WO2022113760A1 - 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 - Google Patents

非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 Download PDF

Info

Publication number
WO2022113760A1
WO2022113760A1 PCT/JP2021/041608 JP2021041608W WO2022113760A1 WO 2022113760 A1 WO2022113760 A1 WO 2022113760A1 JP 2021041608 W JP2021041608 W JP 2021041608W WO 2022113760 A1 WO2022113760 A1 WO 2022113760A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
structural unit
aqueous secondary
electrode
unit derived
Prior art date
Application number
PCT/JP2021/041608
Other languages
English (en)
French (fr)
Inventor
俊仁 相原
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020237016771A priority Critical patent/KR20230113738A/ko
Priority to EP21897734.6A priority patent/EP4253436A1/en
Priority to US18/252,885 priority patent/US20230420682A1/en
Priority to CN202180078480.1A priority patent/CN116568716A/zh
Priority to JP2022565213A priority patent/JPWO2022113760A1/ja
Publication of WO2022113760A1 publication Critical patent/WO2022113760A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder composition for a non-aqueous secondary battery electrode, a slurry composition for a non-aqueous secondary battery electrode, a non-aqueous secondary battery electrode, and a non-aqueous secondary battery.
  • Non-aqueous secondary batteries such as lithium-ion secondary batteries (hereinafter, may be simply abbreviated as "secondary batteries") are small and lightweight, have high energy density, and can be repeatedly charged and discharged. Yes, it is used in a wide range of applications. Therefore, in recent years, improvement of battery members such as electrodes has been studied for the purpose of further improving the performance of non-aqueous secondary batteries.
  • the electrodes used in a secondary battery such as a lithium ion secondary battery are usually a current collector and an electrode mixture layer (positive electrode mixture layer or negative electrode mixture layer) formed on the current collector. It is equipped with. Then, in this electrode mixture layer, for example, a slurry composition containing an electrode active material and a binder composition containing a binder is applied onto a current collector, and the applied slurry composition is dried. It is formed.
  • Patent Documents 1 to 3 describe a binder composition for a non-aqueous secondary battery electrode using an aromatic vinyl / conjugated diene-based copolymer.
  • Patent Document 1 describes a composition containing a polymer obtained by sulfonated a styrene / isoprene-based copolymer.
  • Patent Document 2 describes styrene / butadiene / ethylenically unsaturated carboxylic acid / aromatic vinyl such as (meth) acrylic acid-based particulate copolymer / aliphatic conjugated diene / ethylenically unsaturated carboxylic acid / (meth). )
  • a binder composition for a negative electrode of a lithium ion secondary battery containing an acrylic acid-based particulate copolymer and the like is described.
  • Patent Document 3 describes a binder for a non-aqueous secondary battery electrode containing a particulate polymer composed of a graft polymer obtained by grafting a hydrophilic graft chain onto core particles containing an aromatic vinyl / isoprene-based copolymer. The composition and the like are described.
  • the binder composition for a non-aqueous secondary battery electrode using the conventional aromatic vinyl / conjugated diene-based copolymer the stability of the slurry composition using the binder composition and the binder composition are used. There was room for improvement in that the peel strength of the formed electrodes was improved and the secondary battery exhibited excellent performance.
  • the present invention provides a binder composition for a non-aqueous secondary battery electrode and a slurry composition for a non-aqueous secondary battery electrode capable of forming an electrode having excellent stability as a slurry composition and excellent peel strength. With the goal. Further, the present invention has an electrode for a non-aqueous secondary battery capable of forming a non-aqueous secondary battery having excellent peel strength and exhibiting excellent performance, and the peel strength of the electrode is improved and excellent performance is obtained. It is an object of the present invention to provide a non-aqueous secondary battery that exhibits the above.
  • the inventor conducted a diligent study for the purpose of solving the above problems. Then, the present inventor uses a conjugated diene containing isoprene and prepares a particulate polymer composed of an aromatic vinyl / conjugated diene-based random copolymer in which the content ratio of structural units derived from each monomer is within a predetermined range. It has been found that when the binder composition containing the binder composition is used, the stability of the slurry composition using the binder composition and the peel strength of the electrode formed by using the binder composition are improved, and the secondary battery exhibits excellent performance. , The present invention has been completed.
  • the present invention aims to advantageously solve the above problems, and the binder composition for a non-aqueous secondary battery electrode of the present invention contains a structural unit derived from an aromatic vinyl monomer and a structural unit.
  • a structural unit derived from the aromatic vinyl monomer which comprises a particulate polymer composed of a random copolymer containing a structural unit derived from a conjugated diene monomer and a structural unit derived from an acid monomer.
  • the content ratio is more than 5% by mass and 40% by mass or less with respect to 100% by mass of the particulate polymer
  • the structural unit derived from the conjugated diene monomer contains a structural unit derived from isoprene, and the isoprene.
  • the content ratio of the structural unit derived from is 100 mass in total of the structural unit derived from the aromatic vinyl monomer, the structural unit derived from the conjugated diene monomer, and the structural unit derived from the acid monomer. It is characterized in that it is 20% by mass or more with respect to%.
  • a structural unit derived from the conjugated diene monomer contains a structural unit derived from isoprene, and the content ratio of the structural unit derived from each monomer is within a predetermined range, and the structural unit is composed of a random copolymer.
  • the stability of the slurry composition using the binder composition and the peel strength of the electrode formed by using the binder composition are improved, and the secondary battery exhibits excellent performance.
  • the "structural unit" of the polymer means "a repeating unit derived from the monomer contained in the polymer obtained by using the monomer". Further, in the present invention, the content ratio of the structural unit derived from each monomer can be measured by using 1 1 H-NMR.
  • the content ratio of the structural unit derived from the acid monomer is 3% by mass or more and 9% by mass or less with respect to 100% by mass of the particulate polymer. Is preferable.
  • the stability of the slurry composition and the peel strength of the electrode can be improved by at least one of them.
  • the average particle size of the particulate polymer is 60 nm or more and 300 nm or less.
  • the stability of the slurry composition can be improved.
  • the pH is preferably 6 or more and 9 or less.
  • the particulate polymer is stably maintained and can contribute to the improvement of the stability of the slurry composition.
  • the binder composition for a non-aqueous secondary battery electrode contains an aqueous phase containing an acidic water-soluble polymer, and the weight average molecular weight of the acidic water-soluble polymer is 10,000 or more and 100,000 or less. preferable.
  • the weight average molecular weight of the acidic water-soluble polymer including the aqueous phase is within the above range, the peel strength of the electrode can be improved while maintaining the coatability of the slurry composition.
  • the present invention is intended to advantageously solve the above problems, and the slurry composition for a non-aqueous secondary battery electrode of the present invention is the same as the above-mentioned binder composition for a non-aqueous secondary battery electrode.
  • An electrode active material and at least one of a dispersant and a viscosity modifier are contained, and an electrode having excellent stability as a slurry composition and excellent peel strength can be formed, and excellent performance of the secondary battery can be obtained. It can be demonstrated.
  • the present invention is intended to advantageously solve the above problems, and the electrode for a non-aqueous secondary battery of the present invention is formed by using the above-mentioned slurry composition for a non-aqueous secondary battery electrode. It is characterized in that it is provided with an electrode mixture layer. As described above, by using the above-mentioned slurry composition for a non-aqueous secondary battery electrode, a non-aqueous secondary battery capable of forming a non-aqueous secondary battery having excellent peel strength and exhibiting excellent performance can be formed. An electrode is obtained.
  • the present invention aims to advantageously solve the above problems, and the non-aqueous secondary battery of the present invention has a positive electrode, a negative electrode, a separator and an electrolytic solution, and the positive electrode and the negative electrode have the positive electrode and the negative electrode. At least one of them is the electrode for a non-aqueous secondary battery described above. If the above-mentioned electrode for a non-aqueous secondary battery is used, the peel strength of the electrode is improved, and a non-aqueous secondary battery exhibiting excellent performance can be obtained.
  • the binder composition for a non-aqueous secondary battery electrode and the slurry composition for a non-aqueous secondary battery electrode of the present invention it is possible to form an electrode having excellent stability as a slurry composition and excellent peel strength. Excellent performance can be exhibited in the secondary battery. Further, the electrode for a non-aqueous secondary battery of the present invention can form a non-aqueous secondary battery having excellent peel strength and exhibiting excellent performance. According to the present invention, the peel strength of the electrode is improved, and a non-aqueous secondary battery exhibiting excellent performance can be obtained.
  • the binder composition for a non-aqueous secondary battery electrode of the present invention can be used for preparing the slurry composition for a non-aqueous secondary battery electrode of the present invention, for example, the preparation method described in the present specification is used.
  • the slurry composition for a non-aqueous secondary battery electrode prepared by using the binder composition for a non-aqueous secondary battery electrode of the present invention is used when manufacturing an electrode of a non-aqueous secondary battery such as a lithium ion secondary battery. Can be used for.
  • the non-aqueous secondary battery of the present invention is characterized in that the electrode for the non-aqueous secondary battery of the present invention formed by using the slurry composition for the non-aqueous secondary battery electrode of the present invention is used.
  • the binder composition for a non-aqueous secondary battery electrode, the slurry composition for a non-aqueous secondary battery electrode, and the electrode for a non-aqueous secondary battery of the present invention are preferably for a negative electrode, and the non-aqueous secondary battery of the present invention is preferably used.
  • the secondary battery preferably uses the electrode for a non-aqueous secondary battery of the present invention as a negative electrode.
  • the binder composition for a non-aqueous secondary battery electrode of the present invention contains a structural unit derived from an aromatic vinyl monomer, a structural unit derived from a conjugated diene monomer, and a structural unit derived from an acid monomer.
  • the content ratio of the structural unit derived from the aromatic vinyl monomer is more than 5% by mass% and 40% by mass or less with respect to 100% by mass of the particulate polymer.
  • the structural unit derived from the conjugated diene monomer contains the structural unit derived from isoprene, and the content ratio of the structural unit derived from the isoprene is the structural unit derived from the aromatic vinyl monomer.
  • the binder composition for a non-aqueous secondary battery electrode of the present invention usually further contains a dispersion medium such as water (aqueous phase). Since the binder composition for a non-aqueous secondary battery electrode of the present invention has the above composition, the stability of the slurry composition using the binder composition and the peel strength of the electrode formed by using the binder composition can be determined. It can be improved and the secondary battery can exhibit excellent performance.
  • the particulate polymer is a component that functions as a binder, and in an electrode mixture layer formed by using a slurry composition containing a binder composition, components such as an electrode active material are desorbed from the electrode mixture layer. Hold it so that it is not.
  • the particulate polymer is a water-insoluble particle formed by a predetermined random copolymer.
  • the fact that the polymer particles are "water-insoluble” means that when 0.5 g of the polymer is dissolved in 100 g of water at a temperature of 25 ° C., the insoluble content is 90% by mass or more. To say.
  • the random copolymer forming the particulate polymer contains a structural unit derived from an aromatic vinyl monomer, a structural unit derived from a conjugated diene monomer, and a structural unit derived from an acid monomer. It is a random copolymer, and the content ratio of the structural unit derived from the aromatic vinyl monomer is more than 5% by mass% and 40% by mass or less with respect to 100% by mass of the particulate polymer, and the conjugated diene monomer.
  • the structural unit derived from the above contains the structural unit derived from isoprene, and the content ratio of the structural unit derived from the isoprene is the structural unit derived from the aromatic vinyl monomer and the conjugated diene monomer.
  • the polymer forming the particulate polymer is a random copolymer, it is possible to further improve the stability as a slurry composition and the peel strength of the formed electrode at least one of them.
  • the structural unit derived from the aromatic vinyl monomer constituting the random copolymer include styrene, styrene styrene acid and its salt, ⁇ -methyl styrene, pt-butyl styrene, butoxy styrene, vinyl toluene, and the like.
  • Examples thereof include structural units derived from chlorostyrene and aromatic monovinyl compounds such as vinylnaphthalene. Of these, structural units derived from styrene are preferable. These can be used individually by 1 type or in combination of 2 or more types, but it is preferable to use 1 type alone.
  • the content ratio of the structural unit derived from the aromatic vinyl monomer in the random copolymer is more than 5% by mass, preferably 15% by mass or more, preferably 40% by mass, based on 100% by mass of the particulate polymer. It is preferably mass% or less, preferably 30 mass% or less.
  • the content ratio of the structural unit derived from the aromatic vinyl monomer is larger than the above lower limit value, the stability of the slurry composition can be further improved.
  • the content ratio of the structural unit derived from the aromatic vinyl monomer is not more than the above upper limit value, any of the peel strength of the formed electrode, the internal resistance characteristic of the secondary battery, and the cycle characteristic of the secondary battery. Or 1 or more can be further improved.
  • the structural unit derived from the conjugated diene monomer constituting the random copolymer includes a structural unit derived from isoprene. That is, the structural unit derived from the conjugated diene monomer may be all structural units derived from isoprene, and may be a structural unit derived from isoprene and a conjugated diene monomer other than one or more kinds of isoprene. It may contain the structural unit from which it is derived.
  • Structural units derived from conjugated diene monomers other than isoprene include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3butadiene, and 2-chlor-1,3. Examples thereof include structural units derived from aliphatic conjugated diene monomers such as butadiene, substituted linear conjugated pentadiene, substituted and side chain conjugated hexadiene, and among them, structural units derived from 1,3-butadiene are preferable. It is preferable that the structural units derived from the conjugated diene monomer are all structural units derived from isoprene. By including the structural unit derived from isoprene in the particulate polymer, it is possible to further improve the powder falling property at the time of electrode formation and the peel strength of the formed electrode while improving the cycle characteristics of the secondary battery.
  • the content ratio of the structural unit derived from isoprene in the random copolymer includes the structural unit derived from the aromatic vinyl monomer, the structural unit derived from the conjugated diene monomer, and the structural unit derived from the acid monomer. 20% by mass or more, preferably 50% by mass or more, and the upper limit is not particularly limited, but may be, for example, 94% by mass or less, and 87% by mass or less, based on 100% by mass of the total. Is preferable.
  • the content ratio of the structural unit derived from isoprene is at least the above lower limit value, it is possible to further improve any one or more of the powder falling characteristic at the time of electrode formation and the peel strength of the formed electrode.
  • -Structural unit derived from acid monomer- As the structural unit derived from the acid monomer constituting the random copolymer, a structural unit derived from a monomer having an intercarbon double bond and an acidic group is preferable. Examples of the structural unit derived from such an acid monomer include a structural unit derived from a carboxyl group-containing monomer, a structural unit derived from a sulfonic acid group-containing monomer, and a phosphate group-containing monomer. Examples of structural units are derived from.
  • examples of the "carboxyl group-containing monomer” of the "structural unit derived from the carboxyl group-containing monomer” include monocarboxylic acid and its derivative, dicarboxylic acid and its acid anhydride, and their derivatives. Will be.
  • Examples of the monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid.
  • Examples of the monocarboxylic acid derivative include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid and the like.
  • examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • dicarboxylic acid derivative examples include methyl maleic acid, dimethyl maleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, butyl maleate, nonyl maleate, decyl maleate, dodecyl maleate, and octadecyl maleate.
  • Maleic acid monoesters such as fluoroalkyl maleate.
  • acid anhydride of the dicarboxylic acid examples include maleic anhydride, acrylic acid anhydride, methyl maleic anhydride, dimethyl maleic anhydride, and citraconic anhydride.
  • carboxyl group-containing monomer an acid anhydride that produces a carboxyl group by hydrolysis can also be used.
  • carboxyl group-containing monomer a partial ester of an ethylenically unsaturated polycarboxylic acid such as butentricarboxylic acid and an ethylenically unsaturated polycarboxylic acid such as monobutyl fumarate and mono2-hydroxypropyl maleate Etc. can also be used.
  • the "sulfonic acid group-containing monomer" of the "structural unit derived from the sulfonic acid group-containing monomer” includes, for example, vinyl sulfonic acid (ethylene sulfonic acid), methyl vinyl sulfonic acid, and (meth) allyl sulfone. Acids, 3-allyloxy-2-hydroxypropanesulfonic acid and the like.
  • (meth) allyl means allyl and / or metallyl.
  • examples of the "phosphate group-containing monomer" of the "structural unit derived from the phosphate group-containing monomer” include -2- (meth) acryloyloxyethyl phosphate and methyl-2- (phosphate group-containing monomer). Examples thereof include meth) acryloyloxyethyl and ethyl phosphate- (meth) acryloyloxyethyl.
  • “(meth) acryloyl” means acryloyl and / or methacryloyl.
  • the structural unit derived from such an acid monomer may be one type alone or a combination of two or more types.
  • the structural unit derived from such an acid monomer is preferably a structural unit derived from an acrylic acid monomer, a structural unit derived from a methacrylic acid monomer, or a structural unit derived from an itaconic acid monomer, and methacrylic acid is preferable. Structural units derived from acid monomers are more preferred.
  • the content ratio of the structural unit derived from the acid monomer in the random copolymer is not particularly limited, but is preferably 1% by mass or more with respect to 100% by mass of the particulate polymer, and is preferably 3% by mass or more. It is more preferably 20% by mass or less, and more preferably 9% by mass or less.
  • the random copolymer may optionally further contain structural units derived from other monomers.
  • a structural unit derived from a monomer having an intercarbon double bond is preferable, and for example, a nitrile group-containing monomer such as acrylonitrile or methacrylonitrile can be used.
  • a structural unit derived from a methoxy-polyethylene glycol acrylate monomer; a structural unit derived from a tetrahydrofurfuryl acrylate monomer can be mentioned.
  • (meth) acrylic acid means acrylic acid and / or methacrylic acid.
  • the particulate polymer may be particles having a uniform structural unit composition (type and content ratio of structural units), or may be particles having a non-uniform structural unit composition.
  • the particles having a non-uniform structural unit composition include particles having a core-shell structure in which the core portion and the shell portion have different structural unit compositions, and particles having a structural unit composition in which only the core portion differs.
  • the particles having a core-shell structure include particles composed of a core portion that does not contain a structural unit derived from isoprene and a shell portion that contains a structural unit derived from isoprene. Further, particles having a uniform structural unit composition and having a core-shell structure having different crosslink densities may be used.
  • the structural unit composition (type and content ratio of the structural unit) of the random copolymer defined above refers to the structural unit composition in the entire particulate polymer contained in the binder composition for a non-aqueous secondary battery electrode. .. Therefore, for example, when the particulate polymer is a particle having a non-uniform structural unit composition such as a core-shell structure, the structural unit composition of the random copolymer occupies the entire particle including the core portion and the shell portion. Refers to the unit composition.
  • the average particle size of the particulate polymer is preferably 60 nm or more, more preferably 90 nm or more, more preferably 300 nm or less, and even more preferably 200 nm or less.
  • the binder composition for a non-aqueous secondary battery electrode of the present invention usually contains water as a dispersion medium for the particulate polymer.
  • the pH of the aqueous phase is preferably 6.0 or more, more preferably 7.0 or more, more preferably 9.0 or less, and even more preferably 8.0 or less.
  • the pH may be adjusted by adding an alkaline species to the aqueous phase.
  • the alkaline species include lithium hydroxide, sodium hydroxide, potassium hydroxide, and aqueous ammonia, and aqueous ammonia is preferable because aggregates are unlikely to be generated by an addition shock during alkali neutralization.
  • the aqueous phase may contain an acidic water-soluble polymer.
  • the acidic water-soluble polymer contained in the aqueous phase is polymerized and produced as a by-product from the monomer that is the raw material of the particulate polymer when the particulate polymer is produced by the polymerization.
  • Such an acidic water-soluble polymer is a structural unit derived from an aromatic vinyl monomer constituting a particulate polymer, a structural unit derived from a conjugated diene monomer, and a structural unit derived from an acid monomer. It is a polymer containing any one or more.
  • the weight average molecular weight of such an acidic water-soluble polymer is preferably 5,000 or more, more preferably 10,000 or more, preferably 200,000 or less, and more preferably 100,000 or less.
  • the weight average molecular weight of the acidic water-soluble polymer is smaller than the above lower limit value, the peel strength is lowered, so that the weight average molecular weight is preferably at least the above lower limit value.
  • the weight average molecular weight of the acidic water-soluble polymer becomes larger than the above upper limit value, the binder becomes thickened and coating becomes impossible. Therefore, the weight average molecular weight is preferably not more than the above upper limit value.
  • the aqueous phase may contain additives such as anti-aging agents and preservatives.
  • Anti-aging agents include hindered phenolic antioxidants (eg, 4-[[4,6-bis (octylthio) -1,3,5-triazine-2-yl] amino] -2,6-di-. tert-Butylphenol, 2,6-di-tert-butyl-p-cresol, 3- (3,5-di-tert-butyl-4-hydroxyphenyl) stearyl propionate, pentaerythritol tetrakis [3- (3,5) -Di-tert-butyl-4-hydroxyphenyl) propionate], 2,4,6-tris (3', 5'-di-tert-butyl-4'-hydroxybenzyl) mecitylene), oligomeric phenolic antioxidant Agents (eg, WINGSTAY L), phosphite antioxidants (eg, 3,9-bis (octadecyloxy) -2,4,8,10-tetraoxa-3,9
  • the amount of the antiaging agent added is 0 with respect to a total of 100% by mass of the structural unit derived from the aromatic vinyl monomer, the structural unit derived from the conjugated diene monomer, and the structural unit derived from the acid monomer. .1% by mass or more is preferable, 1% by mass or more is more preferable, 10% by mass or less is preferable, and 5% by mass or less is more preferable.
  • the preservative examples include known preservatives such as isothiazolinone compounds and 2-bromo-2-nitro-1,3-propanediol.
  • the isothiazolinone-based compound is not particularly limited, and examples thereof include those described in JP-A-2013-21246, JP-A-2005-097474, and JP-A-2013-206624.
  • the preservative may be used alone or in combination of two or more.
  • 1,2-benzoisothiazolin-3-one, 2-methyl-4-isothiazolin-3-one, 5-chloro-2-methyl-4-isothiazolin-3-one, 2-bromo-2 -Nitro-1,3-propanediol is preferable, and 1,2-benzoisothiazolin-3-one is more preferable.
  • the amount of the preservative contained in the binder composition is preferably 0.01 part by mass or more, preferably 0.5 part by mass or less, and 0.4 part by mass or less per 100 parts by mass of the binder. Is more preferable, and it is further preferable that the amount is 0.3 parts by mass or less.
  • the content of the preservative is 0.01 parts by mass or more per 100 parts by mass of the binder, the formation of aggregates in the binder composition after long-term storage can be further suppressed, and when it is 0.5 parts by mass or less. , The adhesiveness of the functional layer can be sufficiently improved.
  • the binder composition for a non-aqueous secondary battery electrode of the present invention comprises a monomer (aromatic vinyl monomer, conjugated diene monomer, acid monomer, etc.) which is a source of structural units contained in the particulate polymer. It can be prepared by polymerizing (optionally other monomers) in the emulsion. Examples of such a preparation method include a batch emulsification polymerization method, an emulsion (Em) prop method, and a seed polymerization method, and a batch emulsification polymerization method is preferable.
  • the batch emulsification polymerization method may be performed, for example, by the following procedure.
  • the monomer aromatic vinyl monomer, conjugated diene monomer, acid monomer, optionally other monomer
  • the mixture emulsion
  • the reaction is stopped by cooling to obtain a mixture containing a particulate polymer. Remove the unreacted monomer from the mixture.
  • the pH of the mixture is adjusted to be within the preferred pH range of the aqueous phase described above, and optionally the above additives (eg, antiaging agents) are added to make the aqueous dispersion a non-aqueous secondary battery. Obtained as a binder composition for electrodes. It is preferable to add the total amount of the aromatic vinyl monomer and the conjugated diene monomer first.
  • the acid monomer and other monomers added optionally may be added in whole at first or in portions in portions. Heating is performed at, for example, 40 ° C. or higher, 45 ° C. or higher, 50 ° C. or higher, 55 ° C. or higher, or 60 ° C. or higher, 90 ° C. or lower, 85 ° C.
  • the removal of the unreacted monomer from the mixture may be carried out by, for example, hot vacuum distillation or blowing steam.
  • a particulate polymer having a uniform composition of a structural unit derived from an aromatic vinyl monomer and a structural unit derived from a conjugated diene monomer can be obtained.
  • the Em prop method may be performed by, for example, the following procedure.
  • a monomer for forming a core portion aromatic vinyl monomer, conjugated diene monomer, acid monomer, optionally any one or more of other monomers
  • a monomer for forming a core portion is prepared by water, an emulsifier, a chain transfer agent, and the like. And mix with the polymerization initiator.
  • the mixture (emulsion) is heated and a polymerization reaction is carried out until a predetermined polymerization conversion rate is reached to obtain a mixture containing a seed particle polymer as a core portion.
  • the mixture is mixed with a monomer for forming a core portion (any one or more of an aromatic vinyl monomer, a conjugated diene monomer, an acid monomer, and optionally other monomers), and optionally an emulsifier. And water was continuously added to continue the polymerization.
  • a monomer for forming a core portion any one or more of an aromatic vinyl monomer, a conjugated diene monomer, an acid monomer, and optionally other monomers
  • water was continuously added to continue the polymerization.
  • the reaction is stopped by cooling to obtain a mixture containing a particulate polymer. Remove the unreacted monomer from the mixture.
  • the pH of the mixture is adjusted to be within the preferred pH range of the aqueous phase described above, and optionally the above additives (eg, anti-aging agents) are added to make the aqueous dispersion have a core-shell structure. Obtained as a binder composition for a non-aqueous secondary battery electrode containing a particulate polymer
  • a polymer containing a structural unit derived from one or more of an aromatic vinyl monomer, a conjugated diene monomer, an acid monomer, and optionally any other monomer for example, a polymer containing a structural unit derived from one or more of an aromatic vinyl monomer, a conjugated diene monomer, an acid monomer, and optionally any other monomer.
  • a monomer for forming a particulate polymer aromatic vinyl monomer, conjugated diene monomer, acid monomer, optionally other monomer
  • water, emulsifier, and chain are added to the seed particle polymer composed of the above.
  • a water dispersion can be obtained as a binder composition for a non-aqueous secondary battery electrode by mixing with a transfer agent and a polymerization initiator and performing a polymerization reaction or the like in the same manner as described above.
  • Examples of the emulsifier used for preparing the binder composition include alkyldiphenyl ether disulfonic acid, dodecylbenzene sulfonic acid, lauryl sulfate, or salts thereof (eg, potassium salt, sodium salt).
  • Examples of the polymerization initiator used for preparing the binder composition include potassium persulfate, n-butyllithium, and ammonium persulfate.
  • Examples of the chain transfer agent used for preparing the binder composition include ⁇ -methylstyrene dimer, tert-dodecyl mercaptan, and 3-mercapto-1,2-propanediol.
  • the slurry composition of the present invention is a composition used for forming an electrode mixture layer of an electrode, and includes the above-mentioned binder composition, an electrode active material, and at least one of a dispersant and a viscosity modifier. That is, the slurry composition of the present invention contains the above-mentioned particulate polymer and electrode active material, and further contains at least one of a dispersant and a viscosity modifier, and is usually a dispersion medium such as water (aqueous phase). Further, optionally, at least one selected from the group consisting of phosphite-based antioxidants, metal trapping agents and other components. Since the slurry composition of the present invention contains the above-mentioned binder composition, it is possible to form an electrode having excellent stability as a slurry composition and excellent peel strength, and exhibiting excellent performance in a secondary battery. Can be made to.
  • the binder composition As the binder composition, the above-mentioned binder composition of the present invention, which contains a particulate polymer composed of a random copolymer and usually further contains a dispersion medium such as water (aqueous phase), is used.
  • the blending amount of the binder composition in the slurry composition is not particularly limited.
  • the blending amount of the binder composition can be such that the amount of the particulate polymer is 0.5 parts by mass or more and 15 parts by mass or less in terms of solid content per 100 parts by mass of the electrode active material.
  • the electrode active material is not particularly limited, and a known electrode active material used in a secondary battery can be used.
  • the electrode active material that can be used in the electrode mixture layer of the lithium ion secondary battery as an example of the secondary battery is not particularly limited, and the following electrode active materials may be used. can.
  • Examples of the positive electrode active material to be blended in the positive electrode mixture layer of the positive electrode of the lithium ion secondary battery include a compound containing a transition metal, for example, a transition metal oxide, a transition metal sulfide, and a composite of lithium and a transition metal.
  • a metal oxide or the like can be used.
  • Examples of the transition metal include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo and the like.
  • the positive electrode active material is not particularly limited, and is limited to lithium-containing cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium-containing nickel oxide (LiNiO 2 ), and Co-.
  • the above-mentioned positive electrode active material may be used alone or in combination of two or more.
  • Examples of the negative electrode active material blended in the negative electrode mixture layer of the negative electrode of the lithium ion secondary battery include a carbon-based negative electrode active material, a metal-based negative electrode active material, and a negative electrode active material combining these.
  • the carbon-based negative electrode active material refers to an active material having carbon as a main skeleton to which lithium can be inserted (also referred to as “dope”).
  • Specific examples of the carbon-based negative electrode active material include coke, mesocarbon microbeads (MCMB), mesophase pitch-based carbon fiber, thermally decomposed gas phase-grown carbon fiber, phenolic resin calcined material, and polyacrylonitrile-based carbon fiber.
  • the metal-based negative electrode active material is an active material containing a metal, and usually contains an element in which lithium can be inserted in the structure, and the theoretical electric capacity per unit mass when lithium is inserted is 500 mAh /.
  • the metal-based active material for example, a lithium metal or a single metal capable of forming a lithium alloy (for example, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si) , Sn, Sr, Zn, Ti, etc.) and their oxides, sulfides, nitrides, silicates, carbides, phosphates and the like. Further, oxides such as lithium titanate can be mentioned.
  • the above-mentioned negative electrode active material may be used alone or in combination of two or more.
  • the other components that can be blended in the slurry composition include, without particular limitation, the same as the conductive material and other components that can be blended in the binder composition of the present invention.
  • the other components one type may be used alone, or two or more types may be used in combination at any ratio.
  • the method for preparing the slurry composition is not particularly limited.
  • water usually contained in a binder composition, an electrode active material, at least one selected from a dispersant and a viscosity modifier, and other components used as needed.
  • a slurry composition can be prepared by mixing in the presence of a phase (aqueous medium).
  • the mixing method is not particularly limited, but the mixture can be mixed using a stirrer or a disperser that can be usually used.
  • the electrode for a non-aqueous secondary battery of the present invention includes an electrode mixture layer formed by using the above-mentioned slurry composition for a non-aqueous secondary battery electrode. Therefore, the electrode mixture layer is made of a dried product of the above-mentioned slurry composition, and is usually selected from an electrode active material, a component derived from a particulate polymer, and at least one of a dispersant and a viscosity modifier. It contains one or more, and optionally further contains at least one selected from the group consisting of phosphite-based antioxidants, metal scavengers and other components.
  • each component contained in the electrode mixture layer was contained in the slurry composition for a non-aqueous secondary battery electrode, and a suitable abundance ratio of each component is the slurry composition. It is the same as the preferable abundance ratio of each component in.
  • the particulate polymer exists in the particle shape in the slurry composition, but may be in the particle shape in the electrode mixture layer formed by using the slurry composition, or any other shape. May be.
  • the electrode for a non-aqueous secondary battery of the present invention has an excellent peel strength and is excellent because the electrode mixture layer is formed by using the above-mentioned slurry composition for a non-aqueous secondary battery electrode. It is possible to form a non-aqueous secondary battery that exhibits excellent performance. Further, the secondary battery provided with the electrode has improved peel strength of the electrode and exhibits excellent performance.
  • the electrode mixture layer of the electrode for a non-aqueous secondary battery of the present invention can be formed, for example, by using the following method. 1) A method in which the slurry composition of the present invention is applied to the surface of a current collector and then dried; 2) A method of immersing a current collector in the slurry composition of the present invention and then drying it; and 3) the slurry composition of the present invention is applied onto a release substrate and dried to produce an electrode mixture layer. Then, the method of transferring the obtained electrode mixture layer to the surface of the current collector.
  • the method 1) is particularly preferable because it is easy to control the layer thickness of the electrode mixture layer.
  • the method of 1) is specifically described in a step of applying the slurry composition onto the current collector (coating step) and a step of drying the slurry composition coated on the current collector and performing an electrode on the current collector. Includes a step of forming a mixture layer (drying step).
  • the method for applying the slurry composition onto the current collector is not particularly limited, and a known method can be used. Specifically, as the coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method and the like can be used. At this time, the slurry composition may be applied to only one side of the current collector, or may be applied to both sides. The thickness of the slurry film on the current collector after application and before drying can be appropriately set according to the thickness of the electrode mixture layer obtained by drying.
  • the current collector to which the slurry composition is applied a material having electrical conductivity and electrochemical durability is used.
  • a current collector for example, a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum or the like can be used.
  • the method for drying the slurry composition on the current collector is not particularly limited, and a known method can be used, for example, a drying method using warm air, hot air, low humidity air, a vacuum drying method, infrared rays, an electron beam, or the like. A drying method by irradiation can be used.
  • the electrode mixture layer may be pressure-treated by using a die press or a roll press. By the pressure treatment, the adhesion between the electrode mixture layer and the current collector can be improved, and the obtained electrode mixture layer can be further increased in density.
  • the electrode mixture layer contains a curable polymer, it is preferable to cure the polymer after the electrode mixture layer is formed.
  • the non-aqueous secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and the above-mentioned electrode for a non-aqueous secondary battery is used as at least one of the positive electrode and the negative electrode. Since the non-aqueous secondary battery of the present invention is manufactured by using the above-mentioned electrode for a non-aqueous secondary battery as at least one of a positive electrode and a negative electrode, it can exhibit excellent cycle characteristics. In the following, a case where the secondary battery is a lithium ion secondary battery will be described as an example, but the present invention is not limited to the following example.
  • the electrode other than the above-mentioned electrode for the non-aqueous secondary battery of the present invention which can be used in the non-aqueous secondary battery of the present invention, is not particularly limited and is used in the manufacture of the secondary battery.
  • Known electrodes can be used.
  • the electrode other than the electrode for the non-aqueous secondary battery of the present invention described above it is possible to use an electrode formed by forming an electrode mixture layer on a current collector using a known manufacturing method. can.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a lithium salt is used as the supporting electrolyte of the lithium ion secondary battery.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 N Li. , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable because they are easily soluble in a solvent and show a high degree of dissociation.
  • One type of electrolyte may be used alone, or two or more types may be used in combination at any ratio. Normally, the lithium ion conductivity tends to be higher as the supporting electrolyte having a higher degree of dissociation is used, so that the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte, and for example, dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), and the like.
  • DMC dimethyl carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • PC propylene carbonate
  • Carbonates such as butylene carbonate (BC), ethylmethyl carbonate (EMC), vinylene carbonate (VC); esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfolanes and dimethyls.
  • Sulfur-containing compounds such as sulfoxide; and the like are preferably used. Further, a mixed solution of these solvents may be used.
  • the dielectric constant is high and the stable potential region is wide.
  • the lower the viscosity of the solvent used the higher the lithium ion conductivity tends to be. Therefore, the lithium ion conductivity can be adjusted depending on the type of solvent.
  • the concentration of the electrolyte in the electrolytic solution can be appropriately adjusted. Further, known additives can be added to the electrolytic solution.
  • the separator is not particularly limited, and for example, the separator described in Japanese Patent Application Laid-Open No. 2012-204303 can be used. Among these, the film thickness of the entire separator can be reduced, and as a result, the ratio of the electrode active material in the secondary battery can be increased and the capacity per volume can be increased.
  • a microporous film made of a resin polyethylene, polypropylene, polybutene, polyvinyl chloride) is preferable.
  • a positive electrode and a negative electrode are overlapped with each other via a separator, and the positive electrode and the negative electrode are placed in a battery container by winding or folding the battery according to the shape of the battery as necessary. It can be manufactured by injecting an electrolytic solution into the battery and sealing it.
  • the above-mentioned electrode for a non-aqueous secondary battery is used as at least one of a positive electrode and a negative electrode, preferably as a negative electrode.
  • an overcurrent prevention element such as a fuse or a PTC element may be used.
  • An expanded metal, a lead plate, or the like may be provided.
  • the shape of the secondary battery may be, for example, a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, or the like.
  • the content ratio of the structural unit derived from each monomer in the polymer, the average particle size of the particulate polymer, the weight average molecular weight of the acidic water-soluble polymer contained in the aqueous phase, The viscosity stability of the slurry composition, the peel strength of the electrode, the powder dropping characteristic at the time of electrode formation, the internal resistance of the secondary battery, and the cycle characteristic of the secondary battery were measured or evaluated by the following methods.
  • ⁇ Average particle size of particulate polymer> The average particle size of the particulate polymer was measured using a laser diffraction type particle size distribution measuring device (manufactured by Shimadzu Corporation, product name "SALD-2300"). Specifically, a binder composition (an aqueous dispersion of a particulate polymer) was prepared, and the particle size distribution (volume basis) was measured with the above measuring device to determine the average particle size ( ⁇ m).
  • ⁇ Method for measuring molecular weight of acidic water-soluble polymer in aqueous phase The aqueous phase was separated from the binder composition by centrifugation, and the acidic water-soluble polymer in the aqueous phase was measured by HPLC.
  • Viscosity maintenance rate ⁇ ⁇ 1 / ⁇ 0 ⁇ 100 (%) of the slurry composition before and after stirring was calculated, and the viscosity stability of the slurry composition was evaluated according to the following criteria.
  • the temperature at the time of viscosity measurement was 25 ° C. The closer the value of the viscosity retention rate ⁇ is to 100%, the better the viscosity stability of the slurry composition.
  • ⁇ Peel strength of electrodes> The prepared electrode was dried in a vacuum dryer at 100 ° C. for 1 hour, and the dried electrode was cut into a rectangle having a length of 100 mm and a width of 10 mm to obtain a test piece.
  • This test piece was attached with cellophane tape on the surface of the electrode mixture layer with the surface of the electrode mixture layer facing down.
  • the cellophane tape specified in JIS Z1522 was used.
  • the cellophane tape was fixed to the test table. After that, the stress when one end of the current collector was pulled vertically upward at a pulling speed of 50 mm / min and peeled off was measured.
  • Peel strength is 30 N / m or more
  • B Peel strength is 20 N / m or more and less than 30 N / m
  • C Peel strength is 10 N / m or more and less than 20 N / m
  • D Peel strength is less than 10 N / m
  • the powder falling characteristic at the time of electrode formation was evaluated by performing a cross-cut test specified in JIS K 5600 on the electrode. Specifically, the electrode is cut out to a predetermined size, the weight of the cut out electrode is measured, a cut is made from the back surface of the electrode using a cross-cut jig, the powder generated during the cut is wiped off, and the electrode is used. The weight is measured, and the amount of powder falling is calculated from the difference in weight between the electrodes before and after the cut. The smaller the amount of powder falling, the better the powder falling characteristics.
  • B Powder drop amount is 0.5 mg or more and less than 1 mg
  • C Powder drop amount is 1 mg or more and less than 2 mg
  • D Powder drop amount is 2 mg or more
  • the IV resistance was measured as follows. 3 operations are performed at a temperature of 25 ° C., charging at a charging rate of 0.1 C until the voltage reaches 4.2 V, resting for 10 minutes, and then discharging at a constant current (CC) to 3.0 V at a discharge rate of 0.1 C. Conditioning treatment was repeated many times.
  • the battery is charged to 3.75V at 1C (C is a numerical value represented by the rated capacity (mA) / 1 hour (h)), and then 0.5C around 3.75V, 1 At 0.0C, 1.5C, and 2.0C, charging was performed for 20 seconds and discharging was performed for 20 seconds, respectively. Then, in each case, the battery voltage after 15 seconds on the charging side was plotted against the current value, and the slope was obtained as the IV resistance ( ⁇ ).
  • the obtained IV resistance value ( ⁇ ) was compared with the IV resistance of Comparative Example 4 and evaluated according to the following criteria. The smaller the IV resistance value, the lower the internal resistance of the secondary battery.
  • ⁇ Cycle characteristics of secondary battery> The lithium ion secondary batteries produced in Examples and Comparative Examples were allowed to stand at a temperature of 25 ° C. for 5 hours after injecting the electrolytic solution. Next, the cells were charged to a cell voltage of 3.65 V by a constant current method at a temperature of 25 ° C. and 0.2 C, and then aged at a temperature of 60 ° C. for 12 hours. Then, the battery was discharged to a cell voltage of 3.00 V by a constant current method at a temperature of 25 ° C. and 0.2 C.
  • CC constant current
  • CV constant current
  • CC discharge 3.00V by the constant current method of 0.2C.
  • This charging / discharging at 0.2C was repeated three times.
  • a charge / discharge operation was performed for 100 cycles at a cell voltage of 4.20-3.00 V and a charge / discharge rate of 1.0 C.
  • the discharge capacity of the first cycle was defined as X1
  • the discharge capacity of the 100th cycle was defined as X2.
  • Example 1 ⁇ Preparation of binder composition containing particulate polymer (batch polymerization)> In a 5 MPa pressure resistant container A with a stirrer, 22 parts of styrene as an aromatic vinyl monomer, 72 parts of isoprene as an aliphatic conjugated diene monomer, 2 parts of methacrylic acid as an acid monomer, and an alkyldiphenyl ether disulfonate as an emulsifier 0. 6 parts, 137 parts of ion-exchanged water, and 0.3 part of potassium persulfate as a polymerization initiator were added, and after sufficiently stirring, the mixture was heated to 45 ° C. to initiate polymerization and reacted for 20 hours.
  • the obtained mixture was adjusted to a solid content concentration of 60% with ion-exchanged water, and then mixed at 25 ° C. for 60 minutes. Next, after adjusting the solid content concentration to 52% with ion-exchanged water, the mixture was further mixed at 25 ° C. for 15 minutes to obtain a mixed solution. To the obtained mixed solution, 2.0 parts of the binder composition prepared above in an amount equivalent to the solid content and ion-exchanged water were added, and the final solid content concentration was adjusted to 48%. After further mixing for 10 minutes, defoaming treatment was performed under reduced pressure to obtain a slurry composition for a negative electrode having good fluidity. The stability of the slurry composition was evaluated during the preparation of the slurry composition for the negative electrode. The results are shown in Table 1.
  • the obtained slurry composition for a negative electrode was applied to a copper foil having a thickness of 15 ⁇ m, which is a current collector, with a comma coater so as to have a basis weight of 11 mg / cm 2 after drying, and dried. This drying was performed by transporting the copper foil at a rate of 0.5 m / min in an oven at 60 ° C. for 2 minutes. Then, it was heat-treated at 120 degreeC for 2 minutes, and the negative electrode raw fabric was obtained. Then, the negative electrode raw fabric was rolled by a roll press to obtain a negative electrode having a density of the negative electrode mixture layer of 1.75 g / cm 3 . In addition, the powder falling characteristics during the formation of the negative electrode and the peel strength of the negative electrode were evaluated. The results are shown in Table 1.
  • the obtained slurry composition for a positive electrode was applied to an aluminum foil having a thickness of 20 ⁇ m, which is a current collector, with a comma coater so as to have a basis weight of 23 mg / cm 2 after drying, and dried. This drying was performed by transporting the aluminum foil at a speed of 0.5 m / min in an oven at 60 ° C. for 2 minutes. Then, it was heat-treated at 120 degreeC for 2 minutes, and the positive electrode raw fabric was obtained. Then, the original fabric of the positive electrode was rolled by a roll press to obtain a positive electrode having a density of the positive electrode mixture layer of 4.0 g / cm 3 .
  • the positive electrode for the lithium ion secondary battery after pressing and the negative electrode for the lithium ion secondary battery after pressing prepared as described above are separated by a separator (a microporous polypropylene film having a thickness of 20 ⁇ m), and a separator / positive electrode / separator / negative electrode.
  • a laminated body was obtained by interposing so as to be.
  • the laminated body of the electrode and the separator was wound around a core having a diameter of 20 mm to obtain a wound body including a positive electrode, a separator, and a negative electrode.
  • the obtained wound body was compressed from one direction at a speed of 10 mm / sec until the thickness became 4.5 mm to obtain a flat body.
  • the obtained flat body had an elliptical shape in a plan view, and the ratio of the major axis to the minor axis (major axis / minor axis) was 7.7.
  • EC ethylene carbonate
  • EMC ethylmethyl carbonate
  • VC vinylene carbonate
  • the flat body was housed in an aluminum laminate case together with the non-aqueous electrolyte solution. Then, after connecting the negative electrode lead and the positive electrode lead to a predetermined position, the opening of the laminated case was sealed with heat to manufacture a laminated lithium ion secondary battery as a non-aqueous secondary battery.
  • the obtained secondary battery had a pouch shape having a width of 35 mm, a height of 48 mm, and a thickness of 5 mm, and had a nominal capacity of 700 mAh. Then, the battery resistance and cycle characteristics of this lithium ion secondary battery were evaluated. The results are shown in Table 1.
  • Example 2 A binder composition containing a particulate polymer was prepared in the same manner as in Example 1. In the same manner as in Example 1 except that the following active material 1 was used as the negative electrode active material when preparing the slurry composition for the negative electrode of the non-aqueous secondary battery, the slurry composition for the negative electrode of the non-aqueous secondary battery, the negative electrode, Positive electrodes, separators and lithium ion secondary batteries were made or prepared. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1. Active material 1: A mixture of 50 parts of an alloy containing silicon (non-carbon negative electrode active material) and 50 parts of artificial graphite (carbon negative electrode active material).
  • Example 3 A binder composition containing a particulate polymer was prepared in the same manner as in Example 1. In the same manner as in Example 1 except that the following active material 2 was used as the negative electrode active material when preparing the slurry composition for the negative electrode of the non-aqueous secondary battery, the slurry composition for the negative electrode of the non-aqueous secondary battery, the negative electrode, Positive electrodes, separators and lithium ion secondary batteries were made or prepared. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1. Active material 2: A mixture of 30 parts of SiO x (non-carbon negative electrode active material) and 70 parts of artificial graphite (carbon negative electrode active material).
  • Example 4 Comparative Examples 3 and 4
  • isoprene and / or 1,3-butadiene was used as the aliphatic conjugated diene monomer in the blending amount shown in Table 1 at the time of preparing the binder composition containing the particulate polymer.
  • a binder composition containing a particulate polymer, a slurry composition for a negative electrode of a non-aqueous secondary battery, a negative electrode, a positive electrode, a separator and a lithium ion secondary battery were prepared or prepared. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Examples 5 to 11, Comparative Examples 1 and 2 When preparing a binder composition containing a particulate polymer, the blending amounts of styrene and isoprene, the average particle size of the particulate polymer, the pH of the composition, and the molecular weight of the acidic water-soluble polymer contained in the aqueous phase are shown.
  • a binder composition containing a particulate polymer, a slurry composition for a negative electrode of a non-aqueous secondary battery, a negative electrode, a positive electrode, a separator and a lithium ion secondary battery were prepared in the same manner as in Example 1 except as shown in 1. Or prepared. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 12 ⁇ Preparation of particulate polymer (Em prop polymerization)>
  • styrene as an aromatic vinyl monomer
  • methacrylic acid as an acid monomer
  • dodecylbenzenesulfonic acid as an emulsifier for forming the core part.
  • 0.1 part of ⁇ -methylstyrene dimer as a chain transfer agent and 0.3 part of potassium persulfate as a polymerization initiator were added, and the mixture was sufficiently stirred. Then, it heated to 60 degreeC and started polymerization.
  • Polymerization was continued until the polymerization conversion rate reached 98% to obtain a seed particle polymer as a core portion.
  • 18 parts of styrene as an aromatic vinyl monomer 72 parts of isoprene as an aliphatic conjugated diene monomer, and 5 parts of methacrylic acid as an acid monomer.
  • emulsifiers 0.3 part of sodium dodecylbenzene sulfonate and 37 parts of ion-exchanged water were continuously added to continue the polymerization.
  • This aqueous dispersion is heated to 70 ° C., and when the polymerization conversion rate reaches 97%, it is cooled to stop the reaction, and a polymer as a shell portion is formed on the outer surface of the core portion to form a core shell.
  • a mixture containing a particulate polymer having a structure was obtained.
  • one part of Wingsati L dispersion was added as an antiaging agent, and an aqueous dispersion containing a particulate polymer having a core-shell structure in which the entire outer surface of the core part was covered with a shell part (for a negative electrode of a lithium ion secondary battery). Binder composition) was obtained.
  • the average particle size of the particulate polymer was measured using the obtained aqueous dispersion of the particulate polymer. Then, in the same manner as in Example 1, a slurry composition for a negative electrode of a non-aqueous secondary battery, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were prepared or prepared. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • the polymerization conversion rate of styrene was 100%. Subsequently, 75.0 kg of isoprene was continuously added to the pressure resistant reactor for 1 hour while controlling the temperature so as to maintain 50 to 60 ° C. After the addition of isoprene was completed, the polymerization reaction was continued for another hour. The polymerization conversion rate of isoprene was 100%. Next, 740.6 mmol of dichlorodimethylsilane as a coupling agent was added to the pressure resistant reactor, and the coupling reaction was carried out for 2 hours. Then, in order to inactivate the active terminal, 3612.9 mmol of methanol was added to the reaction solution and mixed well.
  • an emulsified solution obtained by emulsifying the premixture was obtained.
  • cyclohexane in the obtained emulsion was distilled off under reduced pressure using a rotary evaporator.
  • the distilled emulsion was left to stand and separated in a chromatographic column with a cock for 1 day, and the lower layer portion after the separation was removed for concentration.
  • the upper layer portion was filtered with a 100-mesh wire mesh to obtain an aqueous dispersion (block copolymer latex) containing particulate block copolymers (core particles).
  • the average particle size of the particulate polymer was measured using the obtained aqueous dispersion of the particulate polymer. Then, in the same manner as in Example 1, a slurry composition for a negative electrode of a non-aqueous secondary battery, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were prepared or prepared. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • the binder composition for a non-aqueous secondary battery electrode and the slurry composition for a non-aqueous secondary battery electrode of the present invention it is possible to form an electrode having excellent stability as a slurry composition and excellent peel strength. Excellent performance can be exhibited in the secondary battery. Further, the electrode for a non-aqueous secondary battery of the present invention can form a non-aqueous secondary battery having excellent peel strength and exhibiting excellent performance. According to the present invention, the peel strength of the electrode is improved, and a non-aqueous secondary battery exhibiting excellent performance can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、スラリー組成物としての安定性に優れ、ピール強度に優れる電極を形成可能な非水系二次電池電極用バインダー組成物を提供することを目的とする。本発明の非水系二次電池電極用バインダー組成物は、芳香族ビニル単量体に由来する構造単位と、共役ジエン単量体に由来する構造単位と、酸単量体に由来する構造単位とを含むランダム共重合体からなる粒子状重合体を含み、前記芳香族ビニル単量体に由来する構造単位の含有割合が、粒子状重合体100質量%に対し5質量%超40質量%以下であり、前記共役ジエン単量体に由来する構造単位が、イソプレンに由来する構造単位を含み、かつ、前記イソプレンに由来する構造単位の含有割合が、前記芳香族ビニル単量体に由来する構造単位と前記共役ジエン単量体に由来する構造単位と前記酸単量体に由来する構造単位との合計100質量%に対し20質量%以上である、非水系二次電池電極用バインダー組成物である。

Description

非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
 本発明は、非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池に関するものである。
 リチウムイオン二次電池などの非水系二次電池(以下、単に「二次電池」と略記する場合がある。)は、小型で軽量、且つエネルギー密度が高く、更に繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そのため、近年では、非水系二次電池の更なる高性能化を目的として、電極などの電池部材の改良が検討されている。
 ここで、リチウムイオン二次電池などの二次電池に用いられる電極は、通常、集電体と、集電体上に形成された電極合材層(正極合材層または負極合材層)とを備えている。そして、この電極合材層は、例えば、電極活物質と、結着材を含むバインダー組成物などとを含むスラリー組成物を集電体上に塗布し、塗布したスラリー組成物を乾燥させることにより形成される。
 そこで、近年では、二次電池の更なる性能の向上を達成すべく、電極合材層の形成に用いられるバインダー組成物の改良が試みられている。
 例えば、特許文献1~3には、芳香族ビニル/共役ジエン系共重合体を用いた非水系二次電池電極用バインダー組成物が記載されている。具体的には、特許文献1には、スチレン/イソプレン系共重合体をスルホン化した重合体を含む組成物等が記載されている。また、特許文献2には、スチレン/ブタジエン/エチレン性不飽和カルボン酸/(メタ)アクリル酸系粒子状共重合体等の芳香族ビニル/脂肪族共役ジエン/エチレン性不飽和カルボン酸/(メタ)アクリル酸系粒子状共重合体を含むリチウムイオン二次電池負極用バインダー組成物等が記載されている。また、特許文献3には、芳香族ビニル/イソプレン系共重合体を含むコア粒子に親水性グラフト鎖をグラフトさせたグラフト重合体からなる粒子状重合体を含有する非水系二次電池電極用バインダー組成物等が記載されている。
国際公開第2011/024789号 国際公開第2015/098008号 国際公開第2019/172281号
 しかし、上記従来の芳香族ビニル/共役ジエン系共重合体を用いた非水系二次電池電極用バインダー組成物には、バインダー組成物を用いたスラリー組成物の安定性およびバインダー組成物を用いて形成した電極のピール強度を向上させ、二次電池に優れた性能を発揮させるという点において改善の余地があった。
 そこで、本発明は、スラリー組成物としての安定性に優れ、ピール強度に優れる電極を形成可能な非水系二次電池電極用バインダー組成物および非水系二次電池電極用スラリー組成物を提供することを目的とする。
 また、本発明は、優れたピール強度を有し、優れた性能を発揮する非水系二次電池を形成可能な非水系二次電池用電極、並びに、電極のピール強度が向上し、優れた性能を発揮する非水系二次電池を提供することを目的とする。
 発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、イソプレンを含む共役ジエン用い、各単量体に由来する構造単位の含有割合を所定の範囲とした芳香族ビニル/共役ジエン系ランダム共重合体からなる粒子状重合体を含むバインダー組成物を用いれば、バインダー組成物を用いたスラリー組成物の安定性およびバインダー組成物を用いて形成した電極のピール強度が向上し、二次電池に優れた性能を発揮させることを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池電極用バインダー組成物は、芳香族ビニル単量体に由来する構造単位と、共役ジエン単量体に由来する構造単位と、酸単量体に由来する構造単位とを含むランダム共重合体からなる粒子状重合体を含み、前記芳香族ビニル単量体に由来する構造単位の含有割合が、粒子状重合体100質量%に対し5質量%超40質量%以下であり、前記共役ジエン単量体に由来する構造単位が、イソプレンに由来する構造単位を含み、かつ、前記イソプレンに由来する構造単位の含有割合が、前記芳香族ビニル単量体に由来する構造単位と前記共役ジエン単量体に由来する構造単位と前記酸単量体に由来する構造単位との合計100質量%に対し20質量%以上であることを特徴とする。このような、共役ジエン単量体に由来する構造単位がイソプレンに由来する構造単位を含み、各単量体に由来する構造単位の含有割合を所定の範囲としたランダム共重合体からなる粒子状重合体を含むバインダー組成物を用いれば、バインダー組成物を用いたスラリー組成物の安定性およびバインダー組成物を用いて形成した電極のピール強度を向上させ、二次電池に優れた性能を発揮させることができる。
 なお、本発明において、重合体の「構造単位」とは、「その単量体を用いて得た重合体中に含まれる、当該単量体由来の繰り返し単位」を意味する。
 また、本発明において、各単量体に由来する構造単位の含有割合は、H-NMRを用いて測定することができる。
 ここで、本発明の非水系二次電池電極用バインダー組成物において、前記酸単量体に由来する構造単位の含有割合が、粒子状重合体100質量%に対し3質量%以上9質量%以下であることが好ましい。酸単量体に由来する構造単位の含有割合が上記範囲内であれば、スラリー組成物としての安定性および電極のピール強度の何れか1以上を向上させることができる。
 また、本発明の非水系二次電池電極用バインダー組成物において、前記粒子状重合体の平均粒子径が、60nm以上300nm以下であることが好ましい。平均粒子径が上記範囲内であれば、スラリー組成物としての安定性を向上させることができる。
 また、本発明の非水系二次電池電極用バインダー組成物において、pHが、6以上9以下であることが好ましい。pHが上記範囲内であれば、粒子状重合体が安定に維持され、スラリー組成物としての安定性向上に寄与することができる。
 また、非水系二次電池電極用バインダー組成物は、酸性水溶性重合体を含む水相を含み、前記酸性水溶性重合体の重量平均分子量が、10,000以上100,000以下であることが好ましい。水相も含まれる酸性水溶性重合体の重量平均分子量が上記範囲内であれば、スラリー組成物の塗工性を維持しつつ、電極のピール強度を向上させることができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池電極用スラリー組成物は、上述した非水系二次電池電極用バインダー組成物と、電極活物質と、分散剤および粘度調整剤の少なくとも一方とを含むことを特徴とする。このように、上述した非水系二次電池電極用バインダー組成物を含有させれば、スラリー組成物としての安定性に優れ、ピール強度に優れる電極が形成可能となり、二次電池に優れた性能を発揮させることができる。
 更に、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用電極は、上述した非水系二次電池電極用スラリー組成物を用いて形成した電極合材層を備えることを特徴とする。このように、上述した非水系二次電池電極用スラリー組成物を使用すれば、優れたピール強度を有し、優れた性能を発揮する非水系二次電池を形成可能な非水系二次電池用電極が得られる。
 そして、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池は、正極、負極、セパレータおよび電解液を有し、前記正極および前記負極の少なくとも一方が上述した非水系二次電池用電極であることを特徴とする。上述した非水系二次電池用電極を使用すれば、電極のピール強度が向上し、優れた性能を発揮する非水系二次電池が得られる。
 本発明の非水系二次電池電極用バインダー組成物および非水系二次電池電極用スラリー組成物によれば、スラリー組成物としての安定性に優れ、ピール強度に優れる電極を形成することができ、二次電池に優れた性能を発揮させることができる。
 また、本発明の非水系二次電池用電極は、優れたピール強度を有し、優れた性能を発揮する非水系二次電池を形成することができる。
 そして、本発明によれば、電極のピール強度が向上し、優れた性能を発揮する非水系二次電池が得られる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の非水系二次電池電極用バインダー組成物は、本発明の非水系二次電池電極用スラリー組成物の調製に用いることができ、例えば本明細書に記載の調製方法を用いて調製することができる。そして、本発明の非水系二次電池電極用バインダー組成物を用いて調製した非水系二次電池電極用スラリー組成物は、リチウムイオン二次電池等の非水系二次電池の電極を製造する際に用いることができる。更に、本発明の非水系二次電池は、本発明の非水系二次電池電極用スラリー組成物を用いて形成した本発明の非水系二次電池用電極を用いたことを特徴とする。
 なお、本発明の非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物および非水系二次電池用電極は、負極用であることが好ましく、本発明の非水系二次電池は、本発明の非水系二次電池用電極を負極として用いたものであることが好ましい。
(非水系二次電池電極用バインダー組成物)
 本発明の非水系二次電池電極用バインダー組成物は、芳香族ビニル単量体に由来する構造単位と、共役ジエン単量体に由来する構造単位と、酸単量体に由来する構造単位とを含むランダム共重合体からなる粒子状重合体を含み、前記芳香族ビニル単量体に由来する構造単位の含有割合が、粒子状重合体100質量%に対し5質量%超40質量%以下であり、前記共役ジエン単量体に由来する構造単位が、イソプレンに由来する構造単位を含み、かつ、前記イソプレンに由来する構造単位の含有割合が、前記芳香族ビニル単量体に由来する構造単位と前記共役ジエン単量体に由来する構造単位と前記酸単量体に由来する構造単位との合計100質量%に対し20質量%以上である。また、本発明の非水系二次電池電極用バインダー組成物は、通常、水(水相)などの分散媒を更に含有する。本発明の非水系二次電池電極用バインダー組成物は、上記組成を有しているので、バインダー組成物を用いたスラリー組成物の安定性およびバインダー組成物を用いて形成した電極のピール強度を向上させ、二次電池に優れた性能を発揮させることができる。
<粒子状重合体>
 粒子状重合体は、結着材として機能する成分であり、バインダー組成物を含むスラリー組成物を使用して形成した電極合材層において、電極活物質などの成分が電極合材層から脱離しないように保持する。
 そして、粒子状重合体は、所定のランダム共重合体により形成される非水溶性の粒子である。なお、本発明において、重合体の粒子が「非水溶性」であるとは、温度25℃において重合体0.5gを100gの水に溶解した際に、不溶分が90質量%以上となることをいう。
[ランダム共重合体]
 粒子状重合体を形成するランダム共重合体は、芳香族ビニル単量体に由来する構造単位と、共役ジエン単量体に由来する構造単位と、酸単量体に由来する構造単位とを含むランダム共重合体であり、前記芳香族ビニル単量体に由来する構造単位の含有割合が、粒子状重合体100質量%に対し5質量%超40質量%以下であり、前記共役ジエン単量体に由来する構造単位が、イソプレンに由来する構造単位を含み、かつ、前記イソプレンに由来する構造単位の含有割合が、前記芳香族ビニル単量体に由来する構造単位と前記共役ジエン単量体に由来する構造単位と前記酸単量体に由来する構造単位との合計100質量%に対し20質量%以上である。粒子状重合体を形成する重合体がランダム共重合体であることにより、スラリー組成物としての安定性および形成された電極のピール強度の何れか1以上を更に向上させることができる。
-芳香族ビニル単量体に由来する構造単位-
 ランダム共重合体を構成する芳香族ビニル単量体に由来する構造単位としては、例えば、スチレン、スチレンスルホン酸およびその塩、α-メチルスチレン、p-t-ブチルスチレン、ブトキシスチレン、ビニルトルエン、クロロスチレン、並びに、ビニルナフタレンなどの芳香族モノビニル化合物に由来する構造単位が挙げられる。中でも、スチレンに由来する構造単位が好ましい。これらは1種を単独で、または、2種以上を組み合わせて用いることができるが、1種を単独で用いることが好ましい。
 ランダム共重合体中の芳香族ビニル単量体に由来する構造単位の含有割合は、粒子状重合体100質量%に対し、5質量%超であり、15質量%以上であることが好ましく、40質量%以下であり、30質量%以下であることが好ましい。芳香族ビニル単量体に由来する構造単位の含有割合が上記下限値より大きければ、スラリー組成物としての安定性を更に向上させることができる。一方、芳香族ビニル単量体に由来する構造単位の含有割合が上記上限値以下であれば、形成された電極のピール強度、二次電池の内部抵抗特性、および二次電池のサイクル特性の何れか1以上を更に向上させることができる。
-共役ジエン単量体に由来する構造単位-
 ランダム共重合体を構成する共役ジエン単量体に由来する構造単位は、イソプレンに由来する構造単位を含む。即ち、共役ジエン単量体に由来する構造単位は、全てイソプレンに由来する構造単位であってもよく、イソプレンに由来する構造単位および1種または2種以上のイソプレン以外の共役ジエン単量体に由来する構造単位を含んでいてもよい。イソプレン以外の共役ジエン単量体に由来する構造単位としては、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3ブタジエン、2-クロル-1,3-ブタジエン、置換直鎖共役ペンタジエン類、置換および側鎖共役ヘキサジエン類等の脂肪族共役ジエン単量体に由来する構造単位が挙げられ、中でも1,3-ブタジエンに由来する構造単位が好ましい。共役ジエン単量体に由来する構造単位は、全てイソプレンに由来する構造単位であることが好ましい。粒子状重合体がイソプレンに由来する構造単位を含むことにより、二次電池のサイクル特性を向上しつつ、電極形成時における粉落ち特性および形成された電極のピール強度を更に向上させることができる。
 ランダム共重合体中のイソプレンに由来する構造単位の含有割合は、芳香族ビニル単量体に由来する構造単位と共役ジエン単量体に由来する構造単位と酸単量体に由来する構造単位との合計100質量%に対し、20質量%以上であり、50質量%以上であることが好ましく、上限としては特に限定されないが、例えば94質量%以下であってもよく、87質量%以下であることが好ましい。イソプレンに由来する構造単位の含有割合が上記下限値以上であれば、電極形成時における粉落ち特性および形成された電極のピール強度の何れか1以上を更に向上させることができる。
-酸単量体に由来する構造単位-
 ランダム共重合体を構成する酸単量体に由来する構造単位としては、炭素間二重結合および酸性基を有する単量体に由来する構造単位が好ましい。このような酸単量体に由来する構造単位としては、例えば、カルボキシル基含有単量体に由来する構造単位、スルホン酸基含有単量体に由来する構造単位、およびリン酸基含有単量体に由来する構造単位が挙げられる。
 ここで、「カルボキシル基含有単量体に由来する構造単位」の「カルボキシル基含有単量体」としては、モノカルボン酸およびその誘導体や、ジカルボン酸およびその酸無水物並びにそれらの誘導体などが挙げられる。
 モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。
 モノカルボン酸誘導体としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸などが挙げられる。
 ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸や、マレイン酸ブチル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸モノエステルが挙げられる。
 ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸、無水シトラコン酸などが挙げられる。
 また、カルボキシル基含有単量体としては、加水分解によりカルボキシル基を生成する酸無水物も使用できる。
 更に、カルボキシル基含有単量体としては、ブテントリカルボン酸等のエチレン性不飽和多価カルボン酸や、フマル酸モノブチル、マレイン酸モノ2-ヒドロキシプロピル等のエチレン性不飽和多価カルボン酸の部分エステルなども用いることができる。
 また、「スルホン酸基含有単量体に由来する構造単位」の「スルホン酸基含有単量体」としては、例えば、ビニルスルホン酸(エチレンスルホン酸)、メチルビニルスルホン酸、(メタ)アリルスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸が挙げられる。
 なお、本発明において、「(メタ)アリル」とは、アリルおよび/またはメタリルを意
味する。
 更に、「リン酸基含有単量体に由来する構造単位」の「リン酸基含有単量体」としては、例えば、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルが挙げられる。
 なお、本発明において、「(メタ)アクリロイル」とは、アクリロイルおよび/またはメタクリロイルを意味する。
 このような酸単量体に由来する構造単位は、1種類単独であってもよく、2種類以上の組合せであってもよい。このような酸単量体に由来する構造単位は、アクリル酸単量体に由来する構造単位、メタクリル酸単量体に由来する構造単位、イタコン酸単量体に由来する構造単位が好ましく、メタクリル酸単量体に由来する構造単位がより好ましい。
 ランダム共重合体中の酸単量体に由来する構造単位の含有割合は、特に限定されないが、粒子状重合体100質量%に対し、1質量%以上であることが好ましく、3質量%以上であることがより好ましく、20質量%以下であることが好ましく、9質量%以下であることがより好ましい。
-その他の単量体に由来する構造単位-
 ランダム共重合体は、任意で、その他の単量体に由来する構造単位を更に含んでもよい。このようなその他の単量体に由来する構造単位としては、炭素間二重結合を有する単量体に由来する構造単位が好ましく、例えば、アクリロニトリル、メタクリロニトリル等のニトリル基含有単量体に由来する構造単位;アクリル酸アルキルエステル、メタクリル酸アルキルエステル等の(メタ)アクリル酸エステル単量体単位に由来する構造単位;2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート等の分子内に水酸基を有する水酸基含有(メタ)アクリル酸エステル単量体に由来する構造単位;アクリルアミド単量体に由来する構造単位;ヒドロキシエチルアクリルアミド単量体に由来する構造単位;酢酸ビニル単量体に由来する構造単位;メトキシ-ポリエチレングリコールアクリレート単量体に由来する構造単位;テトラヒドロフルフリルアクリレート単量体に由来する構造単位が挙げられる。なお、本明細書中で、「(メタ)アクリル酸」とは、アクリル酸および/またはメタクリル酸を意味する。
[粒子状重合体の立体構造]
 粒子状重合体は、均一な構造単位組成(構造単位の種類および含有割合)を有する粒子であってもよく、不均一な構造単位組成を有する粒子であってもよい。不均一な構造単位組成を有する粒子としては、例えば、コア部とシェル部とで構造単位組成が異なるコアシェル構造を有する粒子、核部分のみが異なる構造単位組成を有する粒子が挙げられる。コアシェル構造を有する粒子としては、例えば、イソプレンに由来する構造単位を含まないコア部とイソプレンに由来する構造単位を含むシェル部から構成される粒子が挙げられる。また、均一な構造単位組成であって、架橋密度が異なるコアシェル構造を有する粒子でも良い。
 上記で規定したランダム共重合体の構造単位組成(構造単位の種類および含有割合)は、非水系二次電池電極用バインダー組成物に含まれる全粒子状重合体の全体に占める構造単位組成を指す。したがって、例えば、粒子状重合体がコアシェル構造のような不均一な構造単位組成を有する粒子である場合、ランダム共重合体の構造単位組成は、コア部およびシェル部を含めた粒子全体に占める構造単位組成を指す。
[平均粒子径]
 粒子状重合体の平均粒子径は、60nm以上であることが好ましく、90nm以上であることがより好ましく、300nm以下であることが好ましく、200nm以下であることがより好ましい。
<水相>
 本発明の非水系二次電池電極用バインダー組成物は、通常、粒子状重合体の分散媒として水を含有する。
 水相のpHは、6.0以上が好ましく、7.0以上以下がより好ましく、9.0以下が好ましく、8.0以下がより好ましい。pHが上記範囲内であれば、粒子状重合体が安定に維持され、スラリー組成物としての安定性向上に寄与することができる。pHの調整は、水相へのアルカリ種の添加により行われてもよい。アルカリ種としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、アンモニア水が挙げられ、アルカリ中和時に添加ショックで凝集物が発生しづらいことから、アンモニア水が好ましい。
 水相は、酸性水溶性重合体を含んでいてもよい。水相に含まれる酸性水溶性重合体は、重合による粒子状重合体の生成時に、粒子状重合体の原料となる単量体から副生物として重合生成される。このような酸性水溶性重合体は、粒子状重合体を構成する芳香族ビニル単量体に由来する構造単位、共役ジエン単量体に由来する構造単位、酸単量体に由来する構造単位の何れか1以上を含む重合体である。このような酸性水溶性重合体の重量平均分子量は、5,000以上が好ましく、10,000以上がより好ましく、200,000以下が好ましく、100,000以下がより好ましい。酸性水溶性重合体の重量平均分子量が上記下限値より小さくなると、ピール強度が低下するため、重量平均分子量は上記下限値以上であることが好ましい。また、酸性水溶性重合体の重量平均分子量が上記上限値より大きくなると、バインダーが増粘し、塗工が不可能となるため、重量平均分子量は上記上限値以下であることが好ましい。
 水相は、老化防止剤、防腐剤等の添加剤を含んでいてもよい。
 老化防止剤としては、ヒンダードフェノール系酸化防止剤(例、4-[[4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イル]アミノ]-2,6-ジ-tert-ブチルフェノール、2,6-ジ-tert-ブチル-p-クレゾール、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアリル、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]、2,4,6-トリス(3’,5’-ジ-tert-ブチル-4’-ヒドロキシベンジル)メシチレン)、オリゴマー型フェノール系酸化防止剤(例、WINGSTAY L)、ホスファイト系酸化防止剤(例、3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)2-エチルヘキシルホスファイト、亜リン酸トリス(2,4-ジ-tert-ブチルフェニル))、イオウ系酸化防止剤(例、ジドデシル3,3’-チオジプロピオネート)等が挙げられる。
 老化防止剤の添加量は、芳香族ビニル単量体に由来する構造単位と共役ジエン単量体に由来する構造単位と酸単量体に由来する構造単位との合計100質量%に対し、0.1質量%以上であることが好ましく、1質量%以上であることがより好ましく、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
 防腐剤としては、例えば、イソチアゾリン系化合物や2-ブロモ-2-ニトロ-1,3-プロパンジオール等既知の防腐剤が挙げられる。ここでイソチアゾリン系化合物としては、特に限定されることなく、特開2013-211246号公報、特開2005-097474号公報、および特開2013-206624号公報などに記載のものが挙げられる。なお、防腐剤は一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。そして防腐剤としては、1,2-ベンゾイソチアゾリン-3-オン、2-メチル-4-イソチアゾリン-3-オン、5-クロロ-2-メチル-4-イソチアゾリン-3-オン、2-ブロモ-2-ニトロ-1,3-プロパンジオールが好ましく、1,2-ベンゾイソチアゾリン-3-オンがより好ましい。
 バインダー組成物に含まれる防腐剤の量は、バインダー100質量部当たり0.01質量部以上であることが好ましく、0.5質量部以下であることが好ましく、0.4質量部以下であることがより好ましく、0.3質量部以下であることが更に好ましい。防腐剤の含有量がバインダー100質量部当たり0.01質量部以上であれば、長期保管後におけるバインダー組成物中の凝集物生成を一層抑制することができ、0.5質量部以下であれば、機能層の接着性を十分に向上させることができる。
<バインダー組成物の調製方法>
 本発明の非水系二次電池電極用バインダー組成物は、粒子状重合体に含まれる構造単位の元となる単量体(芳香族ビニル単量体、共役ジエン単量体、酸単量体、任意でその他の単量体)をエマルジョン中で重合することにより調製することができる。このような調製方法としては、例えば、バッチ式乳化重合法、エマルジョン(Em)プロップ法、シード重合法が挙げられ、バッチ式乳化重合法が好ましい。
 バッチ式乳化重合法は、例えば、以下の手順により行われてもよい。粒子状重合体に含まれる構造単位の元となる単量体(芳香族ビニル単量体、共役ジエン単量体、酸単量体、任意でその他の単量体)を、水、乳化剤、および重合開始剤と混合する。混合物(エマルジョン)を加温して重合反応を行う。所定の重合転化率となった時点で冷却して反応を停止させ、粒子状重合体を含む混合物を得る。混合物から未反応単量体を除去する。混合物のpHを、上述した水相の好ましいpHの範囲内となるように調整し、任意で、上述した添加剤(例、老化防止剤)を添加して、水分散液を非水系二次電池電極用バインダー組成物として得る。芳香族ビニル単量体および共役ジエン単量体は、最初に全量を添加することが好ましい。酸単量体および任意で添加されるその他の単量体は、最初に全量を添加してもよく、一部分を段階的に添加してもよい。加温は、例えば、40℃以上、45℃以上、50℃以上、55℃以上、または60℃以上、90℃以下、85℃以下、80℃以下、75℃以下、または70℃以下で行ってもよい。混合物からの未反応単量体の除去は、例えば、加熱減圧蒸留、スチームの吹込みによって行ってもよい。バッチ式乳化重合法では、例えば、芳香族ビニル単量体に由来する構造単位および共役ジエン単量体に由来する構造単位の組成が均一な粒子状重合体を得ることができる。
 Emプロップ法は、例えば、以下の手順により行われてもよい。コア部形成用の単量体(芳香族ビニル単量体、共役ジエン単量体、酸単量体、任意でその他の単量体の何れか1以上)を、水、乳化剤、連鎖移動剤、および重合開始剤と混合する。混合物(エマルジョン)を加温して所定の重合転化率になるまで重合反応を行い、コア部としてのシード粒子重合体を含む混合物を得る。次いで、混合物にコア部形成用の単量体(芳香族ビニル単量体、共役ジエン単量体、酸単量体、任意でその他の単量体の何れか1以上)、並びに、任意で乳化剤および水を連続添加して重合を継続した。所定の重合転化率となった時点で冷却して反応を停止させ、粒子状重合体を含む混合物を得る。混合物から未反応単量体を除去する。混合物のpHを、上述した水相の好ましいpHの範囲内となるように調整し、任意で、上述した添加剤(例、老化防止剤)を添加して、水分散液を、コアシェル構造を有する粒子状重合体を含む非水系二次電池電極用バインダー組成物として得る。
 シード重合法では、例えば、芳香族ビニル単量体、共役ジエン単量体、酸単量体、任意でその他の単量体の何れか1以上の単量体に由来する構造単位を含む重合体からなるシード粒子重合体に、粒子状重合体形成用単量体(芳香族ビニル単量体、共役ジエン単量体、酸単量体、任意でその他の単量体)、水、乳化剤、連鎖移動剤、および重合開始剤と混合し、上記と同様にして重合反応等を行うことにより、水分散液を非水系二次電池電極用バインダー組成物として得ることができる。
 バインダー組成物の調製に用いる乳化剤としては、例えば、アルキルジフェニルエーテルジスルホン酸、ドデシルベンゼンスルホン酸、ラウリル硫酸、またはこれらの塩(例、カリウム塩、ナトリウム塩)が挙げられる。
 バインダー組成物の調製に用いる重合開始剤としては、例えば、過硫酸カリウム、n-ブチルリチウム、過硫酸アンモニウムが挙げられる。
 バインダー組成物の調製に用いる連鎖移動剤としては、例えば、α-メチルスチレンダイマー、tert-ドデシルメルカプタン、3-メルカプト-1,2-プロパンジオールが挙げられる。
(非水系二次電池電極用スラリー組成物)
 本発明のスラリー組成物は、電極の電極合材層の形成用途に用いられる組成物であり、上述したバインダー組成物と、電極活物質と、分散剤および粘度調整剤の少なくとも一方とを含む。即ち、本発明のスラリー組成物は、上述した粒子状重合体および電極活物質を含有し、さらに分散剤および粘度調整剤の少なくとも一方を更に含有し、通常、水(水相)などの分散媒を更に含有し、任意に、ホスファイト系酸化防止剤、金属捕捉剤およびその他の成分からなる群より選択される少なくとも一種を更に含有する。そして、本発明のスラリー組成物は、上述したバインダー組成物を含んでいるので、スラリー組成物としての安定性に優れ、ピール強度に優れる電極が形成可能となり、二次電池に優れた性能を発揮させることができる。
<バインダー組成物>
 バインダー組成物としては、ランダム共重合体からなる粒子状重合体を含み、通常、水(水相)などの分散媒を更に含有する、上述した本発明のバインダー組成物を用いる。
 なお、スラリー組成物中のバインダー組成物の配合量は、特に限定されない。例えば、バインダー組成物の配合量は、電極活物質100質量部当たり、固形分換算で、粒子状重合体の量が0.5質量部以上15質量部以下となる量とすることができる。
<電極活物質>
 そして、電極活物質としては、特に限定されることなく、二次電池に用いられる既知の電極活物質を使用することができる。具体的には、例えば、二次電池の一例としてのリチウムイオン二次電池の電極合材層において使用し得る電極活物質としては、特に限定されることなく、以下の電極活物質を用いることができる。
[正極活物質]
 リチウムイオン二次電池の正極の正極合材層に配合される正極活物質としては、例えば、遷移金属を含有する化合物、例えば、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属との複合金属酸化物などを用いることができる。なお、遷移金属としては、例えば、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が挙げられる。
 具体的には、正極活物質としては、特に限定されることなく、リチウム含有コバルト酸化物(LiCoO)、マンガン酸リチウム(LiMn)、リチウム含有ニッケル酸化物(LiNiO)、Co-Ni-Mnのリチウム含有複合酸化物、Ni-Mn-Alのリチウム含有複合酸化物、Ni-Co-Alのリチウム含有複合酸化物、オリビン型リン酸鉄リチウム(LiFePO)、オリビン型リン酸マンガンリチウム(LiMnPO)、Li1+xMn2-x(0<X<2)で表されるリチウム過剰のスピネル化合物、Li[Ni0.17Li0.2Co0.07Mn0.56]O、LiNi0.5Mn1.5等が挙げられる。
 なお、上述した正極活物質は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
[負極活物質]
 リチウムイオン二次電池の負極の負極合材層に配合される負極活物質としては、例えば、炭素系負極活物質、金属系負極活物質、および、これらを組み合わせた負極活物質などが挙げられる。
 ここで、炭素系負極活物質とは、リチウムを挿入(「ドープ」ともいう。)可能な、炭素を主骨格とする活物質をいう。そして、炭素系負極活物質としては、具体的には、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)およびハードカーボンなどの炭素質材料、並びに、天然黒鉛および人造黒鉛などの黒鉛質材料が挙げられる。
 また、金属系負極活物質とは、金属を含む活物質であり、通常は、リチウムの挿入が可能な元素を構造に含み、リチウムが挿入された場合の単位質量当たりの理論電気容量が500mAh/g以上である活物質をいう。そして、金属系活物質としては、例えば、リチウム金属、リチウム合金を形成し得る単体金属(例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn、Tiなど)およびそれらの酸化物、硫化物、窒化物、ケイ化物、炭化物、燐化物などが挙げられる。さらに、チタン酸リチウムなどの酸化物を挙げることができる。
 なお、上述した負極活物質は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
<その他の成分>
 スラリー組成物に配合し得るその他の成分としては、特に限定することなく、導電材や、本発明のバインダー組成物に配合し得るその他の成分と同様のものが挙げられる。なお、その他の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<スラリー組成物の調製>
 スラリー組成物の調製方法は、特に限定はされない。
 例えば、バインダー組成物と、電極活物質と、さらに分散剤、粘度調整剤から選ばれる少なくともいずれか1つ以上と、必要に応じて用いられるその他の成分とを、バインダー組成物に通常含まれる水相(水系媒体)の存在下で混合してスラリー組成物を調製することができる。
 なお、混合方法は特に制限されないが、通常用いられうる撹拌機や、分散機を用いて混合することができる。
(非水系二次電池用電極)
 本発明の非水系二次電池用電極は、上述した非水系二次電池電極用スラリー組成物を用いて形成した電極合材層を備える。従って、電極合材層は、上述したスラリー組成物の乾燥物よりなり、通常、電極活物質と、粒子状重合体に由来する成分と、さらに分散剤、粘度調整剤から選ばれる少なくともいずれか1つ以上とを含有し、任意に、ホスファイト系酸化防止剤、金属捕捉剤およびその他の成分からなる群より選択される少なくとも一種を更に含有する。なお、電極合材層中に含まれている各成分は、上記非水系二次電池電極用スラリー組成物中に含まれていたものであり、それら各成分の好適な存在比は、スラリー組成物中の各成分の好適な存在比と同じである。また、粒子状重合体は、スラリー組成物中では粒子形状で存在するが、スラリー組成物を用いて形成された電極合材層中では、粒子形状であってもよいし、その他の任意の形状であってもよい。
 そして、本発明の非水系二次電池用電極は、上述した非水系二次電池電極用スラリー組成物を使用して電極合材層を形成しているので、優れたピール強度を有し、優れた性能を発揮する非水系二次電池を形成可能である。また、当該電極を備える二次電池は、電極のピール強度が向上し、優れた性能を発揮する。
<非水系二次電池用電極の製造>
 ここで、本発明の非水系二次電池用電極の電極合材層は、例えば、以下の方法を用いて形成することができる。
1)本発明のスラリー組成物を集電体の表面に塗布し、次いで乾燥する方法;
2)本発明のスラリー組成物に集電体を浸漬後、これを乾燥する方法;および
3)本発明のスラリー組成物を離型基材上に塗布し、乾燥して電極合材層を製造し、得られた電極合材層を集電体の表面に転写する方法。
 これらの中でも、前記1)の方法が、電極合材層の層厚制御をしやすいことから特に好ましい。前記1)の方法は、詳細には、スラリー組成物を集電体上に塗布する工程(塗布工程)と、集電体上に塗布されたスラリー組成物を乾燥させて集電体上に電極合材層を形成する工程(乾燥工程)を含む。
[塗布工程]
 上記スラリー組成物を集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、スラリー組成物を集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる電極合材層の厚みに応じて適宜に設定しうる。
 ここで、スラリー組成物を塗布する集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[乾燥工程]
 集電体上のスラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥法、真空乾燥法、赤外線や電子線などの照射による乾燥法を用いることができる。このように集電体上のスラリー組成物を乾燥することで、集電体上に電極合材層を形成し、集電体と電極合材層とを備える非水系二次電池用電極を得ることができる。
 なお、乾燥工程の後、金型プレスまたはロールプレスなどを用い、電極合材層に加圧処理を施してもよい。加圧処理により、電極合材層と集電体との密着性を向上させると共に得られる電極合材層をより一層高密度化することができる。また、電極合材層が硬化性の重合体を含む場合は、電極合材層の形成後に前記重合体を硬化させることが好ましい。
(非水系二次電池)
 本発明の非水系二次電池は、正極と、負極と、電解液と、セパレータとを備えており、上述した非水系二次電池用電極を正極および負極の少なくとも一方として用いる。そして、本発明の非水系二次電池は、上述した非水系二次電池用電極を正極および負極の少なくとも一方として用いて製造されるため、優れたサイクル特性を発揮し得る。
 なお、以下では、一例として二次電池がリチウムイオン二次電池である場合について説明するが、本発明は下記の一例に限定されるものではない。
<電極>
 ここで、本発明の非水系二次電池で使用し得る、上述した本発明の非水系二次電池用電極以外の電極としては、特に限定されることなく、二次電池の製造に用いられている既知の電極を用いることができる。具体的には、上述した本発明の非水系二次電池用電極以外の電極としては、既知の製造方法を用いて集電体上に電極合材層を形成してなる電極などを用いることができる。
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。リチウムイオン二次電池の支持電解質としては、例えば、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF、LiClO、CFSOLiが好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)、ビニレンカーボネート(VC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いので、カーボネート類を用いることが好ましい。通常、用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなる傾向があるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
 なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤を添加することができる。
<セパレータ>
 セパレータとしては、特に限定されることなく、例えば特開2012-204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。
 そして、本発明の二次電池は、例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。ここで、本発明の非水系二次電池では、正極および負極の少なくとも一方、好ましくは負極として、上述した非水系二次電池用電極を使用する。なお、本発明の非水系二次電池には、二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 また、複数種類の単量体を重合して製造される重合体において、単量体を重合して形成される各単量体に由来する構造単位の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める各単量体の比率(仕込み比)と一致する。
 そして、実施例および比較例において、重合体中の各単量体に由来する構造単位の含有割合、粒子状重合体の平均粒子径、水相に含まれる酸性水溶性重合体の重量平均分子量、スラリー組成物の粘度安定性、電極のピール強度、電極形成時における粉落ち特性、二次電池の内部抵抗、および二次電池のサイクル特性は、以下の方法で測定または評価した。
<各単量体に由来する構造単位の含有割合>
 H-NMR(核磁気共鳴)法により各単量体に由来する構造単位由来ピークの強度比を求め、質量比に換算した。
<粒子状重合体の平均粒子径>
 粒子状重合体の平均粒子径を、レーザ回折式粒子径分布測定装置(株式会社島津製作所製、製品名「SALD-2300」)を用いて測定した。具体的には、バインダー組成物(粒子状重合体の水分散液)を準備し、上記測定装置で粒度分布(体積基準)を測定して、平均粒子径(μm)を求めた。
<水相中の酸性水溶性重合体の分子量測定方法>
 バインダー組成物から水相を遠心分離により分離し、水相中の酸性水溶性重合体をHPLCにて測定した。
 分子量測定条件
 カラム:Tosoh Corporation製 TSKgel G2500PWXL
 移動相:100mM 硝酸ナトリウム+50mMリン酸水素二ナトリウム水溶液/アセトニトリル=80/20
 流量:1.0mL/min
 検出器:RI 検出器
 標準物:プルラン
<スラリー組成物の粘度安定性>
 B型粘度計(東機産業社製、製品名「TVB-10」、ローター:No.2、回転数:60rpm)を用いて、得られたスラリー組成物の粘度ηを測定した。次に、粘度を測定したスラリー組成物を、プラネタリーミキサー(回転数:60rpm)を用いて24時間撹拌し、撹拌後のスラリー組成物の粘度ηを、上記と同様のB型粘度計(ローター:No.2、回転数:60rpm)を用いて測定した。そして、撹拌前後のスラリー組成物の粘度維持率Δη=η/η×100(%)を算出し、以下の基準にてスラリー組成物の粘度安定性を評価した。なお、粘度測定時の温度は25℃であった。粘度維持率Δηの値が100%に近いほど、スラリー組成物の粘度安定性が優れていることを示す。
 A:粘度維持率Δηが90%以上110%以下
 B:粘度維持率Δηが80%以上90%未満
 C:粘度維持率Δηが70%以上80%未満
 D:粘度維持率Δηが70%未満、または110%超
<電極のピール強度>
 作製した電極を100℃の真空乾燥機内で1時間乾燥し、乾燥後の電極を長さ100mm、幅10mmの長方形に切り出して試験片とした。この試験片を、電極合材層の表面を下にして、電極合材層の表面にセロハンテープを貼り付けた。この際、セロハンテープとしてはJIS Z1522に規定されるものを用いた。また、セロハンテープは試験台に固定しておいた。その後、集電体の一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を3回行い、その平均値を求め、当該平均値をピール強度として、下記の基準で評価した。ピール強度が大きいほど、電極合材層の集電体への結着力が大きいこと、すなわち、密着強度が大きいことを示す。
 A:ピール強度が30N/m以上
 B:ピール強度が20N/m以上30N/m未満
 C:ピール強度が10N/m以上20N/m未満
 D:ピール強度が10N/m未満
<電極形成時における粉落ち特性>
 電極形成時における粉落ち特性は、電極にJIS K 5600に定めるクロスカット試験を行うことにより評価した。具体的には、電極を既定のサイズに切り出し、切り出した電極の重量を測定し、クロスカット治具を用いて電極の裏面から切込みを入れ、切込みの際に出た粉を払い落とし、電極の重量を測定し、切込みの前後の電極の重量差から粉落ち量を算出する。粉落ち量が少ないほど、粉落ち特性が良好であることを示す。
 A:粉落ち量が0.5mg未満
 B:粉落ち量が0.5mg以上1mg未満
 C:粉落ち量が1mg以上2mg未満
 D:粉落ち量が2mg以上
<二次電池の内部抵抗>
 リチウムイオン二次電池の内部抵抗を評価するために、以下のようにしてIV抵抗を測定した。温度25℃で、電圧が4.2Vとなるまで0.1Cの充電レートで充電し、10分間休止した後、0.1Cの放電レートで3.0Vまで定電流(CC)放電させる操作を3回繰り返すコンディショニング処理を施した。その後、-10℃雰囲気下で、1C(Cは定格容量(mA)/1時間(h)で表される数値)で3.75Vまで充電した後、3.75Vを中心として0.5C、1.0C、1.5C、2.0Cで、20秒間充電と20秒間放電とをそれぞれ行った。そして、それぞれの場合について、充電側における15秒後の電池電圧を電流値に対してプロットし、その傾きをIV抵抗(Ω)として求めた。得られたIV抵抗の値(Ω)について、比較例4のIV抵抗と比較して、下記の基準により評価を行なった。なお、IV抵抗の値が小さいほど、二次電池の内部抵抗が低いことを示す。
 A:比較例4のIV抵抗に対し、85%未満
 B:比較例4のIV抵抗に対し、85%以上95%未満
 C:比較例4のIV抵抗に対し、95%以上105%未満
 D:比較例4のIV抵抗に対し、105%以上
<二次電池のサイクル特性>
 実施例、比較例で作製したリチウムイオン二次電池を、電解液注液後、温度25℃で5時間静置した。次に、温度25℃、0.2Cの定電流法にて、セル電圧3.65Vまで充電し、その後、温度60℃で12時間エージング処理を行った。そして、温度25℃、0.2Cの定電流法にて、セル電圧3.00Vまで放電した。その後、0.2Cの定電流法にて、定電流(CC)-定電圧(CV)充電(上限セル電圧4.20V)を行い、0.2Cの定電流法にて3.00VまでCC放電した。この0.2Cにおける充放電を3回繰り返し実施した。
 その後、温度25℃の環境下、セル電圧4.20-3.00V、1.0Cの充放電レートにて充放電の操作を100サイクル行った。その際、第1回目のサイクルの放電容量をX1、第100回目のサイクルの放電容量をX2と定義した。
 該放電容量X1および放電容量X2を用いて、ΔC’=(X2/X1)×100(%)で示される容量変化率を求め、以下の基準により評価した。この容量変化率ΔC’の値が大きいほど、サイクル特性に優れていることを示す。
 A:ΔC’が93%以上
 B:ΔC’が90%以上93%未満
 C:ΔC’が87%以上90%未満
 D:ΔC’が87%未満
(実施例1)
<粒子状重合体を含むバインダー組成物の調製(バッチ重合)>
 攪拌機付き5MPa耐圧容器Aに、芳香族ビニル単量体としてスチレン22部、脂肪族共役ジエン単量体としてイソプレン72部、酸単量体としてメタクリル酸2部、乳化剤としてアルキルジフェニルエーテルジスルホン酸塩0.6部、イオン交換水137部、及び重合開始剤として過硫酸カリウム0.3部を入れ、十分に攪拌した後、45℃に加温して重合を開始させ、20時間反応させた。次いで60℃に加温し、更に5時間反応させた。その後メタクリル酸4部を添加し、更に5時間反応させた。重合転化率が97%になった時点で冷却し反応を停止して、粒子状重合体を含む混合物を得た。その後、加熱減圧蒸留によって未反応単量体の除去を行った。この粒子状重合体を含む混合物に、1%アンモニア水溶液を添加して、pH8に調整した。さらにその後冷却し、老化防止剤としてWingstay L分散物1部を添加し、所望の粒子状重合体を含む水分散液をリチウムイオン二次電池負極用バインダー組成物として得た。得られたバインダー組成物を用いて、粒子状重合体の平均粒子径、および副生物として生成された、水相中に含まれる酸性水溶性重合体の重量平均分子量を測定した。結果を表1に示す。
<非水系二次電池負極用スラリー組成物の調製>
 ディスパー付きのプラネタリーミキサーに、負極活物質としての人造黒鉛(タップ密度:0.85g/cm、容量:360mAh/g)100部、導電材としてのカーボンブラック(TIMCAL社製、製品名「Super C65」)1部、増粘剤としてのカルボキシメチルセルロース(日本製紙ケミカル社製、製品名「MAC-350HC」)の2%水溶液を固形分相当で1.2部加えて混合物を得た。得られた混合物をイオン交換水で固形分濃度60%に調整した後、25℃で60分間混合した。次に、イオン交換水で固形分濃度52%に調整した後、さらに25℃で15分間混合し混合液を得た。得られた混合液に、上述で調製されたバインダー組成物を固形分相当量で2.0部、およびイオン交換水を入れ、最終固形分濃度が48%となるように調整した。さらに10分間混合した後、減圧下で脱泡処理することにより、流動性の良い負極用スラリー組成物を得た。
 負極用スラリー組成物の調製時にスラリー組成物の安定性を評価した。結果を表1に示す。
<負極の形成>
 得られた負極用スラリー組成物を、コンマコーターで、集電体である厚さ15μmの銅箔の上に、乾燥後の目付が11mg/cmになるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、負極原反を得た。
 そして、負極原反をロールプレスで圧延して、負極合材層の密度が1.75g/cmの負極を得た。
 また、負極形成時の粉落ち特性および負極のピール強度を評価した。結果を表1に示す。
<正極の形成>
 正極活物質としてのメディアン径12μmのLiCoOを100部と、導電材としてのアセチレンブラック(電気化学工業社製、製品名「HS-100」)を2部と、結着材としてのポリフッ化ビニリデン(クレハ社製、製品名「#7208」)を固形分相当で2部と、溶媒としてのN-メチルピロリドンとを混合して全固形分濃度を70%とした。これらをプラネタリーミキサーにより混合し、正極用スラリー組成物を得た。
 得られた正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミ箔の上に、乾燥後の目付が23mg/cmになるように塗布し、乾燥させた。この乾燥は、アルミ箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、正極原反を得た。
 そして、正極原反をロールプレスで圧延して、正極合材層の密度が4.0g/cmの正極を得た。
<セパレータの準備>
 セパレータ基材よりなるセパレータとして、単層のポリプロピレン製セパレータ(セルガード社製、製品名「セルガード2500」)を準備した。
<リチウムイオン二次電池の作製>
 上述の通り作製したプレス後のリチウムイオン二次電池用正極とプレス後のリチウムイオン二次電池用負極とを、セパレータ(厚さ20μmのポリプロピレン製微多孔膜)を、セパレータ/正極/セパレータ/負極となるように介在させることにより、積層体を得た。次に、電極およびセパレータの積層体を、直径20mmの芯に対して捲回することにより、正極、セパレータ、および負極を備える捲回体を得た。続いて、得られた捲回体を、10mm/秒の速度で、厚さ4.5mmになるまで一方向から圧縮することにより扁平体を得た。なお、得られた扁平体は平面視楕円形をしており、その長径と短径との比(長径/短径)は7.7であった。
 また、非水系電解液(濃度1.0MのLiPF溶液、溶媒:エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)=3/7(質量比)の混合溶媒に、添加剤としてビニレンカーボネート(VC)2体積%を更に添加)を準備した。
 次に、上記扁平体を、上記非水系電解液とともにアルミニウム製のラミネートケース内に収容した。そして、負極リードおよび正極リードを所定の箇所に接続した後に、ラミネートケースの開口部を熱で封口することにより、非水系二次電池としてのラミネート型リチウムイオン二次電池を製造した。なお、得られた二次電池は、幅35mm×高さ48mm×厚さ5mmのパウチ形であり、公称容量は700mAhであった。
 そして、このリチウムイオン二次電池の電池抵抗およびサイクル特性を評価した。結果を表1に示す。
(実施例2)
 粒子状重合体を含むバインダー組成物を、実施例1と同様に調製した。非水系二次電池負極用スラリー組成物の調製時に、負極活物質として、下記の活物質1を用いた以外は実施例1と同様にして、非水系二次電池負極用スラリー組成物、負極、正極、セパレータおよびリチウムイオン二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
 活物質1:ケイ素を含む合金(非炭素系負極活物質)50部と、人造黒鉛(炭素系負極活物質)50部との混合物
(実施例3)
 粒子状重合体を含むバインダー組成物を、実施例1と同様に調製した。非水系二次電池負極用スラリー組成物の調製時に、負極活物質として、下記の活物質2を用いた以外は実施例1と同様にして、非水系二次電池負極用スラリー組成物、負極、正極、セパレータおよびリチウムイオン二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
 活物質2:SiO(非炭素系負極活物質)30部と、人造黒鉛(炭素系負極活物質)70部との混合物
(実施例4、比較例3、4)
 粒子状重合体を含むバインダー組成物の調製時に、脂肪族共役ジエン単量体としてイソプレンおよび/または1,3-ブタジエンを表1に示す配合量で用いた以外は実施例1と同様にして、粒子状重合体を含むバインダー組成物、非水系二次電池負極用スラリー組成物、負極、正極、セパレータおよびリチウムイオン二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例5~実施例11、比較例1、2)
 粒子状重合体を含むバインダー組成物の調製時に、スチレンおよびイソプレンの配合量、粒子状重合体の平均粒子径、組成物のpH、並びに、水相に含まれる酸性水溶性重合体の分子量を表1に示すとおりとした以外は実施例1と同様にして、粒子状重合体を含むバインダー組成物、非水系二次電池負極用スラリー組成物、負極、正極、セパレータおよびリチウムイオン二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例12)
<粒子状重合体の調製(Emプロップ重合)>
 攪拌機付き5MPa耐圧容器に、コア部形成用として、芳香族ビニル単量体としてスチレン4部、酸単量体としてメタクリル酸1部、イオン交換水100部、乳化剤としてドデシルベンゼンスルホン酸0.7部、連鎖移動剤としてα-メチルスチレンダイマー0.1部、及び重合開始剤として過硫酸カリウム0.3部を入れ、十分に撹拌した。その後、60℃に加温して重合を開始した。重合転化率が98%になるまで重合を継続させ、コア部としてのシード粒子重合体を得た。次いで、同じ耐圧容器に、撹拌下で、シェル部形成用として、芳香族ビニル単量体としてスチレン18部、脂肪族共役ジエン単量体としてイソプレン72部、酸単量体としてメタクリル酸5部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.3部、及びイオン交換水37部を連続添加して重合を継続した。この水分散液を70℃に加温し、重合転化率が97%になった時点で、冷却して反応を停止して、コア部の外表面にシェル部としての重合体を形成させ、コアシェル構造を有する粒子状重合体を含む混合物を得た。その後、老化防止剤としてWingsatay L分散物を1部添加し、コア部の外表面全体がシェル部で覆われたコアシェル構造を有する粒子状重合体を含む水分散液(リチウムイオン二次電池負極用バインダー組成物)を得た。得られた粒子状重合体の水分散液を用いて、粒子状重合体の平均粒子径を測定した。次いで、実施例1と同様にして、非水系二次電池負極用スラリー組成物、負極、正極、セパレータおよびリチウムイオン二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(比較例5)
<粒子状重合体の調製(溶液重合によるブロック共重合体の生成)>
[ブロック共重合体のシクロヘキサン溶液の調製]
 耐圧反応器に、シクロヘキサン233.3kg、N,N,N’,N’-テトラメチルエチレンジアミン(TMEDA)54.2mmol、および芳香族ビニル単量体としてのスチレン25.0kgを添加した。そしてこれらを40℃で攪拌しているところに、重合開始剤としてのn-ブチルリチウム1806.5mmolを添加し、50℃に昇温しながら1時間重合した。スチレンの重合転化率は100%であった。引き続き、50~60℃を保つように温度制御しながら、耐圧反応器に、イソプレン75.0kgを1時間にわたり連続的に添加した。イソプレンの添加を完了後、重合反応を更に1時間継続した。イソプレンの重合転化率は100%であった。次いで、耐圧反応器に、カップリング剤としてのジクロロジメチルシラン740.6mmolを添加して2時間カップリング反応を行った。その後、活性末端を失活させるべく、反応液にメタノール3612.9mmolを添加してよく混合した。次いで、この反応液100部(重合体成分を30.0部含有)に、ヒンダードフェノール系酸化防止剤としての4-[[4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イル]アミノ]-2,6-ジ-tert-ブチルフェノール(H1)0.05部、ホスファイト系酸化防止剤としての3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン(P1)0.09部および金属捕捉剤としてのEDTA0.03部を加えて混合し、ブロック共重合体溶液を得た。
[乳化]
 アルキルベンゼンスルホン酸ナトリウムをイオン交換水に溶解し、5%の水溶液を調製した。
 そして、得られたブロック共重合体溶液500gと得られた水溶液500gとをタンク内に投入し撹拌させることで予備混合を行った。続いて、タンク内から、予備混合物を、定量ポンプを用いて100g/分の速度で連続式高能率乳化分散機(太平洋機工社製、製品名「マイルダー MDN303V」)へ移送し、回転数15000rpmで撹拌するこ
とにより、予備混合物を乳化した乳化液を得た。
 次に、得られた乳化液中のシクロヘキサンをロータリーエバポレータにて減圧留去した。その後、留去した乳化液をコック付きのクロマトカラム中で1日静置分離させ、分離後の下層部分を除去することで濃縮を行った。
 最後に、上層部分を100メッシュの金網で濾過し、粒子状のブロック共重合体(コア粒子)を含有する水分散液(ブロック共重合体ラテックス)を得た。
[グラフト重合および架橋]
 撹拌機付き重合反応容器にイオン交換水675部を添加し、その後、メタクリル酸20部を添加した。重合反応器の攪拌翼で撹拌しながら、重合反応器に得られたブロック共重合体ラテックスをブロック共重合体換算で100部添加し、窒素置換した。そして、希釈されたブロック重合体ラテックスを撹拌しながら温度を30℃にまで加温した。
 また、別の容器を用い、イオン交換水7部および還元剤としての硫酸第一鉄(中部キレスト社製、商品名「フロストFe」)0.01部、ホルムアルデヒドスルホキシル酸ナトリウム(住友精化株式会社、商品名「SFS」)0.32部を含む溶液を調製した。得られた溶液を重合反応容器内に添加した後、酸化剤としてのtert-ブチルハイドロパーオキサイド(日本油脂社製、商品名「パーブチルH」)0.35部を添加し、30℃で1時間反応させた後、更に70℃で2時間反応させた。なお、重合転化率は99%であった。
 そして、ブロック共重合体を含むコア粒子をグラフト重合および架橋してなるグラフト重合体よりなる粒子状重合体の水分散液を得た。
 得られた粒子状重合体の水分散液を用いて、粒子状重合体の平均粒子径を測定した。次いで、実施例1と同様にして、非水系二次電池負極用スラリー組成物、負極、正極、セパレータおよびリチウムイオン二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表中の略称は、以下を意味する。
SIR:スチレン/イソプレン系ランダム共重合体
SBIR:スチレン/ブタジエン/イソプレン系ランダム共重合体
SISブロック:スチレン/イソプレン系ブロック共重合体
MAA:メタクリル酸
Emプロップ:エマルジョンプロップ法
 表1より、実施例1~12では、内部抵抗特性およびサイクル特性に優れる二次電池が得られつつ、スラリー組成物としての安定性、電極のピール強度、および電極形成時における粉落ち特性が更に向上したことが示された。また、各単量体に由来する構造単位の含有割合が所定の範囲外である比較例1、2、共重合体がイソプレンに由来する構造単位を含まない比較例3、4、共重合体がブロック共重合体である比較例5では、スラリー組成物としての安定性、電極のピール強度、および電極形成時における粉落ち特性の何れか1以上が良好でなかったことが示された。
 本発明の非水系二次電池電極用バインダー組成物および非水系二次電池電極用スラリー組成物によれば、スラリー組成物としての安定性に優れ、ピール強度に優れる電極を形成することができ、二次電池に優れた性能を発揮させることができる。
 また、本発明の非水系二次電池用電極は、優れたピール強度を有し、優れた性能を発揮する非水系二次電池を形成することができる。
 そして、本発明によれば、電極のピール強度が向上し、優れた性能を発揮する非水系二次電池が得られる。
 

Claims (8)

  1.  芳香族ビニル単量体に由来する構造単位と、共役ジエン単量体に由来する構造単位と、酸単量体に由来する構造単位とを含むランダム共重合体からなる粒子状重合体を含み、
     前記芳香族ビニル単量体に由来する構造単位の含有割合が、粒子状重合体100質量%に対し5質量%超40質量%以下であり、
     前記共役ジエン単量体に由来する構造単位が、イソプレンに由来する構造単位を含み、かつ、前記イソプレンに由来する構造単位の含有割合が、前記芳香族ビニル単量体に由来する構造単位と前記共役ジエン単量体に由来する構造単位と前記酸単量体に由来する構造単位との合計100質量%に対し20質量%以上である、
     非水系二次電池電極用バインダー組成物。
  2.  前記酸単量体に由来する構造単位の含有割合が、粒子状重合体100質量%に対し3質量%以上9質量%以下である、請求項1に記載の非水系二次電池電極用バインダー組成物。
  3.  前記粒子状重合体の平均粒子径が、60nm以上300nm以下である、請求項1または2に記載の非水系二次電池電極用バインダー組成物。
  4.  pHが、6以上9以下である、請求項1~3の何れかに記載の非水系二次電池電極用バインダー組成物。
  5.  前記非水系二次電池電極用バインダー組成物が、酸性水溶性重合体を含む水相を含み、前記酸性水溶性重合体の重量平均分子量が、10,000以上100,000以下である
    、請求項1~4の何れかに記載の非水系二次電池電極用バインダー組成物。
  6.  請求項1~5の何れかに記載の非水系二次電池電極用バインダー組成物と、電極活物質と、分散剤および粘度調整剤の少なくとも一方とを含む、非水系二次電池電極用スラリー組成物。
  7.  請求項6に記載の非水系二次電池電極用スラリー組成物を用いて形成した電極合材層を備える、非水系二次電池用電極。
  8.  正極、負極、セパレータおよび電解液を有し、
     前記正極および前記負極の少なくとも一方が請求項7に記載の非水系二次電池用電極である、非水系二次電池。
PCT/JP2021/041608 2020-11-30 2021-11-11 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 WO2022113760A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237016771A KR20230113738A (ko) 2020-11-30 2021-11-11 비수계 이차 전지 전극용 바인더 조성물, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극 및 비수계 이차 전지
EP21897734.6A EP4253436A1 (en) 2020-11-30 2021-11-11 Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, non-aqueous secondary battery electrode, and non-aqueous secondary battery
US18/252,885 US20230420682A1 (en) 2020-11-30 2021-11-11 Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
CN202180078480.1A CN116568716A (zh) 2020-11-30 2021-11-11 非水系二次电池电极用黏结剂组合物、非水系二次电池电极用浆料组合物、非水系二次电池用电极以及非水系二次电池
JP2022565213A JPWO2022113760A1 (ja) 2020-11-30 2021-11-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-199140 2020-11-30
JP2020199140 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022113760A1 true WO2022113760A1 (ja) 2022-06-02

Family

ID=81755823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041608 WO2022113760A1 (ja) 2020-11-30 2021-11-11 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池

Country Status (6)

Country Link
US (1) US20230420682A1 (ja)
EP (1) EP4253436A1 (ja)
JP (1) JPWO2022113760A1 (ja)
KR (1) KR20230113738A (ja)
CN (1) CN116568716A (ja)
WO (1) WO2022113760A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024203761A1 (ja) * 2023-03-29 2024-10-03 日本ゼオン株式会社 非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極、及び非水系二次電池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097474A (ja) 2003-09-26 2005-04-14 Nippon A & L Kk 長期保存安定性に優れた共重合体ラテックス
JP2008038073A (ja) * 2006-08-09 2008-02-21 Dainippon Ink & Chem Inc 防滑加工剤
JP2010129186A (ja) * 2008-11-25 2010-06-10 Jsr Corp 電気化学デバイス電極用バインダー、電気化学デバイス電極用スラリーおよび電気化学デバイス電極
JP2012204303A (ja) 2011-03-28 2012-10-22 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
JP2013206624A (ja) 2012-03-27 2013-10-07 Nippon A&L Inc 電池電極用組成物及び電池電極用バインダー組成物
JP2013211246A (ja) 2012-02-29 2013-10-10 Jsr Corp 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
WO2015098008A1 (ja) * 2013-12-26 2015-07-02 日本ゼオン株式会社 リチウムイオン二次電池負極用バインダー組成物、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2020516021A (ja) * 2018-01-04 2020-05-28 エルジー・ケム・リミテッド 二次電池用バインダー組成物、これを含む電極スラリー組成物、電極及び二次電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011024789A1 (ja) 2009-08-24 2013-01-31 Jsr株式会社 電極形成用組成物、電極形成用スラリー、電極および電気化学デバイス
US20200399458A1 (en) 2018-03-07 2020-12-24 Zeon Corporation Binder composition for non-aqueous secondary battery electrode and method of producing same, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097474A (ja) 2003-09-26 2005-04-14 Nippon A & L Kk 長期保存安定性に優れた共重合体ラテックス
JP2008038073A (ja) * 2006-08-09 2008-02-21 Dainippon Ink & Chem Inc 防滑加工剤
JP2010129186A (ja) * 2008-11-25 2010-06-10 Jsr Corp 電気化学デバイス電極用バインダー、電気化学デバイス電極用スラリーおよび電気化学デバイス電極
JP2012204303A (ja) 2011-03-28 2012-10-22 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
JP2013211246A (ja) 2012-02-29 2013-10-10 Jsr Corp 電極用バインダー組成物、電極用スラリー、電極、および蓄電デバイス
JP2013206624A (ja) 2012-03-27 2013-10-07 Nippon A&L Inc 電池電極用組成物及び電池電極用バインダー組成物
WO2015098008A1 (ja) * 2013-12-26 2015-07-02 日本ゼオン株式会社 リチウムイオン二次電池負極用バインダー組成物、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2020516021A (ja) * 2018-01-04 2020-05-28 エルジー・ケム・リミテッド 二次電池用バインダー組成物、これを含む電極スラリー組成物、電極及び二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024203761A1 (ja) * 2023-03-29 2024-10-03 日本ゼオン株式会社 非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極、及び非水系二次電池

Also Published As

Publication number Publication date
CN116568716A (zh) 2023-08-08
JPWO2022113760A1 (ja) 2022-06-02
KR20230113738A (ko) 2023-08-01
EP4253436A1 (en) 2023-10-04
US20230420682A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
JP7020118B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
KR102255281B1 (ko) 리튬이온 이차전지 전극용 바인더 조성물, 리튬이온 이차전지 전극용 슬러리 조성물, 리튬이온 이차전지용 전극, 및 리튬이온 이차전지
KR20180111829A (ko) 비수계 이차 전지 전극용 바인더 조성물, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극 및 비수계 이차 전지
US10249879B2 (en) Binder composition for secondary battery electrode-use, slurry composition for secondary battery electrode-use, electrode for secondary battery-use and production method therefor, and secondary battery
WO2019044452A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
JP6863297B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
WO2019208419A1 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー組成物、蓄電デバイス用電極、および蓄電デバイス
WO2019044909A1 (ja) 電気化学素子機能層用組成物、電気化学素子用機能層、及び電気化学素子
WO2021065742A1 (ja) 非水系二次電池用バインダー組成物及びその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに非水系二次電池
JPWO2018003707A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2022113760A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2021085044A1 (ja) 二次電池用バインダー組成物、二次電池用スラリー組成物、二次電池用機能層および二次電池
KR20240037234A (ko) 비수계 이차 전지 전극용 바인더 조성물, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극, 및 비수계 이차 전지
WO2017056489A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2019044912A1 (ja) 電気化学素子機能層用組成物、電気化学素子用機能層、及び電気化学素子
WO2020203371A1 (ja) 非水系二次電池用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
WO2022138085A1 (ja) 非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極及びその製造方法、並びに、非水系二次電池
WO2022114199A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び、非水系二次電池
WO2021200350A1 (ja) 非水二次電池用バインダー組成物、非水二次電池電極用スラリー組成物、非水二次電池用電極および非水二次電池
WO2021171942A1 (ja) 二次電池用バインダー組成物、二次電池用スラリー組成物、二次電池用機能層、二次電池用セパレータ、二次電池用電極および二次電池
WO2024117198A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
WO2024024912A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
WO2024024913A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
WO2024203761A1 (ja) 非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極、及び非水系二次電池
WO2023074540A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極及び非水系二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897734

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565213

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18252885

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180078480.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021897734

Country of ref document: EP

Effective date: 20230630