WO2020213104A1 - 気化器およびその製造方法 - Google Patents

気化器およびその製造方法 Download PDF

Info

Publication number
WO2020213104A1
WO2020213104A1 PCT/JP2019/016527 JP2019016527W WO2020213104A1 WO 2020213104 A1 WO2020213104 A1 WO 2020213104A1 JP 2019016527 W JP2019016527 W JP 2019016527W WO 2020213104 A1 WO2020213104 A1 WO 2020213104A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
raw material
vaporizer
holes
main
Prior art date
Application number
PCT/JP2019/016527
Other languages
English (en)
French (fr)
Inventor
鈴木 裕
斎藤 隆
Original Assignee
株式会社Welcon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Welcon filed Critical 株式会社Welcon
Priority to PCT/JP2019/016527 priority Critical patent/WO2020213104A1/ja
Priority to JP2021514727A priority patent/JP7360201B2/ja
Priority to CN201980095416.7A priority patent/CN113692641A/zh
Priority to EP19924887.3A priority patent/EP3958294A4/en
Priority to US17/602,801 priority patent/US11885017B2/en
Priority to KR1020217031613A priority patent/KR20210134022A/ko
Publication of WO2020213104A1 publication Critical patent/WO2020213104A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01BBOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
    • B01B1/00Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
    • B01B1/005Evaporation for physical or chemical purposes; Evaporation apparatus therefor, e.g. evaporation of liquids for gas phase reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means

Definitions

  • the present invention relates to a vaporizer and a method for manufacturing the same.
  • a CVD (Chemical vapor deposition) method As a method of forming a film on the surface of an object using a gas raw material, for example, a CVD (Chemical vapor deposition) method can be mentioned.
  • a CVD method Chemical vapor deposition
  • several thin films are usually formed on a wafer by a CVD method.
  • a part of the thin film is removed by spraying an etching gas on the thin film formed on the wafer by a CVD method to perform patterning.
  • Patent Document 1 describes a method of vaporizing a liquid raw material stored in a liquid tank by a bubbling method, in which the liquid raw material in the liquid tank is vaporized by bubbling with a carrier gas at a predetermined flow rate.
  • a method for vaporizing a characteristic liquid raw material is described. According to such a method, a raw material gas having a predetermined concentration can be stably supplied while being controlled with high accuracy even at a low flow rate, and by using it in a CVD device or the like in a flattening process. It is stated that stable low-concentration doping can be performed and the reliability of the insulating film can be improved.
  • Patent Document 2 describes an orifice pipe having one gas passage for dispersing two or more kinds of raw material solutions in a carrier gas in the form of fine particles or atomization, and a place where the orifice pipe is communicated with the gas passage.
  • a vaporization tube for vaporizing the two or more kinds of raw material solutions dispersed in the orifice tube, and an ejection portion for ejecting gas from the orifice tube is inserted into the vaporization tube, and the ejection portion is first.
  • a CVD vaporizer characterized in that it is formed in a convex shape in which the outer diameter becomes smaller toward the side. Then, according to such a CVD vaporizer, various raw material solutions can be dispersed in the carrier gas in the form of fine particles or mist, and clogging can be less likely to occur, so that the raw material solution for CVD can be dispersed. It is stated that it is possible to provide a CVD vaporizer capable of accurately controlling the flow rate over a long period of time.
  • Patent Document 3 a vaporization chamber heated by a heater, a primary filter arranged at the lower end of the vaporization chamber and heated by a heater, and a liquid raw material whose flow rate is adjusted are introduced from above the vaporization chamber to the primary.
  • a liquid raw material supply unit that drops toward the filter, a carrier gas introduction path that guides the carrier gas to the lower surface of the primary filter, and a mixed gas of the carrier gas and the vaporized liquid raw material are discharged from the upper part of the vaporization chamber.
  • a vaporizer is described, which comprises a raw material derivation path for the purpose.
  • the liquid raw material can be vaporized and misted by the primary filter, and the mist can be vaporized in the vaporization chamber, which is higher than that of the conventional vaporizer that simply applies heat.
  • liquid raw materials can be vaporized even at low temperatures, and even liquid raw materials with high thermodegradability can deposit and deposit thermal decomposition products and polymers inside the vaporizer. It is stated that it is possible to prevent blockage of the flow path and vaporize a large amount of liquid raw material.
  • Patent Document 4 describes an outer block having a circular vaporization chamber forming hole in which a heater for heating a liquid raw material or a mixed gas of a liquid raw material and a carrier gas is embedded, and the liquid raw material or the liquid raw material.
  • a heater for heating the mixed gas with the carrier gas is embedded, and the inner block is composed of a cylindrical inner block having a diameter slightly smaller than the hole for forming the vaporization chamber, the hole for forming the vaporization chamber, and the inner block.
  • An introduction hole for introducing the liquid raw material or a mixed gas of the liquid raw material and the carrier gas into the vaporized flow path, and a liquid raw material gas vaporized or vaporized liquid raw material gas and the carrier gas from the vaporization flow path.
  • a vaporizer characterized in that a lead-out hole for discharging a mixed gas with and is formed in the outer block. Then, according to such a vaporizer, the temperature boundary layer effect due to the slit-shaped vaporization flow path formed by the vaporization chamber forming hole and the inner block and the centrifugal force effect due to the arc are formed from the vessel wall. It is stated that efficient heat supply to the mixed gas is possible, and further, the synergistic effect of adiabatic expansion and rapid heat supply by the heater to the adiabatic expansion region can realize complete vaporization of the liquid raw material. ..
  • Patent Documents 1 to 4 it is difficult to obtain a gas raw material adjusted to a desired temperature because precise temperature control is difficult, and a temperature different from the desired temperature is obtained. There was a tendency to obtain the gas raw material of. In addition, there was a large variation in the temperature of the gas raw material. Further, there are cases where precipitates such as solid raw materials are formed in the vaporizer.
  • An object of the present invention is to solve the above problems. That is, it is an object of the present invention to provide a vaporizer capable of obtaining a gas raw material which is adjusted to a desired temperature and has very little temperature variation, and which hardly generates a precipitate or hardly deposits even if it occurs. .. If it is possible to obtain a gas raw material that is adjusted to a desired temperature and has very little temperature variation, it is considered that the vaporizer can be miniaturized. It is also an object of the present invention to provide a method for manufacturing such a vaporizer.
  • the present inventor has diligently studied to solve the above problems and completed the present invention.
  • the present invention is the following (1) to (7).
  • a vaporizer that obtains a gas raw material for film formation by heating and vaporizing the raw material mist.
  • a first flow path through which the raw material mist flows and a second flow path through which the heat medium for heating the raw material mist flows are provided inside a main portion made of a metal material.
  • the equivalent area circle equivalent diameter of the cross section of the first flow path is 5 mm or less
  • the equal area circle equivalent diameter of the cross section of the second flow path is 2 mm or less.
  • a vaporizer that obtains a gas raw material for film formation (2) In the cross section of the main portion in the direction perpendicular to the direction in which the raw material mist flows.
  • the holes of the first flow path are arranged in a row in the left-right direction, and the rows of holes form a layer in the vertical direction.
  • the second flow path exists between layers of rows of holes adjacent to each other in the vertical direction, the second flow path and the first flow path are not connected, and the second flow path is from the vertical direction. It meanders in the vertical direction so as to avoid the hole of the first flow path in the layer of the row of holes sandwiched.
  • a vaporizer for obtaining the gas raw material for film formation according to the above (1) (3) When the first flow path is divided into a plurality of parts in the longitudinal direction thereof, the temperature of the raw material mist existing inside the first flow path can be adjusted for each part. , A vaporizer for obtaining the gas raw material for film formation according to the above (1) or (2). (4) When the surface of the main portion where the holes for the raw material mist to flow in is formed as the entrance surface and the surface of the main portion where the holes for discharging the gas raw material are formed is the outer side surface. The result according to any one of (1) to (3) above, wherein the equivalent area circle-equivalent diameter of the first flow path existing inside the first flow path gradually changes from the entrance side surface to the exit side surface.
  • a vaporizer that obtains a gaseous raw material for a membrane (5) The above (1) to (4), wherein the second flow path is formed in the horizontal direction and these are orthogonal to each other when the first flow path is arranged so as to be in the vertical direction. A vaporizer for obtaining the gas raw material for film formation according to any one. (6) A gap is provided between the outer surface of the main portion and at least a part of the first flow path and the second flow path so that internal heat is hardly released to the outside. , A vaporizer for obtaining a gas raw material for film formation according to any one of (1) to (5) above.
  • a plurality of metal plate materials are prepared, a groove that becomes a part of the second flow path is formed on the main surface thereof, and the first surface that penetrates from one main surface to the other main surface.
  • the process of forming a through hole that becomes a part of the flow path and It is provided with a step of bringing the main surfaces of the metal plate material into close contact with each other and joining them by diffusion bonding.
  • a method for manufacturing a vaporizer which obtains the vaporizer according to any one of (1) to (6) above.
  • the raw material mist can be heated under precise temperature control, it is possible to obtain a gas raw material which is adjusted to a desired temperature and has very little temperature variation, and further, a precipitate. It is possible to provide a vaporizer that hardly generates. It is also possible to provide a method for manufacturing such a vaporizer.
  • FIG. 2 is a cross-sectional view taken along the line AA'of the aspect shown in FIG.
  • FIG. 2 is a cross-sectional view taken along the line AA'of the aspect shown in FIG.
  • FIG. 2 is a cross-sectional view taken along the line AA'of the aspect shown in FIG.
  • FIG. 2 is a cross-sectional view taken along the line AA'of the aspect shown in FIG.
  • FIG. 2 is a schematic perspective view which shows one aspect of the main part which the vaporizer of this invention can have.
  • It is a cross-sectional view taken along the line BB'of the aspect shown in FIG.
  • It is the schematic perspective view which shows the separated state of the main part shown in FIG.
  • FIG. is the schematic which shows one aspect of the cross section of the main part of the vaporizer of this invention.
  • FIG. 5 is a cross-sectional view taken along the line DD'of the aspect shown in FIG.
  • FIG. 5 is a schematic cross-sectional view showing a mode in which the first flow path of the mode shown in FIG. 18 is replaced with another.
  • FIG. 5 is a schematic cross-sectional view showing another aspect in which the first flow path of the aspect shown in FIG. 18 is replaced with another.
  • FIG. 5 is a schematic cross-sectional view showing still another aspect in which the first flow path of the aspect shown in FIG. 18 is replaced with another.
  • FIG. 2 is a cross-sectional view taken along the line EE'of the aspect shown in FIG. It is the schematic perspective view which shows the preferable mode of the vaporizer of this invention.
  • FIG. 2 is a cross-sectional view taken along the line FF'of the aspect shown in FIG.
  • FIG. 6 is a cross-sectional view taken along the line GG'of the aspect shown in FIG.
  • FIG. 2 is a sectional view taken along line HH'of the aspect shown in FIG. 24.
  • the present invention is a vaporizer that obtains a gas raw material for film formation by heating and vaporizing the raw material mist, and a first flow path through which the raw material mist flows and a heat medium that heats the raw material mist flow.
  • the second flow path is provided inside a main portion made of a metal material, and the equivalent area circle equivalent diameter of the cross section of the first flow path is 5 mm or less, and the equal area circle equivalent diameter of the cross section of the second flow path is 2 mm or less.
  • This is a gas raw material for film formation, in which there is no void other than the second flow path between one first flow path and another first flow path existing next to the first flow path inside the main portion. It is a vaporizer to obtain.
  • Such a vaporizer is also referred to as "the vaporizer of the present invention" below.
  • a plurality of metal plate materials are prepared, a groove that becomes a part of the second flow path is formed on the main surface thereof, and the groove is further penetrated from one main surface to the other main surface.
  • a vaporizer that comprises a step of forming a through hole that becomes a part of the first flow path and a step of bringing the main surfaces of the metal plate material into close contact with each other and joining them by diffusion bonding to obtain the vaporizer of the present invention. It is a manufacturing method of. The manufacturing method of such a vaporizer is also referred to as "the manufacturing method of the present invention" below.
  • the vaporizer of the present invention is a vaporizer that obtains a gas raw material for film formation by heating and vaporizing the raw material mist.
  • the raw material mist to be heated by the vaporizer of the present invention preferably contains a mist-ized liquid raw material and is a mixture of the mist-ized liquid raw material and the carrier gas.
  • the types of the carrier gas and the liquid raw material are not particularly limited, and are conventionally used, for example, when forming a thin film by a CVD method or when etching a part of a thin film as a part of a semiconductor device manufacturing process. It may be a carrier gas and a liquid raw material.
  • examples of the carrier gas include an inert gas such as nitrogen and argon, and hydrogen.
  • examples of the liquid raw material include solutions containing cyanide, fluoride, indium, gallium, aluminum, tantalum and the like. Solutions of indium, gallium, aluminum, tantalum and the like can be used for film formation. On the other hand, a solution of cyanide, fluoride or the like can be used for patterning to remove a part of the formed thin film.
  • an etching gas such as cyanide or fluoride is used as the liquid raw material
  • the main part described later is preferably made of a metal material (titanium, stainless steel, etc.) having excellent corrosion resistance.
  • the raw material mist includes a mist of such a liquid raw material.
  • the method of mist-forming the liquid raw material is not particularly limited, and for example, a conventionally known method may be used. Specifically, for example, a method of introducing a carrier gas and a liquid raw material into a sprayer to obtain a mist in which a mist-like liquid raw material is dispersed in the carrier gas can be mentioned.
  • the raw material mist may include other than carrier gas and mist-ized liquid raw material.
  • the raw material mist may contain a liquid raw material that is not in the form of mist due to insufficient mist formation.
  • the vaporizer of the present invention has, for example, the configuration shown in FIG.
  • FIG. 1 is a schematic perspective view showing a preferred embodiment of the vaporizer of the present invention.
  • the vaporizer 10 of the present invention has a main portion 12 having a first flow path 1 through which the raw material mist flows and a second flow path 2 through which the heat medium for heating the raw material mist flows. It has a supply unit 14 for supplying the raw material mist to the unit 12, and a discharge unit 16 for collecting the gas raw material discharged from the main unit 12 and discharging it to the outside of the system.
  • FIG. 2 is a schematic perspective view of the supply unit 14 shown in FIG. 1, and FIG. 3 is a cross-sectional view taken along the line AA'in FIG.
  • the supply unit 14 includes an introduction hole 141 into which the raw material mist is introduced. Then, the raw material mist introduced into the inside of the supply unit 14 from the introduction hole 141 is discharged from the supply unit 14 and then supplied to the main unit 12.
  • the supply unit 14 shown in FIGS. 2 and 3 is as evenly as possible to the inlet 1Pin of the plurality of first flow paths 1 in which the raw material mist introduced from the introduction hole 141 is formed on the surface of the main unit 12. It is configured to be supplied. Specifically, as shown in FIG.
  • the cross-sectional diameter (r 14 ) of the flow path 143 of the raw material mist is configured to gradually expand inside the supply unit 14.
  • the supply unit 14 is preferably made of a metal material like the main unit 12.
  • the vaporizer of the present invention preferably includes a supply unit.
  • FIG. 4 is a schematic perspective view of the main portion 12 shown in FIG. 1, and FIG. 5 is a sectional view taken along line BB'in FIG.
  • the main portion 12 has a first flow path 1 through which the raw material mist flows and a second flow path 2 through which the heat medium for heating the raw material mist flows.
  • the second flow path 2 is formed in the horizontal direction, and these are orthogonal to each other.
  • Such an embodiment is preferable as the main part of the vaporizer of the present invention.
  • the main part may be separably configured into several parts, and a spacer may be sandwiched between one main part and another main part, for example.
  • FIG. 6 is a schematic perspective view showing a mode in which the three main portions 12a, 12b and 12c sandwich the spacers 9a and 9b
  • FIG. 7 is a schematic perspective view showing a state in which the spacers 9a and 9b are separated.
  • the spacers 9a and 9b may be, for example, plate-shaped, and a through hole 91 from one main surface to the other main surface is formed.
  • FIG. 6 and FIG. 7 a case where three main parts and two spacers are provided is illustrated.
  • the number of main parts and spacers is not particularly limited. Of course, it is not necessary to provide the spacer as in the embodiment shown in FIG.
  • the spacer is preferably made of the same material as the main part. However, it may be made of a metal, an organic substance, or the like different from the main part.
  • the heat medium flowing through the second flow path 2 is not particularly limited as long as it is a fluid capable of heating the raw material mist flowing through the first flow path.
  • heated steam, oil and the like can be mentioned.
  • the temperature of the heat medium is also not particularly limited.
  • oil at 200 to 300 ° C. can be used as a heat medium.
  • the raw material mist supplied from the supply unit 14 enters the inside of the first flow path 1 from the inlet 1Pin of the plurality of first flow paths 1 formed on the surface of the main part 12. enter. Then, the raw material mist receives heat from the heat medium in the second flow path 2 in the process of moving inside the first flow path 1 toward the outlet 1Pout, and when it is discharged from the outlet 1Pout, it becomes a gas in principle. There is.
  • the main part is made of a metal material.
  • a metal material such as a corrosion-resistant alloy (titanium, Inconel, Hastelloy (nickel-based alloy) or stainless steel (for example, SUS316L). That is, it is not composed of a combination of a metal material and a plastic material. ..
  • the main part may be made of two or more kinds of metal materials, but is preferably made of one kind of metal material.
  • a main portion made of such a metal material and having a fine flow path inside can be manufactured by a method including a step of bringing the main surfaces of the metal plate material into close contact with each other and joining them by diffusion bonding.
  • FIG. 10 shows a mode in which the linear second flow path in FIG. 8 is replaced with a meandering one.
  • FIG. 8 shows a cross section perpendicular to the first flow path (cross section horizontal to the second flow path) in the main part of the vaporizer of the present invention. It may be considered as a partially enlarged view of FIG.
  • the holes of the first flow path are shown as Pa, Pb, Pc, Pd, Pe, Pf, Pg, Ph, Pi, Pj, Pk, Pl.
  • the second flow path is shown as 2a, 2b, 2c, and 2d.
  • the shaded area in FIG. 8 means that a metal material is present. That is, in FIG. 8, the voids are only the first flow path and the second flow path.
  • another hole of the first flow path existing next to the hole Pf of the first flow path is holes Pa, Pb, Pc, Pe, Pg, Pi, Pj, and Pk.
  • the space between the holes Pe and Pg and the holes Pf is filled with a metal material, and there are no voids.
  • a second flow path exists between any one of the holes Pa, Pb, Pc, Pi, Pj, and Pk and the hole Pf, but there are no voids other than that.
  • the arrow shown in FIG. 8 conceptually shows the transfer of heat.
  • heat transfer from the heat medium in the second flow path (2a, 2b, 2c, 2d) to the raw material mist in the first flow path is efficiently performed.
  • FIG. 9 shows a cross section perpendicular to the first flow path in the main part of the vaporizer of the present invention.
  • the second flow path in FIG. 8 described above is not linear, but shows a mode in which it replaces a meandering one.
  • the holes of the first flow path are shown as Pa, Pb, Pc, Pd, Pe, Pf, Pg, Ph, Pi, Pj, and Pk.
  • the second flow path is shown as 2a, 2b, 2c, and 2d.
  • the shaded area in FIG. 9 means that a metal material is present. That is, in FIG. 9, the voids are only the first flow path and the second flow path.
  • another hole of the first flow path existing next to the hole Pf of the first flow path is holes Pb, Pc, Pe, Pg, Pi, Pj.
  • the space between the hole Pb, Pc, Pe, Pg, Pi, Pj and the hole Pf is filled with a metal material or the second flow path. Either (2b, 2c) only exists.
  • the arrow shown in FIG. 9 conceptually shows the transfer of heat.
  • heat transfer from the heat medium in the second flow path (2a, 2b, 2c, 2d) to the raw material mist in the first flow path is efficiently performed.
  • FIG. 10 does not correspond to the main part of the vaporizer of the present invention.
  • a pipe-shaped first flow path and a second flow path are assembled in a grid pattern and fixed at their contact points.
  • the holes of the first flow path are shown as Pa, Pb, Pc, Pd, Pe, Pf, Pg, Ph, Pi, Pj, Pk, Pl.
  • the second flow path is shown as 2a, 2b, 2c, and 2d.
  • another hole of the first flow path existing next to the hole Pf of the first flow path is holes Pa, Pb, Pc, Pe, Pg, Pi, Pj, and Pk.
  • the arrow shown in FIG. 10 conceptually shows the transfer of heat.
  • the heat transfer from the heat medium in the second flow path (2a, 2b, 2c, 2d) to the raw material mist in the first flow path is transferred to the second flow path and the first flow path. It is performed only at the contact point with the flow path. Therefore, the heat transfer efficiency is poor.
  • FIG. 11 does not correspond to the main part of the vaporizer of the present invention.
  • the pipe-shaped first flow path and the second flow path are assembled in a grid pattern and fixed at their contact points, and the first flow paths are also their contact points. It is fixed with.
  • the holes of the first flow path are shown as Pa, Pb, Pc, Pd, Pe, Pf, Pg, Ph, Pi, Pj, Pk, Pl.
  • the second flow path is shown as 2a, 2b, 2c, and 2d.
  • another hole of the first flow path existing next to the hole Pf of the first flow path is holes Pa, Pb, Pc, Pe, Pg, Pi, Pj, and Pk.
  • holes Pa, Pb, Pc, Pe, Pg, Pi, Pj, and Pk there are voids ⁇ and ⁇ between the holes Pf and the holes Pa. Further, there are voids ⁇ and ⁇ between the holes Pf and the holes Pe.
  • the arrow shown in FIG. 11 conceptually shows the transfer of heat.
  • the heat transfer from the heat medium in the second flow path (2a, 2b, 2c, 2d) to the raw material mist in the first flow path is transferred to the second flow path and the first flow path. It is performed only at the contact point with the flow path. Therefore, the heat transfer efficiency is poor.
  • FIG. 12 does not correspond to the main part of the vaporizer of the present invention.
  • the portion where the aspect shown in FIG. 12 is different from the aspect shown in FIG. 11 described above is the cross-sectional shape of the first flow path. That is, the first flow path of the aspect shown in FIG. 11 has a circular cross section, but the first flow path of the aspect shown in FIG. 12 has a rectangular cross section. Other than that, it is the same as the embodiment shown in FIG. 11, and the pipe-shaped first flow path and the second flow path are assembled in a grid pattern and fixed at their contact points, and the first flow paths are also theirs. It is fixed at the contact point. In the case of such a configuration, the number of voids tends to decrease when the aspects shown in FIG. 11 are compared. However, even if the pipes are brought into close contact with each other, a certain amount of gap is formed between them, as shown in FIG. In FIG. 12, for example, there are voids ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ .
  • the holes of the first flow path are shown as Pa, Pb, Pc, Pd, Pe, Pf, Pg, Ph, Pi, Pj, Pk, Pl.
  • the second flow path is shown as 2a, 2b, 2c, and 2d.
  • another hole of the first flow path existing next to the hole Pf of the first flow path is holes Pa, Pb, Pc, Pe, Pg, Pi, Pj, and Pk.
  • holes Pa, Pb, Pc, Pe, Pg, Pi, Pj, and Pk there are voids ⁇ and ⁇ between the holes Pf and the holes Pa. Further, there are voids ⁇ and ⁇ between the holes Pf and the holes Pe.
  • the arrow shown in FIG. 12 conceptually shows the transfer of heat.
  • the heat transfer from the heat medium in the second flow path (2a, 2b, 2c, 2d) to the raw material mist in the first flow path is transferred to the second flow path and the first flow path. It is performed only at the contact point with the flow path. Therefore, the heat transfer efficiency is poor.
  • a second flow is formed between one first flow path inside the main part and another first flow path existing next to the first flow path. Since there are no voids other than the path, heat transfer from the heat medium in the second flow path to the raw material mist in the first flow path is efficiently performed.
  • the equivalent area circle-equivalent diameter (diameter) of the cross section of the first flow path existing inside the main portion of the vaporizer of the present invention is 5 mm or less, preferably 2 mm or less. Further, it is preferably 1 mm or more.
  • the equivalent area circle-equivalent diameter in the present invention means the diameter of a perfect circle corresponding to the area of the figure of the cross section of the first flow path. The same applies to the equivalent area circle diameter of the second flow path.
  • the shape of the cross section of the first flow path is not particularly limited. It may be circular, oval, rectangular or the like.
  • the equivalent area circle-equivalent diameter (diameter) of the cross section of the second flow path existing inside the main portion of the vaporizer of the present invention is 2 mm or less, preferably 1 mm or less. Further, it is preferably 0.5 mm or more.
  • the shape of the cross section of the second flow path is not particularly limited. It may be circular, oval, rectangular or the like.
  • the vaporizer of the present invention is the first flow when the direction in which the heat medium is meandering and flowing is defined as the left-right direction in the cross section of the main portion in the direction perpendicular to the direction in which the raw material mist flows.
  • the holes of the road are arranged in a row in the left-right direction, and the holes in the row are arranged in layers in the vertical direction, and the first layer of the holes in the row adjacent to each other in the vertical direction is arranged.
  • Aspect 1 Aspect 2, and Aspect 3 are shown below as a vaporizer of the present invention corresponding to such a preferable embodiment.
  • FIG. 13 is a schematic perspective view showing a preferred embodiment (aspect 1) of the main portion in the vaporizer of the present invention
  • FIG. 14 shows a sectional view taken along line CC'in FIG.
  • the second flow path 22 is formed on a plane orthogonal to the first flow path 21, and the second flow path 22 is the second flow path 22. It meanders so as to avoid one flow path.
  • "21p" indicates a hole at the inlet or outlet of the first flow path or a hole of the first flow path appearing in a cross section
  • "22p" indicates an inlet or outlet of the second flow path. Indicates a hole in.
  • the main portion 20 as illustrated in FIGS. 13 and 14 is perpendicular to the direction in which the raw material mist flows through the main portion 20 (if the first flow path extends linearly in the vertical direction, that direction).
  • a cross section A as illustrated in FIG. 14 can be obtained.
  • the cross section A does not have to be a cross section in a direction perpendicular to all the first flow paths in the main portion 20.
  • the cross section in the direction perpendicular to a part of the first flow path in the main part 20 is the cross section A in the main part 20.
  • first flow path and the second flow path in FIGS. 13 and 14 show a flow path having an extremely simple structure for easy understanding.
  • the second flow path may be connected to another second flow path at the end in the left-right direction.
  • FIG. 15 shows a cross section A similar to that of FIG. Further, in FIG. 14, the hole of the first flow path is indicated as “21p”, but in FIG. 15, it is indicated as “P mk ” (m and k are integers of 1 or more).
  • the holes (P mk ) of the first flow path are arranged in the left-right direction. They are arranged in a row, and the rows of holes are arranged so as to form layers in the vertical direction.
  • holes (P mk ) are arranged in a row in the left-right direction, and the row-shaped holes have three layers of holes in the vertical direction. Then, the layers of these rows of holes are the first layer, the second layer, and the third layer from the bottom to the top, the holes in the first layer are "P 1k ", and the holes in the second layer are "P 2k ". Let the holes in the third layer be "P 3k ". That is, m is the layer number. In each layer, the holes are "P m1 ", "P m2 “, “P m3 “ ... "P mk " from left to right. That is, k is a hole number (serial number) in the same layer.
  • the layers of the rows of holes adjacent to each other in the vertical direction are the first layer and the second layer, and the second layer and the third layer, but in the adjacent first layer and the second layer, the first layer
  • the holes in one flow path are not arranged at the same position in the left-right direction. That is, the center of the hole of the second layer does not exist immediately above the center of the hole of the first layer.
  • the holes in the second layer exist between the two holes in the first layer.
  • the holes of the second flow path are not arranged at the same position in the left-right direction. That is, the center of the hole of the third layer does not exist immediately above the center of the hole of the second layer.
  • the pores of the third layer exist between the two holes in the second layer.
  • a second flow path 22 exists between layers of rows of holes adjacent to each other in the vertical direction. Further, the first flow path 21 and the second flow path 22 are not connected.
  • the second flow path 22 meanders in the vertical direction so as to avoid the holes (21p, P mk ) of the first flow path in the layer of the row-shaped holes sandwiched from the vertical direction. For example, in FIG.
  • the band-shaped portion that is the boundary between the first layer and the second layer meanders up and down, and the second flow path meanders along the shape of the band-shaped part. are doing.
  • FIG. 16 is a cross section similar to that of FIG. 14, which shows the cross section of the first aspect.
  • the vaporizer of the present invention has a first flow path in the cross section A of the main portion 20 in the direction perpendicular to the direction in which the raw material mist flows, when the direction in which the heat medium is meandering and flowing is the left-right direction.
  • the holes 21p are arranged in a row in the left-right direction, and the rows of holes are arranged so as to form a layer in the vertical direction.
  • the layers of the rows of holes adjacent to each other in the vertical direction are compared.
  • the holes 21p of the first flow path are not arranged at the same position in the left-right direction, the second flow path 22 and the first flow path 21 are not connected, and the second flow path 22 is sandwiched from the vertical direction. It is an embodiment that meanders in the vertical direction so as to avoid the holes 21p of the first flow path in the layer of the rows of holes.
  • FIG. 17 is a cross section similar to that of FIG. 14, which shows the cross section of the first aspect.
  • the vaporizer of the present invention has a first flow path in the cross section A of the main portion 20 in the direction perpendicular to the direction in which the raw material mist flows, when the direction in which the heat medium is meandering and flowing is the left-right direction.
  • the holes 21p are arranged in a row in the left-right direction, and the rows of holes are arranged in layers in the vertical direction, and the second flow path 22 and the first flow path 21 are not connected to each other.
  • the second flow path 22 is in a form of meandering in the vertical direction so as to avoid the hole 21p of the first flow path in the layer of the row of holes sandwiched from the vertical direction.
  • the temperature of the raw material mist existing inside the first flow path can be adjusted for each part. It is preferably configured. This is because when the gas raw material for film formation is produced in this way, the amount of precipitates generated is smaller.
  • the surface of the main portion 12 where the hole 1Pin into which the raw material mist flows is formed is referred to as the entry side surface 125.
  • the surface of the main portion 12 on which the hole 1Pout from which the gas raw material is discharged is formed is referred to as the protruding side surface 127.
  • the temperature of the heat medium to be circulated to the second flow path in the portion of the former main portion 12 near the entry side surface 125 and the temperature of the latter main portion 12 in the portion close to the exit side surface 127 The temperature of the heat medium circulated in the flow path can be different.
  • the temperature of the raw material mist existing inside 1 can be adjusted for each part.
  • a path for flowing the heat medium to the second flow path in the portion of the main portion 12 near the entrance side surface 125 and a path for flowing the heat medium to the second flow path in the portion of the main portion 12 near the exit side surface 127 The heat medium having a relatively high temperature is circulated through the path through which the heat medium flows to the second flow path in the portion close to the entrance side surface 125 in the former main part 12, and the heat medium having a relatively high temperature is circulated in the latter main part 12. If a heat medium having a relatively low temperature is circulated through the path through which the heat medium flows to the second flow path in the portion near the side surface 127, the second flow existing inside the heat medium from the inlet side surface 125 to the outlet side surface 127. The temperature of the heat medium in the path can be gradually lowered. In this case, the temperature of the raw material mist that has flowed into the first flow path from the hole 1Pin gradually decreases in the process of moving toward the hole 1Pout.
  • the temperature of the heat medium flowing into the second flow path inside the main portion 12a, the main portion 12b, and the main portion 12c is set. If it is configured so that it can be adjusted separately, the temperature of the raw material mist existing inside the main portion 12a, the main portion 12b, and the main portion 12c can be adjusted for each portion. For example, if the temperature of the heat medium in the second flow path existing inside the inlet side surface 125 to the exit side surface 127 is gradually lowered, the raw material mist flowing into the first flow path from the hole 1Pin can be removed. In the process of moving toward the hole 1Pout, the temperature gradually decreases.
  • the surface of the main portion where the holes for the raw material mist to flow in is formed as an entry side surface, and the surface of the main portion where the holes for discharging the gas raw material are formed is an outer side surface.
  • the diameter corresponding to the equal area circle of the first flow path existing inside the inside surface gradually changes from the entrance side surface to the exit side surface.
  • FIG. 18 shows a cross-sectional view taken along the line DD'in FIG. 4, and FIGS. 19 to 21 show a cross-sectional view when the first flow path shown in FIG. 18 is replaced with another embodiment (preferable embodiment). Shown.
  • the main portion 12 shown in FIG. 18 exists inside the inlet side surface 125 in which the hole 1Pin into which the raw material mist flows is formed toward the exit side surface 127 in which the hole 1Pout from which the gas raw material is discharged is formed.
  • the diameter of the first flow path 1 has not changed.
  • the first flow path 1 is formed linearly.
  • the inside thereof is from the entrance side surface 125 in which the hole 1Pin into which the raw material mist flows is formed toward the exit side surface 127 in which the hole 1Pout from which the gas raw material is discharged is formed.
  • the diameter corresponding to the equal area circle of the first flow path existing in the above is gradually increasing. Such an embodiment is preferable in that the gas raw material can be evenly distributed to the first flow path.
  • the inside thereof is from the inlet side surface 125 where the hole 1Pin into which the raw material mist flows is formed toward the exit side surface 127 where the hole 1Pout from which the gas raw material is discharged is formed.
  • the equivalent area circle-equivalent diameter of the first flow path existing in the above is gradually reduced and then increased. Such an embodiment is preferable in terms of promoting heat transfer due to turbulence of the gas raw material and homogenizing the fluid.
  • FIG. 22 is a schematic perspective view of the discharge unit 16, and FIG. 23 is a sectional view taken along line EE in FIG. 22.
  • the discharge unit 16 illustrated in FIG. 22 collects the gas raw material discharged from the main unit 12 as described above and discharges it to the outside of the system. In the case of the embodiment illustrated in FIGS. 22 and 23, the gas raw material discharged from the main portion 12 is collected in the recess 162. Then, the gas raw material is discharged to the outside of the system through the path 164 connected to this.
  • the discharge unit 16 is preferably made of a metal material like the main unit 12.
  • the vaporizer of the present invention preferably includes a discharge unit.
  • the vaporizer of the present invention has a gap between the outer surface of the main part and at least a part of the first flow path and the second flow path, and is configured so that internal heat is not easily released to the outside. It is preferable that it is. By creating a vacuum inside the void, it becomes difficult for the heat inside to be released to the outside.
  • the vaporizer of the present invention further has a gap between the outer surface of the portion other than the main portion and at least a part of the first flow path and the second flow path, and the heat inside is external. It may be configured so that it is difficult to be released to. Such a preferred embodiment will be described with reference to FIGS. 24 to 27.
  • the main portion 12 in the embodiment shown in FIG. 1 is replaced with the main portion (12a, 9a, 12b, 9b, 12c) shown in FIG. 6, and the heat medium is introduced into the second flow path 72. It has an introduction hole 61 and a discharge hole 63 from which the heat medium is discharged from the second flow path 72, and further, between the outer surface 65 and at least a part of the first flow path 71 and the second flow path 72. It is an embodiment having a gap 67.
  • 25 is a sectional view taken along line FF'in FIG. 24
  • FIG. 26 is a sectional view taken along line GG' in FIG.
  • FIG. 27 is a sectional view taken along line HF'in FIG. 24.
  • a gap 67 is formed between the outer surface 65 and at least a part of the first flow path 71 and the second flow path 72.
  • the void 67 is formed to have a constant thickness along the outer surface in principle.
  • the portion where the introduction hole 61 of the heat medium, the discharge hole 63 of the heat medium, the introduction hole into which the raw material mist is introduced, and the discharge hole through which the gas raw material is discharged is formed.
  • the gap 67 may not be formed in the air.
  • the thickness of the void is not particularly limited, but is preferably about 0.5 to 2.0 mm.
  • the void can be formed by, for example, the same method as in the first flow path.
  • the method of forming the first flow path will be described later.
  • the vaporizer of the present invention has such a void because it is difficult for the heat inside to be released to the outside.
  • the inside of such a gap may be a vacuum.
  • the inside of the void can be easily evacuated.
  • the inside of the void may be filled with a heat insulating material, but the case where the inside of the void is evacuated is superior in heat insulating property.
  • the production method of the present invention will be described.
  • the vaporizer of the present invention as described above is preferably manufactured by the following manufacturing method of the present invention.
  • FIG. 28A a plurality of metal plate members 30 are prepared. Then, as shown in FIG. 28 (b), a groove 34 which is a part of the second flow path is formed on the main surface 32 thereof.
  • the means for forming such a groove 34 is not particularly limited. It may be formed by a chemical means such as etching, or may be formed by a physical means such as laser processing or cutting.
  • a through hole 40 penetrating from one main surface 32 to the other main surface 38 is formed.
  • a drill can be used to form the through hole 40.
  • the through hole 40 may be formed by a chemical means such as etching or a physical means such as laser processing or cutting. The through hole 40 becomes a part of the first flow path.
  • FIG. 29 a case where two metal plate members 42 having a groove 34 formed as a part of the second flow path formed on the main surface 32 in close contact with each other is described, but FIG. 30 (a). ),
  • the metal plate material 42 in which the groove 34 and the through hole 40 are formed and the metal plate material 42'in which the groove 34 is not formed and the through hole 40 is formed may be brought into close contact with each other.
  • the main portions 32 of these metal plate members 42 and 42'are bonded to each other by diffusion bonding the main portion having the first flow path 52 and the second flow path 54 inside as shown in FIG. 30 (c).
  • a part of 50 can be obtained.
  • the main portion can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】原料ミストを緻密な温度管理に下に加熱すること可能であるため、所望の温度に調整され、かつ温度のバラツキが非常に少ない気体原料を得ることができ、さらに析出物をほとんど発生させない気化器の提供。 【解決手段】原料ミストを加熱して気化することで成膜用の気体原料を得る気化器であって、前記原料ミストが流通する第1流路および前記原料ミストを加熱する熱媒体が流通する第2流路を金属材料からなる主部の内部に有し、前記第1流路の断面の等面積円相当径が5mm以下、前記第2流路の断面の等面積円相当径が2mm以下であり、前記主部の内部において1つの第1流路と、その隣に存在する別の第1流路との間に、第2流路以外の空隙が存在しない、成膜用の気体原料を得る気化器。

Description

気化器およびその製造方法
 本発明は気化器およびその製造方法に関する。
 気体原料を用いて対象物の表面に膜を形成する方法として、例えばCVD(Chemical vapor deposition)法が挙げられる。例えば半導体デバイスの製造プロセスでは、通常、いくつかの薄膜をCVD法によってウェハ上に形成する。ウェハ上に形成された薄膜上にCVD法によってエッチングガスを吹き付けることで薄膜の一部を除去し、パターニングを行う場合もある。
 CVD法等において薄膜材料またはエッチング材として用いられる気体原料を得るための手段として、従来、いくつかが提案されている。
 例えば特許文献1には、液槽に貯められた液体原料をバブリング方式により気化する液体原料の気化方法であって、所定の流量のキャリアガスにより前記液槽内の前記液体原料をバブリングにより気化させ、高濃度の原料ガスを発生させる工程と、高濃度の前記原料ガスを希釈用ガスと混合させ、高濃度の前記原料ガスを所定の濃度の前記原料ガスに希釈させる工程と、所定の濃度となった前記原料ガスが所定の流量となるように流量制御を行い、被処理物に所定の処理を行う処理室に流量制御された所定の濃度の前記原料ガスを導入する工程とを有することを特徴とする液体原料の気化方法が記載されている。そして、このような方法によると、所定の濃度の原料ガスを低流量であっても高精度に制御しながら安定して供給することができ、また、平坦化プロセスにおけるCVD装置などに用いることにより、安定した低濃度のドーピングを行うことができ、絶縁膜の信頼性を向上させることができると記載されている。
 例えば特許文献2には、キャリアガス中に2種以上の原料溶液を微粒子状又は霧状に分散させるところの一つのガス通路を有するオリフィス管と、前記オリフィス管の前記ガス通路に連通されたところの前記2種以上の原料溶液を互いに分離して供給する複数の原料溶液用通路と、前記オリフィス管に前記キャリアガスを前記2種以上の原料溶液それぞれと互いに分離して供給するキャリアガス用通路と、前記オリフィス管で分散された前記2種以上の原料溶液を気化する気化管と、を有し、前記オリフィス管のガスを噴出する噴出部が前記気化管内に挿入され、前記噴出部が先側に行くほど外径が小さくなる凸形状に形成されたことを特徴とするCVD用気化器が記載されている。そして、このようなCVD用気化器によると、多種の原料溶液をキャリアガス中に微粒子状又は霧状に分散させ得ることができ、目詰まりが生じにくくすることができ、CVD用の原料溶液の流量を長期間にわたり精度よく制御することができるCVD用気化器を提供することができると記載されている。
 例えば特許文献3には、ヒータにより加熱された気化室と、前記気化室の下端部に配置され、ヒータにより加熱された一次フィルタと、流量調節された液体原料を前記気化室の上方から前記一次フィルタに向けて滴下する液体原料供給部と、キャリアガスを前記一次フィルタの下面へ導くキャリアガス導入路と、前記キャリアガスおよび気化された前記液体原料との混合ガスを前記気化室の上部から排出するための原料導出路とを備えることを特徴とする気化器が記載されている。そして、このような気化器によると、一次フィルタで液体原料を気化させるとともにミスト化し、さらに気化室においてミストを気化させることができるため、単に熱を加えるだけの従来の気化器に比べて、高い気化効率を発揮し、気化効率が高いことにより、低い温度でも液体原料を気化することができ、熱分解性の高い液体原料であっても気化器内部の熱分解生成物および重合物の堆積および流路の閉塞を防止することができるとともに、大量の液体原料を気化することができると記載されている。
 例えば特許文献4には、液体原料或いは液体原料とキャリアガスとの混合ガスを加熱するためのヒーターが埋め込まれた円形の気化室形成用孔を有するアウターブロックと、前記液体原料或いは前記液体原料と前記キャリアガスとの混合ガスを加熱するためのヒーターが埋め込まれ、前記気化室形成用孔よりもわずかに直径の小さい円筒形のインナーブロックと、前記気化室形成用孔と前記インナーブロックとで構成される気化流路に前記液体原料或いは前記液体原料と前記キャリアガスとの混合ガスを導入する導入孔と、該気化流路から気化された液体原料ガス或いは気化された液体原料ガスと前記キャリアガスとの混合ガスを排出する導出孔が前記アウターブロックに形成されていることを特徴とする気化器が記載されている。そして、そのような気化器によると、気化室形成用孔とインナーブロックとで形成された間隙幅の狭いスリット状の気化流路による温度境界層効果と円弧による遠心力効果で、器壁からの混合ガスへの効率的な給熱が可能となり、更には断熱膨張と該断熱膨張領域へのヒーターによる急速な給熱などの相乗効果により、液体原料の完全な気化を実現できると記載されている。
特開平9-181061号公報 特許第3896594号公報 特開2007-1002007号公報 特開2013-23700号公報
 しかしながら、特許文献1~4に例示したような従来法では、緻密な温度管理が困難であるため、所望の温度に調整された気体原料を得ることは困難であり、所望の温度とは異なる温度の気体原料が得られる傾向があった。また、気体原料の温度のバラツキも大きかった。さらに、気化器内に固体原料等の析出物が生じてしまう場合もあった。
 本発明は、上記の課題を解決することを目的とする。
 すなわち、所望の温度に調整され、かつ温度のバラツキが非常に少ない気体原料を得ることができ、さらに析出物をほとんど発生させない、あるいは生じても堆積しにくい気化器を提供することを目的とする。所望の温度に調整され、かつ温度のバラツキが非常に少ない気体原料を得ることができる場合、気化器を小型化できると考えられる。また、そのような気化器の製造方法を提供することを目的とする。
 本発明者は上記課題を解決するため鋭意検討し、本発明を完成させた。
 本発明は以下の(1)~(7)である。
(1)原料ミストを加熱して気化することで成膜用の気体原料を得る気化器であって、
 前記原料ミストが流通する第1流路および前記原料ミストを加熱する熱媒体が流通する第2流路を金属材料からなる主部の内部に有し、
 前記第1流路の断面の等面積円相当径が5mm以下、前記第2流路の断面の等面積円相当径が2mm以下であり、
 前記主部の内部において1つの第1流路と、その隣に存在する別の第1流路との間に、第2流路以外の空隙が存在しない、
 成膜用の気体原料を得る気化器。
(2)前記原料ミストが流れる方向に対して垂直方向における前記主部の断面において、
 前記熱媒体が蛇行しながら流通している方向を左右方向とした場合に、前記第1流路の孔が左右方向に列状に並んでおり、かつ、列状の孔が上下方向に層をなすように配置されていて、
 上下方向に隣り合う列状の孔の層の間に前記第2流路が存在し、前記第2流路と前記第1流路とは繋がっておらず、前記第2流路は上下方向から挟まれる列状の孔の層における前記第1流路の孔を回避するように上下方向に蛇行している、
 上記(1)に記載の成膜用の気体原料を得る気化器。
(3)前記第1流路をその長手方向において複数の部位に分けた場合に、前記第1流路の内部に存する前記原料ミストの温度を、それら部位ごとに調整できるように構成されている、上記(1)または(2)に記載の成膜用の気体原料を得る気化器。
(4)前記主部における前記原料ミストが流入する孔が形成されている面を入側面とし、前記主部における前記気体原料が排出される孔が形成されている面を出側面とした場合に、前記入側面から前記出側面へ向かって、その内部に存する前記第1流路の等面積円相当径が徐々に変化している、上記(1)~(3)のいずれかに記載の成膜用の気体原料を得る気化器。
(5)前記第1流路が鉛直方向となるように配置した場合に、前記第2流路は水平方向に形成されており、これらが直行している、上記(1)~(4)のいずれかに記載の成膜用の気体原料を得る気化器。
(6)前記主部の外面と、前記第1流路および前記第2流路の少なくとも一部との間に空隙を有し、内部の熱が外部へ放出され難くなるように構成されている、上記(1)~(5)のいずれかに記載の成膜用の気体原料を得る気化器。
(7)複数枚の金属製板材を用意し、その主面上に前記第2流路の一部となる溝を形成し、さらにその一方の主面から他方の主面へ貫通する前記第1流路の一部となる貫通孔を形成する工程と、
 前記金属製板材の主面同士を密着させて拡散接合によって結合する工程とを備え、
 上記(1)~(6)のいずれかに記載の気化器を得る、気化器の製造方法。
 本発明によれば、原料ミストを緻密な温度管理の下に加熱すること可能であるため、所望の温度に調整され、かつ温度のバラツキが非常に少ない気体原料を得ることができ、さらに析出物をほとんど発生させない気化器を提供することができる。また、そのような気化器の製造方法を提供することができる。
本発明の気化器の一態様を示す概略斜視図である。 本発明の気化器が備え得る供給部の一態様を示す概略斜視図である。 図2に示した態様のA-A´線断面図である。 本発明の気化器が備え得る主部の一態様を示す概略斜視図である。 図4に示した態様のB-B´線断面図である。 本発明の気化器が備え得る主部の別の一態様を示す概略斜視図である。 図6に示した主部の分離した状態を示す概略斜視図である。 本発明の気化器の主部の断面の一態様を示す概略図である。 本発明の気化器の主部の断面の別の一態様を示す概略図である。 本発明の気化器には相当しない、主部の断面の一態様を示す概略図である。 本発明の気化器には相当しない、主部の断面の別の一態様を示す概略図である。 本発明の気化器には相当しない、主部の断面のさらに別の一態様を示す概略図である。 本発明の気化器が備え得る主部の別の一態様を示す概略斜視図である。 図13に示した態様のC-C´線断面図である。 図13に示した態様のC-C´線断面図である。 本発明の気化器が備え得る主部の別の一態様の断面を示す概略図である。 本発明の気化器が備え得る主部のさらに別の一態様の断面を示す概略図である。 図4に示した態様のD-D´線断面図である。 図18に示した態様の第1流路を他へ置き換えた態様を示す概略断面図である。 図18に示した態様の第1流路を他へ置き換えた、別の態様を示す概略断面図である。 図18に示した態様の第1流路を他へ置き換えた、さらに別の態様を示す概略断面図である。 本発明の気化器が備え得る排出部の一態様を示す概略斜視図である。 図22に示した態様のE-E´線断面図である。 本発明の気化器の好適態様を示す概略斜視図である。 図24に示した態様のF-F´線断面図である。 図24に示した態様のG-G´線断面図である。 図24に示した態様のH-H´線断面図である。 本発明の製造方法を説明するための概略斜視図である。 本発明の製造方法の続きを説明するための概略斜視図である。 別の本発明の製造方法を説明するための概略斜視図である。
 本発明について説明する。
 本発明は、原料ミストを加熱して気化することで成膜用の気体原料を得る気化器であって、前記原料ミストが流通する第1流路および前記原料ミストを加熱する熱媒体が流通する第2流路を金属材料からなる主部の内部に有し、前記第1流路の断面の等面積円相当径が5mm以下、前記第2流路の断面の等面積円相当径が2mm以下であり、前記主部の内部において1つの第1流路と、その隣に存在する別の第1流路との間に、第2流路以外の空隙が存在しない、成膜用の気体原料を得る気化器である。
 このような気化器を、以下では「本発明の気化器」ともいう。
 また、本発明は、複数枚の金属製板材を用意し、その主面上に前記第2流路の一部となる溝を形成し、さらにその一方の主面から他方の主面へ貫通する前記第1流路の一部となる貫通孔を形成する工程と、前記金属製板材の主面同士を密着させて拡散接合によって結合する工程とを備え、本発明の気化器を得る、気化器の製造方法である。
 このような気化器の製造方法を、以下では「本発明の製造方法」ともいう。
<本発明の気化器>
 本発明の気化器について説明する。
 本発明の気化器は、原料ミストを加熱して気化することで、成膜用の気体原料を得る気化器である。
 本発明の気化器が加熱する対象物である原料ミストは、ミスト化された液体原料を含み、ミスト化された液体原料とキャリアガスとの混合物であることが好ましい。
 ここでキャリアガスおよび液体原料の種類は特に限定されず、例えば半導体デバイスの製造プロセスの一部として、CVD法によって薄膜を形成する際や薄膜の一部をエッチングする際に、従来用いられているキャリアガスおよび液体原料であってよい。
 例えばキャリアガスとしては、窒素、アルゴン等の不活性ガスや、水素が挙げられる。
 例えば液体原料としては、シアン、フッ化物、インジウム、ガリウム、アルミニウム、タンタル等を含む溶液が挙げられる。インジウム、ガリウム、アルミニウム、タンタル等の溶液は、成膜用に用いることができる。
 一方、シアン、フッ化物等の溶液は、形成された薄膜の一部を除去するパターニングに用いることができる。
 液体原料としてシアン、フッ化物などのエッチングガスを用いる場合、後述する主部は耐腐食性に優れる金属材料(チタン、ステンレス等)からなることが好ましい。
 原料ミストは、このような液体原料がミスト化されたものを含む。
 液体原料をミスト化する方法は特に限定されず、例えば従来公知の方法であってよい。具体的には例えば、キャリアガスおよび液体原料を噴霧器へ導入して、キャリアガス内に霧状の液体原料が分散しているミストを得る方法が挙げられる。
 原料ミストはキャリアガスおよびミスト化された液体原料以外のものを含んでもよい。例えばミスト化が不十分であったために、ミスト状になっていない液体原料を原料ミストは含んでもよい。
 本発明の気化器は、例えば図1に示す構成を備えている。
 図1は、本発明の気化器の好適態様を示す概略斜視図である。
 図1において本発明の気化器10は、原料ミストが流通する第1流路1および原料ミストを加熱する熱媒体が流通する第2流路2を内部に有する主部12を有し、さらに主部12へ原料ミストを供給するための供給部14と、主部12から排出された気体原料を集め、系外へ排出する排出部16とを有する。
[供給部]
 図2は図1に示した供給部14の概略斜視図であり、図3は図2におけるA-A´線断面図である。
 図2、図3に示すように、供給部14は原料ミストが導入される導入孔141を備える。そして、導入孔141から供給部14の内部へ導入された原料ミストは、供給部14から排出された後、主部12へ供給される。
 図2、図3に示した供給部14は、導入孔141から導入された原料ミストが主部12の表面に形成されている複数の第1流路1の入口1Pinへ、可能な限り均等に供給されるように構成されている。具体的には、図3に示すように、原料ミストの流路143の断面径(r14)が、供給部14の内部において、徐々に広がるように構成されている。
 供給部14は、主部12と同様に金属材料からなることが好ましい。
 なお、本発明の気化器は供給部を備えることが好ましい。
[主部]
 図4は図1に示した主部12の概略斜視図であり、図5は図4におけるB-B´線断面図である。
 図4、図5に示すように、主部12は原料ミストが流通する第1流路1および原料ミストを加熱する熱媒体が流通する第2流路2を内部に有する。
 図4、図5に示した態様では、第1流路1が鉛直方向となるように配置した場合に、第2流路2は水平方向に形成されており、これらが直行している。このような態様は本発明の気化器の主部として好ましい。
 主部はいくつかに分離可能に構成されていてもよく、1つの主部と別の主部との間に例えばスペーサーを挟んでもよい。
 図6は3つの主部12a、12b、12cがスペーサー9a、9bを挟んでいる態様を示す概略斜視図であり、図7はそれを分離した状態を示す概略斜視図である。
 スペーサー9a、9bは例えば板状であってよく、その一方の主面から他方の主面への貫通孔91が形成されている。主部12aから排出された原料ミストの全てがスペーサー9aに形成された貫通孔91に集まることで、原料ミストの温度や成分等がより均一化される。
 図6、図7に示すように、主部がいくつかに分離可能に構成されていると、第1流路等の内部を、必要に応じて掃除することが容易になる。
 なお、図6、図7では3つの主部と2つのスペーサーを備える場合を例示している。主部とスペーサーの数は特に限定されない。当然、図4に示した態様のようにスペーサーを備えなくてもよい。
 スペーサーは主部と同じ材料からなることが好ましい。ただし、主部とは異なる金属や有機物等からなるものであってもよい。
 ここで第2流路2を流通する熱媒体は、第1流路を流通する原料ミストを加熱することができる流体であれば特に限定されない。例えば加熱蒸気、オイル等が挙げられる。熱媒体の温度も特に限定されない。例えば200~300℃のオイルを熱媒体として用いることができる。
 図4~図7に示すように、供給部14から供給された原料ミストは、主部12の表面に形成されている複数の第1流路1の入口1Pinから第1流路1の内部へ入る。そして、原料ミストは第1流路1の内部を出口1Poutへ向かって移動する過程で第2流路2内の熱媒体から熱を受け、出口1Poutから排出されるときには、原則として気体になっている。
 本発明の気化器において主部は金属材料からなる。例えば耐食性の合金(チタン、インコネル、ハステロイ(ニッケル基合金)やステンレス(例えばSUS316L)等の金属材料からなってもよい。すなわち、金属材料とプラスチック材料とを組み合わせて構成されるようなことはない。
 ここで主部は、2種類以上の金属材料からなってよいが、1種類の金属材料からなることが好ましい。
 このような金属材料からなり、内部に微細な流路を備える主部は、金属製板材の主面同士を密着させて拡散接合によって結合する工程を備える方法によって製造することができる。
 また、主部の内部には、原則として、第1流路または第2流路以外の空隙は存在しない。したがって、主部の内部において1つの第1流路と、その隣に存在する別の第1流路との間に、第2流路以外の空隙は存在しない。
 これについて、図8~図12を用いて説明する。
 図8、図10、図11および図12は、いずれも第1流路と第2流路とが垂直に交差している場合を示している。図9は、図8における直線的な第2流路が、蛇行したものに置き換わった態様を示している。
 図8は本発明の気化器の主部における第1流路と垂直な断面(第2流路と水平な断面)を表している。図5の一部拡大図と考えてもよい。図8に示す態様において第1流路の孔は、Pa、Pb、Pc、Pd、Pe、Pf、Pg、Ph、Pi、Pj、Pk、Plと示されている。また、図8において第2流路は2a、2b、2c、2dと示されている。また、図8における斜線部は金属材料が存在していることを意味している。すなわち、図8において空隙は第1流路および第2流路のみである。
 図8において、例えば第1流路の孔Pfの隣に存在する別の第1流路の孔は、孔Pa、Pb、Pc、Pe、Pg、Pi、Pj、Pkである。
 図8から明らかなように、孔Pe、Pgのいずれかと孔Pfとの間は金属材料で満たされており、空隙は存在しない。
 また、孔Pa、Pb、Pc、Pi、Pj、Pkのいずれかと孔Pfと間には第2流路は存在しているが、それ以外には空隙は存在しない。
 図8に示す矢印は熱の移動を概念的に示している。図8に示すような態様であると、第2流路(2a、2b、2c、2d)内の熱媒体から第1流路内の原料ミストへの伝熱が効率よく行われる。
 図9は本発明の気化器の主部における第1流路と垂直な断面を表している。前述の図8における第2流路が直線的ではなく、蛇行するものに代わった態様を示している。
 図9に示す態様において第1流路の孔は、Pa、Pb、Pc、Pd、Pe、Pf、Pg、Ph、Pi、Pj、Pkと示されている。また、図9において第2流路は2a、2b、2c、2dと示されている。また、図9における斜線部は金属材料が存在していることを意味している。すなわち、図9において空隙は第1流路および第2流路のみである。
 図9において、例えば第1流路の孔Pfの隣に存在する別の第1流路の孔は、孔Pb、Pc、Pe、Pg、Pi、Pjである。
 この場合も、図8に示した態様の場合と同じように、孔Pb、Pc、Pe、Pg、Pi、Pjのいずれかと孔Pfと間は金属材料で満たされているか、または第2流路(2b、2c)のみが存在しているかのいずれかである。
 図9に示す矢印は熱の移動を概念的に示している。図9に示すような態様であると、第2流路(2a、2b、2c、2d)内の熱媒体から第1流路内の原料ミストへの伝熱が効率よく行われる。
 図10は本発明の気化器の主部には該当しない。
 図10はパイプ状の第1流路と第2流路とが格子状に組まれ、それらの接点で固定されたものである。
 図10に示す態様において第1流路の孔は、Pa、Pb、Pc、Pd、Pe、Pf、Pg、Ph、Pi、Pj、Pk、Plと示されている。また、図10において第2流路は2a、2b、2c、2dと示されている。
 図10において、例えば第1流路の孔Pfの隣に存在する別の第1流路の孔は、孔Pa、Pb、Pc、Pe、Pg、Pi、Pj、Pkである。
 図10から明らかなように、孔Pfと孔Peとの間は空隙γが存在する。また、孔Pfと孔Pgとの間も同様に空隙δが存在する。
 図10に示す矢印は熱の移動を概念的に示している。図10に示すような態様であると、第2流路(2a、2b、2c、2d)内の熱媒体から第1流路内の原料ミストへの伝熱は、第2流路と第1流路との接点のみで行われる。したがって、伝熱効率が悪い。
 図11は本発明の気化器の主部には該当しない。
 図11は、前述の図10の場合と同様にパイプ状の第1流路と第2流路とが格子状に組まれ、それらの接点で固定され、さらに第1流路同士もそれらの接点で固定されたものである。
 図11に示す態様において第1流路の孔は、Pa、Pb、Pc、Pd、Pe、Pf、Pg、Ph、Pi、Pj、Pk、Plと示されている。また、図11において第2流路は2a、2b、2c、2dと示されている。
 図11において、例えば第1流路の孔Pfの隣に存在する別の第1流路の孔は、孔Pa、Pb、Pc、Pe、Pg、Pi、Pj、Pkである。
 図11から明らかなように、孔Pfと孔Paとの間は空隙αおよびγが存在する。また、孔Pfと孔Peとの間には空隙γおよびεが存在する。
 図11に示す矢印は熱の移動を概念的に示している。図11に示すような態様であると、第2流路(2a、2b、2c、2d)内の熱媒体から第1流路内の原料ミストへの伝熱は、第2流路と第1流路との接点のみで行われる。したがって、伝熱効率が悪い。
 図12は本発明の気化器の主部には該当しない。
 図12に示す態様が、前述の図11に示した態様と異なる部分は、第1流路の断面形状である。すなわち、図11に示した態様の第1流路は断面が円形であったが、図12に示す態様の第1流路は断面が矩形である。それ以外は図11に示した態様と同様であり、パイプ状の第1流路と第2流路とが格子状に組まれ、それらの接点で固定され、さらに第1流路同士もそれらの接点で固定されたものである。
 このような構成の場合、図11に示した態様を比較すれば空隙は少なくなる傾向がある。しかし、パイプ同士を密着させても、図12に示すように、それらの間にはある程度の隙間が形成される。図12では、例えば空隙α、β、γ、δ、ε、ζが存在する。
 図12に示す態様において第1流路の孔は、Pa、Pb、Pc、Pd、Pe、Pf、Pg、Ph、Pi、Pj、Pk、Plと示されている。また、図12において第2流路は2a、2b、2c、2dと示されている。
 図12において、例えば第1流路の孔Pfの隣に存在する別の第1流路の孔は、孔Pa、Pb、Pc、Pe、Pg、Pi、Pj、Pkである。
 図11から明らかなように、孔Pfと孔Paとの間は空隙αおよびγが存在する。また、孔Pfと孔Peとの間には空隙γおよびεが存在する。
 図12に示す矢印は熱の移動を概念的に示している。図12に示すような態様であると、第2流路(2a、2b、2c、2d)内の熱媒体から第1流路内の原料ミストへの伝熱は、第2流路と第1流路との接点のみで行われる。したがって、伝熱効率が悪い。
 図8~12を例示して説明したように、本発明の気化器では主部の内部において1つの第1流路と、その隣に存在する別の第1流路との間に第2流路以外の空隙が存在しないので、第2流路内の熱媒体から第1流路内の原料ミストへの伝熱が効率よく行われる。
 本発明の気化器の主部の内部に存在する第1流路の断面の等面積円相当径(直径)は5mm以下であり、2mm以下であることが好ましい。また、1mm以上であることが好ましい。
 ここで本発明における等面積円相当径とは、第1流路の断面の図形の面積に相当する真円の直径を意味する。なお、第2流路の等面積円相当径についても同様とする。
 第1流路の断面の大きさが上記の範囲であると、圧力損失と伝熱性能のバランス、析出物の閉塞しにくさという点で好ましい。
 なお、第1流路の断面の形状は特に限定されない。円形、楕円形、矩形などであってよい。
 本発明の気化器の主部の内部に存在する第2流路の断面の等面積円相当径(直径)は2mm以下であり、1mm以下であることが好ましい。また、0.5mm以上であることが好ましい。
 第2流路の断面の大きさが上記の範囲であると、圧力損失と伝熱性能のバランスという点で好ましい。
 なお、第2流路の断面の形状は特に限定されない。円形、楕円形、矩形などであってよい。
 本発明の気化器は、前記原料ミストが流れる方向に対して垂直方向における前記主部の断面において、前記熱媒体が蛇行しながら流通している方向を左右方向とした場合に、前記第1流路の孔が左右方向に列状に並んでおり、かつ、列状の孔が上下方向に層をなすように配置されていて、上下方向に隣り合う列状の孔の層の間に前記第2流路が存在し、前記第2流路と前記第1流路とは繋がっておらず、前記第2流路は上下方向から挟まれる列状の孔の層における前記第1流路の孔を回避するように上下方向に蛇行している態様であることが好ましい。
 このような好ましい態様に相当する本発明の気化器として、以下に態様1、態様2、態様3を示す。
 態様1について、図13~図15を用いて説明する。
 図13は、本発明の気化器における主部の好適態様(態様1)を示す概略斜視図であり、図14は図13におけるC-C'線断面図を示している。
 図13に示した態様1の主部20では、図13に示すように、第1流路21に直行する平面上に第2流路22が形成されており、第2流路22は、第1流路を回避するように蛇行している。
 なお、図13、図14において「21p」は第1流路の入口もしくは出口の孔または断面に現れた第1流路の孔を示しており、「22p」は第2流路の入口もしくは出口の孔を示している。
 図13~図15を用いて説明する好適態様(態様1)である主部20は、下記[要件1]~[要件3]を満たす断面Aを得ることができる。
[要件1]
 図13、図14に例示するような主部20は、主部20を原料ミストが流れる方向(第1流路が鉛直方向に直線状に伸びている場合は、その方向)に対して垂直の方向にて切断することで、図14に例示するような断面Aを得ることができる。
 なお、断面Aは、主部20における全ての第1流路に対して直角の方向の断面でなくてもよい。第1流路の構成によっては、全ての第1流路に対して直角の断面を得ることができない場合もありえる。そのような場合は、主部20における第1流路の一部に対して(主部20における、できるだけ多くの第1流路に対して)垂直の方向の断面を、主部20における断面Aとする。
 例えば図13に示した主部20の場合であれば、第1流路21は直線的に形成されているので、この流路に対して垂直の方向の断面、すなわち、図13におけるC-C'線断面が断面Aとなり、これを図示すれば図14のようになる。
 なお、図13、図14における第1流路および第2流路は理解を容易にするために極めて単純な構成の流路を図示している。例えば第2流路は、左右方向の端部において別の第2流路とつながっていてよい。
[要件2]
 要件2について図15を用いて説明する。図15は図14と同様の断面Aを示している。また、図14では第1流路の孔を「21p」と示したが、図15では「Pmk」(mおよびkは1以上の整数とする)と示している。
 主部20では、図15に例示するように、断面Aにおいて熱媒体が蛇行しながら流通している方向を左右方向とした場合に、第1流路の孔(Pmk)が左右方向に列状に並んでおり、かつ、列状の孔が上下方向に層をなすように配置されている。図15では、左右方向に列状に孔(Pmk)が並んでおり、列状の孔が上下方向に孔の層が3層存在している。そして、それらの列状の孔の層を下方から上方へ第1層、第2層および第3層とし、第1層の孔を「P1k」、第2層の孔を「P2k」、第3層の孔を「P3k」とする。つまり、mを層の番号とする。また、各層において孔は左から右へ「Pm1」、「Pm2」、「Pm3」・・・「Pmk」とする。つまり、kは同一層内の孔の番号(連番)とする。ここで、第1層に存在する「P1k」の孔の直上には、第3層の「P3k」の孔が存在するものとする。例えば、第1層に存在する「P13」の孔の直上には、第3層の「P33」の孔が存在するものとする。また、第1層に存在する「P1k」の孔の左上には第2層の「P2k」の孔が存在するものとする。例えば、第1層に存在する「P13」の孔の左上には第2層の「P23」の孔が存在するものとする。
 このような場合、上下方向に隣り合う列状の孔の層は第1層と第2層、および第2層と第3層となるが、隣り合う第1層と第2層とにおいて、第1流路の孔は左右方向では同じ位置に配置されていない。すなわち、第1層の孔の中心の直上に第2層の孔の中心は存在しない。第2層の孔は第1層における2つの孔の間に存在する。同様に、隣り合う第2層と第3層とにおいて、第2流路の孔は左右方向では同じ位置に配置されていない。すなわち、第2層の孔の中心の直上に第3層の孔の中心は存在しない。第3層の孔は、第2層における2つの孔の間に存在する。
[要件3]
 主部20では、図14および図15に示したように、上下方向に隣り合う列状の孔の層の間に第2流路22が存在する。
 また、第1流路21と第2流路22は繋がっていない。
 そして、第2流路22は上下方向から挟まれる列状の孔の層における第1流路の孔(21p、Pmk)を回避するように上下方向に蛇行している。
 例えば図15において、第1流路の孔(P11、P12、P13、P14)からなる第1層と、第2流路の孔(P21、P22、P23、P24、P25)からなる第2層との間に第2流路22が存在しており、その第2流路は、第1層の孔(P11、P12、P13、P14)と第2層の孔(P21、P22、P23、P24、P25)とを回避するように上下方向に蛇行している。
 ここで、図15に示すように、第1層と第2層との境界となっている帯状の部分が上下に蛇行しており、第2流路はその帯状の部分の形状に沿って蛇行している。
 態様2について図16を用いて説明する。
 図16は、態様1の断面を示す図14と同様の断面である。
 本発明の気化器は、原料ミストが流れる方向に対して垂直方向における主部20の断面Aにおいて、熱媒体が蛇行しながら流通している方向を左右方向とした場合に、第1流路の孔21pが左右方向に列状に並んでおり、かつ、列状の孔が上下方向に層をなすように配置されていて、加えて、上下方向に隣り合う列状の孔の層を対比したときに第1流路の孔21pは左右方向では同じ位置に配置されておらず、第2流路22と第1流路21とは繋がっておらず、第2流路22は上下方向から挟まれる列状の孔の層における第1流路の孔21pを回避するように上下方向に蛇行している態様である。
 態様3について図17を用いて説明する。
 図17は、態様1の断面を示す図14と同様の断面である。
 本発明の気化器は、原料ミストが流れる方向に対して垂直方向における主部20の断面Aにおいて、熱媒体が蛇行しながら流通している方向を左右方向とした場合に、第1流路の孔21pが左右方向に列状に並んでおり、かつ、列状の孔が上下方向に層をなすように配置されていて、第2流路22と第1流路21とは繋がっておらず、第2流路22は上下方向から挟まれる列状の孔の層における第1流路の孔21pを回避するように上下方向に蛇行している態様である。
 本発明の気化器は、前記第1流路をその長手方向において複数の部位に分けた場合に、前記第1流路の内部に存する前記原料ミストの温度を、それら部位ごとに調整できるように構成されていることが好ましい。
 このようにして成膜用の気体原料を製造すると、析出物の発生量がより少なくなるからである。
 次に、このような好ましい態様について説明する。
 例えば図4において、主部12における原料ミストが流入する孔1Pinが形成されている面を入側面125とする。また、主部12における気体原料が排出される孔1Poutが形成されている面を出側面127とする。
 この場合に、主部12における入側面125に近い部位内の第2流路へ熱媒体を流す経路と、主部12における出側面127に近い部位内の第2流路へ熱媒体を流す経路とを別に構成すれば、前者の主部12における入側面125に近い部位内の第2流路へ流通させる熱媒体の温度と、後者の主部12における出側面127に近い部位内の第2流路へ流通させる熱媒体の温度とを異なるものとすることができる。この場合、前者の主部12における入側面125に近い部位内の第1流路1の内部に存する原料ミストの温度と、後者の主部12における出側面127に近い部位内の第1流路1の内部に存する原料ミストの温度とを、部位ごとに調整できることとなる。
 また、例えば、主部12における入側面125に近い部位内の第2流路へ熱媒体を流す経路と、主部12における出側面127に近い部位内の第2流路へ熱媒体を流す経路とを別に構成し、前者の主部12における入側面125に近い部位内の第2流路へ熱媒体を流す経路へ相対的に温度が高い熱媒体を流通させ、後者の主部12における出側面127に近い部位内の第2流路へ熱媒体を流す経路へ相対的に温度が低い熱媒体を流通させれば、入側面125から出側面127へ向かって、その内部に存する第2流路内の前記熱媒体の温度を徐々に低くすることができる。この場合、孔1Pinから第1流路内に流入した原料ミストは、孔1Poutへ向かって移動する過程で、徐々に温度が低くなっていく。
 また、例えば図6、図7に示した主部が分離可能に構成されている態様において、主部12a、主部12b、主部12cの内部の第2流路内に流す熱媒体の温度を別々に調整することができるように構成すれば、主部12a、主部12b、主部12cの各部位ごとに、それらの内部に存する原料ミストの温度を調整することができる。例えば、入側面125から出側面127へ向かって、その内部に存する第2流路内の前記熱媒体の温度を徐々に低くすれば、孔1Pinから第1流路内に流入した原料ミストは、孔1Poutへ向かって移動する過程で、徐々に温度が低くなっていく。
 本発明の気化器は、前記主部における前記原料ミストが流入する孔が形成されている面を入側面とし、前記主部における前記気体原料が排出される孔が形成されている面を出側面とした場合に、前記入側面から前記出側面へ向かって、その内部に存する前記第1流路の等面積円相当径が徐々に変化していることが好ましい。
 この好ましい態様について、図18~図21を用いて説明する。
 図18は図4におけるD-D'線断面図を示しており、図19~図21は、図18に示す第1流路を、別の態様(好適態様)に置き換えた場合の断面図を示している。
 図18に示す主部12では、原料ミストが流入する孔1Pinが形成されている入側面125から、気体原料が排出される孔1Poutが形成されている出側面127へ向かって、その内部に存する第1流路1の径は変化していない。第1流路1は直線的に形成されている。
 これに対して、図19に示す主部12では、原料ミストが流入する孔1Pinが形成されている入側面125から、気体原料が排出される孔1Poutが形成されている出側面127へ向かって、その内部に存する前記第1流路の等面積円相当径が徐々に小さくなるように変化している。このような態様であると、気体原料の温度上昇を緩やかに出来るという点で好ましい。
 また、図20に示す主部12では、原料ミストが流入する孔1Pinが形成されている入側面125から、気体原料が排出される孔1Poutが形成されている出側面127へ向かって、その内部に存する前記第1流路の等面積円相当径が徐々に大きくなるように変化している。このような態様であると、気体原料を第1流路に均等に分配できるという点で好ましい。
 また、図21に示す主部12では、原料ミストが流入する孔1Pinが形成されている入側面125から、気体原料が排出される孔1Poutが形成されている出側面127へ向かって、その内部に存する前記第1流路の等面積円相当径が徐々に小さくなった後、大きくなるように変化している。このような態様であると、気体原料の乱れによる伝熱促進と、流体の均一化という点で好ましい。
[排出部]
 図22は排出部16の概略斜視図であり、図23は図22におけるE-E´線断面図である。
 図22に例示される排出部16は、上記のような主部12から排出された気体原料を集め、これを系外へ排出する。
 図22、図23に例示した態様の場合、主部12から排出された気体原料が、凹み162に集められる。そして、これとつながる経路164を通って、気体原料は系外へ排出される。
 排出部16は、主部12と同様に金属材料からなることが好ましい。
 なお、本発明の気化器は排出部を備えることが好ましい。
 本発明の気化器は前記主部の外面と、前記第1流路および前記第2流路の少なくとも一部との間に空隙を有し、内部の熱が外部へ放出され難くなるように構成されていることが好ましい。その空隙内を真空とすることで、内部の熱が外部へ放出され難くなる。
 なお、本発明の気化器は、さらに、前記主部以外の部分の外面と、前記第1流路および前記第2流路の少なくとも一部との間に空隙を有し、内部の熱が外部へ放出され難くなるように構成されていてもよい。
 このような好適態様について、図24~図27を用いて説明する。
 図24は、図1に示した態様における主部12を、図6に示した主部(12a、9a、12b、9b、12c)に入れ替え、第2流路72へ熱媒体を導入するための導入孔61と、第2流路72から熱媒体が排出される排出孔63とを有し、さらに、外面65と、第1流路71および第2流路72の少なくとも一部との間に空隙67を有する態様である。
 そして、図25は図24におけるF-F´線断面図、図26は図24におけるG-G´線断面図、図27は図24におけるH-H´線断面図である。
 図24~図27に示した本発明の気化器の好適態様では、外面65と、第1流路71および第2流路72の少なくとも一部との間に空隙67が形成されている。
 図24~図27に示した好適態様の場合、空隙67は、原則、外面にそって一定の厚さで形成されている。ただし、熱媒体の導入孔61および熱媒体の排出孔63ならび原料ミストが導入される導入孔および気体原料は排出される排出孔が形成されている部分については、図24~図27に示すように、空隙67が形成されていなくてもよい。
 空隙の厚さは特に限定されないが、0.5~2.0mm程度であることが好ましい。
 空隙は、例えば第1流路と同様の方法で形成することができる。第1流路の形成方法については後述する。
 本発明の気化器がこのような空隙を有することで、内部の熱が外部へ放出され難くなるので好ましい。
 なお、このような空隙内を真空としてもよい。後述する本発明の製造方法によって本発明の気化器を製造すると、空隙内を容易に真空とすることができる。空隙内を保温材で満たしてもよいが、空隙内を真空とする場合の方が断熱性に優れる。
<本発明の製造方法>
 本発明の製造方法について説明する。
 上記のような本発明の気化器は、次に示す本発明の製造方法によって製造することが好ましい。
 図28~図30を用いて説明する。
 本発明の製造方法では、初めに図28(a)に示すように、複数枚の金属製板材30を用意する。
 そして、図28(b)に示すように、その主面32の上に第2流路の一部となる溝34を形成する。
 このような溝34を形成する手段は特に限定されない。エッチング等の化学的な手段によって形成してもよいし、レーザー加工や切削等の物理的な手段によって形成してもよい。
 次に、図28(c)に示すように、その一方の主面32から他方の主面38へ貫通する貫通孔40を形成する。例えばドリルを用いて貫通孔40を形成することができる。また、貫通孔40はエッチング等の化学的な手段や、レーザー加工や切削等の物理的な手段によって形成してもよい。
 この貫通孔40は第1流路の一部となる。
 次に、溝34および貫通孔40が形成された金属製板材42の主面32同士を密着させる(図29(a)、(b))。
 そして、これらの金属製板材42の主面32同士を拡散接合によって結合すると、図29(c)に示すような、内部に第1流路52および第2流路54を備える主部の一部50を得ることができる。
 そして、図29(c)に示すような主部の一部50を複数作成し、それらの主面同士を拡散結合によって結合していくと、主部を得ることができる。
 なお、図29では、主面32の上に第2流路の一部となる溝34を形成した、2枚の金属性板材42を密着させて結合する場合を説明したが、図30(a)に示すように、溝34および貫通孔40を形成した金属製板材42と、溝34は形成せず、貫通孔40を形成した金属性板材42´を密着させて結合してもよい。
 そして、これらの金属製板材42、42´の主面32同士を拡散接合によって結合すると、図30(c)に示すような、内部に第1流路52および第2流路54を備える主部の一部50を得ることができる。
 そして、図30(c)に示すような主部の一部50を複数作成し、それらの主面同士を拡散結合によって結合していくと、主部を得ることができる。
 1 第1流路
 1Pin 第1流路の入口
 1Pout 第1流路の出口
 Pa、Pb、Pc、Pd、Pe、Pf、Pg、Ph、Pi、Pj、Pk、Pl 第1流路の孔
 α、β、γ、δ、ε、ζ 空隙
 2、2a、2b、2c、2d 第2流路
 9a、9b スペーサー
 91 貫通孔
10 本発明の気化器
12、12a、12b、12c 主部
125 主部の入側面
127 主部の出側面
14 供給部
141 導入孔
143 流路
16 排出部
161 排出孔
162 凹み
164 経路
20 主部
21 第1流路
21p 第1流路の孔
22 第2流路
22p 第2流路の孔
30 金属製板材
32 主面
34 溝
36 金属製板材
38 主面
40 貫通孔
42 金属製板材
50 主部(の一部)
52 第1流路
54 第2流路
61 導入孔
63 排出孔
65 外面
67 空隙
71 第1流路
72 第2流路

Claims (7)

  1.  原料ミストを加熱して気化することで成膜用の気体原料を得る気化器であって、
     前記原料ミストが流通する第1流路および前記原料ミストを加熱する熱媒体が流通する第2流路を金属材料からなる主部の内部に有し、
     前記第1流路の断面の等面積円相当径が5mm以下、前記第2流路の断面の等面積円相当径が2mm以下であり、
     前記主部の内部において1つの第1流路と、その隣に存在する別の第1流路との間に、第2流路以外の空隙が存在しない、
     成膜用の気体原料を得る気化器。
  2.  前記原料ミストが流れる方向に対して垂直方向における前記主部の断面において、
     前記熱媒体が蛇行しながら流通している方向を左右方向とした場合に、前記第1流路の孔が左右方向に列状に並んでおり、かつ、列状の孔が上下方向に層をなすように配置されていて、
     上下方向に隣り合う列状の孔の層の間に前記第2流路が存在し、前記第2流路と前記第1流路とは繋がっておらず、前記第2流路は上下方向から挟まれる列状の孔の層における前記第1流路の孔を回避するように上下方向に蛇行している、
     請求項1に記載の成膜用の気体原料を得る気化器。
  3.  前記第1流路をその長手方向において複数の部位に分けた場合に、前記第1流路の内部に存する前記原料ミストの温度を、それら部位ごとに調整できるように構成されている、請求項1または2に記載の成膜用の気体原料を得る気化器。
  4.  前記主部における前記原料ミストが流入する孔が形成されている面を入側面とし、前記主部における前記気体原料が排出される孔が形成されている面を出側面とした場合に、前記入側面から前記出側面へ向かって、その内部に存する前記第1流路の等面積円相当径が徐々に変化している、請求項1~3のいずれかに記載の成膜用の気体原料を得る気化器。
  5.  前記第1流路が鉛直方向となるように配置した場合に、前記第2流路は水平方向に形成されており、これらが直行している、請求項1~4のいずれかに記載の成膜用の気体原料を得る気化器。
  6.  前記主部の外面と、前記第1流路および前記第2流路の少なくとも一部との間に空隙を有し、内部の熱が外部へ放出され難くなるように構成されている、請求項1~5のいずれかに記載の成膜用の気体原料を得る気化器。
  7.  複数枚の金属製板材を用意し、その主面上に前記第2流路の一部となる溝を形成し、さらにその一方の主面から他方の主面へ貫通する前記第1流路の一部となる貫通孔を形成する工程と、
     前記金属製板材の主面同士を密着させて拡散接合によって結合する工程とを備え、
     請求項1~6のいずれかに記載の気化器を得る、気化器の製造方法。
PCT/JP2019/016527 2019-04-17 2019-04-17 気化器およびその製造方法 WO2020213104A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2019/016527 WO2020213104A1 (ja) 2019-04-17 2019-04-17 気化器およびその製造方法
JP2021514727A JP7360201B2 (ja) 2019-04-17 2019-04-17 気化器およびその製造方法
CN201980095416.7A CN113692641A (zh) 2019-04-17 2019-04-17 气化器和其制造方法
EP19924887.3A EP3958294A4 (en) 2019-04-17 2019-04-17 VAPORIZER AND METHOD OF MANUFACTURING IT
US17/602,801 US11885017B2 (en) 2019-04-17 2019-04-17 Vaporizer and method for manufacture thereof
KR1020217031613A KR20210134022A (ko) 2019-04-17 2019-04-17 기화기 및 그 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/016527 WO2020213104A1 (ja) 2019-04-17 2019-04-17 気化器およびその製造方法

Publications (1)

Publication Number Publication Date
WO2020213104A1 true WO2020213104A1 (ja) 2020-10-22

Family

ID=72837196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016527 WO2020213104A1 (ja) 2019-04-17 2019-04-17 気化器およびその製造方法

Country Status (6)

Country Link
US (1) US11885017B2 (ja)
EP (1) EP3958294A4 (ja)
JP (1) JP7360201B2 (ja)
KR (1) KR20210134022A (ja)
CN (1) CN113692641A (ja)
WO (1) WO2020213104A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7045743B1 (ja) 2021-10-11 2022-04-01 株式会社リンテック 気化器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252062A (ja) * 1990-03-01 1991-11-11 Fuji Electric Co Ltd 燃料電池発電装置
JPH09181061A (ja) 1995-12-25 1997-07-11 Hitachi Ltd 液体原料の気化方法および供給装置ならびにそれを用いて構成された半導体製造装置
JPH10135197A (ja) * 1996-09-09 1998-05-22 Ebara Corp 液体原料の気化方法及び装置
JP2005506681A (ja) * 2001-02-28 2005-03-03 ポーター・インストゥルメント・カンパニー・インコーポレイテッド 気化装置
JP2005511894A (ja) * 2001-12-04 2005-04-28 プライマックス・インコーポレーテッド 化学蒸着用ベーパライザ
JP3896594B2 (ja) 2004-10-01 2007-03-22 株式会社ユーテック Cvd用気化器、溶液気化式cvd装置及びcvd用気化方法
JP2007102007A (ja) 2005-10-06 2007-04-19 Sharp Corp 液晶表示装置およびその停止方法
JP2009054655A (ja) * 2007-08-23 2009-03-12 Tokyo Electron Ltd 気化器、気化器を用いた原料ガス供給システム及びこれを用いた成膜装置
JP2013023700A (ja) 2011-07-15 2013-02-04 Lintec Co Ltd 気化器及び該気化器を備えた液体原料気化供給装置

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB935542A (en) * 1959-01-21 1963-08-28 Einar Henry Palmason Process and apparatus for continuous plate-type evaporation
US4050511A (en) * 1975-03-03 1977-09-27 The Babcock & Wilcox Company Heat exchangers
US4031862A (en) * 1976-03-10 1977-06-28 Smith Frank J Economizer
US4265301A (en) * 1976-04-06 1981-05-05 Anderson James H Heat exchanger support construction
US5676911A (en) * 1995-12-14 1997-10-14 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Radial flow fuel processor
EP0828012B1 (en) * 1996-09-09 2001-12-19 Ebara Corporation Method for vaporizing liquid feed and vaporizer therefor
JP2933055B2 (ja) * 1997-04-10 1999-08-09 三浦工業株式会社 角型多管式貫流ボイラー
US6019070A (en) * 1998-12-03 2000-02-01 Duffy; Thomas E. Circuit assembly for once-through steam generators
US6617067B1 (en) * 1999-11-05 2003-09-09 Honda Giken Kogyo Kabushiki Kaisha Fuel evaporator
US6596085B1 (en) * 2000-02-01 2003-07-22 Applied Materials, Inc. Methods and apparatus for improved vaporization of deposition material in a substrate processing system
KR100482825B1 (ko) * 2002-07-09 2005-04-14 삼성전자주식회사 열교환기
AU2003254266A1 (en) * 2002-07-30 2004-02-16 Asm America, Inc. Sublimation system employing carrier gas
WO2004022480A2 (en) * 2002-09-05 2004-03-18 Shell Internationale Research Maatschappij B.V. Apparatus and process for production of high purity hydrogen
JP3785417B1 (ja) 2005-06-21 2006-06-14 前田建設工業株式会社 酸性硫酸塩土壌の土壌改良材及び土壌改良方法
JP4601535B2 (ja) 2005-09-09 2010-12-22 株式会社リンテック 低温度で液体原料を気化させることのできる気化器
JP2007198701A (ja) * 2006-01-30 2007-08-09 Hitachi Zosen Corp 多重効用型造水装置用蒸発器
RU2323762C1 (ru) * 2006-10-26 2008-05-10 Леон Игнатьевич Трофимов Выпарной аппарат
JP4324619B2 (ja) 2007-03-29 2009-09-02 東京エレクトロン株式会社 気化装置、成膜装置及び気化方法
US20080314311A1 (en) * 2007-06-24 2008-12-25 Burrows Brian H Hvpe showerhead design
JP5138515B2 (ja) * 2008-09-05 2013-02-06 東京エレクトロン株式会社 蒸気発生器、蒸気発生方法および基板処理装置
WO2010079148A1 (en) * 2009-01-12 2010-07-15 Heatmatrix Group B.V. Thermosiphon evaporator
JP2010232376A (ja) * 2009-03-26 2010-10-14 Taiyo Nippon Sanso Corp 気相成長装置の原料ガス供給ノズル
IT1395108B1 (it) * 2009-07-28 2012-09-05 Itea Spa Caldaia
CN102471886A (zh) * 2009-08-28 2012-05-23 京瓷株式会社 沉积膜形成装置及沉积膜形成方法
US9134072B2 (en) * 2010-03-15 2015-09-15 The Trustees Of Dartmouth College Geometry of heat exchanger with high efficiency
JP5906005B2 (ja) * 2010-03-25 2016-04-20 株式会社Ihi 熱処理方法
KR101339600B1 (ko) * 2011-08-18 2014-01-29 포아텍 주식회사 기화기
KR20130031441A (ko) 2011-09-21 2013-03-29 최우열 기화기
US9464837B2 (en) * 2012-03-21 2016-10-11 Mahle International Gmbh Phase change material evaporator charging control
WO2016074682A1 (en) * 2014-11-11 2016-05-19 Dantherm Cooling A/S Thermosiphon blocks and thermosiphon systems for heat transfer
US9982341B2 (en) * 2015-01-30 2018-05-29 Lam Research Corporation Modular vaporizer
JP6675865B2 (ja) * 2015-12-11 2020-04-08 株式会社堀場エステック 液体材料気化装置
KR101721681B1 (ko) * 2016-03-24 2017-03-30 (주)티티에스 기화기
CN108293292B (zh) * 2016-03-30 2020-08-18 东京毅力科创株式会社 等离子电极以及等离子处理装置
CN206486294U (zh) 2017-02-09 2017-09-12 南京合创工程设计有限公司 多晶硅还原生产新型汽化器
US10254023B2 (en) * 2017-02-09 2019-04-09 Heatcraft Refrigeration Products, Llc Heat pipe anchor tubes for high side heat exchangers
CN107308666A (zh) * 2017-08-15 2017-11-03 广州特种承压设备检测研究院 喷淋降膜蒸发器
US10147597B1 (en) * 2017-09-14 2018-12-04 Lam Research Corporation Turbulent flow spiral multi-zone precursor vaporizer
JP2022021679A (ja) * 2020-07-22 2022-02-03 中山エンジニヤリング株式会社 熱交換器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252062A (ja) * 1990-03-01 1991-11-11 Fuji Electric Co Ltd 燃料電池発電装置
JPH09181061A (ja) 1995-12-25 1997-07-11 Hitachi Ltd 液体原料の気化方法および供給装置ならびにそれを用いて構成された半導体製造装置
JPH10135197A (ja) * 1996-09-09 1998-05-22 Ebara Corp 液体原料の気化方法及び装置
JP2005506681A (ja) * 2001-02-28 2005-03-03 ポーター・インストゥルメント・カンパニー・インコーポレイテッド 気化装置
JP2005511894A (ja) * 2001-12-04 2005-04-28 プライマックス・インコーポレーテッド 化学蒸着用ベーパライザ
JP3896594B2 (ja) 2004-10-01 2007-03-22 株式会社ユーテック Cvd用気化器、溶液気化式cvd装置及びcvd用気化方法
JP2007102007A (ja) 2005-10-06 2007-04-19 Sharp Corp 液晶表示装置およびその停止方法
JP2009054655A (ja) * 2007-08-23 2009-03-12 Tokyo Electron Ltd 気化器、気化器を用いた原料ガス供給システム及びこれを用いた成膜装置
JP2013023700A (ja) 2011-07-15 2013-02-04 Lintec Co Ltd 気化器及び該気化器を備えた液体原料気化供給装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7045743B1 (ja) 2021-10-11 2022-04-01 株式会社リンテック 気化器
WO2023062849A1 (ja) * 2021-10-11 2023-04-20 株式会社リンテック 気化器
JP2023057341A (ja) * 2021-10-11 2023-04-21 株式会社リンテック 気化器

Also Published As

Publication number Publication date
EP3958294A1 (en) 2022-02-23
CN113692641A (zh) 2021-11-23
JPWO2020213104A1 (ja) 2020-10-22
US20220154333A1 (en) 2022-05-19
KR20210134022A (ko) 2021-11-08
JP7360201B2 (ja) 2023-10-12
US11885017B2 (en) 2024-01-30
EP3958294A4 (en) 2022-05-04

Similar Documents

Publication Publication Date Title
KR102445312B1 (ko) 전구체 물질을 전달하기 위한 용기 및 방법
KR102360252B1 (ko) 구성가능한 액체 프리커서 기화기
EP1427868B1 (en) Vaporizer
US8280235B2 (en) Liquid material vaporizer
JP3822135B2 (ja) 気化供給装置
US20040113289A1 (en) Carburetor, various types of devices using the carburetor, and method of vaporization
JP2007190550A (ja) 非平面燃料チャネルおよび酸素透過性膜を備える燃料脱酸素装置
JP2006322074A (ja) シャワーヘッドを用いた化学気相蒸着方法及びその装置
JP2002518839A (ja) デュアルチャネル・ガス分配プレート
JP2000216150A (ja) Mocvd用気化器及び原料溶液の気化方法
US20060278166A1 (en) Vaporizer, various devices using the same, and vaporizing method
JP2009527905A (ja) 直接液体注入デバイス
KR20080108350A (ko) 화학 기상 증착을 위한 장치 및 방법
KR20200042961A (ko) 난류 나선형 멀티-존 (multi-zone) 전구체 기화기
JP2009054655A (ja) 気化器、気化器を用いた原料ガス供給システム及びこれを用いた成膜装置
KR101431290B1 (ko) 액체재료 기화장치
WO2020213104A1 (ja) 気化器およびその製造方法
KR20170026531A (ko) 다수의 액체 또는 고체 소스 재료들로부터 cvd 또는 pvd 디바이스에 대한 증기를 생성하기 위한 디바이스 및 방법
JP2009246168A (ja) 液体原料気化器及びそれを用いた成膜装置
TWI734120B (zh) 氣化器及其製造方法
EP2154711B1 (en) Vaporizing apparatus and film forming apparatus provided with vaporizing apparatus
TW200412375A (en) Film forming device
JP2014062323A (ja) ガス噴射装置及びこれに用いられるインジェクターパイプ
TW202129057A (zh) 固體和液體材料之蒸氣輸送系統
JP2023057341A (ja) 気化器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217031613

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021514727

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019924887

Country of ref document: EP

Effective date: 20211117