WO2020196470A1 - 熱可塑性樹脂の耐トラッキング性向上方法 - Google Patents

熱可塑性樹脂の耐トラッキング性向上方法 Download PDF

Info

Publication number
WO2020196470A1
WO2020196470A1 PCT/JP2020/012870 JP2020012870W WO2020196470A1 WO 2020196470 A1 WO2020196470 A1 WO 2020196470A1 JP 2020012870 W JP2020012870 W JP 2020012870W WO 2020196470 A1 WO2020196470 A1 WO 2020196470A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
carbodiimide compound
tracking resistance
mass
carbodiimide
Prior art date
Application number
PCT/JP2020/012870
Other languages
English (en)
French (fr)
Inventor
樹 斎藤
吉弘 浅井
一也 五島
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to US17/434,226 priority Critical patent/US20220119638A1/en
Priority to JP2020563800A priority patent/JP7412352B2/ja
Priority to EP20779353.0A priority patent/EP3922671A4/en
Priority to CN202080021293.5A priority patent/CN113574104B/zh
Publication of WO2020196470A1 publication Critical patent/WO2020196470A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/10Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08J2300/104Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the present invention relates to a method for improving the tracking resistance of a thermoplastic resin.
  • Patent Document 1 describes that a resin composition obtained by blending a polybutylene terephthalate resin reinforced with glass fibers with an ethylene ethyl acrylate copolymer and an epoxy compound has excellent tracking resistance.
  • a carbodiimide compound is blended with an elastomer in a resin to improve a high degree of durability and hydrolysis resistance of the resin in a cold cycle environment (for example, Patent Document 2).
  • An object of the present invention is to provide a method for improving the tracking resistance of a thermoplastic resin, the use of a carbodiimide compound for improving the tracking resistance of a thermoplastic resin, and a tracking resistance improving agent for a thermoplastic resin. To do.
  • the present invention relates to the following.
  • [1] A method for improving a comparative tracking index measured according to the IEC60112 3rd edition of a thermoplastic resin by blending a carbodiimide compound with the thermoplastic resin.
  • [2] The method according to [1], wherein the thermoplastic resin has one or more functional groups selected from a carboxy group, a hydroxy group, and an amino group.
  • [3] The method according to [1] or [2], wherein the carbodiimide compound is blended in a ratio of 0.01 part by mass or more with respect to 100 parts by mass of the thermoplastic resin.
  • [4] The method according to any one of [1] to [3], wherein the carbodiimide compound contains an aromatic carbodiimide compound.
  • thermoplastic resin contains a thermoplastic resin having a processing temperature of 350 ° C. or lower.
  • thermoplastic resin has one or more functional groups selected from a carboxy group, a hydroxy group, and an amino group.
  • a tracking resistance improver for a thermoplastic resin which contains a carbodiimide compound and for improving a comparative tracking index measured in accordance with IEC60112 3rd edition of the thermoplastic resin.
  • the tracking resistance improving agent according to [13] or [14], wherein the carbodiimide compound is used in an amount of 0.01 parts by mass or more with respect to 100 parts by mass of the thermoplastic resin.
  • thermoplastic resin it is possible to provide a method for improving the tracking resistance of a thermoplastic resin, the use of a carbodiimide compound for improving the tracking resistance of a thermoplastic resin, and a tracking resistance improving agent for a thermoplastic resin. it can.
  • the tracking resistance improving method is a method for improving the tracking resistance of a thermoplastic resin by blending a carbodiimide compound with the thermoplastic resin.
  • a carbodiimide compound can improve the heat shock resistance and hydrolysis resistance of a thermoplastic resin.
  • the inventor's research has surprisingly shown that carbodiimide compounds can improve the tracking resistance of thermoplastics.
  • the "heat shock resistance” studied in Patent Document 2 is a high degree of durability in a cold cycle environment, and the "hydrolysis resistance” is a decrease in strength due to hydrolysis in a humid heat environment (high temperature and high humidity). It is the property of suppressing.
  • the "tracking resistance” can be expressed by a comparative tracking index (CTI) measured in accordance with IEC60112 3rd edition, and it can be said that the tracking resistance is excellent when the CTI is 500 V or more.
  • CTI comparative tracking index
  • improved tracking resistance means any of the following: (I) The CTI before the addition of the carbodiimide compound was less than 500 V, but the CTI after the addition of the carbodiimide compound is improved to 500 V or more; (Ii) The ratio [(CTI-2) / (CTI-1)] of CTI (CTI-1) before the addition of the carbodiimide compound to CTI (CTI-2) after the addition of the carbodiimide compound is 1.10 or more. ; Means. The CTI ratio [(CTI-2) / (CTI-1)] in (ii) is preferably 1.15 or more.
  • thermoplastic resin is not particularly limited, and a thermoplastic resin that is required to have improved tracking resistance can be used.
  • a thermoplastic resin having low tracking resistance itself such as polyphenylene sulfide resin, and it may have excellent tracking resistance itself, such as polybutylene terephthalate resin, but has mechanical strength and the like.
  • It may be a thermoplastic resin whose tracking resistance is lowered by adding an additive such as a filler in order to adjust various properties. By blending a carbodiimide compound described later with a thermoplastic resin having low tracking resistance, the tracking resistance of the thermoplastic resin can be improved.
  • thermoplastic resins which have excellent tracking resistance itself, but whose tracking resistance is reduced by adding additives such as fillers to adjust various properties such as mechanical strength.
  • additives such as fillers to adjust various properties such as mechanical strength.
  • thermoplastic resin examples include polyester resins such as polybutylene terephthalate (PBT) and polyethylene terephthalate (PET); polycarbonate resins; vinyl resins such as polyacrylic acid esters and polymethacrylic acid esters; polyamides such as nylon 6 and nylon 66 (PA). ) Resin; liquid crystal polymer (a polymer exhibiting melt processability having the property of forming an optically anisotropic molten phase, for example, aromatic polyester; aromatic polyester amide; aromatic polyester and / or aromatic polyester amide. Polyester, etc., which partially contains the above in the same molecular chain) and the like.
  • polyester resins such as polybutylene terephthalate (PBT) and polyethylene terephthalate (PET); polycarbonate resins; vinyl resins such as polyacrylic acid esters and polymethacrylic acid esters; polyamides such as nylon 6 and nylon 66 (PA).
  • PA nylon 6 and nylon 66
  • Resin liquid crystal polymer (a polymer exhibiting melt process
  • polyarylene sulfide resin such as polyphenylene sulfide (PPS) in which a carboxylic acid terminal group is generated as a side reaction during polymer polymerization
  • PPS polyphenylene sulfide
  • One or more thermoplastic resins selected from these can be used.
  • the thermoplastic resin is preferably a thermoplastic resin having at least one functional group selected from a carboxy group, a hydroxy group, and an amino group.
  • the thermoplastic resin for example, the above-mentioned polyester resin, polycarbonate resin, polyamide (PA) resin, liquid crystal polymer and the like having one or more selected from a carboxy group, a hydroxy group and an amino group at the terminal group are preferable.
  • the thermoplastic resin may be a resin obtained by copolymerizing the above-mentioned thermoplastic resin with a copolymer component having one or more selected from a carboxy group, a hydroxy group and an amino group, or the above-mentioned thermoplastic resin. After polymerization, one or more selected from a carboxy group, a hydroxy group and an amino group may be produced by hydrogenation and oxidation.
  • thermoplastic resin from the viewpoint of preventing the generation of gas or odor derived from the carbodiimide compound during processing, a thermoplastic resin having a processing temperature of 350 ° C. or lower, preferably 340 ° C. or lower, more preferably 300 ° C. or lower is used. It is preferable to contain it.
  • the "processing temperature” is the temperature at which the thermoplastic resin is melt-kneaded, and is usually set to ⁇ 50 ° C., which is the melting point of the thermoplastic resin (softening point in the case of an amorphous resin).
  • the content of the thermoplastic resin having a processing temperature of 350 ° C. or lower is preferably 50% by mass or more, more preferably 80% by mass or more, and can be 100% by mass in the resin component.
  • the carbodiimide compound include an aliphatic aliphatic carbodiimide compound having an aliphatic main chain, an alicyclic carbodiimide compound having an alicyclic main chain, and an aromatic carbodiimide compound having an aromatic main chain, which are selected from these. 1 or more can be used. Above all, it is preferable to contain an aromatic carbodiimide compound in that the tracking resistance can be further improved.
  • Examples of the aliphatic carbodiimide compound include diisopropylcarbodiimide and dioctyldecylcarbodiimide.
  • Examples of the alicyclic carbodiimide compound include dicyclohexylcarbodiimide. These can be used in combination of two or more.
  • aromatic carbodiimide compound examples include diphenylcarbodiimide, di-2,6-dimethylphenylcarbodiimide, N-toluyl-N'-phenylcarbodiimide, di-p-nitrophenylcarbodiimide, di-p-aminophenylcarbodiimide, and di-p-.
  • one or more selected from di-2,6-dimethylphenylcarbodiimide, poly (4,4'-diphenylmethanecarbodiimide), poly (phenylene carbodiimide) and poly (triisopropylphenylene carbodiimide) may be preferably used. it can.
  • the number average molecular weight of the carbodiimide compound is preferably 300 or more. By setting the number average molecular weight in the above range, it is possible to prevent the generation of gas or odor when the residence time is long during melt-kneading or molding of the thermoplastic resin.
  • the number average molecular weight can be measured by gel permeation chromatography (GPC) using polystyrene standard sample criteria.
  • the blending amount of the carbodiimide compound is preferably 0.01 part by mass or more, more preferably 0.05 part by mass or more, and 0.1 part by mass or more with respect to 100 parts by mass of the thermoplastic resin. Is even more preferable.
  • the upper limit is 20 parts by mass or less, 15 parts by mass or less, 10 parts by mass or less, 8 parts by mass or less, and 5 by mass or less from the viewpoint of surely improving the tracking resistance of the thermoplastic resin and preventing gas and odor during processing. It can be .5 parts by mass or less, or 5 parts by mass or less.
  • the carbodiimide compound can also be used as a masterbatch in which the carbodiimide compound is dispersed in the matrix resin for easy handling.
  • the compounding amount of the carbodiimide compound is used so as to be the above compounding amount with respect to 100 parts by mass of the total amount of the target thermoplastic resin and the matrix resin for which the tracking resistance is to be improved.
  • the type of the matrix resin is not particularly limited, and can be selected from, for example, the above-mentioned thermoplastic resins, and may be the same type of resin as the target thermoplastic resin for improving tracking resistance, but may be a different type of resin. There may be.
  • the method for preparing the masterbatch is not particularly limited, and the matrix resin and the carbodiimide compound can be kneaded and produced by a usual method.
  • it can be produced by putting a matrix resin and a carbodiimide compound into a stirrer, mixing them uniformly, and then melting and kneading them with an extruder.
  • thermoplastic resin an inorganic filler, a flame retardant, a plasticizer, an antioxidant, a weather stabilizer, etc.
  • the inorganic filler examples include a fibrous inorganic filler such as glass fiber; a powdery granular inorganic filler such as silica, quartz powder, and glass beads; and a plate-shaped filler such as mica and glass flakes.
  • the blending amount of the inorganic filler is preferably 5 to 200 parts by mass and more preferably 20 to 100 parts by mass with respect to 100 parts by mass of the thermoplastic resin in terms of increasing the strength of the molded product.
  • the flame retardant known flame retardants such as halogen-based flame retardants such as bromine compounds and phosphorus-based (non-halogen) flame retardants such as phosphoric acid metal salts and phosphoric acid esters can be used. Further, a flame retardant aid such as an antimony compound or a triazine compound may be used in combination. From the viewpoint of tracking resistance, it is preferable to use a phosphorus-based flame retardant that is harder to carbonize than a halogen-based flame retardant.
  • the blending amount of the flame retardant and / or the flame retardant auxiliary agent may be appropriately set according to the desired flame retardancy, but in terms of achieving both flame retardancy and mechanical properties, the amount is relative to 100 parts by mass of the thermoplastic resin. It is preferably 5 to 50 parts by mass, and more preferably 10 to 30 parts by mass.
  • the blending amount of the other compounding agent is preferably 0.01 to 20 parts by mass, and more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • an alloy material is added to the thermoplastic resin as necessary. It can also be blended.
  • the alloy material include thermoplastic elastomers, core-shell elastomers, fluororesins, polyolefins, polyamides, and the like, and one or more selected from these can be used.
  • thermoplastic elastomer examples include olefin-based elastomers, styrene-based elastomers, polyester-based elastomers, etc., which may be grafted.
  • specific examples of the thermoplastic elastomer include a propylene-ethylene copolymer, an ethylene ethyl acrylate copolymer (EEA), and a graft copolymer of ethylene ethyl acrylate and butyl acrylate-methyl methacrylate (EEA-g-BAMMA copolymer). Combined), maleic anhydride (MAH) -modified polyolefin, and the like.
  • Examples of the core-shell elastomer include a methyl methacrylate-butyl acrylate copolymer and the like.
  • the core-shell elastomer may have a functional group such as a glycidyl group in the shell.
  • Examples of the fluorine-based resin include polytetrafluoroethylene (PTFE) and the like.
  • Examples of the polyolefin include polyethylene, polypropylene, cyclic polyolefin, and copolymers thereof.
  • Examples of the polyamide include nylon 6 (PA6), nylon 11, nylon 12, nylon 66 and the like.
  • the blending amount of the alloy material is preferably 3 to 50 parts by mass, and more preferably 5 to 30 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • an epoxy compound can be added to the thermoplastic resin.
  • the epoxy compound include aromatic epoxy compounds such as biphenyl type epoxy compound, bisphenol A type epoxy compound, phenol novolac type epoxy compound, and cresol novolac type epoxy compound.
  • the epoxy compound two or more kinds of compounds may be used in any combination.
  • the epoxy equivalent is preferably 600 to 1500 g / equivalent (g / eq).
  • the method of blending the carbodiimide compound and the compounding agent to be added as needed with the thermoplastic resin is not particularly limited, and can be easily prepared by using the equipment and method generally used as a conventional resin composition preparation method or molding method. it can. For example, 1) a method of mixing resin components and other components, kneading and extruding with a single-screw or twin-screw extruder to prepare pellets, and then molding, and 2) once preparing pellets having different compositions.
  • a method of mixing a predetermined amount of the pellets and subjecting them to molding to obtain a molded product having a target composition after molding, 3) a method of directly charging one or two or more of each component into a molding machine, and the like can be used. Further, a method of adding a part of the resin component as a fine powder by mixing with other components is a preferable method for uniformly blending these components.
  • the method of blending the carbodiimide into the thermoplastic resin as a masterbatch is not particularly limited, and the thermoplastic resin may be added at the time of melt-kneading to form uniform pellets. Further, a pellet-blended product in which components other than the carbodiimide compound are previously made into uniform pellets by melt-kneading or the like and the masterbatch pellets of the carbodiimide compound are dry-blended at the time of molding may be used for molding.
  • the resin temperature (processing temperature) in the extruder may be set appropriately according to the type of resin used, but it prevents the generation of harmful gas and odor due to the decomposition of the carbodiimide compound. From the point of view, it is preferable to set the extruder cylinder temperature so as to be 350 ° C. or lower.
  • the resin temperature in the extruder is preferably 200 to 330 ° C., more preferably 230 to 300 ° C., from the viewpoint of sufficiently reacting the resin and carbodiimide to develop tracking resistance and other physical properties.
  • the extruder cylinder temperature can be set so as to be.
  • the above method preferably increases the comparative tracking index (CTI) measured according to the IEC60112 3rd edition of the thermoplastic resin to 500 V or more, and more preferably 550 V or more.
  • CTI comparative tracking index
  • the comparative tracking index (CTI) measured according to the IEC60112 3rd edition of the thermoplastic resin is measured by the ratio [(CTI-2) / (CTI-1)] before and after the addition of the carbodiimide compound. It is preferable that the method is increased to 1.10 or more, and more preferably the method is increased to 1.15 or more.
  • IEC International Electrotechnical Commission
  • the molded product can be widely used in applications requiring tracking resistance.
  • it can be preferably used as an electrical / electronic component such as a relay, a switch, a connector, an actuator, a sensor, a trans bobbin, a terminal block, a cover, a switch, a socket, a coil, and a plug, particularly a component around a power supply.
  • the method for obtaining the resin molded product is not particularly limited, and a known method can be adopted.
  • a resin containing a carbodiimide compound is put into an extruder by the above method, melt-kneaded and pelletized, and the pellets are put into an injection molding machine equipped with a predetermined mold to be formed by injection molding. be able to.
  • the use of carbodiimides according to this embodiment is the use of carbodiimide compounds to improve the comparative tracking index (CTI) measured according to IEC60112 3rd edition of thermoplastics.
  • CTI comparative tracking index
  • the above use is preferably a method for increasing the CTI of the thermoplastic resin to 500 V or higher, and more preferably a method for increasing the CTI to 550 V or higher.
  • the comparative tracking index (CTI) measured according to the IEC60112 3rd edition of the thermoplastic resin is measured by the ratio [(CTI-2) / (CTI-1)] before and after the addition of the carbodiimide compound.
  • the amount of the carbodiimide compound used is also the same as the amount of the above-mentioned carbodiimide compound.
  • the tracking resistance improving agent according to the present embodiment is intended to improve the comparative tracking index measured in accordance with the IEC60112 3rd edition of the thermoplastic resin by being blended with the thermoplastic resin, and is used to contain a carbodiimide compound. contains.
  • the content of the carbodiimide compound in the tracking resistance improving agent is preferably 50% by mass or more, preferably 70% by mass or more, and can be 80% by mass or more, or 90% by mass or more. It can also be configured to consist only of the carbodiimide compound.
  • the tracking resistance improving agent may contain other compounding agents which may be blended with the above-mentioned thermoplastic resin.
  • the tracking resistance improver may be in the form of a masterbatch in which the carbodiimide compound is dispersed in the matrix resin.
  • the types of matrix resin and the method for producing the masterbatch in the case of masterbatch are as described above.
  • the amount of the tracking resistance improving agent used can be such that the amount of the carbodiimide compound becomes the above-mentioned compounding amount.
  • the tracking resistance improving agent is preferably a tracking resistance improving agent capable of having a comparative tracking index (CTI) of 500 V or more measured in accordance with the IEC60112 3rd edition of the thermoplastic resin, preferably 550 V or more. It is more preferable that the tracking resistance improving agent can be used.
  • the above-mentioned tracking resistance improving agent measures the comparative tracking index (CTI) measured according to the IEC60112 3rd edition of the thermoplastic resin as the ratio before and after the addition of the carbodiimide compound [(CTI-2) / (CTI-). 1)] is preferably a tracking resistance improving agent that can be increased to 1.10 or more, and more preferably a tracking resistance improving agent that can be increased to 1.15 or more.
  • the types of the carbodiimide compound and the thermoplastic resin are as described above.
  • thermoplastic resin and the carbodiimide compound shown in Table 1 are used in the table together with the compounding agent (glass fiber, alloy material, hydrolysis resistance improver, plasticizer, colorant) used as needed.
  • PBT1 PBT resin manufactured by Wintech Polymer Co., Ltd. (intrinsic viscosity: 0.77 dL / g, terminal carboxyl group amount: 28 meq / kg)
  • PBT2 PBT resin manufactured by Wintech Polymer Co., Ltd.
  • PS PS resin "PSJ-polystyrene HF77" made by PS Japan
  • Carbodiimide compound Aromatic carbodiimide manufactured by LANXESS, STAVACSOL P-100 (number average molecular weight: about 10,000)
  • Aliphatic carbodiimide Nisshinbo Chemical Co., Ltd.
  • Carbodilite LA-1 number average molecular weight: about 2000
  • Glass fiber GF1 "ECS03T-127" manufactured by Nippon Electric Glass Co., Ltd.
  • Alloy material 1 MAH-modified polyolefin (manufactured by Mitsui Chemicals, Inc., N Toughmer MP0610) Alloy material 2: Propylene-ethylene copolymer (manufactured by Prime Polymer Co., Ltd., Prime Polypro J707EG) Alloy material 3: EEA (manufactured by Nippon Unicar Co., Ltd., ethylene content 75% by mass, melting point 91 ° C) Alloy material 4: EEA-g-BAMMA (manufactured by NOF CORPORATION, Modiper A5300) Alloy material 5: glycidyl group-free core shell (Dow Chemical Japan Co., Ltd.
  • Alloy material 6 glycidyl group-containing core shell (Dow Chemical Japan Co., Ltd. Pararoid EXL2314) Alloy material 7: PA6 (UBE Nylon 1015B manufactured by Ube Industries, Ltd.)
  • Epoxy compound 1 Bisphenol A type epoxy resin (number average molecular weight: 1600, epoxy equivalent: 925 g / eq)
  • Epoxy compound 2 Bisphenol A type epoxy resin (number average molecular weight: 1300, epoxy equivalent: 720 g / eq)
  • Plasticizer Pyromellitic acid alcohol ester ADEKA UL-100, manufactured by ADEKA (7) Colorant Carbon Black: Mitsubishi Chemical Black, Mitsubishi Carbon Black MA600
  • Example 3 using an aromatic carbodiimide is an example using an aliphatic carbodiimide.
  • the tracking resistance was higher than that of 6.
  • the CTI ratio before the addition of carbodiimide was 1.15 even when no other additive for improving the tracking resistance was used. .. That is, the ratio [(CTI-2) / (CTI-1)] of CTI (CTI-1) before the addition of the carbodiimide compound to CTI (CTI-2) after the addition of the carbodiimide compound can be set to 1.10 or more. did it. Further, from the comparison between each example and Reference Examples 1 and 2, it was newly found that the tracking resistance can be particularly improved in the thermoplastic resin containing a reactive functional group with carbodiimide as a terminal group.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】熱可塑性樹脂の耐トラッキング性を向上させる方法、熱可塑性樹脂の耐トラッキング性を向上させるためのカルボジイミド化合物の使用、及び熱可塑性樹脂用耐トラッキング性向上剤を提供する。 【解決手段】熱可塑性樹脂にカルボジイミド化合物を配合することにより、熱可塑性樹脂のIEC60112第3版に準拠して測定される比較トラッキング指数を向上させる方法とする。熱可塑性樹脂のIEC60112第3版に準拠して測定される比較トラッキング指数を向上させるための、カルボジイミド化合物の使用とする。カルボジイミド化合物を含有し、熱可塑性樹脂のIEC60112第3版に準拠して測定される比較トラッキング指数を向上させるための、熱可塑性樹脂用耐トラッキング性向上剤とする。熱可塑性樹脂100質量部に対してカルボジイミド化合物を0.01質量部以上の割合で用いることが好ましい。

Description

熱可塑性樹脂の耐トラッキング性向上方法
 本発明は、熱可塑性樹脂の耐トラッキング性向上方法に関する。
 リレー、スイッチ、コネクタ等の、電気電子部品の電源近傍で使用される樹脂製の部品は、使用される過程で表面に水分や埃等が付着して微小放電が繰り返されると、表面に導電性の経路が生成され絶縁破壊現象(トラッキング)が発生し電極間を短絡してしまうことがある。そのため、電気電子部品の近傍で使用される部品を構成する樹脂は、耐トラッキング性を有することが求められている。例えば、特許文献1には、ガラス繊維により強化されたポリブチレンテレフタレート樹脂にエチレンエチルアクリレート共重合体及びエポキシ化合物を配合した樹脂組成物が耐トラッキング性に優れることが記載されている。
 一方、カルボジイミド化合物は、エラストマーとともに樹脂に配合されることで、樹脂の冷熱サイクル環境での高度な耐久性と耐加水分解性を向上させることが知られている(例えば、特許文献2)。
国際公開第2017/010337号パンフレット 国際公開第2009/150831号パンフレット
 本発明は、熱可塑性樹脂の耐トラッキング性を向上させる方法、熱可塑性樹脂の耐トラッキング性を向上させるためのカルボジイミド化合物の使用、及び熱可塑性樹脂用耐トラッキング性向上剤を提供することを課題とする。
 本発明は、以下に関するものである。
[1]熱可塑性樹脂にカルボジイミド化合物を配合することにより、熱可塑性樹脂のIEC60112第3版に準拠して測定される比較トラッキング指数を向上させる、方法。
[2]熱可塑性樹脂が、カルボキシ基、ヒドロキシ基、及びアミノ基から選択される1以上の官能基を有する、[1]に記載の方法。
[3]熱可塑性樹脂100質量部に対してカルボジイミド化合物を0.01質量部以上の割合で配合する、[1]又は[2]に記載の方法。
[4]カルボジイミド化合物が、芳香族カルボジイミド化合物を含有する、[1]から[3]のいずれかに記載の方法。
[5]カルボジイミド化合物の数平均分子量が300以上である、[1]から[4]のいずれかに記載の方法。
[6]熱可塑性樹脂が、加工温度が350℃以下である熱可塑性樹脂を含む、[1]から[5]のいずれかに記載の方法。
[7]熱可塑性樹脂のIEC60112第3版に準拠して測定される比較トラッキング指数を向上させるための、カルボジイミド化合物の使用。
[8]熱可塑性樹脂が、カルボキシ基、ヒドロキシ基、及びアミノ基から選択される1以上の官能基を有する、[7]に記載の使用。
[9]熱可塑性樹脂100質量部に対してカルボジイミド化合物を0.01質量部以上の割合で用いる、[7]又は[8]に記載の使用。
[10]カルボジイミド化合物が、芳香族カルボジイミド化合物を含有する、[7]から[9]のいずれかに記載の使用。
[11]カルボジイミド化合物の分子量が300以上である、[7]から[10]のいずれかに記載の使用。
[12]熱可塑性樹脂が、加工温度が350℃以下である熱可塑性樹脂を含む、[7]から[11]のいずれかに記載の使用。
[13]カルボジイミド化合物を含有し、熱可塑性樹脂のIEC60112第3版に準拠して測定される比較トラッキング指数を向上させるための、熱可塑性樹脂用耐トラッキング性向上剤。
[14]熱可塑性樹脂が、カルボキシ基、ヒドロキシ基、及びアミノ基から選択される1以上の官能基を有する、[13]に記載の耐トラッキング性向上剤。
[15]熱可塑性樹脂100質量部に対してカルボジイミド化合物が0.01質量部以上となる量で用いられるための、[13]又は[14]に記載の耐トラッキング性向上剤。
[16]カルボジイミド化合物が、芳香族カルボジイミド化合物を含有する、[13]から[15]のいずれかに記載の耐トラッキング性向上剤。
[17]カルボジイミド化合物の分子量が300以上である、[13]から[16]のいずれかに記載の耐トラッキング性向上剤。
[18]加工温度が350℃以下である熱可塑性樹脂用である、[13]から[17]のいずれかに記載の耐トラッキング性向上剤。
 本発明によれば、熱可塑性樹脂の耐トラッキング性を向上させる方法、熱可塑性樹脂の耐トラッキング性を向上させるためのカルボジイミド化合物の使用、及び熱可塑性樹脂用耐トラッキング性向上剤を提供することができる。
 以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。一実施形態について記載した特定の説明が他の実施形態についても当てはまる場合には、他の実施形態においてはその説明を省略している場合がある。
[耐トラッキング性向上方法]
 本実施形態に係る耐トラッキング性向上方法は、熱可塑性樹脂にカルボジイミド化合物を配合することにより、熱可塑性樹脂の耐トラッキング性を向上させる方法である。従来、特許文献2に記載されているように、カルボジイミド化合物は、熱可塑性樹脂の耐ヒートショック性や耐加水分解性を向上させることができることは知られていた。しかし、本発明者の研究により、驚くべきことに、カルボジイミド化合物は熱可塑性樹脂の耐トラッキング性を向上させることができることが分かった。特許文献2で検討されている「耐ヒートショック性」は冷熱サイクル環境下での高度な耐久性のことであり、「耐加水分解性」は湿熱環境下(高温多湿)における加水分解による強度低下を抑制する性質のことである。これに対して、本発明者が新たに見出した「耐トラッキング性」は、樹脂の表面に埃や水が付着して微小放電が繰り返された場合でも樹脂の表面に導電性の経路が形成されにくい性質であり、耐ヒートショック性や耐加水分解性とは全く異なる性質である。
 なお、「耐トラッキング性」は、IEC60112第3版に準拠して測定される比較トラッキング指数(CTI)により表すことができ、CTIが500V以上である場合に耐トラッキング性が優れているといえる。CTIの測定方法については後述する。
 また、「耐トラッキング性が向上する」とは、以下のいずれか:
 (i)カルボジイミド化合物添加前のCTIが500V未満であったものを、カルボジイミド化合物添加後のCTIが500V以上に向上させること;又は、
 (ii)カルボジイミド化合物添加前のCTI(CTI-1)とカルボジイミド化合物添加後のCTI(CTI-2)との比[(CTI-2)/(CTI-1)]が1.10以上であること;
を意味している。(ii)におけるCTI比[(CTI-2)/(CTI-1)]は、1.15以上であることが好ましい。
(熱可塑性樹脂)
 熱可塑性樹脂としては、特に限定されず、耐トラッキング性を高めることが求められる熱可塑性樹脂を用いることができる。例えば、ポリフェニレンサルファイド樹脂のように、それ自体の耐トラッキング性が低い熱可塑性樹脂であってもよく、ポリブチレンテレフタレート樹脂のように、それ自体の耐トラッキング性は優れているものの機械的強度等の各種特性を調整するために充填剤等の添加剤を添加することによって耐トラッキング性が低下してしまう熱可塑性樹脂であってもよい。耐トラッキング性が低い熱可塑性樹脂に対して後述するカルボジイミド化合物を配合することで、熱可塑性樹脂の耐トラッキング性を向上させることができる。また、それ自体の耐トラッキング性は優れているものの機械的強度等の各種特性を調整するたに充填剤等の添加剤を添加することによって耐トラッキング性が低下してしまう熱可塑性樹脂に対して後述するカルボジイミド化合物を配合することで、熱可塑性樹脂の耐トラッキング性が低下することを抑制することができる。
 熱可塑性樹脂としては、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)等のポリエステル樹脂;ポリカーボネート樹脂;ポリアクリル酸エステル、ポリメタクリル酸エステル等のビニル樹脂;ナイロン6、ナイロン66等のポリアミド(PA)樹脂;液晶ポリマー(光学異方性の溶融相を形成し得る性質を有する溶融加工性を示すポリマーであり、例えば、芳香族ポリエステル;芳香族ポリエステルアミド;芳香族ポリエステル及び/又は芳香族ポリエステルアミドを同一分子鎖中に部分的に含むポリエステル等)等が挙げられる。また、ポリマー重合時に副反応としてカルボン酸末端基が生成されるポリフェニレンスルフィド(PPS)等のポリアリーレンスルフィド樹脂も挙げられる。これらから選択される1以上の熱可塑性樹脂を用いることができる。
 熱可塑性樹脂は、少なくとも、カルボキシ基、ヒドロキシ基、及びアミノ基から選択される1以上の官能基を有する熱可塑性樹脂が好ましい。
 熱可塑性樹脂としては、例えば、末端基にカルボキシ基、ヒドロキシ基及びアミノ基から選ばれる1以上を有する、上記したポリエステル樹脂、ポリカーボネート樹脂、ポリアミド(PA)樹脂、液晶ポリマー等が好ましい。
 また、熱可塑性樹脂は、上記した熱可塑性樹脂と、カルボキシ基、ヒドロキシ基及びアミノ基から選ばれる1以上を有するコポリマー成分とを共重合した樹脂であってもよいし、上記した熱可塑性樹脂を重合後に水添、酸化によりカルボキシ基、ヒドロキシ基及びアミノ基から選ばれる1以上を生成させてもよい。
 熱可塑性樹脂としては、加工時にカルボジイミド化合物に由来するガスや臭気が発生することを防ぐ観点から、加工温度が350℃以下、好ましくは340℃以下、より好ましくは300℃以下である熱可塑性樹脂を含有することが好ましい。「加工温度」は、熱可塑性樹脂が溶融混錬される際の温度であり、通常は、熱可塑性樹脂の融点(非晶性樹脂の場合は軟化点)±50℃とされることが多い。加工温度が350℃以下である熱可塑性樹脂の含有量は、樹脂成分中50質量%以上であることが好ましく、80質量%以上であることがより好ましく、100質量%とすることもできる。
(カルボジイミド化合物)
 カルボジイミド化合物は、分子中にカルボジイミド基(-N=C=N-)を有する化合物である。カルボジイミド化合物としては、主鎖が脂肪族の脂肪族カルボジイミド化合物、主鎖が脂環族の脂環族カルボジイミド化合物、主鎖が芳香族の芳香族カルボジイミド化合物を挙げることができ、これらから選択される1以上を用いることができる。中でも、耐トラッキング性をより向上できる点で、芳香族カルボジイミド化合物を含有することが好ましい。
 脂肪族カルボジイミド化合物としては、ジイソプロピルカルボジイミド、ジオクチルデシルカルボジイミド等を挙げることができる。脂環族カルボジイミド化合物としては、ジシクロヘキシルカルボジイミド等を挙げることができる。これらは2種以上を併用することもできる。
 芳香族カルボジイミド化合物としては、ジフェニルカルボジイミド、ジ-2,6-ジメチルフェニルカルボジイミド、N-トルイル-N’-フェニルカルボジイミド、ジ-p-ニトロフェニルカルボジイミド、ジ-p-アミノフェニルカルボジイミド、ジ-p-ヒドロキシフェニルカルボジイミド、ジ-p-クロロフェニルカルボジイミド、ジ-p-メトキシフェニルカルボジイミド、ジ-3,4-ジクロロフェニルカルボジイミド、ジ-2,5-ジクロロフェニルカルボジイミド、ジ-o-クロロフェニルカルボジイミド、p-フェニレン-ビス-ジ-o-トルイルカルボジイミド、p-フェニレン-ビス-ジシクロヘキシルカルボジイミド、p-フェニレン-ビス-ジ-p-クロロフェニルカルボジイミド、エチレン-ビス-ジフェニルカルボジイミド等のモノ又はジカルボジイミド化合物;及びポリ(4,4’-ジフェニルメタンカルボジイミド)、ポリ(3,5’-ジメチル-4,4’-ビフェニルメタンカルボジイミド)、ポリ(p-フェニレンカルボジイミド)、ポリ(m-フェニレンカルボジイミド)、ポリ(3,5’-ジメチル-4,4’-ジフェニルメタンカルボジイミド)、ポリ(ナフチレンカルボジイミド)、ポリ(1,3-ジイソプロピルフェニレンカルボジイミド)、ポリ(1-メチル-3,5-ジイソプロピルフェニレンカルボジイミド)、ポリ(1,3,5-トリエチルフェニレンカルボジイミド)およびポリ(トリイソプロピルフェニレンカルボジイミド)等のポリカルボジイミド化合物:を挙げることができる。これらは2種以上を併用することもできる。
 これらの中でも特にジ-2,6-ジメチルフェニルカルボジイミド、ポリ(4,4’-ジフェニルメタンカルボジイミド)、ポリ(フェニレンカルボジイミド)およびポリ(トリイソプロピルフェニレンカルボジイミド)から選択される1以上を好適に用いることができる。
 カルボジイミド化合物の数平均分子量は、300以上であることが好ましい。数平均分子量を上記範囲にすることで、熱可塑性樹脂の溶融混練時や成形時に滞留時間が長い場合において、ガスや臭気が発生することを防ぐことができる。数平均分子量は、ポリスチレン標準サンプル基準を用いたゲルパーミエーションクロマトグラフィー(GPC)により測定することができる。
 カルボジイミド化合物の配合量は、熱可塑性樹脂100質量部に対して、0.01質量部以上であることが好ましく、0.05質量部以上であることがより好ましく、0.1質量部以上であることがさらに好ましい。カルボジイミド化合物を熱可塑性樹脂100質量部に対して0.01質量部以上配合することで、確実に熱可塑性樹脂の耐トラッキング性を向上させることができる。上限値は、確実に熱可塑性樹脂の耐トラッキング性を向上させる点及び加工時のガスや臭気を防ぐ点から、20質量部以下、15質量部以下、10質量部以下、8質量部以下、5.5質量部以下、又は5質量部以下とすることができる。
 カルボジイミド化合物は、取り扱いを容易にするため、マトリックス樹脂中にカルボジイミド化合物が分散しているマスターバッチとして用いることもできる。マスターバッチとして用いる場合、カルボジイミド化合物の配合量が、耐トラッキング性を向上させる対象の熱可塑性樹脂とマトリックス樹脂との総量100質量部に対して上記した配合量となるように用いる。マトリックス樹脂の種類は、特に限定されず、例えば上記した熱可塑性樹脂から選択することができ、耐トラッキング性を向上させる対象の熱可塑性樹脂と同じ種類の樹脂であってもよく異なる種類の樹脂であってもよい。
 マスターバッチの調整方法は、特に限定されず、マトリックス樹脂とカルボジイミド化合物とを、通常の方法で混練して製造することができる。例えば、マトリックス樹脂及びカルボジイミド化合物を攪拌機に投入して均一に混ぜ合わせた後、押出機で溶融及び混練することにより製造することができる。
(その他の配合剤)
 本実施形態に係る耐トラッキング性向上方法において、本発明の効果を阻害しない範囲で、必要に応じて、熱可塑性樹脂に、無機充填剤、難燃剤、可塑剤、酸化防止剤、耐候安定剤、耐加水分解性向上剤、流動性向上剤、分子量調整剤、紫外線吸収剤、帯電防止剤、着色剤(染料、顔料)、潤滑剤、結晶化促進剤、結晶核剤、近赤外線吸収剤、有機充填剤等の添加剤をさらに配合することができる。
 無機充填剤としては、ガラス繊維等の繊維状無機充填剤;シリカ、石英粉末、ガラスビーズ等の粉粒状無機充填剤;マイカ、ガラスフレーク等の板状充填剤等を挙げることができる。無機充填剤の配合量は、成形品の強度を高める点で、熱可塑性樹脂100質量部に対して、5~200質量部であることが好ましく、20~100質量部であることがより好ましい。
 難燃剤としては、臭素系化合物等のハロゲン系難燃剤や、リン酸金属塩、リン酸エステル等のリン系(非ハロゲン系)難燃剤など公知のものを用いることができる。またアンチモン化合物やトリアジン化合物等の難燃助剤を併用しても良い。なお、耐トラッキング性の観点では、ハロゲン系難燃剤よりも炭化し難いリン系難燃剤を使用することが好ましい。難燃剤及び/又は難燃助剤の配合量は、所望の難燃性に応じ適宜設定すればよいが、難燃性と機械的特性の両立の面では、熱可塑性樹脂100質量部に対して、5~50質量部であることが好ましく、10~30質量部であることがより好ましい。
 無機充填剤、難燃剤以外のその他の配合剤としては、従来公知のものを用いることができる。その他の配合剤の配合量は、熱可塑性樹脂100質量部に対して、0.01~20質量部であることが好ましく、0.1~10質量部であることがより好ましい。
 さらに、熱可塑性樹脂の耐トラッキング性をより向上させるため、及び/又は他の特性(耐ヒートショック性、低反り性等)を付与するために、必要に応じて、熱可塑性樹脂にアロイ材を配合することもできる。アロイ材としては、熱可塑性エラストマー、コアシェルエラストマー、フッ素系樹脂、ポリオレフィン、ポリアミド等を挙げることができ、これらから選択される1以上を用いることができる。
 熱可塑性エラストマーとしては、グラフト化されていてもよい、オレフィン系エラストマー、スチレン系エラストマー、ポリエステル系エラストマー等を挙げることができる。熱可塑性エラストマーの具体例としては、例えば、プロピレン-エチレン共重合体、エチレンエチルアクリレート共重合体(EEA)、エチレンエチルアクリレートとブチルアクリレート-メチルメタクリレートのグラフト共重合体(EEA-g-BAMMA共重合体)、無水マレイン酸(MAH)変性ポリオレフィン等を挙げることができる。
 コアシェルエラストマーとしては、メチルメタクリレート-ブチルアクリレート共重合体等を挙げることができる。コアシェルエラストマーはシェルにグリシジル基等の官能基を有するものであってもよい。
 フッ素系樹脂としては、ポリテトラフルオロエチレン(PTFE)等を挙げることができる。
 ポリオレフィンとしては、ポリエチレン、ポリプロピレン、環状ポリオレフィン、これらの共重合体等を挙げることができる。
 ポリアミドとしては、ナイロン6(PA6)、ナイロン11、ナイロン12、ナイロン66等を挙げることができる。
 アロイ材の配合量は、熱可塑性樹脂100質量部に対して、3~50質量部であることが好ましく、5~30質量部であることがより好ましい。
 さらに、熱可塑性樹脂の耐トラッキング性をより向上させるために、熱可塑性樹脂にエポキシ化合物を配合することもできる。エポキシ化合物としては、例えば、ビフェニル型エポキシ化合物、ビスフェノールA型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物等の芳香族エポキシ化合物を挙げることができる。エポキシ化合物は、2種以上の化合物を任意に組み合わせて使用してもよい。エポキシ当量は、600~1500g/当量(g/eq)であることが好ましい。
(配合方法)
 熱可塑性樹脂に、カルボジイミド化合物及び必要に応じて添加する配合剤を配合する方法は、特に限定されず、従来の樹脂組成物調製方法や成形方法として一般に用いられる設備と方法を用いて容易に調製できる。例えば、1)樹脂成分及び他の各成分を混合した後、1軸又は2軸の押出機により練り混み押出してペレットを調製し、しかる後成形する方法、2)一旦組成の異なるペレットを調製し、そのペレットを所定量混合して成形に供し成形後に目的組成の成形品を得る方法、3)成形機に各成分の1又は2以上を直接仕込む方法等、何れも使用できる。また、樹脂成分の一部を細かい粉体として、これ以外の成分と混合して添加する方法は、これらの成分の均一配合を図る上で好ましい方法である。
 カルボジイミドをマスターバッチとして熱可塑性樹脂に配合する方法は、特に限定されず、熱可塑性樹脂を溶融混練する時に併せて投入し、均一ペレットとしてもよい。また、カルボジイミド化合物以外の成分を予め溶融混練等により均一ペレットとしておき、カルボジイミド化合物のマスターバッチペレットを成形時にドライブレンドしたペレットブレンド品を成形に用いてもよい。
 押出機により練り込みペレット化する場合、押出機中での樹脂温度(加工温度)は、用いる樹脂の種類に応じて適宜設定すればよいが、カルボジイミド化合物の分解による有害ガスや臭気の発生を防ぐ点から、350℃以下となるように押出機シリンダー温度を設定することが好ましい。押出機中での樹脂温度は、樹脂とカルボジイミドを十分に反応させて耐トラッキング性を発現させる点及び他の諸物性を発現させる点から、好ましくは200~330℃、さらに好ましくは230~300℃となるように押出機シリンダー温度を設定することができる。
(比較トラッキング指数)
 上記方法は、熱可塑性樹脂のIEC60112第3版に準拠して測定される比較トラッキング指数(CTI)を、500V以上に高める方法であることが好ましく、550V以上に高める方法であることがより好ましい。CTIが500V以上に高める方法であると、耐トラッキング性が優れた樹脂成形品を与える樹脂組成物を得ることができる。
 また、上記方法は、熱可塑性樹脂のIEC60112第3版に準拠して測定される比較トラッキング指数(CTI)を、カルボジイミド化合物の添加前後の比[(CTI-2)/(CTI-1)]が1.10以上となるように高める方法であることが好ましく、1.15以上に高める方法であることがより好ましい。
 本明細書において、CTIは、IEC(International electrotechnical commission)60112第3版に規定される測定方法により求めることができる。具体的には、0.1質量%の塩化アンモニウム水溶液と白金電極を用いて測定される。より詳細には、この塩化アンモニウム水溶液を規定の滴下数(50滴)滴下し、試験片(n=5)の全てが破壊しない電圧を求め、これをCTIとする。
(樹脂成形品)
 上記方法によりカルボジイミド化合物が配合された熱可塑性樹脂は、耐トラッキング性に優れているので、その成形品は、耐トラッキング性が求められる用途に広く用いることができる。例えば、リレー、スイッチ、コネクタ、アクチュエータ、センサー、トランスボビン、端子台、カバー、スイッチ、ソケット、コイル、プラグ等の電気・電子部品、特に電源周り部品として好ましく使用できる。樹脂成形品を得る方法としては、特に限定はなく、公知の方法を採用することができる。例えば、上記方法によりカルボジイミド化合物が配合された樹脂を押出機に投入して溶融混練してペレット化し、このペレットを所定の金型を装備した射出成形機に投入し、射出成形することで作製することができる。
[カルボジイミドの使用]
 本実施形態に係るカルボジイミドの使用は、熱可塑性樹脂のIEC60112第3版に準拠して測定される比較トラッキング指数(CTI)を向上させるための、カルボジイミド化合物の使用である。上記使用は、熱可塑性樹脂のCTIを500V以上にするための使用であることが好ましく、550V以上にするための方法であることがより好ましい。
 また、上記使用は、熱可塑性樹脂のIEC60112第3版に準拠して測定される比較トラッキング指数(CTI)を、カルボジイミド化合物の添加前後の比[(CTI-2)/(CTI-1)]が1.10以上となるように高めるための使用であることが好ましく、1.15以上に高めるための使用であることがより好ましい。
 カルボジイミド化合物及び熱可塑性樹脂の種類等については上記のとおりであるからここでは記載を省略する。カルボジイミド化合物の使用量についても、上記したカルボジイミド化合物の配合量と同じである。
[耐トラッキング性向上剤]
 本実施形態に係る耐トラッキング性向上剤は、熱可塑性樹脂に配合されることにより熱可塑性樹脂のIEC60112第3版に準拠して測定される比較トラッキング指数を向上させるためものであり、カルボジイミド化合物を含有する。
 耐トラッキング性向上剤中のカルボジイミド化合物の含有量は、50質量%以上であることが好ましく、70質量%以上であることが好ましく、80質量%以上、又は90質量%以上とすることができ、カルボジイミド化合物のみからなるように構成することもできる。耐トラッキング性向上剤は、上記した熱可塑性樹脂に配合してもよいその他の配合剤を含有していてもよい。その他の配合剤を含有する場合、その配合量は、合計50質量%未満、30質量%以下、20質量%以下、10質量%以下にすることができる。耐トラッキング性向上剤は、マトリックス樹脂中にカルボジイミド化合物が分散しているマスターバッチの形状であってもよい。マスターバッチとする場合のマトリックス樹脂の種類やマスターバッチの作製方法については上記のとおりである。
 耐トラッキング性向上剤の使用量は、カルボジイミド化合物の量が上記した配合量になる量とすることができる。
 上記耐トラッキング性向上剤は、熱可塑性樹脂のIEC60112第3版に準拠して測定される比較トラッキング指数(CTI)を500V以上にすることができる耐トラッキング性向上剤であることが好ましく、550V以上にすることができる耐トラッキング性向上剤であることがより好ましい。
 また、上記耐トラッキング性向上剤は、熱可塑性樹脂のIEC60112第3版に準拠して測定される比較トラッキング指数(CTI)を、カルボジイミド化合物の添加前後の比[(CTI-2)/(CTI-1)]が1.10以上となるように高めることができる耐トラッキング性向上剤であることが好ましく、1.15以上に高めることができる耐トラッキング性向上剤であることがより好ましい。
 カルボジイミド化合物及び熱可塑性樹脂の種類等については上記のとおりである。
 以下に実施例を示して本発明を更に具体的に説明するが、これらの実施例により本発明の解釈が限定されるものではない。
 各実施例及び比較例において、表1に示す熱可塑性樹脂及びカルボジイミド化合物を、必要に応じて用いる配合剤(ガラス繊維、アロイ材、耐加水分解性向上剤、可塑剤、着色剤)とともに、表1に示す量(質量部)でブレンドし、30mmφのスクリューを有する2軸押出機((株)日本製鋼所製)を用いてシリンダー温度260℃で溶融混練し、ペレット状の樹脂組成物を得た。
 使用した各成分の詳細は以下の通りである。
(1)熱可塑性樹脂
 PBT1:ウィンテックポリマー(株)製PBT樹脂(固有粘度:0.77dL/g、末端カルボキシル基量:28meq/kg)
 PBT2:ウィンテックポリマー(株)製PBT樹脂(固有粘度:0.88dL/g、末端カルボキシル基量:12meq/kg)
 PS:PSジャパン製PS樹脂「PSJ-ポリスチレン HF77」
(2)カルボジイミド化合物
 芳香族カルボジイミド:ランクセス社製、スタバックゾールP-100(数平均分子量:約10000)
 脂肪族カルボジイミド:日清紡ケミカル社製、カルボジライトLA-1(数平均分子量:約2000)
(3)ガラス繊維
 GF1:日本電気硝子(株)製「ECS03T-127」(繊維径13μm)
 GF2:日本電気硝子(株)製「ECS03T-127H」(繊維径10μm)
(4)アロイ材
 アロイ材1:MAH変性ポリオレフィン(三井化学(株)製、NタフマーMP0610)
 アロイ材2:プロピレン-エチレン共重合体((株)プライムポリマー製、プライムポリプロJ707EG)
 アロイ材3:EEA(日本ユニカー(株)製、エチレン含有量75質量%、融点91℃)
 アロイ材4:EEA-g-BAMMA(日油(株)製、モディパーA5300)
 アロイ材5:グリシジル基不含コアシェル(ダウ・ケミカル日本(株)製パラロイドEXL2311)
 アロイ材6:グリシジル基含有コアシェル(ダウ・ケミカル日本(株)製パラロイドEXL2314)
 アロイ材7:PA6(宇部興産(株)製UBEナイロン1015B)
(5)耐加水分解性向上剤
 エポキシ化合物1:ビスフェノールA型エポキシ樹脂(数平均分子量:1600、エポキシ当量:925g/eq)
 エポキシ化合物2:ビスフェノールA型エポキシ樹脂(数平均分子量:1300、エポキシ当量:720g/eq)
(6)可塑剤
 ピロメリット酸アルコールエステル:ADEKA社製、アデカイザーUL-100
(7)着色剤
 カーボンブラック:三菱ケミカル社製、三菱カーボンブラックMA600 
<評価:耐トラッキング性>
 得られた樹脂ペレットを用いて、(株)日本製鋼所製射出成形機「J55AD 60H-USM」、スクリュー径Φ28mm)により、70×50×3mmの試験片を作製し、IEC60112第3版に準拠して、0.1質量%塩化アンモニウム水溶液と白金電極を用いて、試験片にトラッキングが生じる印加電圧(V:ボルト)を測定した。500Vを印加してトラッキング破壊が生じなかったものについては、25Vごとに印加電圧を上げて試験した際にトラッキング破壊が生じなかった最大の電圧を評価した。また、トラッキング破壊が生じたものについては「≦475V」として評価した。なお、比較例1と2については、500Vでのトラッキング破壊の発生を確認した後、印加電圧を25Vずつ下げて、トラッキング破壊が発生しない最大の電圧を評価した。結果を表1,2に示す。
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
 
 表1に示すとおり、本発明の各実施例1~6においては、500V以上の耐トラッキング性が得られており、カルボジイミド化合物の配合量を増すに伴い、耐トラッキング性が向上することが確認された。また、通常、芳香族化合物は脂肪族化合物よりも耐トラッキング性が不利になると考えられているが、予想に反し、芳香族カルボジイミドを用いた実施例3の方が脂肪族カルボジイミドを用いた実施例6よりも耐トラッキング性が高くなっていた。なお、カルボジイミド化合物の配合量を10質量部とする以外は実施例5と同一組成にした場合、臭気発生による作業環境の悪化が確認された。
 表2に示すとおり、実施例7,8においては、耐トラッキング性を向上させるための他の添加剤を用いない場合でも、カルボジイミド添加前(比較例14)とのCTI比が1.15である。すなわち、カルボジイミド化合物添加前のCTI(CTI-1)とカルボジイミド化合物添加後のCTI(CTI-2)との比[(CTI-2)/(CTI-1)]を1.10以上にすることができた。
 また、各実施例と参考例1,2との対比から、末端基にカルボジイミドとの反応性官能基を含む熱可塑性樹脂において特に耐トラッキング性を向上させることができることが新たに分かった。

Claims (18)

  1.  熱可塑性樹脂にカルボジイミド化合物を配合することにより、熱可塑性樹脂のIEC60112第3版に準拠して測定される比較トラッキング指数を向上させる、方法。
  2.  熱可塑性樹脂が、カルボキシ基、ヒドロキシ基、及びアミノ基から選択される1以上の官能基を有する、請求項1に記載の方法。
  3.  熱可塑性樹脂100質量部に対してカルボジイミド化合物を0.01質量部以上の割合で配合する、請求項1又は2に記載の方法。
  4.  カルボジイミド化合物が、芳香族カルボジイミド化合物を含有する、請求項1から3のいずれか一項に記載の方法。
  5.  カルボジイミド化合物の数平均分子量が300以上である、請求項1から4のいずれか一項に記載の方法。
  6.  熱可塑性樹脂が、加工温度が350℃以下である熱可塑性樹脂を含む、請求項1から5のいずれか一項に記載の方法。
  7.  熱可塑性樹脂のIEC60112第3版に準拠して測定される比較トラッキング指数を向上させるための、カルボジイミド化合物の使用。
  8.  熱可塑性樹脂が、カルボキシ基、ヒドロキシ基、及びアミノ基から選択される1以上の官能基を有する、請求項7に記載の使用。
  9.  熱可塑性樹脂100質量部に対してカルボジイミド化合物を0.01質量部以上の割合で用いる、請求項7又は8に記載の使用。
  10.  カルボジイミド化合物が、芳香族カルボジイミド化合物を含有する、請求項7から9のいずれか一項に記載の使用。
  11.  カルボジイミド化合物の数平均分子量が300以上である、請求項7から10のいずれか一項に記載の使用。
  12.  熱可塑性樹脂が、加工温度が350℃以下である熱可塑性樹脂を含む、請求項7から11のいずれか一項に記載の使用。
  13.  カルボジイミド化合物を含有し、熱可塑性樹脂のIEC60112第3版に準拠して測定される比較トラッキング指数を向上させるための、熱可塑性樹脂用耐トラッキング性向上剤。
  14.  熱可塑性樹脂が、カルボキシ基、ヒドロキシ基、及びアミノ基から選択される1以上の官能基を有する、請求項13に記載の耐トラッキング性向上剤。
  15.  熱可塑性樹脂100質量部に対してカルボジイミド化合物が0.01質量部以上となる量で用いられるための、請求項13又は14に記載の耐トラッキング性向上剤。
  16.  カルボジイミド化合物が、芳香族カルボジイミド化合物を含有する、請求項13から15のいずれか一項に記載の耐トラッキング性向上剤。
  17.  カルボジイミド化合物の数平均分子量が300以上である、請求項13から16のいずれか一項に記載の耐トラッキング性向上剤。
  18.  加工温度が350℃以下である熱可塑性樹脂用である、請求項13から17のいずれか一項に記載の耐トラッキング性向上剤。
PCT/JP2020/012870 2019-03-25 2020-03-24 熱可塑性樹脂の耐トラッキング性向上方法 WO2020196470A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/434,226 US20220119638A1 (en) 2019-03-25 2020-03-24 Method for improving tracking resistance of thermoplastic resin
JP2020563800A JP7412352B2 (ja) 2019-03-25 2020-03-24 熱可塑性樹脂の耐トラッキング性向上方法
EP20779353.0A EP3922671A4 (en) 2019-03-25 2020-03-24 METHOD OF IMPROVING THE CRACK RESISTANCE OF THERMOPLASTIC RESIN
CN202080021293.5A CN113574104B (zh) 2019-03-25 2020-03-24 热塑性树脂的耐电痕性改善方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019056265 2019-03-25
JP2019-056265 2019-03-25

Publications (1)

Publication Number Publication Date
WO2020196470A1 true WO2020196470A1 (ja) 2020-10-01

Family

ID=72609822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012870 WO2020196470A1 (ja) 2019-03-25 2020-03-24 熱可塑性樹脂の耐トラッキング性向上方法

Country Status (5)

Country Link
US (1) US20220119638A1 (ja)
EP (1) EP3922671A4 (ja)
JP (1) JP7412352B2 (ja)
CN (1) CN113574104B (ja)
WO (1) WO2020196470A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0950710A (ja) * 1995-08-04 1997-02-18 Oji Paper Co Ltd 耐熱絶縁シート
WO2007007663A1 (ja) * 2005-07-08 2007-01-18 Polyplastics Co., Ltd. 難燃性樹脂組成物
JP2007070615A (ja) * 2005-08-11 2007-03-22 Polyplastics Co 難燃性樹脂組成物
JP2007119645A (ja) * 2005-10-28 2007-05-17 Polyplastics Co 難燃性樹脂組成物
WO2009150831A1 (ja) 2008-06-11 2009-12-17 ウィンテックポリマー株式会社 ポリブチレンテレフタレート樹脂組成物及び成形品
JP2010280793A (ja) * 2009-06-03 2010-12-16 Wintech Polymer Ltd 電気自動車部品用成形品
WO2017010337A1 (ja) 2015-07-16 2017-01-19 ウィンテックポリマー株式会社 ポリブチレンテレフタレート樹脂組成物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10316843A (ja) * 1997-05-16 1998-12-02 Kanegafuchi Chem Ind Co Ltd 難燃性ポリエステル樹脂組成物
JP2000273294A (ja) * 1999-03-24 2000-10-03 Kanegafuchi Chem Ind Co Ltd 難燃性ポリエステル樹脂組成物
KR20040001572A (ko) * 2002-06-28 2004-01-07 주식회사 삼양사 열가소성 폴리부틸렌 테레프탈레이트 수지 조성물
EP1719796A1 (en) * 2005-05-03 2006-11-08 DSM IP Assets B.V. A polyester moulding composition for use in electrical devices
JP2008050579A (ja) * 2006-07-28 2008-03-06 Teijin Ltd 樹脂組成物およびそれよりなる成形品
CN102276963A (zh) * 2010-06-11 2011-12-14 东丽纤维研究所(中国)有限公司 一种阻燃性聚酯树脂组合物及成型品
JP5971049B2 (ja) * 2012-09-14 2016-08-17 東レ株式会社 ポリアミド樹脂組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0950710A (ja) * 1995-08-04 1997-02-18 Oji Paper Co Ltd 耐熱絶縁シート
WO2007007663A1 (ja) * 2005-07-08 2007-01-18 Polyplastics Co., Ltd. 難燃性樹脂組成物
JP2007070615A (ja) * 2005-08-11 2007-03-22 Polyplastics Co 難燃性樹脂組成物
JP2007119645A (ja) * 2005-10-28 2007-05-17 Polyplastics Co 難燃性樹脂組成物
WO2009150831A1 (ja) 2008-06-11 2009-12-17 ウィンテックポリマー株式会社 ポリブチレンテレフタレート樹脂組成物及び成形品
JP2010280793A (ja) * 2009-06-03 2010-12-16 Wintech Polymer Ltd 電気自動車部品用成形品
WO2017010337A1 (ja) 2015-07-16 2017-01-19 ウィンテックポリマー株式会社 ポリブチレンテレフタレート樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3922671A4

Also Published As

Publication number Publication date
US20220119638A1 (en) 2022-04-21
EP3922671A4 (en) 2022-04-06
CN113574104B (zh) 2024-06-18
JP7412352B2 (ja) 2024-01-12
EP3922671A1 (en) 2021-12-15
JPWO2020196470A1 (ja) 2021-04-08
CN113574104A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
US20090130471A1 (en) Thermally conductive plastic resin composition
JP6805536B2 (ja) ポリブチレンテレフタレート樹脂組成物
JP2009030030A (ja) ポリフェニレンスルフィド樹脂組成物およびそれからなる成形品
EP3489304B1 (en) Polyarylene sulfide resin composition, molded article, and production methods
US9670361B2 (en) Halogen based flame retardant glass fiber reinforced polyamide resin composition and method for preparing the same
US20180201778A1 (en) Polybutylene terephthalate resin composition
WO2013140751A1 (en) Polymer composition and method for manufacturing the same
WO2014069489A1 (ja) ポリブチレンテレフタレート樹脂組成物
JP6831946B1 (ja) 熱可塑性樹脂の耐アルカリ溶液性向上方法
JP7412352B2 (ja) 熱可塑性樹脂の耐トラッキング性向上方法
KR102012953B1 (ko) 폴리에틸렌테레프탈레이트 수지 조성물 및 사출품
US20230242762A1 (en) Method of suppressing burr of polyarylene sulfide resin composition
JP6753470B2 (ja) ポリアリーレンスルフィド樹脂組成物、成形品及び製造方法
WO2021095681A1 (ja) 難燃性ポリブチレンテレフタレート樹脂組成物の耐トラッキング性向上方法
JP2021024876A (ja) 電気絶縁部品用難燃性ポリブチレンテレフタレート樹脂組成物
JP2019156891A (ja) 熱可塑性ポリエステル樹脂組成物およびその成形品
JP3374440B2 (ja) 耐ブリスター性に優れた表面実装部品用熱可塑性樹脂組成物
CN113831694B (zh) 一种阻燃pet材料及其制备方法
JP6837336B2 (ja) ポリエステル樹脂組成物
JP2022078491A (ja) 成形体、成形体の製造方法、金属樹脂複合体、および、樹脂組成物
JP2005239972A (ja) 電離放射線架橋用ポリブチレンテレフタレート樹脂組成物
JPH083327A (ja) コネクター
CN117715984A (zh) 聚芳硫醚树脂组合物以及嵌入成型品
JP2005171184A (ja) ポリアリーレンサルファイド樹脂組成物の製造方法
CN115380069A (zh) 减振用成形品和减振用成形品用的树脂组合物的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563800

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020779353

Country of ref document: EP

Effective date: 20210909

NENP Non-entry into the national phase

Ref country code: DE