WO2020199537A1 - 透明显示面板、显示屏及掩膜板 - Google Patents

透明显示面板、显示屏及掩膜板 Download PDF

Info

Publication number
WO2020199537A1
WO2020199537A1 PCT/CN2019/107919 CN2019107919W WO2020199537A1 WO 2020199537 A1 WO2020199537 A1 WO 2020199537A1 CN 2019107919 W CN2019107919 W CN 2019107919W WO 2020199537 A1 WO2020199537 A1 WO 2020199537A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
electrode layer
display panel
pixel
Prior art date
Application number
PCT/CN2019/107919
Other languages
English (en)
French (fr)
Inventor
楼均辉
张露
童晓阳
常苗
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Priority to EP19923265.3A priority Critical patent/EP3872885A4/en
Priority to KR1020217017575A priority patent/KR102549362B1/ko
Priority to JP2021532986A priority patent/JP7297067B2/ja
Publication of WO2020199537A1 publication Critical patent/WO2020199537A1/zh
Priority to US17/242,233 priority patent/US11895859B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/102Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising tin oxides, e.g. fluorine-doped SnO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3031Two-side emission, e.g. transparent OLEDs [TOLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80522Cathodes combined with auxiliary electrodes

Definitions

  • This application relates to the field of display technology, in particular to a transparent display panel, a display screen, a display device and a mask.
  • the embodiment of the present application provides a transparent display panel, including a substrate, a first electrode layer on the substrate, a light emitting structure layer on the first electrode layer, and a first light emitting structure layer on the light emitting structure layer.
  • the first electrode layer includes a plurality of first electrode groups arranged along a first direction, each of the first electrode groups includes at least one first electrode, and the first electrodes in the same first electrode group extend along the second Direction extends, the second direction intersects the first direction; each of the first electrodes includes at least two first electrode blocks and at least one connecting portion, and two adjacent first electrode blocks are connected by corresponding ⁇ Electrical connection.
  • An embodiment of the present application also provides a display screen.
  • the display screen includes a first display area and a second display area.
  • the first display area is provided with the above-mentioned transparent display panel.
  • the light rate is greater than the light transmittance of the second display area, and a photosensitive device may be disposed under the first display area.
  • the embodiments of the present application also provide a mask, which is used in the manufacturing process of the above-mentioned display screen;
  • the first electrode layer is provided with a first pixel defining layer with a first pixel opening; the first pixel opening is provided with a light-emitting structure block; the second electrode layer is a surface electrode, and the second electrode layer is located On the first pixel defining layer and partially disposed on the sidewall of the first pixel opening;
  • a third electrode layer is also arranged in the first display area, the third electrode layer is arranged at least on the sidewall of the first pixel opening, and the third electrode layer is in direct contact with the second electrode layer ;
  • the second display area is provided with a fourth electrode layer, a second pixel defining layer located on the fourth electrode layer and provided with a second pixel opening, a light emitting structure block provided in the second pixel opening, and
  • the fifth electrode layer on the second pixel defining layer, the fifth electrode layer is a surface electrode, and the thickness of the fifth electrode layer is greater than the thickness of the second electrode layer;
  • the mask includes a first opening And a plurality of second openings, the first opening is used for preparing the fifth electrode layer, and the second opening is used for preparing the third electrode layer.
  • the same first electrode of the transparent display panel includes at least two first electrode blocks, two adjacent first electrode blocks are connected by corresponding Part is connected, the first electrode block in the first electrode can be driven by the same pixel circuit, and one of the first electrode blocks in the first electrode can be electrically connected to the corresponding pixel circuit, which can reduce the size of the transparent display panel.
  • the complexity of the internal wiring can effectively improve the diffraction and superimposition phenomenon caused by the complex wiring in the transparent display panel when light is transmitted, thereby improving the image quality of the camera set on the backlight surface of the transparent display panel and avoiding Image distortion defects; and multiple first electrode blocks in the same first electrode are electrically connected, so that the corresponding light-emitting structure blocks on the multiple first electrode blocks of the same electrode can be controlled to emit light or be turned off at the same time, simplifying the transparency Control of the display panel;
  • the first opening is aligned with the second display area of the display screen, and the fifth electrode layer of the second display area is prepared through the first opening;
  • the second opening is aligned with the sidewall of the first pixel defining layer in the first display area in the display screen, and the third electrode layer in the first display area is prepared through the second opening.
  • FIG. 1 is a cross-sectional view of a transparent display panel provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of projection of a first electrode layer of a transparent display panel on a substrate according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of projection of a first electrode layer of a transparent display panel on a substrate according to another embodiment of the present application;
  • FIG. 4 is a schematic diagram of projection of a first electrode layer of a transparent display panel on a substrate according to another embodiment of the present application.
  • FIG. 5 is a schematic diagram of a projection of a first electrode layer of a transparent display panel on a substrate according to another embodiment of the present application;
  • FIG. 6 is a schematic diagram of projection of a first electrode layer of a transparent display panel on a substrate according to another embodiment of the present application.
  • FIG. 7 is a cross-sectional view of a transparent display panel provided by another embodiment of the present application.
  • FIG. 8 is a schematic diagram of light passing through the display panel shown in FIG. 1 provided by an embodiment of the present application;
  • FIG. 9 is a partial cross-sectional view of a transparent display panel provided by an embodiment of the present application.
  • FIG. 10 is a top view of a mask provided by an embodiment of the present application.
  • Fig. 11 is a top view of a display screen provided by an embodiment of the present application.
  • a transparent display screen is generally installed on the above electronic devices to achieve full-screen display of the electronic devices .
  • the quality of the light collected by the camera through the transparent display screen is poor, and even image distortion defects may occur during the image collection process.
  • the embodiments of the present application provide a transparent display panel, a display screen, a display device and a mask, which can well solve the above problems.
  • the transparent display panel 100 provided by the embodiment of the present application includes a substrate 1, a first electrode layer 2 on the substrate 1, a light emitting structure layer 3 on the first electrode layer 2, and a light emitting structure layer 3 on the first electrode layer 2;
  • the second electrode layer 4 on the light-emitting structure layer 3.
  • the first electrode layer 2 includes a plurality of first electrode groups 20 arranged in a first direction, each of the first electrode groups 20 includes at least one first electrode 21, the same The first electrodes 21 in an electrode group 20 extend along the second direction. The second direction intersects the first direction.
  • Each of the first electrodes 21 includes at least two first electrode blocks 211 and at least one connecting portion 212, and two adjacent first electrode blocks 211 are electrically connected by corresponding connecting portions 212.
  • the light emitting structure layer 3 includes a plurality of light emitting structure blocks 31, and the plurality of light emitting structure blocks 31 are arranged on the plurality of first electrode blocks 211 in a one-to-one correspondence.
  • the second The first electrode block 211 in one electrode 21 can be driven by the same pixel circuit.
  • One first electrode block 211 in the first electrode 21 is electrically connected to the corresponding pixel circuit drive, which can reduce the complexity of wiring in the transparent display panel, and can effectively improve the wiring in the transparent display panel when light is transmitted.
  • the diffraction and superposition phenomenon caused by the complicated lines further improves the image quality of the image taken by the camera set on the backlight surface of the transparent display panel, and avoids image distortion defects.
  • the multiple first electrode blocks 211 in the same first electrode 21 are electrically connected, so that the light-emitting structure blocks corresponding to the multiple first electrode blocks 211 of the same electrode 21 can be controlled to emit light or be turned off at the same time. Control of the display panel.
  • the transparent display panel 100 may further include a first pixel defining layer 5 disposed on the first electrode layer 2.
  • the first pixel defining layer 5 is provided with a plurality of first pixel openings arranged at intervals, and the plurality of light emitting structure blocks 31 of the light emitting structure layer 3 are arranged in the plurality of first pixel openings in a one-to-one correspondence.
  • the first electrode layer 2 may be an anode layer
  • the second electrode layer 4 may be a cathode layer.
  • the second electrode layer 4 may be a surface electrode, that is, the second electrode layer 4 is a continuous electrode.
  • the first electrode block 211 and the connecting portion 212 in the first electrode group 20 are arranged on the same layer. With this arrangement, the first electrode block 211 and the connecting portion 212 in the first electrode group 20 can be formed in the same process step, reducing the complexity of the manufacturing process.
  • the size of the connecting portion 212 perpendicular to its extension direction is greater than 3 ⁇ m and smaller than the first One half of the largest size of the electrode block 211.
  • the resistance of the connecting portion 212 can be made smaller.
  • the size of the connecting portion 212 is smaller than one-half of the maximum size of the first electrode block 211, the setting of the connecting portion 212 can have a small effect on the size of the first electrode block 211, and avoid the large size of the connecting portion 212.
  • the size of the first electrode block 211 is reduced, thereby causing the effective light emitting area of the transparent display panel 100 to be reduced.
  • the first electrode block 211 and the connecting portion 212 in the first electrode group 20 are arranged on different layers.
  • the size of the first electrode block 211 is not affected by the connecting portion 212, and the size of the first electrode block 211 can be made larger, so that the effective light-emitting area of the transparent display panel 100 is larger.
  • the connecting portion 212 may be disposed between the first electrode block 211 and the substrate 1.
  • an insulating layer 6 is provided under the first electrode block 211, and the connecting portion 212 is provided between the insulating layer 6 and the substrate 1.
  • the insulating layer 6 is provided with a contact hole 61 at a position below the first electrode block 211, the contact hole 61 is filled with a conductive material, and the first electrode block 211 passes through the contact hole 61 below it.
  • the conductive material inside is electrically connected to the corresponding connecting portion 212.
  • the projection of the first electrode block 211 on the substrate 1 includes a first pattern unit or a plurality of connected first pattern units.
  • the first graphic unit includes a circle, an oval, a dumbbell, a gourd or a rectangle.
  • each first electrode group 20 includes one first electrode 21, and each first electrode 21 includes six electrode blocks 211.
  • the projection of each first electrode block 211 on the substrate includes a first pattern unit, and the first pattern unit is rectangular.
  • each first electrode group 20 includes one first electrode 21, and each first electrode 21 includes three first electrode blocks 211.
  • the projection of each first electrode block 211 on the substrate includes a first pattern unit, and the first pattern unit has a gourd shape.
  • each first electrode group 20 includes one first electrode 21, and each first electrode 21 includes five first electrode blocks 211.
  • the projection of each first electrode block 211 on the substrate includes a first pattern unit, and the first pattern unit is circular. Referring to FIG.
  • each first electrode group 20 includes two first electrodes 21, and each first electrode 21 includes two first electrode blocks 211.
  • the projection of the electrode block 211 on the substrate includes a first pattern unit, and the pattern unit is dumbbell-shaped.
  • each first electrode group 20 includes two first electrodes 21, and each first electrode 21 includes four first electrode blocks 211.
  • the projection of the first electrode block 211 on the substrate includes a first pattern unit, and the first pattern unit is rectangular.
  • the first graphic unit is circular, elliptical, dumbbell-shaped, or gourd-shaped, so that the size of the first electrode 21 in the first direction changes continuously or intermittently, and the two adjacent first electrodes 21 in the first direction
  • the distance between the electrodes 21 in the first direction changes continuously or intermittently, so that two adjacent first electrodes 21 have different diffraction positions.
  • the diffraction effects at different positions cancel each other out, so that the diffraction effects can be effectively reduced, and the image captured by the camera provided under the transparent display panel 100 can be ensured with high definition.
  • the projection of the light-emitting structure block 31 correspondingly disposed on each first electrode block 211 on the substrate 1 includes a second pattern unit or a plurality of connected second pattern units.
  • the second graphic unit includes a circle, an oval, a dumbbell, a gourd or a rectangle, and the second graphic unit is the same as or different from the first graphic unit.
  • the projection of the light-emitting structure block 31 corresponding to the first electrode block 211 on the substrate 1 is different from the projection of the first electrode block 211 on the substrate 1, for example, the position does not completely overlap ,
  • the shape is different, or the size is different to further reduce the diffraction effect generated when light passes through the transparent display panel 100.
  • the first direction is perpendicular to the second direction, and the first direction is a row direction or a column direction.
  • the plurality of first electrodes 21 may be arranged in one row and multiple columns, or one column and multiple rows, or two columns and multiple rows, or two rows and multiple columns, or multiple rows and multiple columns. 2 to 6 only take the first direction as the column direction and the second direction as the row direction as examples for illustration. In other embodiments, the first direction may also be a row direction, and the second direction may be a column direction.
  • the first electrode blocks 211 are arranged in a staggered arrangement. Such a configuration can further reduce the diffraction effect generated when the externally incident light passes through the transparent display panel 100.
  • the distance between two adjacent first electrode blocks 211 along the central axis of the first direction may be 0.5 times or 1.5 times the size of the first electrode block 211 in the second direction.
  • the distance between the central axis of two adjacent first electrode blocks 211 along the first direction may also be 1.0 times, 0.8 times, etc., the size of the block electrodes 211 in the second direction.
  • the central axes of the two first electrode blocks 211 arranged at intervals of one first electrode block 211 in the second direction coincide.
  • Such arrangement can make the arrangement of the plurality of first electrode blocks 211 of the first electrode group 20 more regular, so that the arrangement of the light-emitting structure blocks 31 corresponding to the plurality of first electrode blocks 211 can be more regular, thereby preparing the light-emitting structure
  • the opening arrangement of the mask plate used in block 31 is relatively regular.
  • the same mask can be used to manufacture in the same evaporation process. Since the pattern on the mask is relatively uniform, Reduce the wrinkles of the net.
  • each layer of the transparent display panel 100 can be made of transparent materials. In this way, the lighting effect of the photosensitive device, such as a camera, disposed under the transparent display panel 100 can be improved.
  • the materials of the first electrode layer 2 and/or the second electrode layer 4 are transparent materials.
  • the light transmittance of the transparent material for preparing the first electrode layer 2 and/or the second electrode layer 4 may be greater than or equal to 70%.
  • the light transmittance of the transparent material is greater than or equal to 90%, for example, the light transmittance of the transparent material may be 90%, 95%, or the like.
  • Such an arrangement can make the light transmittance of the transparent display panel 100 larger, so that the light transmittance of the transparent display panel 100 meets the lighting requirements of the photosensitive devices disposed below it.
  • the transparent material for preparing the first electrode layer 2 and/or the second electrode layer 4 may include indium tin oxide, indium zinc oxide, silver-doped indium tin oxide, and silver-doped indium zinc oxide. At least one of.
  • the transparent material for preparing the first electrode layer 2 and/or the second electrode layer 4 is silver-doped indium tin oxide or silver-doped indium zinc oxide to ensure the transparency of the transparent display panel 100 On the basis of high light transmittance, the resistance of the first electrode layer 2 and/or the second electrode layer 4 is reduced.
  • the transparent display panel 100 has multiple light-permeable paths, and each path passes through or passes through a different film layer.
  • the external incident light is in a direction perpendicular to the surface of the substrate 1 Into the transparent display panel 100, when the thickness of the film layer is set to the preset thickness and/or the refractive index is set to the preset refractive index, the external incident light passes through all the paths along any two of the multiple paths. After the transparent display panel 100 is described, the obtained difference between the optical paths of the two paths is an integer multiple of the wavelength of the external incident light.
  • the phase difference is zero. Since the phase difference of the light of the same phase after passing through the display panel is one of the important reasons for diffraction, after the light of the same phase passes through the display panel through two paths, the phase remains the same, and no phase difference occurs, eliminating the phase difference.
  • the diffraction phenomenon prevents the light from passing through the transparent display panel 100 without causing image distortion due to diffraction, which improves the clarity of the image perceived by the camera provided under the transparent display panel 100, so that the photosensitive element behind the transparent display panel can be clear , Real images.
  • the transparent display panel 100 There may be multiple paths in the transparent display panel 100, such as three, four, and five paths, and the difference between the optical paths formed by any two paths is an integer multiple of the incident light wavelength. In this way, the diffraction of the light passing through these paths after passing through the transparent display panel 100 can be effectively reduced. The more paths that satisfy the conditions, the weaker the diffraction phenomenon of the light passing through the transparent display panel 100. In this way, the phase difference caused by the phase difference after the light passes through the transparent display panel 100 can be basically eliminated, which can greatly reduce the occurrence of diffraction.
  • the optical path is equal to the refractive index of the medium multiplied by the distance the light travels in the medium, and the optical path is equal to the product of the refractive index of the medium and the distance of the light.
  • L is the optical path
  • i is the number of layers in the path through which incident external light passes
  • d1, d2,..., di is the thickness of each layer in the path through which incident light passes through
  • n1, n2,..., ni It is the refractive index of each layer in the path through which incident external light passes.
  • the difference between the optical paths of the two paths is 0, that is, the difference between La and Lb is 0, that is, the optical paths of the two paths are 0.
  • the transparent display panel 100 further includes an encapsulation layer 7 disposed above the second electrode layer 4, and the encapsulation layer 7 may be a hard screen package or an organic film package.
  • the packaging layer 7 includes a vacuum gap layer 71 and a packaging substrate 72, and the packaging substrate 72 is, for example, a glass cover plate.
  • the transparent display panel 100 When the first electrode block 211 and the connecting portion 212 in the first electrode group 20 are arranged on the same layer, there are multiple paths in the transparent display panel 100. Since the transparent display panel 100 has two different modes, a top emitting structure and a bottom emitting structure, if the transparent display panel 100 has a top emitting structure, the camera is arranged under the substrate 1. If the transparent display panel 100 has a bottom emitting structure, the camera is arranged on the side of the packaging glass away from the second electrode layer 4.
  • each film layer of the transparent display panel 100 shown in FIG. 8 will be analyzed.
  • the substrate 1 may be a rigid substrate, such as a transparent substrate such as a glass substrate, a quartz substrate, or a plastic substrate; the substrate 1 may also be a flexible transparent substrate, such as a PI film, to improve the transparency of the device. Since the substrate is the same for all paths of light perpendicularly passing through the substrate, the substrate 1 has no substantial influence on the difference between the optical paths of the different paths of light perpendicularly passing through the substrate.
  • the first electrode block 211 and the connecting portion 212 are disposed on the same layer and can be formed in the same process step, so the thickness and material of the two can be the same.
  • the first electrode block 211 and the connecting portion 212 can be made of a transparent conductive material, generally indium tin oxide, or indium zinc oxide, or indium tin oxide doped with silver, or indium zinc oxide doped with silver.
  • the thickness and refractive index of the first electrode block 211 and the connecting portion 212 can be adjusted. By adjusting the thickness or refractive index or adjusting the thickness and refractive index at the same time, the optical path of the light passing through one path can be adjusted, so that the The difference between the processes satisfies the above conditions.
  • the thickness of the first electrode block 211 and the connection part 212 is generally 20 nm to 200 nm, and the thickness of the first electrode block 211 and the connection part 212 can be adjusted within this range. When the two are formed in the same process step, the thickness and refractive index of the first electrode block 211 and the connecting portion 212 can only be adjusted at the same time.
  • the first electrode block 211 and the connecting portion 212 can also be formed in different process steps, and the materials of the two can be the same or different, and the thickness and refractive index can be adjusted separately.
  • the thickness of the first pixel defining layer 5 is relatively large, and its adjustable range is larger. Generally, the thickness of the first pixel defining layer 5 is 0.3 ⁇ m to 3 ⁇ m, and the thickness of the first pixel defining layer 5 can be adjusted within this range. Therefore, the thickness of the first pixel defining layer 5 can be adjusted so that the optical path meets the above requirements. If the thickness of the first pixel defining layer 5 alone cannot be adjusted to meet the requirements, the material of the first pixel defining layer 5 can be adjusted in combination to adjust its refractive index. It is also possible to adjust the thickness and refractive index of the first pixel defining layer 5 at the same time, thereby adjusting the optical length of the light passing through the path.
  • the light emitting structure layer 3 generally includes a light extraction layer, an electron injection layer, an electron transport layer, a hole blocking layer, a light emitting structure block 31, a hole transport layer, and a hole injection layer. Except for the light-emitting structure block 31, the rest of the layers (light extraction layer, electron injection layer, electron transport layer, hole blocking layer, hole transport layer, hole injection layer) are arranged on the entire surface, facing the path through which light passes. The difference between the optical path lengths has no effect and is not shown in the figure.
  • the light-emitting structure block 31 of the light-emitting structure layer 3 is disposed in the first pixel opening, and different light-emitting sub-pixels include the light-emitting structure block 31 of different materials, including red light-emitting material, blue light-emitting material and green light-emitting material.
  • the optical path of light passing through the path can also be adjusted by adjusting the thickness or refractive index of the light-emitting structure block, or adjusting the thickness and refractive index of the light-emitting structure block at the same time. Since the overall thickness of the light-emitting structure block 31 is small, the adjustable range of the light-emitting structure block 31 is small, and the light path can be adjusted by cooperating with other film layers to avoid separate adjustment to make the light path meet the above requirements.
  • the second electrode layer 4 is arranged on the entire surface, so the second electrode layer 4 has no substantial influence on the difference between the optical paths of light passing through each path.
  • the transparent display panel 100 in FIG. 8 is a hard screen adopting glass powder packaging (ie Frit packaging).
  • the packaging layer 7 includes a low vacuum gap layer 71 and a packaging substrate 72.
  • the vacuum gap layer 71 is filled with inert gas.
  • the packaging substrate 72 is packaging glass.
  • the path of light passing through the transparent display panel 100 includes a first path A, a second path B, and a third path C.
  • the first path A includes the encapsulation layer 7, the second electrode layer 4, the light emitting structure layer 3, the first electrode block 211 and the substrate 1;
  • the second path B includes the encapsulation layer 7, the second electrode layer 4, the first pixel defining layer 5, the connection portion 212 and the substrate 1;
  • the third path C includes the encapsulation layer 7, the second electrode layer 4, the first pixel defining layer 5 and the substrate 1.
  • the thickness of the vacuum gap layer 71 in path A is greater than the thickness of the vacuum gap layer 71 in other paths.
  • the optical path of light passing through path A is LA
  • the optical path of light passing through path B is LB
  • the optical path of light passing through path C is LC.
  • LA-LB X1 ⁇ ; X1 is an integer.
  • X1 and X2 are integers, which can be positive integers or negative integers or zero.
  • the difference between the optical path lengths between the path A, the path B, and the path C are all integer multiples of the wavelength of the light. That is, after light passes through the three paths of path A, path B, and path C, the phase of the incident light is the same as the phase of the emitted light, which can greatly reduce the occurrence of diffraction.
  • the optical path length of each path can be calculated by measuring the thickness and refractive index of each layer.
  • path A includes light emitting structure layer 3, while path B and path C do not include light emitting structure layer 3.
  • path B and path C do not include light emitting structure layer 3.
  • the substrate 1, the packaging substrate 72, and the second electrode layer 4 are made of the same material and have the same thickness, so there is no need to consider.
  • the connecting portion 212 and the first electrode block 211 are formed in the same process step, the thickness of the two is the same, and it does not need to be considered.
  • path A and path B The different layers between path A and path B are the vacuum gap layer 71 (both in path A and path B but with different thickness), the first pixel defining layer 5 (in path B), and the light-emitting structure layer 3 (in path A) ), since the thickness of the vacuum gap layer 71 in the path A and the path B is the same as the thickness of the first pixel defining layer 5, the thickness of the first pixel defining layer 5 is adjusted, and the vacuum gap layer 71 is in the path A and the path B. The thickness difference in will be adjusted accordingly. It can be seen that the main film layers that affect path A and path B are the first pixel defining layer 5 and the light emitting structure layer 3.
  • the difference between the optical path lengths of the path A and the path B can be an integer multiple of the wavelength.
  • the optical length of the path can also be further adjusted by adjusting the thickness of the light emitting structure layer 3 of the path A.
  • path B includes the connecting portion 212.
  • the thickness of the first pixel defining layer 5 in path C is different from the thickness of the first pixel defining layer 5 in path B. Therefore, the thickness or refractive index of the connecting portion 212 is adjusted.
  • the thickness and/or refractive index of the first pixel defining layer 5 can also be adjusted so that after the external incident light passes through the path B and the path C, the difference between the optical path obtained is the wavelength of the external incident light An integer multiple of.
  • the substrate 1, the packaging substrate 72, and the second electrode layer 4 are made of the same material and have the same thickness, so it is not necessary to consider.
  • the main difference is that the path A includes the first electrode block 211 and the light-emitting structure layer 3, and the path C includes the first pixel defining layer 5. Therefore, the thickness and/or refractive index of the first electrode block 211 is adjusted to make the path A
  • the difference between the optical path and the path C is an integer multiple of the wavelength.
  • the thickness and/or refractive index of the first pixel defining layer 5 can also be adjusted, so that after the external incident light passes through the path A and the path C, the difference between the optical path obtained is the wavelength of the external incident light An integer multiple of.
  • the thickness and/or refractive index of the first electrode block 211 and the thickness and/or refractive index of the first pixel defining layer 5 can also be adjusted at the same time, so that after the external incident light passes through the path A and the path C, The obtained difference between the optical paths is an integer multiple of the wavelength of the external incident light.
  • the transparent display panel 100 When the transparent display panel 100 is a flexible panel, the transparent display panel 100 may be encapsulated by a thin film, that is, a thin film encapsulation layer is formed on the second electrode layer 4.
  • the substrate 1 can be a flexible substrate, and the material of the flexible substrate can be selected from PEN (polyethylene naphthalate), PET (polyethylene terephthalate), PI (polyimide) ), one or more of PES (polyethersulfone resin), PC (polycarbonate), and PEI (polyetherimide).
  • the thin film encapsulation layer may include an inorganic material encapsulation layer and an organic material encapsulation layer.
  • the inorganic material encapsulation layer is arranged on the entire surface and has a uniform thickness, so it has no effect on the difference between the optical paths of each path.
  • the organic material encapsulation layer fills the first pixel opening, and after filling the first pixel opening, an entire encapsulation layer is formed. Therefore, in different paths, the thickness of the organic material encapsulation layer is different, so by adjusting the thickness of the organic material encapsulation layer in the first pixel opening, or the refractive index of the organic material encapsulation layer, the light can be adjusted.
  • the optical path through the path.
  • the thickness and refractive index of the organic material encapsulation layer can also be adjusted at the same time, or combined with other methods.
  • the thickness of the organic material encapsulation layer in path A is greater than the thickness of the organic material encapsulation layer in other paths.
  • the transparent display panel 100 may be an AMOLED display panel, and the transparent display panel 100 may further include a driving circuit layer disposed between the substrate 1 and the first electrode layer 2, and the driving circuit layer is provided with Pixel circuit that drives the pixel.
  • the pixel circuit may include one or more switching devices, capacitors and other devices, and multiple switching devices can be connected in series or parallel as needed, such as a 2T1C circuit, or 3T1C circuit, or 3T2C circuit, or 7T1C circuit, or 7T2C. Pixel circuits such as circuits.
  • the switching device may be a thin film transistor TFT, the thin film transistor may be an oxide thin film transistor or a low temperature polysilicon thin film transistor (LTPS TFT), and the thin film transistor may be an indium gallium zinc oxide thin film transistor (IGZO TFT).
  • the switching device can also be a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET), or other devices with switching characteristics in the prior art, such as insulated gate bipolar Transistors (IGBT), etc., as long as the electronic components that can realize the switching function in this embodiment and can be integrated into the display panel fall within the protection scope of this application.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the pixel drive circuit since the pixel drive circuit includes a variety of devices, it also forms a multilayer film structure, including source, drain, gate, gate insulating layer, active layer, interlayer insulating layer, etc., and each film layer is patterned Film structure. In different paths, the path through which the light passes will be different. Therefore, the optical length of the path through which the light passes can be adjusted by adjusting the thickness or refractive index of each film layer in the driving circuit layer.
  • the first electrode group 20 may include two first electrodes 21, and each of the first electrodes 21 corresponds to a pixel circuit.
  • the transparent display panel 100 is divided into two display areas, and the brightness in each display area can be individually adjusted by the pixel circuit corresponding to the first electrode 21 located in the display area, which can increase the flexibility of adjustment.
  • the first electrode group 20 may include a first electrode 21, and the driving mode of the first electrode 21 may be PM (passive) driving or AM (active) driving.
  • the driving mode of the first electrode 21 is AM driving
  • the first electrode 21 corresponds to one pixel circuit, and the pixel circuit is connected to one end of the first electrode 21; or, the first electrode 21 corresponds to two pixel circuits and two pixels
  • the circuit is electrically connected to both ends of the first electrode.
  • the first electrode 21 corresponds to two pixel circuits, and the data signal can flow in through both ends of the first electrode 21, which is more conducive to reducing signal delay.
  • the sidewalls of the first pixel opening 501 on the first pixel defining layer 5 extend obliquely from bottom to top (that is, the sidewalls of the first pixel opening 501 and the first pixel opening
  • the angle at the bottom is an obtuse angle
  • the transparent display panel 100 may further include a third electrode layer 8, the third electrode layer 8 is disposed at least on the sidewall of the first pixel opening 501, and the third electrode layer 8 is in direct contact with the second electrode layer 4 .
  • the third electrode layer 8 may be located on the upper surface or the lower surface of the second electrode layer 4 so as to directly contact the second electrode layer 4.
  • FIG. 9 only takes the third electrode layer 8 on the upper surface of the second electrode layer 4 as an example for description, and the embodiment in which the third electrode layer 8 is on the lower surface of the second electrode layer 4 is not illustrated again.
  • the second electrode layer 4 Since the second electrode layer 4 is provided as a whole layer, when a thin low work function material (such as MgAg) is used to prepare the second electrode layer 4, the second electrode layer 4 will be located on the sidewall of the first pixel opening 501 The thickness of the second electrode layer 4 on the sidewall of the first pixel opening 501 is relatively thin, resulting in a relatively large resistance of the second electrode layer 4 on the sidewall of the first pixel opening 501. As the use time of the transparent display panel 100 is prolonged, this part of the second electrode layer 4 will be degraded. In severe cases, this part of the second electrode layer 4 will be broken, which will result in the light-emitting structure block in the first pixel opening 501. 31 can not emit light normally.
  • a thin low work function material such as MgAg
  • the third electrode layer 8 By providing the third electrode layer 8 directly in contact with the second electrode layer 4 on the sidewall of the first pixel opening 501, the thickness of the metal layer on the sidewall of the first pixel opening 501 can be increased, and the thickness of the metal layer The thickness of the second electrode layer 4 on the side wall of a pixel opening 501 is thin, resulting in a problem that the resistance of this part of the second electrode layer 4 is relatively large; and even if the second electrode layer on the side wall of the first pixel opening 501 4 When a fracture occurs, the third electrode layer 8 can play a role of overlap, and current can flow through the third electrode layer 8 to ensure that the light-emitting structure block 31 in the first pixel opening 501 normally emits light.
  • the third electrode layer 8 when the third electrode layer 8 is formed, a mask is used for evaporation, and the evaporation opening is aligned with the side wall of the first pixel opening 501, so that the evaporated third electrode layer 8 is formed on the first pixel opening 501.
  • the horizontal opening size of the mask used for vapor deposition of the third electrode layer 8 is generally set to be slightly larger than that of the third electrode formed on the side wall. The maximum distance between the electrode layers in the horizontal direction ensures that the third electrode layer 8 is formed on the sidewall of the first pixel opening 501 even if the alignment of the opening of the mask plate is deviated when the third electrode layer 8 is evaporated.
  • the third electrode layer 8 formed by evaporation will have the following three situations:
  • the third electrode layer 8 is also extended on the sidewall of the first pixel defining layer 5 adjacent to the sidewall of the first pixel opening 501.
  • the third electrode layer 8 is also extended on the bottom of the first pixel opening 501;
  • the third electrode layer 8 is also extended to the bottom of the first pixel opening 501, and is extended to the first pixel opening 501.
  • the sidewalls of are adjacent to the edge of the top of the first pixel defining layer 5.
  • An embodiment of the present application also provides a display screen, which includes a first display area and a second display area.
  • the light transmittance of the first display area is greater than the light transmittance of the second display area, and a photosensitive device is configured below the first display area.
  • the first display area is provided with a first electrode layer, a first pixel defining layer located on the first electrode layer and provided with a first pixel opening, a light emitting structure block provided in the first pixel opening, and A second electrode layer, the second electrode layer is a surface electrode, the second electrode layer is located on the first pixel defining layer, and is partially disposed on the sidewall of the first pixel opening;
  • a third electrode layer is arranged in the first display area, the third electrode layer is arranged at least on the sidewall of the first pixel opening, and the third electrode layer is in direct contact with the second electrode layer.
  • the third electrode layer By disposing the third electrode layer directly in contact with the second electrode layer on the sidewall of the first pixel opening, the thickness of the metal layer on the sidewall of the first pixel opening can be increased, and the thickness of the metal layer on the first pixel opening can be reduced.
  • the thinner thickness of the second electrode layer on the sidewall leads to the problem of greater resistance of the second electrode layer; and even if the second electrode layer on the sidewall of the first pixel opening is broken, the third electrode layer can Due to the overlapping effect, current can flow through the third electrode layer to ensure that the light-emitting structure block in the first pixel opening normally emits light.
  • the third electrode layer is located on the upper surface or the lower surface of the second electrode layer.
  • the third electrode layer is also extended and arranged on the edge of the top of the first pixel defining layer adjacent to the sidewall of the first pixel opening.
  • the third electrode layer is further extended at the bottom of the first pixel opening.
  • the second display area is provided with a fourth electrode layer, a second pixel defining layer located on the fourth electrode layer and provided with a second pixel opening, and a light emitting structure provided in the second pixel opening A block and a fifth electrode layer located on the second pixel defining layer, the fifth electrode layer is a surface electrode, and the thickness of the fifth electrode layer is greater than the thickness of the second electrode layer.
  • the material on the second electrode layer includes at least one of indium tin oxide, indium zinc oxide, Mg and Ag;
  • the material of the second electrode layer includes Mg and Ag, and the ratio of the mass of Mg to the mass of Ag may range from 1:4 to 1:20.
  • the first pixel defining layer and the second pixel defining layer may have the same film structure; the light emitting structure block in the first display area and the light emitting structure block in the second display area may be formed in the same process step.
  • the first display area may be a transparent display area, and the structure of the transparent display panel provided in the first display area may be the same as the related structure of the above-mentioned transparent display panel 100. For details, please refer to the above-mentioned embodiment and will not be repeated.
  • the transmittance of the first display area is greater than the transmittance of the second display area.
  • the embodiments of the present application also provide a mask, which is used in the manufacturing process of the display screen.
  • the display screen includes a first display area and a second display area, the light transmittance of the first display area is greater than the light transmittance of the second display area, and a photosensitive device may be disposed under the first display area.
  • the first display area is provided with a first electrode layer, a first pixel defining layer located on the first electrode layer and provided with a plurality of first pixel openings, and a light emitting structure provided in the first pixel openings Block, a second electrode layer, and a third electrode layer;
  • the second electrode layer is a surface electrode, the second electrode layer is located on the first pixel defining layer, and is partially disposed on the side of the first pixel opening
  • the third electrode layer is arranged at least on the sidewall of the first pixel opening, and the third electrode layer is in direct contact with the second electrode layer;
  • a fourth electrode layer is arranged in the second display area An electrode layer, a second pixel defining layer located on the fourth electrode layer and provided with a second pixel opening, a light-emitting structure block provided in the second pixel opening, and a fifth electrode located on the second pixel defining layer
  • the fifth electrode layer is a surface electrode, and the thickness of the fifth electrode layer is greater than the thickness of the second electrode layer.
  • the mask 300 includes a first opening 301 and a plurality of second openings 302.
  • the first opening 301 is used to prepare the fifth electrode layer
  • the second opening 302 is used to prepare the The third electrode layer.
  • the shape of the first opening 301 is consistent with the shape of the second display area, and the size of the second opening 302 is much smaller than the size of the first opening 301.
  • the first opening 301 is aligned with the second display area, and the fifth electrode layer of the second display area is prepared through the first opening 301; Aligning with the sidewall of the first pixel defining layer in the first display area, the third electrode layer in the first display area is prepared through the second opening 302. It can be seen that the fifth electrode layer in the second display area and the third electrode layer in the first display area can be prepared at the same time by using the aforementioned mask 300, which simplifies the manufacturing process of the display screen.
  • the display screen 200 includes a first display area 201 and a second display area 202.
  • the first display area 201 is provided with the transparent display panel 100 described in the above embodiment, and the first display area 201
  • the light transmittance of is greater than the light transmittance of the second display area 202, and a photosensitive device may be disposed under the first display area 201.
  • the display panel provided in the first display area 201 of the display screen 200 can be the transparent display panel 100 described in the above embodiment, the complexity of wiring in the first display area 201 can be reduced, and light transmission can be effectively improved.
  • the wiring in the first display area 201 is caused by the diffraction superposition phenomenon, thereby improving the image quality of the camera set on the backlight surface of the first display area 201, and avoiding image distortion defects;
  • the plurality of first electrode blocks 211 in the electrode 21 are electrically connected, so that the light-emitting structure blocks corresponding to the plurality of first electrode blocks 211 of the same first electrode 21 can be controlled to emit light or be turned off at the same time, which simplifies the control of the first display area. 201 control.
  • the display screen 200 further includes a transitional display area 203 adjacent to the first display area 201 and the second display area 202, and the first display area 201 is at least partially The transition display area 202 is surrounded, and the pixel circuit corresponding to the first electrode 21 in the first display area 201 is arranged in the transition display area 203.
  • This arrangement can further simplify the complexity of the film structure and the wiring complexity of the first display area 201, and is more conducive to improving the diffraction superposition phenomenon generated during light transmission, and can further improve the backlight provided in the first display area 201 The quality of the image captured by the camera.
  • the second display area 202 and the transition display area 203 are provided with a fourth electrode layer, a light emitting structure layer on the fourth electrode layer, and a fifth electrode layer on the light emitting structure layer
  • the fifth electrode layer includes a plurality of fifth electrode blocks arranged at intervals, and the arrangement of the fifth electrode blocks may be the same as that of the first electrode blocks in the first display area 201, so that the first display area 201 , The display effects of the second display area 202 and the transition display area 203 are more consistent.
  • the density of sub-pixels in the transition display area 203 is less than the density of sub-pixels in the second display area 202 and is greater than the density of sub-pixels in the first display area 201.
  • the distance between adjacent sub-pixels in the transition display area 203 is smaller than the distance between adjacent sub-pixels in the first display area 201; and/or, the distance between the sub-pixels in the transition display area 203 The size is smaller than the size of the sub-pixel in the first display area 201.
  • the density of sub-pixels in the transition display area 203 can be greater than the density of sub-pixels in the first display area 201.
  • An embodiment of the present application also provides a display device, which includes an equipment body and the display screen described in any of the foregoing embodiments.
  • the device body has a device area, and the display screen covers the device body.
  • the device area is located below the first display area, and a photosensitive device that transmits light through the first display area is arranged in the device area.
  • the photosensitive device may include a camera and/or a light sensor.
  • Devices other than photosensitive devices such as gyroscopes or earpieces, can also be arranged in the device area.
  • the device area may be a slotted area, and the first display area of the display screen may be arranged corresponding to the slotted area so that the photosensitive device can emit or collect light through the first display area.
  • the complexity of the wiring in the first display area can be reduced, and the light transmission in the first display area can be effectively improved.
  • the diffractive superimposition phenomenon caused by the complicated wiring further improves the image quality of the camera set on the backlight surface of the first display area, and avoids image distortion defects; moreover, multiple first electrode blocks in the same first electrode It is electrically connected, so that the light-emitting structure blocks corresponding to the multiple first electrode blocks of the same electrode can be controlled to emit light or be turned off at the same time, which simplifies the control of the first display area.
  • the above-mentioned display device may be a digital device such as a mobile phone, a tablet, a palm computer, or an iPod.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance.
  • plurality refers to two or more, unless specifically defined otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种透明显示面板(100),包括衬底(1)、位于所述衬底(1)上的第一电极层(2)、位于所述第一电极层(2)上的发光结构层(3)及位于所述发光结构层(3)上的第二电极层(4);所述第一电极层(2)包括沿第一方向排列的多个第一电极组(20),每一所述第一电极组(20)包括至少一个第一电极(21),同一所述第一电极组(20)中的第一电极(21)沿第二方向延伸,所述第二方向与所述第一方向相交;每一所述第一电极(21)包括至少两个第一电极块(211)及至少一个连接部(212),相邻的两个第一电极块(211)通过对应的连接部(212)电连接。

Description

透明显示面板、显示屏及掩膜板
相关申请的交叉引用
本申请要求于2019年3月29日提交中国专利局,申请号为201910252177.3,申请名称为“透明显示面板、显示屏、显示装置及掩膜板”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及显示技术领域,尤其涉及一种透明显示面板、显示屏、显示装置及掩膜板。
背景技术
随着电子设备的快速发展,用户对屏占比的要求越来越高,使得电子设备的全面屏显示受到业界越来越多的关注。相关的电子设备如手机、平板电脑等,由于需要集成诸如前置摄像头、听筒以及红外感应元件等,故而可通过在显示屏上开槽(Notch),在开槽区域设置摄像头、听筒以及红外感应元件等,但开槽区域并不能用来显示画面,如相关技术中的刘海屏,或者采用在屏幕上开孔的方式,对于实现摄像功能的电子设备来说,外界光线可通过屏幕上的开孔处进入位于屏幕下方的感光元件。但是这些电子设备均不是真正意义上的全面屏,并不能在整个屏幕的各个区域均进行显示,如在摄像头区域不能显示画面。
发明内容
本申请实施例提供了一种透明显示面板,包括衬底、位于所述衬底上的第一电极层、位于所述第一电极层上的发光结构层及位于所述发光结构层上的第二电极层;
所述第一电极层包括沿第一方向排列的多个第一电极组,每一所述第一电极组包括至少一个第一电极,同一所述第一电极组中的第一电极沿第二方向延伸,所述第二方向与所述第一方向相交;每一所述第一电极包括至少两个第一电极块及至少一个连接部,相邻的两个第一电极块通过对应的连接部电连接。
本申请实施例还提供了一种显示屏,所述显示屏包括第一显示区及第二显示区,所述第一显示区区内设置有上述的透明显示面板,所述第一显示区的透光率大于所述第二显示区的透光率,所述第一显示区下方可设置感光器件。
本申请实施例还提供了一种掩膜板,所述掩膜板用于上述显示屏的制备工艺中;
所述第一电极层上设有第一像素开口的第一像素限定层;所述第一像素开口内设置有发光结构块;所述第二电极层为面电极,所述第二电极层位于所述第一像素限定层上,且部分 设置在所述第一像素开口的侧壁上;
所述第一显示区内还设置有第三电极层,所述第三电极层至少设置在所述第一像素开口的侧壁上,所述第三电极层与所述第二电极层直接接触;
所述第二显示区内设置有第四电极层、位于所述第四电极层上且设有第二像素开口的第二像素限定层、设置在第二像素开口内的发光结构块及位于所述第二像素限定层上的第五电极层,所述第五电极层为面电极,所述第五电极层的厚度大于所述第二电极层的厚度;所述掩膜板包括第一开口和多个第二开口,所述第一开口用于制备所述第五电极层,所述第二开口用于制备所述第三电极层。
本申请实施例提供的透明显示面板、显示屏及显示装置,由于其透明显示面板的同一第一电极包括的至少两个第一电极块中,相邻的两个第一电极块通过对应的连接部连接,则该第一电极中的第一电极块可由同一个像素电路进行驱动,该第一电极中的一个第一电极块与对应的像素电路驱动电连接即可,可减小透明显示面板内的走线的复杂度,能够有效改善光线透射时透明显示面板内的走线复杂而导致的衍射叠加现象,进而提升设置在该透明显示面板的背光面设置的摄像头拍摄的图像质量,避免出现图像失真缺陷;并且,同一第一电极中的多个第一电极块电性连接,从而可控制同一电极的多个第一电极块上对应设置的发光结构块同时发光或同时关闭,简化对透明显示面板的控制;
在制备显示屏的过程中,采用本申请实施例提供的掩膜板时,将第一开口与显示屏的第二显示区对准,通过第一开口制备第二显示区的第五电极层;将第二开口与显示屏中第一显示区的第一像素限定层的侧壁对准,通过第二开口制备第一显示区的第三电极层。可知采用上述的掩膜板可同时制备第二显示区的第五电极层及第一显示区的第三电极层,简化显示屏的制备工艺。
附图说明
图1是本申请一实施例提供的透明显示面板的剖视图;
图2是本申请一实施例提供的透明显示面板的第一电极层在衬底上的投影示意图;
图3是本申请又一实施例提供的透明显示面板的第一电极层在衬底上的投影示意图;
图4是本申请又一实施例提供的透明显示面板的第一电极层在衬底上的投影示意图;
图5是本申请又一实施例提供的透明显示面板的第一电极层在衬底上的投影示意图;
图6是本申请再一实施例提供的透明显示面板的第一电极层在衬底上的投影示意图;
图7是本申请又一实施例提供的透明显示面板的剖视图;
图8是本申请一实施例提供的光线穿过图1所示的显示面板的示意图;
图9是本申请一实施例提供的透明显示面板的局部剖视图;
图10是本申请一实施例提供的掩膜板的俯视图;
图11是本申请一实施例提供的显示屏的俯视图。
具体实施方式
本申请将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置的例子。
在诸如手机和平板电脑等智能电子设备上,由于需要集成诸如前置摄像头、光线感应器等感光器件,一般是通过在上述电子设备上设置透明显示屏的方式,来实现电子设备的全面屏显示。
但是,摄像头透过该透明显示屏所采集光线的质量较差,甚至在图像采集过程中会出现图像失真缺陷。发明人研究发现,出现这种问题的原因在于,电子设备的透明显示屏内的走线比较复杂,外部光线经过透明显示屏时会造成较为复杂的衍射强度分布,从而出现衍射条纹,进而影响感光器件的正常工作。例如,位于透明显示区域之下的摄像头工作时,外部光线经过显示屏内的走线时,不同走线之间的边界处会发生较为明显的衍射,从而使得摄像头拍摄到的画面出现失真的问题。
为解决上述问题,本申请实施例提供了一种透明显示面板、显示屏、显示装置及掩膜版,其能够很好的解决上述问题。
下面结合附图,对本申请实施例中的透明显示面板、显示屏及显示装置进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互补充或相互组合。
参见图1,本申请实施例提供的透明显示面板100包括衬底1、位于所述衬底1上的第一电极层2、位于所述第一电极层2上的发光结构层3及位于所述发光结构层3上的第二电极层4。
参见图2至图6,所述第一电极层2包括沿第一方向排列的多个第一电极组20,每一所述第一电极组20包括至少一个第一电极21,同一所述第一电极组20中的第一电极21沿第二方向延伸。所述第二方向与所述第一方向相交。每一所述第一电极21包括至少两个第一电极块211及至少一个连接部212,相邻的两个第一电极块211通过对应的连接部212电连接。
发光结构层3包括多个发光结构块31,多个发光结构块31一一对应地设置在多个第一电极块211上。
本申请实施例提供的透明显示面板100,由于同一第一电极21包括的至少两个第一电极 块211中,相邻的两个第一电极块211通过对应的连接部212连接,则该第一电极21中的第一电极块211可由同一个像素电路进行驱动。该第一电极21中的一个第一电极块211与对应的像素电路驱动电连接即可,可减小透明显示面板内的走线的复杂度,能够有效改善光线透射时透明显示面板内的走线复杂而导致的衍射叠加现象,进而提升设置在该透明显示面板的背光面设置的摄像头拍摄的图像质量,避免出现图像失真缺陷。并且,同一第一电极21中的多个第一电极块211电性连接,从而可控制同一电极21的多个第一电极块211上对应设置的发光结构块同时发光或同时关闭,简化对透明显示面板的控制。
在一个实施例中,透明显示面板100还可包括设置在第一电极层2上的第一像素限定层5。第一像素限定层5上设置有多个间隔排布的第一像素开口,发光结构层3的多个发光结构块31一一对应地设置在多个第一像素开口内。
在一个实施例中,所述第一电极层2可以是阳极层,第二电极层4可以是阴极层。其中第二电极层4可以是面电极,即第二电极层4是一片连续的电极。
在一个实施例中,所述第一电极组20中的第一电极块211及连接部212设置在同一层。如此设置,第一电极组20中的第一电极块211及连接部212可在同一工艺步骤中形成,减小制备工艺的复杂度。
进一步地,当所述第一电极组20中的第一电极块211及连接部212设置在同一层时,所述连接部212在垂直于其延伸方向上的尺寸大于3μm,且小于所述第一电极块211的最大尺寸的二分之一。通过设置连接部在垂直于其延伸方向的尺寸大于3μm,可使得连接部212的电阻较小。通过设置连接部212的尺寸小于第一电极块211的最大尺寸的二分之一,可使得连接部212的设置对第一电极块211的尺寸影响较小,避免连接部212的尺寸较大导致第一电极块211的尺寸减小,从而导致透明显示面板100的有效发光面积减小。
在另一个实施例中,所述第一电极组20中的第一电极块211及连接部212设置在不同层。如此设置,第一电极块211的尺寸可不受连接部212的影响,可将第一电极块211的尺寸做得较大,从而使透明显示面板100的有效发光面积较大。
所述连接部212可设置于所述第一电极块211与所述衬底1之间。例如,参见图7,第一电极块211下方设置有绝缘层6,连接部212设置于绝缘层6与衬底1之间。
进一步地,所述绝缘层6位于所述第一电极块211下方的位置设置有接触孔61,所述接触孔61内填充有导电材料,所述第一电极块211通过其下方的接触孔61内的导电材料与其对应的连接部212电连接。通过在位于第一电极块211下方的绝缘层6上设置接触孔61,接触孔61内填充导电材料,将第一电极块211与对应的连接部212通电连接,从而实现第一电极块211与连接部212设置在不同层。
在一个实施例中,参见图2至图6,所述第一电极块211在所述衬底1上的投影包括一 个第一图形单元或者多个相连的第一图形单元。其中,所述第一图形单元包括圆形、椭圆形、哑铃形、葫芦形或矩形。如此,可改变衍射产生的周期性结构,即改变了衍射场的分布,从而减弱外部入射光通过时产生的衍射效应。
参阅图2,在一实施例中,每一第一电极组20包括一个第一电极21,每一第一电极21包括六个电极块211。每一第一电极块211在衬底上的投影包括一个第一图形单元,该第一图形单元为矩形。参阅图3,在另一实施例中,每一第一电极组20包括一个第一电极21,每一第一电极21包括三个第一电极块211。每一第一电极块211在衬底上的投影包括一个第一图形单元,该第一图形单元为葫芦形。参阅图4,在另一实施例中,每一第一电极组20包括一个第一电极21,每一第一电极21包括五个第一电极块211。每一第一电极块211在衬底上的投影包括一个第一图形单元,该第一图形单元为圆形。参阅图5,在另一实施例中,每一第一电极组20包括两个第一电极21,每一第一电极21包括两个第一电极块211。该电极块211在衬底上的投影包括一个第一图形单元,该图形单元为哑铃形。参阅图6,在另一实施例中,每一第一电极组20包括两个第一电极21,每一第一电极21包括四个第一电极块211。该第一电极块211在衬底上的投影包括一个第一图形单元,该第一图形单元为矩形。所述第一图形单元为圆形、椭圆形、哑铃形及葫芦形,如此第一电极21在第一方向上的尺寸连续变化或者间断变化,则在第一方向上相邻的两个第一电极21在第一方向上的间距连续变化或者间断变化,从而相邻的两个第一电极21产生衍射的位置不同。不同位置处的衍射效应相互抵消,从而可以有效减弱衍射效应,确保透明显示面板100下方设置的摄像头拍照得到的图像具有较高的清晰度。
在一个实施例中,对应设置在每一第一电极块211上的发光结构块31在所述衬底1上的投影包括一个第二图形单元或者多个相连的第二图形单元。其中,所述第二图形单元包括圆形、椭圆形、哑铃形、葫芦形或矩形,所述第二图形单元与所述第一图形单元相同或不同。如此,可改变衍射产生的周期性结构,即改变了衍射场的分布,从而减弱外部入射光通过时产生的衍射效应。可选的,所述第一电极块211上对应设置的发光结构块31在所述衬底1上的投影与第一电极块211在所述衬底1上的投影不同,例如位置不完全重合,形状不同,或者尺寸不同,以进一步减弱光线通过透明显示面板100时产生的衍射效应。
在一个实施例中,所述第一方向与所述第二方向垂直,所述第一方向为行方向或列方向。多个所述第一电极21可排列成一行多列、或一列多行、或两列多行、或两行多列、或多行多列。图2至图6仅以第一方向为列方向,第二方向为行方向为例进行示意。在其他实施例中,第一方向也可以是行方向,第二方向为列方向。
在一个实施例中,参见图2、图3、图4和图6,在所述第二方向上,同一所述第一电极组20的多个第一电极块211中,相邻的两个第一电极块211错位排布。如此设置可进一步减 弱外部入射的光线通过透明显示面板100时产生的衍射效应。
进一步地,在所述第二方向上,同一所述第一电极组20的多个第一电极块211中,相邻两个第一电极块211沿所述第一方向的中轴线之间的距离可为所述第一电极块211在所述第二方向上的尺寸的0.5倍或1.5倍。在其他实施例中,相邻两个第一电极块211沿所述第一方向的中轴线之间的距离也可为块状电极211在第二方向上的尺寸的1.0倍、0.8倍等。
进一步地,同一所述第一电极组20的多个第一电极块211中,间隔一个第一电极块211设置的两个第一电极块211在所述第二方向上的中轴线重合。如此设置可使第一电极组20的多个第一电极块211的排布更规则,从而对应设置在多个第一电极块211上方的发光结构块31的排布更规则,进而制备发光结构块31采用的掩模板的开口排布比较规则。并且,在蒸镀包括透明显示面板和常规非透明显示面板的复合显示屏的发光结构块时,可采用同一掩膜板在同一蒸镀工艺中制作,由于掩膜板上的图形较均匀,也减少了张网褶皱。
为了提高透明显示面板100的光透过率,透明显示面板100的各层材料均可采用透明材料。如此可提高透明显示面板100下方设置的感光器件例如摄像头的采光效果。
在一个实施例中,所述第一电极层2和/或所述第二电极层4的材料均为透明材料。
进一步地,制备所述第一电极层2和/或所述第二电极层4的透明材料的透光率可大于或等于70%。可选的,该透明材料的透光率大于或等于90%,例如该透明材料的透光率可以为90%、95%等。如此设置可使得透明显示面板100的透光率较大,进而使得透明显示面板100的透光率满足其下方设置的感光器件的采光需求。
进一步地,制备所述第一电极层2和/或所述第二电极层4的透明材料可包括氧化铟锡、氧化铟锌、掺杂银的氧化铟锡和掺杂银的氧化铟锌中的至少一种。可选的,制备所述第一电极层2和/或所述第二电极层4的透明材料采用掺杂银的氧化铟锡或者掺杂银的氧化铟锌,以在保证透明显示面板100的高透光率的基础上,减小第一电极层2和/或所述第二电极层4的电阻。
在一个实施例中,所述透明显示面板100内具有可透光的多条路径,每条路径所穿过或经过的膜层不同,外部入射光以垂直于所述衬底1的表面的方向射入所述透明显示面板100,当膜层的厚度设置为预设厚度和/或折射率设置为预设折射率时,外部入射光沿所述多条路径中的任意两条路径穿过所述透明显示面板100后,得到的所述两条路径的光程之间的差值为外部入射光的波长的整数倍。
由于两条路径之间的差值为光的波长的整数倍,因此当光线通过两条路径从透明显示面板100射出后,其相位差为零。由于相同相位的光线经过显示面板后产生相位差异是衍射发生的重要原因之一,相同相位的光线经两条路径穿过显示面板后,相位仍然相同,不会产生相位差异,消除了相位差异导致的衍射现象,使得光线穿过透明显示面板100后不会产生由 于衍射导致的图像失真,提高了透明显示面板100下方设置的摄像头感知图像的清晰度,使得透明显示面板后的感光元件能够获得清晰、真实的图像。
透明显示面板100内可以存在多条路径如三条、四条、五条路径,其中任意两条路径形成的光程之间的差值是入射光波长的整数倍。这样,通过这些路径的光穿过透明显示面板100后的衍射均可以有效降低,满足条件的路径越多,光线穿过透明显示面板100后的衍射现象就越弱。这样,光线穿过透明显示面板100后由于相位差异导致的相位差就基本都可消除,可大大降低衍射现象的出现。
光程等于介质折射率乘以光在介质中传播的路程,光程等于介质的折射率与光的路程的乘积。外部入射光穿过透明显示面板100的各膜层时,所述光程的计算公式如下:
L=d1*n1+d2*n2+…+di*ni
其中L为光程,i为外部入射光穿过的路径中膜层的数量,d1,d2,…,di为外部入射光穿过的路径中各膜层的厚度;n1,n2,…,ni为外部入射光穿过的路径中各膜层的折射率。
可选的,所述两条路径的光程之间的差值为0,也即是La与Lb的差值为0,也就是两条路径的光程为0。通过调整膜层的厚度和折射率来使得两条路径的光程差为零,相较于调整膜层的厚度和折射率使得两条路径的光程差为外部入射光的波长的整数倍,更好操作,更好实现。
在一个实施例中,透明显示面板100还包括设置在第二电极层4上方的封装层7,封装层7可以是硬屏封装,也可以是有机薄膜封装。
当透明显示面板100的封装层为硬屏封装例如玻璃粉封装时,参见图8,封装层7包括真空间隙层71和封装基板72,封装基板72例如为玻璃盖板。
所述第一电极组20中的第一电极块211及连接部212设置在同一层时,透明显示面板100内存在多条路径。由于透明显示面板100具有顶发光结构和底发光结构两种不同的方式,如果该透明显示面板100为顶发光结构,则摄像头设置在衬底1的下方。如果透明显示面板100为底发光结构,则摄像头设置在封装玻璃背离第二电极层4的一侧。
下面对图8所示的透明显示面板100的各膜层进行分析。
衬底1可以是刚性衬底,如玻璃衬底、石英衬底或者塑料衬底等透明基板;衬底1也可为柔性透明衬底,如PI薄膜等,以提高器件的透明度。由于基板对于光线垂直穿过基板的所有路径都是相同的,因此衬底1对于光线垂直穿过基板的不同路径的光程之间的差值没有实质性影响。
图8所示的透明显示面板中,第一电极块211和连接部212设置在同一层,且可在同一工艺步骤中形成,则二者的厚度及材料可相同。第一电极块211和连接部212可以采用透明导电材料,一般可以采用铟锡氧化物,也可为铟锌氧化物、或者掺杂银的氧化铟锡、或者掺 杂银的氧化铟锌。第一电极块211和连接部212的厚度和折射率都可以调整,通过调整厚度或折射率或者同时调整厚度和折射率,来调整光穿过一路径的光程,从而使得与其他路径的光程之间的差值满足上述条件。第一电极块211和连接部212的厚度一般为20纳米至200纳米,可在该范围内调整第一电极块211和连接部212的厚度。二者在同一工艺步骤中形成时,只能同时调整第一电极块211和连接部212的厚度和折射率。
第一电极块211和连接部212也可在不同的工艺步骤中形成,二者的材料可相同也可不同,则可以分别调整其厚度和折射率。
第一像素限定层5的厚度比较大,其可调的范围大一些。一般第一像素限定层5的厚度为0.3微米至3微米,可以在该范围内调整第一像素限定层5的厚度。因此可以通过调整第一像素限定层5的厚度使得光程满足上述要求。如果单独调整第一像素限定层5的厚度无法使其满足要求,可以结合调整第一像素限定层5的材料,从而调整其折射率。也可以同时调整第一像素限定层5的厚度和折射率,从而调整光穿过所述路径的光程。
发光结构层3一般包括光取出层、电子注入层、电子传输层、空穴阻挡层、发光结构块31、空穴传输层、空穴注入层。除发光结构块31外,其余的各层(光取出层、电子注入层、电子传输层、空穴阻挡层、空穴传输层、空穴注入层)为整面设置,对光穿过的路径的光程之间的差值没有影响,附图中没有示出。发光结构层3的发光结构块31设置在第一像素开口内,不同的发光子像素包括的发光结构块31的材料不同,包括红色发光材料、蓝色发光材料和绿色发光材料。对于不同的发光子像素,也可以通过调整发光结构块的厚度或者折射率,或者同时调整发光结构块的厚度和折射率来调整光线穿过该路径的光程。由于发光结构块31整体的厚度较小,因此该发光结构块31的可调范围较小,可通过与其他膜层的配合来进行光程的调节,避免单独调节使光程满足上述要求。
第二电极层4是整面设置,因此第二电极层4对光穿过各路径的光程之间的差值没有实质影响。
图8中的透明显示面板100为采用玻璃粉封装(即Frit封装)方式的硬屏,所述封装层7包括低真空间隙层71和封装基板72,在真空间隙层71中填充有惰性气体,封装基板72为封装玻璃。
再次参见图8,光透过透明显示面板100的路径包括第一路径A、第二路径B和第三路径C。
所述第一路径A包括所述封装层7、所述第二电极层4、所述发光结构层3、所述第一电极块211和所述衬底1;
所述第二路径B包括所述封装层7、所述第二电极层4、所述第一像素限定层5、所述连接部212和所述衬底1;
所述第三路径C包括所述封装层7、所述第二电极层4、所述第一像素限定层5和所述衬底1。
其中,路径A中的真空间隙层71的厚度大于其他路径中真空间隙层71的厚度。
光线穿过路径A的光程为LA,光线穿过路径B的光程为LB,光线穿过路径C的光程为LC,通过调整上述一个或多个膜层的厚度或者折射率,使得LA、LB、LC中的任两个的差值有一个或多个满足为波长的整数倍。
此处,以LA、LB、LC为例,
LA-LB=X1·λ;X1为整数。
或者LB-LC=X2·λ;X2为整数。
当然,也可以同时满足LA-LB=X1·λ和LB-LC=X2·λ,其中X1、X2为整数,可以是正整数或者负整数或者零。这样就可以满足路径A、路径B、路径C之间的光程之间的差值均为光的波长的整数倍。即,光线穿过路径A、路径B、路径C三条路径后,射入光线的相位与射出光线的相位相同,可大大降低衍射现象的发生。
对于不同路径的光程LA、LB、LC,通过测量各膜层的厚度和折射率,可以计算出每条路径的光程。
为了通过调整路径中的各膜层,使其满足上述光程之间的差值的要求,首先需要确定该层中影响光程的膜层有哪些,虽然每条路径穿过的膜层较多,但是,计算光程之间的差值时,如果路径中都存在相同的膜层,膜层的材料和厚度均相同,则不会影响这两条路径之间的光程之间的差值。只有不同材料的膜层、或者相同材料但厚度不同的膜层,才会影响光程之间的差值。
具体地,对于路径A、路径B和路径C而言,路径A包括发光结构层3,而路径B、路径C中不包括发光结构层3,通过调整发光结构层3的厚度和/折射率,可以调整路径A与路径B或路径C的光程之间的差值。
对于路径A和路径B而言,衬底1、封装基板72、第二电极层4是相同的材料,且厚度相同,可以不用考虑。当连接部212与第一电极块211在同一工艺步骤中形成时,二者的厚度相同,也可以不用考虑。路径A与路径B有区别的层在于真空间隙层71(路径A和路径B中都有但厚度不同)、第一像素限定层5(路径B中有)和发光结构层3(路径A中有),由于在路径A和路径B中真空间隙层71的厚度与第一像素限定层5的厚度之和相同,因此调整第一像素限定层5的厚度,真空间隙层71在路径A与路径B中的厚度差异也会随之调整。可见,影响路径A和路径B的主要膜层为第一像素限定层5和发光结构层3。通过调整第一像素限定层5的厚度和/或折射率,可使得所述路径A和路径B的光程之间的差为波长的整数倍。 当然,路径A和路径B中,也可以通过调整路径A的发光结构层3的厚度来进一步调整路径的光程。
对于路径B和C而言,衬底1、封装基板72、第二电极层4是相同的材料,且厚度相同,可以不用考虑。其存在的主要区别为路径B中包括连接部212,路径C中第一像素限定层5的厚度与路径B中第一像素限定层5的厚度不同,因此通过调整连接部212的厚度或折射率使得路径B和路径C的光程之间的差值满足波长的整数倍。也可调整第一像素限定层5的厚度和/或折射率,以使所述外界入射光穿过路径B和路径C后,得到的光程之间的差值为所述外界入射光的波长的整数倍。
对于路径A和路径C而言,衬底1、封装基板72、第二电极层4是相同的材料,且厚度相同,可以不用考虑。其存在的主要区别为路径A中包括第一电极块211和发光结构层3,路径C中包括第一像素限定层5,因此通过调整第一电极块211的厚度和/或折射率使得路径A和路径C的光程之间的差值满足波长的整数倍。也可调整第一像素限定层5的厚度和/或折射率,以使所述外界入射光穿过路径A和路径C后,得到的光程之间的差值为所述外界入射光的波长的整数倍。或者,也可同时调整第一电极块211的厚度和/或折射率、以及第一像素限定层5的厚度和/或折射率,以使所述外界入射光穿过路径A和路径C后,得到的光程之间的差值为所述外界入射光的波长的整数倍。
透明显示面板100为柔性面板时,透明显示面板100可以采用薄膜封装的方式,即在第二电极层4上方形成薄膜封装层。此时衬底1可以是柔性衬底,柔性衬底的材料可以选自PEN(聚萘二甲酸乙二醇酯)、PET(聚对苯二甲酸乙二醇酯)、PI(聚酰亚胺)、PES(聚醚砜树脂)、PC(聚碳酸酯)、PEI(聚醚酰亚胺)中的一种或多种。
所述薄膜封装层可包括无机材料封装层和有机材料封装层。无机材料封装层是整面设置的,厚度均匀,因此对于各条路径的光程之间的差值没有影响。有机材料封装层是填满第一像素开口的,填满第一像素开口后形成一个整层的封装层。因此在不同的路径中,有机材料封装层的厚度不同,故通过调整所述有机材料封装层位于所述第一像素开口内的厚度,或所述有机材料封装层的折射率,能够实现调整光穿过该路径的光程。也可以同时调整有机材料封装层的厚度和折射率,或者结合其他方式共同调整。路径A中有机材料封装层的厚度大于其他路径中有机材料封装层的厚度。
在一个实施例中,所述透明显示面板100可为AMOLED显示面板,透明显示面板100还可包括设置在衬底1与第一电极层2之间的驱动电路层,驱动电路层中设置有用于驱动像素的像素电路。具体的,像素电路可包括一个或多个开关器件以及电容等器件,根据需要将多个开关器件进行串联或者并联的连接,如2T1C电路、或3T1C电路、或3T2C电路、或7T1C电路、或7T2C电路等像素电路。
开关器件可以是薄膜晶体管TFT,薄膜晶体管可为氧化物薄膜晶体管或者低温多晶硅薄膜晶体管(LTPS TFT),薄膜晶体管可以为铟镓锌氧化物薄膜晶体管(IGZO TFT)。或者,开关器件还可为金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,缩写为MOSFET),还可为现有技术中具有开关特性的其它元件,如绝缘栅双极型晶体管(IGBT)等,只要能够实现本实施例中开关功能并且能够集成至显示面板中的电子元件均落入本申请保护范围内。
由于像素驱动电路包括多种器件,因此也形成多层膜层结构,包括源极、漏极、栅极、栅极绝缘层、有源层、层间绝缘层等,各个膜层均形成图形化膜层结构。在不同的路径中,光线穿过的路径会不同,因此通过调整所述驱动电路层中各膜层的厚度或者折射率可以调整光穿过的路径的光程。
在一个实施例中,所述第一电极组20可包括两个第一电极21,每一所述第一电极21对应一个像素电路。如此设置,透明显示面板100分为两个显示区,每一显示区中的亮度可通过位于该显示区中的第一电极21对应的像素电路单独进行调节,可增加调节的灵活性。
在另一个实施例中,所述第一电极组20可包括一个第一电极21,第一电极21的驱动方式可以是PM(被动)驱动或者AM(主动)驱动。第一电极21的驱动方式为AM驱动时,该第一电极21对应一个像素电路,该像素电路与第一电极21的一端连接;或者,该第一电极21对应两个像素电路,两个像素电路分别与该第一电极的两端电连接。可选的,所述第一电极21对应两个像素电路,则数据信号可通过第一电极21的两端流入,更利于减小信号的延迟。
在一个实施例中,参见图9,所述第一像素限定层5上的第一像素开口501的侧壁由下至上倾斜向外延伸(即第一像素开口501的侧壁与第一像素开口底部的夹角为钝角)。
所述透明显示面板100还可包括第三电极层8,所述第三电极层8至少设置在所述第一像素开口501的侧壁上,第三电极层8与第二电极层4直接接触。
在一个实施例中,所述第三电极层8可位于所述第二电极层4的上表面或者下表面,从而与第二电极层4直接接触。其中,图9仅以第三电极层8位于第二电极层4的上表面为例进行说明,第三电极层8位于第二电极层4的下表面的实施例不再进行示意。
由于第二电极层4是整层设置,当采用薄的低功函数材料(如MgAg)制备第二电极层4时,会导致第二电极层4位于第一像素开口501的侧壁上的部分的厚度较薄,从而导致第二电极层4位于第一像素开口501的侧壁上的部分的电阻较大。随着透明显示面板100的使用时间延长,会导致第二电极层4的该部分劣化,严重时会造成第二电极层4的该部分发生断裂,进而导致第一像素开口501内的发光结构块31不能正常发光。通过在第一像素开口501的侧壁上设置与第二电极层4直接接触的第三电极层8,可使得位于第一像素开口501的侧壁 上的金属层的厚度增加,减小位于第一像素开口501的侧壁上的第二电极层4的厚度较薄导致第二电极层4的该部分的电阻较大的问题;并且,即使第一像素开口501侧壁上的第二电极层4发生断裂,第三电极层8可起到搭接的作用,电流可通过第三电极层8流过,保证第一像素开口501内的发光结构块31正常发光。
在一个实施例中,在形成第三电极层8时采用掩膜板进行蒸镀,蒸镀开口与第一像素开口501侧壁对位,从而使得蒸镀的第三电极层8形成在第一像素开口的侧壁上。但是考虑到掩膜板的蒸镀开口的对位误差,一般将蒸镀第三电极层8采用的掩膜板在水平方向的开口尺寸设置得稍微大一些,大于在侧壁上形成的第三电极层在水平方向的最大间距,从而使得即使蒸镀第三电极层8时掩膜板的开口对位发生偏差,也可保证第一像素开口501的侧壁上形成有第三电极层8。
当掩膜板的蒸镀开口在水平方向的尺寸大于在侧壁上形成的第三电极层8在水平方向的最大间距时,蒸镀形成的第三电极层8会存在如下三种情况:
第一种情况,所述第三电极层8除了设置于第一像素开口501的侧壁,还延伸设置于与所述第一像素开口501的侧壁邻接的所述第一像素限定层5的顶部的边缘;
第二种情况,所述第三电极层8除了设置于第一像素开口501的侧壁,还延伸设置于所述第一像素开口501的底部;
第三种情况,所述第三电极层8除了设置于第一像素开口501的侧壁,还延伸设置于所述第一像素开口501的底部、以及延伸设置于与所述第一像素开口501的侧壁邻接的所述第一像素限定层5的顶部的边缘。
本申请实施例还提供了一种显示屏,该显示屏包括第一显示区和第二显示区。所述第一显示区的透光率大于所述第二显示区的透光率,所述第一显示区下方被配制为设置感光器件。所述第一显示区内设置有第一电极层、位于所述第一电极层上且设有第一像素开口的第一像素限定层、设置在所述第一像素开口内的发光结构块及第二电极层,所述第二电极层为面电极,所述第二电极层位于所述第一像素限定层上,且部分设置在所述第一像素开口的侧壁上;
所述第一显示区内设置有第三电极层,所述第三电极层至少设置在所述第一像素开口的侧壁上,所述第三电极层与所述第二电极层直接接触。
通过在第一像素开口的侧壁上设置与第二电极层直接接触的第三电极层,可使得位于第一像素开口的侧壁上的金属层的厚度增加,减小位于第一像素开口的侧壁上的第二电极层的厚度较薄导致该部分第二电极层的电阻较大的问题;并且,即使第一像素开口侧壁上的第二电极层发生断裂,第三电极层可起到搭接的作用,电流可通过第三电极层流过,保证第一像素开口内的发光结构块正常发光。
可选的,所述第三电极层位于所述第二电极层的上表面或者下表面。
可选的,所述第三电极层还延伸设置于与所述第一像素开口的侧壁邻接的所述第一像素限定层的顶部的边缘。
可选的,所述第三电极层还延伸设置于所述第一像素开口的底部。
可选的,所述第二显示区内设置有第四电极层、位于所述第四电极层上且设有第二像素开口的第二像素限定层、设置在第二像素开口内的发光结构块及位于所述第二像素限定层上的第五电极层,所述第五电极层为面电极,所述第五电极层的厚度大于所述第二电极层的厚度。如此设置,可保证第一显示区的透光率较大,从而设置在第一显示区下方的感光器件可接收更多的光线。
位于所述第二电极层的材料包括氧化铟锡、氧化铟锌、Mg和Ag中的至少一种;
可选的,所述第二电极层的材料包括Mg和Ag,Mg的质量与Ag的质量的比例范围可为1:4~1:20。
第一像素限定层和第二像素限定层可为同一个膜层结构;第一显示区的发光结构块及第二显示区的发光结构块可在同一工艺步骤中形成。
其中,第一显示区可以是透明显示区,第一显示区内设置的透明显示面板的结构可以与上述的透明显示面板100的相关结构相同,具体细节详见上述的实施例,不再进行赘述;所述第一显示区的透光率大于所述第二显示区的透光率。
本申请实施例还提供了一种掩膜板,所述掩膜板用于显示屏的制备工艺中。所述显示屏包括第一显示区和第二显示区,所述第一显示区的透光率大于所述第二显示区的透光率,所述第一显示区下方可设置感光器件。所述第一显示区内设置有第一电极层、位于所述第一电极层上且设有多个第一像素开口的第一像素限定层、设置在所述第一像素开口内的发光结构块、第二电极层及第三电极层;所述第二电极层为面电极,所述第二电极层位于所述第一像素限定层上,且部分设置在所述第一像素开口的侧壁上;所述第三电极层至少设置在所述第一像素开口的侧壁上,所述第三电极层与所述第二电极层直接接触;所述第二显示区内设置有第四电极层、位于所述第四电极层上且设有第二像素开口的第二像素限定层、设置在第二像素开口内的发光结构块及位于所述第二像素限定层上的第五电极层,所述第五电极层为面电极,所述第五电极层的厚度大于所述第二电极层的厚度。
参见图10,所述掩膜板300包括第一开口301和多个第二开口302,所述第一开口301用于制备所述第五电极层,所述第二开口302用于制备所述第三电极层。其中,第一开口301的形状与第二显示区的形状一致,第二开口302的大小远小于第一开口301的大小。
制备显示屏的过程中,采用上述的掩膜板300时,将第一开口301与第二显示区对准,通过第一开口301制备第二显示区的第五电极层;将第二开口302与第一显示区的第一像素限定层的侧壁对准,通过第二开口302制备第一显示区的第三电极层。可知采用上述的掩膜 板300可同时制备第二显示区的第五电极层及第一显示区的第三电极层,简化显示屏的制备工艺。
本申请还提供了一种显示屏。参见图11,所述显示屏200包括第一显示区201及第二显示区202,所述第一显示区201内设置有上述实施例所述的透明显示面板100,所述第一显示区201的透光率大于所述第二显示区202的透光率,所述第一显示区201下方可设置感光器件。
由于显示屏200的第一显示区201内设置的显示面板可为上述实施例所述的透明显示面板100,则可减小第一显示区201内的走线的复杂度,能够有效改善光线透射时第一显示区201内的走线复杂而导致的衍射叠加现象,进而提升设置在该第一显示区201的背光面设置的摄像头拍摄的图像质量,避免出现图像失真缺陷;并且,同一第一电极21中的多个第一电极块211电性连接,从而可控制同一第一电极21的多个第一电极块211上对应设置的发光结构块同时发光或同时关闭,简化对第一显示区201的控制。
在一个实施例中,参见图11,所述显示屏200还包括邻接所述第一显示区201与所述第二显示区202的过渡显示区203,所述第一显示区201至少部分被所述过渡显示区202包围,所述第一显示区201中所述第一电极21对应的像素电路设置在所述过渡显示区203中。
如此设置,可进一步简化第一显示区201的膜层结构的复杂度及走线的复杂度,更利于改善光线透射时产生的衍射叠加现象,可进一步提升设置在该第一显示区201的背光面的摄像头拍摄的图像质量。
在一个实施例中,所述第二显示区202及所述过渡显示区203内设置有第四电极层、位于第四电极层上的发光结构层及位于发光结构层上的第五电极层,第五电极层包括多个间隔排布的第五电极块,第五电极块的排布方式可与第一显示区201中的第一电极块的排布方式相同,从而使得第一显示区201、第二显示区202和过渡显示区203的显示效果更一致。
在一个实施例中,所述过渡显示区203中子像素的密度小于所述第二显示区202中子像素的密度,且大于所述第一显示区201中子像素的密度。如此设置,显示屏200在显示时,过渡显示区203的亮度介于第一显示区201与第二显示区202之间,可避免第一显示区201与第二显示区202邻接时二者的亮度差异较大造成的分界线明显的问题,可提升用户的使用体验。
进一步地,所述过渡显示区203中相邻子像素之间的间距小于所述第一显示区201中相邻子像素之间的间距;和/或,所述过渡显示区203中子像素的尺寸小于所述第一显示区201中子像素的尺寸。通过这两种方式可使得过渡显示区203中子像素的密度大于第一显示区201中子像素的密度。
本申请实施例还提供了一种显示装置,所述显示装置包括设备本体及上述任一实施例所 述的显示屏。设备本体具有器件区,显示屏覆盖在所述设备本体上。其中,所述器件区位于第一显示区下方,且所述器件区中设置有透过所述第一显示区进行光线采集的感光器件。
其中,所述感光器件可包括摄像头和/或光线感应器。器件区中还可设置除感光器件的其他器件,例如陀螺仪或听筒等器件。器件区可以是开槽区,显示屏的第一显示区可对应于开槽区贴合设置,以使得感光器件能够透过该第一显示区进行发射或者采集光线。
上述的显示装置,由于其第一显示区为上述实施例所述的透明显示面板,则可减小第一显示区内的走线的复杂度,能够有效改善光线透射时第一显示区内的走线复杂而导致的衍射叠加现象,进而提升设置在该第一显示区的背光面设置的摄像头拍摄的图像质量,避免出现图像失真缺陷;并且,同一第一电极中的多个第一电极块电性连接,从而可控制同一电极的多个第一电极块上对应设置的发光结构块同时发光或同时关闭,简化对第一显示区的控制。
上述显示装置可以为手机、平板、掌上电脑、ipod等数码设备。
需要指出的是,在附图中,为了图示的清晰可能夸大了层和区域的尺寸。而且可以理解,当元件或层被称为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。另外,可以理解,当元件或层被称为在另一元件或层“下”时,它可以直接在其他元件下,或者可以存在一个以上的中间的层或元件。另外,还可以理解,当层或元件被称为在两层或两个元件“之间”时,它可以为两层或两个元件之间唯一的层,或还可以存在一个以上的中间层或元件。通篇相似的参考标记指示相似的元件。
在本发明中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本发明的其它实施方案。本发明旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制

Claims (20)

  1. 一种透明显示面板,包括:
    衬底;
    位于所述衬底上的第一电极层,所述第一电极层包括沿第一方向排列的多个第一电
    极组,每一所述第一电极组包括至少一个第一电极,同一所述第一电极组中的第一电极沿第二方向延伸,所述第二方向与所述第一方向相交,每一所述第一电极包括至少两个第一电极块及至少一个连接部,相邻的两个第一电极块通过对应的连接部电连接;
    位于所述第一电极层上的发光结构层;及
    位于所述发光结构层上的第二电极层。
  2. 根据权利要求1所述的透明显示面板,其中,所述第一电极组中的第一电极块及连接部设置在同一层;
    所述连接部在垂直于其延伸方向上的尺寸大于3μm,且小于所述第一电极块的最大尺寸的二分之一。
  3. 根据权利要求2所述的透明显示面板,其中,所述第一电极块在所述衬底上的投影包括一个第一图形单元或者多个相连的第一图形单元;
    所述第一图形单元包括圆形、椭圆形、哑铃形、葫芦形或矩形。
  4. 根据权利要求3所述的透明显示面板,其中所述发光结构层包括对应设置在每一所述第一电极块上的发光结构块,所述发光结构块在所述衬底上的投影包括一个第二图形单元或者多个相连的第二图形单元,所述第二图形单元与所述第一图形单元相同或不同;
    所述第一电极层为阳极层,所述第二电极层为阴极层,所述第二电极层为面电极,所述第一电极层和/或所述第二电极层的材料为透明材料;
    所述透明材料的透光率大于或等于70%。
  5. 根据权利要求1所述的透明显示面板,其中,所述透明显示面板内具有可透光的多条路径,每条路径所穿过的膜层不同,外部入射光以垂直于所述衬底表面的方向射入所述透明显示面板,当膜层的厚度设置为预设厚度和/或折射率设置为预设折射率时,外部入射光沿所述多条路径中的任意两条路径穿过所述透明显示面板后,得到的两条路径的光程之间的差值为外部入射光的波长的整数倍。
  6. 根据权利要求5所述的透明显示面板,其中所述两条路径的光程之间的差值为0。
  7. 根据权利要求5所述的透明显示面板,其中,所述透明显示面板还包括设置在所述第一电极层和所述第二电极层之间的第一像素限定层、以及位于所述第二电极层上的封装层, 所述第一像素限定层上开设有多个第一像素开口,所述发光结构层包括多个发光结构块,多个所述发光结构块一一对应地设置在多个所述第一像素开口内。
  8. 根据权利要求7所述的透明显示面板,其中,所述第一电极组中的第一电极块及连接部设置在同一层,所述路径包括第一路径、第二路径和第三路径;
    所述第一路径包括所述封装层、所述第二电极层、所述发光结构层、所述第一电极层和所述衬底;
    所述第二路径包括所述封装层、所述第二电极层、所述第一像素限定层、所述连接部和所述衬底;
    所述第三路径包括所述封装层、所述第二电极层、所述第一像素限定层和所述衬底。
  9. 根据权利要求8所述的透明显示面板,其中,所述透明显示面板为采用薄膜封装方式的柔性屏或硬屏,所述封装层包括薄膜封装层,所述薄膜封装层包括有机材料封装层,所述第一路径中有机材料封装层的厚度大于其他路径中机材料封装层的厚度。
  10. 根据权利要求8所述的透明显示面板,其中,所述透明显示面板为采用玻璃粉封装方式的硬屏,所述封装层包括真空间隙层和玻璃盖板,所述第一路径中真空间隙层的厚度大于其他路径中真空间隙层的厚度。
  11. 根据权利要求1所述的透明显示面板,其中,所述第一方向与所述第二方向垂直,所述第一方向为行方向或列方向;
    在所述第二方向上,同一所述第一电极组的多个第一电极块中,相邻的两个第一电极块错位排布;
    同一所述第一电极组的多个第一电极块中,间隔一个第一电极块设置的两个第一电极块沿所述第二方向的中轴线重合。
  12. 根据权利要求1所述的透明显示面板,其中,所述第一电极组包括两个第一电极;
    所述第一电极为AM驱动方式,每一所述第一电极对应一个像素电路。
  13. 根据权利要求1所述的透明显示面板,其中,所述第一电极组包括一个第一电极,该第一电极对应一个像素电路;
    或者,该第一电极对应两个像素电路,两个像素电路分别与该第一电极的两端电连接。
  14. 根据权利要求1所述的透明显示面板,其中,所述透明显示面板还包括设置在所述第一电极层和所述第二电极层之间的第一像素限定层,所述第一像素限定层上开设有多个第一像素开口,所述发光结构层包括多个发光结构块,多个发光结构块一一对应地设置在多个所述第一像素开口内;
    所述透明显示面板还包括第三电极层,所述第三电极层至少设置在所述第一像素开口的侧壁上,所述第三电极层与所述第二电极层直接接触;
    所述第三电极层位于所述第二电极层的上表面或者下表面。
  15. 根据权利要求14所述的透明显示面板,其中,所述第三电极层还延伸设置于与所述第一像素开口的侧壁邻接的所述第一像素限定层的顶部的边缘。
  16. 根据权利要求14所述的透明显示面板,其中,所述第三电极层还延伸设置于所述第一像素开口的底部。
  17. 一种显示屏,其中,所述显示屏包括第一显示区及第二显示区,所述第一显示区内设置有权利要求1所述的透明显示面板,所述第一显示区的透光率大于所述第二显示区的透光率,所述第一显示区下方被配制为设置感光器件。
  18. 根据权利要求17所述的显示屏,其中,所述显示屏还包括邻接所述第一显示区与所述第二显示区的过渡显示区,所述第一显示区至少部分被所述过渡显示区包围,所述第一显示区中所述第一电极对应的像素电路设置在所述过渡显示区中;
    所述过渡显示区中子像素的密度小于所述第二显示区中子像素的密度,且大于所述第一显示区中子像素的密度。
  19. 根据权利要求17所述的显示屏,其中,所述第一电极层上设有第一像素开口的第一像素限定层;所述第一像素开口内设置有发光结构块;所述第二电极层为面电极,所述第二电极层位于所述第一像素限定层上,且部分设置在所述第一像素开口的侧壁上;
    所述第一显示区内还设置有第三电极层,所述第三电极层至少设置在所述第一像素开口的侧壁上,所述第三电极层与所述第二电极层直接接触;
    所述第二显示区内设置有第四电极层、位于所述第四电极层上且设有第二像素开口的第二像素限定层、设置在第二像素开口内的发光结构块及位于所述第二像素限定层上的第五电极层,所述第五电极层为面电极,所述第五电极层的厚度大于所述第二电极层的厚度。
  20. 一种掩膜板,其中,所述掩膜板用于权利要求17所述的显示屏的制备工艺中;所述第一电极层上设有第一像素开口的第一像素限定层;所述第一像素开口内设置有发光结构块;所述第二电极层为面电极,所述第二电极层位于所述第一像素限定层上,且部分设置在所述第一像素开口的侧壁上;
    所述第一显示区内还设置有第三电极层,所述第三电极层至少设置在所述第一像素开口的侧壁上,所述第三电极层与所述第二电极层直接接触;
    所述第二显示区内设置有第四电极层、位于所述第四电极层上且设有第二像素开口的第二像素限定层、设置在第二像素开口内的发光结构块及位于所述第二像素限定层上的第五电极层,所述第五电极层为面电极,所述第五电极层的厚度大于所述第二电极层的厚度;
    所述掩膜板包括第一开口和多个第二开口,所述第一开口用于制备所述第五电极层,所述第二开口用于制备所述第三电极层。
PCT/CN2019/107919 2019-03-29 2019-09-25 透明显示面板、显示屏及掩膜板 WO2020199537A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19923265.3A EP3872885A4 (en) 2019-03-29 2019-09-25 CLEAR DISPLAY BOARD, DISPLAY SCREEN AND MASK PLATE
KR1020217017575A KR102549362B1 (ko) 2019-03-29 2019-09-25 투명 디스플레이 패널, 디스플레이 스크린 및 마스크
JP2021532986A JP7297067B2 (ja) 2019-03-29 2019-09-25 透明な表示パネル、ディスプレイ及びマスク板
US17/242,233 US11895859B2 (en) 2019-03-29 2021-04-27 Transparent display panels, display screens, and mask plates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910252177.3A CN110767835B (zh) 2019-03-29 2019-03-29 透明显示面板、显示屏、显示装置及掩膜板
CN201910252177.3 2019-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/242,233 Continuation US11895859B2 (en) 2019-03-29 2021-04-27 Transparent display panels, display screens, and mask plates

Publications (1)

Publication Number Publication Date
WO2020199537A1 true WO2020199537A1 (zh) 2020-10-08

Family

ID=69328640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107919 WO2020199537A1 (zh) 2019-03-29 2019-09-25 透明显示面板、显示屏及掩膜板

Country Status (6)

Country Link
US (1) US11895859B2 (zh)
EP (1) EP3872885A4 (zh)
JP (1) JP7297067B2 (zh)
KR (1) KR102549362B1 (zh)
CN (1) CN110767835B (zh)
WO (1) WO2020199537A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10270033B2 (en) 2015-10-26 2019-04-23 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
CN118215323A (zh) 2016-12-02 2024-06-18 Oti照明公司 包括设置在发射区域上面的导电涂层的器件及其方法
CN110785867B (zh) 2017-04-26 2023-05-02 Oti照明公司 用于图案化表面上覆层的方法和包括图案化覆层的装置
WO2018211460A1 (en) 2017-05-17 2018-11-22 Oti Lumionics Inc. Method for selectively depositing a conductive coating over a patterning coating and device including a conductive coating
US11751415B2 (en) 2018-02-02 2023-09-05 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
JP7320851B2 (ja) 2018-05-07 2023-08-04 オーティーアイ ルミオニクス インコーポレーテッド 補助電極を提供するための方法および補助電極を含むデバイス
CN109860239B (zh) * 2018-12-13 2021-03-16 武汉华星光电半导体显示技术有限公司 阵列基板及其制作方法、显示装置
CN116456753A (zh) 2019-03-07 2023-07-18 Oti照明公司 一种光电子器件
CN109962096B (zh) * 2019-04-15 2021-02-23 京东方科技集团股份有限公司 显示背板及其制作方法、显示装置
KR20220009961A (ko) 2019-04-18 2022-01-25 오티아이 루미오닉스 인크. 핵 생성 억제 코팅 형성용 물질 및 이를 포함하는 디바이스
JP7386556B2 (ja) 2019-06-26 2023-11-27 オーティーアイ ルミオニクス インコーポレーテッド 光回折特性に関連する用途を備えた光透過領域を含む光電子デバイス
US11832473B2 (en) 2019-06-26 2023-11-28 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics
CN112349748A (zh) * 2019-08-09 2021-02-09 北京小米移动软件有限公司 终端屏幕及终端
KR20220045202A (ko) 2019-08-09 2022-04-12 오티아이 루미오닉스 인크. 보조 전극 및 파티션을 포함하는 광전자 디바이스
CN111834538B (zh) * 2020-02-26 2021-07-06 昆山国显光电有限公司 显示面板、显示装置和显示面板的制造方法
CN111834400B (zh) * 2020-02-26 2021-10-12 昆山国显光电有限公司 显示面板及其制造方法、显示装置
CN111415962B (zh) * 2020-03-30 2022-11-25 京东方科技集团股份有限公司 显示背板及其制作方法和显示装置
CN111833754B (zh) * 2020-04-27 2021-10-22 昆山国显光电有限公司 显示面板以及显示装置
WO2021249015A1 (zh) * 2020-06-08 2021-12-16 Oppo广东移动通信有限公司 显示装置及电子设备
CN111834430B (zh) * 2020-07-09 2022-03-08 昆山国显光电有限公司 显示面板及显示装置
CN112038373B (zh) * 2020-08-28 2022-08-23 武汉天马微电子有限公司 一种显示面板及显示装置
US12113279B2 (en) 2020-09-22 2024-10-08 Oti Lumionics Inc. Device incorporating an IR signal transmissive region
CN112258987B (zh) * 2020-10-23 2022-06-21 合肥维信诺科技有限公司 透光显示面板和显示装置
WO2022123431A1 (en) 2020-12-07 2022-06-16 Oti Lumionics Inc. Patterning a conductive deposited layer using a nucleation inhibiting coating and an underlying metallic coating
KR20230024469A (ko) * 2021-08-11 2023-02-21 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
KR20230026598A (ko) * 2021-08-17 2023-02-27 삼성디스플레이 주식회사 표시 장치
KR20230054534A (ko) * 2021-10-15 2023-04-25 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100141612A1 (en) * 2006-11-24 2010-06-10 Comissariat A L'energie Atomique Electrode of a light-emitting device of the oled type
CN102334385A (zh) * 2009-09-14 2012-01-25 松下电器产业株式会社 显示面板装置以及显示面板装置的制造方法
CN102809866A (zh) * 2012-08-13 2012-12-05 京东方科技集团股份有限公司 一种液晶透镜及制作方法、显示装置
CN107123743A (zh) * 2017-05-26 2017-09-01 上海天马有机发光显示技术有限公司 有机发光器件及其制作方法、显示面板和显示装置
CN108873502A (zh) * 2018-07-16 2018-11-23 惠科股份有限公司 液晶显示器件及其制备方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217081A (ja) * 2000-02-02 2001-08-10 Sharp Corp 有機発光表示装置
JP2001313182A (ja) * 2000-05-01 2001-11-09 Toyota Motor Corp 有機el表示装置
JP2002299607A (ja) 2001-03-28 2002-10-11 Toshiba Corp Mis型電界効果トランジスタ及びこれの製造方法
JP2002299067A (ja) * 2001-04-03 2002-10-11 Matsushita Electric Ind Co Ltd El素子及びこれを用いた照光装置
US7554067B2 (en) 2001-05-07 2009-06-30 Panavision Imaging Llc Scanning imager employing multiple chips with staggered pixels
JP4961152B2 (ja) 2006-03-15 2012-06-27 株式会社リコー 光学素子と光偏向素子及び画像表示装置
JP2008108530A (ja) * 2006-10-25 2008-05-08 Hitachi Displays Ltd 有機el表示装置
KR100864882B1 (ko) * 2006-12-28 2008-10-22 삼성에스디아이 주식회사 유기전계발광표시장치 및 그 제조방법
JP5608320B2 (ja) * 2008-07-09 2014-10-15 株式会社ジャパンディスプレイ 有機el表示装置
JP2010230797A (ja) * 2009-03-26 2010-10-14 Seiko Epson Corp 表示装置、および電子機器
KR101084245B1 (ko) * 2010-01-04 2011-11-16 삼성모바일디스플레이주식회사 표시 장치
JP2012033307A (ja) * 2010-07-29 2012-02-16 Dainippon Printing Co Ltd 有機el素子及びその製造方法
US8883531B2 (en) * 2012-08-28 2014-11-11 Lg Display Co., Ltd. Organic light emitting diode display device and method of manufacturing the same
JP6157866B2 (ja) * 2013-02-04 2017-07-05 株式会社東芝 有機電界発光素子、照明装置及び照明システム
KR20140125182A (ko) * 2013-04-18 2014-10-28 삼성디스플레이 주식회사 투명 디스플레이를 적용한 컵
KR102173041B1 (ko) * 2013-05-23 2020-11-03 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
JP6487173B2 (ja) * 2014-10-08 2019-03-20 株式会社ジャパンディスプレイ 表示装置及びその製造方法
KR102350029B1 (ko) 2015-02-17 2022-01-11 삼성디스플레이 주식회사 신축성 표시 장치 및 이의 제조 방법
JP6500082B2 (ja) * 2015-03-09 2019-04-10 パイオニア株式会社 発光装置
WO2017131143A1 (ja) * 2016-01-27 2017-08-03 パイオニア株式会社 発光装置
KR101919554B1 (ko) * 2016-04-28 2018-11-19 삼성디스플레이 주식회사 터치 표시 장치 및 이의 제조 방법
CN109315049B (zh) 2016-05-11 2021-10-08 株式会社日本有机雷特显示器 显示装置和电子设备
KR20180132935A (ko) * 2016-05-30 2018-12-12 가부시키가이샤 제이올레드 표시 장치 및 전자 기기
CN107768545B (zh) 2017-09-28 2020-09-11 上海天马微电子有限公司 一种有机电致发光显示面板及显示装置
WO2019062221A1 (zh) 2017-09-30 2019-04-04 云谷(固安)科技有限公司 显示屏及显示装置
WO2019062187A1 (zh) * 2017-09-30 2019-04-04 云谷(固安)科技有限公司 显示屏以及电子设备
CN108269840B (zh) * 2017-09-30 2021-08-13 昆山国显光电有限公司 显示屏及显示装置
CN207947007U (zh) * 2017-09-30 2018-10-09 云谷(固安)科技有限公司 显示屏及显示装置
CN208507679U (zh) * 2018-06-29 2019-02-15 京东方科技集团股份有限公司 显示基板、显示装置及高精度金属掩模板
CN208622781U (zh) * 2018-08-06 2019-03-19 昆山维信诺科技有限公司 显示面板、显示屏及显示终端
CN208622778U (zh) * 2018-08-06 2019-03-19 云谷(固安)科技有限公司 显示面板、显示屏及显示终端
CN110911440B (zh) * 2018-09-14 2020-10-16 云谷(固安)科技有限公司 显示面板、显示屏和显示终端
CN109273512A (zh) 2018-10-17 2019-01-25 武汉华星光电半导体显示技术有限公司 双面显示装置及其制作方法
CN111128066B (zh) * 2018-10-31 2024-01-30 北京小米移动软件有限公司 终端屏幕、屏幕结构及其控制方法、装置和终端
CN109192076B (zh) 2018-11-02 2021-01-26 京东方科技集团股份有限公司 一种显示面板和显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100141612A1 (en) * 2006-11-24 2010-06-10 Comissariat A L'energie Atomique Electrode of a light-emitting device of the oled type
CN102334385A (zh) * 2009-09-14 2012-01-25 松下电器产业株式会社 显示面板装置以及显示面板装置的制造方法
CN102809866A (zh) * 2012-08-13 2012-12-05 京东方科技集团股份有限公司 一种液晶透镜及制作方法、显示装置
CN107123743A (zh) * 2017-05-26 2017-09-01 上海天马有机发光显示技术有限公司 有机发光器件及其制作方法、显示面板和显示装置
CN108873502A (zh) * 2018-07-16 2018-11-23 惠科股份有限公司 液晶显示器件及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3872885A4 *

Also Published As

Publication number Publication date
EP3872885A1 (en) 2021-09-01
JP7297067B2 (ja) 2023-06-23
US11895859B2 (en) 2024-02-06
KR102549362B1 (ko) 2023-06-29
US20210249624A1 (en) 2021-08-12
CN110767835A (zh) 2020-02-07
KR20210078561A (ko) 2021-06-28
EP3872885A4 (en) 2021-12-22
CN110767835B (zh) 2021-01-26
JP2022512355A (ja) 2022-02-03

Similar Documents

Publication Publication Date Title
WO2020199537A1 (zh) 透明显示面板、显示屏及掩膜板
JP6963124B2 (ja) 表示パネル、ディスプレイ及び表示端末
WO2020052232A1 (zh) 显示面板、显示屏和显示终端
TWI726605B (zh) 顯示基板、顯示面板及顯示裝置
WO2020258861A1 (zh) 显示基板、显示面板及显示装置
WO2018205651A1 (zh) Oled触控显示面板及其制作方法、触控显示装置
WO2020173060A1 (zh) 显示基板、显示面板及显示装置
WO2020192054A1 (zh) 透明阵列基板、透明显示面板、显示面板及显示终端
WO2020233286A1 (zh) 显示基板、显示面板及显示装置
US11626456B2 (en) Display device including stepped section substrate with embedded camera
KR20200098742A (ko) 표시 장치
US11895879B2 (en) Display substrate and preparation method thereof, and display apparatus
US12029090B2 (en) Display panel and manufacturing method thereof, display screen and display device
JP7053858B2 (ja) 表示パネル、ディスプレイ及び表示端末
CN110911439B (zh) 显示面板、显示屏和显示终端
WO2021227040A1 (zh) 显示基板及其制备方法、显示装置
KR20190098298A (ko) 표시 장치 및 그 제조 방법
CN110911438B (zh) 显示面板、显示屏和显示终端
CN109073944B (zh) 阵列基板及其制造方法、显示面板和显示设备
WO2023137663A1 (zh) 显示基板和显示装置
US20240274767A1 (en) Display substrate
WO2024020750A1 (zh) 显示基板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923265

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019923265

Country of ref document: EP

Effective date: 20210525

ENP Entry into the national phase

Ref document number: 20217017575

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021532986

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE