WO2020202941A1 - セラミック基板の製造方法及びセラミック基板 - Google Patents

セラミック基板の製造方法及びセラミック基板 Download PDF

Info

Publication number
WO2020202941A1
WO2020202941A1 PCT/JP2020/008256 JP2020008256W WO2020202941A1 WO 2020202941 A1 WO2020202941 A1 WO 2020202941A1 JP 2020008256 W JP2020008256 W JP 2020008256W WO 2020202941 A1 WO2020202941 A1 WO 2020202941A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic substrate
manufacturing
ceramic
mother laminate
ceramic green
Prior art date
Application number
PCT/JP2020/008256
Other languages
English (en)
French (fr)
Inventor
弘毅 崔
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2021511243A priority Critical patent/JP7173298B2/ja
Publication of WO2020202941A1 publication Critical patent/WO2020202941A1/ja
Priority to US17/391,850 priority patent/US20210367578A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0547Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement
    • H03H9/0561Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement consisting of a multilayered structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1014Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
    • H03H9/1021Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device the BAW device being of the cantilever type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • H01L23/08Containers; Seals characterised by the material of the container or its electrical properties the material being an electrical insulator, e.g. glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02102Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02133Means for compensation or elimination of undesirable effects of stress
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0014Shaping of the substrate, e.g. by moulding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods
    • H05K3/1291Firing or sintering at relative high temperatures for patterns on inorganic boards, e.g. co-firing of circuits on green ceramic sheets
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/022Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the cantilever type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49158Manufacturing circuit on or in base with molding of insulated base

Definitions

  • the present invention relates to a method for manufacturing a ceramic substrate and a ceramic substrate.
  • Ceramic substrates are used as mounting boards for mounting electronic components and as packages for storing electronic components.
  • the upper surface of the ceramic green sheet is press-processed to process the recesses, whereby the recesses are formed in the ceramic substrate after firing.
  • the pressure applied to the ceramic green sheet differs between the region where the concave portion of the ceramic green sheet is formed and the region where the concave portion is not formed in the press working.
  • the density is distributed in the plane. Therefore, warpage may occur in the ceramic substrate after firing.
  • An object of the present invention is to provide a method for manufacturing a ceramic substrate and a ceramic substrate capable of suitably suppressing warpage.
  • the method for manufacturing a ceramic substrate on one side of the present invention is a method for manufacturing a ceramic substrate having a recess on the upper surface, at a position not overlapping with a recessed region where the recess is formed after firing, and after firing.
  • a hole is formed in at least one of the plurality of ceramic green sheets at a position overlapping the planned division line divided into the one piece of the ceramic substrate, and the plurality of the ceramic green sheets are laminated.
  • the present invention includes a step of forming the mother laminate and a step of forming the recess in the mother laminate before firing by pressing the recessed region to be formed in the mother laminate.
  • the ceramic substrate on one side of the present invention is a ceramic substrate on which a plurality of ceramic layers are laminated, and has a substrate bottom having a mounting surface and a wall portion provided on the substrate bottom and surrounding the mounting surface.
  • the orientation of the grain boundaries indicating the layers between the plurality of ceramic layers is curved along the mounting surface and the inner wall surface of the wall portion, and does not intersect with the bottom surface of the substrate and the outer peripheral surface of the wall portion.
  • FIG. 1 is a plan view showing the configuration of a package having a ceramic substrate of the embodiment.
  • FIG. 2 is a cross-sectional view taken along the line II-II'of FIG.
  • FIG. 3 is an explanatory diagram for explaining a method for manufacturing a ceramic substrate.
  • FIG. 4 is a plan view showing the mother laminated body.
  • FIG. 5 is an enlarged plan view showing the mother laminated body.
  • FIG. 6 is a cross-sectional view schematically showing the mother laminated body after firing.
  • FIG. 7 is an enlarged plan view showing the mother laminated body according to the first modification.
  • FIG. 8 is an enlarged plan view showing the mother laminated body according to the second modification.
  • FIG. 9 is an enlarged plan view showing the mother laminated body according to the third modification.
  • FIG. 10 is an enlarged plan view showing the mother laminated body according to the fourth modification.
  • FIG. 11 is an enlarged cross-sectional view showing the mother laminated body according to the fifth modification.
  • FIG. 1 is a plan view showing the configuration of a package having a ceramic substrate of the embodiment.
  • FIG. 2 is a cross-sectional view taken along the line II-II'of FIG. Note that FIG. 1 shows a plan view of the ceramic substrate 1 excluding the lid 2 of the package 100.
  • the package 100 has a ceramic substrate 1.
  • the ceramic substrate 1 has a substrate bottom 10 and a wall 12.
  • the wall portion 12 is provided in a frame shape so as to surround the mounting surface 10a of the substrate bottom portion 10.
  • the ceramic substrate 1 is provided with a recess 20 on the upper surface.
  • the ceramic substrate 1 has a rectangular shape in a plan view. In the following description, the plan view indicates the arrangement relationship when viewed from a direction perpendicular to the mounting surface 10a.
  • the electronic component 200 is housed in the recess 20 of the ceramic substrate 1. Specifically, the electronic component 200 is a crystal unit.
  • a pedestal 14 for mounting the electronic component 200 is provided on the mounting surface 10a of the bottom portion 10 of the substrate. The pedestal 14 is provided near the corner of the mounting surface 10a and is arranged away from the wall portion 12.
  • a support portion 16 is provided on the mounting surface 10a of the substrate bottom portion 10. The support portion 16 is arranged on the opposite side of the pedestal 14.
  • One end side of the electronic component 200 is joined onto the pedestal 14 by a joining member 18.
  • the other end side of the electronic component 200 is located above the support portion 16.
  • the electronic component 200 is arranged apart from the mounting surface 10a, the support portion 16, and the inner wall surface 12b of the wall portion 12.
  • connection electrode 22 that is electrically connected to the electronic component 200 is provided on the upper surface of the pedestal 14. Further, bottom electrodes 24 and 25 are provided on the lower surface of the ceramic substrate 1. The connection electrode 22 and the bottom electrode 24 are electrically connected via a via 23 provided on the bottom portion 10 of the substrate.
  • a metallize layer 3 is provided on the upper surface 12a of the wall portion 12.
  • the lid 2 is joined to the ceramic substrate 1 via the metallized layer 3.
  • the space surrounded by the substrate bottom portion 10, the wall portion 12, and the lid body 2 is hermetically sealed.
  • FIG. 3 is an explanatory diagram for explaining a method for manufacturing a ceramic substrate.
  • the method for manufacturing the ceramic substrate 1 is a step of forming holes 61 in a plurality of ceramic green sheets 51 and laminating a plurality of ceramic green sheets 51 to form a mother laminate 5 (step ST1). )including.
  • the ceramic green sheet 51 contains a ceramic powder containing aluminum oxide (Al 2 O 3 ) as a main component, and a resin material such as an organic binder and a thermoplastic resin.
  • the ceramic green sheet 51 is coated and formed by, for example, a doctor blade or a lip coater.
  • the hole 61 is formed at a position where each of the plurality of ceramic green sheets 51 overlaps with the planned division line 54.
  • the planned division line 54 is a virtual line in which the mother laminated body 5 is scheduled to be divided into individual ceramic substrates 1 after firing.
  • each of the plurality of ceramic green sheets 51 is formed with holes 61 and various electrodes such as vias 23, connection electrodes 22, bottom electrodes 24, and 25.
  • the mother laminated body 5 is formed by laminating a plurality of ceramic green sheets 51 having holes 61 formed therein.
  • the holes 61 of the plurality of ceramic green sheets 51 are provided at positions where they overlap each other.
  • the mother laminated body 5 has a hole portion 61 formed so as to penetrate from the upper surface to the lower surface.
  • the mother laminated body 5 has a wall portion formation planned region 55 and a recess formation planned region 56.
  • the wall portion formation planned region 55 is an region where the wall portion 12 of the ceramic substrate 1 is scheduled to be formed after the mother laminate 5 is fired and divided.
  • the recess 20 is a region where the recess 20 of the ceramic substrate 1 is planned to be formed after the mother laminate 5 is fired and divided.
  • the plurality of hole portions 61 are provided in the wall portion formation planned region 55 of the mother laminated body 5. That is, the plurality of hole portions 61 are provided at positions that do not overlap with the recessed forming planned region 56 of the mother laminated body 5 and at positions that overlap with the planned division line 54.
  • FIG. 4 is a plan view showing the mother laminated body.
  • the planned division lines 53 and 54 are provided in a matrix shape. After firing, the mother laminate 5 is divided into individual ceramic substrates 1 along the scheduled division lines 53 and 54. That is, the region surrounded by the planned division lines 53 and 54 corresponds to one ceramic substrate 1.
  • a groove for division may be formed in the mother laminated body 5 at a position overlapping the planned division lines 53 and 54.
  • a roller breaker may be used or a dicer may be used for the equipment device for dividing the ceramic substrate 1 into individual pieces.
  • FIG. 5 is an enlarged plan view of the mother laminated body.
  • FIG. 5 shows a mother laminated body 5 after laminating a plurality of ceramic green sheets 51 and before pressing.
  • the plurality of hole portions 61 have a circular shape in a plan view, and are arranged along the planned division lines 53 and 54, respectively. More specifically, the plurality of hole portions 61 are provided at positions overlapping the intersections of the planned division line 53 and the planned division line 54. Further, the plurality of hole portions 61 are also provided at positions that overlap with the planned division lines 53 and 54 between the intersections.
  • the pressurizing jig 8 forms the recess 20 in the mother laminate 5 by pressing the recessed region 56 of the mother laminate 5.
  • the pressurizing jig 8 has an upper die 81 and a lower die 82.
  • the mother laminate 5 is arranged between the lower mold 82 and the upper mold 81.
  • the upper mold 81 has a base 83 and a convex portion 84.
  • the upper mold 81 is pressed from the upper surface side of the mother laminate 5.
  • the recessed region 56 of the mother laminated body 5 is pressed by the convex portion 84 (step ST2). Due to the pressure applied from the convex portion 84, the plurality of ceramic green sheets 51 are deformed along the shape of the convex portion 84. That is, the ceramic green sheet 51 in the recessed region 56 is thinned and pushed out in the direction indicated by the arrow A to flow toward the wall portion planned region 55.
  • the wall portion planned region 55 is thicker than the recessed portion planned region 56, and the width of the hole portion 61 is reduced by the flow of the ceramic green sheet 51.
  • step ST3 when the upper mold 81 pressurizes (step ST3), the mother laminate 5 is deformed so as to cover the lower surface and the side surface of the convex portion 84, and the wall portion formation planned region 55 comes into contact with the lower surface 83a of the base 83.
  • the plurality of ceramic green sheets 51 are curved along the lower surface, the side surface of the convex portion 84, and the lower surface 83a of the base 83.
  • the shape of the convex portion 84 is transferred to the mother laminated body 5.
  • the inner walls of the holes 61 are brought into close contact with each other, and the mother laminate 5 is integrally formed at the planned division line 54.
  • the mother laminate 5 having the recess 20 can be obtained (step ST4).
  • the mother laminate 5 is provided with the hole 61, the fluidity of the ceramic green sheet 51 in the press working can be improved. That is, when pressure is applied to the ceramic green sheet 51 by the pressurizing jig 8, the hole 61 makes it easier for the ceramic green sheet 51 of the recessed portion forming region 56 to flow toward the wall portion forming planned region 55.
  • the pressure distribution in the ceramic green sheet 51 in the press working is relaxed as compared with the case where the hole 61 is not formed, and the recess forming region 56 and the wall forming planned region 55 are reduced with a small pressure. Can be deformed to form the recess 20. Alternatively, a deeper recess 20 can be formed at the same pressure as compared to the case where the hole 61 is not formed.
  • the difference in density of the ceramic green sheet 51 can be suppressed between the recessed portion forming planned region 56 and the wall portion forming planned region 55. As a result, it is possible to suppress the warpage of the ceramic substrate 1 formed after the mother laminate 5 is fired and divided.
  • a plurality of hole portions 61 are provided so as to surround the periphery of the recess formation planned region 56. More preferably, the plurality of hole portions 61 are provided at positions symmetrical with respect to the recessed portion formation planned region 56.
  • FIG. 6 is a cross-sectional view schematically showing the mother laminated body after firing.
  • the orientation of the grain boundaries 58 indicating the layers between the plurality of ceramic layers 91 is such that the mounting surface 10a and the wall portion are oriented by the flow of the ceramic green sheet 51 in the press working. It is curved along the inner wall surface 12b and the upper surface 12a of the twelve.
  • the flowing ceramic green sheets 51 are in close contact with each other and are integrally formed. Therefore, in the mother laminated body 9 after firing, the grain boundaries 58 are arranged along the planned division line 54. As a result, when the fired mother laminate 9 is divided along the planned division line 54 to form the individual ceramic substrate 1, the grain boundary 58 does not intersect the end faces of the wall portion 12 and the substrate bottom portion 10. Thereby, in the present embodiment, it is possible to suppress the generation of cracks and the dropping of ceramic particles in the step of dividing into individual pieces. Further, since the bending strength of the ceramic substrate 1 in the planned division line 54 can be made smaller than the bending strength of the ceramic substrate 1 in other portions, the stress that the ceramic substrate 1 can divide can be reduced by using a roller breaker.
  • FIG. 7 is an enlarged plan view showing the mother laminated body according to the first modification.
  • the same components as those in the above-described embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the configuration in which the hole portion 61 is provided only at the intersection of the planned division lines 53 and 54 in the mother laminated body 5 will be described. More specifically, as shown in FIG. 7, the plurality of hole portions 61 are not provided at positions overlapping the planned division lines 53 and 54 between the intersections of the planned division lines 53 and 54. Four holes 61 are provided around one recessed region 56.
  • the number of holes 61 is smaller than that in the above-described embodiment. Even in this case, in the press working, the ceramic green sheet 51 of the four recessed portions planned to be formed 56 arranged around the hole 61 flows through the hole 61. Thereby, in the first modification, the fluidity of the ceramic green sheet 51 can be effectively improved.
  • FIG. 8 is an enlarged plan view showing the mother laminated body according to the second modification.
  • the second modification unlike the above-described embodiment and the first modification, the configuration in which the hole portion 61a extends along the planned division lines 53 and 54 in a plan view will be described.
  • a plurality of hole portions 61a are provided between two recessed portions planned to be formed regions 56 adjacent to each other with the wall portion to be formed region 55 in between.
  • the plurality of hole portions 61a are not provided at positions overlapping the intersections of the scheduled division lines 53 and 54, but are located at the central portions of the adjacent intersections.
  • the area (volume) of one hole 61a is larger than that of the hole 61 in the above-described embodiment and the first modification. Therefore, the volume of the ceramic green sheet 51 that flows into the hole 61a in the press working can be increased, and the fluidity of the ceramic green sheet 51 can be improved more satisfactorily.
  • FIG. 9 is an enlarged plan view showing the mother laminated body according to the third modification.
  • the third modification unlike the above-described embodiment, the first modification and the second modification, the configuration in which the hole 61b is cross-shaped in a plan view will be described.
  • the plurality of cross-shaped holes 61b are provided at positions overlapping the intersections of the planned division lines 53 and 54.
  • the plurality of hole portions 61b are formed in a cross shape by intersecting a rectangular portion extending along the scheduled division line 53 and a rectangular portion extending along the scheduled division line 54.
  • the third modification it is possible to secure the area (volume) of the plurality of holes 61b while suppressing the increase in the width of the wall portion planned formation region 55.
  • the fluidity of the ceramic green sheet 51 even when the hole 61b cannot be provided in the wall portion planned formation region 55 between the two adjacent recess formation planned regions 56 or the width of the wall portion planned formation region 55 is small. Can be improved.
  • FIG. 10 is an enlarged plan view showing the mother laminated body according to the fourth modification.
  • the fourth modification unlike the above-described embodiment and the first modification to the third modification, a configuration in which the hole portion 61c has a rhombic shape with curved sides will be described in a plan view.
  • the plurality of hole portions 61c are provided at positions overlapping the intersections of the planned division lines 53 and 54.
  • Each side of the plurality of holes 61c has a curved shape that is recessed toward the central portion of the rhombus shape. In other words, each side of the plurality of holes 61c is curved in a direction away from the corner of the recessed region 56.
  • the plurality of hole portions 61c can be efficiently arranged, and the area (volume) of the plurality of hole portions 61c is secured while suppressing the increase in the width of the wall portion formation planned region 55. can do.
  • FIG. 11 is an enlarged cross-sectional view showing the mother laminated body according to the fifth modification.
  • the hole 61d is the mother laminate 5 among the plurality of ceramic green sheets 51 constituting the mother laminate 5. The configuration formed on a part of the ceramic green sheet 51 located on the upper surface side will be described.
  • holes 61d are formed in the two ceramic green sheets 51 located on the upper surface side of the mother laminate 5, and holes are formed in the two ceramic green sheets 51 on the lower surface side. Part 61d is not formed.
  • the hole 61d is opened on the upper surface of the mother laminate 5, and a ceramic green sheet 51 is provided on the bottom surface of the hole 61d.
  • the ceramic green sheet 51 easily flows in the upper part of the wall portion planned formation area 55 provided with the hole portion 61d. That is, the fluidity of the ceramic green sheet 51 from the lower surface side to the upper surface side is improved in the wall portion planned formation region 55, and as a result, the fluidity of the ceramic green sheet 51 in the concave portion formation planned region 56 is improved.
  • FIG. 11 shows an example in which the hole 61d is formed in the two ceramic green sheets 51, but the present invention is not limited to this.
  • the plurality of ceramic green sheets 51 constituting the mother laminate 5 at least one ceramic green sheet 51 may have a hole 61d formed therein.
  • the configurations of the above-described embodiment and the first to fifth modifications can be combined as appropriate.
  • the arrangement of the hole portions 61 shown in the embodiment and the first modification may be combined with the shapes of the hole portions 61a, 61b, 61c shown in the second modification to the fourth modification in a plan view. ..
  • the configuration of the fifth modification can be applied to each of the embodiment and the first modification to the fourth modification.
  • the configurations of the above-described embodiment and the first to fifth modifications are merely examples and can be changed as appropriate.
  • the number of the plurality of ceramic green sheets 51 constituting the mother laminate 5 is not limited to four, and may be five or more, or three or less.
  • the cross-sectional shape of the recess 20 is a part of a rectangle having corners, but is not limited to this.
  • the connecting portion between the inner wall surface 12b of the recess 20 and the mounting surface 10a may be formed of a curved curved surface.
  • the mounting surface 10a of the recess 20 may be formed to have a curved surface.
  • the number and arrangement of the holes 61 and the shape in a plan view can be changed as appropriate.
  • two or more hole portions 61 may be arranged between adjacent intersections.
  • the shape of the hole 61 in a plan view is not limited to a circular shape, a rectangular shape, or a rhombic shape, and may be another shape such as a polygonal shape.
  • the electronic component 200 shown in FIGS. 1 and 2 is not limited to the crystal oscillator, and may be another electronic component.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

セラミック基板の製造方法は、上面に凹部を有するセラミック基板の製造方法であって、焼成後に凹部が形成される凹部形成予定領域と重ならない位置で、かつ、焼成後に個片のセラミック基板に分割される分割予定ラインと重なる位置に、複数のセラミックグリーンシートのうち少なくとも1枚以上のセラミックグリーンシートに穴部を形成し、複数のセラミックグリーンシートを積層してマザー積層体を形成する工程と、マザー積層体の凹部形成予定領域をプレス加工することで、焼成前のマザー積層体に凹部を形成する工程と、を有する。

Description

セラミック基板の製造方法及びセラミック基板
 本発明は、セラミック基板の製造方法及びセラミック基板に関する。
 電子部品を実装する実装基板や、電子部品を収納するパッケージとしてセラミック基板が用いられる。特許文献1に記載されているセラミック基板(電子部品収納用パッケージ)では、セラミックグリーンシートの上面をプレス加工して、凹部を加工することによって、焼成後のセラミック基板に凹部が形成される。
特開2015-170756号公報
 特許文献1では、プレス加工において、セラミックグリーンシートの凹部が形成される領域と、凹部が形成されない領域とで、セラミックグリーンシートに加えられる圧力が異なる。これにより、凹部が加工されたセラミックグリーンシートでは、平面内で密度の分布が生じる。このため、焼成後のセラミック基板において、反りが発生する可能性がある。
 本発明は、反りを好適に抑制することが可能なセラミック基板の製造方法及びセラミック基板を提供することを目的とする。
 本発明の一側面のセラミック基板の製造方法は、上面に凹部を有するセラミック基板の製造方法であって、焼成後に前記凹部が形成される凹部形成予定領域と重ならない位置で、かつ、焼成後に個片の前記セラミック基板に分割される分割予定ラインと重なる位置に、複数のセラミックグリーンシートのうち少なくとも1枚以上の前記セラミックグリーンシートに穴部を形成し、複数の前記セラミックグリーンシートを積層してマザー積層体を形成する工程と、前記マザー積層体の前記凹部形成予定領域をプレス加工することで、焼成前の前記マザー積層体に前記凹部を形成する工程と、を有する。
 本発明の一側面のセラミック基板は、複数のセラミック層が積層されたセラミック基板であって、搭載面を有する基板底部と、前記基板底部の上に設けられ、前記搭載面を囲む壁部とを有し、複数の前記セラミック層の層間を示す粒界の配向が、前記搭載面及び前記壁部の内壁面に沿って湾曲し、かつ、前記基板底部及び前記壁部の外周面と交差しない。
 本発明によれば、反りを好適に抑制することが可能である。
図1は、実施形態のセラミック基板を有するパッケージの構成を示す平面図である。 図2は、図1のII-II’断面図である。 図3は、セラミック基板の製造方法を説明するための説明図である。 図4は、マザー積層体を示す平面図である。 図5は、マザー積層体を拡大して示す平面図である。 図6は、焼成後のマザー積層体を模式的に示す断面図である。 図7は、第1変形例に係るマザー積層体を拡大して示す平面図である。 図8は、第2変形例に係るマザー積層体を拡大して示す平面図である。 図9は、第3変形例に係るマザー積層体を拡大して示す平面図である。 図10は、第4変形例に係るマザー積層体を拡大して示す平面図である。 図11は、第5変形例に係るマザー積層体を拡大して示す断面図である。
 以下に、本発明のセラミック基板の製造方法及びセラミック基板の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。各実施の形態は例示であり、異なる実施の形態で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもない。第2の実施の形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
 図1は、実施形態のセラミック基板を有するパッケージの構成を示す平面図である。図2は、図1のII-II’断面図である。なお、図1は、パッケージ100の蓋体2を除いたセラミック基板1の平面図を示す。
 図1に示すように、パッケージ100はセラミック基板1を有する。セラミック基板1は、基板底部10と、壁部12とを有する。壁部12は、基板底部10の搭載面10aを囲んで枠状に設けられている。言い換えると、セラミック基板1は、上面に凹部20が設けられている。セラミック基板1は、平面視で、矩形状である。なお、以下の説明において、平面視とは、搭載面10aに垂直な方向から見た場合の配置関係を示す。
 電子部品200は、セラミック基板1の凹部20内に収納される。具体的には、電子部品200は、水晶振動子である。基板底部10の搭載面10aには電子部品200を実装するための台座14が設けられている。台座14は、搭載面10aの隅部付近に設けられ、壁部12から離隔して配置される。また、基板底部10の搭載面10aには支持部16が設けられる。支持部16は、台座14と反対側に配置される。電子部品200の一端側は、台座14の上に接合部材18により接合される。電子部品200の他端側は、支持部16の上側に位置する。電子部品200は、搭載面10a、支持部16及び壁部12の内壁面12bと離れて配置される。
 図2に示すように、台座14の上面には、電子部品200と電気的に接続される接続電極22が設けられる。また、セラミック基板1の下面には、底面電極24、25が設けられている。接続電極22と底面電極24とは、基板底部10に設けられたビア23を介して電気的に接続される。
 壁部12の上面12aには、メタライズ層3が設けられている。蓋体2は、メタライズ層3を介してセラミック基板1に接合される。これにより、基板底部10と、壁部12と、蓋体2とで囲まれた空間が気密封止される。
 次に、セラミック基板1の製造方法について説明する。図3は、セラミック基板の製造方法を説明するための説明図である。図3に示すように、セラミック基板1の製造方法は、複数のセラミックグリーンシート51に穴部61を形成し、複数のセラミックグリーンシート51を積層してマザー積層体5を形成する工程(ステップST1)を含む。
 セラミックグリーンシート51は、酸化アルミニウム(Al)を主成分とするセラミック粉末と、有機バインダ及び熱可塑性樹脂等の樹脂材料とを含む。セラミックグリーンシート51は、例えば、ドクターブレードやリップコータ等により塗布形成される。
 図3に示すように、穴部61は、複数のセラミックグリーンシート51の、それぞれ、分割予定ライン54と重なる位置に形成される。分割予定ライン54は、マザー積層体5が焼成後に個片のセラミック基板1に分割される予定の仮想線である。なお、図3では図示を省略するが、複数のセラミックグリーンシート51のそれぞれには、穴部61とともに、ビア23や、接続電極22、底面電極24、25等の各種電極が形成される。穴部61が形成された複数のセラミックグリーンシート51を積層することでマザー積層体5が形成される。複数のセラミックグリーンシート51の穴部61は、互いに重なる位置に設けられる。これにより、マザー積層体5は、上面から下面まで貫通して形成される穴部61を有する。
 また、マザー積層体5は、壁部形成予定領域55と、凹部形成予定領域56とを有する。壁部形成予定領域55は、マザー積層体5の焼成、分割後にセラミック基板1の壁部12が形成される予定の領域である。凹部形成予定領域56は、マザー積層体5の焼成、分割後にセラミック基板1の凹部20が形成される予定の領域である。複数の穴部61は、マザー積層体5の壁部形成予定領域55に設けられる。すなわち、複数の穴部61は、マザー積層体5の凹部形成予定領域56と重ならない位置で、かつ、分割予定ライン54と重なる位置に設けられる。
 図4は、マザー積層体を示す平面図である。図4に示すように、マザー積層体5において、分割予定ライン53、54はマトリクス状に設けられる。マザー積層体5は、焼成後に分割予定ライン53、54で、個片のセラミック基板1に分割される。つまり、分割予定ライン53、54で囲まれた領域が、1つのセラミック基板1に対応する。マザー積層体5には、分割予定ライン53、54と重なる位置に、分割用の溝が形成されてもよい。個片のセラミック基板1に分割する設備装置に、例えばローラーブレイク機を用いてもよく、ダイサーを用いてもよい。
 図5は、マザー積層体を拡大して示す平面図である。なお、図5では、複数のセラミックグリーンシート51を積層後、プレス加工前のマザー積層体5を示す。図5に示すように、複数の穴部61は、平面視でそれぞれ円形状であり、分割予定ライン53、54に沿って配列される。より具体的には、複数の穴部61は、分割予定ライン53と分割予定ライン54との交点と重なる位置に設けられる。また、複数の穴部61は、交点の間において、分割予定ライン53、54と重なる位置にも設けられる。
 次に、図3に示すように、加圧治具8は、マザー積層体5の凹部形成予定領域56をプレス加工することで、マザー積層体5に凹部20を形成する。加圧治具8は、上型81と下型82とを有する。マザー積層体5は、下型82と上型81との間に配置される。上型81は、ベース83と、凸部84とを有する。
 上型81はマザー積層体5の上面側からプレス加工する。これにより、まず、マザー積層体5の凹部形成予定領域56が凸部84により加圧される(ステップST2)。凸部84から加えられる圧力により、複数のセラミックグリーンシート51は、凸部84の形状に沿って変形する。すなわち、凹部形成予定領域56のセラミックグリーンシート51が薄くなるとともに、矢印Aに示す方向に押し出されて、壁部形成予定領域55側に流動する。壁部形成予定領域55では、凹部形成予定領域56よりも厚くなり、セラミックグリーンシート51の流動により穴部61の幅が小さくなる。
 さらに、上型81が加圧する(ステップST3)ことで、マザー積層体5が凸部84の下面及び側面を覆うように変形し、壁部形成予定領域55がベース83の下面83aに接する。複数のセラミックグリーンシート51は、凸部84の下面、側面及びベース83の下面83aに沿って湾曲する。これにより、マザー積層体5に凸部84の形状が転写される。また、凹部形成予定領域56のセラミックグリーンシート51の流動により、穴部61の内壁が密着し、分割予定ライン54でマザー積層体5は一体に形成される。
 そして、加圧治具8を取り外すことで、凹部20を有するマザー積層体5が得られる(ステップST4)。
 本実施形態のセラミック基板1の製造方法によれば、マザー積層体5に穴部61が設けられているので、プレス加工におけるセラミックグリーンシート51の流動性を向上させることができる。すなわち、加圧治具8によりセラミックグリーンシート51に圧力が加えられた場合に、穴部61により、凹部形成予定領域56のセラミックグリーンシート51が壁部形成予定領域55側に流動しやすくなる。
 これにより、本実施形態では、穴部61が形成されない場合に比べて、プレス加工におけるセラミックグリーンシート51内の圧力の分布が緩和され、小さい圧力で凹部形成予定領域56及び壁部形成予定領域55を変形させて、凹部20を形成することができる。あるいは、穴部61が形成されない場合に比べて、同じ圧力でより深い凹部20を形成することができる。
 したがって、プレス加工後のマザー積層体5において、凹部形成予定領域56と壁部形成予定領域55とで、セラミックグリーンシート51の密度の差を抑制することができる。この結果、マザー積層体5を焼成、分割後に形成されるセラミック基板1の反りを抑制することができる。
 また、図5に示すように、複数の穴部61は、凹部形成予定領域56の周囲を囲むように設けられる。より好ましくは、複数の穴部61は、凹部形成予定領域56を挟んで対称となる位置に設けられる。これにより、加圧治具8によりプレス加工する際に、凹部形成予定領域56のセラミックグリーンシート51が、周囲の壁部形成予定領域55側に均等に流動しやすくなる。
 図6は、焼成後のマザー積層体を模式的に示す断面図である。図6に示すように、焼成後のマザー積層体9において、複数のセラミック層91の層間を示す粒界58の配向は、プレス加工でのセラミックグリーンシート51の流動により、搭載面10a、壁部12の内壁面12b及び上面12aに沿って湾曲する。
 また、穴部61が設けられた分割予定ライン54と重なる部分では、流動するセラミックグリーンシート51同士が密着して、一体に形成される。このため、焼成後のマザー積層体9において、粒界58が分割予定ライン54に沿って配置される。これにより、焼成後のマザー積層体9を分割予定ライン54で分割して、個片のセラミック基板1とした場合に、粒界58は壁部12及び基板底部10の端面と交差しない。これにより、本実施形態では、個片に分割する工程におけるクラックの発生やセラミック粒子の脱落を抑制することができる。また、分割予定ライン54におけるセラミック基板1の抗折強度が、他の部分のセラミック基板1の抗折強度より小さくできるため、ローラーブレイク機を用いてセラミック基板1が分割できる応力を小さくできる。
(第1変形例)
 図7は、第1変形例に係るマザー積層体を拡大して示す平面図である。なお、以下の説明では、上述した実施形態と同じ構成要素には、同じ参照符号を付して、説明を省略する。
 第1変形例では、上述した実施形態とは異なり、マザー積層体5において、分割予定ライン53、54の交点にのみ穴部61が設けられている構成を説明する。より具体的には、図7に示すように、複数の穴部61は、分割予定ライン53、54の交点の間において、分割予定ライン53、54と重なる位置には設けられていない。1つの凹部形成予定領域56の周囲に4つの穴部61が設けられる。
 第1変形例において、上述した実施形態に比べて穴部61の数が少ない。この場合であっても、プレス加工において、穴部61には、穴部61の周囲に配置された4つの凹部形成予定領域56のセラミックグリーンシート51が流動する。これにより、第1変形例では、効果的にセラミックグリーンシート51の流動性を向上させることができる。
(第2変形例)
 図8は、第2変形例に係るマザー積層体を拡大して示す平面図である。第2変形例では、上述した実施形態及び第1変形例とは異なり、平面視で、穴部61aが、分割予定ライン53、54に沿って延在する矩形状である構成について説明する。
 より具体的には、図8に示すように、複数の穴部61aは、壁部形成予定領域55を挟んで隣り合う2つの凹部形成予定領域56の間に設けられる。複数の穴部61aは、分割予定ライン53、54の交点と重なる位置には設けられず、隣り合う交点の中央部に位置する。
 第2変形例では、1つの穴部61aの面積(体積)が、上述した実施形態及び第1変形例での穴部61よりも大きい。このため、プレス加工において穴部61aに流動するセラミックグリーンシート51の体積を増やすことができ、より良好にセラミックグリーンシート51の流動性を向上させることができる。
(第3変形例)
 図9は、第3変形例に係るマザー積層体を拡大して示す平面図である。第3変形例では、上述した実施形態、第1変形例及び第2変形例とは異なり、平面視で、穴部61bが、十字状である構成について説明する。
 より具体的には、図9に示すように、十字状に形成された複数の穴部61bは、分割予定ライン53、54の交点と重なる位置に設けられる。複数の穴部61bは、分割予定ライン53に沿って延在する矩形状の部分と、分割予定ライン54に沿って延在する矩形状の部分と、が交差して十字状に形成される。
 第3変形例では、壁部形成予定領域55の幅の増大を抑制しつつ、複数の穴部61bの面積(体積)を確保することができる。隣り合う2つの凹部形成予定領域56の間の壁部形成予定領域55に穴部61bを設けることができない場合や、壁部形成予定領域55の幅が小さい場合でも、セラミックグリーンシート51の流動性を向上させることができる。
(第4変形例)
 図10は、第4変形例に係るマザー積層体を拡大して示す平面図である。第4変形例では、上述した実施形態及び第1変形例から第3変形例とは異なり、平面視で、穴部61cが、各辺が湾曲した菱形形状である構成について説明する。
 より具体的には、図10に示すように、複数の穴部61cは、分割予定ライン53、54の交点と重なる位置に設けられる。複数の穴部61cの各辺は、菱形形状の中央部に向かって凹む湾曲形状である。言い換えると、複数の穴部61cの各辺は、凹部形成予定領域56の隅部から離れる方向に湾曲する。
 これにより、第4変形例では、複数の穴部61cを効率よく配置することができ、壁部形成予定領域55の幅の増大を抑制しつつ、複数の穴部61cの面積(体積)を確保することができる。
(第5変形例)
 図11は、第5変形例に係るマザー積層体を拡大して示す断面図である。第5変形例では、上述した実施形態及び第1変形例から第4変形例とは異なり、穴部61dは、マザー積層体5を構成する複数のセラミックグリーンシート51のうち、マザー積層体5の上面側に位置する一部のセラミックグリーンシート51に形成される構成について説明する。
 具体的には、図11に示すように、マザー積層体5の上面側に位置する2枚のセラミックグリーンシート51に穴部61dが形成され、下面側の2枚のセラミックグリーンシート51には穴部61dが形成されていない。穴部61dは、マザー積層体5の上面に開口し、穴部61dの底面にセラミックグリーンシート51が設けられる。
 これにより、プレス加工において、穴部61dが設けられた壁部形成予定領域55の上部に、セラミックグリーンシート51が流動しやすくなる。つまり、壁部形成予定領域55で、下面側から上面側へのセラミックグリーンシート51の流動性が向上するので、結果として、凹部形成予定領域56でのセラミックグリーンシート51の流動性が向上する。
 なお、図11では、2枚のセラミックグリーンシート51に穴部61dが形成される例を示したが、これに限定されない。マザー積層体5を構成する複数のセラミックグリーンシート51のうち、少なくとも1枚のセラミックグリーンシート51に穴部61dが形成されていればよい。
 上述した実施形態及び第1変形例から第5変形例の構成は適宜組み合わせることができる。例えば、実施形態及び第1変形例に示した穴部61の配置と、第2変形例から第4変形例に示した穴部61a、61b、61cの平面視での形状とを組み合わせてもよい。また、実施形態及び第1変形例から第4変形例のそれぞれにおいて、第5変形例の構成を適用することもできる。
 なお、上述した実施形態及び第1変形例から第5変形例の構成は、あくまで一例であり、適宜変更することができる。例えば、マザー積層体5を構成する複数のセラミックグリーンシート51の数は、4枚に限定されず、5枚以上であってもよく、3枚以下であってもよい。
 また、凹部20の断面形状は、角部を有する矩形の一部の形状であるがこれに限定されない。凹部20の内壁面12bと搭載面10aとの接続部分が、湾曲した曲面で構成されていてもよい。あるいは、凹部20の搭載面10aが曲面を有して形成されていてもよい。
 また、穴部61の数や配置、平面視での形状は適宜変更できる。例えば、図5において、隣り合う交点の間に2つ以上の穴部61が配列されていてもよい。あるいは、穴部61の平面視での形状は、円形状、矩形状、菱形形状に限定されず、多角形状等、他の形状であってもよい。
 また、図1及び図2に示す電子部品200は、水晶振動子に限定されず、他の電子部品であってもよい。
 なお、上記した実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るとともに、本発明にはその等価物も含まれる。
 1 セラミック基板
 2 蓋体
 3 メタライズ層
 5 マザー積層体
 8 加圧治具
 9 焼成後のマザー積層体
 10 基板底部
 10a 搭載面
 12 壁部
 12a 上面
 12b 内壁面
 14 台座
 16 支持部
 18 接合部材
 20 凹部
 22 接続電極
 23 ビア
 24、25 底面電極
 51 セラミックグリーンシート
 53、54 分割予定ライン
 55 壁部形成予定領域
 56 凹部形成予定領域
 58 粒界
 61、61a、61b、61c、61d 穴部
 81 上型
 82 下型
 83 ベース
 84 凸部
 91 セラミック層
 100 パッケージ
 200 電子部品
 A 矢印

Claims (10)

  1.  上面に凹部を有するセラミック基板の製造方法であって、
     焼成後に前記凹部が形成される凹部形成予定領域と重ならない位置で、かつ、焼成後に個片の前記セラミック基板に分割される分割予定ラインと重なる位置に、複数のセラミックグリーンシートのうち少なくとも1枚以上の前記セラミックグリーンシートに穴部を形成し、複数の前記セラミックグリーンシートを積層してマザー積層体を形成する工程と、
     前記マザー積層体の前記凹部形成予定領域をプレス加工することで、焼成前の前記マザー積層体に前記凹部を形成する工程と、を有する
     セラミック基板の製造方法。
  2.  請求項1に記載のセラミック基板の製造方法であって、
     前記凹部を形成する工程において、前記穴部は、前記セラミックグリーンシートの流動により内壁が密着して、前記分割予定ラインで前記マザー積層体は一体に形成される
     セラミック基板の製造方法。
  3.  請求項1又は請求項2に記載のセラミック基板の製造方法であって、
     前記穴部は、前記マザー積層体の上面から下面まで貫通して形成される
     セラミック基板の製造方法。
  4.  請求項1又は請求項2に記載のセラミック基板の製造方法であって、
     前記穴部は、前記マザー積層体を構成する複数の前記セラミックグリーンシートのうち、前記マザー積層体の上面側に位置する一部の前記セラミックグリーンシートに形成される
     セラミック基板の製造方法。
  5.  請求項1から請求項4のいずれか1項に記載のセラミック基板の製造方法であって、
     前記上面に垂直な方向からの平面視で、前記穴部は、マトリクス状に設けられた前記分割予定ラインの交点と重なる位置に設けられる
     セラミック基板の製造方法。
  6.  請求項1から請求項5のいずれか1項に記載のセラミック基板の製造方法であって、
     前記上面に垂直な方向からの平面視で、前記穴部は、円形状である
     セラミック基板の製造方法。
  7.  請求項1から請求項5のいずれか1項に記載のセラミック基板の製造方法であって、
     前記上面に垂直な方向からの平面視で、前記穴部は、前記分割予定ラインに沿って延在する矩形状である
     セラミック基板の製造方法。
  8.  請求項1から請求項5のいずれか1項に記載のセラミック基板の製造方法であって、
     前記上面に垂直な方向からの平面視で、前記穴部は、十字状である
     セラミック基板の製造方法。
  9.  請求項1から請求項5のいずれか1項に記載のセラミック基板の製造方法であって、
     前記上面に垂直な方向からの平面視で、前記穴部は、各辺が湾曲した菱形形状である
     セラミック基板の製造方法。
  10.  複数のセラミック層が積層されたセラミック基板であって、
     搭載面を有する基板底部と、
     前記基板底部の上に設けられ、前記搭載面を囲む壁部と、を有し、
     複数の前記セラミック層の層間を示す粒界の配向が、前記搭載面及び前記壁部の内壁面に沿って湾曲し、かつ、前記基板底部及び前記壁部の端面と交差しない
     セラミック基板。
PCT/JP2020/008256 2019-03-29 2020-02-28 セラミック基板の製造方法及びセラミック基板 WO2020202941A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021511243A JP7173298B2 (ja) 2019-03-29 2020-02-28 セラミック基板の製造方法
US17/391,850 US20210367578A1 (en) 2019-03-29 2021-08-02 Method for manufacturing ceramic substrate and ceramic substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019068267 2019-03-29
JP2019-068267 2019-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/391,850 Continuation US20210367578A1 (en) 2019-03-29 2021-08-02 Method for manufacturing ceramic substrate and ceramic substrate

Publications (1)

Publication Number Publication Date
WO2020202941A1 true WO2020202941A1 (ja) 2020-10-08

Family

ID=72668650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008256 WO2020202941A1 (ja) 2019-03-29 2020-02-28 セラミック基板の製造方法及びセラミック基板

Country Status (3)

Country Link
US (1) US20210367578A1 (ja)
JP (1) JP7173298B2 (ja)
WO (1) WO2020202941A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03245556A (ja) * 1990-02-23 1991-11-01 Toshiba Corp セラミックスパッケージの製造方法
JP2005072210A (ja) * 2003-08-22 2005-03-17 Sony Corp 積層基板の製造方法およびパッケージの製造方法ならびに積層基板およびパッケージ
JP2012084642A (ja) * 2010-10-08 2012-04-26 Stanley Electric Co Ltd セラミック多層配線基板の製造方法
JP2013243221A (ja) * 2012-05-18 2013-12-05 Seiko Epson Corp 電子部品の製造方法および電子機器
WO2017126596A1 (ja) * 2016-01-22 2017-07-27 京セラ株式会社 電子部品収納用パッケージ、多数個取り配線基板、電子装置および電子モジュール

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3614030B2 (ja) * 1999-04-02 2005-01-26 株式会社村田製作所 マザー基板,子基板およびそれを用いた電子部品ならびにその製造方法
JP2006210655A (ja) * 2005-01-28 2006-08-10 Kyocera Corp 複数個取り配線基板
JP4765468B2 (ja) * 2005-08-03 2011-09-07 株式会社村田製作所 セラミック基板の製造方法およびセラミック基板
JP2007048844A (ja) * 2005-08-08 2007-02-22 Murata Mfg Co Ltd セラミック電子部品の製造方法およびセラミック電子部品
JP2010283074A (ja) * 2009-06-03 2010-12-16 Mitsubishi Electric Corp 基板の製造方法、基板およびセラミック基板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03245556A (ja) * 1990-02-23 1991-11-01 Toshiba Corp セラミックスパッケージの製造方法
JP2005072210A (ja) * 2003-08-22 2005-03-17 Sony Corp 積層基板の製造方法およびパッケージの製造方法ならびに積層基板およびパッケージ
JP2012084642A (ja) * 2010-10-08 2012-04-26 Stanley Electric Co Ltd セラミック多層配線基板の製造方法
JP2013243221A (ja) * 2012-05-18 2013-12-05 Seiko Epson Corp 電子部品の製造方法および電子機器
WO2017126596A1 (ja) * 2016-01-22 2017-07-27 京セラ株式会社 電子部品収納用パッケージ、多数個取り配線基板、電子装置および電子モジュール

Also Published As

Publication number Publication date
JP7173298B2 (ja) 2022-11-16
JPWO2020202941A1 (ja) 2021-10-14
US20210367578A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
JP2004235323A (ja) 配線基板の製造方法
US20120188721A1 (en) Non-metal stiffener ring for fcbga
TW201433219A (zh) 複合配線板
JP2004047528A (ja) 半導体基板及びその製造方法
WO2020202941A1 (ja) セラミック基板の製造方法及びセラミック基板
EP3086364B1 (en) Electronic component-use package and piezoelectric device
WO2020202943A1 (ja) セラミック基板の製造方法及びセラミック基板
JP2015222741A (ja) 多数個取り配線基板およびその製造方法
JP7321314B2 (ja) 仮キャリアボード及びその製造方法ならびにパッケージ基板の製造方法
JP6962501B2 (ja) セラミック基板の製造方法及びセラミック基板
US10182518B2 (en) Shield cap and method for manufacturing the same
JP6147981B2 (ja) セラミック基板の製造方法
WO2020261707A1 (ja) セラミック基板の製造方法及びセラミック基板
JP6744072B2 (ja) 実装用基板の製造方法
JP2009246167A (ja) 積層セラミック電子部品の製造方法
JPH0992780A (ja) 多層配線基板及び表面実装型電子部品の実装方法
JP6890008B2 (ja) 多数個取り配線基板
JP6677547B2 (ja) 電子部品収納用パッケージ、電子装置および電子モジュール
JP5766141B2 (ja) セラミック多層基板及び半導体パッケージ
JP2006005019A (ja) 電子デバイスの製造方法
JP2004221514A (ja) 多数個取り配線基板
JP2009246134A (ja) 積層セラミック電子部品の製造方法
JP2013004580A (ja) セラミック多層基板
JP4392138B2 (ja) 多数個取りセラミック配線基板の製造方法
JP2014075477A (ja) 配線基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784846

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511243

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20784846

Country of ref document: EP

Kind code of ref document: A1