WO2022138085A1 - 非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極及びその製造方法、並びに、非水系二次電池 - Google Patents

非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極及びその製造方法、並びに、非水系二次電池 Download PDF

Info

Publication number
WO2022138085A1
WO2022138085A1 PCT/JP2021/044559 JP2021044559W WO2022138085A1 WO 2022138085 A1 WO2022138085 A1 WO 2022138085A1 JP 2021044559 W JP2021044559 W JP 2021044559W WO 2022138085 A1 WO2022138085 A1 WO 2022138085A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
aqueous secondary
binder
binder composition
Prior art date
Application number
PCT/JP2021/044559
Other languages
English (en)
French (fr)
Inventor
慶一朗 田中
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to US18/256,686 priority Critical patent/US20240120487A1/en
Priority to EP21910235.7A priority patent/EP4269490A1/en
Priority to KR1020237020442A priority patent/KR20230124911A/ko
Priority to CN202180084842.8A priority patent/CN116615496A/zh
Priority to JP2022572067A priority patent/JPWO2022138085A1/ja
Publication of WO2022138085A1 publication Critical patent/WO2022138085A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F287/00Macromolecular compounds obtained by polymerising monomers on to block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • C08F297/044Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes using a coupling agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder composition for a negative electrode of a non-aqueous secondary battery, a slurry composition for a negative electrode of a non-aqueous secondary battery, a negative electrode for a non-aqueous secondary battery and a method for producing the same, and a non-aqueous secondary battery.
  • Non-aqueous secondary batteries such as lithium-ion secondary batteries (hereinafter, may be simply abbreviated as "secondary batteries") are small and lightweight, have high energy density, and can be repeatedly charged and discharged. Yes, it is used in a wide range of applications.
  • the electrode used for a non-aqueous secondary battery such as a lithium ion secondary battery usually includes a current collector and an electrode mixture layer formed on the current collector. Then, for the electrode mixture layer, for example, a slurry composition containing an electrode active material and a binder composition containing a binder is applied onto a current collector, and the applied slurry composition is dried. It is formed.
  • the binder composition used for forming the electrode mixture layer has been attempted.
  • Patent Document 1 it is easy to handle in a manufacturing process, exhibits a binding effect with a small amount of addition, can give good physical properties to members constituting a battery such as an electrode active material layer, and is a secondary battery.
  • a secondary battery binder that can stably provide a secondary battery having a long life with little deterioration inside the battery.
  • the binder described in Cited Document 1 is a monomer composition containing a conjugated diene monomer and an acid-based monomer and having an acid-based monomer ratio of 5 to 20% by weight.
  • It contains a polymer obtained by polymerizing in an aqueous medium using a water-soluble polymerization initiator.
  • the amount of the water-soluble polymerization initiator remaining in the binder is 100 ppm or less in terms of weight ratio with respect to the polymer, and the antiaging agent is contained in an amount of 0.05 to 5 parts by weight based on 100 parts by weight of the polymer. It is a waste.
  • the negative electrode of the conventional secondary battery is said to improve the bondability between the negative electrode mixture layer and the current collector (hereinafter referred to as "peel strength") and reduce the internal resistance of the secondary battery. In that respect, there was room for further improvement.
  • the present invention provides a binder composition for a negative electrode of a non-aqueous secondary battery and a non-aqueous negative electrode which can be used for producing a negative electrode which is excellent in electrolytic solution injectability and peel strength and can reduce the internal resistance of the non-aqueous secondary battery. It is an object of the present invention to provide a slurry composition for a negative electrode of a secondary battery. Another object of the present invention is to provide a negative electrode for a non-aqueous secondary battery, which is excellent in electrolytic solution injectability and peel strength, and can reduce the internal resistance of the non-aqueous secondary battery, and a method for manufacturing the same. .. Furthermore, it is an object of the present invention to provide a non-aqueous secondary battery with reduced internal resistance.
  • the present inventor has conducted diligent studies for the purpose of solving the above problems. Then, when the present inventor applies the slurry composition containing the conventional binder composition onto the current collector, the binder contained in the applied binder composition moves when the binder composition is dried. As a result, it was noted that the binder is unevenly distributed on the surface layer of the negative electrode mixture layer in the obtained negative electrode mixture layer, which causes the deterioration of the electrolyte injection property of the negative electrode. Then, the present inventor added a predetermined amount of a compound having an anionic heterocyclic portion aromatic to the binder composition, thereby reducing the uneven distribution of the binder on the surface layer of the negative electrode mixture layer, thereby reducing the negative electrode mixture. We have newly found that the electrolytic solution easily permeates the layer, and as a result, the electrolytic solution injectability of the negative electrode is improved, and completed the present invention.
  • the present invention aims to advantageously solve the above problems, and the binder composition for a negative electrode of a non-aqueous secondary battery of the present invention contains a particulate binder and an aromatic ring-condensed nitrogen.
  • the aromatic ring-condensed nitrogen-containing five-membered ring compound or the aromatic-substituted nitrogen-containing five-membered ring compound containing at least a diene monomer unit is an anionic aromatic compound having (4n + 2) cyclic ⁇ electrons. Yes (where n is an integer of 1 or more), the content of the anionic aromatic compound is more than 1 part by mass and less than 10 parts by mass per 100 parts by mass of the particulate binder. ..
  • the non-aqueous secondary battery negative electrode binder composition containing the particulate binder having a predetermined composition and the anionic aromatic compound having a predetermined structure in the above-mentioned predetermined ratios.
  • the non-aqueous secondary battery negative electrode composition is described.
  • the slurry composition for the negative electrode of the non-aqueous secondary battery containing the binder composition for the negative electrode of the aqueous secondary battery it is possible to have excellent injectability and peel strength of the electrolytic solution and reduce the internal resistance of the non-aqueous secondary battery.
  • Negative electrode can be manufactured.
  • the term "particulate binder contains a monomer unit” means that "a polymer obtained by using the monomer contains a repeating unit derived from a monomer”. Means that.
  • the anionic aromatic compound is represented by the following formula (A) or the following formula (B).
  • R 1 to R 3 are carbon atoms, at least one of R 1 to R 3 is a nitrogen atom, and R 4 is a hydrogen atom or carbon number 1 or more 3 Represents the following alkyl group).
  • the binder composition for the negative electrode of the non-aqueous secondary battery of the present invention preferably further contains a phenolic antiaging agent. If a binder composition for a negative electrode of a non-aqueous secondary battery further containing a phenolic antiaging agent is used, the peel strength of the negative electrode can be further improved.
  • the anionic aromatic compound contains a pyrrole ring, a pyrazole ring, an imidazole ring, a triazole ring, or a tetrazole ring.
  • the electrolytic solution injectability of the negative electrode can be further improved.
  • the present invention is intended to advantageously solve the above problems, and the slurry composition for a negative electrode of a non-aqueous secondary battery of the present invention is a binder for a negative electrode of any of the above-mentioned non-aqueous secondary batteries. It is characterized by containing a composition.
  • the slurry composition for the negative electrode of the non-aqueous secondary battery of the present invention preferably contains a negative electrode active material.
  • the negative electrode for a non-aqueous secondary battery of the present invention is the binder composition for a negative electrode of a non-aqueous secondary battery of the present invention and a negative electrode. It is characterized by comprising a negative electrode mixture layer formed by using the slurry composition for a negative electrode of a non-aqueous secondary battery of the present invention containing an active material.
  • the negative electrode provided with the negative electrode mixture layer formed by using the binder composition for the negative electrode of the non-aqueous secondary battery of the present invention and the slurry composition for the negative electrode of the non-aqueous secondary battery of the present invention containing the negative electrode active material is electrolytic. It has excellent liquid injection properties and peel strength, and can reduce the internal resistance of the secondary battery.
  • the present invention is intended to advantageously solve the above-mentioned problems, and the non-aqueous secondary battery of the present invention is characterized by including the above-mentioned negative electrode for a non-aqueous secondary battery.
  • the non-aqueous secondary battery provided with the negative electrode for the non-aqueous secondary battery of the present invention has a reduced internal resistance.
  • the present invention aims to advantageously solve the above problems, and the method for manufacturing a negative electrode for a non-aqueous secondary battery of the present invention is the above-mentioned method for manufacturing a negative electrode for a non-aqueous secondary battery of the present invention. It is characterized by forming a negative electrode mixture layer using the slurry composition for a negative electrode of a non-aqueous secondary battery of the present invention containing a binder composition and a negative electrode active material. According to the method for manufacturing a negative electrode for a non-aqueous secondary battery of the present invention, a negative electrode for a non-aqueous secondary battery which is excellent in electrolyte injection property and peel strength and can reduce the internal resistance of the secondary battery is efficient. Can be manufactured to.
  • a binder composition for a negative electrode of a non-aqueous secondary battery and a non-aqueous negative electrode which can be used for producing a negative electrode which is excellent in electrolytic solution injectability and peel strength and can reduce the internal resistance of the non-aqueous secondary battery.
  • a slurry composition for a negative electrode of a secondary battery can be provided. Further, according to the present invention, it is possible to provide a negative electrode for a non-aqueous secondary battery, which is excellent in electrolytic solution injectability and peel strength, and which can reduce the internal resistance of the non-aqueous secondary battery, and a method for manufacturing the same. .. Further, according to the present invention, it is possible to provide a non-aqueous secondary battery with reduced internal resistance.
  • the binder composition for the negative electrode of the non-aqueous secondary battery of the present invention can be used when preparing the slurry composition for the negative electrode of the non-aqueous secondary battery of the present invention.
  • the slurry composition for a negative electrode of a non-aqueous secondary battery of the present invention can be used for manufacturing a negative electrode of a non-aqueous secondary battery such as a lithium ion secondary battery.
  • the negative electrode for a non-aqueous secondary battery of the present invention can be manufactured according to the method for producing a negative electrode for a non-aqueous secondary battery of the present invention.
  • the negative electrode for a non-aqueous secondary battery of the present invention includes a negative electrode mixture layer formed by using the slurry composition for a negative electrode of a non-aqueous secondary battery of the present invention. Further, the non-aqueous secondary battery of the present invention is characterized by comprising the negative electrode for the non-aqueous secondary battery of the present invention.
  • binder composition for negative electrode of non-aqueous secondary battery comprises a particulate binder and an aromatic ring-condensed nitrogen-containing five-membered ring compound or aromatic-substituted nitrogen. It contains a five-membered ring compound and optionally other components that can be incorporated into the negative electrode of the secondary battery.
  • the binder composition of the present invention usually further contains a dispersion medium such as water.
  • the particulate binder contains at least an aromatic vinyl monomer unit and an aliphatic conjugated diene monomer unit, and is an aromatic ring-condensed nitrogen-containing five-membered ring compound or an aromatic.
  • the group-substituted nitrogen-containing five-membered ring compound is an anionic aromatic compound having (4n + 2) cyclic ⁇ electrons (where n is an integer of 1 or more), and the content of the anionic aromatic compound is It is characterized in that it is more than 1 part by mass and less than 10 parts by mass per 100 parts by mass of the particulate binder.
  • the binder composition of the present invention contains a predetermined amount of the particulate binder having the above-mentioned predetermined composition and the anionic aromatic compound having the predetermined structure, the binder composition does not contain the binder composition.
  • a slurry composition for a negative electrode of an aqueous secondary battery hereinafter, also simply referred to as “slurry composition”
  • a negative electrode which is excellent in electrolyte injection property and peel strength and can reduce the internal resistance of the secondary battery. Can be manufactured.
  • the reason why the above effect can be obtained by using the binder composition containing the above-mentioned particulate binder and the anionic aromatic compound is not clear, but it is presumed to be as follows.
  • the slurry composition containing the binder composition of the present invention when the slurry composition containing the binder composition of the present invention is applied to the current collector, the anionic aromatic compound is adsorbed on the surface of the current collector, and the anionic aromatic compound and the particulate binder are combined.
  • the interaction causes the particulate binder to move to the surface of the current collector.
  • the amount of the particulate binder existing in the vicinity of the surface of the current collector increases, so that the particulate bond is formed inside the negative electrode mixture layer. Since the bias of the coating material is reduced, it is considered that the electrolytic solution easily permeates, and as a result, both the electrolytic solution injectability and the peel strength of the negative electrode are improved. It is considered that the internal resistance of the secondary battery is reduced by providing such a negative electrode.
  • the particulate binder prevents the components contained in the negative electrode mixture layer (for example, the negative electrode active material) from desorbing from the negative electrode when the negative electrode is manufactured using the slurry composition containing the binder composition of the present invention. It is a component that can be retained in.
  • the particulate binder is present in the form of particles in the binder composition and in the slurry composition described later.
  • the particulate binder contains an aromatic vinyl monomer unit and an aliphatic conjugated diene monomer unit, and optionally contains an aromatic vinyl monomer unit and an aliphatic conjugated diene. It may contain a monomer unit other than the monomer unit (hereinafter, referred to as “other monomer unit”).
  • the aromatic vinyl monomer capable of forming the aromatic vinyl monomer unit is not particularly limited, and examples thereof include styrene, ⁇ -methylstyrene, vinyltoluene, and divinylbenzene. Among these, styrene is preferable from the viewpoint of increasing the mechanical strength of the obtained negative electrode. One of these may be used alone, or two or more thereof may be used in combination.
  • the ratio of the aromatic vinyl monomer unit contained in the particulate binder is 5% by mass or more, assuming that the amount of all the monomer units in the particulate binder is 100% by mass. It is preferably 15% by mass or more, more preferably 20% by mass or more, preferably 70% by mass or less, more preferably 68% by mass or less, and 65% by mass or less. It is more preferable to have.
  • the content ratio of the aromatic vinyl monomer unit is at least the above lower limit value, the stability of the slurry composition containing the binder composition is improved. Further, when the content ratio of the aromatic vinyl monomer unit is not more than the above upper limit value, the peel strength of the negative electrode produced by using the slurry composition containing the binder composition can be further increased.
  • the aliphatic conjugated diene monomer capable of forming the aliphatic conjugated diene monomer unit is not particularly limited, and 1,3-butadiene and 2-methyl-1,3-butadiene (also referred to as "isoprene”). ), 2,3-dimethyl-1,3butadiene, 2-chlor-1,3-butadiene, substituted linear conjugated pentadiene, substituted and side chain conjugated hexadiene and the like.
  • 1,3-butadiene and isoprene are preferable, and 1,3-butadiene is more preferable.
  • One of these may be used alone, or two or more thereof may be used in combination.
  • the ratio of the aliphatic conjugated diene monomer unit contained in the particulate binder shall be 20% by mass or more, assuming that the amount of all the monomer units in the particulate binder is 100% by mass. Is more preferable, 25% by mass or more is more preferable, 30% by mass or more is further preferable, 80% by mass or less is preferable, 55% by mass or less is more preferable, and 50% by mass or less. Is more preferable.
  • the content ratio of the aliphatic conjugated diene monomer unit is at least the above lower limit value, the peel strength of the negative electrode produced by using the slurry composition containing the binder composition can be further increased. Further, when the content ratio of the aliphatic conjugated diene monomer unit is not more than the above upper limit value, the stability of the slurry composition containing the binder composition is further improved.
  • the other monomer unit is not particularly limited as long as it is a monomer unit derived from a monomer other than the above-mentioned aromatic vinyl monomer and aliphatic conjugated diene monomer, but is not particularly limited.
  • the particulate binder is preferably an acid-modified product.
  • the particulate binder has a carboxylic acid group-containing monomer unit or a carboxylic acid group-containing monomer unit as other monomer units in addition to the aromatic vinyl monomer unit and the aliphatic conjugated diene monomer unit. It is preferable to contain an acid group-containing monomer unit such as a hydroxyl group-containing monomer unit.
  • carboxylic acid group-containing monomer unit examples include monocarboxylic acid and its derivative, dicarboxylic acid and its acid anhydride, and their derivatives.
  • Examples of the monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid.
  • Examples of the monocarboxylic acid derivative include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid, ⁇ -diaminoacrylic acid and the like. Can be mentioned.
  • Examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • Examples of the dicarboxylic acid derivative include methyl maleic acid, dimethyl maleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, methylallyl maleate, diphenyl maleate, nonyl maleate, decyl maleate, and dodecyl maleate. , Octadecil maleate, fluoroalkyl maleate and the like.
  • Examples of the acid anhydride of the dicarboxylic acid include maleic anhydride, acrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride and the like.
  • carboxylic acid group-containing monomer an acid anhydride that produces a carboxyl group by hydrolysis can also be used.
  • carboxylic acid group-containing monomers include monoethyl maleate, diethyl maleate, monobutyl maleate, dibutyl maleate, monoethyl fumarate, diethyl fumarate, monobutyl fumarate, dibutyl fumarate, monocyclohexyl fumarate, and fumarate.
  • monoesters and diesters of ⁇ , ⁇ -ethylenic unsaturated polyvalent carboxylic acids such as dicyclohexyl acid, monoethyl itaconate, diethyl itaconate, monobutyl itaconate, dibutyl itaconate.
  • acrylic acid and methacrylic acid are preferable as the carboxylic acid group-containing monomer.
  • One of these may be used alone, or two or more thereof may be used in combination.
  • the ratio of the carboxylic acid group-containing monomer unit contained in the particulate binder is not particularly limited, but the amount of all the monomer units in the particulate binder is 100% by mass, and 1 mass is used. % Or more, more preferably 3% by mass or more, more preferably 20% by mass or less, and even more preferably 10% by mass or less.
  • hydroxyl group-containing monomer examples include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, and N-hydroxymethyl acrylamide (N-).
  • 2-hydroxyethyl acrylate is preferable. One of these may be used alone, or two or more thereof may be used in combination.
  • the particulate binder preferably has a volume average particle diameter of 80 nm or more, more preferably 100 nm or more, further preferably 120 nm or more, preferably 500 nm or less, and 450 nm or less. Is more preferable, and 350 nm or less is further preferable.
  • the volume average particle diameter of the particulate binder is at least the above lower limit value, the electrolytic solution injectability of the negative electrode can be further improved, and the internal resistance of the secondary battery can be further reduced. Further, when the volume average particle diameter of the particulate binder is not more than the above upper limit value, the peel strength of the negative electrode can be further improved.
  • volume average particle diameter refers to the particle diameter (D50) at which the cumulative volume calculated from the small diameter side in the particle size distribution (volume basis) measured by the laser diffraction method is 50%.
  • the volume average particle size of the particulate binder can be measured by the method described in Examples.
  • the particulate binder can be prepared, for example, by polymerizing a monomer composition containing the above-mentioned monomer in an aqueous solvent.
  • the content ratio of each monomer in the monomer composition can be determined according to the content ratio of the monomer unit in the particulate binder.
  • the aqueous solvent used for the polymerization is not particularly limited as long as the particulate binder can be dispersed in a particle state, and water may be used alone or a mixed solvent of water and another solvent may be used. You may use it.
  • the polymerization mode is not particularly limited, and any mode such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • the polymerization method for example, any method such as ionic polymerization, radical polymerization, living radical polymerization and the like can be used.
  • the emulsifier, dispersant, polymerization initiator, polymerization aid and the like used for polymerization commonly used ones can be used, and the amount used is also the amount generally used.
  • aromatic ring-condensed nitrogen-containing five-membered ring compound ⁇ Aromatic ring condensed nitrogen-containing five-membered ring compound, aromatic-substituted nitrogen-containing five-membered ring compound>
  • the aromatic ring-condensed nitrogen-containing five-membered ring compound and the aromatic-substituted nitrogen-containing five-membered ring compound are both anionic aromatic compounds having (4n + 2) cyclic ⁇ electrons, and in (4n + 2), n is It is an integer of 1 or more, preferably 3 or less.
  • the pH of the anionic aromatic compound is preferably 7 or more and 10 or less, more preferably 9 or less, and even more preferably 8 or less.
  • the pH of the anionic aromatic compound is at least the above lower limit value, the peel strength of the negative electrode can be further improved.
  • the pH of the anionic aromatic compound is not more than the above upper limit value, the stability of the slurry composition is improved. Therefore, when the negative electrode active material is blended with the slurry composition, the negative electrode active material becomes the slurry composition. It becomes less susceptible to.
  • the pH of the anionic aromatic compound is determined by calibrating a tabletop pH meter (manufactured by HORIBA, “F-51”) with a pH standard solution (pH4, pH7 and pH9) and then using the tabletop pH meter. Can be measured.
  • the compound represented by the following formula (A) is preferable as the aromatic ring-condensed nitrogen-containing five-membered ring compound.
  • R 1 to R 3 are carbon atoms, at least one of R 1 to R 3 is a nitrogen atom (N), and two or more of R 1 to R 3 are nitrogen atoms. Is preferable.
  • R 4 represents a hydrogen atom (H) or an alkyl group having 1 to 3 carbon atoms, and is preferably a hydrogen atom or 1 carbon atom.
  • the aromatic ring-condensed nitrogen-containing five-membered ring compound represented by the formula (A) has two rings contained in the aromatic ring-condensed nitrogen-containing five-membered ring compound having 10 ⁇ electrons. ..
  • the aromatic ring-condensed nitrogen-containing five-membered ring compound preferably does not contain a heteroatom other than the nitrogen atom (N) (for example, sulfur (S), boron (B), phosphorus (P), etc.).
  • the compound represented by the following formula (B) is preferable as the aromatic-substituted nitrogen-containing five-membered ring compound.
  • R 4 is the same as R 4 in formula (A).
  • the nitrogen-containing five-membered ring compound represented by the formula (B) has six ⁇ electrons.
  • the anionic aromatic compound preferably has a pyrrole ring, a pyrazole ring, an imidazole ring, a triazole ring, or a tetrazole ring, and more preferably has an imidazole ring or a triazole ring.
  • the above-mentioned aromatic ring-condensed nitrogen-containing five-membered ring compound or aromatic-substituted nitrogen-containing five-membered ring compound, wherein the anionic aromatic compound having (4n + 2) cyclic ⁇ electrons is, for example, benzo.
  • examples thereof include triazole, benzimidazole, 7-methyl-1H-benzotriazole, indole and the like, and among them, benzotriazole and 7-methyl-1H-benzotriazole are preferable.
  • the content of the anionic aromatic compound in the binder composition of the present invention needs to be more than 1 part by mass and less than 10 parts by mass per 100 parts by mass of the particulate binder, and is 8 parts by mass or less. It is preferably 5 parts by mass or less, and more preferably 2 parts by mass or less.
  • the content of the anionic aromatic compound exceeds the above lower limit value, the electrolytic solution injectability of the negative electrode can be further improved. Further, when the content of the anionic aromatic compound is not more than the above upper limit value, the internal resistance of the secondary battery can be further reduced.
  • the binder composition of the present invention may contain any known component that can be incorporated into the binder composition.
  • Other components include phenolic anti-aging agents, phosphite-based antioxidants, dispersion stabilizers, thickeners, conductive materials, reinforcing materials, leveling agents, electrolyte additives, carboxymethyl cellulose (CMC) and polyacrylic acid. Examples thereof include water-soluble polymers such as antifoaming agents.
  • a phenolic antiaging agent are not particularly limited as long as they do not affect the battery reaction, and known ones can be used.
  • one of these components may be used alone, or two or more of these components may be used in combination at any ratio.
  • Phenolic anti-aging agent is not particularly limited, and for example, a hindered phenolic antiaging agent can be used.
  • a hindered phenolic antiaging agent include oligomer-type hindered phenol (butylation reaction product of DCPD and p-cresol), 4-[[4,6-bis (octylthio) -1,3.
  • oligomer-type hindered phenol butylation reaction product of DCPD and p-cresol
  • 4-[[4,6-bis (octylthio) -1,3,5- Triazine-2-yl] amino] -2,6-di-tert-butylphenol is more preferred. These may be used alone or in combination of two or more.
  • the content of the phenolic antiaging agent is preferably more than 0.1 part by mass, preferably 0.3 part by mass, per 100 parts by mass of the particulate binder (based on solid content).
  • the above is more preferable, 0.5 parts by mass or more is further preferable, 3 parts by mass or less is preferable, 2 parts by mass or less is more preferable, and 1 part by mass or less is preferable. More preferred.
  • the content of the phenolic antiaging agent is at least the above lower limit value, the peel strength of the negative electrode can be further improved.
  • the content of the phenolic antiaging agent is not more than the above upper limit value, the electrolytic solution injectability of the negative electrode can be further improved and the internal resistance of the secondary battery can be further reduced.
  • the binder composition of the present invention is not particularly limited, and is the above-mentioned particulate binder and the above-mentioned aromatic ring-condensed nitrogen-containing five-membered ring compound or aromatic-substituted nitrogen-containing five-membered ring compound ( It can be prepared by mixing an anionic aromatic compound having 4n + 2) cyclic ⁇ electrons and other components arbitrarily used in the presence of an aqueous medium.
  • the binder composition is prepared using the dispersion liquid of the particulate binder, the liquid component contained in the dispersion liquid may be used as it is as the aqueous medium of the binder composition.
  • the binder composition of the present invention preferably has a pH of 7 or more, preferably 10 or less, and preferably 9 or less.
  • the pH of the binder composition is 7 or more, the peel strength of the negative electrode can be further improved.
  • the pH of the binder composition is 10 or less, the stability of the slurry composition is further improved, and when the negative electrode active material is blended with the slurry composition, the negative electrode active material affects the slurry composition. It can be made even more difficult to receive.
  • the method for adjusting the pH of the binder composition is not particularly limited, and for example, when raising the pH, an alkaline aqueous solution such as an alkali metal aqueous solution, a hydrogen carbonate alkali metal aqueous solution, or an ammonia aqueous solution may be added. Particularly preferred is the use of an aqueous ammonia solution.
  • the binder composition of the present invention is not particularly limited, and may be used, for example, as a material for forming an undercoat layer of a secondary battery by blending a conductive auxiliary agent with the binder composition of the present invention. .. Alternatively, as described below, it may be used as a material for preparing a slurry composition for a secondary battery negative electrode.
  • the slurry composition of the present invention contains the binder composition of the present invention, and optionally further contains a negative electrode active material, other components, and the like. That is, the slurry composition of the present invention is usually the above-mentioned particulate binder and the above-mentioned aromatic ring-condensed nitrogen-containing five-membered ring compound or aromatic-substituted nitrogen-containing five-membered ring compound (4n + 2). It contains an anionic aromatic compound having a cyclic ⁇ electron, and optionally contains a negative electrode active material and other components.
  • the slurry composition of the present invention it is possible to manufacture a negative electrode which is excellent in electrolytic solution injection property and peel strength and can reduce the internal resistance of the secondary battery.
  • the slurry composition for the negative electrode of a non-aqueous secondary battery is a slurry composition for the negative electrode of a lithium ion secondary battery will be described as an example, but the present invention is not limited to the following example.
  • Examples of the negative electrode active material used in the slurry composition of the present invention include a carbon-based negative electrode active material, a metal-based negative electrode active material, and a negative electrode active material in which these are combined.
  • the carbon-based negative electrode active material refers to an active material having carbon as the main skeleton to which lithium can be inserted (also referred to as "dope").
  • examples of the carbon-based negative electrode active material include carbonaceous materials and graphitic materials.
  • the carbonaceous material is a material having a low degree of graphitization (that is, low crystallinity) obtained by heat-treating a carbon precursor at 2000 ° C. or lower to carbonize it.
  • the lower limit of the heat treatment temperature for carbonization is not particularly limited, but may be, for example, 500 ° C. or higher.
  • Examples of the carbonaceous material include graphitic carbon whose carbon structure is easily changed by the heat treatment temperature, and graphitic carbon having a structure close to an amorphous structure represented by glassy carbon. ..
  • examples of the graphitic carbon include carbon materials made from tar pitch obtained from petroleum or coal.
  • MCMB mesocarbon microbeads
  • MCMB mesophase pitch carbon fiber
  • pyrolysis vapor phase grown carbon fiber examples include coke, mesocarbon microbeads (MCMB), mesophase pitch carbon fiber, and pyrolysis vapor phase grown carbon fiber.
  • the refractory carbon include a phenol resin fired body, a polyacrylonitrile-based carbon fiber, a pseudo-isotropic carbon, a furfuryl alcohol resin fired body (PFA), and hard carbon.
  • the graphitic material is a material having high crystallinity close to that of graphitite, which is obtained by heat-treating easily graphitic carbon at 2000 ° C. or higher.
  • the upper limit of the heat treatment temperature is not particularly limited, but may be, for example, 5000 ° C. or lower.
  • Examples of the graphitic material include natural graphite and artificial graphite.
  • the artificial graphite for example, artificial graphite obtained by heat-treating carbon containing easily graphitable carbon mainly at 2800 ° C. or higher, graphitized MCMB obtained by heat-treating MCMB at 2000 ° C. or higher, and mesophase-pitch carbon fiber at 2000 ° C. Examples thereof include graphitized mesophase pitch-based carbon fibers heat-treated as described above.
  • the metal-based negative electrode active material is an active material containing a metal, and usually contains an element in which lithium can be inserted in the structure, and the theoretical electric capacity per unit mass when lithium is inserted is 500 mAh /.
  • the metal-based negative electrode active material include lithium metal and elemental metals capable of forming a lithium alloy (for example, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, etc. Sn, Sr, Zn, Ti, etc.) and alloys thereof, and their oxides, sulfides, nitrides, silicates, carbides, phosphites and the like are used.
  • an active material containing silicon silicon-based negative electrode active material
  • the capacity of the lithium ion secondary battery can be increased.
  • silicon-based negative electrode active material examples include silicon (Si), an alloy containing silicon, SiO, SiO x , and a composite of a Si-containing material obtained by coating or compounding a Si-containing material with conductive carbon and a conductive carbon. And so on.
  • silicon-based negative electrode active materials one type may be used alone, or two types may be used in combination.
  • the alloy containing silicon examples include an alloy composition containing silicon, aluminum, a transition metal such as iron, and a rare earth element such as tin and yttrium.
  • SiO x is a compound containing at least one of SiO and SiO 2 and Si, and x is usually 0.01 or more and less than 2. Then, SiO x can be formed by utilizing, for example, the disproportionation reaction of silicon monoxide (SiO). Specifically, SiO x can be prepared by heat-treating SiO, optionally in the presence of a polymer such as polyvinyl alcohol, to produce silicon and silicon dioxide. The heat treatment can be performed at a temperature of 900 ° C. or higher, preferably 1000 ° C. or higher, in an atmosphere containing an organic gas and / or steam after pulverizing and mixing SiO and optionally a polymer.
  • SiO x is a compound containing at least one of SiO and SiO 2 and Si, and x is usually 0.01 or more and less than 2.
  • SiO x can be formed by utilizing, for example, the disproportionation reaction of silicon monoxide (SiO).
  • SiO x can be prepared by heat-
  • the negative electrode active material it is preferable to use a graphitic material or a silicon-based negative electrode active material as the negative electrode active material, and it is more preferable to use a graphitic material.
  • the negative electrode active material one type can be used alone or two types can be used in combination.
  • the binder composition to be blended in the slurry composition of the present invention includes the above-mentioned particulate binder and the above-mentioned aromatic ring-condensed nitrogen-containing five-membered ring compound or aromatic-substituted nitrogen-containing five-membered ring compound (
  • the binder composition of the present invention containing at least an anionic aromatic compound having 4n + 2) cyclic ⁇ electrons is used.
  • the content of the particulate binder in the slurry composition of the present invention is preferably 0.5 parts by mass or more, and 0.7 parts by mass or more per 100 parts by mass of the negative electrode active material. Is more preferably 1 part by mass or more, further preferably 3 parts by mass or less, more preferably 2.5 parts by mass or less, still more preferably 2 parts by mass or less.
  • the content of the particulate binder is at least the above lower limit value, the peel strength of the negative electrode can be further improved.
  • the electrolytic solution injectability of the negative electrode can be further improved, and the internal resistance of the secondary battery can be further reduced.
  • the other components that can be blended in the slurry composition of the present invention include, without particular limitation, the same components as those that can be blended in the binder composition of the present invention. These components may be used alone or in combination of two or more.
  • the slurry composition of the present invention can be prepared by dispersing each of the above components in an aqueous medium as a dispersion medium. Specifically, the above components and an aqueous medium are mixed using a mixer such as a ball mill, a sand mill, a bead mill, a pigment disperser, a slurryer, an ultrasonic disperser, a homogenizer, a planetary mixer, and a fill mix. Allows the slurry composition to be prepared.
  • a mixer such as a ball mill, a sand mill, a bead mill, a pigment disperser, a slurryer, an ultrasonic disperser, a homogenizer, a planetary mixer, and a fill mix. Allows the slurry composition to be prepared.
  • water is usually used as the aqueous medium, but an aqueous solution of any compound, a small amount of a mixed solution of an organic medium and water, or the like may be used.
  • the water used as the aqueous medium may also include the water contained in the binder composition.
  • the negative electrode for a non-aqueous secondary battery of the present invention includes a negative electrode mixture layer formed by using the slurry composition of the present invention containing the binder composition of the present invention and the negative electrode active material. Therefore, the negative electrode mixture layer contains at least (4n + 2) cyclic ⁇ electrons of the particulate binder and the aromatic ring-condensed nitrogen-containing five-membered ring compound or the aromatic-substituted nitrogen-containing five-membered ring compound. It contains an anionic aromatic compound and a negative electrode active material, and may optionally contain other components.
  • each component contained in the negative electrode mixture layer was contained in the slurry composition of the present invention, and the suitable abundance ratio of each component is each in the slurry composition of the present invention. It is the same as the preferable abundance ratio of the components.
  • the particulate binder may have a particle shape or any other shape.
  • the negative electrode for a non-aqueous secondary battery of the present invention is provided with a negative electrode mixture layer formed by using the slurry composition of the present invention, so that the negative electrode is excellent in electrolyte injection property and peel strength. The internal resistance of the next battery can be reduced.
  • the above-mentioned method for manufacturing a negative electrode for a non-aqueous secondary battery is not particularly limited, and for example, forming a negative electrode mixture layer using a slurry composition containing the binder composition of the present invention and a negative electrode active material. It can be efficiently manufactured by the method for manufacturing a negative electrode for a non-aqueous secondary battery according to the present invention.
  • the method for manufacturing a negative electrode for a non-aqueous secondary battery of the present invention is, for example, a step of applying a slurry composition (coating step) and a step of drying the slurry composition applied on the current collector and putting it on the current collector. It may be included in the step of forming the negative electrode mixture layer (drying step).
  • the method for applying the slurry composition onto the current collector is not particularly limited, and a known method can be used. Specifically, as the coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method and the like can be used. At this time, the slurry composition for the negative electrode may be applied to only one side of the current collector, or may be applied to both sides. The thickness of the slurry film on the current collector after application and before drying can be appropriately set according to the thickness of the negative electrode mixture layer obtained by drying.
  • the current collector to which the slurry composition is applied a material having electrical conductivity and electrochemical durability is used.
  • a current collector for example, a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum or the like can be used.
  • copper foil is particularly preferable as the current collector used for the negative electrode.
  • the above-mentioned materials may be used alone or in combination of two or more at any ratio.
  • the method for drying the slurry composition on the current collector is not particularly limited, and a known method can be used, for example, drying with warm air, hot air, low humidity air, vacuum drying, irradiation with infrared rays, electron beams, or the like. A drying method can be mentioned.
  • a negative electrode mixture layer is formed on the current collector, and a negative electrode for a non-aqueous secondary battery having the current collector and the negative electrode mixture layer is obtained. be able to.
  • the negative electrode mixture layer may be pressurized by using a die press or a roll press.
  • the pressure treatment can improve the adhesion between the negative electrode mixture layer and the current collector. Since the negative electrode for a non-aqueous secondary battery of the present invention is manufactured by using the slurry composition of the present invention, it is excellent in electrolyte injection property even after pressure treatment.
  • the non-aqueous secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and the negative electrode for a non-aqueous secondary battery of the present invention is used as the negative electrode. Since the non-aqueous secondary battery of the present invention includes the negative electrode for the non-aqueous secondary battery of the present invention described above, the internal resistance is reduced. In the following, a case where the non-aqueous secondary battery is a lithium ion secondary battery will be described as an example, but the present invention is not limited to the following example.
  • a known positive electrode used as a positive electrode for a lithium ion secondary battery can be used.
  • the positive electrode for example, a positive electrode formed by forming a positive electrode mixture layer on a current collector can be used.
  • a current collector made of a metal material such as aluminum can be used.
  • the positive electrode mixture layer a layer containing a known positive electrode active material, a conductive material, and a binder can be used.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a lithium salt is used as the supporting electrolyte of the lithium ion secondary battery.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 N Li. , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable because they are easily dissolved in a solvent and show a high degree of dissociation.
  • One type of electrolyte may be used alone, or two or more types may be used in combination at any ratio. Normally, the lithium ion conductivity tends to be higher as the supporting electrolyte having a higher degree of dissociation is used, so that the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte, and for example, dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), and the like.
  • DMC dimethyl carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • PC propylene carbonate
  • Carbonates such as butylene carbonate (BC), ethylmethyl carbonate (EMC), vinylene carbonate (VC); esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfolane, dimethyl Sulfur-containing compounds such as sulfoxide; and the like are preferably used. Further, a mixed solution of these solvents may be used.
  • the dielectric constant is high and the stable potential region is wide.
  • the lower the viscosity of the solvent used the higher the lithium ion conductivity tends to be. Therefore, the lithium ion conductivity can be adjusted depending on the type of solvent.
  • the concentration of the electrolyte in the electrolytic solution can be appropriately adjusted. Further, known additives can be added to the electrolytic solution.
  • ⁇ Separator> As the separator, for example, those described in JP-A-2012-204303 can be used. Among these, the film thickness of the entire separator can be reduced, and as a result, the ratio of the electrode active material in the lithium ion secondary battery can be increased and the capacity per volume can be increased.
  • a microporous film made of a based resin polyethylene, polypropylene, polybutene, polyvinyl chloride
  • a positive electrode and a negative electrode are overlapped with each other via a separator, and the positive electrode and the negative electrode are put into a battery container by winding or folding according to the battery shape as necessary, and electrolyzed into the battery container. It can be manufactured by injecting a liquid and sealing it.
  • an overcurrent prevention element such as a fuse and a PTC element, an expanded metal, a lead plate, and the like may be provided, if necessary.
  • the shape of the secondary battery may be, for example, a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, or the like.
  • the present invention will be specifically described based on examples, but the present invention is not limited to these examples.
  • “%” and “part” indicating the amount are based on mass unless otherwise specified.
  • the ratio of the monomer unit formed by polymerizing a certain monomer to the polymer is usually not specified unless otherwise specified. It is consistent with the ratio (preparation ratio) of the certain monomer to all the monomers used for the polymerization of the polymer.
  • the volume average particle diameter of the particulate binder, the electrolyte injectability of the negative electrode and the peel strength of the negative electrode, and the internal resistance of the secondary battery and the cycle characteristics of the secondary battery are determined. Each was measured and evaluated by the following methods.
  • volume average particle size of particulate binder was measured using a laser diffraction type particle size distribution measuring device (manufactured by Shimadzu Corporation, product name "SALD-2300"). Specifically, an aqueous dispersion of the particulate binder was prepared, and the particle size distribution (volume basis) was measured with the above measuring device to determine the volume average particle diameter of the particulate binder.
  • SALD-2300 laser diffraction type particle size distribution measuring device
  • ⁇ Electrolyte injection property of negative electrode> In a dry room (dew point: -50 ° C or less), 10 ⁇ L of propylene carbonate as an electrolytic solution was dropped onto the obtained negative electrode using a pipetter, and a transparent hemispherical cover ( ⁇ 10 mm plastic) was placed on the electrolytic solution. Made) was placed. Then, the time required for the electrolytic solution to disappear from the negative electrode was visually measured. The shorter the time it takes for the electrolytic solution to disappear, the higher the pouring property of the negative electrode.
  • C Disappearance time: 120 seconds or more
  • ⁇ Peel strength of negative electrode> The prepared negative electrode was dried in a vacuum dryer at 100 ° C. for 1 hour, and the dried negative electrode was cut into a rectangle having a length of 100 mm and a width of 10 mm to obtain a test piece. This test piece was attached with cellophane tape to the surface of the negative electrode mixture layer with the surface of the negative electrode mixture layer facing down. At this time, the cellophane tape specified in JIS Z1522 was used. The cellophane tape was fixed to the test table. After that, the stress when one end of the current collector was pulled vertically upward at a pulling speed of 50 mm / min and peeled off was measured.
  • Peel strength is 30 N / m or more
  • B Peel strength is 15 N / m or more and less than 30 N / m
  • C Peel strength is less than 15 N / m
  • the IV resistance was measured as follows. 3 operations are performed at a temperature of 25 ° C., charging at a charging rate of 0.1 C until the voltage reaches 4.2 V, resting for 10 minutes, and then discharging at a constant current (CC) to 3.0 V at a discharge rate of 0.1 C. Conditioning treatment was repeated many times. Then, under a 25 ° C atmosphere, the CCCV was charged to 3.75 V at 1 C (C is a numerical value represented by the rated capacity (mA) / 1 hour (h)), and then the temperature was set to a -10 ° C atmosphere and 3.75 V.
  • C is a numerical value represented by the rated capacity (mA) / 1 hour (h)
  • the battery was charged for 30 seconds and discharged for 30 seconds at 0.5C, 1.0C, 1.5C, and 2.0C, respectively. Then, in each case, the battery voltage after 15 seconds on the charging side was plotted against the current value, and the slope was obtained as the IV resistance ( ⁇ ).
  • the obtained IV resistance value ( ⁇ ) was evaluated according to the following criteria using the IV resistance value of Comparative Example 1 as a reference (100%). The smaller the IV resistance value, the lower the internal resistance of the secondary battery.
  • ⁇ Cycle characteristics of secondary battery> The lithium ion secondary battery was allowed to stand at a temperature of 25 ° C. for 5 hours after injecting the electrolytic solution. Next, the cells were charged to a cell voltage of 3.65 V by a constant current method at a temperature of 25 ° C. and 0.2 C, and then aged at a temperature of 60 ° C. for 12 hours. Then, the battery was discharged to a cell voltage of 3.00 V by a constant current method at a temperature of 25 ° C. and 0.2 C. After that, constant current (CC) -constant voltage (CV) charging (upper limit cell voltage 4.20V) is performed by the constant current method of 0.2C, and CC discharge to 3.00V by the constant current method of 0.2C. did.
  • CC constant current
  • CV constant voltage
  • Example 1 ⁇ Preparation of binder composition for negative electrode> In a 5 MPa pressure resistant container A with a stirrer, 150 parts of ion-exchanged water, 2.5 parts of sodium dodecylbenzenesulfonate aqueous solution (concentration 10%) as an emulsifier, 60 parts of styrene as an aromatic vinyl monomer, and a carboxylic acid group-containing single substance. 3.5 parts of itaconic acid as a weight, 1 part of 2-hydroxyethyl acrylate as a hydroxyl group-containing monomer, and 0.5 part of t-dodecyl mercaptan as a molecular weight adjusting agent were added in this order.
  • the aqueous dispersion is cooled to disperse an oligomer-type hindered phenol-based antioxidant (butylation reaction product of DCPD and p-cresol, manufactured by Chukyo Yushi Co., Ltd., product name "Wingstay L”) as a phenol-based antioxidant.
  • an oligomer-type hindered phenol-based antioxidant butylation reaction product of DCPD and p-cresol, manufactured by Chukyo Yushi Co., Ltd., product name "Wingstay L”
  • benzotriazole as an anionic aromatic compound were added to prepare an aqueous dispersion containing a particulate binder, a phenolic antiaging agent, and an anionic aromatic compound. ..
  • a 1% aqueous ammonia solution was added to adjust the pH of the aqueous dispersion to 8, to obtain a binder composition for a negative electrode.
  • the obtained mixture was adjusted to a solid content concentration of 60% with ion-exchanged water, and then mixed at 25 ° C. for 60 minutes. Next, after adjusting the solid content concentration to 52% with ion-exchanged water, the mixture was further mixed at 25 ° C. for 15 minutes to obtain a mixed solution. To the obtained mixed solution, 2.0 parts of the binder composition for a negative electrode prepared above in an amount equivalent to the solid content and ion-exchanged water were added, and the final solid content concentration was adjusted to 48%. After further mixing for 10 minutes, defoaming treatment was performed under reduced pressure to obtain a slurry composition for a negative electrode having good fluidity.
  • the obtained slurry composition for a negative electrode was applied to a copper foil having a thickness of 15 ⁇ m, which is a current collector, with a comma coater so as to have a basis weight of 11 mg / cm 2 after drying, and dried. This drying was performed by transporting the copper foil at a rate of 0.5 m / min in an oven at 60 ° C. for 2 minutes. Then, it was heat-treated at 120 degreeC for 2 minutes, and the negative electrode raw fabric was obtained. Then, the negative electrode raw fabric was rolled by a roll press to obtain a negative electrode having a density of the negative electrode mixture layer of 1.75 g / cm 3 .
  • the obtained slurry composition for a positive electrode was applied to an aluminum foil having a thickness of 20 ⁇ m, which is a current collector, with a comma coater so that the basis weight after drying was 23 mg / cm 2 , and the mixture was dried. This drying was performed by transporting the aluminum foil at a speed of 0.5 m / min in an oven at 60 ° C. for 2 minutes. Then, it was heat-treated at 120 degreeC for 2 minutes, and the positive electrode raw fabric was obtained. Then, the original fabric of the positive electrode was rolled by a roll press to obtain a positive electrode having a density of the positive electrode mixture layer of 4.0 g / cm 3 .
  • a laminate is formed by interposing a separator (a microporous polypropylene film having a thickness of 20 ⁇ m) between the positive electrode after pressing and the negative electrode after pressing prepared as described above so as to form a separator / positive electrode / separator / negative electrode. Obtained.
  • the laminated body of the electrode and the separator was wound around a core having a diameter of 20 mm to obtain a wound body including a positive electrode, a separator, and a negative electrode. Subsequently, the obtained wound body was compressed from one direction at a speed of 10 mm / sec until the thickness became 4.5 mm to obtain a flat body.
  • the obtained flat body had an elliptical shape in a plan view, and the ratio of the major axis to the minor axis (major axis / minor axis) was 7.7.
  • EC ethylene carbonate
  • EMC ethylmethyl carbonate
  • VC vinylene carbonate
  • the obtained secondary battery had a pouch shape having a width of 35 mm, a height of 48 mm, and a thickness of 5 mm, and had a nominal capacity of 700 mAh.
  • the internal resistance and cycle characteristics of the obtained lithium-ion secondary battery were evaluated. The results are shown in Table 1.
  • Negative electrode binder composition, negative electrode slurry composition, negative electrode, positive electrode and lithium ion secondary in the same manner as in Example 1 except that the amount of benzotriazole as an anionic aromatic compound was changed as shown in Table 1.
  • a battery was manufactured. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 A binder composition for a negative electrode, a slurry composition for a negative electrode, a negative electrode, a positive electrode, and a lithium ion secondary battery were produced in the same manner as in Example 1 except that benzotriazole as an anionic aromatic compound was changed to benzimidazole. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 6 A binder composition for a negative electrode, a slurry composition for a negative electrode, a negative electrode, a positive electrode, and a lithium ion secondary battery were produced in the same manner as in Example 1 except that benzotriazole as an anionic aromatic compound was changed to indole. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 7 A binder composition for a negative electrode, a slurry composition for a negative electrode, a negative electrode, a positive electrode, and lithium ion II are used in the same manner as in Example 1 except that artificial graphite and SiOx10% as a silicon-based negative electrode active material are used in combination as the negative electrode active material. The next battery was manufactured. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 8 A slurry composition for a negative electrode, a negative electrode, a positive electrode, and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the binder composition for the negative electrode prepared as described below was used. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • ⁇ Preparation of binder composition for negative electrode (batch polymerization)> In a 5 MPa pressure resistant container A with a stirrer, 28 parts of styrene as an aromatic vinyl monomer, 70 parts of isoprene as an aliphatic conjugated diene monomer, 2 parts of methacrylic acid as a carboxylic acid group-containing monomer, and an alkyldiphenyl ether disulfone as an emulsifier. Add 0.6 part of acid salt, 137 parts of ion-exchanged water, and 0.3 part of potassium persulfate as a polymerization initiator, stir well, heat to 45 ° C. to start polymerization, and react for 20 hours. rice field.
  • Example 9 A negative electrode binder composition, a negative electrode slurry composition, a negative electrode, a positive electrode, and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the negative electrode binder composition prepared as described below was used. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • 1,3-butadiene as an aliphatic conjugated diene monomer was continuously added to the pressure resistant reactor while controlling the temperature so as to maintain 50 to 60 ° C. for 1 hour. After completing the addition of 1,3-butadiene, the polymerization reaction was continued for another hour. The polymerization conversion rate of 1,3-butadiene was 100%. Next, 460.3 mmol of dichlorodimethylsilane as a coupling agent was added to the pressure resistant reactor and the coupling reaction was carried out for 2 hours to form a styrene-butadiene coupling block copolymer.
  • the obtained mixed solution was gradually added dropwise to warm water at 85 to 95 ° C. to volatilize the solvent, and a precipitate was obtained. Then, this precipitate was pulverized and dried with hot air at 85 ° C. to recover the dried product containing the block copolymer. Then, the recovered dried product was dissolved in cyclohexane to prepare a cyclohexane solution of a block copolymer having a block copolymer concentration of 10.0%.
  • the premix is transferred from the tank to a high-pressure emulsification disperser (manufactured by SPXFLOW, product name "LAB1000”) using a metering pump and circulated (pass count: 5 times) to prepare the premix.
  • An emulsified solution emulsified in phase was obtained.
  • cyclohexane in the obtained emulsion was distilled off under reduced pressure using a rotary evaporator.
  • the upper layer portion was filtered with a wire mesh of 100 mesh to obtain an aqueous dispersion (block copolymer latex) containing the particleized block copolymer.
  • a 10% aqueous ammonia solution was added to the obtained aqueous dispersion of the polymer to adjust the pH of the aqueous dispersion of the polymer to 8.0. Further, in the aqueous dispersion of the polymer, one part of a dispersion of a hindered phenol-based antioxidant similar to that used in Example 1 as a phenol-based antioxidant, and benzotriazole as an anionic aromatic compound 1. 5 parts were added to obtain an aqueous dispersion containing a particulate binder, a phenolic antiaging agent, and an anionic aromatic compound as a binder composition for a negative electrode.
  • Example 1 A binder composition for a negative electrode, a slurry composition for a negative electrode, a negative electrode, a positive electrode, and a lithium ion secondary battery were produced in the same manner as in Example 1 except that an anionic aromatic compound was not used. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
  • Negative electrode as in Example 1 except that 1-cyanoethyl-2-ethyl-4-methylimidazole was used as the anionic aromatic compound in place of benzotriazole in an amount of 1.5 parts per 100 parts of the particulate binder. Binder composition for negative electrode, slurry composition for negative electrode, negative electrode, positive electrode and lithium ion secondary battery were prepared. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 5 As the anionic aromatic compound, the binder composition for the negative electrode and the negative electrode were used in the same manner as in Example 1 except that 0.5 part of 2-mercaptobenzimidazole was used per 100 parts of the particulate binder instead of benzotriazole. A slurry composition, a negative electrode, a positive electrode, and a lithium ion secondary battery were prepared. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
  • a negative electrode binder composition having more than 1 part by mass and less than 10 parts by mass was used (Examples 1 to 9), a negative electrode having excellent electrolyte injectability and peel strength and a secondary having reduced internal resistance.
  • binder compositions and slurry compositions for non-aqueous secondary battery negative electrodes can be provided. Further, according to the present invention, it is possible to provide a negative electrode for a non-aqueous secondary battery, which is excellent in electrolytic solution injectability and peel strength, and which can reduce the internal resistance of the non-aqueous secondary battery, and a method for manufacturing the same. .. Further, according to the present invention, it is possible to provide a non-aqueous secondary battery with reduced internal resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

粒子状結着剤と、芳香族環縮合窒素含有五員環化合物又は芳香族置換窒素含有五員環化合物とを含む非水系二次電池負極用バインダー組成物である。粒子状結着剤は、芳香族ビニル単量体単位と脂肪族共役ジエン単量体単位とを少なくとも含み、芳香族環縮合窒素含有五員環化合物又は芳香族置換窒素含有五員環化合物は、(4n+2)個の環状π電子を有するアニオン性芳香族化合物であり(ただし、nは1以上の整数である)、アニオン性芳香族化合物の含有量は、粒子状結着剤100質量部当たり1質量部超10質量部未満である。

Description

非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極及びその製造方法、並びに、非水系二次電池
 本発明は、非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極及びその製造方法、並びに、非水系二次電池に関する。
 リチウムイオン二次電池などの非水系二次電池(以下、単に「二次電池」と略記する場合がある。)は、小型で軽量、かつエネルギー密度が高く、さらに繰り返し充放電が可能という特性があり、幅広い用途に使用されている。
 ここで、リチウムイオン二次電池などの非水系二次電池に用いられる電極は、通常、集電体と、集電体上に形成された電極合材層とを備えている。そして、電極合材層は、例えば、電極活物質と、結着剤とを含むバインダー組成物などとを含むスラリー組成物を集電体上に塗布し、塗布したスラリー組成物を乾燥させることにより形成される。
 そして、従来より、二次電池の更なる性能の向上を達成すべく、電極合材層の形成に用いられるバインダー組成物の改良が試みられている。例えば特許文献1では、製造工程における取り扱いが容易で、少量の添加で結着効果を示し、電極活物質層等の電池を構成する部材に良好な物性を与えることができ、かつ、二次電池の内部での劣化が少なく、寿命の長い二次電池を安定して与えうる二次電池バインダーが提供されている。具体的には、引用文献1に記載のバインダーは、共役ジエン単量体及び酸系単量体を含み、酸系単量体の割合が5~20重量%である単量体組成物を、水系媒体中で水溶性重合開始剤を用いて重合してなる重合体を含むものである。そして、前記バインダー中に残留する前記水溶性重合開始剤の量が、前記重合体に対する重量比で100ppm以下であり、前記重合体100重量部に対し老化防止剤を0.05~5重量部含むものである。
特開2012-14920号公報
 そして、近年では、二次電池に用いられる電極を高密度化して二次電池の電気的特性を向上させることが求められている。しかし、従来のバインダー組成物を含むスラリー組成物を用いて形成した負極は、高密度化すると電極合材層に電解液が浸透しにくくなることがあった。また、従来の二次電池の負極には、負極合材層と集電体との結着性(以下、「ピール強度」と称する。)を高めるとともに、二次電池の内部抵抗を低減するという点において、さらなる改善の余地があった。
 そこで、本発明は、電解液注液性及びピール強度に優れ、かつ、非水系二次電池の内部抵抗を低減可能な負極の製造に用い得る非水系二次電池負極用バインダー組成物及び非水系二次電池負極用スラリー組成物を提供することを目的とする。
 また、本発明は、電解液注液性及びピール強度に優れ、かつ、非水系二次電池の内部抵抗を低減可能な非水系二次電池用負極及びその製造方法を提供することを目的とする。
 さらに、本発明は、内部抵抗が低減された非水系二次電池を提供することを目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、従来のバインダー組成物を含むスラリー組成物を集電体上に塗布すると、塗布したバインダー組成物中に含まれる結着剤がバインダー組成物を乾燥させる際に動いてしまい、その結果、得られる負極合材層中で結着剤が負極合材層の表層に偏在することが、負極の電解液注液性の低下を引き起こしていることに着目した。そして、本発明者は、アニオン性複素環部が芳香性を有する化合物をバインダー組成物に所定量添加すると、負極合材層の表層での結着剤の偏在が低減されることで負極合材層に電解液が浸透しやすくなり、その結果、負極の電解液注液性が向上することを新たに見出し、本発明を完成させた。
 すなわち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池負極用バインダー組成物は、粒子状結着剤と、芳香族環縮合窒素含有五員環化合物又は芳香族置換窒素含有五員環化合物とを含む非水系二次電池負極用バインダー組成物であって、前記粒子状結着剤は、芳香族ビニル単量体単位と脂肪族共役ジエン単量体単位とを少なくとも含み、前記芳香族環縮合窒素含有五員環化合物又は前記芳香族置換窒素含有五員環化合物は、(4n+2)個の環状π電子を有するアニオン性芳香族化合物であり(ただし、nは1以上の整数である)、前記アニオン性芳香族化合物の含有量は、前記粒子状結着剤100質量部当たり1質量部超10質量部未満であることを特徴とする。このように、所定の組成を有する粒子状結着剤と、所定の構造を有するアニオン性芳香族化合物とを上記所定の割合で含む非水系二次電池負極用バインダー組成物によれば、当該非水系二次電池負極用バインダー組成物を含む非水系二次電池負極用スラリー組成物を用いることで、電解液注液性及びピール強度に優れ、かつ、非水系二次電池の内部抵抗を低減可能な負極を製造することができる。
 なお、本発明において、粒子状結着剤が「単量体単位を含む」とは、「その単量体を用いて得た重合体中に単量体由来の繰り返し単位が含まれている」ことを意味する。
 ここで、本発明の非水系二次電池負極用バインダー組成物は、前記アニオン性芳香族化合物が、下記式(A)又は下記式(B)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000002
(式(A)及び式(B)中、R~Rは炭素原子であり、R~Rの少なくとも1つは窒素原子であり、Rは、水素原子又は炭素数1以上3以下のアルキル基を表す。)。
 上記式(A)又は上記式(B)で表されるアニオン性芳香族化合物を用いれば、負極の電解液注液性を更に向上させることができる。
 そして、本発明の非水系二次電池負極用バインダー組成物は、フェノール系老化防止剤を更に含むことが好ましい。フェノール系老化防止剤を更に含む非水系二次電池負極用バインダー組成物を用いれば、負極のピール強度を更に向上させることができる。
 さらに、本発明の非水系二次電池負極用バインダー組成物は、前記アニオン性芳香族化合物が、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、又は、テトラゾール環を含むことが好ましい。ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、又は、テトラゾール環を含むアニオン性芳香族化合物を用いれば、負極の電解液注液性を更に一層向上させることができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池負極用スラリー組成物は、上述したいずれかの非水系二次電池負極用バインダー組成物を含むことを特徴とする。そして、本発明の非水系二次電池負極用スラリー組成物は、負極活物質を含むことが好ましい。本発明の非水系二次電池負極用バインダー組成物と、負極活物質とを含む非水系二次電池負極用スラリー組成物を用いれば、電解液注液性及びピール強度に優れており、かつ、二次電池の内部抵抗を低減可能な負極を製造することができる。
 そして、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用負極は、本発明の非水系二次電池負極用バインダー組成物と、負極活物質とを含む本発明の非水系二次電池負極用スラリー組成物を用いて形成した負極合材層を備えることを特徴とする。本発明の非水系二次電池負極用バインダー組成物と、負極活物質とを含む本発明の非水系二次電池負極用スラリー組成物を用いて形成した負極合材層を備えた負極は、電解液注液性及びピール強度に優れており、二次電池の内部抵抗を低減することができる。
 さらに、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池は、上述した非水系二次電池用負極を備えることを特徴とする。本発明の非水系二次電池用負極を備える非水系二次電池は、内部抵抗が低減されている。
 さらにまた、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用負極の製造方法は、上述した本発明の非水系二次電池負極用バインダー組成物と、負極活物質とを含む本発明の非水系二次電池負極用スラリー組成物を用いて負極合材層を形成すること含むことを特徴とする。本発明の非水系二次電池用負極の製造方法によれば、電解液注液性及びピール強度に優れ、かつ、二次電池の内部抵抗を低減可能な非水系二次電池用負極を効率的に製造することができる。
 本発明によれば、電解液注液性及びピール強度に優れ、かつ、非水系二次電池の内部抵抗を低減可能な負極の製造に用い得る非水系二次電池負極用バインダー組成物及び非水系二次電池負極用スラリー組成物を提供することができる。
 また、本発明によれば、電解液注液性及びピール強度に優れ、かつ、非水系二次電池の内部抵抗を低減可能な非水系二次電池用負極及びその製造方法を提供することができる。
 さらに、本発明によれば、内部抵抗が低減された非水系二次電池を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の非水系二次電池負極用バインダー組成物は、本発明の非水系二次電池負極用スラリー組成物を調製する際に用いることができる。また、本発明の非水系二次電池負極用スラリー組成物は、リチウムイオン二次電池等の非水系二次電池の負極の製造に用いることができる。さらに、本発明の非水系二次電池用負極は、本発明の非水系二次電池用負極の製造方法に従って製造することができる。そして、本発明の非水系二次電池用負極は、本発明の非水系二次電池負極用スラリー組成物を用いて形成された負極合材層を備える。また、本発明の非水系二次電池は、本発明の非水系二次電池用負極を備えることを特徴とする。
(非水系二次電池負極用バインダー組成物)
 本発明の非水系二次電池負極用バインダー組成物(以下、単に「バインダー組成物」ともいう。)は、粒子状結着剤と、芳香族環縮合窒素含有五員環化合物又は芳香族置換窒素含有五員環化合物とを含み、任意に、二次電池の負極に配合され得るその他の成分を含有する。なお、本発明のバインダー組成物は、通常、水などの分散媒を更に含有する。
 そして、本発明のバインダー組成物は、粒子状結着剤が、芳香族ビニル単量体単位と脂肪族共役ジエン単量体単位とを少なくとも含み、芳香族環縮合窒素含有五員環化合物又は芳香族置換窒素含有五員環化合物は(4n+2)個の環状π電子を有するアニオン性芳香族化合物であり(ただし、nは1以上の整数である)、当該アニオン性芳香族化合物の含有量は、上記粒子状結着剤100質量部当たり1質量部超10質量部未満であることを特徴とする。
 そして、本発明のバインダー組成物は、上述した所定の組成を有する粒子状結着剤と、所定の構造を有するアニオン性芳香族化合物とを所定量含んでいるため、当該バインダー組成物を含む非水系二次電池負極用スラリー組成物(以下、単に「スラリー組成物」ともいう。)を用いれば、電解液注液性及びピール強度に優れ、かつ、二次電池の内部抵抗を低減可能な負極を製造することができる。ここで、上述した粒子状結着剤とアニオン性芳香族化合物とを含むバインダー組成物を用いることで上記の効果が得られる理由は定かではないが、以下のとおりであると推察される。
 すなわち、本発明のバインダー組成物を含むスラリー組成物を集電体に塗布すると、アニオン性芳香族化合物が集電体の表面に吸着するとともに、アニオン性芳香族化合物と粒子状結着剤との相互作用により、粒子状結着剤が集電体表面へと移動する。これにより、塗布したスラリー組成物を乾燥して得られる負極合材層では、集電体の表面近傍に存在する粒子状結着剤の量が増加することで負極合材層内部における粒子状結着剤の偏りが軽減されるため、電解液が浸透しやすくなり、結果として負極の電解液注液性及びピール強度の双方が向上すると考えられる。そして、このような負極を備えることで、二次電池の内部抵抗が低減すると考えられる。
<粒子状結着剤>
 粒子状結着剤は、本発明のバインダー組成物を含むスラリー組成物を用いて負極を製造した際に、負極合材層に含まれる成分(例えば、負極活物質)が負極から脱離しないように保持しうる成分である。
 ここで、粒子状結着剤は、バインダー組成物中及び後述するスラリー組成物中では粒子形状で存在する。そして、上述したように、粒子状結着剤は、芳香族ビニル単量体単位と、脂肪族共役ジエン単量体単位とを含み、任意に、芳香族ビニル単量体単位及び脂肪族共役ジエン単量体単位以外の単量体単位(以下、「その他の単量体単位」という。)を含んでいてもよい。
[芳香族ビニル単量体単位]
 芳香族ビニル単量体単位を形成し得る芳香族ビニル単量体としては、特に限定されることなく、スチレン、α-メチルスチレン、ビニルトルエン、ジビニルベンゼンなどが挙げられる。これらの中でも、得られる負極の機械的強度を高める観点から、スチレンが好ましい。これらは1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 そして、粒子状結着剤中に含まれる芳香族ビニル単量体単位の割合は、粒子状結着剤中の全単量体単位の量を100質量%として、5質量%以上であることが好ましく、15質量%以上であることがより好ましく、20質量%以上であることが更に好ましく、70質量%以下であることが好ましく、68質量%以下であることがより好ましく、65質量%以下であることが更に好ましい。芳香族ビニル単量体単位の含有割合が上記下限値以上であれば、バインダー組成物を含むスラリー組成物の安定性が向上する。また、芳香族ビニル単量体単位の含有割合が上記上限値以下であれば、バインダー組成物を含むスラリー組成物を用いて製造した負極のピール強度を更に高めることができる。
[脂肪族共役ジエン単量体単位]
 脂肪族共役ジエン単量体単位を形成し得る脂肪族共役ジエン単量体としては、特に限定されることなく、1,3-ブタジエン、2-メチル-1,3-ブタジエン(「イソプレン」ともいう。)、2,3-ジメチル-1,3ブタジエン、2-クロル-1,3-ブタジエン、置換直鎖共役ペンタジエン類、置換及び側鎖共役ヘキサジエン類などが挙げられる。これらの中でも、1,3-ブタジエン及びイソプレンが好ましく、1,3-ブタジエンがより好ましい。これらは1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 そして、粒子状結着剤中に含まれる脂肪族共役ジエン単量体単位の割合は、粒子状結着剤中の全単量体単位の量を100質量%として、20質量%以上であることが好ましく、25質量%以上であることがより好ましく、30質量%以上であることが更に好ましく、80質量%以下であることが好ましく、55質量%以下であることがより好ましく、50質量%以下であることが更に好ましい。脂肪族共役ジエン単量体単位の含有割合が上記下限値以上であれば、バインダー組成物を含むスラリー組成物を用いて製造した負極のピール強度を更に高めることができる。また、脂肪族共役ジエン単量体単位の含有割合が上記上限値以下であれば、バインダー組成物を含むスラリー組成物の安定性が更に向上する。
<その他の単量体単位>
 その他の単量体単位としては、上述した芳香族ビニル単量体及び脂肪族共役ジエン単量体以外の単量体に由来する単量体単位であれば、特に限定されないが、粒子状結着剤の結着性を向上させる観点からは、粒子状結着剤は、酸変性体であることが好ましい。具体的には、粒子状結着材は、芳香族ビニル単量体単位及び脂肪族共役ジエン単量体単位に加えて、その他の単量体単位として、カルボン酸基含有単量体単位や、水酸基含有単量体単位などの酸基含有単量体単位を含むことが好ましい。
-カルボン酸基含有単量体単位-
 カルボン酸基含有単量体単位を形成し得るカルボン酸基含有単量体としては、モノカルボン酸及びその誘導体や、ジカルボン酸及びその酸無水物並びにそれらの誘導体などが挙げられる。
 モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。
 モノカルボン酸誘導体としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。
 ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸や、マレイン酸メチルアリル、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸エステルが挙げられる。
 ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。
 また、カルボン酸基含有単量体としては、加水分解によりカルボキシル基を生成する酸無水物も使用できる。
 その他、カルボン酸基含有単量体としては、マレイン酸モノエチル、マレイン酸ジエチル、マレイン酸モノブチル、マレイン酸ジブチル、フマル酸モノエチル、フマル酸ジエチル、フマル酸モノブチル、フマル酸ジブチル、フマル酸モノシクロヘキシル、フマル酸ジシクロヘキシル、イタコン酸モノエチル、イタコン酸ジエチル、イタコン酸モノブチル、イタコン酸ジブチルなどのα,β-エチレン性不飽和多価カルボン酸のモノエステル及びジエステルも挙げられる。中でも、カルボン酸基含有単量体としては、アクリル酸及びメタクリル酸が好ましい。これらは1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 そして、粒子状結着剤中に含まれるカルボン酸基含有単量体単位の割合は、特に限定されないが、粒子状結着剤中の全単量体単位の量を100質量%として、1質量%以上であることが好ましく、3質量%以上であることがより好ましく、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。
-水酸基含有単量体単位-
 水酸基含有単量体単位を形成し得る水酸基含有単量体としては、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート、N-ヒドロキシメチルアクリルアミド(N-メチロールアクリルアミド)、N-ヒドロキシメチルメタクリルアミド、N-ヒドロキシエチルアクリルアミド、N-ヒドロキシエチルメタクリルアミドなどが挙げられる。中でも、2-ヒドロキシエチルアクリレートが好ましい。これらは1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
<<体積平均粒子径>>
 また、粒子状結着剤は、体積平均粒子径が80nm以上であることが好ましく、100nm以上であることがより好ましく、120nm以上であることが更に好ましく、500nm以下であることが好ましく、450nm以下であることがより好ましく、350nm以下であることが更に好ましい。粒子状結着剤の体積平均粒子径が上記下限値以上であれば、負極の電解液注液性を更に向上させることができるとともに、二次電池の内部抵抗を更に低減することができる。また、粒子状結着剤の体積平均粒子径が上記上限値以下であれば、負極のピール強度を更に向上させることができる。
 なお、本発明において、「体積平均粒子径」は、レーザー回折法で測定された粒度分布(体積基準)において小径側から計算した累積体積が50%となる粒子径(D50)を指す。粒子状結着剤の体積平均粒子径は、実施例に記載の方法によって測定することができる。
<<粒子状結着剤の調製>>
 粒子状結着剤は、例えば上述した単量体を含む単量体組成物を水系溶媒中で重合することにより調製することができる。なお、単量体組成物中の各単量体の含有割合は、粒子状結着剤における単量体単位の含有割合に準じて定めることができる。
 また、重合に用いる水系溶媒は、粒子状結着剤が粒子状態で分散可能なものであれば特に限定されず、水を単独で使用してもよいし、水と他の溶媒の混合溶媒を使用してもよい。
 重合様式は、特に限定されず、例えば、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの様式も用いることができる。重合方法としては、例えばイオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いることができる。
 そして、重合に使用される乳化剤、分散剤、重合開始剤、重合助剤などは、一般に用いられるものを使用することができ、その使用量も、一般に使用される量とする。
<芳香族環縮合窒素含有五員環化合物、芳香族置換窒素含有五員環化合物>
 芳香族環縮合窒素含有五員環化合物、芳香族置換窒素含有五員環化合物は、いずれも、(4n+2)個の環状π電子を有するアニオン性芳香族化合物であり、(4n+2)において、nは1以上の整数であり、好ましくは3以下である。
<<アニオン性芳香族化合物のpH>>
 そして、上記アニオン性芳香族化合物は、pHが7以上10以下であることが好ましく、9以下であることがより好ましく、8以下であることが更に好ましい。アニオン性芳香族化合物のpHが上記下限値以上であれば、負極のピール強度を更に向上させることができる。また、アニオン性芳香族化合物のpHが上記上限値以下であれば、スラリー組成物の安定性が向上するため、当該スラリー組成物に負極活物質を配合した際に、負極活物質がスラリー組成物の影響を受けにくくなる。
 なお、アニオン性芳香族化合物のpHは、卓上型pHメーター(HORIBA製、「F-51」)を、pH標準液(pH4、pH7及びpH9)で校正した後、当該卓上型pHメーターを用いて測定することができる。
<芳香族環縮合窒素含有五員環化合物>
 そして、負極の電解液注液性を向上させる観点から、上記芳香族環縮合窒素含有五員環化合物としては、下記式(A)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(A)中、R~Rは炭素原子であり、R~Rの少なくとも1つは窒素原子(N)であり、R~Rのうち2つ以上が窒素原子であることが好ましい。また、Rは、水素原子(H)又は、炭素数1~3のアルキル基を表し、水素原子又は炭素数1であることが好ましい。なお、式(A)で表される芳香族環縮合窒素含有五員環化合物は、当該芳香族環縮合窒素含有五員環化合物に含まれる2つの環が10個のπ電子を有している。なお、芳香族環縮合窒素含有五員環化合物は、窒素原子(N)以外のヘテロ原子(例えば、硫黄(S)、ホウ素(B)、リン(P)など)を含まないことが好ましい。
<芳香族置換窒素含有五員環化合物>
 また、負極の電解液注液性を向上させる観点から、上記芳香族置換窒素含有五員環化合物としては、下記式(B)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000004
 式(B)中、Rは、式(A)中のRと同様である。なお、式(B)で表される芳香族置換窒素含有五員環化合物は、窒素を含有する五員環が、6個のπ電子を有している。
 さらに、上記アニオン性芳香族化合物は、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、又は、テトラゾール環を有することが好ましく、中でも、イミダゾール環又はトリアゾール環を有することが好ましい。
 ここで、上述した芳香族環縮合窒素含有五員環化合物又は芳香族置換窒素含有五員環化合物であって、(4n+2)個の環状π電子を有するアニオン性芳香族化合物としては、例えば、ベンゾトリアゾール、ベンゾイミダゾール、7-メチル-1H-ベンゾトリアゾール、インドール等が挙げられ、中でもベンゾトリアゾール、及び7-メチル-1H-ベンゾトリアゾールが好ましい。
[アニオン性芳香族化合物の含有量]
 そして、本発明のバインダー組成物において、アニオン性芳香族化合物の含有量は、粒子状結着剤100質量部当たり、1質量部超10質量部未満であることを必要とし、8質量部以下であることが好ましく、5質量部以下であることがより好ましく、2質量部以下であることがより好ましい。アニオン性芳香族化合物の含有量が上記下限値超であれば、負極の電解液注液性を更に向上させることができる。また、アニオン性芳香族化合物の含有量が上記上限値以下であれば、二次電池の内部抵抗を更に低減することができる。
<その他の成分>
 本発明のバインダー組成物は、上述した成分に加え、バインダー組成物に配合し得る既知の任意成分を含有していていてもよい。その他の成分としては、フェノール系老化防止剤、ホスファイト系酸化防止剤、分散安定剤、増粘剤、導電材、補強材、レベリング剤、電解液添加剤、カルボキシメチルセルロース(CMC)及びポリアクリル酸などの水溶性高分子、消泡剤等が挙げられる。中でも、負極のピール強度を向上させる観点から、フェノール系老化防止剤を含むことが好ましい。これらは、電池反応に影響を及ぼさないものであれば特に限られず、公知のものを使用することができる。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<<フェノール系老化防止剤>>
 フェノール系老化防止剤としては、特に限定されることなく、例えば、ヒンダードフェノール系老化防止剤を用いることができる。ヒンダードフェノール系老化防止剤としては、具体的には、オリゴマー型ヒンダードフェノール(DCPDとp-クレゾールのブチル化反応物)、4-[[4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イル]アミノ]-2,6-ジ-tert-ブチルフェノール、2,6-ジ-tert-ブチル-p-クレゾール、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアリル、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]、2,4,6-トリス(3’,5’-ジ-tert-ブチル-4’-ヒドロキシベンジル)メシチレンなどが挙げられる。中でも、負極のピール強度を向上させる観点からは、オリゴマー型ヒンダードフェノール(DCPDとp-クレゾールのブチル化反応物)及び4-[[4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イル]アミノ]-2,6-ジ-tert-ブチルフェノールがより好ましい。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。
 本発明のバインダー組成物において、フェノール系老化防止剤の含有量は、粒子状結着剤(固形分基準)100質量部当たり、0.1質量部超であることが好ましく、0.3質量部以上であることがより好ましく、0.5質量部以上であることが更に好ましく、3質量部以下であることが好ましく、2質量部以下であることがより好ましく、1質量部以下であることが更に好ましい。フェノール系老化防止剤の含有量が上記下限値以上であれば、負極のピール強度を更に一層向上させることができる。また、フェノール系老化防止剤の含有量が上記上限値以下であれば、負極の電解液注液性を更に向上させるとともに、二次電池の内部抵抗を更に低減することができる。
<バインダー組成物の調製>
 本発明のバインダー組成物は、特に限定されることなく、上述した粒子状結着剤と、上述した芳香族環縮合窒素含有五員環化合物又は芳香族置換窒素含有五員環化合物であって(4n+2)個の環状π電子を有するアニオン性芳香族化合物と、任意に用いられるその他の成分とを水系媒体の存在下で混合して調製することができる。なお、粒子状結着剤の分散液を用いてバインダー組成物を調製する場合には、分散液が含有している液分をそのままバインダー組成物の水系媒体として利用してもよい。
<バインダー組成物の性状>
 本発明のバインダー組成物は、pHが7以上であることが好ましく、10以下であることが好ましく、9以下であることが好ましい。バインダー組成物のpHが7以上であれば、負極のピール強度を更に向上させることができる。また、バインダー組成物のpHが10以下であれば、スラリー組成物の安定性を更に向上させて、当該スラリー組成物に負極活物質を配合した際に、負極活物質がスラリー組成物の影響を更に受けにくくすることができる。
 なお、バインダー組成物のpHの調整方法は特に限定されず、例えば、pHを上昇させる場合には、アルカリ金属水溶液、炭酸水素アルカリ金属水溶液やアンモニア水溶液等のアルカリ水溶液を添加すればよい。特に好ましいのは、アンモニア水溶液を用いることである。
 本発明のバインダー組成物は、特に限定されることなく、例えば、本発明のバインダー組成物に導電助剤を配合して、二次電池のアンダーコート層を形成する際の材料として用いてもよい。あるいは、次に説明するように、二次電池負極用スラリー組成物を調製する際の材料として用いてもよい。
(非水系二次電池負極用スラリー組成物)
 本発明のスラリー組成物は、本発明のバインダー組成物を含み、任意に、負極活物質及びその他の成分等を更に含有する。すなわち、本発明のスラリー組成物は、通常、上述した粒子状結着剤と、上述した芳香族環縮合窒素含有五員環化合物又は芳香族置換窒素含有五員環化合物であって(4n+2)個の環状π電子を有するアニオン性芳香族化合物とを含有し、任意に、負極活物質及びその他の成分を含有する。そして、本発明のスラリー組成物を用いれば、電解液注液性及びピール強度に優れており、二次電池の内部抵抗を低減可能な負極を製造することができる。
 なお、以下では、一例として非水系二次電池負極用スラリー組成物がリチウムイオン二次電池負極用スラリー組成物である場合について説明するが、本発明は下記の一例に限定されるものではない。
<負極活物質>
 本発明のスラリー組成物に用いられる負極活物質としては、例えば、炭素系負極活物質、金属系負極活物質、及びこれらを組み合わせた負極活物質などが挙げられる。
 ここで、炭素系負極活物質とは、リチウムを挿入(「ドープ」ともいう。)可能な、炭素を主骨格とする活物質をいう。炭素系負極活物質としては、例えば炭素質材料及び黒鉛質材料が挙げられる。
 炭素質材料は、炭素前駆体を2000℃以下で熱処理して炭素化させることによって得られる、黒鉛化度の低い(すなわち、結晶性の低い)材料である。なお、炭素化させる際の熱処理温度の下限は特に限定されないが、例えば500℃以上とすることができる。
 そして、炭素質材料としては、例えば、熱処理温度によって炭素の構造を容易に変える易黒鉛性炭素や、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素などが挙げられる。
 ここで、易黒鉛性炭素としては、例えば、石油又は石炭から得られるタールピッチを原料とした炭素材料が挙げられる。具体例を挙げると、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。
 また、難黒鉛性炭素としては、例えば、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)、ハードカーボンなどが挙げられる。
 黒鉛質材料は、易黒鉛性炭素を2000℃以上で熱処理することによって得られる、黒鉛に近い高い結晶性を有する材料である。なお、熱処理温度の上限は、特に限定されないが、例えば5000℃以下とすることができる。
 そして、黒鉛質材料としては、例えば、天然黒鉛、人造黒鉛などが挙げられる。
 ここで、人造黒鉛としては、例えば、易黒鉛性炭素を含んだ炭素を主に2800℃以上で熱処理した人造黒鉛、MCMBを2000℃以上で熱処理した黒鉛化MCMB、メソフェーズピッチ系炭素繊維を2000℃以上で熱処理した黒鉛化メソフェーズピッチ系炭素繊維などが挙げられる。
 また、金属系負極活物質とは、金属を含む活物質であり、通常は、リチウムの挿入が可能な元素を構造に含み、リチウムが挿入された場合の単位質量当たりの理論電気容量が500mAh/g以上である活物質をいう。金属系負極活物質としては、例えば、リチウム金属、リチウム合金を形成し得る単体金属(例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn、Tiなど)及びその合金、並びに、それらの酸化物、硫化物、窒化物、ケイ化物、炭化物、燐化物などが用いられる。これらの中でも、金属系負極活物質としては、ケイ素を含む活物質(シリコン系負極活物質)が好ましい。シリコン系負極活物質を用いることにより、リチウムイオン二次電池を高容量化することができる。
 シリコン系負極活物質としては、例えば、ケイ素(Si)、ケイ素を含む合金、SiO、SiO、Si含有材料を導電性カーボンで被覆又は複合化してなるSi含有材料と導電性カーボンとの複合化物などが挙げられる。なお、これらのシリコン系負極活物質は、1種類を単独で用いてもよいし、2種類上を組み合わせて用いてもよい。
 ケイ素を含む合金としては、例えば、ケイ素と、アルミニウムと、鉄などの遷移金属とを含み、さらにスズ及びイットリウム等の希土類元素を含む合金組成物が挙げられる。
 SiOは、SiO及びSiOの少なくとも一方と、Siとを含有する化合物であり、xは、通常、0.01以上2未満である。そして、SiOは、例えば、一酸化ケイ素(SiO)の不均化反応を利用して形成することができる。具体的には、SiOは、SiOを、任意にポリビニルアルコールなどのポリマーの存在下で熱処理し、ケイ素と二酸化ケイ素とを生成させることにより、調製することができる。なお、熱処理は、SiOと、任意にポリマーとを粉砕混合した後、有機物ガス及び/又は蒸気を含む雰囲気下、900℃以上、好ましくは1000℃以上の温度で行うことができる。
 そして、本発明のスラリー組成物において、負極活物質としては、黒鉛質材料又はシリコン系負極活物質を用いることが好ましく、黒鉛質材料を用いることがより好ましい。負極活物質は、1種類を単独で、又は2種類を組み合わせて用いることができる。
<バインダー組成物>
 本発明のスラリー組成物に配合するバインダー組成物としては、上述した粒子状結着剤と、上述した芳香族環縮合窒素含有五員環化合物又は芳香族置換窒素含有五員環化合物であって(4n+2)個の環状π電子を有するアニオン性芳香族化合物とを少なくとも含む本発明のバインダー組成物を使用する。
 そして、本発明のスラリー組成物中において、粒子状結着剤の含有量は、負極活物質100質量部当たり、0.5質量部以上であることが好ましく、0.7質量部以上であることがより好ましく、1質量部以上であることが更に好ましく、3質量部以下であることが好ましく、2.5質量部以下であることがより好ましく、2質量部以下であることが更に好ましい。粒子状結着剤の含有量が上記下限値以上であれば、負極のピール強度を更に向上させることができる。また、粒子状結着剤の含有量が上記上限値以下であれば、負極の電解液注液性を更に向上させるとともに、二次電池の内部抵抗を更に低減することができる。
<その他の成分>
 本発明のスラリー組成物に配合し得るその他の成分としては、特に限定することなく、本発明のバインダー組成物に配合し得るその他の成分と同様のものが挙げられる。これらの成分は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<非水系二次電池負極用スラリー組成物の調製>
 本発明のスラリー組成物は、上記各成分を分散媒としての水系媒体中に分散させることにより調製することができる。具体的には、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの混合機を用いて上記各成分と水系媒体とを混合することにより、スラリー組成物を調製することができる。
 ここで、水系媒体としては、通常は水を用いるが、任意の化合物の水溶液や、少量の有機媒体と水との混合溶液などを用いてもよい。なお、水系媒体として使用される水には、バインダー組成物が含有していた水も含まれ得る。
(非水系二次電池用負極)
 本発明の非水系二次電池用負極は、本発明のバインダー組成物と、負極活物質とを含む本発明のスラリー組成物を用いて形成された負極合材層を備える。したがって、負極合材層には、少なくとも、粒子状結着剤と、芳香族環縮合窒素含有五員環化合物又は芳香族置換窒素含有五員環化合物であって(4n+2)個の環状π電子を有するアニオン性芳香族化合物と、負極活物質とが含有されており、任意に、その他の成分が含有され得る。
 なお、負極合材層に含まれている各成分は、本発明のスラリー組成物中に含まれていたものであり、それら各成分の好適な存在比は、本発明のスラリー組成物中の各成分の好適な存在比と同じである。
 また、本発明のスラリー組成物を用いて形成された負極合材層中では、粒子状結着剤は、粒子形状であってもよいし、その他の任意の形状であってもよい。
 そして、本発明の非水系二次電池用負極は、本発明のスラリー組成物を用いて形成された負極合材層を備えることで、電解液注液性及びピール強度に優れているとともに、二次電池の内部抵抗を低減することができる。
<非水系二次電池用負極の製造方法>
 上述の非水系二次電池用負極の製造方法は、特に限定されず、例えば、本発明のバインダー組成物と、負極活物質とを含むスラリー組成物を用いて負極合材層を形成することを含む本発明の非水系二次電池用負極の製造方法によって効率的に製造することができる。本発明の非水系二次電池用負極の製造方法は、例えば、スラリー組成物を塗布する工程(塗布工程)と、集電体上に塗布されたスラリー組成物を乾燥し、集電体上に負極合材層を形成する工程(乾燥工程)と含むものでもよい。
[塗布工程]
 上記スラリー組成物を集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、負極用スラリー組成物を集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる負極合材層の厚みに応じて適宜に設定しうる。
 ここで、スラリー組成物を塗布する集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。中でも、負極に用いる集電体としては銅箔が特に好ましい。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[乾燥工程]
 集電体上のスラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上のスラリー組成物を乾燥することで、集電体上に負極合材層を形成し、集電体と負極合材層とを備える非水系二次電池用負極を得ることができる。
 なお、乾燥工程の後、金型プレス又はロールプレスなどを用い、負極合材層に加圧処理を施してもよい。加圧処理により、負極合材層と集電体との密着性を向上させることができる。本発明の非水系二次電池用負極は、本発明のスラリー組成物を用いて製造されているため、加圧処理した後でも、電解液注液性に優れる。
(非水系二次電池)
 本発明の非水系二次電池は、正極と、負極と、電解液と、セパレータとを備えており、負極として、本発明の非水系二次電池用負極を用いる。そして、本発明の非水系二次電池は、上述した本発明の非水系二次電池用負極を備えるため、内部抵抗が低減されている。
 なお、以下では、一例として非水系二次電池がリチウムイオン二次電池である場合について説明するが、本発明は下記の一例に限定されるものではない。
<正極>
 リチウムイオン二次電池の正極としては、リチウムイオン二次電池用正極として用いられる既知の正極を用いることができる。具体的には、正極としては、例えば、正極合材層を集電体上に形成してなる正極を用いることができる。
 なお、集電体としては、アルミニウム等の金属材料からなるものを用いることができる。また、正極合材層としては、既知の正極活物質と、導電材と、結着材とを含む層を用いることができる。
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。リチウムイオン二次電池の支持電解質としては、例えば、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。中でも、溶媒に溶けやすく高い解離度を示すので、LiPF、LiClO、CFSOLiが好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)、ビニレンカーボネート(VC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いので、カーボネート類を用いることが好ましい。通常、用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなる傾向があるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
 なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤を添加することができる。
<セパレータ>
 セパレータとしては、例えば、特開2012-204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、リチウムイオン二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系の樹脂(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)からなる微多孔膜が好ましい。
(二次電池の製造方法)
 本発明の二次電池は、例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、いずれであってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されたものではない。なお、以下の説明において、量を示す「%」及び「部」は、特に断らない限り、質量基準である。
 また、複数種類の単量体を重合して製造される重合体において、ある単量体を重合して形成される単量体単位の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
 そして、実施例及び比較例において、粒子状結着剤の体積平均粒子径、負極の電解液注液性及び負極のピール強度、並びに、二次電池の内部抵抗及び二次電池のサイクル特性は、それぞれ以下の方法で測定及び評価した。
<粒子状結着剤の体積平均粒子径>
 粒子状結着剤の体積平均粒子径は、レーザー回折式粒子径分布測定装置(株式会社島津製作所製、製品名「SALD-2300」)を用いて測定した。具体的には、粒子状結着剤の水分散液を準備し、上記測定装置で粒度分布(体積基準)を測定して、粒子状結着剤の体積平均粒子径を求めた。
<負極の電解液注液性>
 ドライルーム(露点:-50℃以下)中で、得られた負極の上に、ピペッターを用いて電解液としてのプロピレンカーボネート10μLを滴下し、電解液の上に、透明半球型カバー(φ10mmのプラスチック製)を置いた。そして、目視にて、負極上から電解液が消失するまでに要する時間を測定した。電解液がより短時間で消失するほど、負極の注液性が高いことを示す。
 A:消失時間:0秒以上60秒未満
 B:消失時間:60秒以上120秒未満
 C:消失時間:120秒以上
<負極のピール強度>
 作製した負極を100℃の真空乾燥機内で1時間乾燥し、乾燥後の負極を長さ100mm、幅10mmの長方形に切り出して試験片とした。この試験片を、負極合材層の表面を下にして、負極合材層の表面にセロハンテープを貼り付けた。この際、セロハンテープとしてはJIS Z1522に規定されるものを用いた。また、セロハンテープは試験台に固定しておいた。その後、集電体の一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を3回行い、その平均値を求め、当該平均値をピール強度として、下記の基準で評価した。ピール強度が大きいほど、負極合材層の集電体への結着力が大きいこと、すなわち、密着強度が大きいことを示す。
 A:ピール強度が30N/m以上
 B:ピール強度が15N/m以上30N/m未満
 C:ピール強度が15N/m未満
<二次電池の内部抵抗>
 リチウムイオン二次電池の内部抵抗を評価するために、以下のようにしてIV抵抗を測定した。温度25℃で、電圧が4.2Vとなるまで0.1Cの充電レートで充電し、10分間休止した後、0.1Cの放電レートで3.0Vまで定電流(CC)放電させる操作を3回繰り返すコンディショニング処理を施した。その後、25℃雰囲気下で、1C(Cは定格容量(mA)/1時間(h)で表される数値)で3.75VまでCCCV充電した後、温度を-10℃雰囲気とし、3.75Vを中心として0.5C、1.0C、1.5C、2.0Cで、30秒間充電と30秒間放電とをそれぞれ行った。そして、それぞれの場合について、充電側における15秒後の電池電圧を電流値に対してプロットし、その傾きをIV抵抗(Ω)として求めた。得られたIV抵抗の値(Ω)について、比較例1のIV抵抗の値を基準(100%)として、下記の基準により評価を行なった。IV抵抗の値が小さいほど、二次電池の内部抵抗が低いことを示す。
 A:比較例1のIV抵抗に対し、85%未満
 B:比較例1のIV抵抗に対し、85%以上95%未満
 C:比較例1のIV抵抗に対し、95%以上105%未満
 D:比較例1のIV抵抗に対し、105%以上
<二次電池のサイクル特性>
 リチウムイオン二次電池を、電解液注液後、温度25℃で5時間静置した。次に、温度25℃、0.2Cの定電流法にて、セル電圧3.65Vまで充電し、その後、温度60℃で12時間エージング処理を行った。そして、温度25℃、0.2Cの定電流法にて、セル電圧3.00Vまで放電した。その後、0.2Cの定電流法にて、定電流(CC)-定電圧(CV)充電(上限セル電圧4.20V)を行い、0.2Cの定電流法にて3.00VまでCC放電した。この0.2Cにおける充放電を3回繰り返し実施した。
 その後、温度25℃の環境下、セル電圧4.20-3.00V、1.0Cの充放電レートにて充放電の操作を100サイクル行った。その際、第1回目のサイクルの放電容量をX1、第100回目のサイクルの放電容量をX2と定義した。
 放電容量X1及び放電容量X2を用いて、ΔC’=(X2/X1)×100(%)で示される容量変化率を求め、以下の基準により評価した。この容量変化率ΔC’の値が大きいほど、サイクル特性に優れていることを示す。
 A:ΔC’が93%以上
 B:ΔC’が90%以上93%未満
 C:ΔC’が87%以上90%未満
(実施例1)
<負極用バインダー組成物の調製>
 攪拌機付き5MPa耐圧容器Aに、イオン交換水150部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム水溶液(濃度10%)2.5部、芳香族ビニル単量体としてのスチレン60部、カルボン酸基含有単量体としてのイタコン酸3.5部、水酸基含有単量体としての2-ヒドロキシエチルアクリレート1部、及び、分子量調整剤としてのt-ドデシルメルカプタン0.5部を、この順に投入した。次いで、反応器内部の気体を窒素で3回置換した後、脂肪族共役ジエン単量体として1,3-ブタジエン35部を投入した。60℃に保った反応器に、重合開始剤としての過硫酸カリウム0.5部を投入して重合反応を開始し、撹拌しながら重合反応を継続した。重合転化率が96%になった時点で冷却し、重合停止剤としてのハイドロキノン水溶液(濃度10%)0.1部を加えて重合反応を停止した。その後、水温60℃のロータリーエバポレータを用いて残留単量体を除去し、重合体の水分散液を得た。さらにその後水分散液を冷却し、フェノール系老化防止剤としてオリゴマー型ヒンダードフェノール系老化防止剤(DCPDとp-クレゾールのブチル化反応物、中京油脂社製、製品名「Wingstay L」)の分散物1部と、アニオン性芳香族化合物としてのベンゾトリアゾール1.5部とを添加し、粒子状結着剤と、フェノール系老化防止剤と、アニオン性芳香族化合物とを含む水分散液とした。その後、1%アンモニア水溶液を添加して、水分散液のpHが8になるように調整し、負極用バインダー組成物を得た。
<負極用スラリー組成物の調製>
 ディスパー付きのプラネタリーミキサーに、負極活物質としての人造黒鉛(タップ密度:0.85g/cm、容量:360mAh/g)100部と、導電材としてのカーボンブラック(TIMCAL社製、製品名「Super C65」)1部と、水溶性高分子としてのカルボキシメチルセルロース(日本製紙ケミカル社製、製品名「MAC-350HC」)の2%水溶液を固形分相当で1.2部と加えて混合物を得た。得られた混合物をイオン交換水で固形分濃度60%に調整した後、25℃で60分間混合した。次に、イオン交換水で固形分濃度52%に調整した後、さらに25℃で15分間混合し混合液を得た。得られた混合液に、上述で調製された負極用バインダー組成物を固形分相当量で2.0部、及びイオン交換水を入れ、最終固形分濃度が48%となるように調整した。さらに10分間混合した後、減圧下で脱泡処理することにより、流動性の良い負極用スラリー組成物を得た。
<負極の形成>
 得られた負極用スラリー組成物を、コンマコーターで、集電体である厚さ15μmの銅箔の上に、乾燥後の目付が11mg/cmになるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、負極原反を得た。
 そして、負極原反をロールプレスで圧延して、負極合材層の密度が1.75g/cmの負極を得た。
<正極の形成>
 正極活物質としてのメディアン径12μmのLiCoO100部と、導電材としてのアセチレンブラック(電気化学工業社製、製品名「HS-100」)を2部と、結着材としてのポリフッ化ビニリデン(クレハ社製、製品名「#7208」)を固形分相当で2部と、溶媒としてのN-メチルピロリドンとを混合して全固形分濃度を70%とした。これらをプラネタリーミキサーにより混合し、正極用スラリー組成物を得た。
 得られた正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミ箔の上に、乾燥後の目付が23mg/cmになるように塗布し、乾燥させた。この乾燥は、アルミ箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、正極原反を得た。
 そして、正極原反をロールプレスで圧延して、正極合材層の密度が4.0g/cmの正極を得た。
<セパレータの準備>
 セパレータ基材よりなるセパレータとして、単層のポリプロピレン製セパレータ(セルガード社製、製品名「セルガード2500」)を準備した。
<リチウムイオン二次電池の作製>
 上述のとおり作製したプレス後の正極とプレス後の負極とを、セパレータ(厚さ20μmのポリプロピレン製微多孔膜)を、セパレータ/正極/セパレータ/負極となるように介在させることにより、積層体を得た。次に、電極及びセパレータの積層体を、直径20mmの芯に対して捲回することにより、正極、セパレータ、及び負極を備える捲回体を得た。続いて、得られた捲回体を、10mm/秒の速度で、厚さ4.5mmになるまで一方向から圧縮することにより扁平体を得た。なお、得られた扁平体は平面視楕円形をしており、その長径と短径との比(長径/短径)は7.7であった。
 また、非水系電解液(濃度1.0MのLiPF溶液、溶媒:エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)=3/7(質量比)の混合溶媒に、添加剤としてビニレンカーボネート(VC)2体積%を更に添加)を準備した。
 次に、上記扁平体を、上記非水系電解液とともにアルミニウム製のラミネートケース内に収容した。そして、負極リード及び正極リードを所定の箇所に接続した後に、ラミネートケースの開口部を熱で封口することにより、非水系二次電池としてのラミネート型リチウムイオン二次電池を製造した。なお、得られた二次電池は、幅35mm×高さ48mm×厚さ5mmのパウチ形であり、公称容量は700mAhであった。
 得られたリチウムイオン二次電池について、内部抵抗及びサイクル特性を評価した。結果を表1に示す。
(実施例2,3)
 アニオン性芳香族化合物としてのベンゾトリアゾールの量を表1に示すように変更した以外は、実施例1と同様にして負極用バインダー組成物、負極用スラリー組成物、負極、正極及びリチウムイオン二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例4)
 アニオン性芳香族化合物としてのベンゾトリアゾールをベンゾイミダゾールに変更した以外は、実施例1と同様にして負極用バインダー組成物、負極用スラリー組成物、負極、正極及びリチウムイオン二次電池を作製した。そして、実施例1と同様して評価を行った。結果を表1に示す。
(実施例5)
 アニオン性芳香族化合物としてのベンゾトリアゾールを7-メチル-1H-ベンゾトリアゾールに変更した以外は、実施例1と同様にして負極用バインダー組成物、負極用スラリー組成物、負極、正極及びリチウムイオン二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例6)
 アニオン性芳香族化合物としてのベンゾトリアゾールをインドールに変更した以外は、実施例1と同様にして負極用バインダー組成物、負極用スラリー組成物、負極、正極及びリチウムイオン二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例7)
 負極活物質として、人造黒鉛とシリコン系負極活物質としてのSiOx10%とを併用した以外は、実施例1と同様にして負極用バインダー組成物、負極用スラリー組成物、負極、正極及びリチウムイオン二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例8)
 以下のようにして調製した負極用バインダー組成物を用いた以外は、実施例1と同様にして負極用スラリー組成物、負極、正極及びリチウムイオン二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
<負極用バインダー組成物の調製(バッチ重合)>
 攪拌機付き5MPa耐圧容器Aに、芳香族ビニル単量体としてスチレン28部、脂肪族共役ジエン単量体としてイソプレン70部、カルボン酸基含有単量体としてのメタクリル酸2部、乳化剤としてアルキルジフェニルエーテルジスルホン酸塩0.6部、イオン交換水137部、及び重合開始剤として過硫酸カリウム0.3部を入れ、十分に攪拌した後、45℃に加温して重合を開始させ、20時間反応させた。次いで60℃に加温し、さらに5時間反応させた。重合転化率が97%になった時点で冷却し反応を停止して、粒子状結着剤を含む混合物を得た。その後、加熱減圧蒸留によって未反応単量体の除去を行った。この粒子状結着剤を含む混合物に、実施例1で用いたものと同様のフェノール系老化防止剤の分散物1部と、アニオン性芳香性化合物としてのベンゾトリアゾール1.5部とを添加し、粒子状結着剤と、フェノール系老化防止剤と、アニオン性芳香族化合物とを含む水分散液とし、1%アンモニア水溶液を添加して、混合物をpHが8になるように調整し、負極用バインダー組成物として得た。
(実施例9)
 以下のようにして調製した負極用バインダー組成物を用いた以外は、実施例1と同様にして負極用バインダー組成物、負極用スラリー組成物、負極、正極及びリチウムイオン二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
<重合体の水分散液の調製>
[ブロック共重合体のシクロヘキサン溶液の調製工程]
 耐圧反応器に、シクロヘキサン233.3kg、N,N,N’,N’-テトラメチルエチレンジアミン(以下、「TMEDA」と称する。)31.03mmol、及び芳香族ビニル単量体としてのスチレン30.0kgを添加した。そして、これらを40℃で撹拌しているところに、重合開始剤としてのn-ブチルリチウム1034.5mmolを添加し、50℃に昇温しながら1時間重合した。スチレンの重合転化率は100%であった。引き続き、50~60℃を保つように温度制御しながら、耐圧反応器に、脂肪族共役ジエン単量体としての1,3-ブタジエン70.0kgを1時間にわたり連続的に添加した。1,3-ブタジエンの添加を完了した後、重合反応をさらに1時間継続した。1,3-ブタジエンの重合転化率は100%であった。
 次いで、耐圧反応器に、カップリング剤としてのジクロロジメチルシラン460.3mmolを添加して2時間カップリング反応を行い、スチレン-ブタジエンカップリングブロック共重合体を形成させた。その後、活性末端を失活させるべく、反応液にメタノール2069.0mmolを添加して良く混合した。この反応液100部(重合体成分を30.0部含有)に、フェノール系老化防止剤として、ヒンダードフェノール系酸化防止剤である4-[[4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イル]アミノ]-2,6-ジ-tert-ブチルフェノール0.05部、ホスファイト系酸化防止剤としての3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン0.09部を加えて混合した。得られた混合溶液を、85~95℃の温水中に少しずつ滴下することで溶媒を揮発させて、析出物を得た。そして、この析出物を粉砕し、85℃で熱風乾燥することにより、ブロック共重合体を含む乾燥物を回収した。
 そして、回収した乾燥物をシクロヘキサンに溶解し、ブロック共重合体の濃度が10.0%であるブロック共重合体のシクロヘキサン溶液を調製した。
[乳化工程]
 アルキルベンゼンスルホン酸ナトリウムをイオン交換水に溶解し、0.3%のアルキルベンゼンスルホン酸ナトリウム水溶液を調製した。
 そして、得られたブロック共重合体のシクロヘキサン溶液1000gと、得られたアルキルベンゼンスルホン酸ナトリウム水溶液1000gとをタンク内に投入し撹拌させることで予備混合を行って予備混合物を得た。続いて、タンク内から、予備混合物を、定量ポンプを用いて高圧乳化分散機(SPXFLOW社製、製品名「LAB1000」)へ移送し、循環することにより(パス回数:5回)、予備混合物を転相乳化した乳化液を得た。
 次に、得られた乳化液中のシクロヘキサンをロータリーエバポレータにて減圧留去した。
 最後に、上層部分を100メッシュの金網で濾過し、粒子化したブロック共重合体を含有する水分散液(ブロック共重合体ラテックス)を得た。
[グラフト重合および架橋工程]
 得られたブロック共重合体ラテックスに、粒子化したブロック共重合体100部(固形分相当量)に対して、水が800部になるように蒸留水を添加して希釈した。この希釈したブロック共重合体ラテックスを、窒素置換された撹拌機付き重合反応容器に投入し、撹拌しながら温度を30℃にまで加温した。また、別の容器を用い、カルボン酸基含有単量体としてのメタクリル酸10部と蒸留水90部とを混合してメタクリル酸希釈液を調製した。このメタクリル酸希釈液を、30℃にまで加温した重合反応容器内に30分間かけて添加することにより、ブロック共重合体100部に対してメタクリル酸10部を添加した。その後、3-メルカプト-1,2-プロパンジオールをブロック重合体100部(固形分相当量)に対して1.0部添加した。
 さらに、別の容器を用い、蒸留水7部及び還元剤としての硫酸第一鉄(中部キレスト社製、製品名「フロストFe」)0.01部を含む溶液を調製した。得られた溶液を重合反応容器内に添加した後、酸化剤としての1,1,3,3-テトラメチルブチルハイドロパーオキサイド(日本油脂社製、製品名「パーオクタH」)0.5部を添加し、30℃で1時間反応させた後、さらに70℃で2時間反応させた。これにより、ブロック共重合体の架橋を行うと共に、粒子化したブロック共重合体に対してメタクリル酸をグラフト重合させて、重合体の水分散液を得た。なお、重合転化率は99%であった。
[揮発性アルカリ化合物による中和]
 得られた重合体の水分散液に、10%アンモニア水溶液を添加して、重合体の水分散液のpHが8.0になるように調整した。さらに、重合体の水分散液にフェノール系老化防止剤として実施例1で用いたものと同様のヒンダードフェノール系老化防止剤の分散物1部と、アニオン性芳香族化合物としてのベンゾトリアゾール1.5部とを添加し、粒子状結着剤と、フェノール系老化防止剤と、アニオン性芳香族化合物とを含む水分散液を負極用バインダー組成物として得た。
(比較例1)
 アニオン性芳香族化合物を使用しなかったこと以外は、実施例1と同様にして負極用バインダー組成物、負極用スラリー組成物、負極、正極及びリチウムイオン二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表2に示す。
(比較例2)
 アニオン性芳香族化合物としてのベンゾトリアゾールの量を粒子状結着剤100部当たり0.7部に変更した以外は、実施例1と同様にして負極用バインダー組成物、負極用スラリー組成物、負極、正極及びリチウムイオン二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表2に示す。
(比較例3)
 アニオン性芳香族化合物としてのベンゾトリアゾールの量を粒子状結着剤100部当たり12部に変更した以外は、比較例2と同様にして負極用バインダー組成物、負極用スラリー組成物、負極、正極及びリチウムイオン二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表2に示す。
(比較例4)
 アニオン性芳香族化合物として、ベンゾトリアゾールに替えて1-シアノエチル-2-エチル-4-メチルイミダゾールを粒子状結着剤100部当たり1.5部使用した以外は、実施例1と同様にして負極用バインダー組成物、負極用スラリー組成物、負極、正極及びリチウムイオン二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表2に示す。
(比較例5)
 アニオン性芳香族化合物として、ベンゾトリアゾールに替えて2-メルカプトベンズイミダゾールを粒子状結着剤100部当たり0.5部使用した以外は、実施例1と同様にして負極用バインダー組成物、負極用スラリー組成物、負極、正極及びリチウムイオン二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表2に示す。
 なお、以下に示す表1中、
「ST」は、スチレン単位を示し、
「BD」は、1,3-ブタジエン単位を示し、
「IP」は、イソプレン単位を示し、
「CMC」は、カルボキシメチルセルロースを示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表1より、芳香族ビニル単量体単位と脂肪族共役ジエン単量体単位とを少なくとも含む粒子状結着剤と、芳香族環縮合窒素含有五員環化合物又は芳香族置換窒素含有五員環化合物であって、(4n+2)個の環状π電子を有するアニオン性芳香族化合物とを含む負極用バインダー組成物であって、当該バインダー組成物中のアニオン性芳香族化合物が粒子状結着剤100質量部当たり1質量部超10質量部未満である負極用バインダー組成物を用いた場合(実施例1~9)、電解液注液性及びピール強度に優れる負極と、内部抵抗が低減した二次電池を製造することができることがわかる。
 一方で、表2より、上記所定のアニオン性芳香族化合物を含まないバインダー組成物を用いた場合(比較例1)や、バインダー組成物中に含まれるアニオン性芳香族化合物が所定量よりも少ないバインダー組成物を用いた場合(比較例2、比較例5)には、電解液注液性及びピール強度に優れた負極や、内部抵抗が低減されて二次電池を製造することができないことがわかる。
 また、バインダー組成物中に含まれるアニオン性芳香族化合物が所定量よりも多いバインダー組成物を用いた場合(比較例3)には、内部抵抗の低い二次電池を製造することができないことがわかる。
 さらに、アニオン性芳香族化合物であるが芳香族環縮合窒素含有五員環化合物又は芳香族置換窒素含有五員環化合物ではないバインダー組成物を用いた場合(比較例4)には、電解液注液性に優れた負極と、内部抵抗の低い二次電池を製造することができないことがわかる。
 本発明によれば、電解液注液性及びピール強度に優れ、かつ、非水系二次電池の内部抵抗を低減可能な非水系二次電池用負極の製造に用い得る非水系二次電池負極用バインダー組成物及び非水系二次電池負極用スラリー組成物を提供することができる。
 また、本発明によれば、電解液注液性及びピール強度に優れ、かつ、非水系二次電池の内部抵抗を低減可能な非水系二次電池用負極及びその製造方法を提供することができる。
 さらに、本発明によれば、内部抵抗が低減された非水系二次電池を提供することができる。
 

Claims (9)

  1.  粒子状結着剤と、芳香族環縮合窒素含有五員環化合物又は芳香族置換窒素含有五員環化合物とを含む非水系二次電池負極用バインダー組成物であって、
     前記粒子状結着剤は、芳香族ビニル単量体単位と脂肪族共役ジエン単量体単位とを少なくとも含み、
     前記芳香族環縮合窒素含有五員環化合物又は前記芳香族置換窒素含有五員環化合物は、(4n+2)個の環状π電子を有するアニオン性芳香族化合物であり(ただし、nは1以上の整数である)、
     前記アニオン性芳香族化合物の含有量は、前記粒子状結着剤100質量部当たり1質量部超10質量部未満である、非水系二次電池負極用バインダー組成物。
  2.  前記アニオン性芳香族化合物が、下記式(A)又は下記式(B)で表される、請求項1に記載の非水系二次電池負極用バインダー組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(A)及び式(B)中、R~Rは炭素原子であり、R~Rの少なくとも1つは窒素原子であり、Rは、水素原子又は炭素数1以上3以下のアルキル基を表す。)
  3.  フェノール系老化防止剤を更に含む、請求項1又は2に記載の非水系二次電池負極用バインダー組成物。
  4.  前記アニオン性芳香族化合物が、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、又は、テトラゾール環を含む、請求項1~3のいずれか1項に記載の非水系二次電池負極用バインダー組成物。
  5.  請求項1~4のいずれか1項に記載の非水系二次電池負極用バインダー組成物を含む、非水系二次電池負極用スラリー組成物。
  6.  負極活物質を含む、請求項5に記載の非水系二次電池負極用スラリー組成物。
  7.  請求項6に記載の非水系二次電池負極用スラリー組成物を用いて形成した負極合材層を備える、非水系二次電池用負極。
  8.  請求項7に記載の非水系二次電池用負極を備える、非水系二次電池。
  9.  請求項6に記載の非水系二次電池負極用スラリー組成物を用いて負極合材層を形成することを含む、非水系二次電池用負極の製造方法。
     
PCT/JP2021/044559 2020-12-25 2021-12-03 非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極及びその製造方法、並びに、非水系二次電池 WO2022138085A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/256,686 US20240120487A1 (en) 2020-12-25 2021-12-03 Binder composition for non-aqueous secondary battery negative electrode, slurry composition for non-aqueous secondary battery negative electrode, negative electrode for non-aqueous secondary battery and method of producing same, and non-aqueous secondary battery
EP21910235.7A EP4269490A1 (en) 2020-12-25 2021-12-03 Binder composition for non-aqueous secondary battery negative electrode, slurry composition for non-aqueous secondary battery negative electrode, non-aqueous secondary battery negative electrode and method for producing same, and non-aqueous secondary battery
KR1020237020442A KR20230124911A (ko) 2020-12-25 2021-12-03 비수계 이차 전지 부극용 바인더 조성물, 비수계 이차 전지 부극용 슬러리 조성물, 비수계 이차 전지용 부극 및 그 제조 방법, 그리고, 비수계 이차 전지
CN202180084842.8A CN116615496A (zh) 2020-12-25 2021-12-03 非水系二次电池负极用黏结剂组合物、非水系二次电池负极用浆料组合物、非水系二次电池用负极及其制造方法、以及非水系二次电池
JP2022572067A JPWO2022138085A1 (ja) 2020-12-25 2021-12-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-217924 2020-12-25
JP2020217924 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022138085A1 true WO2022138085A1 (ja) 2022-06-30

Family

ID=82159439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044559 WO2022138085A1 (ja) 2020-12-25 2021-12-03 非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極及びその製造方法、並びに、非水系二次電池

Country Status (6)

Country Link
US (1) US20240120487A1 (ja)
EP (1) EP4269490A1 (ja)
JP (1) JPWO2022138085A1 (ja)
KR (1) KR20230124911A (ja)
CN (1) CN116615496A (ja)
WO (1) WO2022138085A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024190430A1 (ja) * 2023-03-10 2024-09-19 日産化学株式会社 エネルギー貯蔵デバイス電極用薄膜形成組成物

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001273927A (ja) * 2000-03-28 2001-10-05 Ngk Insulators Ltd リチウム二次電池
JP2006012587A (ja) * 2004-06-25 2006-01-12 Matsushita Electric Ind Co Ltd 偏平形有機電解液電池
JP2006073308A (ja) * 2004-09-01 2006-03-16 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2011198755A (ja) * 2010-02-23 2011-10-06 Dowa Electronics Materials Co Ltd 電池正極材料及び電池正極材料の製造方法
JP2012500833A (ja) * 2008-08-29 2012-01-12 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク 五員環状アニオン塩及び電解質へのその利用
JP2012204303A (ja) 2011-03-28 2012-10-22 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
JP2014110234A (ja) * 2012-12-04 2014-06-12 Samsung Sdi Co Ltd リチウムイオン二次電池用バインダ、リチウムイオン二次電池用負極活物質層、及びリチウムイオン二次電池
JP2018156892A (ja) * 2017-03-21 2018-10-04 第一工業製薬株式会社 負極ペーストおよびこれを用いた非水電解液二次電池
WO2019035190A1 (ja) * 2017-08-16 2019-02-21 日立化成株式会社 二次電池用電池部材及び二次電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5499951B2 (ja) 2010-06-30 2014-05-21 日本ゼオン株式会社 二次電池用バインダー、製造方法、二次電池負極用組成物、及び二次電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001273927A (ja) * 2000-03-28 2001-10-05 Ngk Insulators Ltd リチウム二次電池
JP2006012587A (ja) * 2004-06-25 2006-01-12 Matsushita Electric Ind Co Ltd 偏平形有機電解液電池
JP2006073308A (ja) * 2004-09-01 2006-03-16 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2012500833A (ja) * 2008-08-29 2012-01-12 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク 五員環状アニオン塩及び電解質へのその利用
JP2011198755A (ja) * 2010-02-23 2011-10-06 Dowa Electronics Materials Co Ltd 電池正極材料及び電池正極材料の製造方法
JP2012204303A (ja) 2011-03-28 2012-10-22 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
JP2014110234A (ja) * 2012-12-04 2014-06-12 Samsung Sdi Co Ltd リチウムイオン二次電池用バインダ、リチウムイオン二次電池用負極活物質層、及びリチウムイオン二次電池
JP2018156892A (ja) * 2017-03-21 2018-10-04 第一工業製薬株式会社 負極ペーストおよびこれを用いた非水電解液二次電池
WO2019035190A1 (ja) * 2017-08-16 2019-02-21 日立化成株式会社 二次電池用電池部材及び二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024190430A1 (ja) * 2023-03-10 2024-09-19 日産化学株式会社 エネルギー貯蔵デバイス電極用薄膜形成組成物

Also Published As

Publication number Publication date
CN116615496A (zh) 2023-08-18
US20240120487A1 (en) 2024-04-11
KR20230124911A (ko) 2023-08-28
EP4269490A1 (en) 2023-11-01
JPWO2022138085A1 (ja) 2022-06-30

Similar Documents

Publication Publication Date Title
US11387457B2 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US11046797B2 (en) Binder composition for electrochemical device electrode, slurry composition for electrochemical device electrode, electrochemical device electrode, and electrochemical device
JP6798545B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
US10249879B2 (en) Binder composition for secondary battery electrode-use, slurry composition for secondary battery electrode-use, electrode for secondary battery-use and production method therefor, and secondary battery
WO2016170768A1 (ja) リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP7415915B2 (ja) 二次電池用バインダー組成物、二次電池電極用導電材ペースト、二次電池電極用スラリー組成物、二次電池電極用スラリー組成物の製造方法、二次電池用電極および二次電池
WO2015151518A1 (ja) リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極、および、リチウムイオン二次電池
WO2020196111A1 (ja) 非水系二次電池負極用スラリー組成物、非水系二次電池用負極および非水系二次電池
KR102407600B1 (ko) 비수계 이차 전지 전극용 바인더 조성물, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극 및 비수계 이차 전지
WO2022138085A1 (ja) 非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極及びその製造方法、並びに、非水系二次電池
US10593948B2 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP6477398B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JP7556349B2 (ja) 非水系二次電池用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
JP6455015B2 (ja) 二次電池用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
WO2022113760A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
US20220085376A1 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
KR20200134220A (ko) 이차 전지용 바인더 조성물, 이차 전지 전극용 도전재 페이스트, 이차 전지 전극용 슬러리 조성물, 이차 전지 전극용 슬러리 조성물의 제조 방법, 이차 전지용 전극 및 이차 전지
JP6579250B2 (ja) 二次電池用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
WO2022070830A1 (ja) 非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極及び非水系二次電池
WO2019054173A1 (ja) 電気化学素子電極用スラリー組成物、電気化学素子用電極、電気化学素子、および電気化学素子電極用スラリー組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910235

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572067

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18256686

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180084842.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021910235

Country of ref document: EP

Effective date: 20230725