WO2020209252A1 - レゾルバ - Google Patents

レゾルバ Download PDF

Info

Publication number
WO2020209252A1
WO2020209252A1 PCT/JP2020/015661 JP2020015661W WO2020209252A1 WO 2020209252 A1 WO2020209252 A1 WO 2020209252A1 JP 2020015661 W JP2020015661 W JP 2020015661W WO 2020209252 A1 WO2020209252 A1 WO 2020209252A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
coil
detection
resolver
seat
Prior art date
Application number
PCT/JP2020/015661
Other languages
English (en)
French (fr)
Inventor
嶋原士郎
Original Assignee
嶋原士郎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 嶋原士郎 filed Critical 嶋原士郎
Priority to DE112020001946.2T priority Critical patent/DE112020001946T5/de
Priority to US17/602,493 priority patent/US11874141B2/en
Publication of WO2020209252A1 publication Critical patent/WO2020209252A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2073Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of a single coil with respect to two or more coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the present invention relates to a resolver suitable for use when detecting a displacement amount such as a rotation angle of a passive body by providing an exciting winding and a detection winding.
  • Patent Document 1 a resolver capable of improving detection accuracy by using a modulated signal and at the same time reducing the size, compactness, weight and cost. did.
  • This resolver has an exciting winding for which an exciting signal is input and a detection winding for which a detection signal is output, and is based on a detection signal that changes according to the amount of displacement of the exciting winding or the passive body provided with the detection winding.
  • a modulated signal obtained by modulating a high-frequency signal with an exciting signal is input to the exciting winding, and the modulated signal output from the detection winding is demoted to obtain a detection signal. It is something like that.
  • this type of resolver uses a coil, if the size of the coil can be secured to some extent, the required inductance can be secured, but a small resolver, particularly a super-resolver having a diameter of about 5 [mm].
  • a small resolver particularly a super-resolver having a diameter of about 5 [mm].
  • the inductance becomes small, and it becomes impossible to secure the required amount of inductance. Therefore, from the viewpoint of compensating for this, it is necessary to further increase the drive frequency of the exciting current, but when the drive frequency is increased, other adverse effects such as an increase in leakage flux occur.
  • the present invention aims to provide a resolver that solves the problems existing in such background technology.
  • the present invention inputs exciting signals Sx, Sy to exciting windings 2x, 2y and detects exciting windings 2x, 2y or detection based on a detection signal So output from detection winding 3.
  • the exciting winding 2x, 2y and / or the detection winding 3 has one or more hollowed portions H ...
  • it is composed of a combination of two or more seat coils Cxa ..., Cya ..., Co ..., and at predetermined intervals Ld ... In the longitudinal direction Dm of the magnetic cores 5, 6 to which the seat coils Cxa ..., Cya ..., Co ...
  • a plurality of coil accommodating groove portions 7 ... are provided on the core surfaces 5f and 6f of the magnetic cores 5 and 6 in a direction Ds perpendicular to the longitudinal direction Dm, and each of the coil accommodating groove portions 7 ... It is characterized in that the coil portions Cp ..., Cq ... At least two parts of the seat coils Cxa ..., Cya ..., Co ... are accommodated.
  • the excitation signals Sx and Sy are amplitude-modulated on the excitation windings 2x and 2y by the high-frequency signal Sh, and the polarity of the high-frequency signal Sh is set to the polarity reversal position of the excitation signals Sx and Sy.
  • the modulation signals Smx and Smy inverted in the above can be input, and the modulation signals Smo output from the detection winding 3 can be demoted to obtain the detection signal So.
  • the passive body 4 is configured as a rotating body 4r having a rotating shaft 11, and the seat coils Cxa ..., Cya ..., Co ... and the magnetic cores 5 and 6 are rings coaxial with the rotating shaft 11.
  • the coil accommodating groove portion 7 ... may be provided with a wide main accommodating groove portion 7m ... formed by notching from the inner wall on the bottom 7d ... side in the longitudinal direction Dm.
  • the sheet coils Cxa ..., Cya ..., Co ... Can be formed by forming the coil portions 13f, 13r provided on the front surface 12f and the back surface 12r of the sheet portion 12 constituting the substrate, which are the same or different from each other.
  • the exciting windings 2x, 2y and / or the detection winding 3 are composed of a combination of two or more seat coils Cxa ..., Cya ..., Co ..., and the seat coils Cxa ..., Cya ..., Co ... are the same. And / or can be formed differently.
  • the magnetic flux correction function unit that corrects the magnetic flux distribution by the exciting winding 2x, 2y and / or the detection winding 3 in a sinusoidal shape by the winding pattern Pw. Fs can be provided.
  • the exciting windings 2x, 2y and / or the detection winding 3 can be provided by combining a plurality of different sheet coils Cxa ..., Cya ..., Co .... Further, by combining the exciting windings 2x, 2y and / or the detection winding 3 with a plurality of coil portions 13f, 13r, unnecessary components of the magnetic flux distribution by the exciting windings 2x, 2y and / or the detection winding 3 are formed. It is also possible to provide a magnetic flux correction function unit Fa that cancels out.
  • the excitation winding 2x, 2y and / or the detection winding 3 is composed of a combination of one or two or more seat coils Cxa ..., Cya ..., Co ... having one or more hollowed-out portions H ...
  • the seat coils Cxa ..., Cya ..., Co ... are arranged at predetermined intervals Ld ... in the longitudinal direction Dm of the magnetic cores 5, 6 and on the core surfaces 5f, 6f of the magnetic cores 5, 6.
  • a plurality of coil accommodating groove portions 7 ... Formed in the direction Ds perpendicular to the longitudinal direction Dm are provided, and the coil portions of at least two portions of the sheet coils Cxa ..., Cya ..., Co ...
  • the excitation windings 2x and 2y are amplitude-modulated with the excitation signals Sx and Sy by the high-frequency signal Sh, and the polarity of the high-frequency signal Sh is inverted at the polarity reversal position of the excitation signals Sx and Sy. If the generated modulation signals Smx and Smy are input and the modulation signals Smo output from the detection winding 3 are demodulated to obtain the detection signal So, the number of turns of the seat coils Cxa ..., Cya ..., Co ... can be reduced.
  • the resolver 1 can contribute to ultra-miniaturization, weight reduction, and cost reduction, and the signal after the demodulation process. By facilitating and stabilizing the processing, it is possible to improve the detection accuracy.
  • the passive body 4 is configured as the rotating body 4r having the rotating shaft 11, and the seat coils Cxa ..., Cya ..., Co ... and the magnetic cores 5 and 6 are attached to the rotating shaft 11.
  • the passive body 4 if it is formed in a ring shape that is coaxial with each other, it can be provided as a resolver 1 that is most suitable for detecting the rotation angle of a rotational displacement portion in a small device or the like.
  • the coil accommodating groove portion 7 ... is provided with a wide main accommodating groove portion 7m, which is formed by notching from the inner wall on the bottom 7d ... side in the longitudinal direction Dm, a wider and flexible sheet is provided. Since the coils Cxa ..., Cya ..., Co ... can be accommodated, the number of turns per sheet coil Cxa ..., Cya ..., Co ... can be increased, the inductance can be further increased, and the resolver can be changed. It can contribute to the improvement of performance.
  • the coil portions 13f and 13r provided on the front surface 12f and the back surface 12r of the sheet portion 12 constituting the substrate are the same or different. If formed, not only the number of turns of the seat coil Cxa ..., Cya ..., Co ... will be increased, but also the distribution pattern of the magnetic flux distribution will be corrected, and the seat coil Cxa ..., Cya ..., Co ... will be multifunctional. Diversification can be achieved.
  • the exciting windings 2x, 2y and / or the detection winding 3 are configured by a combination of two or more seat coils Cxa ..., Cya ..., Co ..., and each seat coil Cxa ..., Cya ... If ..., Co ... are formed to be the same and / or different, not only the number of turns in the entire exciting winding 2x, 2y and / or the detection winding 3 is increased, but also the distribution pattern of the magnetic flux distribution becomes more precise. It is possible to further expand the multifunctionalization and diversification of the seat coils Cxa ..., Cya ..., Co ..., such as being able to correct.
  • the magnetic flux distribution due to the exciting winding 2x, 2y and / or the detection winding 3 is corrected to a sinusoidal shape by the winding pattern Pw on the exciting winding 2x, 2y and / or the detection winding 3.
  • the magnetic flux correction function unit Fs is provided, the trapezoidal magnetic flux distribution that occurs when the seat coils Cxa ..., Cya ..., Co ... are formed in a simple planar form can be easily corrected only by changing the winding pattern Pw. Therefore, it can contribute to facilitation of implementation and further miniaturization of the resolver 1 as a whole.
  • the exciting windings 2x, 2y and / or the detection winding 3 are combined with a plurality of different sheet coils Cxa ..., Cya ..., Co ... If provided, the trapezoidal shape of the magnetic flux distribution can be corrected while ensuring the required number of turns in the exciting windings 2x, 2y and / or the detection winding 3.
  • the exciting windings 2x, 2y and / or the detection winding 3 are combined with a plurality of coil portions 13f, 13r to form the exciting windings 2x, 2y and / or the detection winding 3. If the magnetic flux correction function unit Fa that cancels unnecessary components of the magnetic flux distribution is provided, the magnetic flux correction function unit Fa can be added to the original function. Therefore, the detection accuracy is further improved by reducing noise and error. Can contribute to.
  • the resolver 1 according to the first embodiment is roughly classified into a resolver main body portion M1 composed of a magnetic system and a mechanical system shown in FIG. 7, and a signal processing unit M2 composed of an electrical system shown in FIG.
  • the resolver main body M1 has an exciting unit 22 fixedly attached to the inside of the casing 21 and a rotating shaft rotatably supported by a bearing portion (not shown) at the center of the casing 21.
  • a rotating body 4r (passive body 4) having 11 is provided.
  • the rotating body 4r includes a disk portion 25 in which the rotating shaft 11 is fixed at the center position, and a detection unit 23 facing the exciting unit 22 is provided on the surface of the disk portion 25 facing the exciting unit 22.
  • Install Further, the excitation unit 22 has a ring shape as a whole, and the secondary winding 24s of the output transformer 24 is arranged in the inner space thereof, and the detection unit 23 also has a ring shape as a whole, and a disk inside the detection unit 23.
  • the primary winding 24f of the output transformer 24 is arranged in the portion 25 so as to face the secondary winding 24s.
  • the excitation unit 22 includes two seat coil units 27, 27 that are out of phase with the magnetic core 5.
  • the magnetic core 5 is formed in a ring shape having a predetermined thickness integrally molded with, for example, a magnetic material such as ferrite. Then, a plurality of coils are arranged at predetermined intervals Ld ... in the longitudinal direction (circumferential direction) Dm of the magnetic core 5 and in the direction perpendicular to the longitudinal direction Dm (diameter direction) Ds on the core surface 5f of the magnetic core 5.
  • the accommodating groove portion 7 ... Is formed.
  • the predetermined interval Ld ... is an angle of 30 [°] intervals.
  • the coil accommodating groove portion 7 ... has a function of accommodating coil portions Cp ..., Cq ... At least two portions of the sheet coils Cxa ..., Cya ... Therefore, the coil accommodating groove portion 7 ... Is selected so that the cross section is formed rectangular and the depth is the bottom portion 7d ... Near the center in the thickness direction as shown in FIG. 2 (FIG. 7).
  • the bottom portion 7d ... Is preferably near the center in the thickness direction, but can be arbitrarily selected according to the number of seat coils Cxa ..., Cya ...
  • the resolver 1 is an ultra-compact resolver having a diameter of about 5 [mm]. Therefore, the diameter of the magnetic core 5 is about 4 [mm], and the depth of the coil accommodating groove 7 is about 0.5 [mm].
  • the excitation unit 22 is modulated with the one seat coil unit 27 having the exciting winding 2x on the sin phase side to which the modulated excitation signal Sx is applied, as shown in FIG.
  • the other seat coil unit 27 having the exciting winding 2y on the cos phase side to which the exciting signal Sy is applied is provided.
  • one seat coil unit 27 is composed of two seat coils Cxa and Cxb
  • the other seat coil unit 27 is composed of two seat coils Cya and Cyb.
  • the basic configuration of one sheet coil Cxa includes a sheet portion 12 constituting a substrate and coil portions 13f and 13r provided on the front surface 12f and the back surface 12r of the sheet portion 12, respectively, and the whole is a flexible printed circuit board (FPCB). ).
  • the coil portions 13f and 13r may be formed in the same manner or may be formed differently. In this way, when the seat coil Cxa is formed, if the coil portions 13f and 13r provided on the front surface 12f and the back surface 12r of the sheet portion 12 constituting the substrate are formed to be the same or different, the turn of the seat coil Cxa is formed.
  • each exciting winding 2x, 2y is provided with terminal sheets Jx, Jy having a lead wire lead-out function, and the terminal sheets Jx, Jy are formed to have the same shape as the sheet portion 12 of each sheet coil Cxa. ..
  • the terminal sheets Jx and Jy are not provided with a coil portion, but a coil portion may be provided if necessary.
  • FIG. 1 shows the winding patterns of the sheet coils Cxa, Cxb, and the terminal sheet Jx
  • the left side in the drawing shows the front surface 12f
  • the right side shows the corresponding back surface 12r.
  • the shapes of the seat coil Cxa ... And the seat portion 12 ... of the terminal sheet Jx are the same, and as shown in FIG. 1, the small ring portion 12s, the large ring portion 12m, and between the small ring portion 12s and the large ring portion 12m.
  • It is composed of a plurality of formed bridge portions 12b ....
  • each bridge portion 12b ... Is provided at regular intervals in a total of twelve.
  • a hollowed-out portion H ... is formed between the bridge portions 12b ..., and the above-mentioned protruding portion P ... of the magnetic core 5 is inserted through the hollowed-out portion H ....
  • Two coil portions 13f and 13f were arranged to form a total of eight coil portions 13f ....
  • the eight coil portions 13f ... Are formed by one of three types of coils, that is, the first coil C1, the second coil C2, and the third coil C3.
  • each seat coil Cxa In each seat coil Cxa ..., first, as shown in FIG. 1, the seat coil Cxa is located between the bridge portions 12b and 12b and the bridge portions 12b and 12b having a positional relationship of 120 [°] on the surface 12f of the seat portion 12.
  • the second coil C2 is formed by utilizing the large ring portion 12m and the small ring portion 12s in the above. At this time, as shown in the figure, a pair of second coils C2 and C2 are formed by arranging them at positions symmetrical with each other by 180 [°], and the back surface 12r is also a pair of second coils like the front surface 12f.
  • the number of turns of the second coil C2 illustrated is 2, but this number of turns can be arbitrarily selected as a design item.
  • the seat coil Cxb has a bridge portion 12b, 12b having a positional relationship of 180 [°] on the surface 12f of the seat portion 12, and a large ring portion 12m and a small ring portion between the bridge portions 12b, 12b.
  • the first coil C1 is formed by using 12s, and the bridge portions 12b and 12b having a positional relationship of 60 [°] and the bridge portions 12b and 12b at positions symmetrical with respect to the first coil C1 are 60 [°].
  • the third coil C3 is formed by using the large ring portion 12m and the small ring portion 12s between the bridge portions 12b and 12b. Further, the first coil C1 and the third coil C3 are formed on the back surface 12r in the same manner, but their positions are opposite to the front surface 12f.
  • the first coil C1, C1, the second coil C2, C2, and the third coil C3, C3 are provided in pairs, and are connected so that one side has an S pole and the other side has an N pole.
  • the black circles t ... In the seat coils Cxa, Cxb, Jx shown in FIG. 1 indicate through holes, and the surfaces 12f ... Of the seat coils Cxa, Cxb, Jx are directed toward the magnetic core 5, and the seat coils Cxa,
  • the seat coil unit 27 (excited winding 2x) is configured by laminating Cxb and Jx in this order.
  • the exciting winding 2x has been described above, the exciting winding 2y can also be configured in the same manner. Therefore, two seat coil units 27 and 27 may be prepared, one of which may be used as the exciting winding 2x and the other as the exciting winding 2y.
  • one of the seat coil units 27 (excited winding 2x) is first assembled to the magnetic core 5, and then spatially electric.
  • the other seat coil unit 27 (excited winding 2y) may be assembled by making the phase different by 90 [°] at the angle.
  • FIG. 2 shows this positional relationship
  • FIG. 7 shows a structure in which the excitation unit 22 including the pair of seat coil units 27 and 27 is assembled to the casing 21.
  • the reason why a plurality of different first coils C1 ..., second coil C2 ... and third coil C3 ... are provided and combined is that they function as magnetic flux correction function units Fs for correcting the magnetic flux distribution. This is to make it.
  • the function of the magnetic flux correction function unit Fs will be described with reference to FIGS. 5 and 6.
  • the magnetic flux distribution due to the exciting windings 2x and 2y is a sin curve Ux and a cos curve Uy due to the sine wave shown by the solid line and the dotted line in FIG. 5, but the seat coils Cxa ..., Cya ... are simply flat surfaces.
  • the magnetic flux correction function unit Fs that corrects the magnetic flux distribution so as to have a sinusoidal magnetic flux distribution by combining the magnetic flux distributions of the first coil C1, the second coil C2, and the third coil C3. Is provided.
  • the sheet coils Cxa ..., Cya ... are formed, if the coil portions 13f and 13r provided on the front surface 12f and the back surface 12r of the sheet portion 12 constituting the substrate are formed to be the same or different, the sheet can be formed. Not only can the number of turns of the coils Cxa ..., Cya ... be increased, but also the distribution pattern of the magnetic flux distribution can be corrected, so that the seat coils Cxa ..., Cya ... can be made multifunctional and diversified.
  • the magnetic flux correction function unit Fs that can correct the formation can be easily provided.
  • the magnetic flux correction function portion Fs may be provided on the detection winding 3 side described later.
  • the detection unit 23 is composed of a magnetic core 6 and a seat coil unit 28, as shown in FIGS. 3 and 4.
  • the magnetic core 6 is formed in a ring shape having a predetermined thickness by, for example, a magnetic material such as ferrite.
  • the core surface 6f to which the sheet coil Co ... described later is attached is formed flat, and the coil accommodating groove portion 7 ... such as the magnetic core 5 side is not formed.
  • the seat coil unit 28 includes a detection winding 3 output by the modulation signal Smo in the case of the first embodiment.
  • the detection winding 3 is composed of one seat coil Co.
  • the basic configuration of the sheet coil Co includes a sheet portion 12 constituting a substrate and coil portions 13f and 13r provided on the front surface 12f and the back surface 12r of the sheet portion 12, respectively, and the whole is a flexible printed circuit board (FPCB). Constitute.
  • the coil portions 13f and 13r may be formed in the same manner or may be formed differently as in the exciting winding 2x side.
  • the exciting winding 3 is provided with a terminal sheet Jo having a lead wire lead-out function, and the terminal sheet Jo is formed to have the same shape as the sheet portion 12 of the seat coil Co.
  • This terminal sheet Jo is not provided with a coil portion, but a coil portion may be provided if necessary.
  • FIG. 3 shows the winding pattern of the seat coil Co and the terminal sheet Jo, the left side in the figure shows the front surface 12f, and the right side shows the corresponding back surface 12r.
  • the shapes of the seat portions 12 ... Of the seat coil Co and the terminal sheet Jo are the same ring shape.
  • a pair of coil portions 13f and 13f are formed on the surface 12f of the sheet portion 12 due to a positional relationship that is 180 [°] symmetrical.
  • a pair of coil portions 13f and 13f are formed along the outer shape of the semicircular surface of the sheet portion 12 divided into two by the center line, respectively.
  • the number of turns of the illustrated coil portions 13f and 13f is 2, but this number of turns can be arbitrarily selected as a design item.
  • a pair of coil portions 13r and 13r are formed on the back surface 12r of the sheet portion 12 in the same manner as on the front surface 12f side due to a positional relationship of 180 [°] symmetry.
  • the phase of the direction Dm was shifted by shifting the position (angle) by a predetermined angle Qs.
  • This configuration functions as a magnetic flux correction function unit Fa.
  • the pair of coil portions 13f and 13f on the front surface 12f and the pair of coil portions 13r and 13r on the back surface 12r form an S pole and an N pole, respectively.
  • the reason why the coil portions 13r and 13r on the back surface 12r were shifted by a predetermined angle Qs is as follows. Normally, the magnetic flux distribution generated by the coil portions 13f ..., 13r ... Contains many harmonic components, and these harmonic components affect as a detection error. Therefore, by shifting the coil portion 13f on the front surface 12f side and the back surface 12r side of the sheet portion 12, it is made to function as a magnetic flux correction function portion Fa that cancels unnecessary harmonic components. In this case, the frequency of the harmonic component to be canceled can be selected by selecting the magnitude of the predetermined angle Qs.
  • the detection winding 3 is provided with the magnetic flux correction function unit Fa that cancels unnecessary components of the magnetic flux distribution by the detection winding 3 by combining a plurality of coil units 13f and 13r, the original detection function can be obtained.
  • the magnetic flux correction function unit Fa can be added, there is an advantage that the detection accuracy can be further improved by reducing noise and error.
  • FIG. 4 shows this positional relationship, and the detection unit 23 configured by assembling (attaching) the seat coil unit 28 to the magnetic core 6 is attached to the disk portion 25, and further to the casing 21. The assembled structure is shown in FIG.
  • M1 indicates the resolver main body, and the same parts as those in FIGS. 1 to 7 are designated by the same reference numerals to clarify their configurations.
  • the signal processing unit M2 connected to the resolver main body M1 includes an input side circuit M2i, and the input side circuit M2i is a counter pulse circuit 32 that generates a counter pulse based on a clock signal generated by the oscillating unit 31.
  • a high-frequency signal generation circuit 33 that generates a high-frequency signal with a frequency of about 1 [MHz] based on a counter pulse, and an excitation signal that generates excitation signals Sx (V ⁇ sin ⁇ t) and Sy (V ⁇ cos ⁇ t) based on this high-frequency signal.
  • the generation circuit 34 the polarity inversion circuit 35 in which one of the excitation signals Sx is input and the polarity of the high frequency signal is inverted and output at the polarity inversion position of the excitation signal Sx, and the high frequency signal output from the polarity inversion circuit 35 is used for excitation.
  • a modulation circuit 36 that amplitude-modulates the signal Sx, a modulation signal Smx output from the modulation circuit 36, that is, an excitation circuit 37 that supplies an amplitude-modulated excitation signal Sx to one excitation winding 2x, and the other excitation.
  • a polarity inversion circuit 38 that is input by the signal Sy and outputs by reversing the polarity of the high frequency signal at the polarity reversal position of the excitation signal Sy, and modulation that amplitude-modulates the excitation signal Sy by the high frequency signal output from the polarity reversal circuit 38.
  • the circuit 39 includes an excitation circuit 40 that supplies a modulation signal Smy output from the modulation circuit 39, that is, an amplitude-modulated excitation signal Sy to the other excitation winding 2y.
  • M2o is an output side circuit, and this output side circuit M2o demodulates the modulation signal Smo output from the secondary winding 24s by connecting to the secondary winding 24s of the output transformer 24, and detects detection signal So.
  • the output processing circuit 51 outputs the above, and the angle detection circuit 52 to which the detection signal So obtained from the output processing circuit 51 is applied.
  • the primary winding 24f of the output transformer 24 is connected to the detection winding 3.
  • M2s is a phase correction circuit that corrects a phase error generated between the excitation signals Sx and Sy and the detection signal So
  • the phase correction circuit M2s is a temperature correction signal generation unit 53 that generates a correction signal based on the temperature drift.
  • the correction circuit 54 that corrects the counter pulse output from the counter pulse circuit 32 by the correction signal output from the temperature correction signal generation unit 53, and generates a high frequency signal based on the corrected counter pulse output from the correction circuit 54.
  • a high-frequency signal generation circuit 58 and a reference signal generation circuit 59 that generates a reference signal based on the high-frequency signal output from the high-frequency signal generation circuit 58 are provided, and the reference signal generated by the reference signal generation circuit 59 is an angle detection circuit 52.
  • the temperature correction signal generation unit 53 separates the high-frequency signal component from the modulation signal Smo obtained via the output processing circuit 51, and generates the obtained high-frequency signal component and the counter pulse and high-frequency signal output from the counter pulse circuit 32.
  • a correction that has a temperature drift detection function that detects an error component due to temperature drift of the high frequency signal component based on the high frequency signal output from the circuit 58, and generates the correction signal based on the error component obtained from this temperature drift detection function. It has a signal generation function.
  • the excitation signals Sx and Sy are amplitude-modulated by the high-frequency signal Sh, and the polarity of the high-frequency signal Sh is inverted at the polarity inversion positions of the excitation signals Sx and Sy. If the signals Smx and Smy are input and the modulation signal Smo output from the detection winding 3 is demodulated to obtain the detection signal So, the number of turns of the seat coils Cxa ..., Cya ..., Co ... is reduced.
  • the resolver 1 can contribute to ultra-miniaturization, weight reduction, and cost reduction, and signal processing after demodulation processing is easy. There is an advantage that the detection accuracy can be improved by the conversion and stabilization.
  • the clock signal output from the oscillation unit 31 shown in FIG. 8 is applied to the counter pulse circuit 32 to generate a counter pulse.
  • This counter pulse is applied to the input side of the high frequency signal generation circuit 33, the temperature correction signal generation unit 53, and the input side of the correction circuit 54, respectively.
  • a high frequency signal having a frequency of about 1 [MHz] is generated based on the counter pulse, and this high frequency signal is applied to the input side of the excitation signal generation circuit 34 to generate excitation signals Sx and Sy.
  • one of the excitation signals Sx is applied to the modulation circuit 36 and the polarity inversion circuit 35, respectively, and in the modulation circuit 36, the excitation signal Sx applied from the excitation signal generation circuit 34 by the high frequency signal applied from the polarity inversion circuit 35. Is amplitude-modulated, and the modulated signal Smx obtained from this is applied to the exciting winding 2x via the exciting circuit 37. At this time, the polarity of the high-frequency signal is inverted by the polarity inversion circuit 35 at each polarity inversion position of the excitation signal Sx. As a result, the exciting winding 2x is excited by the modulation signal Smx, and a high-frequency current due to the modulation signal Smx flows through the exciting winding 2x.
  • the other excitation signal Sy is applied to the modulation circuit 39 and the polarity inversion circuit 38, respectively, and in the modulation circuit 39, the excitation signal Sy given from the excitation signal generation circuit 34 is generated by the high frequency signal applied from the polarity inversion circuit 38.
  • the modulation signal Smy obtained by amplitude modulation is applied to the exciting winding 2y via the exciting circuit 40.
  • the polarity of the high-frequency signal given from the high-frequency signal generation circuit 33 by the polarity inversion circuit 38 is inverted for each polarity inversion position of the excitation signal Sy.
  • the exciting winding 2y is excited by the modulation signal Smy, and a high-frequency current due to the modulation signal Smy flows through the exciting winding 2y.
  • the voltage induced based on the excitation signal Sx and the voltage induced based on the excitation signal Sy are added from the detection winding 3, and the added combined voltage is output as the modulation signal Smo, and the high frequency based on the modulation signal Smo.
  • This modulated signal Smo is applied to the output processing circuit 51, and the modulated signal Smo is demodulated.
  • the detection signal So is obtained and applied to the angle detection circuit 52.
  • a high frequency signal component is separated from the modulated signal Smo, and the separated high frequency signal component is given to the temperature correction signal generation unit 53 having a temperature drift detection function.
  • the temperature correction signal generation unit 53 the temperature of the high frequency signal component is based on the high frequency signal component separated by the high frequency signal separation function, the counter pulse obtained from the counter pulse circuit 32, and the high frequency signal obtained from the high frequency signal generation circuit 58. An error component due to drift is detected, a correction signal is generated based on this error component, and this correction signal is applied to the correction circuit 54. Then, in the correction circuit 54, the counter pulse applied from the counter pulse circuit 32 is corrected by the correction signal. That is, the error component due to temperature drift is eliminated.
  • the corrected counter pulse obtained from the correction circuit 54 is applied to the high frequency signal generation circuit 58, and a high frequency signal is generated based on the counter pulse.
  • the high frequency signal obtained from the high frequency signal generation circuit 58 is applied to the temperature correction signal generation unit 53, and the reference signal generation function in the temperature correction signal generation unit 53 generates a reference signal based on the high frequency signal.
  • This reference signal is applied to the angle detection circuit 52, and the angle detection circuit 52 generates a reference pulse from the reference signal and a detection pulse from the detection signal So.
  • the counter pulse is counted between the rise of the reference pulse and the rise of the detection pulse, and this count value is converted into an angle to obtain the rotation angle of the rotation shaft 11.
  • the relationship between the count value and the rotation angle may be stored in a database in advance, and the rotation angle corresponding to the count value may be read out from the database, or may be obtained by calculation by using a preset function formula.
  • the resolver 1 as a basic configuration, at least two or more seat coils Cxa ..., Cya ... With exciting windings 2x, 2y and two or more hollowed portions H ...
  • the seat coils Cxa ..., Cya ... Are arranged at predetermined intervals Ld ... in the longitudinal direction Dm of the magnetic core 5 to which the seat coils Cxa ..., Cya ... Are attached, and are arranged on the core surface 5f of the magnetic core 5 in the longitudinal direction Dm.
  • a plurality of coil accommodating groove portions 7 are provided, and the coil portions Cp ..., Cq ...
  • At least two parts of the sheet coils Cxa ..., Cya ... are accommodated in the coil accommodating groove portions 7 ... Therefore, in particular, the inductance in the case of ultra-miniaturization of the resolver 1 can be increased, sufficient output and detection accuracy can be ensured, leakage flux can be reduced, and the influence of noise can be prevented.
  • the passive body 4 is configured as a rotating body 4r having a rotating shaft 11, and the seat coils Cxa ..., Cya ... And the magnetic core 5 are formed in a ring shape coaxial with the rotating shaft 11. It can be provided as a modulated wave resolver 1 that is most suitable for detecting the angle of a rotational displacement portion in an ultra-small device.
  • the resolver 1 according to the second embodiment of the present invention will be described with reference to FIGS. 9 to 13.
  • the difference between the second embodiment and the first embodiment shown in FIGS. 1 to 7 is that the form of the magnetic core 5 is changed in the exciting windings 2x and 2y. That is, as shown in FIG. 9, when forming the coil accommodating groove portion 7 ..., a wide main accommodating groove portion 7m ... Which is notched from the inner wall on the bottom 7d ... side in the longitudinal direction Dm is provided. Therefore, as shown in FIG. 9, the shape of the coil accommodating groove 7 including the main accommodating groove 7 m when viewed from the radial direction (Ds) is an inverted T shape.
  • coil accommodating groove portion 7 is configured in this way, a wider and flexible seat coil Cxa, Cya can be accommodated, so that the number of turns per sheet coil Cxa, Cya can be increased, and the inductance can be increased. Can be further enhanced, which can contribute to further improvement in the performance of the resolver.
  • one seat coil Cxa was used for each of the exciting windings 2x and 2y.
  • the wider and flexible seat coils Cxa and Cya can be used, the number of turns can be increased even with one seat coil Cxa. Therefore, the seat coil Cxa to be used (laminated) is used accordingly. The quantity of can be reduced.
  • a half-seat portion 12p having a ring-shaped sheet portion 12 divided into two is used, and a coil portion 13f along the outer edge portion is formed on the surface 12f of the half-sheet portion 12p.
  • a coil portion 13r (not shown) along the outer edge portion is formed on the back surface of the half-sheet portion 12p.
  • a total of three bridge portions 12b, 12b, 12b are provided at both end positions and the center position of the half-seat portion 12p.
  • four half-seat portions 12p ... are prepared, and as shown in FIG. 12, two half-seat portions 12p ... are combined in a circular shape to be used as an exciting winding 2x, and the other two half-seat portions 12p ... ... Is used as an exciting winding 2y by combining them in a circular shape.
  • the basic configurations of the exciting windings 2x and 2y shown in the second embodiment can be formed in the same manner as in the first embodiment shown in FIGS. 1 to 7.
  • the form in which the two half-sheet portions 12p and 12p are butted and assembled is shown, but it is also possible to combine the two half-sheet portions by overlapping the parts. In this case, by providing through holes in the overlapped portions, it is possible to connect the coil portions 13f ..., 13r ... Of the two half sheet portions 12p, 12p.
  • the magnetic flux distribution is trapezoidal as described above, but the magnetic flux correction function portions Fs described above are not provided in the exciting windings 2x and 2y. Therefore, the magnetic flux correction function unit Fs is provided in the detection winding 3 described later.
  • one sheet coil Co was used for the detection winding 3.
  • a pair of coil portions Cor and Cor are formed on the surfaces 12fp and 12fp of the two areas obtained by dividing the ring-shaped seat portion 12 into two.
  • one coil portion Cor forms the wire portion Wr ...
  • the winding pattern Pw formed in the circumferential direction Dm so as to gradually widen the interval up to the position advanced by 180 [°] is formed at the position symmetrical with 180 [°]. Therefore, the winding pattern Pw is formed in a single stroke shape.
  • a similar winding pattern Pw is also formed on the back surface.
  • the winding pattern Pw provides a waveform correction function unit Fs that corrects the magnetic flux distribution in a sinusoidal shape.
  • the detection winding 3 is provided with the magnetic flux correction function unit Fs that corrects the magnetic flux distribution in a sinusoidal shape by the winding pattern Pw, the magnetic flux generated when the sheet coil Co ... is formed in a simple planar form. Since the trapezoidal distribution can be easily corrected only by changing the winding pattern Pw, it can contribute to facilitation of implementation and further miniaturization of the resolver 1 as a whole.
  • FIG. 10 shows a side sectional view of the exciting unit 22 having the exciting windings 2x and 2y and the exciting unit 23 having the detection winding 3 in the resolver 1 configured by the second embodiment.
  • FIGS. 9 to 13 the same parts as those in FIGS. 1 to 7 are designated by the same reference numerals to clarify their configurations, and detailed description thereof will be omitted.
  • the resolver 1 according to the third embodiment of the present invention will be described with reference to FIGS. 14 to 19.
  • the difference between the third embodiment and the second embodiment shown in FIGS. 9 to 13 is that in the case of the second embodiment, the sheet coils Cxa, Cya, and Co are magnetically formed in a ring shape (flat cylindrical shape). Although it was arranged at the end face positions of the cores 5 and 6, in the third embodiment, the seat coils Cxa, Cya, and Co were arranged at the peripheral surface positions of the magnetic cores 5 and 6 formed in a ring shape (flat cylindrical shape). The point is different.
  • the magnetic core 5 on the exciting side has twelve coil accommodating grooves 7 ... Formed at equal intervals on the inner peripheral surface 5i, and the bottom portion of the coil accommodating grooves 7 ...
  • a wide main accommodating groove portion 7m which is formed by notching from the inner wall on the 7d ... side in the circumferential direction Dm, is provided. Therefore, as shown in FIG. 14, the shape of the coil accommodating groove portion 7 including the main accommodating groove portion 7 m as viewed from the axial parallel direction Dc is T-shaped, and the basic shape is the same as that of the second embodiment, but the surface to be formed is different.
  • the magnetic core 6 on the detection side is arranged in the inner space of the magnetic core 5, and is magnetic with respect to the inner peripheral surface 5i (core surface 5f) of the magnetic core 5.
  • the outer peripheral surface 6o (core surface 6f) of the core 6 faces each other through a predetermined gap.
  • FIG. 17 shows the seat coils Cxa and Cya used for the magnetic core 5.
  • FIG. 17B shows a seat coil Cxa having an exciting winding 2x on the sin phase side
  • FIG. 17C shows a seat coil Cya having an exciting winding 2y on the cos phase side.
  • the winding patterns of the seat coils Cxa and Cya are basically selected so as to be the same as the winding patterns of the exciting windings 2x and 2y in the first embodiment as a whole. As a result, the magnetic flux distribution shown in FIG. 7A, which approximates a sine wave, can be obtained.
  • the winding patterns of the seat coils Cxa and Cya are formed on the front and back surfaces.
  • the bridge portion 12b located at the end P1 of the seat coil Cxa shown in FIG. 17B is attached to the magnetic core 5 shown in FIG.
  • the coil accommodating groove portion 7 at the position P1 is accommodated, and thereafter, on the inner peripheral surface 5i of the magnetic core 5, the bridge portion 12b ... Of the seat coil Cxa is sequentially arranged in the coil accommodating groove portion 7 ... Along the clockwise direction in FIG. It can be assembled by accommodating it.
  • the bridge portion 12b located at the end portion P4 of the seat coil Cya shown in FIG. 17C is accommodated in the coil accommodating groove portion 7 at the position P4 of the magnetic core 5 shown in FIG.
  • the bridge portion 12b of the seat coil Cya can be assembled by sequentially accommodating the coil accommodating groove portion 7 ... Along the clockwise direction in FIG.
  • the seat coils Cxa and Cya are arranged at spatial positions that are 90 ° out of phase with each other in terms of electrical angle.
  • the excitation unit 61 shown in FIG. 16 can be obtained.
  • the exciting unit 61 has the same function as the exciting unit 22 in the first embodiment.
  • a sheet coil Co (linear shape) formed in the same manner as the seat coil Co (circular shape) having the detection winding 3 shown in FIG. 3 in the first embodiment is attached to the outer peripheral surface 6o of the magnetic core 6. Therefore, the detection unit 62 shown in FIG. 16 can be obtained.
  • the detection unit 62 has the same function as the detection unit 23 in the first embodiment.
  • the winding pattern of the seat coil Co having the detection winding 3 is formed on the front and back surfaces.
  • FIG. 16 shows the resolver main body M1.
  • the entire casing and the rotating shaft supported by the casing are excluded, and only the basic configuration of the resolver main body M1 is shown.
  • 65 indicates an outer base portion formed in a large-diameter cylinder on the outside, which is a fixed side
  • 66 indicates an inner base portion formed in a small-diameter cylinder, which is an inner base portion on the inward side. Shown. Then, the outer peripheral surface of the magnetic core 5 provided in the exciting unit 61 is fixed to one end side of the inner peripheral surface of the outer base portion 65, and the magnetic core 6 provided in the detection unit 62 is closer to one end side of the outer peripheral surface of the inner base portion 66.
  • the output transformer 71 is configured by fixing 72s.
  • FIG. 18 shows an example of modification of the magnetic core 6 shown in FIG.
  • the magnetic core 6 shown in FIG. 18 has twelve coil accommodating recesses 75 ... Formed on the outer peripheral surface 6o at equal intervals along the circumferential direction Dm. Therefore, in this modification, the detection winding 3 used can use the seat coil Co shown in FIG. 19B, which has the same shape as the seat coil Cxa shown in FIG.
  • the seat coil Co (linear shape) formed in the same manner as the seat coil Co (circular) having the detection winding 3 shown in FIG. 3 in the first embodiment may be used.
  • a detection unit having the same function as the detection unit 62 shown in FIG. 16 can be obtained.
  • FIG. 19A shows a magnetic flux distribution that approximates a sine wave obtained on the detection winding 3 side.
  • FIGS. 14 to 19 the same parts as those in FIGS. 1 to 13 are designated by the same reference numerals to clarify their configurations, and detailed description thereof will be omitted.
  • the excitation signals Sx and Sy are amplitude-modulated by the high-frequency signal Sh, and the polarity of the high-frequency signal Sh is inverted at the polarity reversal position of the excitation signals Sx and Sy.
  • An embodiment in which Smy is input and the modulation signal Smo output from the detection winding 3 is demoted to obtain the detection signal So has been shown, but the excitation signals Sx and Sy are input to the excitation windings 2x and 2y without modulation.
  • the case where the displacement amount of the exciting winding 2x, 2y or the passive body 4 provided with the detection winding 3 is detected based on the detection signal So output from the detection winding 3 is not excluded.
  • the passive body 4 is configured as a rotating body 4r having a rotating shaft 11, and the seat coils Cxa ..., Cya ..., Co ... and the magnetic cores 5 and 6 are rings coaxial with the rotating shaft 11.
  • the case where it is configured as a so-called rotary type formed in a shape is shown, it may be configured as a so-called linear type in which the passive body 4 is displaced in the straight direction.
  • the case where the exciting windings 2x, 2y are configured by the combination of one or two or more seat coils Cxa ..., Cya ... Having one or more hollowed-out portions H ...
  • the winding 3 may be composed of a combination of one or two or more sheet coils Co ...
  • the exciting windings 2x, 2y and the detection winding 3 may be formed. It may be composed of a combination of one or more seat coils Cxa ..., Cya ..., Co ... having one or more hollowed-out portions H ....
  • the coil accommodating groove portion 7 ... Is provided in the magnetic core 5 it may be provided in the magnetic core 6 or both of the magnetic cores 5 and 6.
  • the sheet coils Cxa ..., Cya ..., Co ... are provided on the front surface 12f and the back surface 12r of the sheet portion 12 constituting the substrate, the case where they are provided on only one of the front surface 12f and the back surface 12r is excluded. It's not a thing.
  • the modulation signals Smx and Smy show the case where the excitation signals Sx and Sy are amplitude-modulated, but do not prevent the adoption of other modulation methods such as phase modulation.
  • the resolver according to the present invention can be used for various purposes of detecting the displacement amount (rotation angle) of a passive body provided with an exciting winding or a detection winding.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

励磁巻線2x,2y及び/又は検出巻線3を、一又は二以上の刳り貫き部H…を有する一又は二以上のシートコイルCxa…,Cya…,Co…の組合わせにより構成するとともに、当該シートコイルCxa…,Cya…,Co…を付設する磁気コア5,6の長手方向Dmへ所定間隔Ld…置きに配し、かつ当該磁気コア5,6のコア面5f,6fに長手方向Dmに対して直角方向Dsに形成した複数のコイル収容溝部7…を設け、このコイル収容溝部7…に、各シートコイルCxa…,Cya…,(Co…)の少なくとも二つの部位に位置するコイル部Cp…,Cq…を収容する。

Description

レゾルバ
 本発明は、励磁巻線及び検出巻線を備えることにより受動体の回動角等の変位量を検出する際に用いて好適なレゾルバに関する。
 従来、電気角で90゜位相を異ならせた空間位置に固定して設けた励磁信号が入力する二相の励磁巻線と、回動軸に設けた検出信号が出力する検出巻線とを有し、励磁信号と検出信号の位相差から回動軸の回動角を検出するレゾルバは知られている。即ち、この種のレゾルバは、回動軸の回動角をΦとすると、励磁巻線の一方の相はsinΦ,他方の相はcosΦとなる。今、励磁巻線に位相が90゜異なる励磁信号V・sinωtとV・cosωtをそれぞれ付与すると、検出巻線から出力する検出信号は、E=(V・sinωt・cosΦ)+(V・cosωt・sinΦ)=V・sin(ωt+Φ)となり、回動軸の回動角に対応して位相が変化する検出信号を得るため、励磁信号と検出信号の位相差から回動軸の回動角Φを求めることができる。
 一方、本出願人は、変調信号を利用して検出精度の高度化を実現するとともに、併せて小型コンパクト化,軽量化及び低コスト化を図ることができるレゾルバを、既に、特許文献1により提案した。このレゾルバは、励磁信号が入力する励磁巻線及び検出信号が出力する検出巻線を有し、励磁巻線又は検出巻線を設けた受動体の変位量に応じて変化する検出信号に基づいて受動体の変位量を検出するレゾルバを構成するに際し、励磁巻線に、励磁信号により高周波信号を変調した変調信号を入力するとともに、検出巻線から出力する変調信号を復調して検出信号を得るようにしたものである。
特開2000-292205号公報
 しかし、上述した特許文献1のレゾルバは、小型化、特に、超小型化を図る観点からは、次のような更なる改善すべき課題も存在した。
 即ち、この種のレゾルバは、コイルを利用するため、コイルの大きさがある程度確保できる場合には、必要なインダクタンスを確保できるが、小型のレゾルバ、特に、直径が5〔mm〕前後となる超小型のレゾルバを実現しようとする場合、インダクタンスが小さくなり、必要な大きさのインダクタンスを確保できなくなる。このため、これを補う観点から励磁電流の駆動周波数をより高める必要が生じるが、駆動周波数を高めた場合、漏れ磁束が大きくなるなどの他の弊害が発生する。加えて、レゾルバの小型化(超小型化)を実現しようとする場合、内部のデッドスペースをできるだけ排除する必要があるため、外乱等によるノイズの影響を受け易くなり、検出精度の低下を招く弊害も生じる。
 結局、レゾルバの小型化(超小型化)を図る場合、インダクタンスの大きさをある程度確保する必要があるが、必要なインダクタンスの確保は容易でなく、十分な検出精度及び安定性、更には信頼性を確保しつつ、レゾルバの小型化、特に、超小型化を図るには限界があった。
 本発明は、このような背景技術に存在する課題を解決したレゾルバの提供を目的とするものである。
 本発明は、上述した課題を解決するため、励磁信号Sx,Syを励磁巻線2x,2yに入力し、かつ検出巻線3から出力する検出信号Soに基づいて励磁巻線2x,2y又は検出巻線3を設けた受動体4の変位量を検出するレゾルバ1を構成するに際して、励磁巻線2x,2y及び/又は検出巻線3を、一又は二以上の刳り貫き部H…を有する一又は二以上のシートコイルCxa…,Cya…,Co…の組合わせにより構成するとともに、当該シートコイルCxa…,Cya…,Co…を付設する磁気コア5,6の長手方向Dmへ所定間隔Ld…置きに配し、かつ当該磁気コア5,6のコア面5f,6fに長手方向Dmに対して直角方向Dsに形成した複数のコイル収容溝部7…を設け、このコイル収容溝部7…に、各シートコイルCxa…,Cya…,Co…の少なくとも二個所の部位のコイル部分Cp…,Cq…を収容してなることを特徴とする。
 この場合、発明の好適な態様により、励磁巻線2x,2yには、高周波信号Shにより励磁信号Sx,Syを振幅変調し、かつ当該高周波信号Shの極性を励磁信号Sx,Syの極性反転位置で反転させた変調信号Smx,Smyを入力し、検出巻線3から出力する変調信号Smoを復調して検出信号Soを得ることができる。また、受動体4は、回動軸11を有する回動体4rとして構成するとともに、シートコイルCxa…,Cya…,Co…及び磁気コア5,6は、回動軸11に対して同軸となるリング形に形成することができる。一方、コイル収容溝部7…には、底部7d…側の内壁から長手方向Dmに切欠き形成した広幅となる主収容溝部7m…を設けることができる。また、シートコイルCxa…,Cya…,Co…は、基板を構成するシート部12の表面12f及び裏面12rに設けた各コイル部13f,13rを同一に又は異ならせて形成することができる。さらに、励磁巻線2x,2y及び/又は検出巻線3は、二以上のシートコイルCxa…,Cya…,Co…の組合わせにより構成し、各シートコイルCxa…,Cya…,Co…を同一に及び/又は異ならせて形成することができる。他方、励磁巻線2x,2y及び/又は検出巻線3には、巻線パターンPwにより、励磁巻線2x,2y及び/又は検出巻線3による磁束分布を正弦波状に矯正する磁束矯正機能部Fsを設けることができる。なお、磁束矯正機能部Fsを設けるに際しては、励磁巻線2x,2y及び/又は検出巻線3を、異なる複数のシートコイルCxa…,Cya…,Co…を組合わせることにより設けることもできる。また、励磁巻線2x,2y及び/又は検出巻線3には、複数のコイル部13f,13rを組合わせることにより、励磁巻線2x,2y及び/又は検出巻線3による磁束分布の不要成分を打ち消す磁束補正機能部Faを設けることもできる。
 このような構成を有する本発明に係るレゾルバ1によれば、次のような顕著な効果を奏する。
 (1) 励磁巻線2x,2y及び/又は検出巻線3を、一又は二以上の刳り貫き部H…を有する一又は二以上のシートコイルCxa…,Cya…,Co…の組合わせにより構成するとともに、当該シートコイルCxa…,Cya…,Co…を付設する磁気コア5,6の長手方向Dmへ所定間隔Ld…置きに配し、かつ当該磁気コア5,6のコア面5f,6fに長手方向Dmに対して直角方向Dsに形成した複数のコイル収容溝部7…を設け、このコイル収容溝部7…に、各シートコイルCxa…,Cya…,Co…の少なくとも二個所の部位のコイル部分Cp…,Cq…を収容してなるため、特に、レゾルバ1の超小型化を図る際のインダクタンスを高めることができ、十分な出力と検出精度を確保できるとともに、漏れ磁束の低減及びノイズの影響防止を図ることができる。
 (2) 好適な態様により、励磁巻線2x,2yには、高周波信号Shにより励磁信号Sx,Syを振幅変調し、かつ当該高周波信号Shの極性を励磁信号Sx,Syの極性反転位置で反転させた変調信号Smx,Smyを入力し、検出巻線3から出力する変調信号Smoを復調して検出信号Soを得るようにすれば、シートコイルCxa…,Cya…,Co…のターン数を少なくした場合であっても、十分な誘起電圧(検出信号So)を得ることができるため、結果的に、レゾルバ1の超小型化,軽量化,低コスト化に寄与できるとともに、復調処理後における信号処理の容易化と安定化により、検出精度の高度化を実現できる。
 (3) 好適な態様により、受動体4を、回動軸11を有する回動体4rとして構成するとともに、シートコイルCxa…,Cya…,Co…及び磁気コア5,6を、回動軸11に対して同軸となるリング形に形成すれば、小型機器等における特に回動変位部の回動角検出に最適なレゾルバ1として提供できる。
 (4) 好適な態様により、コイル収容溝部7…に、底部7d…側の内壁から長手方向Dmに切欠き形成した広幅となる主収容溝部7m…を設ければ、より幅の広いフレキシブルなシートコイルCxa…,Cya…,Co…を収容できるため、シートコイルCxa…,Cya…,Co…の一枚当たりのターン数を増加させることが可能となり、インダクタンスをより高めることができ、レゾルバの更なる性能向上に寄与できる。
 (5) 好適な態様により、シートコイルCxa…,Cya…,Co…を構成するに際し、基板を構成するシート部12の表面12f及び裏面12rに設けた各コイル部13f,13rを同一に又は異ならせて形成すれば、シートコイルCxa…,Cya…,Co…のターン数の増加のみならず、磁束分布の分布パターンを矯正するなど、シートコイルCxa…,Cya…,Co…の多機能化及び多様化を図ることができる。
 (6) 好適な態様により、励磁巻線2x,2y及び/又は検出巻線3を、二以上のシートコイルCxa…,Cya…,Co…の組合わせにより構成し、各シートコイルCxa…,Cya…,Co…を同一に及び/又は異ならせて形成すれば、励磁巻線2x,2y及び/又は検出巻線3の全体におけるターン数の増加のみならず、磁束分布の分布パターンをより緻密に矯正できるなど、シートコイルCxa…,Cya…,Co…の多機能化及び多様化をより広げることができる。
 (7) 好適な態様により、励磁巻線2x,2y及び/又は検出巻線3に、巻線パターンPwにより、励磁巻線2x,2y及び/又は検出巻線3による磁束分布を正弦波状に矯正する磁束矯正機能部Fsを設ければ、シートコイルCxa…,Cya…,Co…を単純な平面形態により形成した場合に生じる磁束分布の台形化を、巻線パターンPwの変更のみにより容易に矯正できるため、実施の容易化及びレゾルバ1全体の更なる小型化に寄与できる。
 (8) 好適な態様により、磁束矯正機能部Fsを設けるに際し、励磁巻線2x,2y及び/又は検出巻線3を、異なる複数のシートコイルCxa…,Cya…,Co…を組合わせることにより設ければ、励磁巻線2x,2y及び/又は検出巻線3における必要なターン数を確保しつつ、磁束分布の台形化を矯正できる。
 (9) 好適な態様により、励磁巻線2x,2y及び/又は検出巻線3に、複数のコイル部13f,13rを組合わせることにより、励磁巻線2x,2y及び/又は検出巻線3による磁束分布の不要成分を打ち消す磁束補正機能部Faを設ければ、本来の機能に対して、磁束補正機能部Faを付加できるため、ノイズや誤差の低減を図ることにより、検出精度の更なる向上に寄与できる。
本発明の実施例1に係るレゾルバの励磁巻線の分解説明図、 同レゾルバの励磁巻線の組付説明図、 同レゾルバの検出巻線の分解説明図、 同レゾルバの検出巻線の組付説明図、 同レゾルバの課題説明図、 同レゾルバの原理説明図、 同レゾルバのレゾルバ本体部の内部構造を示す側面断面図、 同レゾルバの信号処理部のブロック回路図、 本発明の実施例2に係るレゾルバに使用する励磁側及び検出側の磁気コアの外観斜視図、 同レゾルバの励磁巻線と検出巻線の側面断面図、 同レゾルバの励磁巻線の組付説明図、 同レゾルバの励磁巻線の巻線パターン図、 同レゾルバの検出巻線の巻線パターン図、 本発明の実施例3に係るレゾルバに使用する励磁側及び検出側の磁気コアの外観正面図、 同レゾルバに使用する磁気コアの側面断面図、 同レゾルバのレゾルバ本体部の内部構造を示す側面断面図、 同レゾルバの励磁巻線のシートコイルの全体形状図、 同レゾルバに使用する変更例に係る検出側の磁気コアの外観正面図、 同磁気コアに使用する検出巻線のシートコイルの全体形状図、
 1:レゾルバ,2x:励磁巻線,2y:励磁巻線,3:検出巻線,4:受動体,4r:回動体,5:磁気コア,5f:コア面,6:磁気コア,6f:コア面,7…:コイル収容溝部,7d…:コイル収容溝部の底部,7m…:主収容溝部,11:回動軸,12:シート部,12f:シート部の表面,12r:シート部の裏面,13f:コイル部,13r:コイル部,Sx:励磁信号,Sy:励磁信号,So:検出信号,Sh:高周波信号,Smx:変調信号,Smy:変調信号,Smo:変調信号,H…:刳り貫き部,Cxa…:シートコイル,Cya…:シートコイル,Co…:シートコイル,Cp…:コイル部分,Cq…:コイル部分,Dm:長手方向,Ds:直角方向,Ld…:所定間隔,Pw:巻線パターン,Fs:磁束矯正機能部,Fa:磁束補正機能部
 次に、本発明の最良実施形態に係る実施例1~実施例3を挙げ、図面に基づき詳細に説明する。
 まず、実施例1に係るレゾルバ1の構成について、図1~図8を参照して説明する。実施例1に係るレゾルバ1は、大別して、図7に示す磁気系及び機械系により構成するレゾルバ本体部M1と、図8に示す電気系により構成する信号処理部M2を備える。
 レゾルバ本体部M1は、図7に示すように、ケーシング21の内部に固定状態に取付ける励磁ユニット22と、このケーシング21の中心に、不図示の軸受部により回動自在に支持される回動軸11を有する回動体4r(受動体4)を備える。回動体4rは、回動軸11を中心位置に固定した円板部25を備え、この円板部25における、励磁ユニット22に対向する面には、当該励磁ユニット22に対面する検出ユニット23を取付ける。また、励磁ユニット22は、全体がリング状となり、その内側空間には、出力トランス24の二次巻線24sを配設するとともに、検出ユニット23も、全体がリング状となり、その内側における円板部25には、二次巻線24sに対面する、出力トランス24の一次巻線24fを配設する。以上が、レゾルバ本体部M1全体の基本構成となる。
 次に、実施例1に係るレゾルバ1の要部構成、即ち、レゾルバ本体部M1に備える励磁ユニット22及び検出ユニット23の構成について、図1~図8を参照して具体的に説明する。
 励磁ユニット22は、図1及び図2に示すように、磁気コア5と位相を異ならせた二つのシートコイルユニット27,27を備える。
 磁気コア5は、図2に示すように、例えば、フェライト等の磁性体により一体成形した所定の厚さを有するリング状に形成する。そして、磁気コア5の長手方向(周方向)Dmへ所定間隔Ld…置きに配し、かつ当該磁気コア5のコア面5fに長手方向Dmに対して直角方向(径方向)Dsに複数のコイル収容溝部7…を形成する。
 例示の場合、周方向Dmに沿って、計十二のコイル収容溝部7…を順次形成するため、所定間隔Ld…は角度30〔゜〕間隔となる。このコイル収容溝部7…には、各シートコイルCxa…,Cya…の少なくとも二個所の部位のコイル部分Cp…,Cq…を収容する機能を有する。したがって、コイル収容溝部7…は、断面を矩形に形成し、かつ深さは、図2(図7)に示すように、厚さ方向における中央付近が底部7d…となるように選定する。なお、この底部7d…は、厚さ方向における中央付近が望ましいが、収容するシートコイルCxa…,Cya…の数量等に応じて任意に選定可能である。これにより、各コイル収容溝部7…同士の間には突起状部P…が形成される。また、実施例1に係るレゾルバ1は、直径が5〔mm〕前後の超小型レゾルバである。このため、磁気コア5の直径は4〔mm〕前後となり、コイル収容溝部7の深さは0.5〔mm〕程度となる。
 一方、励磁ユニット22は、実施例1の場合、図8に示すように、変調された励磁信号Sxが付与されるsin相側の励磁巻線2xを有する一方のシートコイルユニット27と、変調された励磁信号Syが付与されるcos相側の励磁巻線2yを有する他方のシートコイルユニット27を備える。そして、図2に示すように、一方のシートコイルユニット27は、二つのシートコイルCxa,Cxbにより構成するとともに、他方のシートコイルユニット27は、二つのシートコイルCya,Cybにより構成する。
 一つのシートコイルCxaの基本的な構成は、基板を構成するシート部12とこのシート部12の表面12f及び裏面12rにそれぞれ設けたコイル部13f,13rを備え、全体をフレキシブルプリント回路基板(FPCB)として構成する。この場合、コイル部13fと13rは、同一に形成してもよいし、異ならせて形成してもよい。このように、シートコイルCxaを構成するに際し、基板を構成するシート部12の表面12f及び裏面12rに設けた各コイル部13f,13rを同一に又は異ならせて形成すれば、シートコイルCxaのターン数の増加のみならず、磁束分布の分布パターンを矯正するなど、シートコイルCxaの多機能化及び多様化を図ることができる。シートコイルCxaについて説明したが、他のシートコイルCxb,Cya,Cybも基本的な構成はシートコイルCxaと同じである。なお、各励磁巻線2x,2yには、リード線の導出機能を有する端子シートJx,Jyを備え、この端子シートJx,Jyは、各シートコイルCxa…のシート部12と同一形状に形成する。この端子シートJx,Jyは、コイル部は設けていないが、必要によりコイル部を設けることも可能である。
 以下、各シートコイルCxa…の具体的な構成について説明する。なお、図1は、シートコイルCxa,Cxb,及び端子シートJxの巻線パターンを示し、図中の左側が表面12fを示し、右側が対応する裏面12rを示す。各シートコイルCxa…及び端子シートJxのシート部12…の形状は同一であり、図1に示すように、小リング部12s,大リング部12m,及び小リング部12sと大リング部12m間に形成した複数のブリッジ部12b…からなる。例示の場合、各ブリッジ部12b…は、一定間隔置きに計十二設けている。これにより、各ブリッジ部12b…同士の間には、刳り貫き部H…が形成され、この刳り貫き部H…に、前述した磁気コア5の突起状部P…が挿通する。
 そして、図1に示すように、二つのシートコイルCxa,Cxbにおけるシート部12…の二つの表面12f,12fと二つの裏面12r,12rの計四面を利用し、かつ一面、例えば表面12fに、二つのコイル部13f,13fを配し、合計八つのコイル部13f…を形成した。例示の場合、八つのコイル部13f…は、三種類のコイル、即ち、第一コイルC1,第二コイルC2,第三コイルC3のいずれかにより形成した。
 各シートコイルCxa…において、まず、シートコイルCxaは、図1に示すように、シート部12の表面12fにおける120〔゜〕の位置関係にあるブリッジ部12b,12b及びこのブリッジ部12b,12b間における大リング部12mと小リング部12sを利用して第二コイルC2を形成する。この際、同図に示すように、180〔゜〕対称となる位置にそれぞれ配することにより一対の第二コイルC2,C2を形成するとともに、裏面12rも表面12fと同様に一対の第二コイルC2,C2を形成する。なお、例示する第二コイルC2のターン数は2となるが、このターン数は設計事項として任意に選択できる。
 シートコイルCxbは、図1に示すように、シート部12の表面12fにおける180〔゜〕の位置関係にあるブリッジ部12b,12b及びこのブリッジ部12b,12b間における大リング部12mと小リング部12sを利用して第一コイルC1を形成するとともに、この第一コイルC1に対して、180〔゜〕対称となる位置には、60〔゜〕の位置関係にあるブリッジ部12b,12b及びこのブリッジ部12b,12b間における大リング部12mと小リング部12sを利用して第三コイルC3を形成する。さらに、裏面12rにも第一コイルC1と第三コイルC3を同様に形成するが、その位置は表面12fに対して反対の位置関係となる。
 したがって、第一コイルC1,C1、第二コイルC2,C2、第三コイルC3,C3は、それぞれ一対ずつ設けられ、一方側がS極、他方側がN極となるように結線する。なお、図1に示すシートコイルCxa,Cxb,Jxにおける黒丸部t…は、スルーホールを示しており、シートコイルCxa,Cxb,Jxの表面12f…を磁気コア5側に向け、シートコイルCxa,Cxb,Jxの順に積層することによりシートコイルユニット27(励磁巻線2x)が構成される。
 以上、励磁巻線2xについて説明したが、励磁巻線2yも同様に構成することができる。したがって、二つのシートコイルユニット27,27を用意し、一方を励磁巻線2xとして用いるとともに、他方を励磁巻線2yとして用いればよい。この場合、組付けに際しては、図2に示すように、磁気コア5に対して、最初に、一方のシートコイルユニット27(励磁巻線2x)の組付けを行い、この後、空間的に電気角で90〔゜〕位相を異ならせることにより、他方のシートコイルユニット27(励磁巻線2y)の組付けを行えばよい。図2がこの位置関係を示したものであり、また、一対のシートコイルユニット27,27を含む励磁ユニット22をケーシング21に組付けた構造が図7となる。
 ところで、励磁巻線2x,2yにおいて、複数の異なる第一コイルC1…,第二コイルC2…及び第三コイルC3…を設けて組合わせる理由は、磁束分布を矯正する磁束矯正機能部Fsとして機能させるためである。この磁束矯正機能部Fsの機能について、図5及び図6を参照して説明する。励磁巻線2x,2yによる磁束分布は、図5に実線及び点線で示す正弦波によるsinカーブUx及びcosカーブUyになることが理想的であるが、シートコイルCxa…,Cya…を単純な平面形態により形成した場合、図5に仮想線Uxrで示すような台形状になる。このため、図6に示すように、第一コイルC1,第二コイルC2,第三コイルC3による各磁束分布を組合わせることにより、正弦波状の磁束分布になるように矯正する磁束矯正機能部Fsを設けたものである。
 このように、シートコイルCxa…,Cya…を構成するに際し、基板を構成するシート部12の表面12f及び裏面12rに設けた各コイル部13f,13rを同一に又は異ならせて形成すれば、シートコイルCxa…,Cya…のターン数の増加のみならず、磁束分布の分布パターンを矯正するなど、シートコイルCxa…,Cya…の多機能化及び多様化を図ることができる。即ち、各コイル部13f,13rを同一に形成すれば、ターン数の増加を図れるとともに、異ならせて形成すれば、励磁巻線2x,2yにおける必要なターン数を確保しつつ、磁束分布の台形化を矯正できる磁束矯正機能部Fsを容易に設けることができる。なお、励磁巻線2x,2yにおける各コイル部13f,13rを同一に形成し、ターン数の増加を図った場合、後述する検出巻線3側に、磁束矯正機能部Fsを設ければよい。
 他方、検出ユニット23は、図3及び図4に示すように、磁気コア6とシートコイルユニット28により構成する。磁気コア6は、図4に示すように、例えば、フェライト等の磁性材により所定の厚さを有するリング状に形成する。この場合、後述するシートコイルCo…を付設するコア面6fは平坦形成とし、磁気コア5側のようなコイル収容溝部7…は形成しない。
 また、シートコイルユニット28は、図3に示すように、実施例1の場合、変調信号Smoが出力する検出巻線3を備える。そして、図4に示すように、検出巻線3は、一つのシートコイルCoにより構成する。シートコイルCoの基本的な構成は、基板を構成するシート部12とこのシート部12の表面12f及び裏面12rにそれぞれ設けたコイル部13f,13rを備え、全体をフレキシブルプリント回路基板(FPCB)として構成する。この場合、励磁巻線2x側と同様、コイル部13fと13rは、同一に形成してもよいし、異ならせて形成してもよい。このように、シートコイルCoを構成するに際し、基板を構成するシート部12の表面12f及び裏面12rに設けた各コイル部13f,13rを同一に又は異ならせて形成すれば、シートコイルCxaのターン数の増加のみならず、磁束分布の分布パターンを矯正するなど、シートコイルCxaの多機能化及び多様化を図ることができる。なお、励磁巻線3には、リード線の導出機能を有する端子シートJoを備え、この端子シートJoは、シートコイルCoのシート部12と同一形状に形成する。この端子シートJoは、コイル部は設けていないが、必要によりコイル部を設けることも可能である。
 図3は、シートコイルCo及び端子シートJoの巻線パターンを示し、図中の左側が表面12fを示し、右側が対応する裏面12rを示す。各シートコイルCo及び端子シートJoのシート部12…の形状は同一のリング状となる。そして、シート部12の表面12fには、180〔゜〕対称となる位置関係により、一対のコイル部13f,13fを形成する。例示の場合、シート部12を中央線により二分割した半円形状の表面における外郭形状に沿って、一対のコイル部13f,13fをそれぞれ形成した。なお、例示するコイル部13f,13fのターン数は2であるが、このターン数は設計事項として任意に選択できる。また、シート部12の裏面12rには、180〔゜〕対称となる位置関係により、一対のコイル部13r,13rを、表面12f側と同様に形成するが、表面12f側に対しては、周方向Dmの角度を所定角度Qsだけ位置(角度)をズラして位相を異ならせた。この構成は磁束補正機能部Faとして機能する。表面12fにおける一対のコイル部13f,13f及び裏面12rにおける一対のコイル部13r,13rは、それぞれS極とN極を構成する。
 裏面12rのコイル部13r,13rを所定角度Qsだけズラしたのは次の理由による。通常、コイル部13f…,13r…により発生する磁束分布には多くの高調波成分が含まれ、この高調波成分は検出誤差として影響する。このため、シート部12の表面12f側と裏面12r側のコイル部13f…をズラすことにより、不要な高調波成分を打ち消す磁束補正機能部Faとして機能させるようにした。この場合、所定角度Qsの大きさを選定することにより、打ち消す高調波成分の周波数を選定することができる。このように、検出巻線3に、複数のコイル部13f,13rを組合わせることにより、検出巻線3による磁束分布の不要成分を打ち消す磁束補正機能部Faを設ければ、本来の検出機能に対して、磁束補正機能部Faを付加することができるため、ノイズや誤差の低減を図ることにより、検出精度の更なる向上に寄与できる利点がある。
 なお、図3に示すシートコイルCo及び端子シートJoにおける黒丸部t…は、スルーホールを示しており、シートコイルCo及び端子シートJoの表面12f…を磁気コア6側に向け、シートコイルCo,端子シートJoの順に積層することにより、検出巻線3を有するシートコイルユニット28を構成することができる。図4がこの位置関係を示したものであり、また、シートコイルユニット28を磁気コア6に組付ける(貼付ける)ことにより構成される検出ユニット23を円板部25に取付け、更にケーシング21に組付けた構造が図7となる。
 次に、このように構成するレゾルバ本体部M1に接続して使用する信号処理部M2の構成について、図8を参照して説明する。
 図8中、M1はレゾルバ本体部示し、図1~図7と同一部分には同一符号を付してその構成を明確にした。このレゾルバ本体部M1に接続する信号処理部M2は、入力側回路M2iを備え、この入力側回路M2iは、発振部31により生成したクロック信号に基づいてカウンタパルスを生成するカウンタパルス回路32、このカウンタパルスに基づいて周波数が1〔MHz〕程度の高周波信号を生成する高周波信号生成回路33、この高周波信号に基づいて励磁信号Sx(V・sinωt),Sy(V・cosωt)を生成する励磁信号生成回路34、一方の励磁信号Sxが入力し、かつ励磁信号Sxの極性反転位置で、高周波信号の極性を反転させて出力する極性反転回路35、この極性反転回路35から出力する高周波信号により励磁信号Sxを振幅変調する変調回路36、この変調回路36から出力する変調信号Smx、即ち、振幅変調された励磁信号Sxを一方の励磁巻線2xに供給する励磁回路37を備えるとともに、他方の励磁信号Syが入力し、かつ励磁信号Syの極性反転位置で、高周波信号の極性を反転させて出力する極性反転回路38、この極性反転回路38から出力する高周波信号により励磁信号Syを振幅変調する変調回路39、この変調回路39から出力する変調信号Smy、即ち、振幅変調された励磁信号Syを他方の励磁巻線2yに供給する励磁回路40を備える。
 また、M2oは出力側回路であり、この出力側回路M2oは、出力トランス24の二次巻線24sに接続することにより当該二次巻線24sから出力する変調信号Smoを復調して検出信号Soを出力する出力処理回路51、この出力処理回路51から得た検出信号Soが付与される角度検出回路52を備える。なお、出力トランス24の一次巻線24fは検出巻線3に接続される。
 他方、M2sは、励磁信号Sx,Syと検出信号So間に生じる位相誤差を補正する位相補正回路であり、この位相補正回路M2sは、温度ドリフトに基づく補正信号を生成する温度補正信号生成部53、この温度補正信号生成部53から出力する補正信号によりカウンタパルス回路32から出力したカウンタパルスを補正する補正回路54、この補正回路54から出力する補正されたカウンタパルスに基づいて高周波信号を生成する高周波信号生成回路58、この高周波信号生成回路58から出力する高周波信号に基づいて参照信号を生成する参照信号生成回路59を備え、この参照信号生成回路59により生成された参照信号は角度検出回路52に付与される。なお、温度補正信号生成部53は、出力処理回路51を経由して得る変調信号Smoから高周波信号成分を分離し、得られた高周波信号成分とカウンタパルス回路32から出力するカウンタパルスと高周波信号生成回路58から出力する高周波信号に基づいて当該高周波信号成分の温度ドリフトによる誤差成分を検出する温度ドリフト検出機能を備え、この温度ドリフト検出機能から得られる誤差成分に基づいて上記補正信号を生成する補正信号生成機能を備える。
 このように、励磁巻線2x,2yに対して、高周波信号Shにより励磁信号Sx,Syを振幅変調し、かつ当該高周波信号Shの極性を励磁信号Sx,Syの極性反転位置で反転させた変調信号Smx,Smyを入力し、検出巻線3から出力する変調信号Smoを復調して検出信号Soを得るようにすれば、シートコイルCxa…,Cya…,Co…のターン数を少なくした場合であっても、十分な誘起電圧(検出信号So)を得ることができるため、結果的に、レゾルバ1の超小型化,軽量化,低コスト化に寄与できるとともに、復調処理後における信号処理の容易化と安定化により、検出精度の高度化を実現できる利点がある。
 次に、このような構成を有する実施例1に係るレゾルバ1の動作について、各図を参照して説明する。
 まず、図8に示す発振部31から出力するクロック信号はカウンタパルス回路32に付与されることにより、カウンタパルスが生成される。このカウンタパルスは高周波信号生成回路33の入力側,温度補正信号生成部53及び補正回路54の入力側にそれぞれ付与される。高周波信号生成回路33ではカウンタパルスに基づいて周波数が1〔MHz〕程度の高周波信号が生成され、この高周波信号は励磁信号生成回路34の入力側に付与され励磁信号Sx,Syが生成される。
 そして、一方の励磁信号Sxは変調回路36及び極性反転回路35にそれぞれ付与され、変調回路36では、極性反転回路35から付与される高周波信号により、励磁信号生成回路34から付与される励磁信号Sxが振幅変調され、これより得る変調信号Smxは励磁回路37を介して励磁巻線2xに付与される。この際、極性反転回路35により高周波信号の極性は、励磁信号Sxの極性反転位置毎に反転せしめられる。これにより、励磁巻線2xは変調信号Smxにより励磁され、励磁巻線2xには変調信号Smxによる高周波電流が流れる。
 また、他方の励磁信号Syは変調回路39及び極性反転回路38にそれぞれ付与され、変調回路39では極性反転回路38から付与される高周波信号により、励磁信号生成回路34から付与される励磁信号Syが振幅変調され、これより得る変調信号Smyは励磁回路40を介して励磁巻線2yに付与される。この際、極性反転回路38により高周波信号生成回路33から付与される高周波信号の極性は、励磁信号Syの極性反転位置毎に反転せしめられる。これにより、励磁巻線2yは変調信号Smyにより励磁され、励磁巻線2yには変調信号Smyによる高周波電流が流れる。
 他方、検出巻線3からは励磁信号Sxに基づいて誘起する電圧と励磁信号Syに基づいて誘起する電圧が加算され、加算された合成電圧が変調信号Smoとして出力し、変調信号Smoに基づく高周波電流が流れる。この変調信号Smoは出力処理回路51に付与され、変調信号Smoが復調される。これにより、検出信号Soが得られ、角度検出回路52に付与される。また、出力処理回路51では、変調信号Smoから高周波信号成分が分離され、分離された高周波信号成分は温度ドリフト検出機能を備える温度補正信号生成部53に付与される。これにより、温度補正信号生成部53では、高周波信号分離機能により分離された高周波信号成分とカウンタパルス回路32から得るカウンタパルスと高周波信号生成回路58から得る高周波信号に基づいて当該高周波信号成分の温度ドリフトによる誤差成分が検出され、この誤差成分に基づいて補正信号が生成され、この補正信号は補正回路54に付与される。そして、補正回路54ではカウンタパルス回路32から付与されるカウタパルスが、当該補正信号により補正される。即ち、温度ドリフトによる誤差成分が排除される。
 一方、補正回路54から得る補正されたカウンタパルスは、高周波信号生成回路58に付与され、当該カウンタパルスに基づいて高周波信号が生成される。高周波信号生成回路58から得る高周波信号は、温度補正信号生成部53に付与され、温度補正信号生成部53における参照信号生成機能では、当該高周波信号に基づいて参照信号が生成される。この参照信号は角度検出回路52に付与され、角度検出回路52では参照信号から参照パルスを生成するとともに、検出信号Soから検出パルスを生成する。そして、この参照パルスの立上がりと検出パルスの立上がり間でカウンタパルスをカウントし、このカウント値を角度に変換して回動軸11の回動角を求める。具体的には、カウント値と回動角の関係を予めデータベース化し、データベースからカウント値に対応する回転角を読み出してもよいし、予め設定した関数式を用いることにより演算により求めてもよい。
 このように、実施例1に係るレゾルバ1によれば、基本的な構成として、少なくとも励磁巻線2x,2yを、二以上の刳り貫き部H…を有する二以上のシートコイルCxa…,Cya…の組合わせにより構成するとともに、当該シートコイルCxa…,Cya…を付設する磁気コア5の長手方向Dmへ所定間隔Ld…置きに配し、かつ当該磁気コア5のコア面5fに長手方向Dmに対して直角方向Dsに形成した複数のコイル収容溝部7…を設け、このコイル収容溝部7…に、各シートコイルCxa…,Cya…の少なくとも二個所の部位のコイル部分Cp…,Cq…を収容してなるため、特に、レゾルバ1の超小型化を図る場合におけるインダクタンスを高めることができ、十分な出力と検出精度を確保できるとともに、漏れ磁束の低減及びノイズの影響防止を図ることができる。
 また、受動体4を、回動軸11を有する回動体4rとして構成するとともに、シートコイルCxa…,Cya…及び磁気コア5を、回動軸11に対して同軸となるリング形に形成すれば、超小型機器における回動変位部の角度検出等に最適な変調波レゾルバ1として提供することができる。
 次に、本発明の実施例2に係るレゾルバ1について、図9~図13を参照して説明する。実施例2における、前述した図1~図7に示した実施例1との異なる点は、まず、励磁巻線2x,2yにおいて、磁気コア5の形態を変更した。即ち、図9に示すように、コイル収容溝部7…を形成するに際し、底部7d…側の内壁から長手方向Dmに切欠き形成した広幅となる主収容溝部7m…を設けた。したがって、図9に示すように、主収容溝部7mを含むコイル収容溝部7の径方向(Ds)から見た形状は逆T形となる。コイル収容溝部7を、このように構成すれば、より幅の広いフレキシブルなシートコイルCxa,Cyaを収容できるため、シートコイルCxa,Cyaの一枚当たりのターン数を増加させることが可能となり、インダクタンスをより高めることができ、レゾルバの更なる性能向上に寄与できる。
 また、図11及び図12に示すように、励磁巻線2x,2yに、それぞれ一つのシートコイルCxaを使用した。実施例2では、より幅の広いフレキシブルなシートコイルCxa,Cyaを使用できるため、一つのシートコイルCxaであってもターン数を増やすことができるため、その分、使用(積層)するシートコイルCxaの数量を減らすことができる。例示の場合、図11に示すように、リング形状のシート部12を二分割した形状の半シート部12pを使用し、半シート部12pの表面12fに、外縁部に沿ったコイル部13fを形成するとともに、半シート部12pの裏面に、外縁部に沿ったコイル部13r(図示を省略)を形成する。なお、二つの刳り貫き部H…を設けることにより、半シート部12pの両端位置と中央位置に計三つのブリッジ部12b,12b,12bを設けている。そして、四つの半シート部12p…を用意し、図12に示すように、二つの半シート部12p…を円形に組合わせることにより励磁巻線2xとして使用し、他の二つの半シート部12p…を円形に組合わせることにより励磁巻線2yとして使用する。
 実施例2に示す励磁巻線2x,2yは、細部の構成を省略したが、基本的な構成は、図1~図7に示した実施例1と同様に形成することができる。なお、例示の場合、二つの半シート部12p,12pを突き合わせて組付ける形態を示したが、一部を重ね合わせる形態により組合わせることも可能である。この場合には、重ね合わせた部位にスルーホールを設けることにより、二つの半シート部12p,12pの各コイル部13f…,13r…間の接続を行うことができる。実施例2における励磁巻線2x,2yでは、前述したように、磁束分布に台形化を生じるが、この励磁巻線2x,2yには前述した磁束矯正機能部Fsを設けていない。このため、磁束矯正機能部Fsは後述する検出巻線3に設けた。
 一方、検出巻線3は、図13に示すように、一つのシートコイルCoを使用した。シートコイルCoは、リング状のシート部12を二分割した二つのエリアの表面12fp,12fpに、一対のコイル部Cor,Corを形成した。この場合、一方のコイル部Corは、径方向Dsに沿ったワイヤ部Wr…を、90〔゜〕進んだ位置まで、漸次狭い間隔になるように周方向Dmへ形成するとともに、この後、さらに、180〔゜〕進んだ位置まで、漸次広い間隔になるように周方向Dmへ形成する巻線パターンPwを180〔゜〕対称となる位置にそれぞれ形成する。したがって、巻線パターンPwは、一筆書き状に形成される。同様の巻線パターンPwは、裏面にも形成する。この巻線パターンPwにより、磁束分布を正弦波状に矯正する波形矯正機能部Fsが設けられる。
 このように、検出巻線3に、巻線パターンPwにより、磁束分布を正弦波状に矯正する磁束矯正機能部Fsを設ければ、シートコイルCo…を単純な平面形態により形成した場合に生じる磁束分布の台形化を、巻線パターンPwの変更のみにより容易に矯正できるため、実施の容易化及びレゾルバ1全体の更なる小型化に寄与できる。
 また、図10は、このような実施例2により構成されたレゾルバ1における励磁巻線2x,2yを有する励磁ユニット22及び検出巻線3を有する励磁ユニット23の側面断面図を示す。その他、図9~図13において、図1~図7と同一部分には同一符号を付してその構成を明確にするとともに、その詳細な説明は省略する。
 次に、本発明の実施例3に係るレゾルバ1について、図14~図19を参照して説明する。実施例3における、前述した図9~図13に示した実施例2との異なる点は、実施例2の場合、シートコイルCxa,Cya,Coを、リング形状(偏平円筒形状)に形成した磁気コア5,6の端面位置に配設したが、実施例3では、シートコイルCxa,Cya,Coを、リング形状(偏平円筒形状)に形成した磁気コア5,6の周面位置に配設した点が異なる。
 このため、励磁側の磁気コア5は、図14及び図15に示すように、内周面5iに、十二のコイル収容溝部7…を等間隔により形成するとともに、コイル収容溝部7…の底部7d…側の内壁から周方向Dmに切欠き形成した広幅となる主収容溝部7m…を設けた。したがって、図14に示すように、主収容溝部7mを含むコイル収容溝部7の軸平行方向Dcから見た形状はT形となり、基本形状は、実施例2と同じになるが、形成する面は異なる。一方、検出側の磁気コア6は、図14及び図15に示すように、磁気コア5の内方の空間に配し、磁気コア5の内周面5i(コア面5f)に対して、磁気コア6の外周面6o(コア面6f)が所定の隙間を介して対面する。
 また、図17は、磁気コア5に使用するシートコイルCxa,Cyaを示す。図17(b)は、sin相側の励磁巻線2xを有するシートコイルCxaを示すとともに、図17(c)は、cos相側の励磁巻線2yを有するシートコイルCyaを示す。各シートコイルCxa,Cyaの巻線パターンは、基本的に、全体では、実施例1における励磁巻線2x,2yの巻線パターンと同様になるように選定する。これにより、正弦波に近似する図7(a)に示す磁束分布を得ることができる。なお、各シートコイルCxa,Cyaの巻線パターンは表裏面に形成されている。
 そして、シートコイルCxa,Cybを、磁気コア5に組付けるに際しては、まず、図17(b)に示すシートコイルCxaの端部P1に位置するブリッジ部12bを、図14に示す磁気コア5の位置P1のコイル収容溝部7に収容し、この後、磁気コア5の内周面5iにおいて、図14中の時計方向に沿ったコイル収容溝部7…に、シートコイルCxaのブリッジ部12b…を順次収容することにより組付けることができる。次いで、図17(c)に示すシートコイルCyaの端部P4に位置するブリッジ部12bが、図14に示す磁気コア5の位置P4のコイル収容溝部7に収容し、この後、磁気コア5の内周面5iにおいて、図14中の時計方向に沿ったコイル収容溝部7…に、シートコイルCyaのブリッジ部12b…を順次収容することにより組付けることができる。これにより、シートコイルCxa,Cyaは、電気角で90゜位相を異ならせた空間位置に配設される。これにより、図16に示す励磁ユニット61を得ることができる。この励磁ユニット61は、実施例1における励磁ユニット22と同様の機能を有する。
 さらに、磁気コア6の外周面6oには、実施例1における図3に示した検出巻線3を有するシートコイルCo(円形)と同様に形成したシートコイルCo(直線形)を貼着することにより、図16に示す検出ユニット62を得ることができる。この検出ユニット62は、実施例1における検出ユニット23と同様の機能を有する。なお、検出巻線3を有するシートコイルCoの巻線パターンは表裏面に形成されている。
 また、図16は、レゾルバ本体部M1を示す。図示のレゾルバ本体部M1は、全体のケーシング及びこのケーシングに支持される回動シャフトは除かれており、レゾルバ本体部M1の基本構成のみを示す。同図において、65は、大径円筒状に形成した外側に配する固定側となるアウタベース部を示すとともに、66は、小径円筒状に形成した内側に配する回動側となるインナベース部を示す。そして、アウタベース部65における内周面の一端側寄りに励磁ユニット61に備える磁気コア5の外周面を固定するとともに、インナベース部66における外周面の一端側寄りに検出ユニット62に備える磁気コア6の内周面を固定する。また、インナベース部66における外周面の他端側寄りに一次巻線71fの一次コア72fを固定するとともに、アウタベース部65における内周面の他端側寄りに二次巻線71sの二次コア72sを固定することにより出力トランス71を構成する。
 他方、図18は、図14に示した磁気コア6の変更例を示す。図18に示す磁気コア6は、外周面6oに、十二のコイル収容凹部75…を周方向Dmに沿って等間隔に形成したものである。したがって、この変更例では、使用する検出巻線3は、図17に示したシートコイルCxaと同一形状となる図19(b)に示すシートコイルCoを用いることができる。なお、シートコイルCoの巻線パターンは、実施例1における図3に示した検出巻線3を有するシートコイルCo(円形)と同様に形成したシートコイルCo(直線形)を用いればよい。これにより、図16に示す検出ユニット62と同様の機能を有する検出ユニットを得ることができる。この場合もシートコイルCoの巻線パターンは表裏面に形成されている。また、図19(a)は、検出巻線3側で得られる正弦波に近似する磁束分布を示す。その他、図14~図19において、図1~図13と同一部分には同一符号を付してその構成を明確にするとともに、その詳細な説明は省略する。
 以上、好適実施形態(実施例1~実施例3)について詳細に説明したが、本発明は、このような実施形態(実施例)に限定されるものではなく、細部の構成,形状,素材,数量,数値等において、本発明の要旨を逸脱しない範囲で、任意に変更,追加,削除することができる。
 例えば、励磁巻線2x,2yには、高周波信号Shにより励磁信号Sx,Syを振幅変調し、かつ当該高周波信号Shの極性を励磁信号Sx,Syの極性反転位置で反転させた変調信号Smx,Smyを入力し、検出巻線3から出力する変調信号Smoを復調して検出信号Soを得る実施例を示したが、変調することなく、励磁信号Sx,Syを励磁巻線2x,2yに入力し、かつ検出巻線3から出力する検出信号Soに基づいて励磁巻線2x,2y又は検出巻線3を設けた受動体4の変位量を検出する場合を排除するものではない。また、受動体4を、回動軸11を有する回動体4rとして構成するとともに、シートコイルCxa…,Cya…,Co…及び磁気コア5,6を、回動軸11に対して同軸となるリング形に形成するいわゆるロータリタイプとして構成する場合を示したが、受動体4が直進方向に変位する、いわゆるリニアタイプとして構成してもよい。一方、実施例では、励磁巻線2x,2yを一又は二以上の刳り貫き部H…を有する一又は二以上のシートコイルCxa…,Cya…の組合わせにより構成した場合を示したが、検出巻線3を一又は二以上の刳り貫き部H…を有する一又は二以上のシートコイルCo…の組合わせにより構成してもよいし、励磁巻線2x,2yと検出巻線3の双方を一又は二以上の刳り貫き部H…を有する一又は二以上のシートコイルCxa…,Cya…,Co…の組合わせにより構成してもよい。同様に、コイル収容溝部7…を、磁気コア5に設けた場合を示したが、磁気コア6に設けてもよいし、磁気コア5と6の双方に設けてもよい。また、シートコイルCxa…,Cya…,Co…は、基板を構成するシート部12の表面12f及び裏面12rに設けた場合を示したが、表面12f又は裏面12rの一方にのみ設ける場合を排除するものではない。なお、変調信号Smx,Smyは、励磁信号Sx,Syを振幅変調した場合を示したが、位相変調等の他の変調方式の採用を妨げるものではない。
 本発明に係るレゾルバは、励磁巻線又は検出巻線を設けた受動体の変位量(回転角)を検出する各種用途に利用できる。

Claims (9)

  1.  励磁信号を励磁巻線に入力し、かつ検出巻線から出力する検出信号に基づいて前記励磁巻線又は前記検出巻線を設けた受動体の変位量を検出するレゾルバにおいて、前記励磁巻線及び/又は前記検出巻線を、一又は二以上の刳り貫き部を有する一又は二以上のシートコイルの組合わせにより構成するとともに、当該シートコイルを付設する磁気コアの長手方向へ所定間隔置きに配し、かつ当該磁気コアのコア面に前記長手方向に対して直角方向に形成した複数のコイル収容溝部を設け、このコイル収容溝部に、前記各シートコイルの少なくとも二個所の部位のコイル部分を収容してなることを特徴とするレゾルバ。
  2.  前記励磁巻線に、高周波信号により励磁信号を振幅変調し、かつ当該高周波信号の極性を前記励磁信号の極性反転位置で反転させた変調信号を入力し、前記検出巻線から出力する変調信号を復調して前記検出信号を得ることを特徴とする請求項1記載のレゾルバ。
  3.  前記受動体は、回動軸を有する回動体として構成するとともに、前記シートコイル及び前記磁気コアは、前記回動軸に対して同軸となるリング形に形成することを特徴とする請求項1記載のレゾルバ。
  4.  前記コイル収容溝部は、底部側の内壁から長手方向に切欠き形成した広幅となる主収容溝部を有することを特徴とする請求項1記載のレゾルバ。
  5.  前記シートコイルは、基板を構成するシート部の表面及び裏面に設けた各コイル部を同一に又は異ならせて形成することを特徴とする請求項1記載のレゾルバ。
  6.  前記励磁巻線及び/又は前記検出巻線は、二以上のシートコイルの組合わせにより構成し、各シートコイルを同一に及び/又は異ならせて形成することを特徴とする請求項1記載のレゾルバ。
  7.  前記励磁巻線及び/又は前記検出巻線は、巻線パターンにより、前記励磁巻線及び/又は前記検出巻線による磁束分布を正弦派状に矯正する磁束矯正機能部を備えることを特徴とする請求項1記載のレゾルバ。
  8.  前記励磁巻線及び/又は前記検出巻線は、異なる複数の前記シートコイルを組合わせることにより、前記励磁巻線及び/又は前記検出巻線による磁束分布を正弦派状に矯正する磁束矯正機能部を備えることを特徴とする請求項1記載のレゾルバ。
  9.  前記励磁巻線及び/又は前記検出巻線は、複数の前記コイル部を組合わせることにより、前記励磁巻線及び/又は前記検出巻線による磁束分布の不要成分を打ち消す磁束補正機能を備えることを特徴とする請求項1記載のレゾルバ。
PCT/JP2020/015661 2019-04-12 2020-04-07 レゾルバ WO2020209252A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112020001946.2T DE112020001946T5 (de) 2019-04-12 2020-04-07 Drehmelder
US17/602,493 US11874141B2 (en) 2019-04-12 2020-04-07 Resolver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-076418 2019-04-12
JP2019076418A JP6872203B2 (ja) 2019-04-12 2019-04-12 レゾルバ

Publications (1)

Publication Number Publication Date
WO2020209252A1 true WO2020209252A1 (ja) 2020-10-15

Family

ID=72751286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015661 WO2020209252A1 (ja) 2019-04-12 2020-04-07 レゾルバ

Country Status (4)

Country Link
US (1) US11874141B2 (ja)
JP (1) JP6872203B2 (ja)
DE (1) DE112020001946T5 (ja)
WO (1) WO2020209252A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6876311B1 (ja) * 2020-11-18 2021-05-26 有限会社ワイエスデイ 変調波レゾルバ装置および回転角計測補間補正方法
WO2022124413A1 (ja) * 2020-12-11 2022-06-16 マブチモーター株式会社 レゾルバ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014374A (ja) * 2007-07-02 2009-01-22 Shiro Shimabara レゾルバ
JP2009174925A (ja) * 2008-01-22 2009-08-06 Tamagawa Seiki Co Ltd 回転角度検出装置
US20170152894A1 (en) * 2014-05-26 2017-06-01 Schaeffler Technologies AG & Co. KG Resolver bearing, resolver stator, and method for producing same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3229512B2 (ja) * 1994-05-30 2001-11-19 株式会社西本合成販売 変成器及び変成器用のコイルボビン
DE69803014T2 (de) * 1997-07-25 2002-07-04 Tokin Corp Magnetischer Fühler mit einer auf den Spulenkörper aufgebrachten lineare Dünnschichtleiterabschnitte aufweisenden Erregerspule mit darauf gewickelter Detektorspule
JP3047231B1 (ja) 1999-04-02 2000-05-29 士郎 嶋原 レゾルバ
GB0126014D0 (en) * 2001-10-30 2001-12-19 Sensopad Technologies Ltd Modulated field position sensor
US6856061B2 (en) * 2001-11-12 2005-02-15 Nsk Ltd. Synchronous resolver, resolver cable and direct drive motor system
JP4602749B2 (ja) * 2004-12-10 2010-12-22 ミネベア株式会社 扁平型レゾルバ
JP2014006175A (ja) * 2012-06-26 2014-01-16 Aisan Ind Co Ltd 角度センサ
US9488506B2 (en) * 2012-09-26 2016-11-08 Minebea Co., Ltd. Resolver
EP3438616A4 (en) * 2016-07-13 2019-05-15 Igarashi Electric Works Ltd. TURNING ANGLE MEASURING DEVICE AND ELECTRIC MOTOR WITH ANGLE MEASUREMENT DEVICE THEREFOR

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014374A (ja) * 2007-07-02 2009-01-22 Shiro Shimabara レゾルバ
JP2009174925A (ja) * 2008-01-22 2009-08-06 Tamagawa Seiki Co Ltd 回転角度検出装置
US20170152894A1 (en) * 2014-05-26 2017-06-01 Schaeffler Technologies AG & Co. KG Resolver bearing, resolver stator, and method for producing same

Also Published As

Publication number Publication date
US20220205813A1 (en) 2022-06-30
JP6872203B2 (ja) 2021-05-19
US11874141B2 (en) 2024-01-16
JP2020173217A (ja) 2020-10-22
DE112020001946T5 (de) 2022-03-10

Similar Documents

Publication Publication Date Title
JP6541037B2 (ja) 誘導型位置検出装置
US6239571B1 (en) Resolver
JP4002308B2 (ja) 誘導型回転位置検出装置
US5446966A (en) Angular position transducer
EP2430402B1 (en) Magnetoelectronic angle sensor, in particular a reluctance resolver
WO2020209252A1 (ja) レゾルバ
US20060043815A1 (en) Variable-reluctance resolver and multi-resolver using same
WO2021038967A1 (ja) レゾルバ
JPH08178611A (ja) バリアブルリラクタンス型角度検出器
US6756779B2 (en) Inductive measuring transducer for determining the relative position of a body
JP5086223B2 (ja) 回転検出装置
JPH01218344A (ja) レゾルバ
JP2013083485A (ja) 角度センサ
JP6792441B2 (ja) レゾルバステータ
WO2022124415A1 (ja) レゾルバ
WO2022124416A1 (ja) レゾルバ
JPH0421067Y2 (ja)
JP2009014374A (ja) レゾルバ
JP2018189464A (ja) 並列巻線レゾルバ
US20230146396A1 (en) Resolver
JPS645204Y2 (ja)
JP2000352501A (ja) 磁気誘導式回転位置センサ
JPS61122504A (ja) 回転位置検出装置
JPS5956859A (ja) バ−ニヤ形誘導子レゾルバ
JP6164608B2 (ja) トルクセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787254

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20787254

Country of ref document: EP

Kind code of ref document: A1