(X-1)~(X-11)で表される連結基のいずれかである。)
Figure JPOXMLDOC01-appb-C000007
(前記式(X-1)~(X-11)において、
 Rfは、C2n+1で表されるパーフルオロアルキル基(nは1以上の整数である。)である。
 R11は、直接結合、又は炭素原子数1~6のアルキレン基である。R11が複数ある場合、複数のR11は互いに同じでも異なってもよい。
 R12は、炭素原子数1~6のアルキル基である。)
 式(1-1)及び(1-2)において、C2n+1で表されるパーフルオロアルキル基及びSi(A)で表されるシリル基の好ましい形態については、それぞれ上述した通りである。
 式(1-1)又は(1-2)で表される化合物の具体例としては、例えば下記が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 式(1-1)又は(1-2)で表される化合物の製造方法は特に限定されず、公知の方法により製造することができ、例えば国際公開番号WO2015/152265に開示の方法により製造できる。
 前記含フッ素化合物は、好ましくは下記式(2-1)、(2-2)、(2-3)又は(2-4)で表される化合物である。
Figure JPOXMLDOC01-appb-C000009
(前記式(2-1)、(2-2)、(2-3)及び(2-4)において、
 rは繰り返し数を示す整数である。
 R21は、炭素原子数1~6のアルキレン基である。
 R23は、2価の連結基である。
 Zは、3価の連結基である。
 Bは、それぞれ独立に、有機基又は-Si(A)で表されるシリル基であり、2つのBのうち少なくとも1つはSi(A)で表されるシリル基である。
 前記Si(A)で表されるシリル基の3つのAは、それぞれ独立に、加水分解性基又は非加水分解性基であり、3つのAのうち少なくとも1つは加水分解性基である。)
 式(2-1)、(2-2)、(2-3)及び(2-4)において、rの繰り返し数は、平均5~100であると好ましく、平均で8~80がより好ましく、平均で10~60がさらに好ましい。
 式(2-1)、(2-2)、(2-3)及び(2-4)において、R21の炭素原子数1~6のアルキレン基としては、炭素原子数3のアルキレン基が好ましい。
 式(2-1)、(2-2)、(2-3)及び(2-4)において、Si(A)で表されるシリル基の好ましい形態については、上述した通りである。
 式(2-1)及び(2-2)において、Bが有機基である場合、当該有機基としては、例えば、置換もしくは無置換のアルキル基、アルケニル基、フェニル基等が挙げられる。
 Bの有機基が置換アルキル基である場合、当該置換アルキル基としては、例えば、炭素原子数1~6の部分フッ素化アルキル基、炭素原子数1~6のパーフルオロアルキル基等が挙げられる。
 式(2-1)、(2-2)、(2-3)及び(2-4)において、R23の2価の連結基としては、下記式(R-1)で表される連結基、又は下記式(R-2)で表される連結基が好ましい。
Figure JPOXMLDOC01-appb-C000010
(前記式(R-1)及び(R-2)中、
 R24は炭素原子数1~3のアルキレン基である。
 R25は直接結合又は炭素原子数1~6のアルキレン基である。
 R26は炭素原子数1~5のアルキレン基である)
 式(R-1)で表される連結基の具体例としては、下記が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 式(R-2)で表される連結基の具体例としては、下記が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 式(R-1)及び(R-2)表される連結基としては、式(R-1-1)、(R-1-3)、(R-1-4)、(R-2-5)、(R-2-6)、(R-2-8)で表される連結基が好ましく、式(R-1-3)及び(R-1-4)で表される連結基がより好ましい。
 式(2-2)及び(2-4)におけるZの3価の連結基としては、好ましくは炭素原子数4~8の3価の環状脂肪族基であり、より好ましくは3価のシクロヘキシル基である。
 式(2-1)、(2-2)、(2-3)又は(2-4)で表される化合物の具体例としては、例えば下記が挙げられる。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
(前記式(2-1-11)及び(2-1-12)中、aは1~6の整数である。)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 式(2-1)、(2-2)、(2-3)又は(2-4)で表される化合物の製造方法は特に限定されず、公知の方法により製造することができる。
 以下、式(2-1)、(2-2)、(2-3)又は(2-4)で表される化合物の製造方法の一実施形態について説明する。
 式(2-1)及び(2-2)で表される化合物の製造方法は、例えば下記式(β-1)で表されるカルボン酸と、下記式(β-2)又は下記式(β-3)で表されるエポキシシラン化合物とを反応させて、エポキシ基由来の2級水酸基を有する反応物を調製する第1工程と、前記第1工程で得られた反応物と下記式(βー4)で表されるイソシアネート化合物とを反応させる第2工程を含む。
Figure JPOXMLDOC01-appb-C000021
(前記式(β-1)中、rは繰り返し数である。)
Figure JPOXMLDOC01-appb-C000022
(前記式(β-2)及び式(β-3)中、
 R23は、2価の連結基である。
 Si(A)で表されるシリル基の3つのAは、それぞれ独立に、加水分解性基又は非加水分解性基であり、3つのAのうち少なくとも1つは加水分解性基である。)
Figure JPOXMLDOC01-appb-C000023
(前記式(β-4)中、
 R21は炭素原子数1~6のアルキレン基である。
 Si(A)で表されるシリル基の3つのAは、それぞれ独立に、加水分解性基又は非加水分解性基であり、3つのAのうち少なくとも1つは加水分解性基である。)
 式(β-2)で表される化合物の代わりに、下記式(β-5)で表される化合物を用いてもよい。
Figure JPOXMLDOC01-appb-C000024
(前記式(β-5)中、
 R23は、2価の連結基である。
 Gは、有機基である。)
 式(2-3)及び(2-4)で表される化合物を製造する場合は、前記第1工程を含めばよく、前記第2工程を省略することができる。
 式(β-2)で表される化合物の具体例としては、下記が挙げられる。
Figure JPOXMLDOC01-appb-C000025
 式(β-3)で表される化合物の具体例としては、下記が挙げられる。
Figure JPOXMLDOC01-appb-C000026
 式(β-4)で表される化合物の具体例としては、下記が挙げられる。
Figure JPOXMLDOC01-appb-C000027
(式中、R21は炭素原子数1~6のアルキレン基であり、炭素原子数1~3のアルキレン基が好ましく、n-プロピレン基がより好ましい)
 式(β-5)で表される化合物の具体例としては、下記が挙げられる。
Figure JPOXMLDOC01-appb-C000028
(aは1~6の整数である。)
 式(2-1)、(2-2)、(2-3)又は(2-4)で表される化合物の製造方法では、必要に応じて有機溶剤存在下で行ってもよい。
 前記有機溶剤としては、原料である上記化合物群を溶解するできるものであれば特に制限されず、例えば、イソシアネート基との反応性を有さないアセトン、メチルエチルケトン、トルエン、キシレン等の溶剤やフッ素系有機溶剤を用いることができる。
 前記フッ素系の溶剤としては、例えば、1、3-ビス(トリフルオロメチル)ベンゼン、トリフルオロトルエン等の含フッ素芳香族炭化水素系溶剤;パーフルオロヘキサン、パーフルオロメチルシクロヘキサン等の炭素数3~12のパーフルオロカーボン系溶剤;1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン、1,1,1,2,2,3,3,4,4,5,5,6,6-トリデカフルオロオクタン等のハイドロフルオロカーボン系溶剤;COCH,COCH,COC,CCF(OCH)C等のハイドロフルオロエーテル系溶剤;フォンブリン、ガルデン(ソルベイ製)、デムナム(ダイキン工業製)、クライトックス(ケマーズ製)等のパーフルオロポリエーテル系化合物等を好ましく例示することができる。
 前記第1工程において、化合物(β-1)と化合物(β-2)又は化合物(β-3)との反応割合は、化合物(β-1)が有するカルボキシル基と化合物(β-2)又は化合物(β-3)が有するエポキシ基との当量比(カルボキシル基/エポキシ基)が、0.5~1.5となる割合が好ましく、0.9~1.1となる割合がより好ましく、0.98~1.02となる割合がさらに好ましい。
 前記第1工程の反応温度は特に限定されず、通常50~150℃である。また、反応時間についても特に限定されず、通常1~10時間である。
 前記第2工程において、前記第1工程で得られるエポキシ基由来の2級水酸基を有する反応物と化合物(β-4)との反応割合は、前記反応物が有する水酸基と化合物(β-4)が有するイソシアネート基との当量比(水酸基基/イソシアネート基)が、0.5~1.5となる割合が好ましく、0.9~1.1となる割合がより好ましく、0.98~1.02となる割合がさらに好ましい。
 前記第2工程の反応温度は特に限定されず、通常30~120℃である。また、反応時間についても特に限定されず、通常1~10時間である。
 前記含フッ素化合物は、好ましくは下記式(3)で表される化合物である。
Figure JPOXMLDOC01-appb-C000029
(前記式(3)中、
 PFPEは、ポリ(パーフルオロアルキレンエーテル)鎖である。
 Y及びYは、それぞれ独立に、直接結合又は2価の連結基である。
 Z及びZは、それぞれ独立に、2価の連結基である。
 前記Si(A)で表されるシリル基の3つのAは、それぞれ独立に、加水分解性基又は非加水分解性基であり、3つのAのうち少なくとも1つは加水分解性基である。)
 式(3)で表される化合物は骨格中にウレタン結合を有する。このウレタン結合を有することにより、両末端にある加水分解性基の近傍の極性を向上させ、シリカとの反応性が良好となる。
 式(3)において、Si(A)で表されるシリル基の好ましい形態については、上述した通りである。
 式(3)において、Y、Y、Z及びZの2価の連結基としては、例えば、炭素原子数1~22のアルキレン基等が挙げられる。前記アルキレン基としては、例えば、メチレン基、エチレン基、n-プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、sec-ブチレン基、tert-ブチレン基、2,2-ジメチルプロピレン基、2-メチルブチレン基、2-メチル-2-ブチレン基、3-メチルブチレン基、3-メチル-2-ブチレン基、ペンチレン基、2-ペンチレン基、3-ペンチレン基、3-ジメチル-2-ブチレン基、3,3-ジメチルブチレン基、3,3-ジメチル-2-ブチレン基、2-エチルブチレン基、ヘキシレン基、2-ヘキシレン基、3-ヘキシレン基、2-メチルペンチレン基、2-メチル-2-ペンチレン基、2-メチル-3-ペンチレン基、3-メチルペンチレン基、3-メチル-2-ペンチレン基、3-メチル-3-ペンチレン基、4-メチルペンチレン基、4-メチル-2-ペンチレン基、2,2-ジメチル-3-ペンチレン基、2,3-ジメチル-3-ペンチレン基、2,4-ジメチル-3-ペンチレン基、4,4-ジメチル-2-ペンチレン基、3-エチル-3-ペンチレン基、ヘプチレン基、2-ヘプチレン基、3-ヘプチレン基、2-メチル-2-ヘキシレン基、2-メチル-3-ヘキシレン基、5-メチルヘキシレン基、5-メチル-2-ヘキシレン基、2-エチルヘキシレン基、6-メチル-2-ヘプチレン基、4-メチル-3-ヘプチレン基、オクチレン基、2-オクチレン基、3-オクチレン基、2-プロピルペンチレン基、2,4,4-トリメチルペンチレン基、デカオクチレン基等のアルキレン基等が挙げられる。
 式(3)のZ及びZの2価の連結基は、それぞれ独立に、炭素原子数1~10のアルキレン基であると好ましく、炭素原子数1~6のアルキレン基がより好ましく、1~3のアルキレン基がさらに好ましく、n-プロピレン基が特に好ましい。
 式(3)のY及びYの2価の連結基は、それぞれ独立に、炭素原子数1~6のアルキレン基が好ましく、炭素原子数1~3のアルキレン基がより好ましく、メチレン基がさらに好ましい。
 式(3)のPFPE(ポリ(パーフルオロアルキレンエーテル)鎖)としては、例えば、炭素原子数1~3のパーフルオロアルキレン基と酸素原子が交互に連結した構造を有する連結基が挙げられる。
 前記炭素原子数1~3のパーフルオロアルキレン基と酸素原子が交互に連結した構造を有する連結基としては、下記式(P-1)で表される連結基が挙げられる。
Figure JPOXMLDOC01-appb-C000030
(前記式(P-1)中、
 *は結合手である。
 Xはパーフルオロアルキレン基である。
 複数のXのパーフルオロアルキレン基は、互いに同じでも異なってもよい。複数のXにおいて、2種以上のパーフルオロアルキレン基がランダムに又はブロック状に存在していてもよい。
 nは繰り返し数である。nは例えば6~300であり、12~200が好ましく、20~150がより好ましく、30~100がさらに好ましく、35~70が最も好ましい。)
 Xのパーフルオロアルキレン基としては、下記構造が例示できる。
Figure JPOXMLDOC01-appb-C000031
 これらのなかでも、Xはパーフルオロメチレン基(a)とパーフルオロエチレン基(b)が好ましく、工業的に得られやすい点も含めると、パーフルオロメチレン基(a)とパーフルオロエチレン基(b)とが共存するものより好ましい。
 前記パーフルオロメチレン基(a)とパーフルオロエチレン基(b)とが共存する場合、その存在比(a/b)(個数の比)は1/10~10/1が好ましく、3/10~10/3がより好ましい。
 式(3)で表される化合物の具体例としては、例えば下記が挙げられる。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
 式(3)で表される化合物において、ポリ(パーフルオロアルキレンエーテル)鎖1本に含まれるフッ素原子の合計が30~600個の範囲であることが好ましく、60~450個の範囲であることがより好ましく、90~300個の範囲がさらに好ましく、100~200個の範囲であることが最も好ましい。
 式(3)で表される化合物の製造方法は特に限定されず、公知の方法により製造することができる。以下、式(3)で表される化合物の製造方法の一実施形態について説明する。
 式(3)で表される化合物は、下記式(α-1)で表されるジオールと、下記式(α-2)で表されるイソシアネートとを反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-C000034
(前記式(α-1)及び(α-2)中、
 PFPEは、ポリ(パーフルオロアルキレンエーテル)鎖である。
 Y及びYは、それぞれ独立に、直接結合又は2価の連結基である。
 Zは、2価の連結基である。
 Si(A)で表されるシリル基の3つのAは、それぞれ独立に、加水分解性基又は非加水分解性基であり、3つのAのうち少なくとも1つは加水分解性基である。)
 式(α-1)及び(α-2)中のPFPE、Y、Y、Z及びSi(A)は、式(3)のPFPE、Y、Y、ZとZ及びSi(A)にそれぞれ対応する。
 式(α-1)で表されるジオールとしては、例えば下記式(α-1-1)で表されるジオール、下記式(α-1-2)で表されるジオール等が挙げられる。
Figure JPOXMLDOC01-appb-C000035
 式(α-2)で表されるイソシアネートとしては、下記式(α-2-1)~(α-2-12)で表されるイソシアネート等が挙げられる。
Figure JPOXMLDOC01-appb-C000036
 式(α-2-1)~(α-2-12)で表されるイソシアネート化合物中のZは、炭素原子数1~10のアルキレン基が好ましく、炭素原子数1~6のアルキレン基がより好ましく、1~3のアルキレン基がさらに好ましく、n-プロピレン基が特に好ましい。
 式(α-1)で表されるジオールと式(α-2)で表されるイソシアネートとの反応(ウレタン化)の際には、式(α-1)で表されるジオールに含まれるOH基1モルに対して、式(α-2)で表されるイソシアネートを、0.5~1.5モルになるように仕込むのが好ましく、0.9~1.1モルとなるように仕込むのがより好ましく、0.98~1.02モルとなるように仕込むのが最も好ましい。
 ウレタン化反応を促進させるために、式(α-1)であらわされるジオールと式(α-2)で表されるイソシアネートとを反応させる際に、例えばトリエチルアミン、ベンジルジメチルアミン等の第3級アミン類、ジブチル錫ジラウリレート、ジオクチル錫ジラウリレート、2-エチルヘキサン酸錫等の錫化合物を触媒として添加してもよい。
 前記触媒の添加量は、反応混合物全体に対して0.001~5.0質量%が好ましく、より好ましくは0.01~1.0質量%で、さらに好ましくは0.02~0.2質量%である。反応時間は1~10時間が好ましい。
 式(α-1)であらわされるジオールと式(α-2)で表されるイソシアネートとの反応において、反応系は無溶剤系であってもよいし、イソシアネート基との反応性を有さないアセトン、メチルエチルケトン、トルエン、キシレン等の有機溶剤;C、(CFCFCHFCHFCF、C13H、C13、COCH、COC5、CF(OCH)C、HCFCFOCHCF等のフッ素系溶剤を反応溶剤とした溶剤系であってもよい。
 反応温度は30~120℃が好ましく、より好ましくは40~90℃がより好ましい。
 前記含フッ素化合物は、好ましくは下記式(4-1)、(4-2)又は(4-3)で表される化合物である。
Figure JPOXMLDOC01-appb-C000037
(前記式(4-1)、(4-2)及び(4-3)において、
 rは繰り返し数を示す整数である。
 R41は、炭素原子数1~6のアルキレン基である。
 R42は、アルキレンアミノアルキレン基又はアルキレンチオアルキレン基である。
 前記Si(A)で表されるシリル基の3つのAは、それぞれ独立に、加水分解性基又は非加水分解性基であり、3つのAのうち少なくとも1つは加水分解性基である。)
 式(4-1)、(4-2)及び(4-3)において、rの繰り返し数、及びSi(A)で表されるシリル基の好ましい形態については、それぞれ上述した通りである。
 式(4-1)、(4-2)及び(4-3)において、R41の炭素原子数1~6のアルキレン基としては、炭素原子数3のアルキレン基が好ましい。
 式(4-1)、(4-2)及び(4-3)において、R42のアルキレンアミノアルキレン基は、2つアルキレン基がアミノ結合(-NH-)で連結した基であり、アルキレンチオアルキレン基は2つアルキレン基がチオ結合(-S-)で連結した基である。ここで、アルキレンアミノアルキレン基及びアルキレンチオアルキレン基のアルキレン基は、それぞれ独立に炭素原子数1~6のアルキレン基であると好ましい。
 式(4-1)、(4-2)又は(4-3)で表される化合物の具体例としては、例えば下記が挙げられる。
Figure JPOXMLDOC01-appb-C000038
 式(4-1)、(4-2)又は(4-3)で表される化合物の製造方法は、式(2-1)、(2-2)、(2-3)又は(2-4)で表される化合物の製造方法と同様の方法が採用できる。
 例えば、下記式(γ-1)で表されるアルコールと、上述の式(β-4)で表されるイソシアネート化合物とを反応させることにより式(4-1)、(4-2)又は(4-3)で表される化合物を製造することができる。
 反応条件やその他原料等については、式(2-1)、(2-2)、(2-3)又は(2-4)で表される化合物の製造方法と同じ反応条件やその他原料を採用するとよい。
Figure JPOXMLDOC01-appb-C000039
(前記式(γ-1)中、rは繰り返し数である。)
 前記含フッ素化合物は、好ましくは下記式(5-1)、(5-2)又は(5-3)で表される化合物である。
Figure JPOXMLDOC01-appb-C000040
(前記式(5-1)、(5-2)及び(5-3)において、
 lは繰り返し数を示す整数である。
 mは繰り返し数を示す整数である。
 R51は、炭素原子数1~6のアルキレン基である。
 R52は、アルキレンアミノアルキレン基又はアルキレンチオアルキレン基である。
 前記Si(A)で表されるシリル基の3つのAは、それぞれ独立に、加水分解性基又は非加水分解性基であり、3つのAのうち少なくとも1つは加水分解性基である。)
 式(5-1)、(5-2)及び(5-3)において、l及びmの繰り返し数、並びにSi(A)で表されるシリル基の好ましい形態については、それぞれ上述した通りである。
 式(5-1)、(5-2)及び(5-3)において、R51の炭素原子数1~6のアルキレン基としては、炭素原子数3のアルキレン基が好ましい。
 式(5-1)、(5-2)及び(5-3)において、R52のアルキレンアミノアルキレン基は、2つアルキレン基がアミノ結合(-NH-)で連結した基であり、アルキレンチオアルキレン基は2つアルキレン基がチオ結合(-S-)で連結した基である。ここで、アルキレンアミノアルキレン基及びアルキレンチオアルキレン基のアルキレン基は、それぞれ独立に炭素原子数1~6のアルキレン基であると好ましい。
 式(5-1)、(5-2)又は(5-3)で表される化合物の具体例としては、例えば下記が挙げられる。
Figure JPOXMLDOC01-appb-C000041
 式(5-1)、(5-2)又は(5-3)で表される化合物の製造方法は、式(4-1)、(4-2)又は(4-3)で表される化合物の製造方法と同様の方法が採用できる。
 例えば、上述の式(γ-1)で表されるアルコールの代わりに下記式(δ-1)で表されるアルコールを用いることにより、式(5-1)、(5-2)又は(5-3)で表される化合物を製造することができる。
Figure JPOXMLDOC01-appb-C000042
(前記式(δ-1)中、
 lは繰り返し数である。
 mは繰り返し数である。)
 滑落撥水層中の含フッ素化合物は、1種単独でもよく、2種以上を併用してもよい。
(その他成分)
 滑落撥水層は、ポリエチレンイミン骨格を有するポリマーと含フッ素化合物とシリカとを含めばよく、本発明の効果を損なわない範囲で、その他成分を含んでもよい。
 滑落撥水層は、ポリエチレンイミン骨格を有するポリマーと含フッ素化合物とシリカのほかにその他の成分を含んでもよく、含まなくてもよい。
 滑落撥水層は、ポリエチレンイミン骨格を有するポリマー、含フッ素化合物、及びシリカから実質的になると好ましく、この時、前記滑落撥水層は不可避不純物を含んでもよい。
 滑落撥水層中の、ポリエチレンイミン骨格を有するポリマーと含フッ素化合物とシリカは、好ましくは前記ポリエチレンイミン骨格を有するポリマーが前記シリカで被覆されており、前記シリカに前記含フッ素化合物が結合しているポリエチレンイミン-シリカ複合体を形成している。
 ポリエチレンイミン-シリカ複合体中のポリエチレンイミン骨格を有するポリマーが、前記直鎖状ポリエチレンイミン骨格を有する繊維状ポリマーである場合であって、その長軸が基材の表面に対して略垂直方向に向いている場合には、ナノメートルオーダーの繊維状の複合体が基材表面を芝状に覆った状態となる(この状態を「ナノ芝」という場合がある)。
 また、ポリエチレンイミン-シリカ複合体中のポリエチレンイミン骨格を有するポリマーが、前記直鎖状ポリエチレンイミン骨格を有する繊維状ポリマーである場合であって、基材上で網目構造を形成している場合には、ナノメートルオーダーの網目構造が基材表面を覆った状態となる(この状態を「ナノスポンジ」という場合がある)。
 基材表面のポリエチレンイミン-シリカ複合体がナノ芝又はナノスポンジとなっているとき、滑落撥水層の表面は微細な凹凸構造となっており、本発明の構造体の撥水効果及び滑水効果を高めていると推測される。
 本発明の他の実施形態に係る構造体は、基材上に含フッ素化合物とシリカとを含む滑落撥水層を有する構造体であって、滑落撥水層中のシリカがナノ芝形状又はナノスポンジ形状を有する。
 後述する製造方法により、滑落撥水層に含まれるポリエチレンイミン-シリカ複合体からポリエチレンイミンのみを除去して、ナノ芝形状又はナノスポンジ形状のシリカを形成することができ、本実施形態に係る構造体は、滑落撥水層がポリエチレンイミン骨格を有するポリマーを含まなくても、撥水性と滑水性の両方を示すことができる。
 本実施形態に係る構造体は、滑落撥水層がポリエチレンイミン骨格を有するポリマーを含まない他は上述の実施形態に係る構造体と同じであり、基材、含フッ素化合物、シリカ等の好ましい態様は、上述した基材、含フッ素化合物、シリカ等と同じである。
<構造体の製造方法>
 本発明の構造体の製造方法は、下記工程(1)、(2)及び(3)を含む:
 基材とポリエチレンイミン骨格を有するポリマーを含有する溶液とを接触させて、前記基材の表面に前記ポリエチレンイミン骨格を有するポリマーを含む層を形成する工程(工程(1))
 前記基材及び前記ポリエチレンイミン骨格を有するポリマーを含む層からなる積層体と、シリカソース液とを接触させて、前記ポリエチレンイミン骨格を有するポリマーを含む層中にシリカを形成する工程(工程(2))
 前記シリカを形成させた前記ポリエチレンイミン骨格を有するポリマーを含む層を、含フッ素化合物で処理する工程(工程(3))
 工程(1)において、ポリエチレンイミン骨格を有するポリマーは、本発明の構造体の滑落撥水層が含むポリエチレンイミン骨格を有するポリマーと同じであり、基材は本発明の構造体の基材と同じである。
 ポリエチレンイミン骨格を有するポリマーの溶液の調製に用いる溶媒は、ポリエチレンイミン骨格を有するポリマーを溶解することができる溶媒であれば特に限定されず、メタノール、エタノール等の有機溶剤、水、これらの混合溶媒等を用いることができる。
 ポリエチレンイミン骨格を有するポリマーを含有する溶液における、ポリエチレンイミン骨格を有するポリマーの濃度としては、例えば0.5質量%~50質量%であり、好ましくは1.0質量%~20質量%であり、より好ましくは1.0質量%~10質量%である。
 ポリエチレンイミン骨格を有するポリマーの溶液は、前記ポリエチレンイミン骨格を有するポリマー以外のその他のポリマーを含んでもよく、含まなくてもよい。
 前記その他のポリマーは、前記ポリエチレンイミン骨格を有するポリマーと相溶可能であると好ましい。
 前記その他のポリマーの濃度は適宜設定することができる。
 基材とポリエチレンイミン骨格を有するポリマーを含有する溶液との接触は、特に限定されず、前記基材を前記ポリエチレンイミン骨格を有するポリマーを含有する溶液に浸漬させる、前記基材に前記ポリエチレンイミン骨格を有するポリマーを含有する溶液を塗布する等により行うことができ、前記基材を前記ポリエチレンイミン骨格を有するポリマーを含有する溶液に浸漬させるが好ましい。
 前記基材を前記ポリエチレンイミン骨格を有するポリマーを含有する溶液に浸漬させる場合、浸漬前に前記基材を洗浄液に浸漬して洗浄すると好ましい。
 前記洗浄液としては、例えば、アセトン、メチルエチルケトン、トルエン等の有機溶剤、水、エタノール、イソプロパノール、水酸化ナトリウム水溶液、水酸化テトラメチルアンモニウム水溶液、これらの混合液等が挙げられる。
 基材を洗浄液で洗浄しておくことで、基材表面の油等の汚れを除去し、ポリエチレンイミン骨格を有するポリマー含む層の形成をスムーズに行うことができる。
 基材とポリエチレンイミン骨格を有するポリマーを含有する溶液との接触の際には、前記ポリエチレンイミン骨格を有するポリマーを含有する溶液を室温より高い温度としておくとよく、50~90℃にすると好ましい。
 前記接触させる時間は特に限定されず、前記基材の材質及び大きさに合わせて、数秒~1時間の範囲で適宜設定するとよい。例えば前記基材が金属基材である場合、接触させる時間は数秒~数分でよく、例えば前記基材が樹脂基材である場合、接触させる時間は数十分~1時間でよい。
 基材とポリエチレンイミン骨格を有するポリマーを含有する溶液とを接触させた後、接触後の基材を室温(25℃前後)に放置することで、前記ポリエチレンイミン骨格を有するポリマーの結晶化が進み、前記基材表面上にポリエチレンイミン骨格を有するポリマーの集合体(ナノ芝又はナノスポンジ)を形成することができる。
 基材とポリエチレンイミン骨格を有するポリマーを含有する溶液とを接触させた後、4~30℃の水、又は室温~氷点下温度のアンモニア水溶液と接触させることによっても、前記基材表面上にポリエチレンイミン骨格を有するポリマーの集合体(ナノ芝又はナノスポンジ)を形成することができる。
 工程(2)において、シリカソース液とは、本発明の構造体の滑落撥水層が含むシリカの溶液であり、好ましくはアルコキシシラン化合物の溶液である。
 シリカソース液としては、例えば、シリカの水溶液、シリカのアルコール溶液、シリカの水とアルコールの混合溶媒溶液等が挙げられる。ここで前記アルコールとしては、メタノール、エタノール、プロパノール等が挙げられる。シリカソース液における、シリカの濃度としては、例えば0.5質量%~50質量%であり、好ましくは1.0質量%~20質量%であり、より好ましくは1.0質量%~10質量%である。
 シリカソース液として、pH値が9~11の範囲に調整した水ガラス水溶液も用いることができる。また、シリカがアルコキシシラン化合物である場合は、シリカソース液として無溶剤のアルコキシシラン化合物バルク液を用いることができる。
 基材及びポリエチレンイミン骨格を有するポリマーを含む層からなる積層体と、シリカソース液との接触は、特に限定されず、前記積層体をシリカソース液に浸漬させる、前記積層体のポリエチレンイミン骨格を有するポリマーを含む層にシリカソース液を塗布する等により行うことができ、前記積層体をシリカソース液に浸漬させるが好ましい。
 基材及びポリエチレンイミン骨格を有するポリマーを含む層からなる積層体とシリカソース液との接触の際には、シリカソース液の温度は室温でもよく、加熱して室温より高い温度としてもよい。シリカソース液を室温より高い温度とする場合、シリカの形成を規則的にするため、70℃以下に設定するとよい。
 前記接触させる時間は特に限定されず、積層体の大きさ等に合わせて適宜設定するとよく、例えば5~60分である。
 基材及びポリエチレンイミン骨格を有するポリマーを含む層からなる積層体とシリカソース液とを接触させることで、ポリエチレンイミン骨格を有するポリマー表面においてシリカソースが加水分解的に縮合して、シリカを生成させることができる。これによりポリエチレンイミン骨格を有するポリマーの表面の一部又は全部を被覆するシリカを形成することができる。
 基材及びポリエチレンイミン骨格を有するポリマーを含む層からなる積層体とシリカソース液との接触後、例えば、室温で数分放置し、その後40~200℃で5~60分で乾燥させることにより、ポリエチレンイミン骨格を有するポリマーの一部又は全部を被覆するシリカを形成することができる。
 乾燥温度は40~150℃であると好ましく、乾燥時間は30~60分であると好ましい。
 工程(3)において、含フッ素化合物とは、本発明の構造体の滑落撥水層が含むフッ素化合物と同じである。
 含フッ素化合物は、例えば、当該含フッ素化合物を溶剤に溶解した溶液の状態であると好ましい。含フッ素化合物の溶剤としては、1、3-ビス(トリフルオロメチル)ベンゼン、トリフルオロトルエン等の含フッ素芳香族炭化水素系溶剤;パーフルオロヘキサン、パーフルオロメチルシクロヘキサン等の炭素数3~12のパーフルオロカーボン系溶剤;1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン、1,1,1,2,2,3,3,4,4,5,5,6,6-トリデカフルオロオクタン等のハイドロフルオロカーボン系溶剤;COCH、COCH、COC、CCF(OCH)C等のハイドロフルオロエーテル系溶剤;フォンブリン、ガルデン(ソルベイ製)、デムナム(ダイキン工業製)、クライトックス(ケマーズ製)等のパーフルオロポリエーテル系化合物等が挙げられる。
 前記含フッ素化合物を溶剤に溶解した溶液における、含フッ素化合物の濃度としては、例えば0.01質量%~10質量%であり、好ましくは0.1質量%~5質量%である。
 シリカを形成させたポリエチレンイミン骨格を有するポリマーを含む層の、含フッ素化合物による処理は、例えば基材及びシリカとポリエチレンイミン骨格を有するポリマーを含む層からなる積層体と、含フッ素化合物との接触である。
 基材及びシリカとポリエチレンイミン骨格を有するポリマーを含む層からなる積層体と、含フッ素化合物との接触は、特に限定されず、前記積層体を含フッ素化合物溶液に浸漬させる、前記積層体のシリカとポリエチレンイミン骨格を有するポリマーを含む層に含フッ素化合物溶液を塗布する等により行うことができ、前記積層体を含フッ素化合物溶液に浸漬させるが好ましい。
 前記積層体と含フッ素化合物との接触後、例えば、室温で数分放置し、その後40~200℃で5~60分で乾燥させることにより、より効率良く、生成したシリカに含フッ素化合物を結合させることができる。
 乾燥温度は40~150℃であると好ましく、乾燥時間は30~60分であると好ましい。
 本発明の構造体の製造方法の他の実施形態としては、下記工程(1)、(2)、(4)及び(5)を含む:
 基材とポリエチレンイミン骨格を有するポリマーを含有する溶液とを接触させて、前記基材の表面に前記ポリエチレンイミン骨格を有するポリマーを含む層を形成する工程(工程(1))
 前記基材及び前記ポリエチレンイミン骨格を有するポリマーを含む層からなる積層体と、シリカソース液とを接触させて、前記ポリエチレンイミン骨格を有するポリマーを含む層中にシリカを形成する工程(工程(2))
 前記基材及び前記ポリエチレンイミン骨格を有するポリマー及び前記シリカを含む層からなる積層体を焼成して、前記ポリエチレンイミン骨格を有するポリマーを除去する工程(工程(4))
 前記ポリエチレンイミン骨格を有するポリマーを除去したシリカを含む層を、含フッ素化合物で処理する工程(工程(5))
 他の実施形態に係る本発明の構造体の製造方法では、基材及びポリエチレンイミン骨格を有するポリマーを含む層からなる積層体とシリカソース液との接触させ、ポリエチレンイミン骨格を有するポリマーの一部又は全部を被覆するシリカを形成させた後、焼成をしてポリエチレンイミン骨格を有するポリマーを除去する。
 焼成によってポリエチレンイミン骨格を有するポリマーは除去されるが、生成したシリカは、ポリエチレンイミン骨格を有するポリマーの形状を維持することができる。例えば、ポリエチレンイミン骨格を有するポリマーがナノ芝を形成していた場合、シリカからなるナノ芝を形成することができ、ポリエチレンイミン骨格を有するポリマーがナノスポンジを形成していた場合、シリカからなるナノスポンジを形成することができる。
 基材、及びポリエチレンイミン骨格を有するポリマーとシリカとを含む層からなる積層体の焼成の条件は、例えば焼成温度を300~600℃の範囲に設定し、焼成時間を1~7時間の範囲に設定するとよい。
 他の実施形態に係る本発明の構造体の製造方法の工程(5)の含フッ素化合物を用いる処理は、上記工程(3)と同様の処理をするとよい。
<熱交換器用部材>
 本発明の構造体は、好ましくは滑落撥水層表面の水の滑落角が5°以下である。また、本発明の構造体は、好ましくは滑落撥水層表面の水の接触角が160°以上である。滑落角及び接触角はそれぞれ実施例に記載の方法で評価する。
 本発明の構造体は、滑落撥水層がポリエチレンイミン骨格を有するポリマーとシリカと含フッ素化合物とを含む層、又は滑落撥水層がナノ芝形状又はナノスポンジ形状のシリカと含フッ素化合物とを含む層であり、優れた撥水性と優れた滑水性の両方を同時に示すことができる。したがって、本発明の構造体を熱交換器用部材として用いることで、基材表面に結露水及び/又は霜が付着することを抑制することができ、高い熱交換効率を実現することができる。
 図3は本発明の構造体を用いた熱交換器の一実施形態を示す概略図である。
 図3の熱交換器1は、間隙を設けて並設された複数のフィン2と、前記複数のフィン2に組み付けられる伝熱管4とを有する。熱交換器1においてフィン2が本発明の構造体に対応する。
 フィン2は、熱交換器1において伝熱面積を増加させるための平板部材であり、複数のフィン2は一定の間隙を持って互いに略並行に配置されている。伝熱管4は、内部に冷媒が流れる円筒状の管であって、一方端6及び他方端7を有する。伝熱管4は、所定の回数折り曲げられており、フィン2を複数回貫通するように配置されている。
 熱交換器1を備えた装置の稼動時には、冷媒が一方端6から伝熱管4内に流入し、一方で熱交換器1に空気が送られる。そして熱交換器1において空気と冷媒との熱交換が行われ、冷媒は他方端7から流出する。
 本発明の構造体を用いた熱交換器1は、運転中にフィン2の表面の温度が露点以下になって結露した水滴が発生したとしても、フィン2表面で撥水し、滑落させることができる。これによりフィン2表面の着霜も抑制することができる。
 熱交換器1において、複数のフィン2は主表面が互いに対向するように並設される。ここで複数のフィン2の主表面間の間隙の距離は、好ましくは0.5mm以上3.0mm以下であり、より好ましくは1.0mm以上2.0mm以下であり、さらに好ましくは1.5mm以上2.0mm以下である。
 本発明の熱交換器は、種種のタイプ、例えばクロスフィン式、マイクロチャネル式等、いずれのタイプであってもよい。
 また、本発明の熱交換器は、例えば、空調機、冷却機(冷蔵機、冷凍機)、電気自動車等に用いることができる。
 以下、実施例と比較例とにより、本発明を具体的に説明する。尚、本発明は下記実施例のみに限定されない。
合成例1
<直鎖状のポリエチレンイミン(L-PEI)の合成>
 市販のポリエチルオキサゾリン(数平均分子量50,000,平均重合度5,000,Aldrich社製)3gを、5モル/Lの塩酸15mLに溶解させた。その溶液をオイルバスにて90℃に加熱し、その温度で10時間攪拌した。反応液にアセトン50mLを加え、ポリマーを完全に沈殿させ、得られた沈殿物を濾過し、メタノールで3回洗浄し、白色のポリエチレンイミンの粉末を得た。
 得られた粉末をH-NMR(重水、日本電子株式会社製、AL300、300MHz)にて同定したところ、ポリエチルオキサゾリンの側鎖エチル基に由来したピーク1.2ppm(CH)と2.3ppm(CH)が完全に消失していることが確認された。即ち、ポリエチルオキサゾリンが完全に加水分解され、ポリエチレンイミンに変換されたことが示された。
 この粉末を5mLの蒸留水に溶解し、溶液を攪拌しながら、15%のアンモニア水50mLを滴下した。得られた混合液を一晩放置した後、沈殿したポリマー会合体粉末を濾過し、濾過して得られたポリマー会合体粉末を冷水で3回洗浄した。洗浄後の結晶粉末をデシケータ中で室温乾燥し、線状のポリエチレンイミン(L-PEI)を得た。
 線状ポリエチレンイミンの収量は2.2g(結晶水含有)であった。ポリオキサゾリンの加水分解により得られるポリエチレンイミンは、側鎖だけが反応し、主鎖には変化がない。従って、L-PEIの重合度は加水分解前の5,000と同じである。
合成例2
<パーフルオロポリエーテル基を有するシラン化合物の合成>
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、溶剤として1,3-ビス(トリフルオロメチル)ベンゼン60.62gと、下記式で表されるカルボン酸(ケマーズ株式会社製Krytox157FS(H))87.6gと、γ-グリシドキシプロピルトリメトキシシラン3.33gと、反応触媒としてトリフェニルフォスフィン0.273gを加え、窒素気流下で攪拌を開始し、105℃に加温後、約5時間反応させた。
Figure JPOXMLDOC01-appb-C000043
(rは繰り返し数であり、平均で43である。)
 反応終了後50℃まで降温し、この反応液に溶剤としてハイドロフルオロエーテル(COC)33.33gと、3-イソシアナトプロピルトリメトキシシラン3.02gと、ウレタン化触媒としてオクチル酸スズ0.047gを加え、窒素気流下で攪拌を開始し、70℃で約4時間反応させ、パーフルオロポリエーテル基を有するシラン化合物である下記化合物(1a)を得た。
Figure JPOXMLDOC01-appb-C000044
(式中、rは繰り返し数であり、平均で43である。)
 溶剤の濃度が80質量%となるようにハイドロフルオロエーテル(COC)で反応液を希釈した。希釈した反応液を孔径1μmのポリテトラフルオロエチレン(PTFE)製フィルターを使用してろ過精製し、ポリ(パーフルオロアルキレンエーテル)鎖含有シラン化合物(1a)を含むハイドロフルオロエーテル溶液を得た。
合成例3
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、溶剤として1,3-ビス(トリフルオロメチル)ベンゼン36.67gと、下記式で表されるカルボン酸(ケマーズ製Krytox157FS(L))50gと、γ-グリシドキシプロピルトリメトキシシラン5.01gと、反応触媒としてトリフェニルフォスフィン0.165gを加え、窒素気流下で攪拌を開始し、105℃に加温後、約5時間反応させた。
Figure JPOXMLDOC01-appb-C000045
(rは平均で13である。)
 反応終了後50℃まで降温し、この反応液に溶剤としてハイドロフルオロエーテル(COC)2.97gと、3-イソシアナトプロピルトリメトキシシラン4.63gと、ウレタン化触媒としてオクチル酸スズ0.018gを加え、窒素気流下で攪拌を開始し、70℃で約4時間反応させ、パーフルオロポリエーテル基を有するシラン化合物である下記化合物(2a)を得た。
Figure JPOXMLDOC01-appb-C000046
(式中、rは繰り返し数であり、平均で13である。)
 溶剤の濃度が80質量%となるようにハイドロフルオロエーテル(COC)で反応液を希釈した。希釈した反応液を孔径0.2μmのポリテトラフルオロエチレン(PTFE)製フィルターを使用してろ過精製し、ポリ(パーフルオロアルキレンエーテル)鎖含有シラン化合物(2a)を含むハイドロフルオロエーテル溶液を得た。
合成例4
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、下記式で表されるポリ(パーフルオロアルキレンエーテル)鎖を有するアルコール40.0gと溶剤としてハイドロフルオロエーテル(COC)43.77gと、ウレタン化触媒としてオクチル酸スズ0.004gを加え、窒素気流下で攪拌を開始した。攪拌を開始後、50℃に保ちながら3-イソシアナトプロピルトリメトキシシラン3.77gを15分間かけて反応液に滴下した。滴下終了後、50℃で6時間攪拌することにより前記アルコールと3-イソシアナトプロピルトリメトキシシランとを反応させ、反応物を得た。
Figure JPOXMLDOC01-appb-C000047
(式中、rは繰り返し数であり、平均で13である。)
 得られた反応物について、IRスペクトル測定を行い、反応物中にイソシアネート基の消失していることを確認し、下記化合物(3a)が得られたことを確認した。
 溶剤の濃度が80質量%となるようにハイドロフルオロエーテル(COC)で反応液を希釈した。希釈した反応液を孔径0.2μmのポリテトラフルオロエチレン(PTFE)製フィルターを使用してろ過精製し、ポリ(パーフルオロアルキレンエーテル)鎖含有シラン化合物(3a)を含むハイドロフルオロエーテル溶液を得た。
Figure JPOXMLDOC01-appb-C000048
(式中、rは平均で13である。)
合成例5
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、下記式で表されるポリ(パーフルオロアルキレンエーテル)鎖を有するアルコール20gと溶剤としてハイドロフルオロエーテル(COC)20gとウレタン化触媒としてオクチル酸スズ0.006gを仕込み、窒素気流下で攪拌を開始し、50℃を保ちながら3-イソシアナトプロピルトリメトキシシラン1.31gを15分間かけて滴下した。
 滴下終了後、50℃で6時間攪拌することにより前記アルコールと3-イソシアナトプロピルトリメトキシシランとを反応させ、反応物を得た。
Figure JPOXMLDOC01-appb-C000049
(式中、lは繰り返し数であり、平均で19である。mは繰り返し数であり、平均で19である。)
 得られた反応物について、IRスペクトル測定を行い、反応物中にイソシアネート基の消失していることを確認し、下記化合物(4a)が得られたことを確認した。
 溶剤の濃度が80質量%となるようにハイドロフルオロエーテル(COC)で反応液を希釈した。希釈した反応液を孔径0.2μmのポリテトラフルオロエチレン(PTFE)製フィルターを使用してろ過精製し、ポリ(パーフルオロアルキレンエーテル)鎖含有シラン化合物(4a)を含むハイドロフルオロエーテル溶液を得た。
Figure JPOXMLDOC01-appb-C000050
(式中、lは繰り返し数であり、平均で19である。mは繰り返し数であり、平均で19である。)
合成例6
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、下記式で表されるポリ(パーフルオロアルキレンエーテル)鎖を有するジオール45.3gとウレタン化触媒としてオクチル酸スズ0.025gを仕込み、窒素気流下で攪拌を開始し、60℃を保ちながら3-イソシアナトプロピルトリメトキシシラン4.7gを15分間かけて滴下した。
 滴下終了後、60℃で1時間攪拌した後、更に80℃に昇温して2時間攪拌することにより前記ジオールと3-イソシアナトプロピルトリメトキシシランとを反応させ、反応物を得た。
Figure JPOXMLDOC01-appb-C000051
(式中、nは繰り返し数である。
 複数のXはそれぞれ独立にパーフルオロメチレン基又はパーフルオロエチレン基であり、化合物1分子あたり、パーフルオロメチレン基が平均21個、パーフルオロエチレン基が平均21個存在するものであり、フッ素原子の数が平均126個である。)
 得られた反応物について、IRスペクトル測定を行い、反応物中にイソシアネート基の消失していることを確認し、下記化合物(5a)が得られたことを確認した。
 溶剤の濃度が80質量%となるようにハイドロフルオロエーテル(COC)で反応液を希釈した。希釈した反応液を孔径0.2μmのポリテトラフルオロエチレン(PTFE)製フィルターを使用してろ過精製し、ポリ(パーフルオロアルキレンエーテル)鎖含有シラン化合物(5a)を含むハイドロフルオロエーテル溶液を得た。
Figure JPOXMLDOC01-appb-C000052
(式中、PFPEは、前記-(X-O-)-X-に対応する。)
合成例7
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコにトリフルオロエタノール50gと溶剤としてハイドロフルオロエーテル(COC)157.99gとウレタン化触媒としてオクチル酸スズ0.047gを仕込み、窒素気流下で攪拌を開始し、50℃を保ちながら3-イソシアナトプロピルトリメトキシシラン107.99gを15分間かけて滴下した。
 滴下終了後、50℃で6時間攪拌することにより前記アルコールと3-イソシアナトプロピルトリメトキシシランとを反応させ、反応物を得た。
 得られた反応物について、IRスペクトル測定を行い、反応物中にイソシアネート基の消失していることを確認し、パーフルオロアルキル基含有シラン化合物(6a)が得られたことを確認した。
 溶剤の濃度が80質量%となるようにハイドロフルオロエーテル(COC)で反応液を希釈した。希釈した反応液を孔径0.2μmのポリテトラフルオロエチレン(PTFE)製フィルターを使用してろ過精製し、パーフルオロアルキル基含有シラン化合物(6a)を含むハイドロフルオロエーテル溶液を得た。
合成例8
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに2-(パーフルオロへキシル)エタノール25gと溶剤としてハイドロフルオロエーテル(COC)39.98gとウレタン化触媒としてオクチル酸スズ0.01gを仕込み、窒素気流下で攪拌を開始し、50℃を保ちながら3-イソシアナトプロピルトリメトキシシラン14.98gを15分間かけて滴下した。
 滴下終了後、50℃で6時間攪拌することにより前記アルコールと3-イソシアナトプロピルトリメトキシシランとを反応させ、反応物を得た。
 得られた反応物について、IRスペクトル測定を行い、反応物中にイソシアネート基の消失していることを確認し、パーフルオロアルキル基含有シラン化合物(7a)が得られたことを確認した。
 溶剤の濃度が80質量%となるようにハイドロフルオロエーテル(COC)で反応液を希釈した。希釈した反応液を孔径0.2μmのポリテトラフルオロエチレン(PTFE)製フィルターを使用してろ過精製し、パーフルオロアルキル基含有シラン化合物(7a)を含むハイドロフルオロエーテル溶液を得た。
合成例9
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコにヘキサフルオロイソプロピルアルコール25gと溶剤としてハイドロフルオロエーテル(COC)54.9gとウレタン化触媒としてオクチル酸スズ0.016gを仕込み、窒素気流下で攪拌を開始し、50℃を保ちながら3-イソシアナトプロピルトリメトキシシラン29.9gを15分間かけて滴下した。
 滴下終了後、50℃で6時間攪拌することにより前記アルコールと3-イソシアナトプロピルトリメトキシシランとを反応させ、反応物を得た。
 得られた反応物について、IRスペクトル測定を行い、反応物中にイソシアネート基の消失していることを確認し、パーフルオロアルキル基含有シラン化合物(8a)が得られたことを確認した。
 溶剤の濃度が80質量%となるようにハイドロフルオロエーテル(COC)で反応液を希釈した。希釈した反応液を孔径0.2μmのポリテトラフルオロエチレン(PTFE)製フィルターを使用してろ過精製し、パーフルオロアルキル基含有シラン化合物(8a)を含むハイドロフルオロエーテル溶液を得た。
<超撥水性表面を有するアルミ平板の作製と評価>
実施例1
 縦が2.5cm、横が7.5cm、厚み0.5mmのアルミ平板を0.5質量%水酸化ナトリウム水溶液に10分浸漬させた後、水及びメタノールのそれぞれで洗浄した。次に、このアルミ平板を5質量%のL-PEIの水溶液(80℃)に浸け、30秒間静置した。アルミ平板を取り出し、室温にて5分間静置させた後、10質量%メチルシリケート水溶液につけた後、室温で30分静置した。
 メチルシリケート水溶液から取り出したアルミ平板を、150℃で30分間乾燥させた。乾燥後のアルミ平板(アルミ平板A)の表面を走査電子顕微鏡(SEM)で観察したところ、アルミ平板Aは、シリカで被覆されたポリエチレンイミンポリマーのナノファイバーを基本ユニットとする層(ナノ芝)で表面全体が被覆されていることが確認された。SEM写真を図1(20000倍拡大図)及び図2(2000倍拡図)に示す。
 尚、走査電子顕微鏡によるアルミ平板表面の観察は、乾燥後のアルミ平板を両面テープにてサンプル支持台に固定し、それをキーエンス製表面観察装置VE-9800により実施した。
 合成例2で調製した化合物(1a)のハイドロフルオロエーテル溶液にさらにハイドロフルオロエーテルを加え、化合物(1a)0.1質量%溶液とした。この化合物(1a)0.1質量%溶液に、アルミ平板Aを浸漬し、1時間静置した。静置後、アルミ平板を取り出し、150℃で30分間乾燥して、含フッ素化合物で処理したナノ芝アルミ平板(アルミ平板B)を得た。
 得られたアルミ平板Bについて、下記評価を行った結果を表1に示す。
(滑落角測定)
 接触角・滑落角測定装置(協和界面科学社製DM-500)を用い、アルミ平板Bの含フッ素化合物で処理したナノ芝の層上に5μLの超純水の水滴を滴下し、2度/秒のスピードでステージを傾け、水滴が動き出した角度を滑落角の値とした。測定は5回行い、5回の平均値をアルミ平板Bの滑落角とした。
(接触角測定)
 接触角・滑落角測定装置(協和界面科学社製DM-500)を用い、アルミ平板Bの含フッ素化合物で処理したナノ芝の層上に5μLの超純水の水滴を滴下し、水滴の接触角を測定した。接触角の測定は5回行い、5回の平均値をアルミ平板Bの接触角とした。
実施例2-8
 化合物(1a)の代わりに、化合物(2a)~化合物(8a)それぞれを用いた他は実施例1と同様にしてアルミ平板C~Iを製造し、評価した。結果を表1に示す。
比較例1
 アルミ平板Aについて、実施例1と同様にして滑落角及び接触角を評価した。結果を表1に示す。
比較例2
 アルミ平板Aの代わりにアルミ平板(ナノ芝を形成していないアルミ平板)を用いた他は実施例1と同様にしてアルミ平板Jを製造し、評価した。結果を表1に示す。
比較例3
 縦が2.5cm、横が7.5cm、厚み0.5mmのアルミ平板を0.5質量%水酸化ナトリウム水溶液に10分浸漬させた後、水及びメタノールのそれぞれで洗浄した。次に、このアルミ平板を5質量%トリエタノールアミン水溶液に90℃で5分浸漬させた後、水及びメタノールのそれぞれで洗浄した。
 合成例2で調製した化合物(1a)のハイドロフルオロエーテル溶液にさらにハイドロフルオロエーテルを加え、化合物(1a)0.1質量%溶液とした。この化合物(1a)0.1質量%溶液に、トリエタノールアミンで処理したアルミ平板を浸漬し、1時間静置した。静置後、アルミ平板を取り出し、150℃で30分間乾燥して、アルミ平板Kを得た。
 得られたアルミ平板Kについて、実施例1と同じ評価を行った。結果を表1に示す。
比較例4
 ドデシルメトキシシランに酢酸ブチルを加え、0.1質量%ドデシルメトキシシラン溶液を調製した。この0.1質量%ドデシルメトキシシラン溶液に、アルミ平板Aを浸漬し、1時間静置した。静置後、アルミ平板を取り出し、150℃で30分間乾燥して、アルミ平板Lを得た。
 得られたアルミ平板Lについて、実施例1と同じ評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000053
1.熱交換器
2.フィン
4.伝熱管
6.伝熱管の一方端
7.伝熱管の他方端

Claims (24)

  1.  基材上に滑落撥水層を有する構造体であって、
     前記滑落撥水層が、ポリエチレンイミン骨格を有するポリマーと、含フッ素化合物と、シリカとを含む構造体。
  2.  前記ポリエチレンイミン骨格を有するポリマーが前記シリカで被覆されており、前記シリカに前記含フッ素化合物が結合している請求項1に記載の構造体。
  3.  前記含フッ素化合物がパーフルオロアルキル基及び/又はパーフルオロポリエーテル基を有するシラン化合物である請求項1又は2に記載の構造体。
  4.  前記含フッ素化合物が、C2n+1で表されるパーフルオロアルキル基(nは1以上の整数である)、F(C2nO)で表されるパーフルオロポリエーテル基(nは1以上の整数であり、mは繰り返し数を示す整数である)、及びCFO(C2nO)で表されるパーフルオロポリエーテル基(nは1以上の整数であり、mは繰り返し数を示す整数である)からなる群から選択される1種以上と、Si(A)で表されるシリル基(3つのAは、それぞれ独立に加水分解性基又は非加水分解性基であり、3つのAのうち少なくとも1つは加水分解性基である)を有する化合物である請求項1~3のいずれかに記載の構造体。
  5.  前記含フッ素化合物が、下記式(1-1)又は(1-2)で表される化合物である請求項1~3のいずれかに記載の構造体。
    Figure JPOXMLDOC01-appb-C000001
    (前記式(1-1)及び(1-2)において、
     Rfは、C2n+1で表されるパーフルオロアルキル基(nは1以上の整数である。)である。Rfが複数ある場合、複数のRfは互いに同じでも異なってもよい。
     前記Si(A)で表されるシリル基の3つのAは、それぞれ独立に、加水分解性基又は非加水分解性基であり、3つのAのうち少なくとも1つは加水分解性基である。
     Xは、下記式(X-1)~(X-11)で表される連結基のいずれかである。)
    Figure JPOXMLDOC01-appb-C000002
    (前記式(X-1)~(X-11)において、
     Rfは、C2n+1で表されるパーフルオロアルキル基(nは1以上の整数である。)である。
     R11は、直接結合、又は炭素原子数1~6のアルキレン基である。R11が複数ある場合、複数のR11は互いに同じでも異なってもよい。
     R12は、炭素原子数1~6のアルキル基である。)
  6.  前記含フッ素化合物が、下記式(2-1)、(2-2)、(2-3)又は(2-4)で表される化合物である請求項1~3のいずれかに記載の構造体。
    Figure JPOXMLDOC01-appb-C000003
    (前記式(2-1)、(2-2)、(2-3)及び(2-4)において、
     rは繰り返し数を示す整数である。
     R21は、炭素原子数1~6のアルキレン基である。
     R23は、2価の連結基である。
     Zは、3価の連結基である。
     Bは、それぞれ独立に、有機基又はSi(A)で表されるシリル基であり、2つのBのうち少なくとも1つはSi(A)で表されるシリル基である。
     前記Si(A)で表されるシリル基の3つのAは、それぞれ独立に、加水分解性基又は非加水分解性基であり、3つのAのうち少なくとも1つは加水分解性基である。)
  7.  前記含フッ素化合物が、下記式(3)で表される化合物である請求項1~3のいずれかに記載の構造体。
    Figure JPOXMLDOC01-appb-C000004
    (前記式(3)中、
     PFPEは、ポリ(パーフルオロアルキレンエーテル)鎖である。
     Y及びYは、それぞれ独立に、直接結合又は2価の連結基である。
     Z及びZは、それぞれ独立に、2価の連結基である。
     Si(A)で表されるシリル基の3つのAは、それぞれ独立に、加水分解性基又は非加水分解性基であり、3つのAのうち少なくとも1つは加水分解性基である。)
  8.  前記含フッ素化合物が、下記式(4-1)、(4-2)又は(4-3)で表される化合物である請求項1~3のいずれかに記載の構造体。
    Figure JPOXMLDOC01-appb-I000005
    (前記式(4-1)、(4-2)及び(4-3)において、
     rは繰り返し数を示す整数である。
     R41は、炭素原子数1~6のアルキレン基である。
     R42は、アルキレンアミノアルキレン基又はアルキレンチオアルキレン基である。
     前記Si(A)で表されるシリル基の3つのAは、それぞれ独立に、加水分解性基又は非加水分解性基であり、3つのAのうち少なくとも1つは加水分解性基である。)
  9.  前記加水分解性基が、アルコキシ基である請求項4~8のいずれかに記載の構造体。
  10.  前記シリカが、アルコキシシラン化合物である請求項1~9いずれかに記載の構造体。
  11.  前記ポリエチレンイミン骨格を有するポリマーが、太さが10~200nmの範囲にあり、且つ、長さが50nm~2μmの範囲にある直鎖状ポリエチレンイミン骨格を有する繊維状ポリマーである請求項1~10のいずれかに記載の構造体。
  12.  前記直鎖状ポリエチレンイミン骨格を有する繊維状ポリマーの長軸が前記基材の表面に対して略垂直方向に向いている請求項11に記載の構造体。
  13.  前記直鎖状ポリエチレンイミン骨格を有する繊維状ポリマーが網目構造を形成している請求項11に記載の構造物。
  14.  前記基材が、樹脂基材又は金属基材である請求項1~13のいずれかに記載の構造体。
  15.  前記基材が、アルミニウム基材である請求項1~14のいずれかに記載の構造体。
  16.  前記滑落撥水層表面の水の滑落角が5°以下である請求項1~15のいずれかに記載の構造体。
  17.  前記滑落撥水層表面の水の接触角が160°以上である請求項1~16のいずれかに記載の構造体。
  18.  基材とポリエチレンイミン骨格を有するポリマーを含有する溶液とを接触させて、前記基材の表面に前記ポリエチレンイミン骨格を有するポリマーを含む層を形成する工程と、
     前記基材及び前記ポリエチレンイミン骨格を有するポリマーを含む層からなる積層体と、シリカソース液とを接触させて、前記ポリエチレンイミン骨格を有するポリマーを含む層中にシリカを形成する工程と、
     前記シリカを形成させた前記ポリエチレンイミン骨格を有するポリマーを含む層を、含フッ素化合物で処理する工程と、
    を含む構造体の製造方法。
  19.  基材とポリエチレンイミン骨格を有するポリマーを含有する溶液とを接触させて、前記基材の表面に前記ポリエチレンイミン骨格を有するポリマーを含む層を形成する工程と、
     前記基材及び前記ポリエチレンイミン骨格を有するポリマーを含む層からなる積層体と、シリカソース液とを接触させて、前記ポリエチレンイミン骨格を有するポリマーを含む層中にシリカを形成する工程と、
     前記基材及び前記ポリエチレンイミン骨格を有するポリマー及び前記シリカを含む層からなる積層体を焼成して、前記ポリエチレンイミン骨格を有するポリマーを除去する工程と、
     前記ポリエチレンイミン骨格を有するポリマーを除去したシリカを含む層を、含フッ素化合物で処理する工程と、
    を含む構造体の製造方法。
  20.  請求項19に記載の製造方法で得られる構造体であって、
     基材上に滑落撥水層を有し、
     前記滑落撥水層が、含フッ素化合物と、シリカとを含む構造体。
  21.  請求項1~17及び20のいずれかに記載の構造体である熱交換機用部材。
  22.  間隙を設けて並設された複数のフィンを有する熱交換器であって、前記フィンが、その表面にポリエチレンイミン骨格を有するポリマーとパーフルオロアルキル基及び/又はパーフルオロポリエーテル基を有するシラン化合物を有するシラン化合物とシリカとを含む滑落撥水層を有する熱交換器。
  23.  前記フィンがアルミニウムフィンである請求項22に記載の熱交換器。
  24.  請求項22又は23に記載の熱交換器を備える空調機又は冷却機。
PCT/JP2020/015720 2019-04-18 2020-04-07 構造体、構造体の製造方法、熱交換機用部材及び熱交換器 WO2020213485A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080029257.3A CN113710473A (zh) 2019-04-18 2020-04-07 结构体、结构体的制造方法、热交换机用构件及热交换器
KR1020217030234A KR20210132113A (ko) 2019-04-18 2020-04-07 구조체, 구조체의 제조 방법, 열교환기용 부재 및 열교환기
JP2021514900A JP7031790B2 (ja) 2019-04-18 2020-04-07 構造体、構造体の製造方法、熱交換機用部材及び熱交換器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-079288 2019-04-18
JP2019079288 2019-04-18

Publications (1)

Publication Number Publication Date
WO2020213485A1 true WO2020213485A1 (ja) 2020-10-22

Family

ID=72837348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015720 WO2020213485A1 (ja) 2019-04-18 2020-04-07 構造体、構造体の製造方法、熱交換機用部材及び熱交換器

Country Status (4)

Country Link
JP (1) JP7031790B2 (ja)
KR (1) KR20210132113A (ja)
CN (1) CN113710473A (ja)
WO (1) WO2020213485A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034733A1 (ja) * 2020-08-13 2022-02-17 日産化学株式会社 ハードコート用硬化性組成物

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008380A1 (ja) * 2007-07-06 2009-01-15 Asahi Glass Company, Limited 表面処理剤、物品、および新規含フッ素エーテル化合物
WO2009150930A1 (ja) * 2008-06-12 2009-12-17 財団法人川村理化学研究所 超疎水性ナノ構造複合体で被覆された構造物及びその製法
JP2010043365A (ja) * 2008-08-11 2010-02-25 Dic Corp 超疎水性粉体、これを用いる超疎水性表面を有する構造体及びそれらの製造方法
JP2011163715A (ja) * 2010-02-12 2011-08-25 Kobe Steel Ltd 熱交換器用アルミニウムフィン材
JP2013004734A (ja) * 2011-06-16 2013-01-07 Asahi Glass Co Ltd 発光装置
JP2013091047A (ja) * 2011-10-27 2013-05-16 Asahi Glass Co Ltd 防汚性基板の製造方法
JP2017025264A (ja) * 2015-07-28 2017-02-02 Dic株式会社 コーティング組成物及び物品
WO2017110200A1 (ja) * 2015-12-25 2017-06-29 株式会社デンソー 撥水性基材とその製造方法
JP2018193438A (ja) * 2017-05-15 2018-12-06 Dic株式会社 フッ素系化合物、表面改質剤、コーティング組成物及び物品

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3725723B2 (ja) * 1999-03-04 2005-12-14 関西ペイント株式会社 塗料組成物
JP2003064318A (ja) * 2001-08-30 2003-03-05 Ri Youko 撥水性被膜とその作製方法
JP6070545B2 (ja) * 2011-04-27 2017-02-01 旭硝子株式会社 撥水撥油剤組成物、その製造方法および物品
JP5867325B2 (ja) 2011-07-12 2016-02-24 株式会社デンソー 撥水性基材の製造方法
JP5656026B2 (ja) 2011-11-14 2015-01-21 株式会社豊田中央研究所 撥水材及びその製造方法
JP5891043B2 (ja) 2012-01-19 2016-03-22 株式会社Uacj 熱交換器用滑水性アルミニウムフィン材並びに熱交換器の製造方法
EP2865521A4 (en) * 2012-06-20 2016-03-02 Mitsubishi Rayon Co PROCESS FOR PRODUCING LAMINATE, LAMINATE AND ARTICLE

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008380A1 (ja) * 2007-07-06 2009-01-15 Asahi Glass Company, Limited 表面処理剤、物品、および新規含フッ素エーテル化合物
WO2009150930A1 (ja) * 2008-06-12 2009-12-17 財団法人川村理化学研究所 超疎水性ナノ構造複合体で被覆された構造物及びその製法
JP2010043365A (ja) * 2008-08-11 2010-02-25 Dic Corp 超疎水性粉体、これを用いる超疎水性表面を有する構造体及びそれらの製造方法
JP2011163715A (ja) * 2010-02-12 2011-08-25 Kobe Steel Ltd 熱交換器用アルミニウムフィン材
JP2013004734A (ja) * 2011-06-16 2013-01-07 Asahi Glass Co Ltd 発光装置
JP2013091047A (ja) * 2011-10-27 2013-05-16 Asahi Glass Co Ltd 防汚性基板の製造方法
JP2017025264A (ja) * 2015-07-28 2017-02-02 Dic株式会社 コーティング組成物及び物品
WO2017110200A1 (ja) * 2015-12-25 2017-06-29 株式会社デンソー 撥水性基材とその製造方法
JP2018193438A (ja) * 2017-05-15 2018-12-06 Dic株式会社 フッ素系化合物、表面改質剤、コーティング組成物及び物品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034733A1 (ja) * 2020-08-13 2022-02-17 日産化学株式会社 ハードコート用硬化性組成物

Also Published As

Publication number Publication date
JP7031790B2 (ja) 2022-03-08
CN113710473A (zh) 2021-11-26
JPWO2020213485A1 (ja) 2021-11-18
KR20210132113A (ko) 2021-11-03

Similar Documents

Publication Publication Date Title
US9340705B2 (en) Fluorine-based surface treating agent for vapor deposition and article finished with the surface treating agent by vapor deposition
JP6119656B2 (ja) フルオロポリエーテル基含有ポリマー
KR102441819B1 (ko) 내열성을 가진 발수발유 처리제 및 그의 제조방법 및 물품
JP6248858B2 (ja) フッ素系表面処理剤及び該表面処理剤で表面処理された物品
JP3253851B2 (ja) 超撥水塗料及びそれを用いた超撥水塗膜
US10138380B2 (en) Water/oil repellant coating film and manufacturing method thereof
JP5999096B2 (ja) 被膜付き基板の製造方法
KR102084270B1 (ko) 플루오로옥시알킬렌기 함유 중합체 변성 실란 및 상기 실란을 포함하는 표면 처리제, 및 상기 표면 처리제로 표면 처리된 물품
KR20160030445A (ko) 함불소 코팅제 및 이 코팅제로 처리된 물품
WO2020213485A1 (ja) 構造体、構造体の製造方法、熱交換機用部材及び熱交換器
KR102605764B1 (ko) 발수 처리제, 발수 구조체 및 그 제조 방법
JP6544570B2 (ja) 表面改質剤、コーティング組成物及び物品
JP2017031347A (ja) コーティング組成物及び物品
JP2022551983A (ja) 反応性ポリ(フルオロアルキル官能性シロキサン)オリゴマー、それを形成するための方法、およびそれを使用する組成物
WO2020213486A1 (ja) 構造体、熱交換器用部材、輸送機用部材
JPH0959605A (ja) 撥水処理剤
JP2014156061A (ja) 下地層及び撥水膜を有する基体、及びこの下地層及び撥水膜を有する基体を含む輸送機器用物品
KR102631226B1 (ko) 발수성 알루미늄재 및 그 제조 방법
JP6780224B2 (ja) コーティング組成物及び物品
JPH0940910A (ja) 撥水処理剤
WO2024048468A1 (ja) 親水滑水化処理剤、前記親水滑水化処理剤を用いた表面処理方法、及び親水滑水性皮膜が形成された基材
JP6557075B2 (ja) シロキサン化合物の製造方法
JPH06293782A (ja) コーティング組成物
JP2013129695A (ja) 撥水膜形成用組成物、撥水膜付き基体および輸送機器用物品
JP7279720B2 (ja) 着雪氷防止剤、着雪氷防止構造体、着雪氷防止構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514900

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217030234

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791010

Country of ref document: EP

Kind code of ref document: A1