WO2020192477A1 - 一种制备异戊二醇的催化剂和方法 - Google Patents

一种制备异戊二醇的催化剂和方法 Download PDF

Info

Publication number
WO2020192477A1
WO2020192477A1 PCT/CN2020/079587 CN2020079587W WO2020192477A1 WO 2020192477 A1 WO2020192477 A1 WO 2020192477A1 CN 2020079587 W CN2020079587 W CN 2020079587W WO 2020192477 A1 WO2020192477 A1 WO 2020192477A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
reaction
isoprene glycol
preparing
supported catalyst
Prior art date
Application number
PCT/CN2020/079587
Other languages
English (en)
French (fr)
Inventor
马啸
殷治国
张金钟
于明
王寒寒
曲莉
Original Assignee
浙江新和成股份有限公司
山东新和成药业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江新和成股份有限公司, 山东新和成药业有限公司 filed Critical 浙江新和成股份有限公司
Priority to JP2021529108A priority Critical patent/JP7032612B2/ja
Publication of WO2020192477A1 publication Critical patent/WO2020192477A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/03Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2
    • C07C29/04Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2 by hydration of carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to a preparation method of isoprene glycol, in particular to a supported catalyst using a metal organic framework material as a carrier to catalyze 3-methyl-3-buten-1-ol and water to prepare isoprene glycol.
  • Isoprene glycol is a cosmetic basic material with good balance performance. It has excellent moisture retention, antibacterial properties, a certain low odor, and good compatibility with various raw materials. It is widely used in hair care, skin care, etc. Cosmetics, toilet supplies and other fields. For example, because it has the function of repairing the surface of the hair, it is often used in products such as hair conditioner.
  • Patent CN103102229A to isobutene with aqueous formaldehyde as raw materials, acidic oxides of SnO 2 and the like, and acidic molecular sieve as prepared heteropolyacid catalyst isoprene glycol, isoprene glycol which process is low yield and high cost.
  • DE2029560 discloses a process for preparing isoprenediol by hydrating 3-methyl-3-buten-1-ol under sulfuric acid catalysis.
  • sulfuric acid as a catalyst has problems with equipment corrosion, so higher requirements are placed on the corresponding equipment materials.
  • waste salt will be produced during the post-processing of the reaction, causing environmental protection problems to be solved.
  • the present invention provides a catalyst and method for preparing isoprene glycol, and achieves the following invention objectives:
  • reaction pressure used is normal pressure
  • the present invention adopts the following technical solutions:
  • the present invention provides a catalyst for preparing isoprene glycol.
  • the catalyst is a supported catalyst; the supported catalyst is composed of an active metal and a metal organic framework material; and the metal organic framework material serves as a carrier.
  • the present invention finds that the supported catalyst composed of active metal and metal organic framework material has good catalytic activity for the preparation of isoprene glycol from 3-methyl-3-buten-1-ol, and the reaction conditions are mild. It is speculated that the reaction process in the preparation of isoprene glycol using the supported catalyst of the present invention is as follows: (1) Two reactive substances diffuse into the metal organic framework material and are adsorbed on the active sites inside the catalyst; (2) Containing double Under the action of the active metal, the bonded substance forms a ⁇ -complex with the hydrogen ion in the water; (3) The ⁇ -complex forms a carbocation through electron transfer; (4) The carbocation interacts with water and water molecules A pair of unshared electrons combine with the carbon positive ion to form a positive oxygen ion; (5) The positive oxygen ion sheds the next proton to form a hydration product.
  • the metal-organic framework material of the present invention has a larger specific surface area and a higher porosity, which is beneficial to the adsorption of organic substances and the entry and exit of reaction substances, promotes the sufficient contact between the reactants and the catalytic active sites, and improves the diffusion rate of the reaction substances in the catalyst , Thereby increasing the reaction rate, so the metal organic framework material of the present invention can be used as an excellent carrier to support active components to form a supported catalyst.
  • the metal-organic framework material itself has abundant coordination unsaturation sites and functionalized organic ligands, and has certain catalytic activity, so that the high-density catalytic sites of the active metal catalyst can be uniformly dispersed, which is beneficial to improve the overall performance of the catalyst. Catalytic activity.
  • the active metal is one of Cu, Fe, Zn, Sn, Co, Ru, Mg, Mn, Al, and Ni.
  • the active metal is one of Zn, Mn, Al, and Ni.
  • the loading amount of the active metal is 0.5-5wt%.
  • the model of the metal organic framework material is one of MOF-5, HKUST-1, ZIF-67, and ZIF-8.
  • the supported catalyst is prepared by an impregnation method.
  • the metal-organic framework is first calcined at 300-400°C for 4-7h for pretreatment, and then immersed in the active metal component salt solution for 16-48h, wherein the active metal component salt solution The concentration is 0.01-1.0M. After soaking, it is dried in an oven at 100-200°C for 5-10h.
  • the prepared catalyst precursor is calcined at 300-500°C for 3-4h, and then reduced in a hydrogen atmosphere at 100-200°C 3-8h to obtain the supported catalyst of the present invention.
  • the present invention also provides a method for preparing the isoprenediol, which uses 3-methyl-3-buten-1-ol and water as raw materials to obtain isoprenediol under the action of the supported catalyst
  • the mass ratio of the 3-methyl-3-buten-1-ol, water and the supported catalyst is 1:2-8:0.01-0.05.
  • the preparation method of isoprene glycol specifically includes the following steps:
  • Step 1 Add 3-methyl-3-buten-1-ol, water and supported catalyst into the reaction flask, raise the temperature, and react at normal pressure;
  • Step 2 After the reaction is over, the temperature is lowered, the reaction liquid is filtered to remove the catalyst, the filtered catalyst is continuously used, and the reaction liquid is dehydrated, deweighted, and rectified to obtain isoprene glycol.
  • the catalyst is filtered out, and the catalyst can be used directly in the next reaction.
  • the wastewater produced in the post-reaction treatment process can be directly used in the next reaction.
  • the reaction pressure is normal pressure
  • the reaction temperature is 50-90°C
  • the reaction time is 2-5.6h
  • the reaction yield is 60.3-98.3%
  • the product purity is 97.6-99.9%
  • the mass ratio of catalyst to 3-methyl-3-buten-1-ol is 0.01-0.05:1;
  • reaction time is generally above 8-10h;
  • Patent CN102206135A when the reaction temperature is 50°C and the pressure is normal pressure, the product yield is 63.7%, which is not significantly different from the lowest yield of the present invention, but the reaction time is 10h.
  • the active metal is preferably one of Zn, Mn, Al, and Ni; the type of the metal organic framework material is preferably MOF-5; the loading amount of the active metal is preferably 1 %-5wt%.
  • the mass ratio of the 3-methyl-3-buten-1-ol, water and the supported catalyst is 1:3-5:0.01-0.05.
  • the reaction temperature is 50-70°C.
  • the preparation method of isoprene glycol, the reaction time is 2-4.9h;
  • reaction yield is 73.1-98.3%; the product purity is 98.9-99.9%;
  • the supported catalyst is composed of active metal and metal organic framework material as a carrier; the active metal is Ni; the metal organic framework material model is MOF-5; the metal loading amount is 2.5%.
  • the mass ratio of the 3-methyl-3-buten-1-ol, water and the supported catalyst is 1:4:0.03.
  • the reaction temperature is 70°C.
  • the reaction time is 3 hours.
  • the product yield is as high as 98.3%, the product purity is as high as 99.9%, and the reaction time is 3h.
  • the present invention has the following beneficial effects:
  • the present invention uses a supported catalyst to prepare isoprene glycol, the catalyst usage is small, the reaction yield is 60.3-98.3%; the product purity is 97.6-99.9%, and the reaction is completed within 6 hours, and the reaction efficiency is high, which is beneficial Industrial production.
  • the method has a mild reaction temperature, a reaction temperature of 50-90°C, and a normal pressure reaction, which reduces the requirements of industrial production for reaction equipment and improves the safety of the process.
  • the catalyst carrier used in the method has good stability, and after the active metal is loaded, the catalytic effect is better, and stable application can be realized, which reduces the cost.
  • waste water produced by this method can be used in a similar way, avoiding the production of waste water, and is a green and environmentally friendly process.
  • the method has simple reaction process, catalyst separation and post-treatment processes, is easy to operate, and is beneficial to industrial production.
  • the supported catalyst is prepared by an impregnation method.
  • the metal-organic framework is first calcined at 300-400°C for 4-7h for pretreatment, and then immersed in the active metal component salt solution for 16-48h, where the concentration of the active metal component salt solution is 0.01- 1.0M, the amount of metal component salt solution required is calculated according to the different metal loadings. After immersion, it is dried in an oven at 100-200°C for 5-10h.
  • the catalyst precursor is calcined at 300-500°C for 3-4h, then In a hydrogen atmosphere, reduction is carried out at 100-200°C for 3-8 hours to obtain the supported catalyst of the present invention.
  • the metal-organic framework type MOF-5 material was calcined at 320°C for 5.0h for pretreatment, and then immersed in the active metal component copper nitrate solution for 36h, where the concentration of the active metal component salt solution was 0.01 M, calculate the amount of metal component salt solution required according to different metal loadings. After immersion, dry in an oven at 160°C for 7.5h. The prepared catalyst precursor is calcined at 420°C for 3.8h, and then in a hydrogen atmosphere at 190°C Under the condition of reduction for 6.0h, a MOF-5 supported catalyst with metal and Cu/1.0% loading was obtained.
  • the metal-organic framework type ZIF-8 material was calcined at 320°C for 4.5h for pretreatment, and then immersed in the active metal component ferric nitrate solution for 24h, where the concentration of the active metal component salt solution was 0.01 M. Calculate the amount of metal component salt solution required according to the different metal loadings. After immersing, it is dried in an oven at 140°C for 6.0 hours. The prepared catalyst precursor is calcined at 460°C for 3.5 hours, and then in a hydrogen atmosphere at 150°C Under the conditions of reduction for 5.5h, a ZIF-8 supported catalyst with metal and loading of Fe/1.0% was obtained.
  • Isoprenediol was prepared with different catalyst dosages, and the remaining operations were the same as in Example 26.
  • the isoprene glycol was prepared at different reaction temperatures, and the remaining operations were the same as in Example 30.

Abstract

本发明提供了一种制备异戊二醇的催化剂和方法,该催化剂为负载型催化剂;所述负载型催化剂,由活性金属和金属有机骨架材料组成;该方法以3-甲基-3-丁烯-1-醇和水作为原料,在上述催化剂的作用下制备异戊二醇。本发明的有益效果为:本发明使用负载型催化剂制备异戊二醇,催化剂使用量少,具有收率高,产物纯度高,并且在6小时以内完成反应,反应效率高,利于工业化生产。该方法反应温度温和,反应温度为50-90℃,常压反应,降低了工业化生产对反应设备的要求,同时提高了工艺的安全性,催化剂可稳定套用,三废量少,工艺简单,对设备无腐蚀,成本低的优点,适合工业化生产。

Description

一种制备异戊二醇的催化剂和方法 技术领域:
本发明涉及一种异戊二醇的制备方法,具体涉及以金属有机骨架材料作载体的负载型催化剂,催化3-甲基-3-丁烯-1-醇和水制备异戊二醇。
背景技术:
异戊二醇是一种均衡性能良好的化妆品基础材料,具有卓越的保湿性、抗菌性,有一定低气味,与各类原料的配合度较好,被广泛使用于护发、护肤等各种化妆品、卫生间用品等领域。例如,由于具有修补头发表层的作用,常被使用于护发素等产品中。目前异戊二醇的合成方法主要有以下3种:(1)使用均相酸催化剂水解4,4-二甲基-1,3-二噁烷制备异戊二醇;(2)使用异丁烯与甲醛水溶液反应制备异戊二醇;(3)使用3-甲基-3-丁烯-1-醇和水反应制备异戊二醇。其中方法(1)和方法(2)中使用的4,4-二甲基-1,3-二噁烷和甲醛原料具有刺激性而且容易对环境造成污染。方法(3)采用的原料是一种环境友好型、选择性高且原子经济性的合成路线。
专利CN103102229A中以异丁烯与甲醛水溶液作原料,以SnO 2等酸性氧化物、酸性分子筛以及杂多酸作为催化剂制备异戊二醇,该工艺异戊二醇收率较低,成本高。DE2029560公开了由3-甲基-3-丁烯-1-醇在硫酸催化下水合制备异戊二醇的工艺,但是硫酸作为催化剂存在对设备腐蚀问题,因此对相应设备材质提出更高要求,同时反应后处理过程中会有废盐产生,产生了环保问题需要解决。在专利CN102206135A中报道,以3-甲基-3-丁烯-1-醇和水为原料,使用单一氧化物类、复合氧化物类、杂多酸类、沸石分子筛类或阳离子交换树脂类作催化剂,在高温高压条件下制备异戊二醇,反应温度为50-200℃,反应压力为0.1-2MPa,通过该专利的实施例可以看出,只有实施例6(反应温度为50℃,压力为0.1MPa)和实施例18(反应温度为60℃,压力为0.1MPa),是采用的常压,但是这两个实施例的反应时间都长达10h,反应收率分别为63.7%和72.8%;其他实施例均是采用的高温高压条件,当把反应温度提高到90℃,压力提高到0.2MPa时,其反应时间也长达8h,收率为87.5%(见该专利的实施例11);反应产率最高的实施例5,收率为94.4%,但是其反应温度达140℃,反应压力为0.4MPa,反应时 间为5h。
可见,其如果采用常压进行反应,存在反应时间长、收率低的缺陷;采用高温高压的反应条件,对设备要求高,安全性差,不利于工业化生产。
发明内容:
针对现有技术中存在的不足,本发明提供一种制备异戊二醇的催化剂和方法,实现以下发明目的:
(1)采用的反应压力为常压;
(2)提高反应收率;
(3)缩短反应时间;
为解决上述技术问题,本发明采用以下技术方案:
本发明提供了一种制备异戊二醇的催化剂,所述的催化剂为负载型催化剂;所述负载型催化剂,由活性金属和金属有机骨架材料组成;金属有机骨架材料作为载体。
本发明发现,由活性金属和金属有机骨架材料组成的负载型催化剂对3-甲基-3-丁烯-1-醇制备异戊二醇有良好的催化活性,且反应条件温和。推测在采用本发明的负载型催化剂制备异戊二醇中的反应过程如下:(1)两种反应物质扩散到金属有机骨架材料中,并吸附在催化剂内部活性位点上;(2)含双键的物质在活性金属的作用下,与水中的氢离子形成π-络合物;(3)π-络合物经过电子转移形成碳正离子;(4)碳正离子与水作用,水分子以一对未共用电子对于碳正离子结合,形成正氧离子;(5)正氧离子脱落下一个质子,生成水合产物。本发明的金属有机骨架材料具有较大比表面积和较高的孔隙率,有利于吸附有机物质以及反应物质的进出,促进反应物与催化活性位点的充分接触,提高反应物质在催化剂中扩散速度,进而提高反应速率,因此本发明的金属有机骨架材料可以作为优良的载体负载上活性组分,形成负载型催化剂。金属有机骨架材料自身具有丰富的配位不饱和位点和功能化的有机配体,具有一定的催化活性,使得活性金属催化剂高密度的催化位点能够均匀分散,有利于从整体上提高催化剂的催化活性。
优选的,所述活性金属为Cu、Fe、Zn、Sn、Co、Ru、Mg、Mn、Al、Ni中的一种。
进一步优选的,所述活性金属为Zn、Mn、Al、Ni中的一种。
优选的,活性金属的负载量为0.5-5wt%。
优选的,所述金属有机骨架材料型号为MOF-5、HKUST-1、ZIF-67、ZIF-8中的一种。
优选的,所述负载型催化剂采用浸渍法制备。
进一步优选的,先将金属有机骨架材料于300-400℃下煅烧4-7h进行预处理,然后将其浸渍在活性金属组分盐溶液中,浸渍16-48h,其中,活性金属组分盐溶液浓度为0.01-1.0M,浸渍后于100-200℃烘箱中干燥5-10h,制得的催化剂前体于300-500℃煅烧3-4h,然后在氢气氛围中,100-200℃条件下还原3-8h,得到本发明的负载型催化剂。
本发明还提供了一种所述异戊二醇的制备方法,采用3-甲基-3-丁烯-1-醇和水为原料,在所述负载型催化剂的作用下,得到异戊二醇;所述3-甲基-3-丁烯-1-醇、水和负载型催化剂的质量比为1:2-8:0.01-0.05。
该异戊二醇的制备方法,具体包括以下步骤:
步骤一:将3-甲基-3-丁烯-1-醇、水和负载型催化剂加入反应瓶中,升温,常压进行反应;
步骤二:待反应结束后,降温、反应液过滤除去催化剂,滤出的催化剂继续套用,反应液经脱水、脱重、精馏得到异戊二醇。
反应结束后过滤出催化剂,催化剂可直接用于下一次反应。
反应后处理过程产生的废水可直接用于下一次反应。
本发明制备异戊二醇的方法,采用的反应压力为常压,反应温度为50-90℃,反应时间为2-5.6h;反应收率为60.3-98.3%;产物纯度为97.6-99.9%;催化剂与3-甲基-3-丁烯-1-醇的质量比例为0.01-0.05:1;
现有技术中当反应温度为50-90℃,反应压力为0.1-0.2MPa时,反应时间一般在8-10h以上;
专利CN102206135A,反应温度为50℃,压力为常压时,产物收率为63.7%,和本发明的最低收率没有显著区别,但是其反应时间为10h。
在本发明所述的制备方法中,作为进一步的优选,活性金属优选为Zn、Mn、Al、Ni中的一种;金属有机骨架材料型号优选为MOF-5;活性金属的负载量优 选为1%-5wt%。
所述3-甲基-3-丁烯-1-醇、水和负载型催化剂的质量比为1:3-5:0.01-0.05。
所述的异戊二醇的制备方法,反应温度为50-70℃。
所述的异戊二醇的制备方法,反应时间为2-4.9h;
反应收率为73.1-98.3%;产物纯度为98.9-99.9%;
本发明更进一步优选的技术方案为:
所述的异戊二醇的制备方法,负载型催化剂由活性金属和金属有机骨架材料作为载体组成;活性金属为Ni;金属有机骨架材料型号为MOF-5;金属负载量为2.5%。
所述3-甲基-3-丁烯-1-醇、水和负载型催化剂的质量比为1:4:0.03。
所述的异戊二醇的制备方法,反应温度为70℃。
所述的异戊二醇的制备方法,反应时间为3h。
产物收率高达98.3%,产物纯度高达99.9%,反应时间为3h。
与现有技术相比,本发明具有以下有益效果:
(1)本发明使用负载型催化剂制备异戊二醇,催化剂使用量少,反应收率为60.3-98.3%;产物纯度为97.6-99.9%,并且在6小时以内完成反应,反应效率高,利于工业化生产。
(2)该方法反应温度温和,反应温度为50-90℃,常压反应,降低了工业化生产对反应设备的要求,同时提高了工艺的安全性。
(3)该方法使用的催化剂载体稳定性好,负载活性金属后,催化效果较好,并且能够实现稳定的套用,降低了成本。
(4)该方法产生的废水可以套用,避免了废水的产生,是一种绿色环保的工艺。
(5)该方法反应过程、催化剂分离以及后处理过程简单,便于操作,利于工业化生产。
具体实施方式
为了对本发明进行进一步详细说明,下面给出几个具体的实施案例,但本发明不仅限于这些实施例。
以下实施例中,所述负载型催化剂采用浸渍法制备。先将金属有机骨架材料 于300-400℃下煅烧4-7h进行预处理,然后将其浸渍在活性金属组分盐溶液中,浸渍16-48h,其中,活性金属组分盐溶液浓度为0.01-1.0M,按照不同金属负载量计算所需金属组分盐溶液的用量,浸渍后于100-200℃烘箱中干燥5-10h,制得的催化剂前体于300-500℃煅烧3-4h,然后在氢气氛围中,100-200℃条件下还原3-8h,得到本发明的负载型催化剂。
催化剂制备例1
将金属有机骨架型号为MOF-5的材料于320℃下煅烧5.0h进行预处理,然后将其浸渍在活性金属组分硝酸铜溶液中,浸渍36h,其中,活性金属组分盐溶液浓度为0.01M,按照不同金属负载量计算所需金属组分盐溶液的用量,浸渍后于160℃烘箱中干燥7.5h,制得的催化剂前体于420℃煅烧3.8h,然后在氢气氛围中,190℃条件下还原6.0h,得到金属及负载量为Cu/1.0%的MOF-5负载型催化剂。
催化剂制备例2
将金属有机骨架型号为ZIF-8的材料于320℃下煅烧4.5h进行预处理,然后将其浸渍在活性金属组分硝酸铁溶液中,浸渍24h,其中,活性金属组分盐溶液浓度为0.01M,按照不同金属负载量计算所需金属组分盐溶液的用量,浸渍后于140℃烘箱中干燥6.0h,制得的催化剂前体于460℃煅烧3.5h,然后在氢气氛围中,150℃条件下还原5.5h,得到金属及负载量为Fe/1.0%的ZIF-8负载型催化剂。
实施例1
于1L三口圆底烧瓶中,加入水600g,3-甲基-3-丁烯-1-醇150g,1%Cu/MOF-5型金属有机骨架材料催化剂4.5g,升温至70℃,反应至3-甲基-3-丁烯-1-醇GC检测含量≤0.1%;降温至室温,过滤除去催化剂,反应液经脱水、脱重、精馏(200pa,釜温110℃,顶温70℃)得到异戊二醇。实验结果列于表1。
实施例2-14
不同负载金属催化剂以及不同反应温度制备异戊二醇,其余操作同实施例1。
表1不同负载金属催化剂反应对比表
Figure PCTCN2020079587-appb-000001
实施例15
于1L三口圆底烧瓶中,加入水600g,3-甲基-3-丁烯-1-醇150g,1%Ni/HKUST-1型金属有机骨架材料催化剂4.5g,升温至70℃,反应至3-甲基-3-丁烯-1-醇GC检测含量≤0.1%;降温至室温,过滤除去催化剂,反应液经脱水、脱重、精馏(200pa,釜温110℃,顶温70℃)得到异戊二醇。实验结果列于表2。
实施例16-17
不同金属有机骨架材料载体催化剂制备异戊二醇,其余操作同实施例15。
表2不同金属有机骨架材料载体的催化剂反应对比表
Figure PCTCN2020079587-appb-000002
实施例18
于1L三口圆底烧瓶中,加入水600g,3-甲基-3-丁烯-1-醇150g,0.5%Ni/MOF-5型金属有机骨架材料催化剂4.5g,升温至70℃,反应至3-甲基-3- 丁烯-1-醇GC检测含量≤0.1%;降温至室温,过滤除去催化剂,反应液经脱水、脱重、精馏(200pa,釜温110℃,顶温70℃)得到异戊二醇。实验结果列于表3。
实施例19-25
不同金属负载量的催化剂制备异戊二醇,其余操作同实施例18。
表3不同金属负载量的催化剂反应对比表
Figure PCTCN2020079587-appb-000003
实施例26
于1L三口圆底烧瓶中,加入水600g,3-甲基-3-丁烯-1-醇150g,2.5%Ni/MOF-5型金属有机骨架材料催化剂1.5g,升温至70℃,反应至3-甲基-3-丁烯-1-醇GC检测含量≤0.1%;降温至室温,过滤除去催化剂,反应液经脱水、脱重、精馏(200pa,釜温110℃,顶温70℃)得到异戊二醇。实验结果列于表4。
实施例27-29
不同催化剂用量制备异戊二醇,其余操作同实施例26。
表4不同催化剂用量反应对比表
Figure PCTCN2020079587-appb-000004
实施例30
于1L三口圆底烧瓶中,加入水600g,3-甲基-3-丁烯-1-醇150g,2.5%Ni/MOF-5型金属有机骨架材料催化剂4.5g,升温至50℃,反应至3-甲基-3- 丁烯-1-醇GC检测含量≤0.1%;降温至室温,过滤除去催化剂,反应液经脱水、脱重、精馏(200pa,釜温110℃,顶温70℃)得到异戊二醇。实验结果列于表5。
实施例31-33
不同反应温度制备异戊二醇,其余操作同实施例30。
表5不同反应温度反应对比表
Figure PCTCN2020079587-appb-000005
以上实施例仅用来说明本发明,而并非作为对本发明的限定。对本发明实施例所作的任何简单修改、变更及等效变化,均在本发明范围内。

Claims (12)

  1. 一种制备异戊二醇的催化剂,其特征在于:为负载型催化剂;所述负载型催化剂,由活性金属和金属有机骨架材料组成。
  2. 根据权利要求1所述的制备异戊二醇的催化剂,其特征在于:所述活性金属为Cu、Fe、Zn、Sn、Co、Ru、Mg、Mn、Al、Ni中的一种。
  3. 根据权利要求1所述的制备异戊二醇的催化剂,其特征在于:所述活性金属为Zn、Mn、Al、Ni中的一种。
  4. 根据权利要求1所述的制备异戊二醇的催化剂,其特征在于:活性金属的负载量为0.5-5wt%。
  5. 根据权利要求4所述的制备异戊二醇的催化剂,其特征在于,活性金属的负载量为1-5wt%。
  6. 根据权利要求1所述的制备异戊二醇的催化剂,其特征在于:所述金属有机骨架材料型号为MOF-5、HKUST-1、ZIF-67、ZIF-8中的一种。
  7. 根据权利要求1所述的制备异戊二醇的催化剂,其特征在于:所述负载型催化剂采用浸渍法制备。
  8. 一种异戊二醇的制备方法,其特征在于,所使用的催化剂为权利要求1~7任一项所述的负载型催化剂。
  9. 根据权利要求8所述的异戊二醇的制备方法,其特征在于:所述制备方法,原料为3-甲基-3-丁烯-1-醇、水;所述3-甲基-3-丁烯-1-醇、水和负载型催化剂的质量比为1:2-8:0.01-0.05。
  10. 根据权利要求8所述的异戊二醇的制备方法,其特征在于:反应温度为50-90℃;反应压力为常压,反应时间为2-5.6h。
  11. 根据权利要求8所述的异戊二醇的制备方法,其特征在于:所述制备方法,包括以下步骤:
    步骤一:将3-甲基-3-丁烯-1-醇、水和负载型催化剂加入反应瓶中,升温,常压进行反应;
    步骤二:待反应结束后,降温、反应液过滤除去催化剂,滤出的催化剂继续套用,反应液经脱水、脱重、精馏得到异戊二醇。
  12. 根据权利要求11所述的异戊二醇的制备方法,其特征在于:步骤二的回收催 化剂和回收水均可进行套用。
PCT/CN2020/079587 2019-03-22 2020-03-17 一种制备异戊二醇的催化剂和方法 WO2020192477A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021529108A JP7032612B2 (ja) 2019-03-22 2020-03-17 イソプレングリコール製造用触媒及びイソプレングリコールの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910222291.1A CN109796303B (zh) 2019-03-22 2019-03-22 一种异戊二醇的制备方法
CN201910222291.1 2019-03-22

Publications (1)

Publication Number Publication Date
WO2020192477A1 true WO2020192477A1 (zh) 2020-10-01

Family

ID=66563990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079587 WO2020192477A1 (zh) 2019-03-22 2020-03-17 一种制备异戊二醇的催化剂和方法

Country Status (3)

Country Link
JP (1) JP7032612B2 (zh)
CN (1) CN109796303B (zh)
WO (1) WO2020192477A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114163302A (zh) * 2021-11-29 2022-03-11 万华化学集团股份有限公司 一种3-甲基-1,5-戊二醇的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109796303B (zh) * 2019-03-22 2021-03-16 山东新和成药业有限公司 一种异戊二醇的制备方法
CN113351224B (zh) * 2021-06-28 2022-11-18 桂林电子科技大学 一种中空多面体结构多孔碳负载Ru纳米粒子材料及其制备和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4413151A (en) * 1982-07-14 1983-11-01 Exxon Research & Engineering Co. Process for hydroxylating olefins using a supported osmium catalyst
CN102206135A (zh) * 2011-03-23 2011-10-05 中国科学院山西煤炭化学研究所 一种3-甲基-1,3-丁二醇的制备方法
CN106582655A (zh) * 2016-11-29 2017-04-26 太原理工大学 一种高分散易还原负载型镍‑铝催化剂的制备方法
CN107497495A (zh) * 2017-10-12 2017-12-22 天津工业大学 一种核壳型金属有机骨架异质复合材料的制备方法
CN108383721A (zh) * 2018-03-21 2018-08-10 新沂市中诺新材料科技有限公司 一种医药中间体1,2,4-苯三酚醋酸酯的合成方法
CN108821306A (zh) * 2018-06-15 2018-11-16 东南大学 一种金属改性多级孔hzsm-5分子筛的制备方法
CN109796303A (zh) * 2019-03-22 2019-05-24 山东新和成药业有限公司 一种异戊二醇的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104926631A (zh) * 2015-05-30 2015-09-23 吉林众鑫化工集团有限公司 一种以3-甲基-3-丁烯基-1醇制备异戊醛的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4413151A (en) * 1982-07-14 1983-11-01 Exxon Research & Engineering Co. Process for hydroxylating olefins using a supported osmium catalyst
CN102206135A (zh) * 2011-03-23 2011-10-05 中国科学院山西煤炭化学研究所 一种3-甲基-1,3-丁二醇的制备方法
CN106582655A (zh) * 2016-11-29 2017-04-26 太原理工大学 一种高分散易还原负载型镍‑铝催化剂的制备方法
CN107497495A (zh) * 2017-10-12 2017-12-22 天津工业大学 一种核壳型金属有机骨架异质复合材料的制备方法
CN108383721A (zh) * 2018-03-21 2018-08-10 新沂市中诺新材料科技有限公司 一种医药中间体1,2,4-苯三酚醋酸酯的合成方法
CN108821306A (zh) * 2018-06-15 2018-11-16 东南大学 一种金属改性多级孔hzsm-5分子筛的制备方法
CN109796303A (zh) * 2019-03-22 2019-05-24 山东新和成药业有限公司 一种异戊二醇的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FAN, PEI ET AL.: "Molybdenum-Catalyzed Hydroxyl-Directed Anti-Dihydroxylation of Allylic and Homoallylic Alcohols", ACS CATALYSIS, vol. 8, no. 8, 31 December 2018 (2018-12-31), pages 6820 - 6826, XP055737234, ISSN: 2155-5435, DOI: 20200607222358 *
LI, QINGYUAN ET AL.: "Non-official translation: Metal-Organic Framework Material and Its Application in Catalytic Reaction", PROGRESS IN CHEMISTRY, vol. 24, no. 8, 31 August 2012 (2012-08-31), ISSN: 1005-281X, DOI: 20200616212525X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114163302A (zh) * 2021-11-29 2022-03-11 万华化学集团股份有限公司 一种3-甲基-1,5-戊二醇的制备方法
CN114163302B (zh) * 2021-11-29 2023-10-17 万华化学集团股份有限公司 一种3-甲基-1,5-戊二醇的制备方法

Also Published As

Publication number Publication date
JP2022501416A (ja) 2022-01-06
JP7032612B2 (ja) 2022-03-08
CN109796303A (zh) 2019-05-24
CN109796303B (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
WO2020192477A1 (zh) 一种制备异戊二醇的催化剂和方法
CN101138730B (zh) 草酸酯加氢合成乙醇酸酯的催化剂及其制备方法
CN111377890B (zh) 由5-羟甲基糠醛生产2,5-呋喃二甲酸的方法
CN104667916A (zh) 一种制备催化湿式氧化催化剂的方法
CN102380380A (zh) 一种用于乙炔氢氯化反应的非汞催化剂体系及其应用
CN110893344B (zh) 一种甲醇氧化制甲醛铁钼催化剂及制备和应用
CN103043773B (zh) 一种烟气脱硫废液的催化湿式氧化方法
CN104275185A (zh) 一种无需还原活化的铜基加氢催化剂制备方法
CN103464195A (zh) 一种扩孔剂引入活性组分的甲烷氧化制甲醇催化剂方法
CN101767016A (zh) 用于对苯二甲酸精制的芳香醛选择性加氢催化剂
CN103191758A (zh) 一种用于乙炔氢氯化的Pt-Cu催化剂及其制备方法
CN108722443A (zh) 一种Al2O3改性SO42-/SnO2固体酸催化剂的制备方法及应用
CN103041810B (zh) 一种纤维乙醇废水处理催化剂及制备方法和废水处理方法
CN104230643B (zh) 制备异丙苯的方法
CN110038591B (zh) 一种用于甲烷氧化制甲醇的铜-铱复合氧化物催化剂
CN103894232B (zh) 一种亚硝酸甲酯甲酰化合成甲酸甲酯的催化剂及其制备方法和应用
CN108855158B (zh) 一种钴-钌双金属多相催化剂的制备方法及应用
CN109851473B (zh) 一种甘油溶液氢解制备1,3-丙二醇的方法
CN102716751A (zh) 一种甲醇重整制氢负载型催化剂及其制备方法与应用
CN110860297B (zh) Cu-Ag/La@HAP催化剂的制备方法及其催化氧化1,2-丙二醇制备乳酸的应用
CN107876040B (zh) 甲醇乙醇一步合成异丁醛的催化剂及其制备方法
CN105712459B (zh) 一种丙烯酸及其酯废水的臭氧催化湿式氧化方法
CN109433200B (zh) 一种稀硝酸还原低负载量贵金属催化剂、制备及应用
CN102886269B (zh) 用于巴豆醛气相选择性加氢合成巴豆醇的催化剂和制备方法
CN111423309A (zh) 一种气固相连续异构化合成1-丁烯-3,4-二醇的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529108

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779917

Country of ref document: EP

Kind code of ref document: A1