WO2020196429A1 - 軸受構造 - Google Patents

軸受構造 Download PDF

Info

Publication number
WO2020196429A1
WO2020196429A1 PCT/JP2020/012780 JP2020012780W WO2020196429A1 WO 2020196429 A1 WO2020196429 A1 WO 2020196429A1 JP 2020012780 W JP2020012780 W JP 2020012780W WO 2020196429 A1 WO2020196429 A1 WO 2020196429A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
drive shaft
groove
touchdown
peripheral surface
Prior art date
Application number
PCT/JP2020/012780
Other languages
English (en)
French (fr)
Inventor
秀規 藤原
空馬 岡田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202080013768.6A priority Critical patent/CN113423961B/zh
Publication of WO2020196429A1 publication Critical patent/WO2020196429A1/ja
Priority to US17/485,068 priority patent/US11319965B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/049Roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/059Roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/527Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to vibration and noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/04Ball or roller bearings, e.g. with resilient rolling bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0442Active magnetic bearings with devices affected by abnormal, undesired or non-standard conditions such as shock-load, power outage, start-up or touchdown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0485Active magnetic bearings for rotary movement with active support of three degrees of freedom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/586Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/067Fixing them in a housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/048Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement

Definitions

  • the present disclosure relates to a bearing structure of a drive shaft supported by a magnetic bearing.
  • Patent Document 1 includes a drive shaft supported by a magnetic bearing, a touch-down bearing in which a rolling element is interposed between an outer ring and an inner ring, and a holding member for accommodating the touch-down bearing.
  • the structure is disclosed.
  • a cushioning member that absorbs an impact during touchdown is inserted between the touchdown bearing and the holding member.
  • Patent Document 1 a cushioning member is required in addition to the touchdown bearing, so that the number of parts increases.
  • This disclosure proposes to reduce the number of parts.
  • the first aspect is a rolling element (14c, 16d) between a drive shaft (13) extending horizontally and supported by a magnetic bearing (20) and an outer ring (14a, 16b) and an inner ring (14b, 16c).
  • the bearing structure includes a touchdown bearing (14,16) and a bearing housing (17,18) that supports the touchdown bearing (14,16) from the outer peripheral side.
  • the bearing structure is characterized in that recesses (13b, 14d, 14e, 17b, 18b) are formed in a region overlapping the rolling elements (14c, 16d) in the radial direction of the bearing.
  • the rolling elements (14c, 16d) on at least one of the outer ring (14a, 16b) and the inner ring (14b, 16c) of the touchdown bearing (14,16) The part that overlaps in the bearing radial direction bends into the recesses (13b, 14d, 14e, 17b, 18b) to absorb the impact. Therefore, it is not necessary to provide a cushioning member as in Patent Document 1 separately from the touchdown bearings (14, 16), and the number of parts can be reduced.
  • the second aspect is a bearing structure characterized in that, in the first aspect, a rounded portion (22) is formed at the edge of the recess (13b, 14d, 14e, 17b, 18b).
  • stress concentration can be suppressed at the portion corresponding to the edge of the recess (13b, 14d, 14e, 17b, 18b), so that at least one of the drive shaft (13) and the bearing housing (17,18) can be suppressed.
  • the durability of one side can be increased.
  • the recesses (13b, 14d, 14e, 17b, 18b) are for fitting the rolling elements (14c, 16d) formed in the outer ring (14a, 16b).
  • the entire groove (14f, 16e) overlaps in the bearing radial direction, and the axial length of the recess (13b, 14d, 14e, 17b, 18b) is the axial length of the outer ring (14a, 16b). It is a bearing structure characterized by having a content of 20% or more.
  • the outer ring (14a, 16b) of the touchdown bearing (14,16) and the outer ring (14a, 16b) of the touchdown bearing (14,16) are compared with the case where the axial length of the recess (13b, 14d, 14e, 17b, 18b) is less than 20%. Since at least one of the inner rings (14b, 16c) tends to bend in the recesses (13b, 14d, 14e, 17b, 18b), the shock absorbing effect when the drive shaft (13) is dropped can be obtained more reliably.
  • the drive shaft (13) since the drive shaft (13) does not have to be thinned by the depth of the recess (14d, 14e, 17b, 18b), the drive shaft (13) does not have to be recessed (14d, 14e, 17b, 18b).
  • the durability of the drive shaft (13) can be improved as compared with the case where the drive shaft (13) is provided.
  • a fifth aspect is that in any one of the first to fourth aspects, the recess (14d) is formed on the outer peripheral surface of the outer ring (14a), and the upper half region of the outer peripheral surface of the outer ring (14a).
  • the bearing structure is characterized in that the recess (14d) is not formed at least in a part in the circumferential direction.
  • a sixth aspect is that in any one of the first to fifth aspects, the recesses (17b, 18b) are formed on the inner peripheral surface of the bearing housing (17,18), and the bearing housing (17,18) is formed.
  • the bearing structure is characterized in that the recesses (17b, 18b) are not formed in at least a part of the upper half region of the inner peripheral surface of 18) in the circumferential direction.
  • FIG. 1 is a schematic view showing a structure of a turbo compressor to which the bearing structure according to the first embodiment of the present disclosure is applied.
  • FIG. 2 is an enlarged view of part II of FIG.
  • FIG. 3 is an enlarged view of part III of FIG.
  • FIG. 4 is an enlarged view of part IV of FIG.
  • FIG. 5 is a view corresponding to FIG. 2 of the second embodiment.
  • FIG. 6 is a view corresponding to FIG. 4 of the second embodiment.
  • FIG. 7 is a view corresponding to FIG. 2 of the third embodiment.
  • FIG. 8 is a view corresponding to FIG. 4 of the fourth embodiment.
  • FIG. 9 is a view corresponding to FIG. 4 of the fifth embodiment.
  • FIG. 1 shows a turbo compressor (1) to which the bearing structure according to the first embodiment of the present disclosure is applied.
  • This turbo compressor (1) includes an impeller (9), an electric motor (10), a casing (2), a control unit (30), and a power supply unit (40).
  • the impeller (9) is formed by a plurality of blades so that the outer shape is substantially conical.
  • the electric motor (10) drives the impeller (9).
  • the electric motor (10) is a so-called permanent magnet synchronous motor, and specifically includes a drive shaft (13), an electric motor stator (11), a rotor (12), and a bearing mechanism (8).
  • the drive shaft (13) is made of steel or stainless steel.
  • One end of the drive shaft (13) is fixed to the center of the wide side surface of the impeller (9).
  • a disk portion (13a) is overhangingly formed at the other end of the drive shaft (13).
  • the electric motor stator (11) and rotor (12) are provided in order from the outer peripheral side so as to surround the midway portion of the drive shaft (13) in the longitudinal direction.
  • the bearing mechanism (8) includes two magnetic bearings (20,20), a first touchdown bearing (14), a thrust magnetic bearing (15,15), and a second touchdown bearing (16). ..
  • the magnetic bearings (20,20) are provided with a plurality of electromagnets (not shown), and a combined electromagnetic force of the electromagnetic force of each electromagnet (not shown) is applied to the drive shaft (13) to apply the combined electromagnetic force to the drive shaft (13). ) Is configured to support in a non-contact state. Magnetic bearings (20, 20) are provided on both sides of the rotor (12) in the axial direction.
  • the first touchdown bearing (14) is a ball bearing and receives a radial load. As shown in FIGS. 2 and 4, the first touchdown bearing (14) includes an outer ring (14a) and an inner ring (14b). A ball (14c) as a rolling element is interposed between the outer ring (14a) and the inner ring (14b). A concave groove (14f) for fitting a ball (14c) is formed in the axial center of the inner peripheral surface of the outer ring (14a) and the outer peripheral surface of the inner ring (14b), and the outer ring (14a) and the inner ring (14b) are formed. A ball (14c) is fitted in the concave groove (14f). The first touchdown bearing (14) supports the drive shaft (13) when the magnetic bearing (20) is de-energized. The first touchdown bearing (14) is provided between the magnetic bearing (20) on the impeller (9) side and the impeller (9).
  • the thrust magnetic bearings (15,15) have an electromagnet (not shown) and are configured to support the disk portion (13a) of the drive shaft (13) in a non-contact state by electromagnetic force.
  • the second touchdown bearing (16) is a combination angular contact ball bearing in which two single row angular contact ball bearings (16a) are combined, and receives a radial load and a thrust load.
  • each single-row angular ball bearing (16a) has a ball (16d) as a rolling element interposed between the outer ring (16b) and the inner ring (16c).
  • a concave groove (16e) for fitting a ball (16d) is formed in the middle of the inner peripheral surface of the outer ring (16b) and the inner peripheral surface of the inner ring (16c) in the axial direction, and the outer ring (16b) and the inner ring (16c) are formed.
  • a ball (16d) is fitted in the concave groove (16e) of.
  • the second touchdown bearing (16) also supports the drive shaft (13) when the magnetic bearing (20) is de-energized.
  • the radial direction of the first and second touchdown bearings (14,16) is referred to as the bearing radial direction
  • the circumferential direction of the first and second touchdown bearings (14,16) is referred to as the bearing circumferential direction.
  • the outer ring (14a, 16b), inner ring (14b, 16c), and ball (14c, 16d) of the first and second touchdown bearings (14,16) are made of steel or alloy steel.
  • the casing (2) is formed in a substantially cylindrical shape with both ends closed, and is arranged so that the cylindrical axis is oriented horizontally.
  • An impeller chamber (4) for accommodating the impeller (9) is formed in the vicinity of one end of the casing (2).
  • An electric motor chamber (5) for accommodating an electric motor stator (11) and a rotor (12) is formed in a substantially central portion of the casing (2) in the longitudinal direction.
  • a thrust magnetic bearing accommodating chamber (6) for accommodating the disk portion (13a) of the drive shaft (13) and the thrust magnetic bearing (15) is formed in the vicinity of the other end of the casing (2).
  • annular first wall portion (2a) On the inner peripheral surface of the casing (2), an annular first wall portion (2a) that separates the impeller chamber (4) and the electric motor chamber (5), an electric motor chamber (5), and a thrust magnetic bearing accommodating chamber (6). ) And the annular second wall portion (2b) are projected toward the inner peripheral side.
  • An annular first bearing housing (17) is provided on the inner peripheral side of the impeller chamber (4) side end of the first wall portion (2a).
  • the first bearing housing (17) supports the first touchdown bearing (14) from the outer peripheral side.
  • An annular second bearing housing (18) is provided on the inner peripheral side of the thrust magnetic bearing accommodating chamber (6) side end of the second wall portion (2b).
  • the second bearing housing (18) supports the second touchdown bearing (16) from the outer peripheral side.
  • the first and second bearing housings (17,18) are made of steel, aluminum or stainless steel.
  • the inner peripheral surface of the first bearing housing (17) has a first recess (17a) into which the outer peripheral portion of the first touchdown bearing (14) is fitted. It is formed over the entire circumference.
  • the cross section is A first housing groove (17b) is formed as an annular recess that is shaped and extends in the entire circumferential direction of the bearing.
  • the first housing groove (17b) overlaps the entire concave groove (14f) of the outer ring (14a) in the bearing radial direction and is located at the center of the outer ring (14a) in the axial direction.
  • the axial length LH1 of the first housing groove (17b) is 4 mm
  • the axial length LO1 of the outer ring (14a) of the first touchdown bearing (14) is 12 mm.
  • the axial length LH1 of the first housing groove (17b) is 33% of the axial length LO1 of the outer ring (14a) of the first touchdown bearing (14).
  • the first housing groove (17b) has a side surface portion (17c) facing each other and a bottom surface portion (17d) connecting the side surface portions (17c) to each other and facing in the axial direction.
  • a second recess (18a) into which the outer peripheral portion of the second touchdown bearing (16) is fitted is formed over the entire circumference.
  • a second housing groove (18b) is formed as an annular recess that is U-shaped and extends in the entire circumferential direction of the bearing. The second housing groove (18b) overlaps the entire concave groove (16e) of the outer ring (16b) in the bearing radial direction.
  • the axial length LH2 of the second housing groove (18b) is 7 mm, and the axial length LO2 of the outer ring (16b) of the second touchdown bearing (16) is 16 mm.
  • the axial length LH2 of the second housing groove (18b) is 44% of the axial length LO2 of the outer ring (16b) of the second touchdown bearing (16).
  • the second housing groove (18b) has a side surface portion (18c) facing each other and a bottom surface portion (18d) connecting the side surface portions (18c) to each other and facing in the axial direction.
  • the control unit (30) includes a gap sensor (not shown) capable of detecting the gap between the disk unit (13a) and the thrust magnetic bearings (15, 15), a motor stator (11), and a rotor (12).
  • the magnetic bearing (20) so that the position of the drive shaft (13) becomes a desired position based on the detection value for levitation control output by a gap sensor (not shown) that can detect the gap between the two. , 20) and the thrust magnetic bearing (15) are controlled.
  • the power supply unit (40) supplies voltage to the magnetic bearings (20,20) and thrust magnetic bearings (15,15) under the control of the control unit (30).
  • the drive shaft (magnetically levitation) (as shown by a virtual line in FIG. 4)
  • the load of the drive shaft (13) is applied to the inner ring (14b) and the ball (14b). It acts on the lower half of the outer ring (14a) via 14c).
  • the portion of the lower half of the outer ring (14a) that overlaps the ball (14c) in the bearing radial direction (the axially central portion of the lower half of the outer ring (14a)) is inside the first housing groove (17b) (outer peripheral side).
  • both ends in the axial direction in the lower half of the outer ring (14a) bend toward the inner circumference to absorb the impact.
  • the drive shaft (13) also comes into contact with the inner peripheral surface of the inner ring (16c) of each single-row angular contact ball bearing (16a) of the second touchdown bearing (16) from above during the drop.
  • a metal corrugated plate-shaped member is used as the first and second touchdown bearings (14, 16) and the first and second bearings. Since it does not have to be provided between the housings (17, 18), it is not necessary to form a groove for fitting the corrugated plate-shaped member with high precision concentricity. Further, since the first and second touchdown bearings (14,16) are not eccentric due to the accuracy of the corrugated sheet member, the quality of the turbo compressor (1) can be improved.
  • the axial length LH1 of the first housing groove (17b) is set to 20% or more of the axial length LO1 of the outer ring (14a) of the first touchdown bearing (14), it is less than 20%.
  • the outer ring (14a) of the first touchdown bearing (14) is more likely to bend in the first housing groove (17b) than in the case of the above. Therefore, the shock absorbing effect when the drive shaft (13) is dropped can be obtained more reliably.
  • the axial length LH1 of the first housing groove (17b) is less than 50% of the axial length LO1 of the outer ring (14a) of the first touchdown bearing (14), it is 50% or more.
  • the contact region of the first touchdown bearing (14) with the outer ring (14a) on the inner peripheral surface of the first bearing housing (17) is the pressure from the first touchdown bearing (14). Therefore, it is hard to be plastically deformed.
  • the outer peripheral surface of the drive shaft (13) is not formed with a groove for bending the inner ring (14b, 16c) of the first and second touchdown bearings (14,16), and the drive shaft (13) is not formed. Since it is not necessary to make 13) thinner by the depth of the groove, the durability of the drive shaft (13) can be improved as compared with the case where the drive shaft (13) is provided with the groove.
  • the first touchdown bearing (14) when the balls (14c, 16d) of the first and second touchdown bearings (14,16) thermally expand when the drive shaft (13) falls during high-speed rotation, the first touchdown bearing (14) ), The portion of the outer ring (14a) that overlaps the ball (14c) in the bearing radial direction bends in the first housing groove (17b) (outer peripheral side), and the outer ring (16b) of the second touchdown bearing (16). The portion overlapping the ball (16d) in the bearing radial direction bends in the second housing groove (18b) (outer peripheral side). Therefore, the outer ring (14a, 16b) and the inner ring (14b, 16c) are less likely to be damaged by the thermal expansion of the ball (14c, 16d). Therefore, it is not necessary to use expensive ceramics having a low coefficient of thermal expansion as the material of the balls (14c, 16d), so that the material cost can be reduced.
  • FIG. 5 is a view corresponding to FIG. 2 of the second embodiment.
  • a U-shaped cross section is formed on the outer peripheral surface of the drive shaft (13) in a region overlapping the ball (14c) of the first touchdown bearing (14) in the bearing radial direction.
  • a first drive shaft groove (13b) is formed as an annular recess extending in the entire circumferential direction of the bearing.
  • the first drive shaft groove (13b) is formed at a position equal to the first housing groove (17b) in the axial direction.
  • the first drive shaft groove (13b) overlaps the entire concave groove (14f) of the outer ring (14a) in the bearing radial direction.
  • the axial length LS1 of the first drive shaft groove (13b) is 33% of the axial length LO1 of the outer ring (14a) of the first touchdown bearing (14).
  • the second drive shaft is also located on the outer peripheral surface of the drive shaft (13) in a region overlapping the ball (16d) of each single row angular ball bearing (16a) of the second touchdown bearing (16) in the bearing radial direction.
  • a groove (not shown) is formed.
  • the axial length of the second drive shaft groove is 44% of the axial length LO2 of the outer ring (16b) of the second touchdown bearing (16).
  • the load of the drive shaft (13) acts on both ends in the axial direction of the inner ring (14b) of the first touchdown bearing (14). Both ends in the axial direction in the lower half of the inner ring (14b) bend toward the outer circumference, and the lower half of the inner ring (14b) overlaps with the ball (14c) in the bearing radial direction (the lower half of the inner ring (14b)). The central portion in the axial direction) bends into the first drive shaft groove (13b) (inner peripheral side), and the impact is absorbed.
  • the drop load of the drive shaft (13) also acts on both ends of the inner ring (16c) of each single-row angular ball bearing (16a) of the second touchdown bearing (16) in the axial direction, and the inner ring (16c) Axial both ends in the lower half of the inner ring bend toward the outer circumference, and the lower half of the inner ring (16c) overlaps the ball (16d) in the radial direction of the bearing (the central part of the lower half of the inner ring (16c) in the axial direction). ) Bends into the second drive shaft groove (not shown) (inner peripheral side), and the impact is absorbed. Similar to the first embodiment, the outer rings (14a, 16b) of the first and second touchdown bearings (14,16) also bend.
  • the axial length LS1 of the first drive shaft groove (13b) is 20% or more of the axial length LO1 of the outer ring (14a) of the first touchdown bearing (14). Therefore, the outer ring (14a) of the first touchdown bearing (14) is more likely to bend in the first drive shaft groove (13b) than when it is set to less than 20%. Therefore, the shock absorbing effect when the drive shaft (13) is dropped can be obtained more reliably.
  • the drive shaft (13) is easily plastically deformed by the pressure from the first and second touchdown bearings (14,16). Since the axial length LS1 of the first drive shaft groove (13b) is 50% or more of the axial length LO1 of the outer ring (14a) of the first touchdown bearing (14), it is less than 50%. The contact region of the first touchdown bearing (14) with the inner ring (14b) on the outer peripheral surface of the drive shaft (13) is less likely to be plastically deformed by the pressure from the first touchdown bearing (14). ..
  • FIG. 7 is a view corresponding to FIG. 2 of the third embodiment.
  • the first touchdown bearing (14) is located on the outer peripheral surface of the outer ring (14a) and the inner peripheral surface of the inner ring (14b) in a region overlapping the ball (14c) in the bearing radial direction.
  • the outer bearing groove (14d) and the first inner bearing groove (14e) are each formed over the entire circumference.
  • the outer ring (16b) of each single-row angular contact ball bearing (16a) of the second touchdown bearing (16) overlaps with the ball (16d) on the inner peripheral surface of the inner ring (16c) in the bearing radial direction.
  • a second outer bearing groove (not shown) and a second inner bearing groove (not shown) are also formed in the region over the entire circumference.
  • the first bearing housing (17) is not formed with a first housing groove (17b), and the second bearing housing (18) is not formed with a second housing groove (18b).
  • FIG. 8 is a view corresponding to FIG. 4 of the fourth embodiment.
  • the first housing groove (17b), the second housing groove (18b), the first drive shaft groove (13b) and the second drive shaft groove (not shown) have a substantially V-shaped cross section. I'm doing it.
  • the bottom rounded portion (21) has a total length. It is formed over.
  • Edge-side rounded portions (22) on both axially flanks of the first housing groove (17b), the second housing groove (18b), the first drive shaft groove (13b) and the second drive shaft groove (not shown). ) Is formed over the entire length.
  • the edge side radius portion (22) is formed on the edge of the first housing groove (17b) and the second housing groove (18b), the first housing groove (17b) and the second housing groove ( The stress concentration on the edge of 18b) can be suppressed, and the durability of the first and second bearing housings (17,18) can be enhanced.
  • the edge side radius portion (22) is formed on the edge of the first drive shaft groove (13b) and the second drive shaft groove (not shown), the first drive shaft groove (13b) and the second drive shaft groove (13b) and the second Stress concentration on the edge of the drive shaft groove (not shown) can be suppressed, and the durability of the drive shaft (13) can be improved.
  • the edge side radius portion (22) is formed on the edge of the first outer bearing groove (14d) and the second outer bearing groove (not shown), the first and second bearings Stress concentration can be suppressed at the contact points between the edges of the first outer bearing groove (14d) and the second outer bearing groove (not shown) in the housing (17, 18), and the first and second bearings can be suppressed.
  • the durability of the housing (17,18) can be increased.
  • the first touchdown bearing (14) is a ball bearing having a ball (14c) as a rolling element, but other rolling bearings such as a roller bearing having a cylinder as a rolling element. May be.
  • the first housing groove (17b) is formed on the entire inner peripheral surface of the first bearing housing (17), but the inner peripheral surface of the first bearing housing (17) is formed. It may not be formed in a part of the upper half region in the circumferential direction. Further, the first housing groove (17b) is not formed in the entire circumferential direction (half circumference of the inner peripheral surface) of the upper half region of the inner peripheral surface of the first bearing housing (17), and the first housing groove (17b) is formed. May be formed only in the lower half region of the inner peripheral surface of the first bearing housing (17). Similarly, the second housing groove (18b) may not be formed in the entire circumferential direction or a part of the circumferential direction of the upper half region of the second bearing housing (18).
  • the first outer bearing groove (14d) is formed on the entire circumference of the outer peripheral surface of the outer ring (14a) of the first touchdown bearing (14), but the outer peripheral surface of the outer ring (14a) is formed. It may not be formed in the entire circumferential direction or a part of the circumferential direction in the upper half region.
  • the second outer bearing groove (not shown) is the entire circumferential direction of the upper half region of the outer ring (16b) of each single row angular contact ball bearing (16a) of the second touchdown bearing (16). Alternatively, it may not be formed in a part in the circumferential direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Rolling Contact Bearings (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Support Of The Bearing (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

駆動軸(13)の外周面、内輪(14b,16c)の内周面、外輪(14a,16b)の外周面、及びベアリングハウジング(17,18)の内周面のうちの少なくとも1つにおける転動体(14c,16d)と軸受径方向に重なる領域には、凹部(13b,14d,14e,17b,18b)が形成されている。

Description

軸受構造
 本開示は、磁気軸受によって支持される駆動軸の軸受構造に関するものである。
 特許文献1には、磁気軸受によって支持される駆動軸と、外輪と内輪との間に転動体が介装されてなるタッチダウン軸受と、前記タッチダウン軸受を収容する保持部材とを備えた軸受構造が開示されている。この軸受構造では、タッチダウン時の衝撃を吸収する緩衝部材がタッチダウン軸受と保持部材との間に挿入されている。
特開2000-346068号公報
 特許文献1では、タッチダウン軸受とは別に、緩衝部材が必要となるので、部品点数が増大する。
 本開示は、部品点数を削減することを提案する。
 第1の態様は、水平方向に延び、磁気軸受(20)によって支持される駆動軸(13)と、外輪(14a,16b)と内輪(14b,16c)との間に転動体(14c,16d)が介装されてなるタッチダウン軸受(14,16)と、前記タッチダウン軸受(14,16)を外周側から支持するベアリングハウジング(17,18)とを備えた軸受構造であって、前記駆動軸(13)の外周面、前記内輪(14b,16c)の内周面、前記外輪(14a,16b)の外周面、及び前記ベアリングハウジング(17,18)の内周面のうちの少なくとも1つにおける前記転動体(14c,16d)と軸受径方向に重なる領域には、凹部(13b,14d,14e,17b,18b)が形成されていることを特徴とする軸受構造である。
 第1の態様では、駆動軸(13)の落下時に、タッチダウン軸受(14,16)の外輪(14a,16b)及び内輪(14b,16c)の少なくとも一方における前記転動体(14c,16d)と軸受径方向に重なる部分が、凹部(13b,14d,14e,17b,18b)内に撓んで衝撃を吸収する。このため、タッチダウン軸受(14,16)とは別に特許文献1のような緩衝部材を設ける必要がなく、部品点数を削減できる。
 第2の態様は、第1の態様において、前記凹部(13b,14d,14e,17b,18b)の縁には、アール部(22)が形成されていることを特徴とする軸受構造である。
 第2の態様では、凹部(13b,14d,14e,17b,18b)の縁に対応する箇所での応力集中を抑制できるので、駆動軸(13)及びベアリングハウジング(17,18)のうちの少なくとも一方の耐久性を高めることができる。
 第3の態様は、第1又は2の態様において、前記凹部(13b,14d,14e,17b,18b)は、前記外輪(14a,16b)に形成された転動体(14c,16d)嵌合用の溝(14f,16e)全体と軸受径方向に重なり、かつ前記凹部(13b,14d,14e,17b,18b)の軸方向の長さは、前記外輪(14a,16b)の軸方向の長さの20%以上であることを特徴とする軸受構造である。
 第3の態様では、凹部(13b,14d,14e,17b,18b)の軸方向の長さを20%未満にした場合に比べ、タッチダウン軸受(14,16)の外輪(14a,16b)及び内輪(14b,16c)の少なくとも一方が、凹部(13b,14d,14e,17b,18b)内に撓みやすいので、駆動軸(13)の落下時における衝撃吸収効果をより確実に得られる。
 第4の態様は、第1~3の態様のいずれか1つにおいて、前記凹部(14d,14e,17b,18b)は、前記駆動軸(13)の外周面には形成されていないことを特徴とする軸受構造である。
 第4の態様では、駆動軸(13)を凹部(14d,14e,17b,18b)の深さ分細くしなくてもよいので、駆動軸(13)に凹部(14d,14e,17b,18b)を設ける場合に比べ、駆動軸(13)の耐久性を高めることができる。
 第5の態様は、第1~4の態様のいずれか1つにおいて、前記凹部(14d)は、前記外輪(14a)の外周面に形成され、前記外輪(14a)の外周面の上半領域の少なくとも周方向一部には、前記凹部(14d)が形成されていないことを特徴とする軸受構造である。
 第6の態様は、第1~5の態様のいずれか1つにおいて、前記凹部(17b,18b)は、前記ベアリングハウジング(17,18)の内周面に形成され、前記ベアリングハウジング(17,18)の内周面の上半領域の少なくとも周方向一部には、前記凹部(17b,18b)が形成されていないことを特徴とする軸受構造である。
図1は、本開示の実施形態1に係る軸受構造を適用したターボ圧縮機の構造を示す概略図である。 図2は、図1のII部拡大図である。 図3は、図1のIII部拡大図である。 図4は、図2のIV部拡大図である。 図5は、実施形態2の図2相当図である。 図6は、実施形態2の図4相当図である。 図7は、実施形態3の図2相当図である。 図8は、実施形態4の図4相当図である。 図9は、実施形態5の図4相当図である。
 本開示の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 《実施形態1》
 図1は、本開示の実施形態1に係る軸受構造を適用したターボ圧縮機(1)を示す。このターボ圧縮機(1)は、羽根車(9)、電動機(10)、ケーシング(2)、制御部(30)、及び電源部(40)を備えている。
 羽根車(9)は、複数の羽根によって外形が略円錐形状となるように形成されている。
 電動機(10)は、羽根車(9)を駆動する。電動機(10)は、いわゆる永久磁石同期モータであり、具体的には、駆動軸(13)、電動機用ステータ(11)、ロータ(12)、及び軸受機構(8)を備えている。駆動軸(13)は、鋼材又はステンレスで構成されている。駆動軸(13)の一端は、羽根車(9)の幅広側の面の中心に固定されている。駆動軸(13)の他端には、円盤部(13a)が張出形成されている。電動機用ステータ(11)及びロータ(12)は、駆動軸(13)の長手方向中途部を囲むように外周側から順に設けられている。
 軸受機構(8)は、2つの磁気軸受(20,20)、第1のタッチダウン軸受(14)、スラスト磁気軸受(15,15)、及び第2のタッチダウン軸受(16)を備えている。
 磁気軸受(20,20)には、複数の電磁石(図示せず)が設けられ、各電磁石(図示せず)の電磁力の合成電磁力を駆動軸(13)に付与し、駆動軸(13)を非接触状態で支持するように構成されている。磁気軸受(20,20)は、ロータ(12)の配設箇所の軸方向両側に設けられている。
 第1のタッチダウン軸受(14)は、玉軸受であり、ラジアル荷重を受ける。図2及び図4に示すように、第1のタッチダウン軸受(14)は、外輪(14a)と内輪(14b)とを備えている。外輪(14a)と内輪(14b)との間には、転動体としての玉(14c)が介装されている。外輪(14a)の内周面及び内輪(14b)の外周面の軸方向中央部には、玉(14c)嵌合用の凹溝(14f)が形成され、外輪(14a)及び内輪(14b)の凹溝(14f)に玉(14c)が嵌まっている。第1のタッチダウン軸受(14)は、磁気軸受(20)の非通電時に駆動軸(13)を支持する。第1のタッチダウン軸受(14)は、羽根車(9)側の磁気軸受(20)と羽根車(9)との間に設けられている。
 スラスト磁気軸受(15,15)は、電磁石(図示せず)を有していて、駆動軸(13)の円盤部(13a)を電磁力によって非接触状態で支持するように構成されている。
 第2のタッチダウン軸受(16)は、単列アンギュラ玉軸受(16a)を2つ組み合わせた組合せアンギュラ玉軸受であり、ラジアル荷重及びスラスト荷重を受ける。各単列アンギュラ玉軸受(16a)は、図3に示すように、外輪(16b)と内輪(16c)との間に転動体としての玉(16d)が介装されてなる。外輪(16b)の内周面及び内輪(16c)の内周面の軸方向中程には、玉(16d)嵌合用の凹溝(16e)が形成され、外輪(16b)及び内輪(16c)の凹溝(16e)に玉(16d)が嵌まっている。第2のタッチダウン軸受(16)も、磁気軸受(20)の非通電時に駆動軸(13)を支持する。以下、第1及び第2のタッチダウン軸受(14,16)の径方向 を軸受径方向と呼び、第1及び第2のタッチダウン軸受(14,16)の周方向 を軸受周方向と呼ぶ。第1及び第2のタッチダウン軸受(14,16)の外輪(14a,16b)、内輪(14b,16c)、及び玉(14c,16d)は、鋼、又は合金鋼で構成されている。
 ケーシング(2)は、両端が閉塞された略円筒状に形成され、円筒軸線が水平向きとなるように配置されている。ケーシング(2)の一端部近傍には、羽根車(9)を収容するインペラ室(4)が形成されている。ケーシング(2)の長手方向略中央部には、電動機用ステータ(11)及びロータ(12)を収容する電動機室(5)が形成されている。ケーシング(2)の他端部近傍には、駆動軸(13)の円盤部(13a)及びスラスト磁気軸受(15)を収容するスラスト磁気軸受収容室(6)が形成されている。ケーシング(2)の内周面には、インペラ室(4)と電動機室(5)とを区画する環状の第1壁部(2a)と、電動機室(5)とスラスト磁気軸受収容室(6)とを区画する環状の第2壁部(2b)とが内周側に向かって突設されている。第1壁部(2a)のインペラ室(4)側端部の内周側には、環状の第1のベアリングハウジング(17)が設けられている。第1のベアリングハウジング(17)は、第1のタッチダウン軸受(14)を外周側から支持している。第2壁部(2b)のスラスト磁気軸受収容室(6)側端部の内周側には、環状の第2のベアリングハウジング(18)が設けられている。第2のベアリングハウジング(18)は、第2のタッチダウン軸受(16)を外周側から支持している。第1及び第2のベアリングハウジング(17,18)は、鋼材、アルミ、又はステンレスで構成されている。
 図2及び図3にも示すように、第1のベアリングハウジング(17)の内周面には、第1のタッチダウン軸受(14)の外周部が嵌めこまれる第1凹所(17a)が全周に亘って形成されている。第1凹所(17a)の底面(第1のベアリングハウジング(17)の内周面)における第1のタッチダウン軸受(14)の玉(14c)と軸受径方向 に重なる領域には、断面コ字状で軸受周方向全体に延びる環状の凹部としての第1ハウジング溝(17b)が形成されている。第1ハウジング溝(17b)は、外輪(14a)の凹溝(14f)全体と軸受径方向に重なり、かつ外輪(14a)の軸方向中央に位置している。第1ハウジング溝(17b)の軸方向の長さLH1は、4mm、第1のタッチダウン軸受(14)の外輪(14a)の軸方向の長さLO1は、12mmである。第1ハウジング溝(17b)の軸方向の長さLH1は、第1のタッチダウン軸受(14)の外輪(14a)の軸方向の長さLO1の33%である。第1ハウジング溝(17b)は、互いに対向する側面部(17c)と、当該側面部(17c)を互いに連結し、軸心方向に臨む底面部(17d)とを有している。
 第2のベアリングハウジング(18)の内周面には、第2のタッチダウン軸受(16)の外周部が嵌めこまれる第2凹所(18a)が全周に亘って形成されている。第2凹所(18a)の底面(第2のベアリングハウジング(18)の内周面)における第2のタッチダウン軸受(16)の各玉(16d)と軸受径方向に重なる領域には、断面コ字状で軸受周方向全体に延びる環状の凹部としての第2ハウジング溝(18b)が形成されている。第2ハウジング溝(18b)は、外輪(16b)の凹溝(16e)全体と軸受径方向に重なる。第2ハウジング溝(18b)の軸方向の長さLH2は、7mm、第2のタッチダウン軸受(16)の外輪(16b)の軸方向の長さLO2は、16mmである。第2ハウジング溝(18b)の軸方向の長さLH2は、第2のタッチダウン軸受(16)の外輪(16b)の軸方向の長さLO2の44%である。第2ハウジング溝(18b)は、互いに対向する側面部(18c)と、当該側面部(18c)を互いに連結し、軸心方向に臨む底面部(18d)とを有している。
 制御部(30)は、円盤部(13a)とスラスト磁気軸受(15,15)との間のギャップを検出可能なギャップセンサ(図示せず)、電動機用ステータ(11)及びロータ(12)との間のギャップを検出可能なギャップセンサ(図示せず)等によって出力される浮上制御用の検出値に基づいて、駆動軸(13)の位置が所望の位置となるように、磁気軸受(20,20)及びスラスト磁気軸受(15)に供給する電圧を制御する。
 電源部(40)は、制御部(30)の制御により、磁気軸受(20,20)及びスラスト磁気軸受(15,15)に電圧を供給する。
 上述のように構成されたターボ圧縮機(1)において、停電、浮上制御用センサの故障、システムダウン等の異常発生時に、図4に仮想線で示すように、磁気浮上している駆動軸(13)が落下して第1のタッチダウン軸受(14)の内輪(14b)の内周面に上方から接触(タッチダウン)すると、駆動軸(13)の荷重が、内輪(14b)及び玉(14c)を介して外輪(14a)の下半部分に作用する。これにより、外輪(14a)の下半部分における玉(14c)と軸受径方向に重なる部分(外輪(14a)の下半部分の軸方向中央部)が第1ハウジング溝(17b)内(外周側)に撓むとともに、外輪(14a)の下半部分における軸方向両端部が内周側に撓み、衝撃が吸収される。駆動軸(13)は、上記落下時に、第2のタッチダウン軸受(16)の各単列アンギュラ玉軸受(16a)の内輪(16c)の内周面にも上方から接触する。これにより、駆動軸(13)の荷重が各単列アンギュラ玉軸受(16a)の内輪(16c)及び玉(16d)を介して外輪(16b)の下半部分に作用し、外輪(16b)の下半部分における玉(16d)と軸受径方向に重なる部分(外輪(16b)の下半部分の軸方向中央部)が第2ハウジング溝(18b)内(外周側)に撓むとともに、外輪(16b)の下半部分における軸方向両端部が内周側に撓み、衝撃が吸収される。このため、第1及び第2のタッチダウン軸受(14,16)とは別に特許文献1のような緩衝部材を設ける必要がなく、部品点数を削減できる。
 本実施形態1によれば、タッチダウン時の衝撃を吸収する緩衝部材として、金属製の波板状部材を第1及び第2のタッチダウン軸受(14,16)と第1及び第2のベアリングハウジング(17,18)との間に設けなくてよいので、波板状部材の嵌合用の溝を高精度の同心度で形成する手間が不要となる。また、波板状部材の精度により第1及び第2のタッチダウン軸受(14,16)が偏心することがないので、ターボ圧縮機(1)の品質を向上できる。
 また、第1ハウジング溝(17b)の軸方向の長さLH1を第1のタッチダウン軸受(14)の外輪(14a)の軸方向の長さLO1の20%以上にしたので、20%未満にした場合に比べ、第1のタッチダウン軸受(14)の外輪(14a)が、第1ハウジング溝(17b)内に撓みやすい。したがって、駆動軸(13)の落下時における衝撃吸収効果をより確実に得られる。
 また、第1ハウジング溝(17b)の軸方向の長さLH1を第1のタッチダウン軸受(14)の外輪(14a)の軸方向の長さLO1の50%未満にしたので、50%以上にした場合に比べ、第1のベアリングハウジング(17)の内周面における第1のタッチダウン軸受(14)の外輪(14a)との接触領域が、第1のタッチダウン軸受(14)からの圧力により塑性変形しにくい。
 また、第2ハウジング溝(18b)の軸方向の長さLH2を第2のタッチダウン軸受(16)の外輪(16b)の軸方向の長さLO2の20%以上にしたので、20%未満にした場合に比べ、第2のタッチダウン軸受(16)の外輪(16b)が、第2ハウジング溝(18b)内に撓みやすい。したがって、駆動軸(13)の落下時における衝撃吸収効果をより確実に得られる。
 また、第1及び第2のベアリングハウジング(17,18)の材料としてアルミを採用した場合、第1及び第2のベアリングハウジング(17,18)は第1及び第2のタッチダウン軸受(14,16)からの圧力により塑性変形しやすくなる。第2ハウジング溝(18b)の軸方向の長さLH2を第2のタッチダウン軸受(16)の外輪(16b)の軸方向の長さLO2の50%以上にしたので、50%以上にした場合に比べ、第2のベアリングハウジング(18)の内周面における第2のタッチダウン軸受(16)の外輪(16b)との接触領域が、第2のタッチダウン軸受(16)からの圧力により塑性変形しにくい。
 また、駆動軸(13)の外周面には、第1及び第2のタッチダウン軸受(14,16)の内輪(14b,16c)を撓ませるための溝が形成されておらず、駆動軸(13)を溝の深さ分細くしなくてもよいので、駆動軸(13)に溝を設ける場合に比べ、駆動軸(13)の耐久性を高めることができる。
 また、駆動軸(13)が高速回転中に落下した際に第1及び第2のタッチダウン軸受(14,16)の玉(14c,16d)が熱膨張すると、第1のタッチダウン軸受(14)の外輪(14a)における玉(14c)と軸受径方向に重なる部分が、第1ハウジング溝(17b)内(外周側)に撓むとともに、第2のタッチダウン軸受(16)の外輪(16b)における玉(16d)と軸受径方向に重なる部分が、第2ハウジング溝(18b)内(外周側)に撓む。このため、玉(14c,16d)の熱膨張により外輪(14a,16b)及び内輪(14b,16c)が損傷しにくい。したがって、玉(14c,16d)の材料として、熱膨張率が低く、かつ高価なセラミックスを採用しなくてもよいので、材料コストを削減できる。
 《実施形態2》
 図5は、実施形態2の図2相当図である。本実施形態2では、図6にも示すように、駆動軸(13)の外周面における第1のタッチダウン軸受(14)の玉(14c)と軸受径方向に重なる領域に、断面コ字状で軸受周方向全体に延びる環状の凹部としての第1の駆動軸溝(13b)が形成されている。第1の駆動軸溝(13b)は、第1ハウジング溝(17b)と軸方向に等しい位置に形成されている。第1の駆動軸溝(13b)は、外輪(14a)の凹溝(14f)全体と軸受径方向に重なっている。第1の駆動軸溝(13b)の軸方向の長さLS1は、第1のタッチダウン軸受(14)の外輪(14a)の軸方向の長さLO1の33%である。また、駆動軸(13)の外周面における第2のタッチダウン軸受(16)の各単列アンギュラ玉軸受(16a)の玉(16d)と軸受径方向に重なる領域にも、第2の駆動軸溝(図示せず)が形成されている。第2の駆動軸溝の軸方向の長さは、第2のタッチダウン軸受(16)の外輪(16b)の軸方向の長さLO2の44%である。
 駆動軸(13)の落下時には、図6に仮想線で示すように、駆動軸(13)の荷重が第1のタッチダウン軸受(14)の内輪(14b)の軸方向両端部に作用し、内輪(14b)の下半部分における軸方向両端部が外周側に撓むとともに、内輪(14b)の下半部分における玉(14c)と軸受径方向に重なる部分(内輪(14b)の下半部分の軸方向中央部)が第1の駆動軸溝(13b)内(内周側)に撓み、衝撃が吸収される。駆動軸(13)の落下時の荷重は、第2のタッチダウン軸受(16)の各単列アンギュラ玉軸受(16a)の内輪(16c)の軸方向両端部にも作用し、内輪(16c)の下半部分における軸方向両端部が外周側に撓むとともに、内輪(16c)の下半部分における玉(16d)と軸受径方向に重なる部分(内輪(16c)の下半部分の軸方向中央部)が第2の駆動軸溝(図示せず)内(内周側)に撓み、衝撃が吸収される。実施形態1と同様に、第1及び第2のタッチダウン軸受(14,16)の外輪(14a,16b)も撓む。このように、駆動軸(13)の落下時に、第1及び第2のタッチダウン軸受(14,16)の外輪(14a,16b)と内輪(14b,16c)の両方が撓むので、衝撃がより効果的に吸収される。
 その他の構成は、実施形態1と同じであるので同じ構成箇所には同じ符号を付してその詳細な説明を省略する。
 本実施形態2によれば、第1の駆動軸溝(13b)の軸方向の長さLS1を第1のタッチダウン軸受(14)の外輪(14a)の軸方向の長さLO1の20%以上にしたので、20%未満にした場合に比べ、第1のタッチダウン軸受(14)の外輪(14a)が、第1の駆動軸溝(13b)内に撓みやすい。したがって、駆動軸(13)の落下時における衝撃吸収効果をより確実に得られる。
 また、駆動軸(13)の材料としてアルミを採用した場合、駆動軸(13)は第1及び第2のタッチダウン軸受(14,16)からの圧力により塑性変形しやすい。第1の駆動軸溝(13b)の軸方向の長さLS1を第1のタッチダウン軸受(14)の外輪(14a)の軸方向の長さLO1の50%以上にしたので、50%未満にした場合に比べ、駆動軸(13)外周面における第1のタッチダウン軸受(14)の内輪(14b)との接触領域が、第1のタッチダウン軸受(14)からの圧力により塑性変形しにくい。
 《実施形態3》
 図7は、実施形態3の図2相当図である。本実施形態3では、第1のタッチダウン軸受(14)の外輪(14a)の外周面、及び内輪(14b)の内周面における玉(14c)と軸受径方向に重なる領域に、第1の外側ベアリング溝(14d)及び第1の内側ベアリング溝(14e)がそれぞれ全周に亘って形成されている。また、第2のタッチダウン軸受(16)の各単列アンギュラ玉軸受(16a)の外輪(16b)の外周面、及び内輪(16c)の内周面における玉(16d)と軸受径方向に重なる領域にも、第2の外側ベアリング溝(図示せず)及び第2の内側ベアリング溝(図示せず)がそれぞれ全周に亘って形成されている。第1のベアリングハウジング(17)には、第1ハウジング溝(17b)が形成されておらず、第2のベアリングハウジング(18)には、第2ハウジング溝(18b)が形成されていない。
 その他の構成は、実施形態1と同じであるので同じ構成箇所には同じ符号を付してその詳細な説明を省略する。
 本実施形態3によれば、第1及び第2のタッチダウン軸受(14,16)だけに溝加工を施せばよく、駆動軸(13)及び第1及び第2のベアリングハウジング(17,18)に溝加工を施す手間が不要になる。
 《実施形態4》
 図8は、実施形態4の図4相当図である。本実施形態4では、第1ハウジング溝(17b)、第2ハウジング溝(18b)、第1の駆動軸溝(13b)及び第2の駆動軸溝(図示せず)が断面略V字状をなしている。第1ハウジング溝(17b)、第2ハウジング溝(18b)、第1の駆動軸溝(13b)及び第2の駆動軸溝(図示せず)の底部に、底側アール部(21)が全長に亘って形成されている。第1ハウジング溝(17b)、第2ハウジング溝(18b)、第1の駆動軸溝(13b)及び第2の駆動軸溝(図示せず)の軸方向両側の縁に、縁側アール部(22)が全長に亘って形成されている。
 その他の構成は、実施形態2と同じであるので同じ構成箇所には同じ符号を付してその詳細な説明を省略する。
 本実施形態4によれば、第1ハウジング溝(17b)及び第2ハウジング溝(18b)の縁に縁側アール部(22)を形成するので、第1ハウジング溝(17b)及び第2ハウジング溝(18b)の縁への応力集中を抑制でき、第1及び第2のベアリングハウジング(17,18)の耐久性を高めることができる。
 同様に、第1の駆動軸溝(13b)及び第2の駆動軸溝(図示せず)の縁に縁側アール部(22)を形成するので、第1の駆動軸溝(13b)及び第2の駆動軸溝(図示せず)の縁への応力集中を抑制でき、駆動軸(13)の耐久性を高めることができる。
 《実施形態5》
 図9は、実施形態5の図4相当図である。本実施形態5では、第1の外側ベアリング溝(14d)、第1の内側ベアリング溝(14e)、第2の外側ベアリング溝(図示せず)及び第2の内側ベアリング溝(図示せず)が断面略V字状をなしている。第1の外側ベアリング溝(14d)、第1の内側ベアリング溝(14e)、第2の外側ベアリング溝(図示せず)及び第2の内側ベアリング溝(図示せず)の底部に、底側アール部(21)が全長に亘って形成されている。第1の外側ベアリング溝(14d)、第1の内側ベアリング溝(14e)、第2の外側ベアリング溝(図示せず)及び第2の内側ベアリング溝(図示せず)の軸方向両側の縁に、縁側アール部(22)が全長に亘って形成されている。
 その他の構成は、実施形態3と同じであるので同じ構成箇所には同じ符号を付してその詳細な説明を省略する。
 本実施形態5によれば、第1の外側ベアリング溝(14d)及び第2の外側ベアリング溝(図示せず)の縁に縁側アール部(22)を形成するので、第1及び第2のベアリングハウジング(17,18)における第1の外側ベアリング溝(14d)及び第2の外側ベアリング溝(図示せず)の縁との当接箇所への応力集中を抑制でき、第1及び第2のベアリングハウジング(17,18)の耐久性を高めることができる。
 同様に、第1の内側ベアリング溝(14e)及び第2の内側ベアリング溝(図示せず)の縁に縁側アール部(22)を形成するので、駆動軸(13)における第1の内側ベアリング溝(14e)及び第2の内側ベアリング溝(図示せず)の縁との当接箇所への応力集中を抑制でき、駆動軸(13)の耐久性を高めることができる。
 《その他の実施形態》
 上記実施形態1~5では、第1のタッチダウン軸受(14)を、転動体として玉(14c)を備えた玉軸受としたが、転動体として円柱を備えたころ軸受等、他の転がり軸受としてもよい。
 上記実施形態1,2,4では、第1ハウジング溝(17b)を第1のベアリングハウジング(17)の内周面の全周に形成したが、第1のベアリングハウジング(17)の内周面の上半領域の周方向一部に形成しないようにしてもよい。また、第1ハウジング溝(17b)を第1のベアリングハウジング(17)の内周面の上半領域の周方向全体(内周面の半周分)に形成せず、第1ハウジング溝(17b)を第1のベアリングハウジング(17)の内周面の下半領域だけに形成してもよい。同様に、第2ハウジング溝(18b)を第2のベアリングハウジング(18)上半領域の周方向全体又は周方向一部に形成しないようにしてもよい。
 上記実施形態3,5では、第1の外側ベアリング溝(14d)を第1のタッチダウン軸受(14)の外輪(14a)の外周面の全周に形成したが、外輪(14a)の外周面の上半領域の周方向全体又は周方向一部に形成しないようにしてもよい。同様に、第2の外側ベアリング溝(図示せず)を第2のタッチダウン軸受(16)の各単列アンギュラ玉軸受(16a)の外輪(16b)の外周面の上半領域の周方向全体又は周方向一部に形成しないようにしてもよい。
 以上、実施形態及び変形例を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態及び変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。
 本開示は、軸受構造として有用である。
 13 駆動軸
 13b 第1の駆動軸溝(凹部)
 14 第1のタッチダウン軸受
 14a 外輪
 14b 内輪
 14c 玉(転動体)
 14d 第1の外側ベアリング溝(凹部)
 14e 第1の内側ベアリング溝(凹部)
 14f 凹溝
 16 第2のタッチダウン軸受
 16b 外輪
 16c 内輪
 16d 玉(転動体)
 16e 凹溝
 17 第1のベアリングハウジング
 17b 第1ハウジング溝(凹部)
 18 第2のベアリングハウジング
 18b 第2ハウジング溝(凹部)
 20 磁気軸受
 22 縁側アール部

Claims (6)

  1.  水平方向に延び、磁気軸受(20)によって支持される駆動軸(13)と、外輪(14a,16b)と内輪(14b,16c)との間に転動体(14c,16d)が介装されてなるタッチダウン軸受(14,16)と、前記タッチダウン軸受(14,16)を外周側から支持するベアリングハウジング(17,18)とを備えた軸受構造であって、
     前記駆動軸(13)の外周面、前記内輪(14b,16c)の内周面、前記外輪(14a,16b)の外周面、及び前記ベアリングハウジング(17,18)の内周面のうちの少なくとも1つにおける前記転動体(14c,16d)と軸受径方向に重なる領域には、凹部(13b,14d,14e,17b,18b)が形成されていることを特徴とする軸受構造。
  2.  請求項1において、
     前記凹部(13b,14d,14e,17b,18b)の縁には、アール部(22)が形成されていることを特徴とする軸受構造。
  3.  請求項1又は2において、
     前記凹部(13b,14d,14e,17b,18b)は、前記外輪(14a,16b)に形成された転動体(14c,16d)嵌合用の溝(14f,16e)全体と軸受径方向に重なり、かつ前記凹部(13b,14d,14e,17b,18b)の軸方向の長さは、前記外輪(14a,16b)の軸方向の長さの20%以上であることを特徴とする軸受構造。
  4.  請求項1~3のいずれか1項において、
     前記凹部(14d,14e,17b,18b)は、前記駆動軸(13)の外周面には形成されていないことを特徴とする軸受構造。
  5.  請求項1~4のいずれか1項において、
     前記凹部(14d)は、前記外輪(14a)の外周面に形成され、
     前記外輪(14a)の外周面の上半領域の少なくとも周方向一部には、前記凹部(14d)が形成されていないことを特徴とする軸受構造。
  6.  請求項1~5のいずれか1項において、
     前記凹部(17b,18b)は、前記ベアリングハウジング(17,18)の内周面に形成され、
     前記ベアリングハウジング(17,18)の内周面の上半領域の少なくとも周方向一部には、前記凹部(17b,18b)が形成されていないことを特徴とする軸受構造。
PCT/JP2020/012780 2019-03-27 2020-03-23 軸受構造 WO2020196429A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080013768.6A CN113423961B (zh) 2019-03-27 2020-03-23 轴承构造
US17/485,068 US11319965B2 (en) 2019-03-27 2021-09-24 Bearing structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019060390A JP7319520B2 (ja) 2019-03-27 2019-03-27 軸受構造
JP2019-060390 2019-03-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/485,068 Continuation US11319965B2 (en) 2019-03-27 2021-09-24 Bearing structure

Publications (1)

Publication Number Publication Date
WO2020196429A1 true WO2020196429A1 (ja) 2020-10-01

Family

ID=72609880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012780 WO2020196429A1 (ja) 2019-03-27 2020-03-23 軸受構造

Country Status (4)

Country Link
US (1) US11319965B2 (ja)
JP (1) JP7319520B2 (ja)
CN (1) CN113423961B (ja)
WO (1) WO2020196429A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53139047A (en) * 1977-05-10 1978-12-05 Nippon Seiko Kk Ball bearing device
JPH02280646A (ja) * 1989-04-20 1990-11-16 Toshiba Corp 磁気軸受形回転電機
JPH09236096A (ja) * 1996-02-29 1997-09-09 Nippon Seiko Kk 磁気浮上式ターボ分子ポンプのロータ軸支持構造
JPH11257353A (ja) * 1999-01-14 1999-09-21 Ntn Corp 磁気軸受装置のタッチダウン軸受
JP2004011801A (ja) * 2002-06-07 2004-01-15 Nsk Ltd 深溝玉軸受及びファンカップリング装置
JP2006226268A (ja) * 2005-02-21 2006-08-31 Mitsubishi Heavy Ind Ltd 真空ポンプの軸受構造及びこれを用いた真空ポンプ
JP2011226582A (ja) * 2010-04-21 2011-11-10 Ntn Corp 転がり軸受および転がり軸受装置
EP2863521A2 (de) * 2013-10-16 2015-04-22 maxon motor ag Elektronisch kommutierter Elektromotor mit vibrations- und geräuscharmer Lagerung
JP2017089844A (ja) * 2015-11-16 2017-05-25 株式会社ジェイテクト 転がり軸受

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3588205A (en) * 1969-08-27 1971-06-28 Us Navy Rolling contact bearing design which reduces bearing generated noise and fretting corrosion
JPS63275815A (ja) * 1987-04-30 1988-11-14 Koyo Seiko Co Ltd 磁気軸受装置
JPH05209621A (ja) * 1992-01-31 1993-08-20 Ntn Corp 磁気軸受装置のタッチダウン軸受
JPH10176714A (ja) * 1997-09-10 1998-06-30 Koyo Seiko Co Ltd 磁気軸受装置
JP4426049B2 (ja) 1999-03-31 2010-03-03 エドワーズ株式会社 磁気軸受装置及び真空ポンプ
JP2003269452A (ja) * 2002-03-15 2003-09-25 Koyo Seiko Co Ltd 磁気軸受装置
US9234522B2 (en) * 2012-01-03 2016-01-12 United Technologies Corporation Hybrid bearing turbomachine
JP6155573B2 (ja) * 2012-08-28 2017-07-05 株式会社Ihi 遠心圧縮機
JP6572754B2 (ja) * 2015-11-25 2019-09-11 株式会社ジェイテクト 転がり軸受
DE102016211143A1 (de) * 2016-06-22 2017-12-28 Schaeffler Technologies AG & Co. KG Wälzlager, sowie unter Einschluss desselben realisierte Lageranordnung
JP2018031408A (ja) * 2016-08-24 2018-03-01 日本精工株式会社 ラジアル転がり軸受及び回転支持装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53139047A (en) * 1977-05-10 1978-12-05 Nippon Seiko Kk Ball bearing device
JPH02280646A (ja) * 1989-04-20 1990-11-16 Toshiba Corp 磁気軸受形回転電機
JPH09236096A (ja) * 1996-02-29 1997-09-09 Nippon Seiko Kk 磁気浮上式ターボ分子ポンプのロータ軸支持構造
JPH11257353A (ja) * 1999-01-14 1999-09-21 Ntn Corp 磁気軸受装置のタッチダウン軸受
JP2004011801A (ja) * 2002-06-07 2004-01-15 Nsk Ltd 深溝玉軸受及びファンカップリング装置
JP2006226268A (ja) * 2005-02-21 2006-08-31 Mitsubishi Heavy Ind Ltd 真空ポンプの軸受構造及びこれを用いた真空ポンプ
JP2011226582A (ja) * 2010-04-21 2011-11-10 Ntn Corp 転がり軸受および転がり軸受装置
EP2863521A2 (de) * 2013-10-16 2015-04-22 maxon motor ag Elektronisch kommutierter Elektromotor mit vibrations- und geräuscharmer Lagerung
JP2017089844A (ja) * 2015-11-16 2017-05-25 株式会社ジェイテクト 転がり軸受

Also Published As

Publication number Publication date
CN113423961B (zh) 2022-06-21
US20220010803A1 (en) 2022-01-13
US11319965B2 (en) 2022-05-03
JP7319520B2 (ja) 2023-08-02
JP2020159491A (ja) 2020-10-01
CN113423961A (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
WO2014034727A1 (ja) 遠心圧縮機
US20100177997A1 (en) Radial foil bearing with sealing function
US20210010536A1 (en) Thrust magnetic bearing and turbo-compressor with same
JP5168587B2 (ja) 軸受装置および燃料電池用圧縮機
EP3065273A1 (en) In-wheel motor and in-wheel motor driving device
JP5062033B2 (ja) 遠心型圧縮機
JP2014506981A (ja) 真空ポンプの軸を高速に回転するための軸受構造
EP1857695B1 (en) Ball bearing
JP2014159869A (ja) 転がり軸受装置
JP2008113492A (ja) 電動モータおよび電動圧縮機
WO2020196429A1 (ja) 軸受構造
US8106556B2 (en) Emergency rolling bearing that is insensitive to axial load
CN110017326B (zh) 轴承组件
JP4706523B2 (ja) 燃料電池用圧縮機
JP2008121699A (ja) 軸受装置
US9188156B2 (en) Auxiliary bearing centering device
JP2008151209A (ja) 磁気軸受装置
JP6351307B2 (ja) アンギュラ玉軸受および機械装置
US8596874B2 (en) Bearing in irregular shaped housings
JP2009281214A (ja) 遠心型圧縮機
JP4338017B2 (ja) 電動パワーステアリング装置
JP2018105457A (ja) ラジアル磁気軸受およびブロア
JP5229499B2 (ja) 磁気軸受装置、およびそれを備える真空ポンプ
JP5083054B2 (ja) ボールスプライン
JP2005341653A (ja) 電動機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20776328

Country of ref document: EP

Kind code of ref document: A1