WO2020203371A1 - 非水系二次電池用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池 - Google Patents

非水系二次電池用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池 Download PDF

Info

Publication number
WO2020203371A1
WO2020203371A1 PCT/JP2020/012489 JP2020012489W WO2020203371A1 WO 2020203371 A1 WO2020203371 A1 WO 2020203371A1 JP 2020012489 W JP2020012489 W JP 2020012489W WO 2020203371 A1 WO2020203371 A1 WO 2020203371A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
electrode
block copolymer
aromatic vinyl
block
Prior art date
Application number
PCT/JP2020/012489
Other languages
English (en)
French (fr)
Inventor
愛 増田
木所 広人
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2021511455A priority Critical patent/JPWO2020203371A1/ja
Priority to KR1020217029874A priority patent/KR20210151065A/ko
Priority to CN202080012593.7A priority patent/CN113396168B/zh
Priority to US17/593,917 priority patent/US20220181630A1/en
Priority to EP20785088.4A priority patent/EP3950750B1/en
Publication of WO2020203371A1 publication Critical patent/WO2020203371A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F287/00Macromolecular compounds obtained by polymerising monomers on to block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • C08F297/044Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes using a coupling agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • C08F297/046Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes polymerising vinyl aromatic monomers and isoprene, optionally with other conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder composition for a non-aqueous secondary battery, a slurry composition for a non-aqueous secondary battery electrode, an electrode for a non-aqueous secondary battery, and a non-aqueous secondary battery.
  • Non-aqueous secondary batteries such as lithium-ion secondary batteries (hereinafter, may be simply abbreviated as "secondary batteries") are small and lightweight, have high energy density, and can be repeatedly charged and discharged. Yes, it is used for a wide range of purposes. Therefore, in recent years, improvement of battery members such as electrodes has been studied for the purpose of further improving the performance of non-aqueous secondary batteries.
  • the electrodes used in a secondary battery such as a lithium ion secondary battery are usually a current collector and an electrode mixture layer (positive electrode mixture layer or negative electrode mixture layer) formed on the current collector. It has. Then, in this electrode mixture layer, for example, a slurry composition containing an electrode active material and a binder composition containing a binder is applied onto a current collector, and the applied slurry composition is dried. It is formed.
  • a particulate polymer A which is a copolymer having a block region composed of an aromatic vinyl monomer unit, an aliphatic conjugated diene monomer unit, and an aromatic vinyl single amount.
  • a binder composition for a non-aqueous secondary battery electrode containing a particulate polymer B which is a random copolymer containing a body unit, has been proposed.
  • the electrodes of the secondary battery are required to have excellent flexibility. Further, in recent years, electrodes are required to have even higher flexibility from the viewpoint of increasing the capacity and the like.
  • the non-aqueous secondary battery provided with the electrode formed by using the conventional binder composition for the non-aqueous secondary battery electrode has room for further improvement in terms of cycle characteristics.
  • the present invention comprises a binder composition for a non-aqueous secondary battery capable of forming an electrode having sufficiently high flexibility and capable of enhancing the cycle characteristics of the obtained secondary battery, and a slurry for a non-aqueous secondary battery electrode. It is an object of the present invention to provide a composition. Another object of the present invention is to provide an electrode for a non-aqueous secondary battery having sufficiently high flexibility, and a non-aqueous secondary battery provided with the electrode and having excellent cycle characteristics.
  • the present inventors have conducted diligent studies for the purpose of solving the above problems. Then, the present inventors can extremely improve the flexibility of the obtained electrode and obtain it by blending a particulate polymer composed of an asymmetric block copolymer satisfying a predetermined condition into the binder composition.
  • the present invention has been completed by newly finding that the cycle characteristics of the secondary battery can be sufficiently enhanced.
  • the present invention aims to advantageously solve the above problems, and the binder composition for a non-aqueous secondary battery of the present invention is a block copolymer represented by the following general formula (A). It is characterized by containing a particulate polymer containing A. Ar1 a- D a- Ar2 a ... (A) [Here, in the general formula (A), Ar1 a represents a block region composed of an aromatic vinyl monomer unit having a weight average molecular weight of 5,500 to 20,000, and Ar2 a is a weight average.
  • the block regions made of aromatic vinyl monomer units having different weight average molecular weights are separated from each other by the block regions made of aliphatic conjugated diene monomer units, that is, they have an asymmetric structure. According to the binder composition containing at least the predetermined block copolymer A, it is possible to form an electrode having sufficiently high flexibility and capable of enhancing the cycle characteristics of the obtained secondary battery.
  • a "monomer unit” of a polymer means “a repeating unit derived from the monomer contained in a polymer obtained by using the monomer”.
  • the polymer has a block region composed of monomer units means “there is a portion in the polymer in which only the monomer units are continuously bonded as a repeating unit.” It means “to do”.
  • the "weight average molecular weight" of each region contained in a certain block copolymer can be measured by the method described in Examples.
  • the particulate polymer further contains a block copolymer B represented by the following general formula (B), and the block copolymer A and the block copolymer A It is preferable that the ratio of the block copolymer A is 36% by mass or more and 85% by mass or less, assuming that the total mass of the block copolymer B is 100% by mass.
  • Ar1 b- D b- Ar2 b ... (B) [Here, in the above general formula (B), Ar1 b and Ar2 b each independently form a block region composed of aromatic vinyl monomer units having a weight average molecular weight of 6,000 to 20,000.
  • D b indicates a block region consisting of an aliphatic conjugated diene monomer unit.
  • the surface acid amount of the particulate polymer is preferably 0.05 mmol / g or more and 0.90 mmol / g or less.
  • the amount of surface acid of the particulate polymer is within the above range, the viscosity stability of the slurry composition prepared by using the binder composition can be enhanced.
  • the "surface acid amount" of the particulate polymer can be measured by the method described in Examples.
  • the present invention aims to advantageously solve the above problems, and the slurry composition for a non-aqueous secondary battery electrode of the present invention comprises an electrode active material and the above-mentioned non-aqueous secondary battery. It is characterized by containing any of the binder compositions. As described above, if any of the above-mentioned binder compositions for non-aqueous secondary batteries is contained, the flexibility of the electrodes formed by using the slurry composition for non-aqueous secondary battery electrodes can be sufficiently improved. it can. Further, the cycle characteristics of the secondary battery provided with such an electrode can be sufficiently improved.
  • the present invention aims to advantageously solve the above problems, and the electrode for a non-aqueous secondary battery of the present invention is formed by using the above-mentioned slurry composition for a non-aqueous secondary battery electrode.
  • the electrode mixture layer is provided.
  • An object of the present invention is to solve the above problems advantageously, and the non-aqueous secondary battery of the present invention has a positive electrode, a negative electrode, a separator and an electrolytic solution, and the positive electrode and the negative electrode At least one of them is the electrode for a non-aqueous secondary battery described above. If the above-mentioned electrode for a non-aqueous secondary battery is used, a non-aqueous secondary battery having excellent cycle characteristics can be efficiently manufactured.
  • an electrode having sufficiently high flexibility and capable of enhancing the cycle characteristics of the obtained secondary battery is formed. be able to. Further, according to the present invention, it is possible to obtain an electrode for a non-aqueous secondary battery having sufficiently high flexibility and a non-aqueous secondary battery having the electrode and having excellent cycle characteristics.
  • the binder composition for a non-aqueous secondary battery of the present invention can be used for preparing the slurry composition for a non-aqueous secondary battery electrode of the present invention. Then, the slurry composition for a non-aqueous secondary battery electrode prepared by using the binder composition for a non-aqueous secondary battery of the present invention is used when manufacturing an electrode of a non-aqueous secondary battery such as a lithium ion secondary battery. Can be used. Further, the non-aqueous secondary battery of the present invention is characterized by using the electrode for the non-aqueous secondary battery of the present invention formed by using the slurry composition for the non-aqueous secondary battery electrode of the present invention.
  • the binder composition for a non-aqueous secondary battery, the slurry composition for a non-aqueous secondary battery electrode, and the electrode for a non-aqueous secondary battery of the present invention are preferably for a negative electrode, and the non-aqueous secondary battery of the present invention is used.
  • the battery preferably uses the electrode for a non-aqueous secondary battery of the present invention as a negative electrode.
  • the binder composition for a non-aqueous secondary battery of the present invention contains a predetermined particulate polymer, and may optionally further contain water as a dispersion medium and other components that can be blended in the binder composition.
  • the particulate polymer contains the block copolymer A, which is an asymmetric block copolymer, the flexibility is sufficiently high and the cycle characteristics of the obtained secondary battery can be obtained. It is possible to form an electrode that can enhance.
  • a silicon-based material may be adopted as the electrode active material.
  • an electrode active material made of a silicon-based material (hereinafter, also referred to as a Si-based electrode active material) has a large expansion and contraction during charging and discharging, an electrode having an electrode mixture layer containing the Si-based electrode active material is flexible. Is required to be further enhanced. Therefore, since the binder composition of the present invention has excellent flexibility, it can satisfactorily follow the expansion and contraction of the Si-based electrode active material in the electrode even when used in combination with the Si-based electrode active material. Therefore, the cycle characteristics of the secondary battery can be improved.
  • the block copolymer A contained in the binder composition of the present invention is an asymmetric block copolymer. More specifically, the block copolymer A is arranged separated by a block region composed of an aliphatic conjugated diene monomer unit (hereinafter, may also be referred to as an "aliphatic conjugated diene block region"). It contains a block region (hereinafter, also referred to as "aromatic vinyl block region”) composed of two aromatic vinyl monomer units having different weight average molecular weights.
  • the aromatic vinyl block region having a smaller weight average molecular weight acts to soften the block copolymer A itself, while the aromatic vinyl block having a larger weight average molecular weight. It is considered that the region suppresses the excessive softening of the block copolymer A and effectively suppresses the increase in the permanent elongation of the block copolymer A.
  • the electrode mixture layer containing the block copolymer A has a strength capable of following deformation due to repeated charging and discharging. Therefore, the cycle characteristics of the obtained secondary battery can be improved.
  • the particulate polymer is a component that functions as a binder, and in the electrode mixture layer formed by using the slurry composition containing the binder composition, components such as the electrode active material are desorbed from the electrode mixture layer. It is held so that it does not exist, and the electrode and the separator can be adhered to each other through the electrode mixture layer.
  • the particulate polymer needs to contain a predetermined block copolymer A described later, and optionally further contains a predetermined block copolymer B described later.
  • the particulate polymer is a water-insoluble particle formed by a predetermined polymer.
  • the term "water-insoluble" means that when 0.5 g of the polymer is dissolved in 100 g of water at a temperature of 25 ° C., the insoluble content is 90% by mass or more.
  • the block copolymer A as a particulate polymer is a particle made of a copolymer having a structure represented by the following general formula (A).
  • Ar1 a- D a- Ar2 a ... (A) Ar1 a represents a block region composed of an aromatic vinyl monomer unit having a weight average molecular weight of 5,500 to 20,000, and Ar2 a has a weight average molecular weight.
  • each component 1) to 3) of block copolymer A is 1) A block region composed of aromatic vinyl monomer units having a weight average molecular weight of 5,500 to 20,000 is referred to as an "aromatic vinyl block region (Ar1 a )". 2) The weight average molecular weight of 40,000 to 400,000, a block area consisting of an aromatic vinyl monomer unit, an "aromatic vinyl block area (Ar @ 2 a)", 3) The block region composed of the aliphatic conjugated diene monomer unit is referred to as "aliphatic conjugated diene block region ( Da )". Sometimes referred to.
  • the block copolymer A has a larger weight average molecular weight. It contains a group vinyl block region (Ar2 a ) and an aromatic vinyl block region (Ar1 a ) having a smaller weight average molecular weight. Then, as is clear from the above general formula (A), the aromatic vinyl block regions (Ar1 a , Ar2 a ) having different weight average molecular weights are separated by the aliphatic conjugated diene block region (D a ). .. In other words, the block copolymer A is a block copolymer having an asymmetric structure when centered on the aliphatic conjugated diene block region ( Da ).
  • the block copolymer A may have other polymer chain portions that do not correspond to these regions. However, from the viewpoint of effectively suppressing the increase in permanent elongation, it is preferable that the block copolymer A does not contain other polymer chain portions.
  • Aromatic vinyl block area (Ar1 a, Ar2 a) is a region including a portion of connected only an aromatic vinyl monomer unit.
  • the aromatic vinyl block area (Ar1 a, Ar2 a) is a repeating unit, a region mainly containing an aromatic vinyl monomer unit.
  • the block region "mainly contains" aromatic vinyl monomer units 80% by mass or more is aromatic, assuming that all the monomer units contained in a certain block region are 100% by mass. It means that it is occupied by a vinyl monomer unit.
  • one aromatic vinyl block area (Ar1 a, Ar2 a) may be contain only one kind of the aromatic vinyl monomer unit, a plurality of types of aromatic vinyl monomer units Although it may be composed, it is preferably composed of only one kind of aromatic vinyl monomer unit.
  • aromatic vinyl monomer that can be used to form an aromatic vinyl monomer unit constituting the aromatic vinyl block area (Ar1 a, Ar2 a), not particularly limited as long as it is an aromatic vinyl compound
  • styrene is preferable. These can be used individually by 1 type or in combination of 2 or more types, but it is preferable to use 1 type alone.
  • Each aromatic vinyl block area (Ar1 a, Ar2 a) is, it may be one consisting of polymerized units formed by using the same aromatic vinyl monomer, a different aromatic vinyl monomer It may consist of the polymerization unit formed in use.
  • the MW (Ar1 a ) is not more than the above upper limit value, it is possible to suppress the block copolymer A from becoming excessively hard and to increase the flexibility of the obtained electrode. Further, when the MW (Ar1 a ) is not more than the above upper limit value, the electrode easily follows the expansion and contraction accompanying the charge and discharge of the secondary battery, and the cycle characteristics of the secondary battery can be improved.
  • the aromatic vinyl block region (Ar2 a ) which is an aromatic vinyl block region having a larger weight average molecular weight, needs to have a weight average molecular weight MW (Ar2 a ) of 40,000 to 400,000.
  • the weight average molecular weight MW (Ar2 a) is preferably 42,000 or more 370,000 or less. If the MW (Ar2 a ) is equal to or higher than the above lower limit value, the cycle characteristics of the obtained secondary battery can be improved. Further, if the MW (Ar2 a ) is equal to or less than the above upper limit value, the flexibility of the obtained electrode can be further increased.
  • MW (Ar2 a) than the above upper limit, to suppress the viscosity of the reaction solution in the production of the block copolymer A is excessively high, easy production of the block copolymer A Can enhance sex.
  • the values of MW (Ar1 a ) and MW (Ar2 a ) are, for example, the amount of monomer units added when preparing block copolymer A, the amount of polymerization initiator, and various additions added at the time of polymerization. It can be adjusted by appropriately changing the amount of the agent, the amount of the polymerization solvent, the polymerization time and the like.
  • a value of the weight average molecular weight MW (Ar2 a), divided by the weight average molecular weight of the aromatic vinyl block area (Ar1 a) MW (Ar1 a ) aromatic vinyl block area (Ar @ 2 a), i.e., "MW ( The value of "Ar2 a ) / MW (Ar1 a )" is not particularly limited, but is preferably 2.6 or more, more preferably 4 or more, preferably 67 or less, and more preferably 40 or less. When the value of MW (Ar2 a ) / MW (Ar1 a ) is within the above range, the cycle characteristics of the obtained secondary battery can be further improved.
  • the block copolymer A has an attribute of "small permanent elongation" and an attribute of "low springback". It is thought that it is possible to achieve both in a well-balanced manner.
  • Aromatic vinyl block area in the block copolymer A may contain a monomer unit other than the aromatic vinyl monomer unit.
  • the monomer can be used in forming the monomer unit other than the aromatic vinyl monomer units that may be included in the aromatic vinyl block area (Ar1 a, Ar2 a), for example, aliphatic conjugated dienes Monomonos, nitrile group-containing monomers, acidic group-containing monomers and their anhydrides, (meth) acrylic acid ester monomers, and non-aromatic compounds such as 1,2-butadiene and 1,4-pentadiene. Conjugated diene monomers and the like can be mentioned.
  • (meth) acrylic acid means acrylic acid and / or methacrylic acid.
  • monomer those described later in the description of the block region ( Da ) can be used.
  • the content of the monomer unit other than the aromatic vinyl monomer unit in each aromatic vinyl block region is preferably 20% by mass or less, more preferably 10% by mass or less, and is substantially 0. It is particularly preferably mass%.
  • aliphatic conjugated diene block region ( Da ) consisting of aliphatic conjugated diene monomer units-
  • the block region composed of the aliphatic conjugated diene monomer unit is a region including a portion in which only the aliphatic conjugated diene monomer unit is continuously bonded.
  • the aliphatic conjugated diene block region ( Da ) is a region mainly containing an aliphatic conjugated diene monomer unit.
  • the block region "mainly contains" an aliphatic conjugated diene monomer unit 80% by mass or more is fat, assuming that all the monomer units contained in a certain block region are 100% by mass.
  • one aliphatic conjugated diene block region ( Da ) may be composed of one kind of repeating unit or may be composed of a plurality of kinds of repeating units. Further, one aliphatic conjugated diene block region ( Da ) may include a coupling site (that is, the repeating unit constituting one aliphatic conjugated diene block region (D a ) is a cup. Ring sites may be intervening and connected). Further, the aliphatic conjugated diene block region ( Da ) preferably has both or one of a graft portion and a crosslinked structure. In particular, from the viewpoint of enhancing the viscosity stability of the obtained slurry composition, it is preferable that the aliphatic conjugated diene block region ( Da ) has a graft portion.
  • the aliphatic conjugated diene monomer that can be used to form the aliphatic conjugated diene monomer unit is not particularly limited as long as it is an aliphatic conjugated diene compound, but for example, 1,3-butadiene. , Isoprene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene and the like. Among these, 1,3-butadiene and / or isoprene is preferably used, and isoprene is particularly preferable. By using isoprene in forming the aliphatic conjugated diene block region, the adhesive strength of the block copolymer A can be effectively enhanced.
  • a cross-linked structure By cross-linking the block region composed of the aliphatic conjugated diene, a cross-linked structure can be introduced into the block region composed of the aliphatic conjugated diene.
  • a polymer containing a block region consisting of an aliphatic conjugated diene an aliphatic conjugated diene block region ( Da ) containing a structural unit formed by cross-linking an aliphatic conjugated diene monomer unit is formed. can do.
  • the structural unit formed by cross-linking the aliphatic conjugated diene monomer unit can be introduced into the block copolymer A by cross-linking the polymer containing the block region composed of the aliphatic conjugated diene.
  • the cross-linking is not particularly limited, and can be carried out using a radical initiator such as a redox initiator formed by combining an oxidizing agent and a reducing agent, for example.
  • the oxidizing agent include diisopropylbenzene hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, and di-t-butyl peroxide.
  • Organic peroxides such as isobutylyl peroxide and benzoyl peroxide can be used.
  • a compound containing a metal ion in a reduced state such as ferrous sulfate and ferrous naphthenate; a sulfonic acid compound such as sodium methanesulfonate; an amine compound such as dimethylaniline; and the like are used. be able to.
  • These organic peroxides and reducing agents may be used alone or in combination of two or more.
  • cross-linking is performed in the presence of a cross-linking agent such as a polyvinyl compound such as divinylbenzene; a polyallyl compound such as diallyl phthalate, triallyl trimerite, or diethylene glycol bisallyl carbonate; various glycols such as ethylene glycol diacrylate; Good.
  • Crosslinking can also be performed by irradiating with active energy rays such as ⁇ rays.
  • the aliphatic conjugated diene block region ( Da ) may contain repeating units other than the above.
  • the aliphatic conjugated diene block region ( Da ) is an acidic group-containing monomer such as a carboxyl group-containing monomer unit, a sulfonic acid group-containing monomer unit, and a phosphoric acid group-containing monomer unit.
  • Units Nitrile group-containing monomer units such as acrylonitrile units and methacrylonitrile units; (meth) acrylic acid ester monomer units such as acrylic acid alkyl ester units and methacrylate alkyl ester units; and block regions (Ar1 a).
  • Ar2 a may contain other monomeric units such as aliphatic non-conjugated diene monomer units derived from aliphatic non-conjugated diene monomers as exemplified.
  • the aliphatic conjugated diene block of the block copolymer A preferably contains an acidic group-containing monomer unit.
  • the acidic group contained in the acidic group-containing monomer unit may form a salt with an alkali metal, ammonia, or the like.
  • examples of the carboxyl group-containing monomer capable of forming a carboxyl group-containing monomer unit include monocarboxylic acid and its derivative, dicarboxylic acid and its acid anhydride, and their derivatives.
  • examples of the monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid.
  • examples of the monocarboxylic acid derivative include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid and the like.
  • examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • dicarboxylic acid derivative examples include methyl maleic acid, dimethyl maleic acid, phenyl maleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, butyl maleate, nonyl maleate, decyl maleate, dodecyl maleate, and octadecyl maleate.
  • Maleic acid monoesters such as fluoroalkyl maleate.
  • acid anhydride of the dicarboxylic acid examples include maleic anhydride, acrylic anhydride, maleic anhydride, dimethyl maleic anhydride, and citraconic anhydride.
  • carboxyl group-containing monomer an acid anhydride that produces a carboxyl group by hydrolysis can also be used.
  • carboxyl group-containing monomer a partial ester of an ethylenically unsaturated polycarboxylic acid such as butenetricarboxylic acid or an ethylenically unsaturated polycarboxylic acid such as monobutyl fumarate or mono2-hydroxypropyl maleate Etc. can also be used.
  • sulfonic acid group-containing monomer examples include styrene sulfonic acid, vinyl sulfonic acid (ethylene sulfonic acid), methyl vinyl sulfonic acid, and (meth) allyl sulfonic acid. , 3-Aryloxy-2-hydroxypropanesulfonic acid.
  • (meth) allyl means allyl and / or allyl.
  • examples of the phosphoric acid group-containing monomer capable of forming a phosphoric acid group-containing monomer unit include -2- (meth) acryloyloxyethyl phosphate and methyl-2- (meth) acryloyloxyethyl phosphate. , Ethyl phosphate- (meth) acryloyloxyethyl.
  • "(meth) acryloyl” means acryloyl and / or methacryloyl.
  • one type of the above-mentioned monomer may be used alone, or two or more types may be used in combination.
  • the acidic group-containing monomer capable of forming an acidic group-containing monomer unit methacrylic acid, itaconic acid, and acrylic acid are preferable, and methacrylic acid is more preferable.
  • the other monomer units such as the acidic group-containing monomer unit, the nitrile group-containing monomer unit, and the (meth) acrylic acid ester monomer unit described above are not particularly limited, and graft polymerization is not particularly limited. It can be introduced into the polymer by using any polymerization method such as.
  • the polymer contains a graft portion and has a structure in which the polymer to be the graft portion is bonded to the polymer to be the trunk portion. Become.
  • the graft polymerization can be carried out by using a known graft polymerization method without particular limitation.
  • the graft polymerization can be carried out by using a radical initiator such as a redox initiator formed by combining an oxidizing agent and a reducing agent, for example.
  • a radical initiator such as a redox initiator formed by combining an oxidizing agent and a reducing agent, for example.
  • the oxidizing agent and the reducing agent the same ones as those described above can be used as those that can be used for cross-linking the block copolymer A.
  • introduction of other monomer units by graft polymerization and cross-linking of aliphatic conjugated diene monomer units are simultaneously performed. Can be advanced.
  • the graft polymerization and the cross-linking may not proceed at the same time, and only the graft polymerization may proceed by adjusting the type of radical initiator and the reaction conditions.
  • the aliphatic conjugated diene block region (D a ) preferably has a weight average molecular weight MW (D a ) of 20,000 or more, more preferably 30,000 or more, and 35,000 or more. It is more preferable to have.
  • the MW ( Da ) is at least the above lower limit value, it is possible to increase the flexibility of the obtained electrode by suppressing the block copolymer A from becoming excessively hard.
  • the weight average molecular weight MW ( Da ) is preferably 200,000 or less, more preferably 150,000 or less, and 100,000 or less from the viewpoint of enhancing the cycle characteristics of the obtained secondary battery. The following is more preferable.
  • the weight average molecular weight MW ( Da ) is preferably 70,000 or less from the viewpoint of effectively suppressing an increase in the springback of the obtained electrode mixture layer.
  • the value of MW ( Da ) is, for example, the amount of monomer units added when preparing block copolymer A, the amount of polymerization initiator, the amount of various additives added at the time of polymerization, and the polymerization solvent. It can be adjusted by appropriately changing the amount of the coating agent, the amount of the coupling agent, the polymerization time and the like.
  • the weight average molecular weight MW (A) of the block copolymer A is preferably 66,000 or more, more preferably 79,000 or more, further preferably 100,000 or more, and 300,000. It is preferably less than or equal to, more preferably 200,000 or less.
  • the value of MW (A) is within the above range, the cycle characteristics of the obtained secondary battery can be further enhanced.
  • the block copolymer A which is a particulate polymer due to the stress generated in the electrode mixture layer due to the expansion and contraction of the electrode active material. It is considered that it is possible to suppress the irreversible change of.
  • Block Copolymer B as a particulate polymer is a particle made of a copolymer having a structure represented by the following general formula (B).
  • Ar1 b- D b- Ar2 b ... (B) Ar1 b and Ar2 b independently form a block region composed of aromatic vinyl monomer units having a weight average molecular weight of 6,000 to 20,000.
  • D b indicates a block region consisting of an aliphatic conjugated diene monomer unit.
  • each component 4) to 6) of block copolymer B is 4)
  • the first block region composed of aromatic vinyl monomer units having a weight average molecular weight of 6,000 to 20,000 is referred to as "aromatic vinyl block region (Ar1 b )”.
  • the second block region composed of aromatic vinyl monomer units having a weight average molecular weight of 6,000 to 20,000 is referred to as "aromatic vinyl block region (Ar2 b )”.
  • the block region composed of the aliphatic conjugated diene monomer unit is referred to as "aliphatic conjugated diene block region (D b )".
  • D b aliphatic conjugated diene block region
  • the block copolymer B may have other polymer chain portions that do not correspond to these regions. However, from the viewpoint of effectively suppressing the increase in permanent elongation, it is preferable that the block copolymer B does not contain other polymer chain portions.
  • the aromatic vinyl block region (Ar1 b , Ar2 b ) is a region mainly containing an aromatic vinyl monomer unit as a repeating unit. Similar to the block copolymer A described above, one aromatic vinyl block region (Ar1 b , D b , Ar2 b ) may be composed of only one or more aromatic vinyl monomer units. It is preferably composed of only one type of aromatic vinyl monomer unit. Further, one aromatic vinyl block region (Ar1 b , D b , Ar2 b ) may include a coupling site.
  • each aromatic vinyl block region (Ar1 b , Ar2 b ) examples include ⁇ block copolymer A >>.
  • the various compounds mentioned above can be mentioned in the item. Of these, styrene is preferable.
  • each aromatic vinyl block region (Ar1 b , Ar2 b ) may be composed of a polymerization unit formed by using the same aromatic vinyl monomer. , May consist of polymerization units formed using different aromatic vinyl monomers.
  • each of the aromatic vinyl block regions (Ar1 b , Ar2 b ) may contain a monomer unit other than the aromatic vinyl monomer unit.
  • a monomer that can be used when forming a monomer unit other than the aromatic vinyl monomer unit that can be contained in the aromatic vinyl block region (Ar1 b , Ar2 b ) is used. The same ones as the listed various monomers can be used.
  • the weight average molecular weights MW (Ar1 b ) and MW (Ar2 b ) are each independently preferably 6,000 or more, preferably 7,000 or more. It is more preferably 20,000 or less, more preferably 15,000 or less, and further preferably 13,000 or less.
  • the weight average molecular weights MW (Ar1 b ) and MW (Ar2 b ) may be the same or different, but they are substantially the same from the viewpoint of effectively suppressing the increase in permanent elongation. It is preferable to have.
  • the cycle characteristics of the obtained secondary battery can be improved. Further, when MW (Ar1 b ) and MW (Ar2 b ) are not more than the above upper limit values, the flexibility of the obtained electrode can be increased. Further, when MW (Ar1 b ) and MW (Ar2 b ) are equal to or less than the above upper limit values, the electrodes can easily follow the expansion and contraction due to the charging and discharging of the secondary battery, and the cycle characteristics of the secondary battery are enhanced. be able to.
  • the MW (Ar1 b ) and MW (Ar2 b ) are substantially the same as the weight average molecular weight MW (Ar1 a ) of the aromatic vinyl block region (Ar1 a ) contained in the block copolymer A described above. It is preferable to have. This is because it is possible to effectively suppress the increase in permanent elongation and also to improve the ease of manufacturing the binder composition.
  • aliphatic conjugated diene block region (D b ) The block region composed of the aliphatic conjugated diene monomer unit (aliphatic conjugated diene block region (D b )) is a region including a portion in which only the aliphatic conjugated diene monomer unit is continuously bonded.
  • the aliphatic conjugated diene block region (D b ) is a region mainly containing an aliphatic conjugated diene monomer unit. Similar to the case of block copolymer A described above, one aliphatic conjugated diene block region (D b ) can be composed of one or a plurality of repeating units.
  • the aliphatic conjugated diene block region (D b ) may have both or one of a coupling site and a graft portion.
  • the aliphatic conjugated diene block region (D b ) has a graft portion.
  • Examples of the aliphatic conjugated diene monomer that can be used to form the aliphatic conjugated diene monomer unit in the aliphatic conjugated diene block region (D b ) can be found in the item ⁇ Block Copolymer A >>.
  • the above-mentioned various compounds can be mentioned. Of these, 1,3-butadiene and / or isoprene is preferably used, and isoprene is particularly preferable.
  • isoprene By using isoprene in forming the aliphatic conjugated diene block region (D b ), the adhesive force of the block copolymer B can be effectively enhanced.
  • the aliphatic conjugated diene block region (D b ) preferably has a weight average molecular weight MW (D a ) of 60,000 or more, more preferably 90,000 or more, and more preferably 400,000 or less. It is preferably 300,000 or less, more preferably 200,000 or less.
  • MW ( Da ) is at least the above lower limit value, the flexibility of the obtained electrode can be increased by suppressing the block copolymer B from becoming excessively hard. Further, when the MW ( Da ) is not more than the above upper limit value, the cycle characteristics of the obtained secondary battery can be improved.
  • Ratio of block copolymer A The ratio of block copolymer A, which is twice the total mass of block copolymer A and block copolymer B contained in the binder composition for non-aqueous secondary batteries of the present invention as 100% by mass, is 36% by mass or more is preferable, 38% by mass or more is more preferable, 40% by mass or more is further preferable, 85% by mass or less is preferable, 80% by mass or less is more preferable, and 75% by mass or less is further preferable.
  • the ratio of the block copolymer A is at least the above lower limit value, the flexibility of the obtained electrode can be effectively increased.
  • the ratio of the block copolymer A is not more than the above upper limit value, it is possible to effectively suppress the increase in the springback of the obtained electrode mixture layer, and the cycle characteristics of the obtained secondary battery. Can be further enhanced.
  • the reason why these advantageous effects are exerted is not clear, but if the ratio of the block copolymer A is within the above range, the obtained electrode has the attribute of "small permanent elongation" and "springback". This is thought to be because it is possible to achieve a good balance with the attribute of "low”.
  • the surface acid content of the particulate polymer is preferably 0.05 mmol / g or more, more preferably 0.06 mmol / g or more, further preferably 0.08 mmol / g or more, and 0. .10 mmol / g or more is even more preferable, 0.20 mmol / g or more is particularly preferable, 0.90 mmol / g or less is preferable, and 0.50 mmol / g or less is more preferable. , 0.45 mmol / g or less, more preferably.
  • the amount of surface acid of the particulate polymer is at least the above lower limit value
  • the viscosity stability of the slurry composition prepared by using the binder composition can be enhanced, and the cycle characteristics of the obtained secondary battery can be further enhanced. be able to.
  • the amount of surface acid of the particulate polymer is not more than the above upper limit value
  • the electrode formed by using the binder composition is less likely to cause springback and is therefore excellent in pressability.
  • the amount of surface acid of the particulate polymer is within the above range, the coatability of the slurry composition can be improved.
  • the amount of surface acid in the particulate polymer can be adjusted by changing the type and amount of the monomers used in the production of the block copolymer A and the block copolymer B as the particulate polymer. it can. Specifically, for example, the amount of surface acid can be increased by increasing the amount of an acidic group-containing monomer such as a carboxylic acid group-containing monomer.
  • the block copolymer A and the block copolymer B as the particulate polymer are regions containing the aliphatic conjugated diene monomer unit. Therefore, the "vinyl bond content ratio" of the aliphatic conjugated diene block region contained in these block copolymers A and B is set to all the aliphatic conjugated diene monomer units contained in the aliphatic conjugated diene block region. Is defined as the proportion of 1,2-vinyl bond and 3,4-vinyl bond based on.
  • the vinyl bond content of the aliphatic conjugated diene block region is preferably 1 mol% or more, preferably 20 mol% or less, and more preferably 10 mol% or less.
  • the "vinyl bond content ratio" of the aliphatic conjugated diene block region can be measured by the method described in Examples. When the particulate polymer was a polymer obtained through graft polymerization, the "vinyl bond content ratio" measured for the particulate polymer before grafting was measured for the particulate polymer after grafting. It is larger than the value of "vinyl bond content ratio".
  • the particulate polymer preferably has a volume average particle diameter of 50 nm or more, more preferably 200 nm or more, further preferably 300 nm or more, preferably 1500 nm or less, and preferably 800 nm or less. Is more preferable, and 500 nm or less is further preferable.
  • the volume average particle diameter of the particulate polymer is at least the above lower limit value, the ease of producing the particulate polymer can be improved. Further, when the volume average particle diameter of the particulate polymer is not more than the above upper limit value, the performance of the particulate polymer as a binder can be improved, and as a result, the cycle characteristics of the obtained secondary battery can be improved. Can be enhanced.
  • the volume average particle size of the particulate polymer can be measured by the method described in Examples.
  • the ratio of the aromatic vinyl monomer unit in the particulate polymer is preferably 27% by mass or more, preferably 30% by mass or more, when the total mass of the particulate polymer is 100% by mass. It is more preferably 70% by mass or less, and more preferably 60% by mass or less.
  • the ratio of the aromatic vinyl monomer unit to the particulate polymer is equal to or higher than the above lower limit, it is possible to effectively suppress the particulate polymer from exhibiting excessively high tackiness.
  • the electrodes provided with the electrode mixture layer to be obtained are stacked and stored, it is possible to effectively prevent the electrodes from easily blocking each other.
  • the ratio of the aromatic vinyl monomer unit to the particulate polymer is not more than the above upper limit value, the flexibility of the particulate polymer can be effectively increased, and the flexibility of the obtained electrode can be increased. It can be further enhanced.
  • the ratio of the aromatic vinyl block region to each block copolymer is usually determined by the aromatic vinyl monomer unit. Consistent with the proportion in the block copolymer.
  • the particulate polymer as a constituent element of the binder composition of the present invention contains the above-mentioned predetermined block copolymer A, and preferably the above-mentioned predetermined block copolymer B. Can be contained. Therefore, the above-mentioned “amount of surface acid of the particulate polymer", “volume average particle diameter of the particulate polymer”, and “ratio of aromatic vinyl monomer unit in the particulate polymer" are the particulate polymers.
  • the particulate polymers When is composed of only the block copolymer A, it corresponds to the attribute value of the block copolymer A, and when the particulate polymer contains the block copolymer A and the block copolymer B, a mixture thereof. Corresponds to the attribute value of.
  • the particulate polymer is a step of block-polymerizing a monomer such as the above-mentioned aromatic vinyl monomer or aliphatic conjugated diene monomer in an organic solvent to obtain a solution of a predetermined block copolymer (for example).
  • Block copolymer solution preparation step a step of granulating the block copolymer by adding water to the obtained block copolymer solution and emulsifying it (emulsification step), and a particleized block copolymer weight.
  • the grafting step may be performed before the emulsification step. That is, the particulate polymer is a step of obtaining a predetermined polymer solution by performing graft polymerization on the block polymer contained in the obtained block polymer solution after the block polymer solution preparation step. Even if it is prepared by performing (grafting step) and then performing a step (emulsification step) of granulating the predetermined polymer by adding water to the obtained solution of the predetermined polymer and emulsifying it. Good.
  • the block copolymer solution preparation step shall be carried out under the conditions disclosed in the same document, for example, using the organic solvent, polymerization initiator, various additives and the like disclosed in International Publication No. 2009/123089. Can be done. More specifically, in the block copolymer solution preparation step, (1) Using a polymerization initiator in an organic solvent, an aromatic vinyl monomer is polymerized to obtain an aromatic vinyl polymer having an active terminal; (2) An aliphatic conjugated diene monomer is added to the obtained solution containing the aromatic vinyl polymer having an active end, and the aromatic vinyl-aliphatic conjugated diene block co-weight having an active end is added.
  • the obtained solution containing the aromatic vinyl-aliphatic conjugated diene block copolymer having an active terminal is bifunctional in an amount such that the functional group is less than 1 molar equivalent with respect to the active terminal.
  • a coupling agent is added to form block copolymer B;
  • An aromatic vinyl monomer is added thereto and further polymerized to form a block copolymer A to obtain a block copolymer solution.
  • the block copolymer A and the block copolymer B are mixed in the block copolymer solution obtained through the above operations (1) to (4). For example, when synthesizing only the block copolymer A, the operation (3) above can be omitted.
  • the emulsification method in the emulsification step is not particularly limited, and for example, a method of inversion emulsification of a premixture of the block copolymer solution obtained in the block copolymer solution preparation step described above and an aqueous solution of an emulsifier may be used. preferable.
  • phase inversion emulsification for example, known emulsifiers and emulsification dispersers can be used.
  • the emulsification disperser is not particularly limited, and for example, the product name "homogenizer” (manufactured by IKA), the product name “Polytron” (manufactured by Kinematica), and the product name "TK auto homomixer”.
  • Batch type emulsification disperser (manufactured by Special Machinery Co., Ltd.); Product name "TK Pipeline Homo Mixer” (manufactured by Special Machinery Co., Ltd.), Product name “Colloid Mill” (manufactured by Shinko Pantech), Product name “Slasher” (manufactured by Nippon Coke Industries Co., Ltd.), product name “Trigonal wet pulverizer” (manufactured by Mitsui Miike Kakoki Co., Ltd.), product name “Cavitron” (manufactured by Eurotech), product name “Milder” (manufactured by Pacific Kiko Co., Ltd.) , Product name “Fine Flow Mill” (manufactured by Pacific Kiko Co., Ltd.), etc.
  • Continuous emulsification disperser Product name "Microfluidizer” (manufactured by Mizuho Kogyo Co., Ltd.), Product name “Nanomizer” (manufactured by Nanomizer Co., Ltd.), Product High-pressure emulsification / disperser such as name “APV Gaulin” (manufactured by Gaulin); Membrane emulsification / disperser such as product name "Membrane emulsifier” (manufactured by Cooling Industry Co., Ltd.); Product name “Vibro mixer” (manufactured by Cooling Industry Co., Ltd.) ) Etc.
  • vibration type emulsification disperser such as trade name "ultrasonic homogenizer” (manufactured by Branson); etc.
  • the conditions for the emulsification operation by the emulsification disperser are not particularly limited and may be appropriately selected so as to obtain a desired dispersion state. Then, if necessary, the organic solvent can be removed from the emulsion obtained after the phase inversion emulsification by a known method to obtain an aqueous dispersion of the block copolymer particles.
  • the method of graft polymerization in the grafting step is not particularly limited, but for example, in the presence of a monomer to be graft-polymerized, a radical initiator such as a redox initiator is used to simultaneously proceed with graft polymerization and cross-linking of the block polymer.
  • a radical initiator such as a redox initiator is used to simultaneously proceed with graft polymerization and cross-linking of the block polymer.
  • the method is preferred.
  • the reaction conditions can be adjusted according to the composition of the block copolymer, the desired amount of surface acid, and the like.
  • an aqueous dispersion of the particulate polymer can be obtained.
  • the simple introduction is carried out by the graft polymerization of the acidic group-containing monomer unit or the like. More of the dimer units are present on the surface side than the central portion of the particulate polymer, and are unevenly distributed on the surface layer portion.
  • the dispersion medium contained in the binder composition is not particularly limited, and examples thereof include water.
  • the dispersion medium may be an aqueous solution or a mixed solution of water and a small amount of an organic solvent.
  • the other components that can be contained in the binder composition are not particularly limited, and for example, components such as a reinforcing material, a leveling agent, a viscosity modifier, and an electrolyte solution additive can be contained.
  • components such as a reinforcing material, a leveling agent, a viscosity modifier, and an electrolyte solution additive can be contained.
  • One of these components may be used alone, or two or more of these components may be used in combination at any ratio.
  • the binder composition of the present invention is not particularly limited, and can be prepared by mixing a particulate polymer and optionally other components in a dispersion medium.
  • the binder composition is prepared using the dispersion liquid of the particulate polymer, the liquid component contained in the dispersion liquid may be used as it is as the dispersion medium of the binder composition.
  • the slurry composition of the present invention is a composition used for forming an electrode mixture layer of an electrode, contains the above-mentioned binder composition, and further contains an electrode active material. That is, the slurry composition of the present invention contains the above-mentioned particulate polymer and electrode active material, and optionally further contains other components. Since the slurry composition of the present invention contains the binder composition described above, the electrode provided with the electrode mixture layer formed from the slurry composition has sufficiently high flexibility and is obtained as a secondary. The cycle characteristics of the battery can be improved.
  • the binder composition As the binder composition, the above-mentioned binder composition of the present invention containing a predetermined particulate polymer is used.
  • the blending amount of the binder composition in the slurry composition is not particularly limited.
  • the blending amount of the binder composition can be such that the amount of the particulate polymer is 0.5 parts by mass or more and 15 parts by mass or less in terms of solid content per 100 parts by mass of the electrode active material.
  • the electrode active material is not particularly limited, and a known electrode active material used in a secondary battery can be used.
  • the electrode active material that can be used in the electrode mixture layer of the lithium ion secondary battery as an example of the secondary battery is not particularly limited, and the following electrode active material may be used. it can.
  • Positive electrode active material examples of the positive electrode active material to be blended in the positive electrode mixture layer of the positive electrode of the lithium ion secondary battery include a compound containing a transition metal, for example, a transition metal oxide, a transition metal sulfide, and a composite of lithium and a transition metal.
  • a metal oxide or the like can be used.
  • the transition metal include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Mo.
  • the positive electrode active material is not particularly limited, and is limited to lithium-containing cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium-containing nickel oxide (LiNiO 2 ), and Co-.
  • the positive electrode active material described above one type may be used alone, or two or more types may be used in combination.
  • Negative electrode active material examples of the negative electrode active material blended in the negative electrode mixture layer of the negative electrode of the lithium ion secondary battery include a carbon-based negative electrode active material, a metal-based negative electrode active material, and a negative electrode active material combining these.
  • the carbon-based negative electrode active material refers to an active material having carbon as a main skeleton to which lithium can be inserted (also referred to as “dope”).
  • Specific examples of the carbon-based negative electrode active material include coke, mesocarbon microbeads (MCMB), mesophase pitch-based carbon fiber, thermally decomposed vapor-grown carbon fiber, phenol resin calcined product, and polyacrylonitrile-based carbon fiber.
  • the metal-based negative electrode active material is an active material containing a metal, and usually contains an element into which lithium can be inserted in the structure, and the theoretical electric capacity per unit mass when lithium is inserted is 500 mAh /.
  • a lithium metal or a simple substance metal capable of forming a lithium alloy for example, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si) , Sn, Sr, Zn, Ti, etc.
  • a lithium alloy for example, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si
  • oxides such as lithium titanate can be mentioned.
  • oxides such as lithium titanate can be mentioned.
  • one type may be used alone, or two or more types may be used in combination.
  • the other components that can be blended in the slurry composition include, without particular limitation, the same as the conductive material and other components that can be blended in the binder composition of the present invention.
  • one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • the method for preparing the slurry composition is not particularly limited.
  • the binder composition, the electrode active material, and other components used as needed can be mixed in the presence of an aqueous medium to prepare a slurry composition.
  • the aqueous medium used in the preparation of the slurry composition also includes those contained in the binder composition.
  • the mixing method is not particularly limited, but mixing can be performed using a commonly used stirrer or disperser.
  • the electrode for a non-aqueous secondary battery of the present invention includes an electrode mixture layer formed by using the above-mentioned slurry composition for a non-aqueous secondary battery electrode. Therefore, the electrode mixture layer is made of a dried product of the above-mentioned slurry composition, and usually contains an electrode active material and a component derived from a particulate polymer, and optionally contains other components.
  • Each component contained in the electrode mixture layer was contained in the above-mentioned slurry composition for a non-aqueous secondary battery electrode, and a suitable abundance ratio of each component is the slurry composition. It is the same as the preferable abundance ratio of each component in.
  • the particulate polymer exists in the particle shape in the slurry composition, but may be in the particle shape in the electrode mixture layer formed by using the slurry composition, or any other shape. It may be. Since the electrode for a non-aqueous secondary battery of the present invention forms an electrode mixture layer using the above-mentioned slurry composition for a non-aqueous secondary battery electrode, the flexibility is sufficiently high and the result is obtained. It is possible to improve the cycle characteristics of the secondary battery.
  • the electrode mixture layer of the electrode for a non-aqueous secondary battery of the present invention can be formed by, for example, the following method. 1) A method in which the slurry composition of the present invention is applied to the surface of a current collector and then dried; 2) A method of immersing a current collector in the slurry composition of the present invention and then drying it; and 3) Applying the slurry composition of the present invention on a release substrate and drying it to produce an electrode mixture layer. Then, the method of transferring the obtained electrode mixture layer to the surface of the current collector.
  • the method 1) is particularly preferable because it is easy to control the layer thickness of the electrode mixture layer.
  • the method 1) is described in detail in a step of applying the slurry composition onto the current collector (coating step) and a step of drying the slurry composition coated on the current collector and performing electrodes on the current collector. Includes a step of forming a mixture layer (drying step).
  • the method of applying the slurry composition onto the current collector is not particularly limited, and a known method can be used. Specifically, as the coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method and the like can be used. At this time, the slurry composition may be applied to only one side of the current collector, or may be applied to both sides. The thickness of the slurry film on the current collector after application and before drying can be appropriately set according to the thickness of the electrode mixture layer obtained by drying.
  • the current collector to which the slurry composition is applied a material having electrical conductivity and which is electrochemically durable is used.
  • a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum or the like can be used.
  • one kind of the said material may be used alone, or two or more kinds may be used in combination at an arbitrary ratio.
  • the method for drying the slurry composition on the current collector is not particularly limited, and a known method can be used, for example, a drying method using warm air, hot air, low humidity air, a vacuum drying method, infrared rays, an electron beam, or the like. A drying method by irradiation can be used.
  • the electrode mixture layer may be pressure-treated by using a die press or a roll press.
  • the pressurizing treatment By the pressurizing treatment, the adhesion between the electrode mixture layer and the current collector can be improved, and the obtained electrode mixture layer can be further increased in density.
  • the electrode mixture layer contains a curable polymer, it is preferable to cure the polymer after the electrode mixture layer is formed.
  • the non-aqueous secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and the above-mentioned electrode for a non-aqueous secondary battery is used as at least one of the positive electrode and the negative electrode.
  • the non-aqueous secondary battery of the present invention uses the above-mentioned electrode for the non-aqueous secondary battery as at least one of the positive electrode and the negative electrode, and therefore has excellent cycle characteristics.
  • the secondary battery is a lithium ion secondary battery will be described as an example, but the present invention is not limited to the following example.
  • the electrode other than the above-described electrode for the non-aqueous secondary battery of the present invention which can be used in the non-aqueous secondary battery of the present invention, is not particularly limited and is used in the manufacture of the secondary battery.
  • Known electrodes can be used.
  • the electrode other than the electrode for the non-aqueous secondary battery of the present invention described above it is possible to use an electrode formed by forming an electrode mixture layer on the current collector using a known manufacturing method. it can.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a lithium salt is used as the supporting electrolyte of the lithium ion secondary battery.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi. , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable because they are easily soluble in a solvent and show a high degree of dissociation.
  • One type of electrolyte may be used alone, or two or more types may be used in combination at any ratio. Normally, the more the supporting electrolyte with a higher degree of dissociation is used, the higher the lithium ion conductivity tends to be. Therefore, the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte, and for example, dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), and the like.
  • DMC dimethyl carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • PC propylene carbonate
  • Carbonates such as butylene carbonate (BC), ethylmethyl carbonate (EMC), vinylene carbonate (VC); esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfolane, dimethyl Sulfur-containing compounds such as sulfoxide; and the like are preferably used. Further, a mixed solution of these solvents may be used.
  • the dielectric constant is high and the stable potential region is wide.
  • the lower the viscosity of the solvent used the higher the lithium ion conductivity tends to be. Therefore, the lithium ion conductivity can be adjusted depending on the type of solvent.
  • the concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate.
  • known additives can be added to the electrolytic solution.
  • the separator is not particularly limited, and for example, the separator described in JP2012-204303 can be used. Among these, the film thickness of the entire separator can be reduced, and as a result, the ratio of the electrode active material in the secondary battery can be increased and the capacity per volume can be increased.
  • a microporous membrane made of a resin polyethylene, polypropylene, polybutene, polyvinyl chloride is preferable.
  • a positive electrode and a negative electrode are overlapped with each other via a separator, and the positive electrode and the negative electrode are placed in a battery container by winding or folding the battery according to the shape of the battery as necessary. It can be manufactured by injecting an electrolytic solution into a battery and sealing it.
  • the above-mentioned electrode for a non-aqueous secondary battery is used as at least one of a positive electrode and a negative electrode, preferably as a negative electrode.
  • an overcurrent prevention element such as a fuse or a PTC element may be used.
  • Expanded metal, lead plate, etc. may be provided.
  • the shape of the secondary battery may be, for example, a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, or the like.
  • the weight average molecular weight was determined as a polystyrene-equivalent molecular weight by high performance liquid chromatography using tetrahydrofuran having a flow velocity of 0.35 ml / min as a carrier.
  • HLC8220 manufactured by Tosoh Co., Ltd. was connected, three polystyrene KF-404HQ manufactured by Showa Denko Co., Ltd. were connected as a column (column temperature 40 ° C.), and a differential refractometer and an ultraviolet detector were used as detectors. Calibration was performed on 12 points of standard polystyrene (5 to 3 million) manufactured by Polymer Laboratory.
  • the aqueous dispersion (binder composition) of the particulate polymer obtained in Examples and Comparative Examples was dried in an environment with an absolute humidity of 50% and a temperature of 23 ° C. to 25 ° C. to a thickness of 3 ⁇ 0.3 mm.
  • a polymer film was prepared as a sample. 300 mg of the sample was dissolved in a reaction vessel containing 100 ml of dichloromethane treated with molecular sieves. This reaction vessel was placed in a cooling tank, and after the temperature was set to ⁇ 25 ° C., ozone generated by an ozone generator was introduced while oxygen was flowing through the reaction vessel at a flow rate of 170 ml / min.
  • the solid product produced in the solution was filtered off and the solid product was extracted with 100 ml diethyl ether for 10 minutes. This extract was combined with the filtrate at the time of filtration, and the solvent was distilled off to obtain a solid sample.
  • the weight average molecular weight of the sample thus obtained was measured according to the above-mentioned method for measuring the weight average molecular weight, and the value was taken as the weight average molecular weight of the styrene block as the aromatic vinyl block region.
  • ⁇ Ratio of aromatic vinyl monomer units for each of block copolymers A and B The ratio (mass%) of aromatic vinyl monomer units for each of the block copolymers A and B was determined based on the detection intensity ratio between the differential refractometer and the ultraviolet detector in the above high performance liquid chromatography measurement. ..
  • a plurality of types of copolymers having different styrene unit contents as aromatic vinyl monomer units were prepared in advance, and a calibration curve was prepared using them.
  • ⁇ Amount of surface acid in particulate polymer> The aqueous dispersion (binder composition) of the particulate polymer obtained in Examples and Comparative Examples was diluted with a 0.3% aqueous solution of dodecylbenzenesulfonic acid to adjust the solid content concentration to 10%. Then, the mixture was centrifuged at 7000 G for 30 minutes, and the light liquid was separated. The obtained light liquid was diluted with a 0.3% aqueous solution of dodecylbenzenesulfonic acid to adjust the solid content concentration to 10%. Then, the mixture was centrifuged at 7000 G for 30 minutes, and the light liquid was separated.
  • the obtained light liquid was diluted with a 0.3% aqueous solution of dodecylbenzenesulfonic acid to adjust the solid content concentration to 10%. Then, the prepared sample was centrifuged at 7000 G for 30 minutes, and the light liquid was separated. The obtained light liquid was adjusted to pH 12.0 with a 5% aqueous sodium hydroxide solution. A pH-adjusted sample was placed in a 100 mL beaker in terms of solid content (3.0 g), and 3 g of an aqueous solution of Kao's Emargen 120 diluted to 0.2% and 1 g of an aqueous solution of Toray Dow Corning's SM5512 diluted to 1%. Was added.
  • a 0.1 N hydrochloric acid aqueous solution was added at a rate of 0.5 mL / 30 seconds with uniform stirring with a stirrer, and the electric conductivity was measured every 30 seconds.
  • the obtained electrical conductivity data was plotted on a graph with the electrical conductivity on the vertical axis (Y coordinate axis) and the cumulative amount of added hydrochloric acid on the horizontal axis (X coordinate axis).
  • Y coordinate axis the vertical axis
  • X coordinate axis the cumulative amount of added hydrochloric acid on the horizontal axis
  • the approximate straight lines L1, L2, and L3 are drawn by the least squares method, respectively.
  • A1 be the X coordinate of the intersection of the approximate straight line L1 and the approximate straight line L2
  • A2 be the X coordinate of the intersection of the approximate straight line L2 and the approximate straight line L3.
  • the amount of surface acid per 1 g of the particulate polymer is determined from the following formula (a) as a value (mmol / g) converted to hydrochloric acid.
  • Amount of surface acid per 1 g of particulate polymer (A2-A1) /3.0 g
  • ⁇ Volume average particle size of particulate polymer> The solid content concentration of the aqueous dispersion (binder composition) of the particulate polymer obtained in Examples and Comparative Examples was adjusted to 0.1% by mass, and the aqueous dispersion of the polymer after adjusting the solid content was subjected to a laser.
  • the particle size distribution (volume basis) was measured by a diffraction type particle size distribution measuring device (manufactured by Beckman Coulter, product name "LS-230"). Then, in the obtained particle size distribution, the particle size at which the cumulative volume calculated from the small diameter side was 50% was determined and used as the volume average particle size (D50) of the particulate polymer.
  • ⁇ Viscosity stability of slurry composition When preparing the slurry composition, the solution before adding the binder composition is separated, and a B-type viscometer (manufactured by Toki Sangyo Co., Ltd., product name "TV-25") is used at a measurement temperature of 25 ° C. and a measurement rotor. No. 4. The viscosity M0 (mPa ⁇ s) was measured under the condition of a rotor rotation speed of 60 rpm.
  • the slurry composition obtained by adding the binder composition is separated and placed in a container having a diameter of 5.5 cm and a height of 8.0 cm, and is placed in a container of TK Homo Disper (manufactured by Primix Corporation, Disper diameter: 40 mm).
  • TK Homo Disper manufactured by Primix Corporation, Disper diameter: 40 mm.
  • the viscosity M1 (mPa ⁇ s) of the slurry composition after stirring was measured in the same manner as the viscosity M0 of the solution before adding the binder composition.
  • B Viscosity change rate ⁇ M is 10% or more
  • Rods having different diameters were placed on the negative electrode mixture layer side of the negative electrode for the lithium ion secondary battery obtained in Examples and Comparative Examples, and the negative electrode was wound around the rod to evaluate whether or not the negative electrode mixture layer was cracked. ..
  • A The diameter of the smallest rod that does not break even if wound is 1.2 mm
  • B The diameter of the smallest rod that does not break even if wound is 1.5 mm
  • C The diameter of the smallest rod that does not break even if wound is 2 mm
  • D The diameter of the smallest rod that does not break even when wound is 3 mm.
  • the springback of the electrode mixture layer was evaluated based on the electrode density. Specifically, first, the negative electrode mixture layer side of the negative electrode raw fabric produced in Examples and Comparative Examples is roll-pressed under the condition of a linear pressure of 11 t (ton) in an environment of a temperature of 25 ⁇ 3 ° C., and the electrode mixture is formed. The layer density was adjusted to 1.70 g / cm 3 . Then, the negative electrode was left for one week in an environment of a temperature of 25 ⁇ 3 ° C. and a relative humidity of 50 ⁇ 5%. Then, the electrode mixture layer density (g / cm 3 ) of the negative electrode after being left to stand was measured and evaluated according to the following criteria.
  • Electrode mixture layer density after leaving is 1.65 g / cm 3 or more
  • Electrode mixture layer density after leaving is less than 1.65 g / cm 3
  • Example 1 ⁇ Preparation of particulate polymer> ⁇ Block Copolymer Solution Preparation Step >> ⁇ Operation (1) Cyclohexane as a polymerization solvent (20.0 kg) and N, N, N', N'-tetramethylethylenediamine (hereinafter referred to as "TMEDA") as Lewis base compounds added to a pressure resistant reactor for the purpose of preparing a block structure. ) 2.2 mmol and 1.50 kg of styrene as an aromatic vinyl monomer were added, and 149.6 mmol of n-butyllithium as a polymerization initiator was added to the place where the mixture was stirred at 40 ° C. to 50.
  • TEDA N, N, N', N'-tetramethylethylenediamine
  • Polymerization was carried out for 1 hour while raising the temperature to ° C. to obtain a styrene polymer as an aromatic vinyl polymer having an active terminal.
  • the polymerization conversion rate of styrene was 100%.
  • ⁇ Operation (2) Subsequently, 6.50 kg of isoprene as an aliphatic conjugated diene monomer was continuously added to the reactor for 1 hour while controlling the temperature so as to maintain 50 to 60 ° C. After the addition of isoprene was completed, the polymer was further polymerized for 1 hour to obtain a styrene-isoprene block copolymer as an aromatic vinyl-aliphatic conjugated diene block copolymer having an active terminal.
  • Emulsification process (phase inversion emulsification process) >> A mixture of sodium alkylbenzene sulfonate, sodium polyoxyethylene alkyl sulfosuccinate, and sodium polyoxyethylene alkyl ether sulfate at a ratio of 1: 1: 1 (mass basis) was dissolved in ion-exchanged water to prepare a 5% aqueous solution. Then, 500 g of the obtained block polymer solution and 500 g of the obtained aqueous solution were put into a tank and stirred to perform premixing.
  • the premix was transferred from the tank to a continuous high-efficiency emulsification / disperser (manufactured by Pacific Kiko Co., Ltd., product name "Milder MDN303V”) at a speed of 100 g / min using a metering pump, and the rotation speed was 15,000 rpm.
  • a continuous high-efficiency emulsification / disperser manufactured by Pacific Kiko Co., Ltd., product name "Milder MDN303V”
  • an emulsion obtained by inversion emulsifying the premix was obtained.
  • cyclohexane in the obtained emulsion was distilled off under reduced pressure using a rotary evaporator.
  • the distilled emulsion was left to stand and separated in a chromatographic column with a cock for 1 day, and the lower layer portion after the separation was removed to concentrate.
  • the upper layer portion was filtered through a 100-mesh wire mesh to obtain an aqueous dispersion (block polymer late
  • ⁇ Graft process In the grafting step, cross-linking proceeded simultaneously in addition to graft polymerization.
  • the block polymer latex obtained in the above emulsification step was diluted by adding 850 parts of distilled water to 100 parts in terms of solid content. Then, the diluted block polymer latex was put into a polymerization reaction vessel equipped with a stirrer substituted with nitrogen, and the temperature was heated to 30 ° C. while stirring. Further, using another container, 10 parts of methacrylic acid as an acidic group-containing monomer and 16 parts of distilled water were mixed to prepare a diluted methacrylic acid solution. This diluted methacrylic acid solution was added to a polymerization reaction vessel heated to 30 ° C. over 30 minutes.
  • aqueous dispersion (binder composition) of a particulate polymer composed of a polymer obtained by graft-polymerizing and cross-linking the block polymer was obtained.
  • Various attributes of the particulate polymer were measured using the obtained aqueous dispersion of the particulate polymer. The results are shown in Table 1.
  • the obtained slurry composition for a negative electrode was applied to a copper foil having a thickness of 15 ⁇ m, which is a current collector, with a comma coater so that the basis weight after drying was 11 mg / cm 2 , and the mixture was dried. This drying was carried out by transporting the copper foil at a rate of 0.5 m / min in an oven at 60 ° C. for 2 minutes. Then, it was heat-treated at 120 degreeC for 2 minutes, and the negative electrode raw fabric was obtained. The obtained negative electrode raw fabric was evaluated according to the above method, and the evaluation result of the springback of the electrode (negative electrode) mixture layer was obtained. The results are shown in Table 1.
  • the negative electrode raw material was rolled by a roll press to obtain a negative electrode having a density of the negative electrode mixture layer of 1.75 g / cm 3 . Further, the obtained negative electrode was evaluated according to the above method, and an evaluation result of electrode flexibility was obtained. The results are shown in Table 1.
  • a separator made of a separator base material a single-layer polypropylene separator (manufactured by Cellguard, product name "Cellguard 2500") was prepared.
  • the obtained positive electrode was cut into a rectangle of 49 cm ⁇ 5 cm and placed so that the surface on the positive electrode mixture layer side was on the upper side, and a separator cut out to 120 cm ⁇ 5.5 cm was placed on the positive electrode mixture layer. It was arranged so as to be located on the left side in the longitudinal direction. Further, the obtained negative electrode is cut out into a rectangle of 50 ⁇ 5.2 cm, and arranged on the separator so that the surface on the negative electrode mixture layer side faces the separator and the negative electrode is located on the right side in the longitudinal direction of the separator. did. Then, the obtained laminated body was wound by a winding machine to obtain a wound body. The obtained wound body was pressed.
  • Examples 2 to 4, Comparative Example 2 The block copolymer obtained by appropriately changing the amounts of styrene, isoprene, n-butyllithium, TMEDA, dimethyldichlorosilane, methanol, etc. to be added in the block copolymer solution preparation step as necessary.
  • the block copolymer A contained in the solution was made to satisfy the constitutional conditions shown in Table 1. Except for these points, various operations, measurements, and evaluations were carried out in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 In the block copolymer solution preparation step, the mass ratio of block copolymers A and B contained in the obtained block copolymer solution is shown by changing the amount of the coupling agent added in "operation (3)". It was made as shown in 1. Except for these points, various operations, measurements, and evaluations were carried out in the same manner as in Example 1. The results are shown in Table 1.
  • Example 6 In the grafting step, the amount of methacrylic acid added was changed so that the amount of surface acid of the particulate polymer was as shown in Table 1. Except for these points, various operations, measurements, and evaluations were carried out in the same manner as in Example 1. The results are shown in Table 1.
  • Example 7 In the block copolymer solution preparation step, "operation (3)" is carried out in which a predetermined amount of a coupling agent is added to the solution containing the aromatic vinyl-aliphatic conjugated diene block copolymer having an active terminal. I didn't. Except for these points, various operations, measurements, and evaluations were carried out in the same manner as in Example 1. The results are shown in Table 1.
  • the negative electrodes of Examples 1 to 7 formed by using a binder composition containing a particulate polymer containing at least an asymmetric block copolymer A satisfying a predetermined configuration have sufficiently high flexibility. Moreover, it can be seen that the cycle characteristics of the obtained secondary battery could be improved.
  • Comparative Example 1 using a binder composition containing a particulate polymer not containing an asymmetric block copolymer, and an asymmetric structure instead of a predetermined block copolymer
  • Comparative Example 2 using a binder composition containing a particulate polymer containing a block copolymer in which the molecular weight of the contained aromatic vinyl block region was out of the predetermined range, the flexibility of the obtained negative electrode and the flexibility of the negative electrode were obtained. It can be seen that the cycle characteristics of the secondary battery were significantly inferior to those of Examples 1 to 7.
  • a binder composition for a non-aqueous secondary battery capable of forming an electrode having sufficiently high flexibility and capable of enhancing the cycle characteristics of the obtained secondary battery, and a slurry for a non-aqueous secondary battery electrode.
  • the composition can be provided. Further, according to the present invention, it is possible to provide an electrode for a non-aqueous secondary battery having sufficiently high flexibility, and a non-aqueous secondary battery having the electrode and having excellent cycle characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

下記一般式(A)で表されるブロック共重合体Aを含有する粒子状重合体を含む非水系二次電池用バインダー組成物である。 Ar1a-Da-Ar2a・・・(A) 〔ここで、一般式(A)において、Ar1aは、重量平均分子量が5,500~20,000である、芳香族ビニル単量体単位からなるブロック領域を示し、Ar2aは、重量平均分子量が40,000~400,000である、芳香族ビニル単量体単位からなるブロック領域を示し、Daは、脂肪族共役ジエン単量体単位からなるブロック領域を示す。〕

Description

非水系二次電池用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
 本発明は、非水系二次電池用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池に関するものである。
 リチウムイオン二次電池などの非水系二次電池(以下、単に「二次電池」と略記する場合がある。)は、小型で軽量、且つエネルギー密度が高く、更に繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そのため、近年では、非水系二次電池の更なる高性能化を目的として、電極などの電池部材の改良が検討されている。
 ここで、リチウムイオン二次電池などの二次電池に用いられる電極は、通常、集電体と、集電体上に形成された電極合材層(正極合材層又は負極合材層)とを備えている。そして、この電極合材層は、例えば、電極活物質と、結着材を含むバインダー組成物などとを含むスラリー組成物を集電体上に塗布し、塗布したスラリー組成物を乾燥させることにより形成される。
 そこで、近年では、二次電池の更なる性能の向上を達成すべく、電極合材層の形成に用いられるバインダー組成物の改良が試みられている。
 具体的には、例えば特許文献1では、芳香族ビニル単量体単位からなるブロック領域を有する共重合体である粒子状重合体Aと、脂肪族共役ジエン単量体単位及び芳香族ビニル単量体単位を含むランダム共重合体である粒子状重合体Bと、を含む非水系二次電池電極用バインダー組成物が提案されている。
国際公開第2018/168420号
 ここで、サイクル特性等の電池特性を高める観点からは、二次電池の電極には、柔軟性に優れていることが求められている。さらに、近年、電極には、高容量化等の観点から、より一層高い柔軟性が求められている。
 しかし、上記従来の非水系二次電池電極用バインダー組成物では、得られる電極の柔軟性に一層の向上の余地があった。そして、従来の非水系二次電池電極用バインダー組成物を用いて形成した電極を備える非水系二次電池には、サイクル特性の点で一層の向上の余地があった。
 そこで、本発明は、柔軟性が充分に高く、且つ得られる二次電池のサイクル特性を高め得る電極を形成可能な非水系二次電池用バインダー組成物、及び、非水系二次電池電極用スラリー組成物を提供することを目的とする。
 また、本発明は、柔軟性の充分に高い非水系二次電池用電極、並びに、当該電極を備えるサイクル特性に優れる非水系二次電池を提供することを目的とする。
 本発明者らは、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者らは、所定の条件を満たす非対称なブロック共重合体よりなる粒子状重合体をバインダー組成物に配合することにより、得られる電極の柔軟性を極めて良好に高めうるとともに、得られる二次電池のサイクル特性を十分に高めうることを新たに見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用バインダー組成物は、下記一般式(A)で表されるブロック共重合体Aを含有する粒子状重合体を含むことを特徴とする。
 Ar1a-Da-Ar2a・・・(A)
 〔ここで、前記一般式(A)において、Ar1aは、重量平均分子量が5,500~20,000である、芳香族ビニル単量体単位からなるブロック領域を示し、Ar2aは、重量平均分子量が40,000~400,000である、芳香族ビニル単量体単位からなるブロック領域を示し、Daは、脂肪族共役ジエン単量体単位からなるブロック領域を示す。〕
 このように、互いに、重量平均分子量が異なる芳香族ビニル単量体単位からなるブロック領域が、脂肪族共役ジエン単量体単位からなるブロック領域により隔てられて成る構造、即ち、非対称な構造を有する所定のブロック共重合体Aを少なくとも含有するバインダー組成物によれば、柔軟性が充分に高く、且つ得られる二次電池のサイクル特性を高め得る電極を形成することができる。
 なお、本明細書において、重合体の「単量体単位」とは、「その単量体を用いて得た重合体中に含まれる、当該単量体由来の繰り返し単位」を意味する。また、本明細書において、重合体が「単量体単位からなるブロック領域を有する」とは、「その重合体中に、繰り返し単位として、その単量体単位のみが連なって結合した部分が存在する」ことを意味する。
 また、本明細書において、あるブロック共重合体に含まれる各領域の「重量平均分子量」は、実施例に記載した方法により測定することができる。
 ここで、本発明の非水系二次電池用バインダー組成物は、前記粒子状重合体が、下記一般式(B)で表されるブロック共重合体Bを更に含み、前記ブロック共重合体A及び前記ブロック共重合体Bの合計質量を100質量%として、前記ブロック共重合体Aの比率が、36質量%以上85質量%以下であることが好ましい。
 Ar1b-Db-Ar2b・・・(B)
 〔ここで、前記一般式(B)において、Ar1b及びAr2bは、それぞれ独立して、重量平均分子量が6,000~20,000である、芳香族ビニル単量体単位からなるブロック領域を示し、Dbは脂肪族共役ジエン単量体単位からなるブロック領域を示す。〕
 バインダー組成物が上記所定のブロック共重合体Bを更に含んでいれば、得られる二次電池のサイクル特性を一層高めることができる。
 また、本発明の非水系二次電池用バインダー組成物において、前記粒子状重合体の表面酸量が0.05mmol/g以上0.90mmol/g以下であることが好ましい。粒子状重合体の表面酸量が上記範囲内であれば、バインダー組成物を用いて調製したスラリー組成物の粘度安定性を高めることができる。
 なお、本明細書において、粒子状重合体の「表面酸量」は、実施例に記載した方法により測定することができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池電極用スラリー組成物は、電極活物質と、上述した非水系二次電池用バインダー組成物の何れかと、を含むことを特徴とする。このように、上述した非水系二次電池用バインダー組成物の何れかを含有させれば、非水系二次電池電極用スラリー組成物を用いて形成した電極の柔軟性を十分に向上させることができる。また、かかる電極を備える二次電池のサイクル特性を十分に向上させることができる。
 更に、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用電極は、上述した非水系二次電池電極用スラリー組成物を用いて形成した電極合材層を備えることを特徴とする。このように、上述した非水系二次電池電極用スラリー組成物を用いて電極合材層を形成すれば、柔軟性が充分に高く、且つ得られる二次電池のサイクル特性を高め得る電極を得ることができる。
 そして、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池は、正極、負極、セパレータ及び電解液を有し、前記正極及び前記負極の少なくとも一方が上述した非水系二次電池用電極であることを特徴とする。上述した非水系二次電池用電極を使用すれば、サイクル特性に優れる非水系二次電池を効率良く製造することができる。
 本発明の非水系二次電池用バインダー組成物及び非水系二次電池電極用スラリー組成物によれば、柔軟性が充分に高く、且つ得られる二次電池のサイクル特性を高め得る電極を形成することができる。
 また、本発明によれば、柔軟性の充分に高い非水系二次電池用電極、並びに、当該電極を備えるサイクル特性に優れる非水系二次電池を得ることができる。
実施例において粒子状重合体の表面酸量を測定する際に用いたプロットの一例を示す図である。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の非水系二次電池用バインダー組成物は、本発明の非水系二次電池電極用スラリー組成物の調製に用いることができる。そして、本発明の非水系二次電池用バインダー組成物を用いて調製した非水系二次電池電極用スラリー組成物は、リチウムイオン二次電池等の非水系二次電池の電極を製造する際に用いることができる。更に、本発明の非水系二次電池は、本発明の非水系二次電池電極用スラリー組成物を用いて形成した本発明の非水系二次電池用電極を用いたことを特徴とする。
 なお、本発明の非水系二次電池用バインダー組成物、非水系二次電池電極用スラリー組成物及び非水系二次電池用電極は、負極用であることが好ましく、本発明の非水系二次電池は、本発明の非水系二次電池用電極を負極として用いたものであることが好ましい。
(非水系二次電池用バインダー組成物)
 本発明の非水系二次電池用バインダー組成物は、所定の粒子状重合体を含有し、任意に、分散媒としての水、バインダー組成物に配合され得るその他の成分を更に含有しうる。
 そして、本発明のバインダー組成物は、粒子状重合体が、非対称なブロック共重合体であるブロック共重合体Aを含有するので、柔軟性が充分に高く、且つ得られる二次電池のサイクル特性を高め得る電極を形成可能である。ここで、近年、二次電池を高容量化する観点から、電極活物質として、シリコン系の材料を採用することがある。シリコン系の材料よりなる電極活物質(以下、Si系電極活物質とも称する)は充放電時の膨張収縮が大きいため、Si系電極活物質を含む電極合材層を備える電極には、柔軟性をより一層高めることが求められている。そこで、本発明のバインダー組成物は、柔軟性に優れるため、Si系電極活物質と組み合わせて用いた場合にも、電極内におけるSi系電極活物質の膨張収縮に良好に追従可能であり、結果的に、二次電池のサイクル特性を高め得る。
 なお、本発明にて柔軟性の充分に高い電極を形成可能な非水系二次電池用バインダー組成物が得られる理由は明らかではないが、以下の通りであると推察される。まず、本発明のバインダー組成物に含まれる、ブロック共重合体Aは、非対称なブロック共重合体である。より具体的には、ブロック共重合体Aは、脂肪族共役ジエン単量体単位からなるブロック領域(以下、「脂肪族共役ジエンブロック領域」とも称することがある)により隔てられて配置された、重量平均分子量が相異なる2つの芳香族ビニル単量体単位からなるブロック領域(以下、「芳香族ビニルブロック領域」とも称することがある)を含有している。ブロック共重合体Aにおいては、重量平均分子量がより小さい方の芳香族ビニルブロック領域が、ブロック共重合体A自体を柔らかくするように作用する一方、重量平均分子量がより大きい方の芳香族ビニルブロック領域によりブロック共重合体Aが過度に軟化することが抑制されて、ブロック共重合体Aの永久伸びが大きくなることが効果的に抑制されると考えられる。その結果、ブロック共重合体A自体が適度な柔軟性を有しながらも、かかるブロック共重合体Aを含有する電極合材層が繰り返しの充放電に起因する変形に追従可能な強度を備えることとなり、得られる二次電池のサイクル特性を高めることができる。
<粒子状重合体>
 粒子状重合体は、結着材として機能する成分であり、バインダー組成物を含むスラリー組成物を使用して形成した電極合材層において、電極活物質などの成分が電極合材層から脱離しないように保持すると共に、電極合材層を介した電極とセパレータとの接着を可能にする。粒子状重合体は、後述する所定のブロック共重合体Aを含有することを必要とし、任意で、後述する所定のブロック共重合体Bをさらに含有することが好ましい。
 そして、粒子状重合体は、所定の重合体により形成される非水溶性の粒子である。なお、本発明において、粒子が「非水溶性」であるとは、温度25℃において重合体0.5gを100gの水に溶解した際に、不溶分が90質量%以上となることをいう。
<<ブロック共重合体A>>
 粒子状重合体としてのブロック共重合体Aは、下記一般式(A)で表される構造を有する共重合体よりなる粒子である。
 Ar1a-Da-Ar2a・・・(A)
 〔ここで、一般式(A)において、Ar1aは、重量平均分子量が5,500~20,000である、芳香族ビニル単量体単位からなるブロック領域を示し、Ar2aは、重量平均分子量が40,000~400,000である、芳香族ビニル単量体単位からなるブロック領域を示し、Daは、脂肪族共役ジエン単量体単位からなるブロック領域を示す。〕
 以下の説明において、ブロック共重合体Aの各構成要素1)~3)を、それぞれ、
 1)重量平均分子量が5,500~20,000である、芳香族ビニル単量体単位からなるブロック領域を、「芳香族ビニルブロック領域(Ar1a)」と、
 2)重量平均分子量が40,000~400,000である、芳香族ビニル単量体単位からなるブロック領域を、「芳香族ビニルブロック領域(Ar2a)」と、
 3)脂肪族共役ジエン単量体単位からなるブロック領域を、「脂肪族共役ジエンブロック領域(Da)」と、
称することがある。
 芳香族ビニルブロック領域(Ar1a)と、芳香族ビニルブロック領域(Ar2a)の、それぞれについての重量平均分子量の範囲から明らかなように、ブロック共重合体Aは、重量平均分子量がより大きい芳香族ビニルブロック領域(Ar2a)と、重量平均分子量がより小さい芳香族ビニルブロック領域(Ar1a)とを含有する。そして、上記一般式(A)より明らかなように、相互に重量平均分子量が異なる芳香族ビニルブロック領域(Ar1a,Ar2a)が、脂肪族共役ジエンブロック領域(Da)により隔てられてなる。換言すると、ブロック共重合体Aは、脂肪族共役ジエンブロック領域(Da)を中心とした場合に、非対称な構造を有するブロック共重合体である。
 なお、ブロック共重合体Aは、上記した領域(Ar1a,Da,Ar2a)以外に、これらに該当しないその他の高分子鎖部分を有していても良い。しかし、永久伸びが大きくなることを効果的に抑制する観点から、ブロック共重合体Aは、その他の高分子鎖部分を含有しないことが好ましい。
-芳香族ビニルブロック領域(Ar1a,Ar2a)-
 芳香族ビニルブロック領域(Ar1a,Ar2a)は、芳香族ビニル単量体単位のみが連なって結合した部分を含む領域である。そして、芳香族ビニルブロック領域(Ar1a,Ar2a)は、繰り返し単位として、芳香族ビニル単量体単位を主に含む領域である。なお、本明細書において、ブロック領域が芳香族ビニル単量体単位を「主に含む」とは、あるブロック領域に含まれる全単量体単位を100質量%として、80質量%以上が芳香族ビニル単量体単位により占有されることを意味する。
 ここで、1つの芳香族ビニルブロック領域(Ar1a,Ar2a)は、1種の芳香族ビニル単量体単位のみで構成されていてもよいし、複数種の芳香族ビニル単量体単位で構成されていてもよいが、1種の芳香族ビニル単量体単位のみで構成されていることが好ましい。
 芳香族ビニルブロック領域(Ar1a,Ar2a)を構成する芳香族ビニル単量体単位を形成するために用いることができる芳香族ビニル単量体としては、芳香族ビニル化合物であれば特に限定されないが、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、2-クロロスチレン、3-クロロスチレン、4-クロロスチレン、4-ブロモスチレン、2-メチル-4,6-ジクロロスチレン、2,4-ジブロモスチレン、ビニルナフタレン等を例示することができる。中でも、スチレンが好ましい。これらは1種を単独で、又は、2種以上を組み合わせて用いることができるが、1種を単独で用いることが好ましい。また、各芳香族ビニルブロック領域(Ar1a,Ar2a)が、同じ芳香族ビニル単量体を用いて形成された重合単位より成るものであっても良いし、異なる芳香族ビニル単量体を用いて形成された重合単位より成るものであってもよい。
 重量平均分子量がより小さい芳香族ビニルブロック領域である、芳香族ビニルブロック領域(Ar1a)は、重量平均分子量MW(Ar1a)が5,500以上20,000以下である必要がある。さらに、重量平均分子量MW(Ar1a)は、6,000以上であることが好ましく、15,000以下であることが好ましく、13,000以下であることがより好ましく、11,000以下であることが更に好ましい。MW(Ar1a)が上記下限値以上であれば、得られる二次電池のサイクル特性を高めることができる。また、MW(Ar1a)が上記上限値以下であれば、ブロック共重合体Aが過度に硬くなることを抑制して、得られる電極の柔軟性を高めることができる。さらに、MW(Ar1a)が上記上限値以下であることで、電極が二次電池の充放電に伴う膨張及び収縮に追従し易くなり、二次電池のサイクル特性を高めることができる。
 また、重量平均分子量がより大きい芳香族ビニルブロック領域である、芳香族ビニルブロック領域(Ar2a)は、重量平均分子量MW(Ar2a)が40,000~400,000である必要がある。そして、重量平均分子量MW(Ar2a)は、42,000以上370,000以下であることが好ましい。MW(Ar2a)上記下限値以上であれば、得られる二次電池のサイクル特性を高めることができる。また、MW(Ar2a)上記上限値以下であれば、得られる電極の柔軟性を一層高めることが出来る。また、また、MW(Ar2a)上記上限値以下であれば、ブロック共重合体Aを製造する際の反応溶液の粘度が過度に高くなることを抑制して、ブロック共重合体Aの製造容易性を高めることができる。
 なお、MW(Ar1a)及びMW(Ar2a)の値は、例えば、ブロック共重合体Aを調製する際に添加する単量体単位の量、重合開始剤の量、重合時に添加する各種添加剤の量、重合溶媒の量、及び重合時間等を適宜変更することにより、調節することができる。
 そして、芳香族ビニルブロック領域(Ar2a)の重量平均分子量MW(Ar2a)を、芳香族ビニルブロック領域(Ar1a)の重量平均分子量MW(Ar1a)で除した値、即ち、「MW(Ar2a)/MW(Ar1a)」の値は、特に限定されないが、2.6以上が好ましく、4以上がより好ましく、67以下が好ましく、40以下がより好ましい。MW(Ar2a)/MW(Ar1a)の値が上記範囲内であれば、得られる二次電池のサイクル特性を一層高めることができる。換言すると、MW(Ar2a)/MW(Ar1a)の値が上記範囲内であれば、ブロック共重合体Aにおいて、「永久伸びが小さい」という属性と、「スプリングバックが低い」という属性とをバランスよく両立することができると考えられる。
 ブロック共重合体A中の芳香族ビニルブロック領域(Ar1a,Ar2a)は、それぞれ、芳香族ビニル単量体単位以外の単量体単位を含んでいてもよい。
 芳香族ビニルブロック領域(Ar1a,Ar2a)に含まれ得る芳香族ビニル単量体単位以外の単量体単位を形成する際に用いることができる単量体としては、例えば、脂肪族共役ジエン単量体、ニトリル基含有単量体、酸性基含有単量体及びその無水物、(メタ)アクリル酸エステル単量体、並びに、1,2-ブタジエン及び1,4-ペンタジエン等の脂肪族非共役ジエン単量体等が挙げられる。ここで、本発明において、「(メタ)アクリル酸」とは、アクリル酸及び/又はメタクリル酸を意味する。上記の単量体としては、ブロック領域(Da)の説明内にて後述するものを用いることができる。
 各芳香族ビニルブロック領域における芳香族ビニル単量体単位以外の単量体単位の含有量は、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、実質的に0質量%であることが特に好ましい。
-脂肪族共役ジエン単量体単位からなるブロック領域(Da)-
 脂肪族共役ジエン単量体単位からなるブロック領域(脂肪族共役ジエンブロック領域(Da))は、脂肪族共役ジエン単量体単位のみが連なって結合した部分を含む領域である。そして、脂肪族共役ジエンブロック領域(Da)は、脂肪族共役ジエン単量体単位を主に含む領域である。なお、本明細書において、ブロック領域が脂肪族共役ジエン単量体単位を「主に含む」とは、あるブロック領域に含まれる全単量体単位を100質量%として、80質量%以上が脂肪族共役ジエン単量体単位により占有されることを意味する。
 ここで、1つの脂肪族共役ジエンブロック領域(Da)は、1種の繰り返し単位で構成されていてもよいし、複数種の繰り返し単位で構成されていてもよい。
 また、1つの脂肪族共役ジエンブロック領域(Da)には、カップリング部位が含まれていてもよい(すなわち、1つの脂肪族共役ジエンブロック領域(Da)を構成する繰り返し単位は、カップリング部位が介在して連なっていてもよい)。
 更に、脂肪族共役ジエンブロック領域(Da)は、グラフト部分及び架橋構造の双方又は何れか一方を有していることが好ましい。特に、得られるスラリー組成物の粘度安定性を高める観点から、脂肪族共役ジエンブロック領域(Da)がグラフト部分を有していることが好ましい。
 ここで、脂肪族共役ジエン単量体単位を形成するために用いることができる脂肪族共役ジエン単量体としては、脂肪族共役ジエン化合物であれば特に限定されないが、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン等が挙げられる。
 これらの中でも、1,3-ブタジエン及び/又はイソプレンを用いることが好ましく、イソプレンを用いることが特に好ましい。
 脂肪族共役ジエンブロック領域を形成する際にイソプレンを用いることにより、ブロック共重合体Aの接着力を効果的に高めることができる。
 なお、脂肪族共役ジエンからなるブロック領域を架橋させることで、脂肪族共役ジエンからなるブロック領域に対して、架橋構造を導入することができる。換言すると、脂肪族共役ジエンからなるブロック領域を含む重合体を架橋させることで、肪族共役ジエン単量体単位を架橋してなる構造単位を含む脂肪族共役ジエンブロック領域(Da)を形成することができる。
 脂肪族共役ジエン単量体単位を架橋してなる構造単位は、脂肪族共役ジエンからなるブロック領域を含む重合体を架橋することにより、ブロック共重合体Aに導入することができる。
 ここで、架橋は、特に限定されることなく、例えば酸化剤と還元剤とを組み合わせてなるレドックス開始剤などのラジカル開始剤を用いて行うことができる。そして、酸化剤としては、例えば、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、イソブチリルパーオキサイド、ベンゾイルパーオキサイドなどの有機過酸化物を用いることができる。また、還元剤としては、硫酸第一鉄、ナフテン酸第一銅等の還元状態にある金属イオンを含有する化合物;メタンスルホン酸ナトリウム等のスルホン酸化合物;ジメチルアニリン等のアミン化合物;などを用いることができる。これらの有機過酸化物及び還元剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 なお、架橋は、ジビニルベンゼン等のポリビニル化合物;ジアリルフタレート、トリアリルトリメリテート、ジエチレングリコールビスアリルカーボネート等のポリアリル化合物;エチレングリコールジアクリレート等の各種グリコール;などの架橋剤の存在下で行ってもよい。また、架橋は、γ線などの活性エネルギー線の照射を用いて行うこともできる。
 さらにまた、脂肪族共役ジエンブロック領域(Da)は、上記以外の繰り返し単位を含んでいてもよい。具体的には、脂肪族共役ジエンブロック領域(Da)は、カルボキシル基含有単量体単位、スルホン酸基含有単量体単位及びリン酸基含有単量体単位等の酸性基含有単量体単位;アクリロニトリル単位及びメタクリロニトリル単位等のニトリル基含有単量体単位;アクリル酸アルキルエステル単位及びメタクリル酸アルキルエステル単位等の(メタ)アクリル酸エステル単量体単位;並びに、ブロック領域(Ar1a,Ar2a)の項目にて例示したような脂肪族非共役ジエン単量体に由来する脂肪族非共役ジエン単量体単位などの他の単量体単位を含んでいてもよい。中でも、粒子状重合体の表面酸量を適度な大きさとして、バインダー組成物を用いて調製したスラリー組成物の粘度安定性を向上させる観点からは、ブロック共重合体Aの脂肪族共役ジエンブロック領域(Da)は、酸性基含有単量体単位を含むことが好ましい。
 なお、酸性基含有単量体単位が有する酸性基は、アルカリ金属やアンモニア等と塩を形成していてもよい。
 ここで、カルボキシル基含有単量体単位を形成し得るカルボキシル基含有単量体としては、モノカルボン酸及びその誘導体や、ジカルボン酸及びその酸無水物並びにそれらの誘導体などが挙げられる。
 モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。
 モノカルボン酸誘導体としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸などが挙げられる。
 ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸や、マレイン酸ブチル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸モノエステルが挙げられる。
 ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸、無水シトラコン酸などが挙げられる。
 また、カルボキシル基含有単量体としては、加水分解によりカルボキシル基を生成する酸無水物も使用できる。
 更に、カルボキシル基含有単量体としては、ブテントリカルボン酸等のエチレン性不飽和多価カルボン酸や、フマル酸モノブチル、マレイン酸モノ2-ヒドロキシプロピル等のエチレン性不飽和多価カルボン酸の部分エステルなども用いることができる。
 また、スルホン酸基含有単量体単位を形成し得るスルホン酸基含有単量体としては、例えば、スチレンスルホン酸、ビニルスルホン酸(エチレンスルホン酸)、メチルビニルスルホン酸、(メタ)アリルスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸が挙げられる。
 なお、本発明において、「(メタ)アリル」とは、アリル及び/又はメタリルを意味する。
 更に、リン酸基含有単量体単位を形成し得るリン酸基含有単量体としては、例えば、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルが挙げられる。
 なお、本発明において、「(メタ)アクリロイル」とは、アクリロイル及び/又はメタクリロイルを意味する。
 ここで、上述した単量体は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。そして、酸性基含有単量体単位を形成し得る酸性基含有単量体としては、メタクリル酸、イタコン酸、アクリル酸が好ましく、メタクリル酸がより好ましい。
 そして、上述した、酸性基含有単量体単位、ニトリル基含有単量体単位及び(メタ)アクリル酸エステル単量体単位などの他の単量体単位は、特に限定されることなく、グラフト重合などの任意の重合方法を用いて重合体に導入することができる。なお、グラフト重合により他の単量体単位を導入した場合、重合体は、グラフト部分を含むこととなり、幹部分となる重合体に対してグラフト部分となる重合体が結合した構造を有することになる。
 ここで、グラフト重合は、特に限定されることなく、既知のグラフト重合方法を用いて行うことができる。具体的には、グラフト重合は、例えば酸化剤と還元剤とを組み合わせてなるレドックス開始剤などのラジカル開始剤を用いて行うことができる。そして、酸化剤及び還元剤としては、ブロック共重合体Aの架橋に使用し得るものとして上述した酸化剤及び還元剤と同様のものを用いることができる。
 そして、ブロック共重合体Aに対してレドックス開始剤を用いてグラフト重合を行う場合には、グラフト重合による他の単量体単位の導入と、脂肪族共役ジエン単量体単位の架橋とを同時に進行させることができる。なお、グラフト重合と架橋は同時に進行させなくてもよく、ラジカル開始剤の種類や反応条件を調整してグラフト重合のみを進行させてもよい。
 そして、脂肪族共役ジエンブロック領域(Da)は、重量平均分子量MW(Da)が、20,000以上であることが好ましく、30,000以上であることがより好ましく、35,000以上であることが更に好ましい。MW(Da)が上記下限値以上であることで、ブロック共重合体Aが過度に硬くなることを抑制することで、得られる電極の柔軟性を高めることができる。また、重量平均分子量MW(Da)は、得られる二次電池のサイクル特性を高める観点からは、200,000以下であることが好ましく、150,000以下であることがより好ましく、100,000以下であることが更に好ましい。さらに、重量平均分子量MW(Da)は、得られる電極合材層のスプリングバックが大きくなることを効果的に抑制する観点からは、70,000以下であることが好ましい。なお、MW(Da)の値は、例えば、ブロック共重合体Aを調製する際に添加する単量体単位の量、重合開始剤の量、重合時に添加する各種添加剤の量、重合溶媒の量、カップリング剤の量、及び重合時間等を適宜変更することにより、調節することができる。
―ブロック共重合体Aの重量平均分子量―
 ブロック共重合体Aの重量平均分子量MW(A)は、66,000以上であることが好ましく、79,000以上であることがより好ましく、100,000以上であることがさらに好ましく、300,000以下であることが好ましく、200,000以下であることがより好ましい。MW(A)の値が上記範囲内であれば、得られる二次電池のサイクル特性を一層高めることができる。特に、MW(A)の値が上記上限値以下であれば、電極活物質の膨張及び収縮に起因して電極合材層内で生じた応力により、粒子状重合体であるブロック共重合体Aが非可逆的に変化することを抑制することができると考えられる。
<<ブロック共重合体B>>
 粒子状重合体としてのブロック共重合体Bは、下記一般式(B)で表される構造を有する共重合体より成る粒子である。
 Ar1b-Db-Ar2b・・・(B)
 〔ここで、前記一般式(B)において、Ar1b及びAr2bは、それぞれ独立して、重量平均分子量が6,000~20,000である、芳香族ビニル単量体単位からなるブロック領域を示し、Dbは脂肪族共役ジエン単量体単位からなるブロック領域を示す。〕
 以下の説明において、ブロック共重合体Bの各構成要素4)~6)を、それぞれ、
 4)重量平均分子量が6,000~20,000である、芳香族ビニル単量体単位からなる第一のブロック領域を、「芳香族ビニルブロック領域(Ar1b)」と、
 5)重量平均分子量が6,000~20,000である、芳香族ビニル単量体単位からなる第二のブロック領域を、「芳香族ビニルブロック領域(Ar2b)」と、
 6)脂肪族共役ジエン単量体単位からなるブロック領域を、「脂肪族共役ジエンブロック領域(Db)」と、
称することがある。
 なお、ブロック共重合体Bは、上記した領域(Ar1b,Db,Ar2b)以外に、これらに該当しないその他の高分子鎖部分を有していても良い。しかし、永久伸びが大きくなることを効果的に抑制する観点から、ブロック共重合体Bは、その他の高分子鎖部分を含有しないことが好ましい。
-芳香族ビニルブロック領域(Ar1b,Ar2b)-
 芳香族ビニルブロック領域(Ar1b,Ar2b)は、繰り返し単位として、芳香族ビニル単量体単位を主に含む領域である。上記したブロック共重合体Aと同様に、1つの芳香族ビニルブロック領域(Ar1b,Db,Ar2b)は、1種又は複数種の芳香族ビニル単量体単位のみで構成されうるが、1種の芳香族ビニル単量体単位のみで構成されていることが好ましい。また、1つの芳香族ビニルブロック領域(Ar1b,Db,Ar2b)には、カップリング部位が含まれていてもよい。
 芳香族ビニルブロック領域(Ar1b,Ar2b)を構成する芳香族ビニル単量体単位を形成するために用いることができる芳香族ビニル単量体としては、<<ブロック共重合体A>>の項目にて上述した各種化合物を挙げることができる。中でも、スチレンが好ましい。また、ブロック共重合体Aと同様に、各芳香族ビニルブロック領域(Ar1b,Ar2b)が、同じ芳香族ビニル単量体を用いて形成された重合単位より成るものであっても良いし、異なる芳香族ビニル単量体を用いて形成された重合単位より成るものであってもよい。さらに、ブロック共重合体Aの場合と同様に、芳香族ビニルブロック領域(Ar1b,Ar2b)は、それぞれ、芳香族ビニル単量体単位以外の単量体単位を含んでいてもよい。芳香族ビニルブロック領域(Ar1b,Ar2b)に含まれ得る芳香族ビニル単量体単位以外の単量体単位を形成する際に用いることができる単量体としては、ブロック共重合体Aについて列挙した各種単量体と同様のものを用いることができる。
 芳香族ビニルブロック領域(Ar1b,Ar2b)は、重量平均分子量MW(Ar1b)及びMW(Ar2b)が、それぞれ独立して、6,000以上であることが好ましく、7,000以上であることがより好ましく、20,000以下であることが好ましく、15,000以下であることがより好ましく、13,000以下であることがさらに好ましい。重量平均分子量MW(Ar1b)及びMW(Ar2b)は、同一であっても、相異なっていても良いが、永久伸びが大きくなることを効果的に抑制する観点から、実質的に同一であることが好ましい。
 MW(Ar1b)及びMW(Ar2b)が上記下限値以上であれば、得られる二次電池のサイクル特性を高めることができる。また、MW(Ar1b)及びMW(Ar2b)が上記上限値以下であれば、得られる電極の柔軟性を高めることができる。さらに、MW(Ar1b)及びMW(Ar2b)が上記上限値以下であることで、電極が二次電池の充放電に伴う膨張及び収縮に追従し易くなり、二次電池のサイクル特性を高めることができる。
 さらに、MW(Ar1b)及びMW(Ar2b)は、上述したブロック共重合体Aに含まれる芳香族ビニルブロック領域(Ar1a)の重量平均分子量MW(Ar1a)と、実質的に同一であることが好ましい。永久伸びが大きくなることを効果的に抑制することができるとともに、バインダー組成物の製造容易性も高めることができるからである。
-脂肪族共役ジエン単量体単位からなるブロック領域(Db)-
 脂肪族共役ジエン単量体単位からなるブロック領域(脂肪族共役ジエンブロック領域(Db))は、脂肪族共役ジエン単量体単位のみが連なって結合した部分を含む領域である。そして、脂肪族共役ジエンブロック領域(Db)は、脂肪族共役ジエン単量体単位を主に含む領域である。上記したブロック共重合体Aの場合と同様に、1つの脂肪族共役ジエンブロック領域(Db)は、一種又は複数種の繰り返し単位で構成されることができる。また、脂肪族共役ジエンブロック領域(Db)は、カップリング部位及びグラフト部分の双方又は何れか一方を有していてもよい。特に、得られるスラリー組成物の粘度安定性を高める観点から、脂肪族共役ジエンブロック領域(Db)が、グラフト部分を有することが好適である。
 脂肪族共役ジエンブロック領域(Db)の脂肪族共役ジエン単量体単位を形成するために用いることができる脂肪族共役ジエン単量体としては、<<ブロック共重合体A>>の項目にて上述した各種化合物を挙げることができる。中でも、1,3-ブタジエン及び/又はイソプレンを用いることが好ましく、イソプレンを用いることが特に好ましい。
 脂肪族共役ジエンブロック領域(Db)を形成する際にイソプレンを用いることにより、ブロック共重合体Bの接着力を効果的に高めることができる。
 また、脂肪族共役ジエンブロック領域(Db)に含まれうるその他の繰り返し単位としては、上述したブロック共重合体Aの場合と同様の各種単量体単位を挙げることができる。
 そして、脂肪族共役ジエンブロック領域(Db)は、重量平均分子量MW(Da)が、60,000以上であることが好ましく、90,000以上であることがより好ましく、400,000以下であることが好ましく、300,000以下であることがより好ましく、200,000以下であることが更に好ましい。MW(Da)上記下限値以上であれば、ブロック共重合体Bが過度に硬くなることを抑制することで、得られる電極の柔軟性を高めることができる。さらに、MW(Da)が上記上限値以下であることで、得られる二次電池のサイクル特性を高めることができる。
<<ブロック共重合体Aの比率>>
 そして、本発明の非水系二次電池用バインダー組成物に含有されるブロック共重合体A及びブロック共重合体Bの合計質量を100質量%とした倍の、ブロック共重合体Aの比率は、36質量%以上が好ましく、38質量%以上がより好ましく、40質量%以上が更に好ましく、85質量%以下が好ましく、80質量%以下がより好ましく、75質量%以下が更に好ましい。ブロック共重合体Aの比率が上記下限値以上であれば、得られる電極の柔軟性を効果的に高めることができる。また、ブロック共重合体Aの比率が上記上限値以下であれば、得られる電極合材層のスプリングバックが大きくなることを効果的に抑制することができると共に、得られる二次電池のサイクル特性を一層高めることができる。これらの有利な効果が奏される理由は明らかではないが、ブロック共重合体Aの比率が上記範囲内であれば、得られる電極において、「永久伸びが小さい」という属性と、「スプリングバックが低い」という属性とをバランスよく両立することができるためであると考えられる。
<<粒子状重合体の表面酸量>>
 粒子状重合体は、表面酸量が、0.05mmol/g以上であることが好ましく、0.06mmol/g以上であることがより好ましく、0.08mmol/g以上であることが更に好ましく、0.10mmol/g以上であることが更により好ましく、0.20mmol/g以上であることが特に好ましく、0.90mmol/g以下であることが好ましく、0.50mmol/g以下であることがより好ましく、0.45mmol/g以下であることがさらに好ましい。粒子状重合体の表面酸量が上記下限値以上であれば、バインダー組成物を用いて調製したスラリー組成物の粘度安定性を高めることができるとともに、得られる二次電池のサイクル特性を一層高めることができる。一方、粒子状重合体の表面酸量が上記上限値以下であれば、バインダー組成物を用いて形成した電極は、スプリングバックを生じにくいため、プレス性に優れる。更に、粒子状重合体の表面酸量が上記範囲内であれば、スラリー組成物の塗工性も向上させることができる。
 そして、粒子状重合体の表面酸量は、粒子状重合体としてのブロック共重合体A及びブロック共重合体Bの製造に使用する単量体の種類及び量を変更することにより調整することができる。具体的には、例えば、カルボン酸基を含有する単量体などの酸性基含有単量体の使用量を増加することにより表面酸量を増大させることができる。
<<粒子状重合体のビニル結合含有割合>>
 上述したように、粒子状重合体としてのブロック共重合体A及びブロック共重合体Bは、脂肪族共役ジエン単量体単位を含む領域である。そこで、これらのブロック共重合体A及びBに含有される脂肪族共役ジエンブロック領域の「ビニル結合含有割合」を、脂肪族共役ジエンブロック領域に含有される全ての脂肪族共役ジエン単量体単位を基準とした、1,2-ビニル結合及び3,4-ビニル結合が占める割合として定義する。脂肪族共役ジエンブロック領域のビニル結合含有割合は、1モル%以上が好ましく、20モル%以下が好ましく、10モル%以下がより好ましい。脂肪族共役ジエンブロック領域のビニル結合含有割合が上記上限値以下であれば、得られる二次電池のサイクル特性を一層高めることができる。なお、脂肪族共役ジエンブロック領域の「ビニル結合含有割合」は、実施例に記載の方法により測定することができる。なお、粒子状重合体が、グラフト重合を経て得られた重合体である場合に、グラフト前の粒子状重合体について測定した「ビニル結合含有割合」は、グラフト後の粒子状重合体について測定した「ビニル結合含有割合」の値よりも大きい。
<<粒子状重合体の体積平均粒子径>>
 粒子状重合体は、体積平均粒子径が50nm以上であることが好ましく、200nm以上であることがより好ましく、300nm以上であることが更に好ましく、1500nm以下であることが好ましく、800nm以下であることがより好ましく、500nm以下であることが更に好ましい。粒子状重合体の体積平均粒子径が上記下限値以上であれば、粒子状重合体の製造容易性を高めることができる。また、粒子状重合体の体積平均粒子径が上記上限値以下であれば、粒子状重合体の結着材としての性能を高めることができ、結果的に、得られる二次電池のサイクル特性を高めることができる。なお、粒子状重合体の体積平均粒子径は、実施例に記載の方法により測定することができる。
<<粒子状重合体における芳香族ビニル単量体単位の割合>>
 そして、粒子状重合体中の、芳香族ビニル単量体単位の割合は、粒子状重合体の全質量を100質量%とした場合に、27質量%以上であることが好ましく、30質量%以上であることがより好ましく、70質量%以下であることが好ましく、60質量%以下であることがより好ましい。粒子状重合体中に占める芳香族ビニル単量体単位の割合が上記下限値以上であれば、粒子状重合体が過度に高いタック性を発現することを効果的に抑制することができ、得られる電極合材層を備える電極を積み重ねて保管した場合に、電極同士がブロッキングし易くなることを効果的に抑制することができる。一方、粒子状重合体中に占める芳香族ビニル単量体単位の割合が上記上限値以下であれば、粒子状重合体の柔軟性を効果的に高めることができ、得られる電極の柔軟性を一層高めることができる。なお、粒子状重合体としてのブロック共重合体A及びブロック共重合体Bにおいては、通常、芳香族ビニルブロック領域が各ブロック共重合体中に占める割合が、芳香族ビニル単量体単位が各ブロック共重合体中に占める割合と一致する。
 なお、上述したように、本発明のバインダー組成物の構成要素としての粒子状重合体は、上述した所定のブロック共重合体Aを含有し、好適には、上述した所定のブロック共重合体Bを含有し得る。従って、上記した「粒子状重合体の表面酸量」、「粒子状重合体の体積平均粒子径」、及び「粒子状重合体における芳香族ビニル単量体単位の割合」は、粒子状重合体がブロック共重合体Aのみからなる場合にはブロック共重合体Aの属性値に相当し、粒子状重合体がブロック共重合体A及びブロック共重合体Bを含有する場合には、これらの混合物の属性値に相当する。
<<粒子状重合体の調製方法>>
 粒子状重合体は、例えば、有機溶媒中で上述した芳香族ビニル単量体や脂肪族共役ジエン単量体などの単量体をブロック重合して所定のブロック共重合体の溶液を得る工程(ブロック共重合体溶液調製工程)と、得られたブロック共重合体の溶液に水を添加して乳化することでブロック共重合体を粒子化する工程(乳化工程)と、粒子化したブロック共重合体に対してグラフト重合を行って所定の共重合体よりなる粒子状重合体の水分散液を得る工程(グラフト工程)と、を経て調製することができる。
 なお、粒子状重合体の調製において、グラフト工程は、乳化工程の前に行ってもよい。即ち、粒子状重合体は、ブロック重合体溶液調製工程の後に、得られたブロック重合体の溶液に含まれているブロック重合体に対してグラフト重合を行って所定の重合体の溶液を得る工程(グラフト工程)を行い、その後、得られた所定の重合体の溶液に水を添加して乳化することで所定の重合体を粒子化する工程(乳化工程)を行うことにより、調製してもよい。
―ブロック共重合体溶液調製工程―
 ブロック共重合体溶液調製工程は、例えば、国際公開第2009/123089号に開示された有機溶媒、重合開始剤、及び各種の添加剤等を用いて、同文献に開示された条件下で行うことができる。より具体的には、ブロック共重合体溶液調製工程では、
 (1)有機溶媒中で重合開始剤を用いて、芳香族ビニル単量体を重合して活性末端を有する芳香族ビニル重合体を得て;
 (2)得られた活性末端を有する芳香族ビニル重合体を含有する溶液に対して、脂肪族共役ジエン単量体を添加して、活性末端を有する芳香族ビニル-脂肪族共役ジエンブロック共重合体を得て;
 (3)得られた活性末端を有する芳香族ビニル-脂肪族共役ジエンブロック共重合体を含有する溶液に、その活性末端に対して官能基が1モル当量未満となる量で、2官能性のカップリング剤を添加し、ブロック共重合体Bを形成し;
 (4)ここに、芳香族ビニル単量体を添加してさらに重合して、ブロック共重合体Aを形成し、ブロック共重合体溶液を得る。
 以上の(1)~(4)の操作を経て得られたブロック共重合体溶液中には、ブロック共重合体A及びブロック共重合体Bが混在する。なお、例えば、ブロック共重合体Aのみを合成する場合には、上記(3)の操作を省略することができる。
-乳化工程-
 乳化工程における乳化の方法は、特に限定されないが、例えば、上述したブロック共重合体溶液調製工程で得られたブロック共重合体の溶液と、乳化剤の水溶液との予備混合物を転相乳化する方法が好ましい。ここで、転相乳化には、例えば既知の乳化剤及び乳化分散機を用いることができる。具体的には、乳化分散機としては、特に限定されることなく、例えば、商品名「ホモジナイザー」(IKA社製)、商品名「ポリトロン」(キネマティカ社製)、商品名「TKオートホモミキサー」(特殊機化工業社製)等のバッチ式乳化分散機;商品名「TKパイプラインホモミキサー」(特殊機化工業社製)、商品名「コロイドミル」(神鋼パンテック社製)、商品名「スラッシャー」(日本コークス工業社製)、商品名「トリゴナル湿式微粉砕機」(三井三池化工機社製)、商品名「キャビトロン」(ユーロテック社製)、商品名「マイルダー」(太平洋機工社製)、商品名「ファインフローミル」(太平洋機工社製)等の連続式乳化分散機;商品名「マイクロフルイダイザー」(みずほ工業社製)、商品名「ナノマイザー」(ナノマイザー社製)、商品名「APVガウリン」(ガウリン社製)等の高圧乳化分散機;商品名「膜乳化機」(冷化工業社製)等の膜乳化分散機;商品名「バイブロミキサー」(冷化工業社製)等の振動式乳化分散機;商品名「超音波ホモジナイザー」(ブランソン社製)等の超音波乳化分散機;などを用いることができる。なお、乳化分散機による乳化操作の条件(例えば、処理温度、処理時間など)は、特に限定されず、所望の分散状態になるように適宜選定すればよい。
 そして、転相乳化後に得られる乳化液から、必要に応じて、既知の方法により有機溶媒を除去する等して、粒子化したブロック共重合体の水分散液を得ることができる。
-グラフト工程-
 グラフト工程におけるグラフト重合の方法は、特に限定されないが、例えば、グラフト重合させる単量体の存在下において、レドックス開始剤などのラジカル開始剤を用いてブロック重合体のグラフト重合及び架橋を同時に進行させる方法が好ましい。
 ここで、反応条件は、ブロック共重合体の組成、及び、所望の表面酸量の大きさ等に応じて調整することができる。
 そして、グラフト工程では、粒子状重合体の水分散液を得ることができる。なお、乳化工程の後にグラフト工程を行った場合、即ち、粒子化したブロック共重合体に対してグラフト重合を行った場合には、酸性基含有単量体単位などのグラフト重合により導入された単量体単位は、粒子状重合体の中心部よりも表面側に多く存在し、表層部に偏在することとなる。
<分散媒>
 バインダー組成物が含有する分散媒としては、特に限定されることなく、水が挙げられる。尚、分散媒は、水溶液、及び水と少量の有機溶媒との混合溶液であっても良い。
<その他の成分>
 バインダー組成物に含有されうるその他の成分としては、特に限定されることなく、例えば、補強材、レベリング剤、粘度調整剤、電解液添加剤等の成分を含有させることができる。これらの成分は、一種を単独で用いても良く、二種以上を任意の比率で組み合わせて用いても良い。
<バインダー組成物の調製方法>
 そして、本発明のバインダー組成物は、特に限定されることなく、粒子状重合体と、任意で用いられるその他の成分とを分散媒中で混合して調製することができる。なお、粒子状重合体の分散液を用いてバインダー組成物を調製する場合には、分散液が含有している液分をそのままバインダー組成物の分散媒として利用してもよい。
(非水系二次電池電極用スラリー組成物)
 本発明のスラリー組成物は、電極の電極合材層の形成用途に用いられる組成物であり、上述したバインダー組成物を含み、電極活物質を更に含有する。即ち、本発明のスラリー組成物は、上述した粒子状重合体及び電極活物質を含有し、任意に、その他の成分を更に含有する。そして、本発明のスラリー組成物は、上述したバインダー組成物を含んでいるので、当該スラリー組成物から形成される電極合材層を備える電極は、柔軟性が充分に高く、且つ得られる二次電池のサイクル特性を高めることができる。
<バインダー組成物>
 バインダー組成物としては、所定の粒子状重合体を含む、上述した本発明のバインダー組成物を用いる。
 なお、スラリー組成物中のバインダー組成物の配合量は、特に限定されない。例えば、バインダー組成物の配合量は、電極活物質100質量部当たり、固形分換算で、粒子状重合体の量が0.5質量部以上15質量部以下となる量とすることができる。
<電極活物質>
 そして、電極活物質としては、特に限定されることなく、二次電池に用いられる既知の電極活物質を使用することができる。具体的には、例えば、二次電池の一例としてのリチウムイオン二次電池の電極合材層において使用し得る電極活物質としては、特に限定されることなく、以下の電極活物質を用いることができる。
<<正極活物質>>
 リチウムイオン二次電池の正極の正極合材層に配合される正極活物質としては、例えば、遷移金属を含有する化合物、例えば、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属との複合金属酸化物などを用いることができる。なお、遷移金属としては、例えば、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が挙げられる。
 具体的には、正極活物質としては、特に限定されることなく、リチウム含有コバルト酸化物(LiCoO2)、マンガン酸リチウム(LiMn24)、リチウム含有ニッケル酸化物(LiNiO2)、Co-Ni-Mnのリチウム含有複合酸化物、Ni-Mn-Alのリチウム含有複合酸化物、Ni-Co-Alのリチウム含有複合酸化物、オリビン型リン酸鉄リチウム(LiFePO4)、オリビン型リン酸マンガンリチウム(LiMnPO4)、Li1+xMn2-x4(0<X<2)で表されるリチウム過剰のスピネル化合物、Li[Ni0.17Li0.2Co0.07Mn0.56]O2、LiNi0.5Mn1.54等が挙げられる。
 なお、上述した正極活物質は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
<<負極活物質>>
 リチウムイオン二次電池の負極の負極合材層に配合される負極活物質としては、例えば、炭素系負極活物質、金属系負極活物質、及び、これらを組み合わせた負極活物質などが挙げられる。
 ここで、炭素系負極活物質とは、リチウムを挿入(「ドープ」ともいう。)可能な、炭素を主骨格とする活物質をいう。そして、炭素系負極活物質としては、具体的には、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)及びハードカーボンなどの炭素質材料、並びに、天然黒鉛及び人造黒鉛などの黒鉛質材料が挙げられる。
 また、金属系負極活物質とは、金属を含む活物質であり、通常は、リチウムの挿入が可能な元素を構造に含み、リチウムが挿入された場合の単位質量当たりの理論電気容量が500mAh/g以上である活物質をいう。そして、金属系活物質としては、例えば、リチウム金属、リチウム合金を形成し得る単体金属(例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn、Tiなど)及びそれらの酸化物、硫化物、窒化物、ケイ化物、炭化物、燐化物などが挙げられる。さらに、チタン酸リチウムなどの酸化物を挙げることができる。
 なお、上述した負極活物質は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
<その他の成分>
 スラリー組成物に配合し得るその他の成分としては、特に限定することなく、導電材や、本発明のバインダー組成物に配合し得るその他の成分と同様のものが挙げられる。なお、その他の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<スラリー組成物の調製>
 スラリー組成物の調製方法は、特に限定はされない。
 例えば、バインダー組成物と、電極活物質と、必要に応じて用いられるその他の成分とを、水系媒体の存在下で混合してスラリー組成物を調製することができる。
 なお、スラリー組成物の調製の際に用いる水系媒体には、バインダー組成物に含まれていたものも含まれる。また、混合方法は特に制限されないが、通常用いられうる撹拌機や、分散機を用いて混合することができる。
(非水系二次電池用電極)
 本発明の非水系二次電池用電極は、上述した非水系二次電池電極用スラリー組成物を用いて形成した電極合材層を備える。従って、電極合材層は、上述したスラリー組成物の乾燥物よりなり、通常、電極活物質と、粒子状重合体に由来する成分とを含有し、任意に、その他の成分を含有する。なお、電極合材層中に含まれている各成分は、上記非水系二次電池電極用スラリー組成物中に含まれていたものであり、それら各成分の好適な存在比は、スラリー組成物中の各成分の好適な存在比と同じである。また、粒子状重合体は、スラリー組成物中では粒子形状で存在するが、スラリー組成物を用いて形成された電極合材層中では、粒子形状であってもよいし、その他の任意の形状であってもよい。
 そして、本発明の非水系二次電池用電極は、上述した非水系二次電池電極用スラリー組成物を使用して電極合材層を形成しているので、柔軟性が充分に高く、且つ得られる二次電池のサイクル特性を高め得る。
<非水系二次電池用電極の製造>
 ここで、本発明の非水系二次電池用電極の電極合材層は、例えば、以下の方法を用いて形成することができる。
1)本発明のスラリー組成物を集電体の表面に塗布し、次いで乾燥する方法;
2)本発明のスラリー組成物に集電体を浸漬後、これを乾燥する方法;及び
3)本発明のスラリー組成物を離型基材上に塗布し、乾燥して電極合材層を製造し、得られた電極合材層を集電体の表面に転写する方法。
 これらの中でも、前記1)の方法が、電極合材層の層厚制御をしやすいことから特に好ましい。前記1)の方法は、詳細には、スラリー組成物を集電体上に塗布する工程(塗布工程)と、集電体上に塗布されたスラリー組成物を乾燥させて集電体上に電極合材層を形成する工程(乾燥工程)を含む。
[塗布工程]
 上記スラリー組成物を集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、スラリー組成物を集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる電極合材層の厚みに応じて適宜に設定しうる。
 ここで、スラリー組成物を塗布する集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[乾燥工程]
 集電体上のスラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥法、真空乾燥法、赤外線や電子線などの照射による乾燥法を用いることができる。このように集電体上のスラリー組成物を乾燥することで、集電体上に電極合材層を形成し、集電体と電極合材層とを備える非水系二次電池用電極を得ることができる。
 なお、乾燥工程の後、金型プレス又はロールプレスなどを用い、電極合材層に加圧処理を施してもよい。加圧処理により、電極合材層と集電体との密着性を向上させると共に得られる電極合材層をより一層高密度化することができる。また、電極合材層が硬化性の重合体を含む場合は、電極合材層の形成後に前記重合体を硬化させることが好ましい。
(非水系二次電池)
 本発明の非水系二次電池は、正極と、負極と、電解液と、セパレータとを備えており、上述した非水系二次電池用電極を正極及び負極の少なくとも一方として用いる。そして、本発明の非水系二次電池は、上述した非水系二次電池用電極を正極及び負極の少なくとも一方として用いているため、サイクル特性に優れる。
 なお、以下では、一例として二次電池がリチウムイオン二次電池である場合について説明するが、本発明は下記の一例に限定されるものではない。
<電極>
 ここで、本発明の非水系二次電池で使用し得る、上述した本発明の非水系二次電池用電極以外の電極としては、特に限定されることなく、二次電池の製造に用いられている既知の電極を用いることができる。具体的には、上述した本発明の非水系二次電池用電極以外の電極としては、既知の製造方法を用いて集電体上に電極合材層を形成してなる電極などを用いることができる。
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。リチウムイオン二次電池の支持電解質としては、例えば、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C49SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO22NLi、(C25SO2)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF6、LiClO4、CF3SO3Liが好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)、ビニレンカーボネート(VC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いので、カーボネート類を用いることが好ましい。通常、用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなる傾向があるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
 なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤を添加することができる。
<セパレータ>
 セパレータとしては、特に限定されることなく、例えば特開2012-204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。
 そして、本発明の二次電池は、例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。ここで、本発明の非水系二次電池では、正極及び負極の少なくとも一方、好ましくは負極として、上述した非水系二次電池用電極を使用する。なお、本発明の非水系二次電池には、二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
 また、複数種類の単量体を重合して製造される重合体において、ある単量体を重合して形成される単量体単位の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
 そして、実施例及び比較例において、各種属性の測定は以下の方法で実施した。また、実施例及び比較例において、各種評価は、以下の方法に従って実施した。
<ブロック共重合体A及びBの重量平均分子量>
 実施例、比較例で調製した粒子状重合体の水分散液について、流速0.35ml/分のテトラヒドロフランをキャリアとする高速液体クロマトグラフィにより重量平均分子量をポリスチレン換算分子量として求めた。装置としては、東ソー社製HLC8220を、カラムとしては昭和電工社製Shodex KF-404HQを3本連結したもの(カラム温度40℃)を、検出器としては示差屈折計及び紫外検出器を用い、分子量の較正はポリマーラボラトリー社製の標準ポリスチレン(500から300万)の12点で実施した。
<ブロック共重合体A及びブロック共重合体Bの質量比>
 上述した<ブロック共重合体A及びBの重量平均分子量>を測定する際に得たチャートのブロック共重合体A及びBのそれぞれに対応するピークの面積から、ブロック共重合体A及びブロック共重合体Bの質量比を求めた。
<ブロック共重合体A及びBに含有される各芳香族ビニルブロック領域(Ar1a,Ar2a,Ar1b,Ar2b)の重量平均分子量>
 ラバー ケミストリ アンド テクノロジー(Rubber Chemistry and Technology)第45巻,pp1295(1972)に記載された方法に従い、実施例、比較例で得たブロック共重合体A及びBをオゾンと反応させ、水素化リチウムアルミニウムで還元することにより、ブロック共重合体A及びBの脂肪族共役ジエンブロック領域であるイソプレン重合体ブロックを分解した。
 具体的には、以下の手順で行った。実施例、比較例で得られた粒子状重合体の水分散液(バインダー組成物)を、絶対湿度50%、温度23℃~25℃の環境下で乾燥させて、厚み3±0.3mmの重合体フィルムを試料として作製した。モレキュラーシーブで処理したジクロロメタン100mlを入れた反応容器に、試料を300mg溶解した。この反応容器を冷却槽に入れ、-25℃としてから、反応容器に170ml/minの流量で酸素を流しながら、オゾン発生器により発生させたオゾンを導入した。反応開始から30分経過後、反応容器から流出する気体をヨウ化カリウム水溶液に導入することにより、反応が完了したことを確認した。
 次いで、窒素置換した別の反応容器に、ジエチルエーテル50mlと水素化リチウムアルミニウム470mgとを仕込み、氷水で反応容器を冷却しながら、この反応容器にオゾンと反応させた溶液をゆっくり滴下した。そして、反応容器を水浴に入れ、徐々に昇温して、40℃で30分間還流させた。その後、溶液を撹拌しながら、反応容器に希塩酸を少量ずつ滴下し、水素の発生がほとんど認められなくなるまで滴下を続けた。この反応の後、溶液に生じた固形の生成物をろ別し、固形の生成物は、100mlのジエチルエーテルで10分間抽出した。この抽出液と、ろ別した際のろ液とを合わせ、溶媒を留去することにより、固形の試料を得た。このようにして得られた試料につき、上記の重量平均分子量の測定法に従い、重量平均分子量を測定し、その値を、芳香族ビニルブロック領域としてのスチレンブロックの重量平均分子量とした。
<ブロック共重合体A及びBに含まれる各脂肪族共役ジエンブロック領域(Da,Db)の重量平均分子量>
 それぞれ上記のようにして求められた、ブロック共重合体A及びブロック共重合体Bの重量平均分子量から、対応する芳香族ビニルブロック領域の重量平均分子量を差し引き、その計算値に基づいて脂肪族共役ジエンブロック領域の重量平均分子量を求めた。
<ブロック共重合体A及びBそれぞれについての芳香族ビニル単量体単位の割合>
 上記の高速液体クロマトグラフィの測定における、示差屈折計と紫外検出器との検出強度比に基づいて、ブロック共重合体A及びBそれぞれについての芳香族ビニル単量体単位の割合(質量%)求めた。なお、予め、芳香族ビニル単量体単位としての、スチレン単位含有量の異なる複数種の共重合体を用意し、それらを用いて、検量線を作成した。
 本測定により得られた、ブロック共重合体A及びBそれぞれについての芳香族ビニル単量体単位の割合を元に、上記<ブロック共重合体A及びBに含有される各芳香族ビニルブロック領域(Ar1a,Ar2a,Ar1b,Ar2b)の重量平均分子量>の項目で得られた各芳香族ビニルブロック領域(Ar1a,Ar2a,Ar1b,Ar2b)の重量平均分子量の値が、何れのブロック共重合体に属するブロック領域の値に該当するか、判断した。
<粒子状重合体のビニル結合含有割合>
 ブロック共重合体溶液調製工程によって得られたブロック共重合体溶液について、プロトンNMRの測定を実施し、脂肪族共役ジエンブロック領域(Da,Db)のビニル結合含有割合(モル%)を測定した。測定結果は、粒子状重合体全体、即ち、実施例7及び比較例1以外では、ブロック共重合体A及びブロック共重合体B全体について、実施例7ではブロック共重合体Aについて、比較例1ではブロック共重合体Bについて、脂肪族共役ジエンブロック領域(Da,Db)に含まれるビニル結合の割合(モル%)を示す。
<粒子状重合体の表面酸量>
 実施例、比較例で得られた粒子状重合体の水分散液(バインダー組成物)を0.3%ドデシルベンゼンスルホン酸水溶液にて希釈し、固形分濃度10%に調整した。その後、7000Gで30分間遠心分離し、軽液を分取した。得られた軽液を0.3%ドデシルベンゼンスルホン酸水溶液にて希釈し、固形分濃度10%に調整した。その後、7000Gで30分間遠心分離し、軽液を分取した。得られた軽液を0.3%ドデシルベンゼンスルホン酸水溶液にて希釈し、固形分濃度10%に調整した。その後、調整したサンプルを7000Gで30分間遠心分離し、軽液を分取した。得られた軽液を5%水酸化ナトリウム水溶液でpH12.0に調整した。pHを調整したサンプルを100mLビーカーに固形分換算で3.0g分取し、花王製エマルゲン120を0.2%に希釈した水溶液3g及び東レ・ダウコーニング社製SM5512を1%に希釈した水溶液1gを添加した。スターラーで均一に撹拌しながら0.1N塩酸水溶液を0.5mL/30秒の速度で添加し、30秒毎の電気電導度を測定した。
 得られた電気伝導度データを、電気伝導度を縦軸(Y座標軸)、添加した塩酸の累計量を横軸(X座標軸)としたグラフ上にプロットした。これにより、図1のように3つの変曲点を有する塩酸量-電気伝導度曲線が得られる。3つの変曲点のX座標を、値が小さい方から順にそれぞれP1、P2及びP3とする。X座標が、零から座標P1まで、座標P1から座標P2まで、及び、座標P2から座標P3まで、の3つの区分内のデータについて、それぞれ、最小二乗法により近似直線L1、L2、及びL3を求める。近似直線L1と近似直線L2との交点のX座標をA1、近似直線L2と近似直線L3との交点のX座標をA2とする。
 そして、粒子状重合体1g当たりの表面酸量を、下記の式(a)から、塩酸換算した値(mmol/g)として求める。
 (a) 粒子状重合体1g当たりの表面酸量=(A2-A1)/3.0g
<粒子状重合体の体積平均粒子径>
 実施例、比較例で得られた粒子状重合体の水分散液(バインダー組成物)の固形分濃度0.1質量%に調整し、固形分濃度調整後の重合体の水分散液について、レーザー回折式粒子径分布測定装置(ベックマン・コールター社製、製品名「LS-230」)により粒子径分布(体積基準)を測定した。そして、得られた粒子径分布において小径側から計算した累積体積が50%となる粒子径を求め、粒子状重合体の体積平均粒子径(D50)とした。
<スラリー組成物の粘度安定性>
 スラリー組成物の調製時に、バインダー組成物を添加する前の溶液を分取し、B型粘度計(東機産業社製、製品名「TV-25」)を用い、測定温度25℃、測定ローターNo.4、ローター回転数60rpmの条件下で粘度M0(mPa・s)を測定した。
 また、バインダー組成物を添加して得たスラリー組成物を分取し、直径5.5cm、高さ8.0cmの容器に入れて、TKホモディスパー(プライミクス(株)製、ディスパー直径:40mm)を使用して回転数3000rpmで10分間撹拌した。そして、撹拌後のスラリー組成物の粘度M1(mPa・s)を、バインダー組成物を添加する前の溶液の粘度M0と同様にして測定した。
 そして、粘度変化率ΔM(={(M1-M0)/M0}×100%)を算出し、以下の基準に従って評価した。粘度変化率ΔMが小さいほど、スラリー組成物の粘度安定性が高いことを示す。
 A:粘度変化率ΔMが10%未満
 B:粘度変化率ΔMが10%以上
<電極柔軟性>
 実施例及び比較例で得られたリチウムイオン二次電池用負極の負極合材層側に径の異なる棒を載置し、負極を棒に巻き付けて負極合材層が割れるか否かについて評価した。巻き付けても割れない棒の直径が小さいほど、負極が柔軟性に優れ、捲回性に優れることを示す。捲回性に優れると、負極合材層の剥がれを抑制することができるため、二次電池のサイクル特性に優れる。
 A:巻き付けても割れない最小の棒の直径が1.2mmである
 B:巻き付けても割れない最小の棒の直径が1.5mmである
 C:巻き付けても割れない最小の棒の直径が2mmである
 D:巻き付けても割れない最小の棒の直径が3mmである
<電極合材層のスプリングバック>
 電極合材層のスプリングバックは、電極密度に基づいて評価した。具体的には、まず、実施例、比較例で作製した負極原反の負極合材層側を温度25±3℃の環境下、線圧11t(トン)の条件でロールプレスし、電極合材層密度を1.70g/cm3に調整した。その後、温度25±3℃、相対湿度50±5%の環境下にて、当該負極を1週間放置した。そして、放置後の負極の電極合材層密度(g/cm3)を測定し、以下の基準で評価した。放置後の電極合材層密度が高いほど電極合材層がスプリングバックを生じておらずプレス性に優れ、電極を効果的に高密度化し得たことを示す。
 A:放置後の電極合材層密度が1.65g/cm3以上
 B:放置後の電極合材層密度が1.65g/cm3未満
<サイクル特性>
 実施例及び比較例で得られたリチウムイオン二次電池について、60℃で0.5Cの定電流定電圧充電法にて、4.2Vになるまで定電流で充電し、その後、定電圧で充電し、次いで、0.5Cの定電流で3.0Vまで放電する充放電サイクル試験を行った。充放電サイクル試験は100サイクルまで行い、初期放電容量に対する100サイクル目の放電容量の比を容量維持率とした。容量維持率を下記基準にて評価した。容量維持率が大きいほど繰り返し充放電による容量の減少が少ないことを示す。
 A:容量維持率が90%以上
 B:容量維持率が80%以上、90%未満
 C:容量維持率が75%以上、80%未満
 D:容量維持率が75%未満
(実施例1)
<粒子状重合体の調製>
<<ブロック共重合体溶液調製工程>>
・操作(1)
 耐圧反応器に、重合溶媒としてのシクロヘキサン20.0kg、ブロック構造を調製する目的で添加するルイス塩基化合物としてのN,N,N’,N’‐テトラメチルエチレンジアミン(以下、「TMEDA」と称する。)2.2ミリモル及び芳香族ビニル単量体としてのスチレン1.50kgを添加し、40℃で攪拌しているところに、重合開始剤としてのn-ブチルリチウム149.6ミリモルを添加し、50℃に昇温しながら1時間重合し、活性末端を有する芳香族ビニル重合体としてのスチレン重合体を得た。スチレンの重合転化率は100%であった。
・操作(2)
 引き続き、50~60℃を保つように温度制御しながら、反応器に脂肪族共役ジエン単量体としてのイソプレン6.50kgを1時間に亘り連続的に添加した。イソプレンの添加を完了した後、更に1時間重合し、活性末端を有する芳香族ビニル-脂肪族共役ジエンブロック共重合体としてのスチレン-イソプレンブロック共重合体を得た。イソプレンの重合転化率は100%であった。
・操作(3)
 次いで、カップリング剤としてジメチルジクロロシラン47.1ミリモルを添加して2時間カップリング反応を行い、ブロック共重合体Bとなるスチレン-イソプレン-スチレンブロック共重合体を形成させた。
・操作(4)
 この後、50~60℃を保つように温度制御しながら、芳香族ビニル単量体としてのスチレン2.10kgを1時間に亘り連続的に添加した。スチレンの添加を完了した後、更に1時間重合し、ブロック共重合体Aとなるスチレン-イソプレン-スチレンブロック共重合体を形成させた。スチレンの重合転化率は100%であった。
・操作(5)
 この後、重合停止剤としてメタノール299.1ミリモルを添加してよく混合し反応を停止した。
 上記のようにして得られた反応液(ブロック共重合体溶液)の一部を取り出し、上述した方法に従って、各種属性の測定を実施した。結果を表1に示す。
<<乳化工程(転相乳化工程)>>
 アルキルベンゼンスルホン酸ナトリウム、ポリオキシエチレンアルキルスルホコハク酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウムを1:1:1(質量基準)で混合した混合物をイオン交換水に溶解し、5%の水溶液を調製した。
 そして、得られたブロック重合体溶液500gと得られた水溶液500gとをタンク内に投入し撹拌させることで予備混合を行った。続いて、タンク内から、予備混合物を、定量ポンプを用いて100g/分の速度で連続式高能率乳化分散機(太平洋機工社製、製品名「マイルダー MDN303V」)へ移送し、回転数15000rpmで撹拌することにより、予備混合物を転相乳化した乳化液を得た。
 次に、得られた乳化液中のシクロヘキサンをロータリーエバポレータにて減圧留去した。その後、留去した乳化液をコック付きのクロマトカラム中で1日静置分離させ、分離後の下層部分を除去することで濃縮を行った。
 最後に、上層部分を100メッシュの金網で濾過し、粒子状のブロック重合体を含有する水分散液(ブロック重合体ラテックス)を得た。
<<グラフト工程>>
 グラフト工程では、グラフト重合に加えて架橋を同時に進行させた。上記の乳化工程で得られたブロック重合体ラテックスを固形分換算で100部に対し、蒸留水850部を添加して希釈した。そして、希釈されたブロック重合体ラテックスを窒素置換された撹拌機付き重合反応容器に投入し、撹拌しながら温度を30℃にまで加温した。
 また、別の容器を用い、酸性基含有単量体としてのメタクリル酸10部と蒸留水16部とを混合してメタクリル酸希釈液を調製した。このメタクリル酸希釈液を、30℃にまで加温した重合反応容器内に、30分間かけて添加した。
 更に、別の容器を用い、蒸留水7部及び還元剤としての硫酸第一鉄(中部キレスト社製、商品名「フロストFe」、)0.01部を含む溶液を調製した。得られた溶液を重合反応容器内に添加した後、酸化剤としての1,1,3,3-テトラメチルブチルハイドロパーオキサイド(日本油脂社製、商品名「パーオクタH」)0.5部を添加し、30℃で1時間反応させた後、更に70℃で2時間反応させた。なお、重合転化率は99%であった。
 そして、ブロック重合体をグラフト重合及び架橋してなる重合体よりなる粒子状重合体の水分散液(バインダー組成物)を得た。
 得られた粒子状重合体の水分散液を用いて、粒子状重合体の各種属性を測定した。結果を表1に示す。
<非水系二次電池負極用スラリー組成物の調製>
 ディスパー付きのプラネタリーミキサーに、負極活物質としての人造黒鉛(容量:360mAh/g)100部、導電材としてのカーボンブラック(TIMCAL社製、製品名「Super C65」)1部、増粘剤としてのカルボキシメチルセルロース(日本製紙ケミカル社製、製品名「MAC-350HC」)の2%水溶液を固形分相当で1.2部加えて混合物を得た。得られた混合物をイオン交換水で固形分濃度60%に調整した後、25℃で60分間混合した。次に、イオン交換水で固形分濃度52%に調整した後、さらに25℃で15分間混合し混合液を得た。得られた混合液に、上述で調製された水分散液からなるバインダー組成物を固形分相当量で2.0部、及びイオン交換水を入れ、最終固形分濃度が48%となるように調整した。さらに10分間混合した後、減圧下で脱泡処理することにより、流動性の良い負極用スラリー組成物を得た。
 負極用スラリー組成物の調製時にスラリー組成物の粘度安定性を評価した。結果を表1に示す。
<負極の形成>
 得られた負極用スラリー組成物を、コンマコーターで、集電体である厚さ15μmの銅箔の上に、乾燥後の目付が11mg/cm2になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、負極原反を得た。得られた負極原反について、上記の方法に従って評価し、電極(負極)合材層のスプリングバックの評価結果を得た。結果を表1に示す。
 そして、負極原反をロールプレスで圧延して、負極合材層の密度が1.75g/cm3の負極を得た。
 また、得られた負極について、上記の方法に従って評価し、電極柔軟性の評価結果を得た。結果を表1に示す。
<正極の形成>
 正極活物質としての体積平均粒子径12μmのLiCoO2を100部と、導電材としてのアセチレンブラック(電気化学工業社製、製品名「HS-100」)を2部と、結着材としてのポリフッ化ビニリデン(クレハ社製、製品名「#7208」)を固形分相当で2部と、溶媒としてのN-メチルピロリドンとを混合して全固形分濃度を70%とした。これらをプラネタリーミキサーにより混合し、正極用スラリー組成物を得た。
 得られた正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミ箔の上に、乾燥後の目付が23mg/cm2になるように塗布し、乾燥させた。この乾燥は、アルミ箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、正極原反を得た。
 そして、正極原反をロールプレスで圧延して、正極合材層の密度が4.0g/cm3の正極を得た。
<セパレータの準備>
 セパレータ基材よりなるセパレータとして、単層のポリプロピレン製セパレータ(セルガード社製、製品名「セルガード2500」)を準備した。
<リチウムイオン二次電池の作製>
 得られた正極を49cm×5cmの長方形に切り出して正極合材層側の表面が上側になるように置き、その正極合材層上に120cm×5.5cmに切り出したセパレータを、正極がセパレータの長手方向左側に位置するように配置した。更に、得られた負極を50×5.2cmの長方形に切り出し、セパレータ上に、負極合材層側の表面がセパレータに向かい合うように、かつ、負極がセパレータの長手方向右側に位置するように配置した。そして、得られた積層体を捲回機により捲回し、捲回体を得た。得られた捲回体を押圧した。この捲回体を電池の外装としてのアルミ包材外装で包み、電解液(溶媒:エチレンカーボネート/ジエチルカーボネート/ビニレンカーボネート=68.5/30/1.5(体積比)、電解質:濃度1MのLiPF6)を空気が残らないように注入し、更にアルミ包材外装の開口を150℃のヒートシールで閉口して、容量800mAhの捲回型リチウムイオン二次電池を製造した。そして、このリチウムイオン二次電池が良好に動作することを確認した。得られた二次電池について、上記に従ってサイクル特性を評価した。結果を表1に示す。
(実施例2~4、比較例2)
 ブロック共重合体溶液調製工程において、添加する、スチレン、イソプレン、n-ブチルリチウム、TMEDA、ジメチルジクロロシラン、及びメタノール等の量を、それぞれ必要に応じて適宜変更して、得られるブロック共重合体溶液中に含まれるブロック共重合体Aが、表1に示す構成条件を満たすようにした。かかる点以外は実施例1と同様にして、各種操作、測定、及び評価を実施した。結果を表1に示す。
(実施例5)
 ブロック共重合体溶液調製工程において、「操作(3)」で添加するカップリング剤量を変更して、得られるブロック共重合体溶液中に含まれるブロック共重合体A及びBの質量比が表1に示す通りになるようにした。かかる点以外は実施例1と同様にして、各種操作、測定、及び評価を実施した。結果を表1に示す。
(実施例6)
 グラフト工程において、添加するメタクリル酸の量を変更して、粒子状重合体の表面酸量が表1に示す通りになるようにした。かかる点以外は実施例1と同様にして、各種操作、測定、及び評価を実施した。結果を表1に示す。
(実施例7)
 ブロック共重合体溶液調製工程において、活性末端を有する芳香族ビニル-脂肪族共役ジエンブロック共重合体を含有する溶液に対して所定量のカップリング剤を添加する、「操作(3)」を実施しなかった。かかる点以外は実施例1と同様にして、各種操作、測定、及び評価を実施した。結果を表1に示す。
(比較例1)
 ブロック共重合体溶液調製工程において、活性末端を有する芳香族ビニル-脂肪族共役ジエンブロック共重合体を含有する溶液に対して所定量のカップリング剤を添加する、「操作(3)」を実施しなかった。また、その他の操作において添加する、スチレン、イソプレン、n-ブチルリチウム、TMEDA、及びメタノール等の量を必要に応じて適宜変更して、ブロック共重合体溶液中に含まれるブロック共重合体Bが、表1に示す構成を満たすようにした。かかる点以外は実施例1と同様にして、各種操作、測定、及び評価を実施した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、所定の構成を満たす非対称なブロック共重合体Aを少なくとも含有する粒子状重合体を含むバインダー組成物を用いて形成した、実施例1~7の負極は、柔軟性が充分に高く、且つ得られる二次電池のサイクル特性を高め得たことが分かる。また、表1より、非対称なブロック共重合体を含有しない粒子状重合体を含むバインダー組成物を用いた比較例1、及び、所定のブロック共重合体に代えて、非対称な構造を有するものの、含有される芳香族ビニルブロック領域の分子量が所定の範囲外であるブロック共重合体を含有する粒子状重合体を含有するバインダー組成物を用いた比較例2では、得られた負極の柔軟性及び二次電池のサイクル特性の点で、実施例1~7よりも大幅に劣っていたことが分かる。
 本発明によれば、柔軟性が充分に高く、且つ得られる二次電池のサイクル特性を高め得る電極を形成可能な非水系二次電池用バインダー組成物、及び、非水系二次電池電極用スラリー組成物を提供することができる。
 また、本発明によれば、柔軟性の充分に高い非水系二次電池用電極、並びに、当該電極を備えるサイクル特性に優れる非水系二次電池を提供することができる。

Claims (6)

  1.  下記一般式(A)で表されるブロック共重合体Aを含有する粒子状重合体を含む非水系二次電池用バインダー組成物。
     Ar1a-Da-Ar2a・・・(A)
     〔ここで、前記一般式(A)において、Ar1aは、重量平均分子量が5,500~20,000である、芳香族ビニル単量体単位からなるブロック領域を示し、Ar2aは、重量平均分子量が40,000~400,000である、芳香族ビニル単量体単位からなるブロック領域を示し、Daは、脂肪族共役ジエン単量体単位からなるブロック領域を示す。〕
  2.  前記粒子状重合体が、下記一般式(B)で表されるブロック共重合体Bを更に含み、
     前記ブロック共重合体A及び前記ブロック共重合体Bの合計質量を100質量%として、前記ブロック共重合体Aの比率が、36質量%以上85質量%以下である、請求項1に記載の非水系二次電池用バインダー組成物。
     Ar1b-Db-Ar2b・・・(B)
     〔ここで、前記一般式(B)において、Ar1b及びAr2bは、それぞれ独立して、重量平均分子量が6,000~20,000である、芳香族ビニル単量体単位からなるブロック領域を示し、Dbは脂肪族共役ジエン単量体単位からなるブロック領域を示す。〕
  3.  前記粒子状重合体の表面酸量が0.05mmol/g以上0.90mmol/g以下である、請求項1又は2に記載の非水系二次電池用バインダー組成物。
  4.  電極活物質と、請求項1~3の何れかに記載の非水系二次電池電極用バインダー組成物と、を含む、非水系二次電池電極用スラリー組成物。
  5.  請求項4に記載の非水系二次電池電極用スラリー組成物を用いて形成した電極合材層を備える、非水系二次電池用電極。
  6.  正極、負極、セパレータ及び電解液を有し、
     前記正極及び前記負極の少なくとも一方が請求項5に記載の非水系二次電池用電極である、非水系二次電池。
PCT/JP2020/012489 2019-03-29 2020-03-19 非水系二次電池用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池 WO2020203371A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021511455A JPWO2020203371A1 (ja) 2019-03-29 2020-03-19
KR1020217029874A KR20210151065A (ko) 2019-03-29 2020-03-19 비수계 이차 전지용 바인더 조성물, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극, 및 비수계 이차 전지
CN202080012593.7A CN113396168B (zh) 2019-03-29 2020-03-19 非水系二次电池用粘结剂组合物、非水系二次电池电极用浆料组合物、非水系二次电池用电极以及非水系二次电池
US17/593,917 US20220181630A1 (en) 2019-03-29 2020-03-19 Binder composition for non-aqueous secondary battery, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
EP20785088.4A EP3950750B1 (en) 2019-03-29 2020-03-19 Binder composition for non-aqueous secondary battery, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-067948 2019-03-29
JP2019067948 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203371A1 true WO2020203371A1 (ja) 2020-10-08

Family

ID=72668803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012489 WO2020203371A1 (ja) 2019-03-29 2020-03-19 非水系二次電池用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池

Country Status (6)

Country Link
US (1) US20220181630A1 (ja)
EP (1) EP3950750B1 (ja)
JP (1) JPWO2020203371A1 (ja)
KR (1) KR20210151065A (ja)
CN (1) CN113396168B (ja)
WO (1) WO2020203371A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023036918A1 (en) * 2021-09-10 2023-03-16 Ineos Styrolution Group Gmbh Organoleptically improved, low film-blocking styrene butadiene block copolymers

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286413A (ja) * 1987-05-02 1988-11-24 ビーエーエスエフ アクチェンゲゼルシャフト 非対称構造のブタジエン―スチレン―ブロック共重合体、その製方法及び用途
WO2009123089A1 (ja) 2008-03-31 2009-10-08 日本ゼオン株式会社 ブロック共重合体組成物、その製造方法及びフィルム
WO2010074270A1 (ja) * 2008-12-26 2010-07-01 日本ゼオン株式会社 ブロック共重合体組成物、フィルムおよびブロック共重合体組成物の製造方法
JP2012077158A (ja) * 2010-09-30 2012-04-19 Nippon Zeon Co Ltd 重合体組成物の製造方法
JP2012204303A (ja) 2011-03-28 2012-10-22 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
WO2013065738A2 (ja) * 2011-10-31 2013-05-10 日本ゼオン株式会社 全固体二次電池
JP2016166283A (ja) * 2015-03-09 2016-09-15 モンディ・グローナウ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 弾性の単層フィルム並びに使い捨ての衛生用製品のための積層体の製造方法
WO2018168420A1 (ja) 2017-03-13 2018-09-20 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、非水系二次電池用負極および非水系二次電池、並びに、非水系二次電池用電極の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160204439A1 (en) * 2013-05-23 2016-07-14 Zeon Corporation Secondary-battery binder composition, slurry composition for secondary-battery electrode, secondary-battery negative electrode, and secondary battery
WO2015098507A1 (ja) * 2013-12-25 2015-07-02 日本ゼオン株式会社 リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物、二次電池用電極の製造方法、および、リチウムイオン二次電池
TWI655236B (zh) * 2013-12-27 2019-04-01 日本瑞翁股份有限公司 嵌段共聚物組成物、其製造方法及薄膜
EP3581630B1 (de) * 2015-04-02 2021-07-14 tesa SE Wiederablösbarer haftklebestreifen
WO2019039560A1 (ja) * 2017-08-24 2019-02-28 日本ゼオン株式会社 非水系二次電池用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用電池部材、および非水系二次電池
WO2019044166A1 (ja) * 2017-08-30 2019-03-07 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286413A (ja) * 1987-05-02 1988-11-24 ビーエーエスエフ アクチェンゲゼルシャフト 非対称構造のブタジエン―スチレン―ブロック共重合体、その製方法及び用途
WO2009123089A1 (ja) 2008-03-31 2009-10-08 日本ゼオン株式会社 ブロック共重合体組成物、その製造方法及びフィルム
WO2010074270A1 (ja) * 2008-12-26 2010-07-01 日本ゼオン株式会社 ブロック共重合体組成物、フィルムおよびブロック共重合体組成物の製造方法
JP2012077158A (ja) * 2010-09-30 2012-04-19 Nippon Zeon Co Ltd 重合体組成物の製造方法
JP2012204303A (ja) 2011-03-28 2012-10-22 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
WO2013065738A2 (ja) * 2011-10-31 2013-05-10 日本ゼオン株式会社 全固体二次電池
JP2016166283A (ja) * 2015-03-09 2016-09-15 モンディ・グローナウ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 弾性の単層フィルム並びに使い捨ての衛生用製品のための積層体の製造方法
WO2018168420A1 (ja) 2017-03-13 2018-09-20 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、非水系二次電池用負極および非水系二次電池、並びに、非水系二次電池用電極の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RUBBER CHEMISTRY AND TECHNOLOGY, vol. 45, 1972, pages 1295
See also references of EP3950750A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023036918A1 (en) * 2021-09-10 2023-03-16 Ineos Styrolution Group Gmbh Organoleptically improved, low film-blocking styrene butadiene block copolymers

Also Published As

Publication number Publication date
JPWO2020203371A1 (ja) 2020-10-08
KR20210151065A (ko) 2021-12-13
EP3950750B1 (en) 2024-06-05
CN113396168B (zh) 2023-05-05
EP3950750A4 (en) 2022-12-21
EP3950750A1 (en) 2022-02-09
CN113396168A (zh) 2021-09-14
US20220181630A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
WO2019107229A1 (ja) 非水系二次電池用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用電池部材および非水系二次電池
JP6369473B2 (ja) リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JPWO2019087827A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
US20170373296A1 (en) Porous membrane slurry for secondary batteries, negative electrode for secondary batteries and method for producing negative electrode for secondary batteries
WO2019131210A1 (ja) 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物及びその製造方法、二次電池用正極、並びに二次電池
JP6398191B2 (ja) 二次電池正極用スラリーの製造方法、二次電池用正極の製造方法、及び二次電池の製造方法
JPWO2017141791A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JPWO2019172281A1 (ja) 非水系二次電池電極用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに、非水系二次電池
WO2019107209A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2020004526A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物及びその製造方法、非水系二次電池用電極、並びに非水系二次電池
WO2020203371A1 (ja) 非水系二次電池用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
JP7405073B2 (ja) 非水系二次電池用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用電池部材および非水系二次電池
WO2020137591A1 (ja) 二次電池電極用バインダー組成物、二次電池電極用導電材ペースト組成物、二次電池電極用スラリー組成物、二次電池用電極、及び二次電池
WO2021172229A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
WO2022114199A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び、非水系二次電池
WO2021039674A1 (ja) 非水系二次電池用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに非水系二次電池
WO2021039675A1 (ja) 非水系二次電池用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに非水系二次電池
JP6477398B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2020246222A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
WO2023053975A1 (ja) 非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極、および非水系二次電池
KR20220069936A (ko) 비수계 이차 전지 전극용 바인더 조성물, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극, 및 비수계 이차 전지
WO2022024940A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2022113760A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JPWO2019194194A1 (ja) 非水系二次電池機能層用組成物、非水系二次電池部材、および非水系二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20785088

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511455

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020785088

Country of ref document: EP

Effective date: 20211029