WO2020189750A1 - リチウムイオン電池、及び、リチウムイオン電池の劣化判定方法 - Google Patents

リチウムイオン電池、及び、リチウムイオン電池の劣化判定方法 Download PDF

Info

Publication number
WO2020189750A1
WO2020189750A1 PCT/JP2020/012213 JP2020012213W WO2020189750A1 WO 2020189750 A1 WO2020189750 A1 WO 2020189750A1 JP 2020012213 W JP2020012213 W JP 2020012213W WO 2020189750 A1 WO2020189750 A1 WO 2020189750A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
lithium ion
ion battery
frame member
electronic component
Prior art date
Application number
PCT/JP2020/012213
Other languages
English (en)
French (fr)
Inventor
堀江 英明
啓一郎 東
洋志 川崎
水野 雄介
浩太郎 那須
Original Assignee
Apb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apb株式会社 filed Critical Apb株式会社
Priority to CN202080022669.4A priority Critical patent/CN113632264A/zh
Priority to EP20774160.4A priority patent/EP3926717A4/en
Priority to US17/296,173 priority patent/US12003000B2/en
Publication of WO2020189750A1 publication Critical patent/WO2020189750A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0486Frames for plates or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/284Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/371Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with remote indication, e.g. on external chargers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion battery and a method for determining deterioration of a lithium ion battery.
  • Patent Document 1 describes a lithium ion battery having a cell cell in which a positive electrode current collector, a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative electrode current collector are laminated in this order and contains an electrolytic solution. Is disclosed.
  • Lithium-ion batteries may have local defects during their use and their functions may decline sharply. In such a case, it is not easy to find out which part of the lithium-ion battery has a defect, so it is often the case that the defective battery is replaced without being reused. It was done.
  • the present invention has been made to solve the above-mentioned problems, and the lithium ion has a configuration suitable for examining the state inside the lithium ion battery and identifying a defective portion.
  • the purpose is to provide batteries.
  • the present invention is a lithium ion cell having a cell cell in which a positive electrode current collector, a positive electrode active material layer, a separator, a negative electrode active material layer and a negative electrode current collector are laminated in this order, and the positive electrode current collector and the negative electrode
  • a frame member arranged between the current collectors and sealing the positive electrode active material layer, the separator, and the negative electrode active material layer is provided, and electrons for detecting the state inside the cell are contained in the frame member.
  • a lithium ion battery in which components are arranged; a method for determining deterioration of a lithium ion battery using the lithium ion battery, and the electronic components arranged in the frame member have potential transitions during charging.
  • a method for determining deterioration of a lithium ion battery which is characterized by determining that deterioration has occurred; a method for determining deterioration of a lithium ion battery using the lithium ion battery, in a frame member provided on the outer periphery of the cell.
  • Electronic components are arranged at a plurality of locations of the above, and the electronic components are sensors that measure the potential, detect potential variations in different parts of the cell, and when the potential variations exceed a predetermined value, the single unit is used.
  • This is a method for determining deterioration of a lithium ion battery, which comprises determining that deterioration has occurred in the battery.
  • the present invention by arranging the electronic component in the frame member of the cell, the state inside the cell can be detected, and as a result, the place where the defect occurs in the lithium ion battery can be identified. can do.
  • FIG. 1 is a partially cutaway perspective view schematically showing an example of the configuration of a lithium ion battery as a cell.
  • FIG. 2 is a cross-sectional view schematically showing how the electronic components are arranged in the frame member.
  • FIG. 3 is a partially cutaway perspective view schematically showing another example of the configuration of a lithium ion battery as a cell.
  • FIG. 4 is a cross-sectional view schematically showing how the light emitting element is embedded and arranged in the frame member.
  • FIG. 5 is a top view schematically showing a state of the lithium ion battery shown in FIG. 1 excluding the negative electrode current collector from the upper surface.
  • FIG. 1 is a partially cutaway perspective view schematically showing an example of the configuration of a lithium ion battery as a cell.
  • FIG. 2 is a cross-sectional view schematically showing how the electronic components are arranged in the frame member.
  • FIG. 3 is a partially cutaway perspective view schematically showing another example of the configuration of a lithium
  • FIG. 6 is a top view schematically showing a state in which a negative electrode current collector is removed from a top surface of a lithium ion battery in which a wiring board is provided on a frame member.
  • FIG. 7 is a cross-sectional view schematically showing an example of a laminated battery.
  • FIG. 8 is a cross-sectional view schematically showing an example in which a light emitting element is embedded and arranged in a frame member of a cell constituting a laminated battery.
  • FIG. 9 is a cross-sectional view schematically showing another example in which a light emitting element is embedded and arranged in a frame member of a cell constituting a laminated battery.
  • lithium ion battery when used, the concept includes a lithium ion secondary battery.
  • the lithium ion battery of the present invention is a lithium ion battery having a single cell in which a positive electrode current collector, a positive electrode active material layer, a separator, a negative electrode active material layer and a negative electrode current collector are laminated in this order, and the positive electrode current collector is described above. It has a frame member arranged between the body and the negative electrode current collector and seals the positive electrode active material layer, the separator, and the negative electrode active material layer, and the state inside the cell is inside the frame member. It is characterized in that an electronic component for detecting the above is arranged.
  • FIG. 1 is a partially cutaway perspective view schematically showing an example of the configuration of a lithium ion battery as a cell.
  • FIG. 1 is a cutout showing a portion where an electronic component is not arranged on the frame member.
  • the cell 1 which is a lithium ion battery shown in FIG. 1 has a positive electrode 2 having a positive electrode active material layer 5 formed on the surface of a substantially rectangular flat plate-shaped positive electrode current collector 7, and a substantially rectangular flat plate negative electrode collection.
  • the negative electrode 3 having the negative electrode active material layer 6 formed on the surface of the electric body 9 is similarly laminated via a substantially flat plate-shaped separator 4, and is formed in a substantially rectangular flat plate shape as a whole.
  • the positive electrode and the negative electrode function as the positive electrode and the negative electrode of the lithium ion battery.
  • the cell 1 is arranged between the positive electrode current collector 7 and the negative electrode current collector 9, and has a frame member 8 that seals the positive electrode active material layer 5, the separator 4, and the negative electrode active material layer 6.
  • the frame member 8 is an annular frame member, and the peripheral edge portion of the separator 4 is fixed between the positive electrode current collector 7 and the negative electrode current collector 9.
  • FIG. 1 shows a state in which the electronic component 10 is arranged in the frame member 8 through a part of the cell.
  • the positive electrode current collector 7 and the negative electrode current collector 9 are positioned so as to face each other at predetermined intervals by the frame member 8, and the separator 4, the positive electrode active material layer 5, and the negative electrode active material layer 6 are also designated by the frame member 8. It is positioned so as to face each other with an interval.
  • the distance between the positive electrode current collector 7 and the separator 4 and the distance between the negative electrode current collector 9 and the separator 4 are adjusted according to the capacity of the lithium ion battery, and these positive electrode current collector 7 and the negative electrode current collector 7 are adjusted.
  • the positional relationship between the electric body 9 and the separator 4 is determined so that the required spacing can be obtained.
  • the lithium ion battery of the present invention electronic components for detecting the state inside the cell are arranged in the frame member.
  • the electronic component In the conventional lithium-ion battery, the electronic component is not arranged in the frame member, and the place where the electronic component is arranged is considered only outside the cell.
  • the state inside the cell can be detected by arranging the electronic component in the frame member.
  • the electronic components By arranging the electronic components in the frame member, it is not necessary to provide a space for arranging the electronic components outside the cell, and the space of the entire lithium ion battery can be saved.
  • the electronic components since the electronic components are arranged in the cell, the state close to the cell can be detected, so that when a defective part occurs in the cell, the accuracy of identifying the location where the defect occurs is accurate. Is improved.
  • FIG. 2 is a cross-sectional view schematically showing how the electronic components are arranged in the frame member.
  • FIG. 2 also corresponds to the cross-sectional view taken along the line AA of FIG.
  • FIG. 2 shows that the electronic component 10 is arranged in the frame member 8.
  • the material constituting the frame member 8 is not particularly limited as long as it is a material durable to the electrolytic solution, but a polymer material is preferable, and a thermosetting polymer material is more preferable. Specific examples thereof include epoxy-based resins, polyolefin-based resins, polyester-based resins, polyurethane-based resins, and polyvinylidene fluoride resins, and epoxy-based resins are preferable because they have high durability and are easy to handle.
  • the electronic component 10 is an electronic component for detecting the state inside the cell.
  • a sensor that measures temperature, voltage, current, or acoustic emission at a predetermined portion in a cell is preferable. Further, it is preferable that the electronic component can wirelessly output a signal indicating the state inside the cell to the outside of the cell. If the electronic component is a sensor, the state inside the cell can be detected, and if it is an electronic component that can be wirelessly output, a signal indicating the detected state is wirelessly output and the measurement result is received outside the battery. It is possible to know the state inside the cell without disassembling the cell.
  • Passive elements and active elements can be used as electronic components.
  • any element such as a capacitor, an inductor, a resistor, a transistor, a diode, an IC, and an LSI can be used.
  • it when it is an electronic component capable of wireless output, it may be a component such as an antenna, a filter, an amplifier, an oscillator, etc., or these components may be a modularized wireless communication module, and the sensor is integrated. It may be a module.
  • the electronic component includes an antenna element for receiving a signal from the outside. Examples of the signal from the outside include a signal instructing the detection of the state in the cell and a signal instructing to stop the detection of the state in the cell.
  • the electronic component is electrically connected to the negative electrode current collector and the positive electrode current collector so that it can receive power from the lithium ion battery.
  • the electronic component When the electronic component is electrically connected to the negative electrode current collector and the positive electrode current collector, it can operate by receiving power supply from the lithium ion battery. Since it is not necessary to provide a power supply and wiring for operating the electronic components, the configuration can be simplified.
  • the negative electrode current collector and the positive electrode current collector are resin current collectors, and the negative electrode current collector and the positive electrode current collector are used. It is preferable that it is directly connected to an electronic component and electrically connected.
  • a resin current collector it is possible to directly bond the resin current collector and the electronic component by bringing the resin current collector into contact with the electrodes of the electronic component and heating the resin current collector to soften the resin. it can. That is, by using the resin current collector, it is possible to electrically connect other bonding materials such as solder without interposing between the current collector and the electronic component.
  • FIG. 2 shows that the external electrodes of the electronic components 10 provided in the frame member 8 are in contact with the positive electrode current collector 7 and the negative electrode current collector 9. That is, the electronic component 10, the positive electrode current collector 7, and the negative electrode current collector 9 are electrically connected.
  • the frame member is provided with a through hole for arranging the electronic component, the electronic component is arranged in the through hole, and the thickness of the frame member and the height of the electronic component are substantially the same. ..
  • the electronic components can collect the positive electrode.
  • the electronic component can be brought into contact with the body and the negative electrode current collector, and the positive electrode current collector and the negative electrode current collector can be electrically connected to each other.
  • FIG. 2 shows a state in which the frame member 8 is provided with a through hole 18 and the electronic component 10 is arranged in the through hole 18. Further, the thickness of the frame member and the height of the electronic component are substantially the same.
  • the electronic component arranged in the frame member may be a light emitting element that outputs an optical signal.
  • the light emitting element is arranged in the frame member, it is preferable that the light emitting element is embedded in the frame member so as to be exposed on the side surface of the frame member so that the light from the light emitting element is directed to the outside of the cell.
  • a signal indicating the state inside the cell can be wirelessly output to the outside of the cell in the form of an optical signal.
  • FIG. 3 is a partially cutaway perspective view schematically showing another example of the configuration of a lithium ion battery as a cell.
  • FIG. 4 is a cross-sectional view schematically showing how the light emitting element is embedded and arranged in the frame member. It also corresponds to the sectional view taken along line BB in FIG.
  • the light emitting element 30 is embedded in the frame member 8 so as to be exposed on the side surface of the frame member 8.
  • the light emitting element 30 converts the electric signal acquired from the cell 31 into an optical signal. For example, by measuring the voltage between the positive electrode current collector 7 and the negative electrode current collector 9 in the cell 31 and emitting light in an optical signal pattern corresponding to the voltage, the voltage of the cell is detected and the shape of the optical signal is formed. Can be wirelessly output to the outside of the cell.
  • a light emitting substrate may be provided in order to measure the voltage and cause the light emitting element to emit light in an optical signal pattern corresponding to the voltage.
  • the light emitting substrate is provided with a voltage measuring terminal for measuring the voltage between the positive electrode current collector and the negative electrode current collector, and a light emitting element 30 according to the voltage measured by the voltage measuring terminal. It is preferable that a control element that controls light emission in an optical signal pattern is provided.
  • the light emitting substrate is electrically connected to the negative electrode current collector and the positive electrode current collector so that the light emitting element and the control element can receive power supply from the cell.
  • an element (fuse) that cuts off the current may be provided for the purpose of suppressing the transmission of an abnormal signal when a failure such as a short circuit occurs in the control element.
  • the resistance of the fuse is high and the light emitting voltage of the light emitting element is high, the light emitting element cannot be made to shine even in the normal state. Therefore, by adjusting the specifications of the fuse and the light emitting element, respectively, the light emitting element can be made to emit light appropriately in the normal state, and the current to the light emitting element is cut off in the abnormal state to generate an abnormal signal. Try to suppress outgoing calls.
  • optical signal patterns according to voltage examples include a pattern in which the pulse interval is narrowed and the ON / OF of light emission is switched as the voltage measured by the voltage measurement terminal is higher, and a pattern in which the light emission time per unit time becomes longer. Can be mentioned.
  • the optical signal pattern is designed so that it can be decoded by software.
  • p is preferably 1 or more, more preferably 1.5 or more, and particularly preferably 1.75 or more.
  • p log 10 ⁇ Period / (Pulse length from start to end of transmission of longest pulse x number of stacked batteries) ⁇ (1)
  • two or more colors of light emitted from the light emitting element may be used.
  • two or more types of light emitting elements that emit different colors are used.
  • the color of the light emitted from the light emitting element is two or more, it is necessary to provide two or more types of light receiving elements according to the number of colors of the light emitting element.
  • the specific signal means a signal output when there is an abnormality (abnormally high temperature, abnormally high voltage) in the battery.
  • an abnormality abnormally high temperature, abnormally high voltage
  • the signal is signaled. Can accurately send and receive important information (information that it is in an abnormal state) without interference.
  • Having two or more colors of light means that the wavelengths of two or more types of light to be transmitted and received are separated.
  • the light emitting element used for emitting light of wavelength A (B) may not emit light of wavelength B (A) with an intensity higher than a certain level.
  • two or more types of light wavelengths are separated by using an index such that the intensity of the light emitting element used for emitting light of wavelength A at wavelength B is 1 / n of the intensity of wavelength A. You can determine that you are.
  • the value of n can be arbitrarily determined depending on the wavelengths of two or more types of light and the specifications of the light emitting element and the light receiving element.
  • the characteristic of the cell may be a characteristic other than the voltage.
  • the temperature of the cell may be measured and an optical signal pattern corresponding to the temperature may be output.
  • the optical signal pattern output to the outside of the cell is received by a light receiving element (not shown) provided outside the cell and insulated from the cell.
  • a light receiving element By inversely converting an optical signal into an electric signal by a light receiving element, an electric signal indicating the state inside the cell can be obtained (a mechanism similar to that of a photocoupler).
  • the light emitting element include a light emitting diode
  • examples of the light receiving element include a phototransistor.
  • the light emitting element and the light receiving element are in a wireless state and are electrically insulated, which is preferable from the viewpoint of safety.
  • FIG. 5 is a top view schematically showing a state of the lithium ion battery shown in FIG. 1 excluding the negative electrode current collector from the upper surface.
  • FIG. 5 shows that the electronic components 10 are provided at six locations inside the frame member 8. For each of the electronic components 10 provided at these six locations, an index indicating the state inside the cell is individually detected, and when an abnormal value is found only in the index obtained from a specific electronic component, the index is detected. It can be estimated that a defect has occurred in the vicinity of the electronic component.
  • the number of electronic components provided in the frame member of the cell is not particularly limited, and can be arbitrarily set in consideration of the size of the cell, the size of the frame member, the size of the electronic component, and the like. Further, when the electronic components are provided at a plurality of locations in the frame member, the types of the electronic components may be the same or may be a combination of different electronic components.
  • the top-view area of the cell is defined as the area inside the frame member 8 in FIG. 5, that is, the area of the main surface of the negative electrode active material layer and the positive electrode active material layer. It can be said that this area is the effective area of the cell, and that the larger the area, the larger the battery capacity. As the top-view area of the cell becomes wider, the characteristics inside the cell tend to vary. Therefore, electronic components are arranged at a plurality of places in the frame member provided on the outer circumference of the cell to be inside the cell. It is particularly effective to individually detect the index indicating the state of.
  • the top-view area of the cell is preferably 600 cm 2 or more. Further, as for the relationship between the top-viewed area of the cell and the number of electronic components to be arranged, it is preferable to arrange one or two electronic components per 100 cm 2 of the top-viewed area of the cell.
  • the wiring board is provided in the frame member and the electronic components are mounted on the wiring board. It is also preferable that the wiring board is mounted with other electronic components for controlling the current and / or voltage supplied to the electronic components.
  • the wiring board is mounted with other electronic components for controlling the current and / or voltage supplied to the electronic components.
  • FIG. 6 is a top view schematically showing a state in which a negative electrode current collector is removed from a top surface of a lithium ion battery in which a wiring board is provided on a frame member.
  • a wiring board 21 is provided on the frame member 8
  • the electronic component 20 is mounted on the wiring board 21.
  • an electronic component assuming an amplifier, an IC, etc. is drawn as the electronic component 20
  • an electronic component assuming a chip resistance is drawn as another electronic component 22 for controlling current and / or voltage.
  • the types of electronic components actually mounted on the wiring board 21 are not limited to these.
  • a module in which a plurality of electronic components are combined is provided on the frame member, when the module includes a wiring board, it is included in one aspect of providing the wiring board on the frame member.
  • the positive electrode active material layer contains a positive electrode active material.
  • composite oxide of lithium and transition metal ⁇ composite oxide is a transition metal is one (LiCoO 2, LiNiO 2, LiAlMnO 4, LiMnO 2 and LiMn 2 O 4, etc.), transition metal elements
  • Two types of composite oxides eg LiFeMnO 4 , LiNi 1-x Co x O 2 , LiMn 1-y Co y O 2 , LiNi 1/3 Co 1/3 Al 1/3 O 2 and LiNi 0.8 Co 0.15 Al 0.05 O 2
  • a composite oxide metal element is three or more [e.g.
  • LiM a M 'b M'' c O 2 (M, M' and M '' is different from the transition metal elements, respectively , Etc. ⁇ , lithium-containing transition metal phosphates (eg LiFePO 4 , LiCoPO 4 , LiMnPO 4 and LiNiPO 4 ), for example LiNi 1/3 Mn 1/3 Co 1/3 O 2 ), etc.
  • Transition metal oxides eg MnO 2 and V 2 O 5
  • transition metal sulfides eg MoS 2 and TiS 2
  • conductive polymers eg polyaniline, polypyrrole, polythiophene, polyacetylene and poly-p-phenylene and (Polyvinylcarbazole) and the like, and two or more kinds may be used in combination.
  • the lithium-containing transition metal phosphate may be one in which a part of the transition metal site is replaced with another transition metal.
  • the positive electrode active material is preferably a coated positive electrode active material coated with a conductive auxiliary agent and a coating resin.
  • a coated positive electrode active material coated with a conductive auxiliary agent and a coating resin When the periphery of the positive electrode active material is coated with the coating resin, the volume change of the electrode is alleviated and the expansion of the electrode can be suppressed.
  • metallic conductive auxiliary agents [aluminum, stainless steel (SUS), silver, gold, copper, titanium, etc.], carbon-based conductive auxiliary agents [graphite and carbon black (acetylene black, ketjen black, furnace black, etc.), Channel black, thermal lamp black, etc.), etc.], and mixtures thereof, etc. may be mentioned.
  • These conductive auxiliaries may be used alone or in combination of two or more. Further, it may be used as these alloys or metal oxides. Among them, from the viewpoint of electrical stability, aluminum, stainless steel, silver, gold, copper, titanium, carbon-based conductive aids and mixtures thereof are more preferable, and silver, gold, aluminum, stainless steel and carbon are more preferable.
  • a system-based conductive auxiliary agent and particularly preferably a carbon-based conductive auxiliary agent.
  • a conductive material preferably a metal one among the above-mentioned conductive auxiliaries
  • the shape (form) of the conductive auxiliary agent is not limited to the particle form, and may be a form other than the particle form, and is a form practically used as a so-called filler-based conductive auxiliary agent such as carbon nanofibers and carbon nanotubes. You may.
  • the ratio of the coating resin to the conductive auxiliary agent is not particularly limited, but from the viewpoint of the internal resistance of the battery, the coating resin (resin solid content weight): conductive auxiliary agent is 1: 0.01 in terms of weight ratio. It is preferably from 1:50, more preferably from 1: 0.2 to 1: 3.0.
  • coating resin those described as the non-aqueous secondary battery active material coating resin in Japanese Patent Application Laid-Open No. 2017-054703 can be preferably used.
  • the positive electrode active material layer may contain a conductive auxiliary agent in addition to the conductive auxiliary agent contained in the coated positive electrode active material.
  • a conductive auxiliary agent the same conductive auxiliary agent contained in the coated positive electrode active material described above can be preferably used.
  • the positive electrode active material layer is preferably a non-binding body containing the positive electrode active material and not containing the binder that binds the positive electrode active materials to each other.
  • the non-bonded body means that the positive electrode active materials are not bonded to each other, and means that the positive electrode active materials are fixed to each other irreversibly to the bond.
  • the positive electrode active material layer may contain an adhesive resin.
  • the adhesive resin include those prepared by mixing a small amount of an organic solvent with the non-aqueous secondary battery active material coating resin described in JP-A-2017-054703 and adjusting the glass transition temperature to room temperature or lower. Further, those described as a pressure-sensitive adhesive in JP-A No. 10-255805 can be preferably used.
  • the adhesive resin is a resin having adhesiveness (property of adhering by applying a slight pressure without using water, solvent, heat, etc.) without solidifying even if the solvent component is volatilized and dried. Means.
  • the solution-drying type electrode binder used as a binder means a binder that dries and solidifies by volatilizing a solvent component to firmly bond and fix active materials to each other. Therefore, the solution-drying type electrode binder (binding material) and the adhesive resin are different materials.
  • the thickness of the positive electrode active material layer is not particularly limited, but is preferably 150 to 600 ⁇ m, more preferably 200 to 450 ⁇ m from the viewpoint of battery performance.
  • the negative electrode active material layer contains a negative electrode active material.
  • a known negative electrode active material for lithium ion batteries can be used, and carbon-based materials [graphite, refractory carbon, amorphous carbon, resin calcined material (for example, phenol resin, furan resin, etc.) are calcined and carbonized.
  • silicon-based materials [silicon, silicon oxide (SiOx), silicon-carbon composite (the surface of carbon particles is silicon and / Or those coated with silicon carbide, those in which the surface of silicon particles or silicon oxide particles are coated with carbon and / or silicon carbide, silicon carbide, etc.) and silicon alloys (silicon-aluminum alloy, silicon-lithium alloy, silicon-nickel) Alloys, silicon-iron alloys, silicon-titanium alloys, silicon-manganese alloys, silicon-copper alloys, silicon-tin alloys, etc.], conductive polymers (eg, polyacetylene and polypyrrole, etc.), metals (tin, aluminum, zirconium, etc.) And titanium, etc.), metal oxides (titanium oxide and lithium-titanium oxide, etc.) and metal alloys (for example, lithium-tin alloy, lithium-alum
  • the negative electrode active material may be a coated negative electrode active material coated with the same conductive auxiliary agent and coating resin as the above-mentioned coated positive electrode active material.
  • the conductive auxiliary agent and the coating resin the same conductive auxiliary agent and the coating resin as the above-mentioned coated positive electrode active material can be preferably used.
  • the negative electrode active material layer may contain a conductive auxiliary agent in addition to the conductive auxiliary agent contained in the coated negative electrode active material.
  • a conductive auxiliary agent the same conductive auxiliary agent contained in the coated positive electrode active material described above can be preferably used.
  • the negative electrode active material layer is preferably a non-binding body that does not contain a binder that binds the negative electrode active materials to each other. Further, as with the positive electrode active material layer, an adhesive resin may be contained.
  • the thickness of the negative electrode active material layer is not particularly limited, but is preferably 150 to 600 ⁇ m, more preferably 200 to 450 ⁇ m from the viewpoint of battery performance.
  • Materials constituting the positive electrode current collector and the negative electrode current collector include metal materials such as copper, aluminum, titanium, stainless steel, nickel and alloys thereof, and calcined carbon. , Conductive polymer material, conductive glass and the like. Among these materials, aluminum is preferably used as the positive electrode current collector, and copper is preferable as the negative electrode current collector, from the viewpoints of weight reduction, corrosion resistance, and high conductivity.
  • the current collector is preferably a resin current collector made of a conductive polymer material.
  • the shape of the current collector is not particularly limited, and may be a sheet-shaped current collector made of the above-mentioned material and a deposited layer made of fine particles made of the above-mentioned material.
  • the thickness of the current collector is not particularly limited, but is preferably 50 to 500 ⁇ m.
  • the conductive polymer material constituting the resin current collector for example, a conductive polymer or a resin to which a conductive agent is added, if necessary, can be used.
  • the conductive agent constituting the conductive polymer material the same conductive agent as that contained in the coated positive electrode active material described above can be preferably used.
  • Examples of the resin constituting the conductive polymer material include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyether nitrile (PEN), and poly. Tetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), polyacrylonitrile (PAN), polymethylacrylate (PMA), polymethylmethacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resin, silicone resin or a mixture thereof. And so on.
  • PE polyethylene
  • PP polypropylene
  • PMP polymethylpentene
  • PCO polycycloolefin
  • PET polyethylene terephthalate
  • PEN polyether nitrile
  • PTFE Tetrafluoroethylene
  • SBR styrene butadiene rubber
  • PAN polyacrylonitrile
  • PMA polymethylacrylate
  • PMMA polymethylmeth
  • polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and polycycloolefin (PCO) are preferable, and polyethylene (PE), polypropylene (PP) and polymethylpentene are more preferable. (PMP).
  • separator a porous film made of polyethylene or polypropylene, a laminated film of a porous polyethylene film and a porous polypropylene, a non-woven fabric made of synthetic fibers (polyester fiber, aramid fiber, etc.) or glass fiber, and silica on the surface thereof.
  • Known separators for lithium ion batteries such as those to which ceramic fine particles such as alumina and titania are attached.
  • the positive electrode active material layer and the negative electrode active material layer contain an electrolytic solution.
  • an electrolytic solution a known electrolytic solution containing an electrolyte and a non-aqueous solvent used in the production of a known lithium ion battery can be used.
  • lithium salts of inorganic acids such as LiN (FSO 2 ) 2 , LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 and LiClO 4 can be used.
  • lithium salts of organic acids such as LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3 .
  • imide electrolytes [LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2, LiN (C 2 F 5 SO 2 ) 2, etc.] and LiN (C 2 F 5 SO 2 ) 2, etc. are preferable from the viewpoint of battery output and charge / discharge cycle characteristics. It is LiPF 6 .
  • non-aqueous solvent those used in known electrolytic solutions can be used, and for example, a lactone compound, a cyclic or chain carbonate, a chain carboxylic acid ester, a cyclic or chain ether, a phosphoric acid ester, and a nitrile can be used.
  • a lactone compound a cyclic or chain carbonate, a chain carboxylic acid ester, a cyclic or chain ether, a phosphoric acid ester, and a nitrile
  • Compounds, amide compounds, sulfones, sulfolanes and the like and mixtures thereof can be used.
  • the electrolyte concentration of the electrolytic solution is preferably 1 to 5 mol / L, more preferably 1.5 to 4 mol / L, and even more preferably 2 to 3 mol / L. If the electrolyte concentration of the electrolytic solution is less than 1 mol / L, sufficient input / output characteristics of the battery may not be obtained, and if it exceeds 5 mol / L, the electrolyte may precipitate.
  • the electrolyte concentration of the electrolytic solution can be confirmed by extracting the electrode for the lithium ion battery or the electrolytic solution constituting the lithium ion battery without using a solvent or the like and measuring the concentration thereof.
  • the lithium ion battery of the present invention is a laminated battery in which a plurality of single batteries are laminated, and the state of each single battery constituting the laminated battery is individually detected by the electronic component arranged in the frame member. It may be the one that exists.
  • FIG. 7 is a cross-sectional view schematically showing an example of a laminated battery.
  • FIG. 7 shows a laminated battery 101 in which four cell batteries 1 shown in FIG. 1 are laminated.
  • the upper surface of the negative electrode current collector 9 of the adjacent cell 1 and the lower surface of the positive electrode current collector 7 are laminated in series so as to be adjacent to each other.
  • the laminated battery 101 is housed in a container 120.
  • a positive electrode drawer 107 is provided on the lower surface of the container 120, and a negative electrode drawer 109 is provided on the upper surface of the container 120.
  • the positive electrode lead-out portion 107 is electrically connected to the positive electrode current collector 7 of the lowermost cell 1 and the negative electrode lead-out portion 109 is electrically connected to the negative electrode current collector 9 of the uppermost cell cell 1. There is.
  • FIG. 7 shows a cross-sectional view in which the electronic components 10 are arranged alternately on the left and right, but the positions of the electronic components in each cell are the same as those of the other cells constituting the laminated battery. May be different.
  • the electronic components are arranged in the frame member of each cell, the state in each cell can be detected individually. Therefore, when a defect occurs when the laminated battery is used, it is possible to identify which unit cell has the defect. Then, if only the defective cell is replaced, the defective laminated battery can be reused while utilizing most of the laminated battery.
  • the electronic component arranged in the frame member of the cell may be a light emitting element that outputs an optical signal.
  • An example in which the electronic component arranged in the frame member of the cell cell is a light emitting element can be as described with reference to FIGS. 3 and 4.
  • the light emitting element is arranged in the frame member of each cell constituting the laminated battery, it is preferable to provide an optical waveguide into which the optical signal from the light emitting element is introduced on the side surface of the laminated battery. Then, a container for accommodating the laminated battery and the optical waveguide is provided so that one end of the optical waveguide goes out of the container, and the optical signal derived from one end of the optical waveguide that goes out of the container is received by the light receiving unit. You may do so.
  • FIG. 8 is a cross-sectional view schematically showing an example in which a light emitting element is embedded and arranged in a frame member of a cell constituting a laminated battery.
  • the light emitting element 30 is embedded in the frame member 8 so as to be exposed on the side surface of the frame member 8.
  • An optical waveguide 130 into which an optical signal from the light emitting element 30 is introduced is provided on the side surface of the laminated battery 102.
  • An optical signal from each light emitting element 30 of each cell 31 is introduced into the optical waveguide 130.
  • the laminated battery 102 and the optical fiber waveguide 130 are housed in the container 120. However, one end of the optical waveguide 130 is designed to go out of the container 120, and the optical signal derived from the one end is received by the light receiving element 141.
  • the light receiving element 141 can obtain an electric signal indicating the state inside the cell contained in the laminated battery by inversely converting the optical signal into an electric signal.
  • FIG. 9 is a cross-sectional view schematically showing another example in which a light emitting element is embedded and arranged in a frame member of a cell constituting a laminated battery. Also in the cell unit 31 constituting the laminated battery 103 shown in FIG. 9, the light emitting element 30 is embedded in the frame member 8 so as to be exposed on the side surface of the frame member 8. A light receiving element 142 is provided for each light emitting element 30 on the side surface of the laminated battery 103. Each light receiving element 142 reversely converts the signal into an electric signal to obtain an electric signal indicating the state inside the cell contained in the laminated battery.
  • the laminated battery 103 and the light receiving element 142 are housed in the container 120. However, one end of the wiring 143 connected to the light receiving element 142 goes out of the container 120, and the electric signal is output to the outside of the container 120 by the wiring 143.
  • the electronic component arranged in the frame member of the cell is a light emitting element that outputs an optical signal
  • the light emitting element and the light receiving element are wireless. It becomes a state. Since the light emitting element and the light receiving element are electrically insulated, it is preferable from the viewpoint of safety.
  • the lithium-ion battery of the present invention is a battery module in which a plurality of laminated batteries in which a plurality of single batteries are laminated are combined, and the state of each laminated battery constituting the battery module is individually determined by electronic components arranged in a frame member. It may be something that is designed to be detected.
  • the lithium ion battery is a battery module in which a plurality of laminated batteries are combined, the state inside each cell can be detected individually because the electronic components are arranged in the frame member of the cell. Therefore, when a defect occurs when the battery module is used, it is possible to identify which cell of which laminated battery has the defect. Then, if only the defective cell is replaced, the defective battery module can be reused while utilizing most of the battery module.
  • the signals transmitted to the tip of the light receiving element 141 in the laminated battery 102 shown in FIG. 8 and the tip of the wiring 143 in the laminated battery 103 shown in FIG. 9 are processed by a hardware device outside the laminated battery.
  • the hardware device functions as a part of the battery management system (BMS), and the hardware device and the laminated battery are separable.
  • BMS battery management system
  • the durability of a hardware device is set to about 10 years, but a laminated battery can be used for a longer period of time depending on the method of use. Therefore, if the laminated battery and the hardware device can be separated, when the durability of the hardware device has expired, it is possible to replace only the hardware device without disassembling the laminated battery and continue to use the laminated battery. it can. By doing so, the life of the entire battery management system can be extended.
  • the electronic component arranged in the frame member is a sensor for measuring the potential transition during charging, and is charged by the sensor.
  • the electronic component arranged in the frame member is a sensor for measuring the potential transition during charging, the potential transition and required time during charging at a predetermined portion in the cell are monitored. be able to. Since the current is constant during charging, if the rate of potential increase is high, it means that the capacity of the cell is small, that is, the cell is deteriorated.
  • the lithium-ion battery of the present invention is a laminated battery
  • the potential transition at the time of charging is monitored for each cell cell by the electronic component arranged in the frame member, and the cell cell with a fast potential rise rate is used.
  • the electric component arranged in the frame member monitors the potential transition at the time of charging for each cell or laminated battery, and the rate of potential rise is high.
  • a cell or a laminated battery it can be specified that the cell or the laminated battery is in a state in which deterioration is particularly advanced.
  • the time during which the potential rise occurs is 100% in the normal state and the time during which the potential rise occurs is 70% or less, it can be determined that the cell is deteriorated.
  • the electronic components are arranged at a plurality of locations in a frame member provided on the outer periphery of the cell, and if the electronic component is a sensor that measures an electric potential, different portions in the cell.
  • the potential variation in the above can be detected.
  • the potential in one cell is the same no matter where in the cell is measured, but if the potential detected by each sensor in the cell varies, the cell will have the same potential. It is considered that deterioration has occurred. Therefore, a deteriorated cell can be identified by providing a plurality of sensors for measuring the potential in the frame member of one cell and individually detecting the potential in the cell.
  • the cell is deteriorated when a measurement point is generated that is ⁇ 0.2 V or more away from the average value of the voltage measurement values due to the variation in potential measured at multiple points in one cell. To do.
  • the lithium ion battery of the present invention is a laminated battery
  • the potential of each cell is monitored by an electronic component arranged in the frame member, and the variation of the potential of each cell is detected to detect a single battery.
  • the potential varies between the batteries it can be specified that the single battery having a different potential than the other single batteries is in a particularly deteriorated state.
  • the lithium ion battery of the present invention is a battery module
  • the potential transition at the time of charging is monitored for each cell or each laminated battery by the electronic component arranged in the frame member, and the inter-cell or the laminated battery is monitored.
  • the potential varies between the cells it can be specified that the cell or the laminated battery having a different potential than the other cell or the laminated battery is in a particularly deteriorated state.
  • the configuration in which the electronic components are arranged in the frame member is not limited to the configuration in which the electronic components are embedded and arranged in the frame member as shown above.
  • the electronic components may be housed in a notch (recess) formed on the outer peripheral surface of the frame member, and the region where the frame member is arranged (peripheral portion between the positive electrode current collector and the negative electrode current collector). If the electronic components are arranged in the area), it is possible to change to various other configurations.
  • the state inside the cell can be detected by arranging the electronic component in the frame member of the cell, and as a result, the place where the defect occurs in the lithium ion battery. Can be identified. Further, when the lithium ion battery of the present invention is used for a laminated battery or a battery module, if only the defective single battery is replaced, the laminated battery or the battery module in which a defect occurs while utilizing most of the laminated battery or the battery module. Batteries or battery modules can be reused.
  • Negative electrode current collector 10 20 Electronic component 18 Through hole 21 Wiring board 22 Other Electronic component 30 Light emitting element 101, 102, 103 Laminated battery 107 Positive electrode extraction part 109 Negative electrode extraction part 120 Container 130 Optical waveguide 141, 142 Light receiving element 143 Wiring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

正極集電体、正極活物質層、セパレータ、負極活物質層及び負極集電体が順に積層されてなる単電池を有するリチウムイオン電池であって、上記正極集電体及び上記負極集電体の間に配置され、上記正極活物質層、上記セパレータ、及び上記負極活物質層を封止する枠部材を有し、上記枠部材内には、単電池内の状態を検出する電子部品が配置されていることを特徴とするリチウムイオン電池。

Description

リチウムイオン電池、及び、リチウムイオン電池の劣化判定方法
本発明は、リチウムイオン電池、及び、リチウムイオン電池の劣化判定方法に関する。
リチウムイオン(二次)電池は、高容量で小型軽量な二次電池として、近年様々な用途に多用されている。
リチウムイオン電池として、特許文献1には、正極集電体、正極活物質層、セパレータ、負極活物質層及び負極集電体が順に積層されてなり、電解液を含む単電池を有するリチウムイオン電池が開示されている。
特開2018-125213号公報
リチウムイオン電池はその使用過程において局所的に不具合が発生してその機能が急激に低下することがある。
そのような場合に、リチウムイオン電池のどの部分に不具合が生じているのかを調べることは容易ではないため、不具合が生じた電池を再利用することはせずに電池そのものを交換することが多く行われていた。
本発明は上記の問題を解決するためになされたものであり、リチウムイオン電池内の状態を調べることができ、不具合が生じている箇所を特定するために適した構成を有しているリチウムイオン電池を提供することを目的とする。
本発明は、正極集電体、正極活物質層、セパレータ、負極活物質層及び負極集電体が順に積層されてなる単電池を有するリチウムイオン電池であって、上記正極集電体及び上記負極集電体の間に配置され、上記正極活物質層、上記セパレータ、及び上記負極活物質層を封止する枠部材を有し、上記枠部材内には、単電池内の状態を検出する電子部品が配置されていることを特徴とするリチウムイオン電池;上記リチウムイオン電池を用いたリチウムイオン電池の劣化判定方法であり、上記枠部材内に配置された上記電子部品は、充電時の電位推移を計測するためのセンサであり、上記センサにより充電時の電位推移と所要時間をモニタリングし、通常状態よりも短時間で電位上昇が生じた場合にそのセンサにより計測された単電池内の部位において劣化が生じていると判定することを特徴とするリチウムイオン電池の劣化判定方法;上記リチウムイオン電池を用いたリチウムイオン電池の劣化判定方法であり、上記単電池の外周に設けられた枠部材内の複数箇所に電子部品がそれぞれ配置されており、上記電子部品は電位を測定するセンサであり、単電池内の異なる部位における電位ばらつきを検出し、電位ばらつきが所定値を超えた場合に当該単電池において劣化が生じていると判定することを特徴とするリチウムイオン電池の劣化判定方法である。
本発明によれば、単電池が有する枠部材内に電子部品を配置することにより、単電池内の状態を検出することができ、その結果、リチウムイオン電池内で不具合が生じている箇所を特定することができる。
図1は、単電池としてのリチウムイオン電池の構成の例を模式的に示す、一部切り欠き斜視図である。 図2は、枠部材内に電子部品が配置されている様子を模式的に示す断面図である。 図3は、単電池としてのリチウムイオン電池の構成の別の一例を模式的に示す、一部切り欠き斜視図である。 図4は、枠部材内に発光素子が埋め込まれて配置されている様子を模式的に示す断面図である。 図5は、図1に示すリチウムイオン電池において負極集電体を除いた状態を上面から模式的に示した上面図である。 図6は、枠部材に配線基板を設けたリチウムイオン電池において負極集電体を除いた状態を上面から模式的に示した上面図である。 図7は、積層電池の一例を模式的に示す断面図である。 図8は、積層電池を構成する単電池の枠部材内に発光素子が埋め込まれて配置されている様子の一例を模式的に示す断面図である。 図9は、積層電池を構成する単電池の枠部材内に発光素子が埋め込まれて配置されている様子の別の一例を模式的に示す断面図である。
以下、本発明を詳細に説明する。
なお、本明細書において、リチウムイオン電池と記載する場合、リチウムイオン二次電池も含む概念とする。
本発明のリチウムイオン電池は、正極集電体、正極活物質層、セパレータ、負極活物質層及び負極集電体が順に積層されてなる単電池を有するリチウムイオン電池であって、上記正極集電体及び上記負極集電体の間に配置され、上記正極活物質層、上記セパレータ、及び上記負極活物質層を封止する枠部材を有し、上記枠部材内には、単電池内の状態を検出する電子部品が配置されていることを特徴とする。
図1は、単電池としてのリチウムイオン電池の構成の例を模式的に示す、一部切り欠き斜視図である。図1には、枠部材に電子部品が配置されていない部位を切り欠いて示している。
図1に示す、リチウムイオン電池である単電池1は、略矩形平板状の正極集電体7の表面に正極活物質層5が形成された正極2と、同様に略矩形平板状の負極集電体9の表面に負極活物質層6が形成された負極3とが、同様に略平板状のセパレータ4を介して積層されて構成され、全体として略矩形平板状に形成されている。この正極と負極とがリチウムイオン電池の正極及び負極として機能する。
単電池1は、正極集電体7及び負極集電体9の間に配置され、正極活物質層5、セパレータ4及び負極活物質層6を封止する枠部材8を有する。
図1に示す単電池1では、枠部材8は、環状の枠部材であり、正極集電体7及び負極集電体9の間にセパレータ4の周縁部を固定している。
図1には、枠部材8内に電子部品10が配置されている様子を、単電池の一部を透過させて示している。
正極集電体7及び負極集電体9は、枠部材8により所定間隔をもって対向するように位置決めされているとともに、セパレータ4と正極活物質層5及び負極活物質層6も枠部材8により所定間隔をもって対向するように位置決めされている。
正極集電体7とセパレータ4との間の間隔、及び、負極集電体9とセパレータ4との間の間隔はリチウムイオン電池の容量に応じて調整され、これら正極集電体7、負極集電体9及びセパレータ4の位置関係は必要な間隔が得られるように定められている。
本発明のリチウムイオン電池では、単電池内の状態を検出する電子部品が枠部材内に配置されている。
従来のリチウムイオン電池では枠部材内に電子部品は配置されておらず、電子部品を配置する場所は単電池の外部しか考えられていなかった。
それに対し、本発明のリチウムイオン電池では枠部材内に電子部品を配置することによって単電池内の状態を検出することができる。枠部材内に電子部品を配置することで電子部品を配置するためのスペースを単電池外に設ける必要がなく、リチウムイオン電池全体の省スペース化を図ることができる。
また、単電池内に電子部品が配置されることで単電池に近い位置での状態を検出することができるので、単電池内に不良部位が生じた場合に不良が生じた場所を特定する精度が向上する。
以下に、枠部材内に配置される電子部品について説明する。
図2は、枠部材内に電子部品が配置されている様子を模式的に示す断面図である。
図2は、図1のA-A線断面図にも相当する。
図2には枠部材8内に電子部品10が配置されていることを示している。
枠部材8を構成する材料としては、電解液に対して耐久性のある材料であれば特に限定されないが、高分子材料が好ましく、熱硬化性高分子材料がより好ましい。具体的には、エポキシ系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂及びポリフッ化ビニデン樹脂等が挙げられ、耐久性が高く取り扱いが容易であることからエポキシ系樹脂が好ましい。
電子部品10は、単電池内の状態を検出するための電子部品である。
例えば、単電池内の所定部位における温度、電圧、電流又はアコースティックエミッションを測定するセンサであることが好ましい。
また、単電池内の状態を示す信号を単電池の外部に無線出力することができる電子部品であることが好ましい。
電子部品がセンサであると単電池内の状態を検出することができ、無線出力することができる電子部品であると、検出した状態を示す信号を無線出力して電池外部で測定結果を受信することができ、単電池を解体することなく単電池内の状態を知ることができる。
単電池内の温度、電圧又は電流を測定することで、単電池内の一部でショート等の不具合が生じた場合に引き起こされる局所的な温度上昇、電流値の上昇、電圧の低下等を検出することができる。
また、アコースティックエミッションを測定することで電池内に破損や変形が生じているかを検出することができる。
電子部品としては、受動素子、能動素子を使用することができる。
これらの素子としては、コンデンサ、インダクタ、抵抗、トランジスタ、ダイオード、IC、LSI等の任意の素子を使用することができる。
また、無線出力することができる電子部品である場合、アンテナ、フィルタ、増幅器、発振器等の部品であってもよく、これらの部品がモジュール化された無線通信モジュールであってもよく、センサー一体型モジュールであってもよい。
また、枠部材内に配置された電子部品により単電池内の状態の検出を行う、行わないの切り替えをするスイッチを有し、外部からの信号が与えられた場合にスイッチを切り替えて単電池内の状態の検出を行うようになっていてもよい。
外部からの信号が与えられた場合のみ単電池内の状態の検出を行うようにしておくことによって、電子部品による電力消費を抑えることができる。
また、上記構成の場合、電子部品は外部からの信号を受信するためのアンテナ素子を備えていることが好ましい。
外部からの信号としては、単電池内の状態の検出を行うように指令する信号、単電池内の状態の検出を止めるように指令する信号等が挙げられる。
電子部品は負極集電体及び正極集電体と電気的に接続されており、リチウムイオン電池からの電力供給を受けることができるようになっていることが好ましい。
電子部品が負極集電体及び正極集電体と電気的に接続されていると、リチウムイオン電池からの電力供給を受けて作動することができる。電子部品を作動させるための電源及び配線を設ける必要が無いため簡便な構成とすることができる。
また、電子部品が負極集電体及び正極集電体と電気的に接続される場合、負極集電体及び正極集電体は樹脂集電体であり、負極集電体及び正極集電体が電子部品に直接結合して電気的に接続されていることが好ましい。
樹脂集電体を使用する場合、樹脂集電体と電子部品の電極を接触させ、樹脂集電体を加熱して樹脂を軟化させることにより、樹脂集電体と電子部品を直接結合させることができる。すなわち、樹脂集電体を使用することによって半田等の他の接合材を集電体と電子部品の間に介することなく電気的な接続を行うことができる。
図2では、枠部材8内に設けられた電子部品10の外部電極が正極集電体7及び負極集電体9と接触していることを示している。すなわち、電子部品10と正極集電体7及び負極集電体9は電気的に接続されている。
また、枠部材には電子部品を配置するための貫通穴が設けられており、貫通穴に電子部品が配置されていて、枠部材の厚さと電子部品の高さが略同一であることが好ましい。
貫通穴に電子部品を配置するようにすると枠部材内に電子部品を配置するのが容易であり、枠部材の厚さと電子部品の高さを略同一にすることにより、電子部品を正極集電体及び負極集電体と接触させ、電子部品と正極集電体及び負極集電体を電気的に接続させることができる。
図2では、枠部材8には貫通穴18が設けられていて、貫通穴18に電子部品10が配置されている状態を示している。また、枠部材の厚さと電子部品の高さは略同一になっている。
また、枠部材内に配置される電子部品は、光信号を出力する発光素子であってもよい。
発光素子を枠部材内に配置する場合、発光素子からの光が単電池の外に向くように、発光素子が枠部材の側面に露出する形で枠部材内に埋め込まれていることが好ましい。
このような形態であると、単電池内の状態を示す信号を光信号の形で単電池の外部に無線出力することができる。
図3は、単電池としてのリチウムイオン電池の構成の別の一例を模式的に示す、一部切り欠き斜視図である。
図4は、枠部材内に発光素子が埋め込まれて配置されている様子を模式的に示す断面図である。図3のB-B線断面図にも相当する。
図3及び図4に示す単電池31においては、発光素子30が枠部材8の側面に露出する形で枠部材8内に埋め込まれている。
発光素子30は、単電池31から取得した電気信号を光信号に変換する。
例えば、単電池31における正極集電体7と負極集電体9の間の電圧を測定し、電圧に対応する光信号パターンで発光することによって、単電池の電圧を検出して光信号の形で単電池の外部に無線出力することができる。電圧を測定し、電圧に対応する光信号パターンで発光素子を発光させるために、発光基板が設けられていてもよい。
発光基板には、発光素子30の他に、正極集電体と負極集電体の間の電圧を測定する電圧測定端子と、電圧測定端子により測定された電圧に応じて発光素子30を所定の光信号パターンで発光させる制御を行う制御素子が設けられていることが好ましい。
発光基板には負極集電体及び正極集電体と電気的に接続されており、発光素子及び制御素子が単電池からの電力供給を受けることができるようになっていることが好ましい。
ここで、発光基板の制御素子に短絡が生じた場合に、発光素子に電流が常に流れた状態となってしまい発光素子が光ったままになることがあり得る。光ったままの発光素子があると他の発光素子からの信号が一切判別できなくなるため問題がある。
このような場合を想定して、制御素子に短絡等の故障が生じた場合に異常な信号の発信を抑制する目的で電流を遮断する素子(ヒューズ)が設けられていてもよい。
ヒューズの抵抗が高く、かつ発光素子の発光電圧が高いと、正常時であっても発光素子を光らせることができない。そのため、ヒューズと発光素子の仕様をそれぞれ調整することによって、通常の状態では発光素子を適切に発光させることができるようにし、かつ、異常状態では発光素子への電流を遮断して異常な信号の発信を抑制するようにする。
電圧に応じた光信号パターンの例としては、電圧測定端子により測定された電圧が高いほどパルス間隔を狭くして発光のON/OFが切り替わるパターンや、単位時間当たりの発光時間が長くなるパターン等が挙げられる。
また、光信号パターンは、ソフトウェアでのデコードが可能なように設計されていることが好ましい。具体的には、下記式(1)で定められるpにつき、pが1以上であることが好ましく、1.5以上であることがより好ましく、1.75以上であることが特に好ましい。
p=log10{周期/(最長パルスの発信開始~発信終了までのパルス長さ×単電池の積層数)}  (1)
また、発光素子から発光する光の色が2色以上用いられていてもよい。この場合、異なる色を発する(異なる波長の光を発する)発光素子を2種類以上用いる。
発光素子から発光する光の色を2色以上とする場合、受光素子も発光素子の色の数に対応して2種類以上設ける必要がある。
発光素子から発光する光の色を2色以上とすることで、特定の信号の分離を容易にすることができる。特定の信号とは、電池に異常(異常高温、異常高電圧)があった際に出力される信号を意味する。
例えば、単電池の電圧を測定する通常の信号を出力する光の色と、電池に異常(異常高温、異常高電圧)があった際に出力する光の色を異なる色とすることで、信号が混信せず、重要な情報(異常状態であるという情報)を正確に送受信できる。
光の色を2色以上とする、とは、送受信する2種類以上の光の波長が分離していることを意味する。
例えば波長A、波長Bである2色を通信に使う場合、波長A(B)の発光に使う発光素子が波長B(A)の光を一定以上の強度で出さないようにすればよい。
具体的には、波長Aの発光に使う発光素子の波長Bでの強度が、波長Aの強度の1/nである、といった指標を使用して、2種類以上の光の波長が分離していることを定めることができる。上記nの値は2種類以上の光の波長や発光素子、受光素子の仕様により任意に定めることができる。
上記には、単電池の電圧を測定し、電圧に対応する光信号パターンを出力する例について説明したが、単電池の特性として電圧以外の特性を測定してもよい。例えば、単電池の温度を測定して温度に対応する光信号パターンを出力するようにしてもよい。
単電池の外部に出力された光信号パターンは、単電池の外部に設けられ、単電池とは絶縁状態にある受光素子(図示しない)により受信される。受光素子により光信号を電気信号に逆変換することで単電池内の状態を示す電気信号を得ることができる(フォトカプラと同様の機構)。
発光素子としては発光ダイオード等、受光素子としてはフォトトランジスタ等が挙げられる。
発光素子と受光素子が無線状態であり、電気的に絶縁されているため安全性の観点から好ましい。例えば、単電池内回路又は単電池外回路のどちらかで異常電圧が発生した場合(スイッチON/OFFなどに伴うパルス的な高電圧など)、その電圧がもう片方に伝わると、対の回路が破損する恐れがある。電気的に絶縁状態であるとこれらの破損を回避できるため好ましい。
本発明のリチウムイオン電池では、単電池の外周に設けられた枠部材内の複数箇所に電子部品がそれぞれ配置されており、単電池内の異なる部位における状態を個別に検出することができるようになっていることが好ましい。
図5は、図1に示すリチウムイオン電池において負極集電体を除いた状態を上面から模式的に示した上面図である。
図5には、枠部材8の内部の6カ所に電子部品10が設けられていることを示している。
この6カ所に設けられた電子部品10のそれぞれにつき、単電池内の状態を示す指標を個別に検出させ、ある特定の電子部品から得られた指標のみに異常値が見られたときに、その電子部品の近傍で不良が発生したことを推定することができる。
すなわち、単電池内の不良発生の原因特定を容易にすることができる。
単電池の枠部材内に設ける電子部品の数は特に限定されるものではなく、単電池の大きさや枠部材の大きさ、電子部品の大きさ等を考慮して任意に設定することができる。
また、枠部材内の複数箇所に電子部品を設ける場合に、電子部品の種類はすべて同じであってもよく、異なる電子部品の組合せであってもよい。
本発明のリチウムイオン電池において、単電池の上面視した面積は、図5において枠部材8の内側の面積、すなわち負極活物質層及び正極活物質層の主面の面積として定める。この面積が単電池の有効面積といえ、この面積が広いほど電池容量が大きい電池であるといえる。
単電池の上面視した面積が広くなると、単電池内部での特性のばらつきが生じやすくなるので、単電池の外周に設けられた枠部材内の複数箇所に電子部品をそれぞれ配置して単電池内の状態を示す指標を個別に検出させることが特に有効となる。
例えば、単電池の上面視した面積は600cm以上であることが好ましい。
また、単電池の上面視した面積と電子部品を配置する数の関係として、単電池の上面視した面積100cmあたりに1~2個の電子部品を配置することが好ましい。
本発明のリチウムイオン電池では、枠部材内に配線基板が設けられており、電子部品は配線基板に実装されていることが好ましい。
また、配線基板には電子部品に供給する電流及び/又は電圧を制御するための他の電子部品が実装されていることも好ましい。
枠部材に配線基板を設け、電子部品を配線基板に実装することにより、複数の機能を組み合わせて様々な測定や制御を行うことができる。
また、電子部品の仕様ごとに好ましい電流及び/又は電圧が異なるが、リチウムイオン電池から直接供給される電流及び/又は電圧が電子部品の仕様に適合しない場合がある。そのような場合に電子部品に供給する電流及び/又は電圧を制御するための他の電子部品を配線基板に実装して設けることにより、様々な電子部品を使用することができる。
図6は、枠部材に配線基板を設けたリチウムイオン電池において負極集電体を除いた状態を上面から模式的に示した上面図である。
図6に示す単電池11では、枠部材8に配線基板21が設けられており、電子部品20は配線基板21に実装されている。
図6には電子部品20としてはアンプ、IC等を想定した電子部品を描いており、電流及び/又は電圧を制御するための他の電子部品22としてはチップ抵抗を想定した電子部品を描いている。
実際に配線基板21に実装する電子部品の種類としてはこれらに限定されるものではない。また、複数の電子部品を組み合わせたモジュールを枠部材に設ける場合も、モジュールに配線基板が含まれる場合は、枠部材に配線基板を設ける場合の一態様に含まれる。
以下に、単電池を構成する各構成要素の好ましい態様について説明する。
正極活物質層には正極活物質が含まれる。
正極活物質としては、リチウムと遷移金属との複合酸化物{遷移金属が1種である複合酸化物(LiCoO、LiNiO、LiAlMnO、LiMnO及びLiMn等)、遷移金属元素が2種である複合酸化物(例えばLiFeMnO、LiNi1-xCo、LiMn1-yCo、LiNi1/3Co1/3Al1/3及びLiNi0.8Co0.15Al0.05)及び金属元素が3種類以上である複合酸化物[例えばLiMM’M’’(M、M’及びM’’はそれぞれ異なる遷移金属元素であり、a+b+c=1を満たす。例えばLiNi1/3Mn1/3Co1/3)等]等}、リチウム含有遷移金属リン酸塩(例えばLiFePO、LiCoPO、LiMnPO及びLiNiPO)、遷移金属酸化物(例えばMnO及びV)、遷移金属硫化物(例えばMoS及びTiS)及び導電性高分子(例えばポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン及びポリ-p-フェニレン及びポリビニルカルバゾール)等が挙げられ、2種以上を併用してもよい。
なお、リチウム含有遷移金属リン酸塩は、遷移金属サイトの一部を他の遷移金属で置換したものであってもよい。
正極活物質は、導電助剤及び被覆用樹脂で被覆された被覆正極活物質であることが好ましい。
正極活物質の周囲が被覆用樹脂で被覆されていると、電極の体積変化が緩和され、電極の膨張を抑制することができる。
導電助剤としては、金属系導電助剤[アルミニウム、ステンレス(SUS)、銀、金、銅及びチタン等]、炭素系導電助剤[グラファイト及びカーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック及びサーマルランプブラック等)等]、及びこれらの混合物等が挙げられる。
これらの導電助剤は1種単独で用いられてもよいし、2種以上併用してもよい。また、これらの合金又は金属酸化物として用いられてもよい。
なかでも、電気的安定性の観点から、より好ましくはアルミニウム、ステンレス、銀、金、銅、チタン、炭素系導電助剤及びこれらの混合物であり、さらに好ましくは銀、金、アルミニウム、ステンレス及び炭素系導電助剤であり、特に好ましくは炭素系導電助剤である。
またこれらの導電助剤としては、粒子系セラミック材料や樹脂材料の周りに導電性材料[好ましくは、上記した導電助剤のうち金属のもの]をめっき等でコーティングしたものでもよい。
導電助剤の形状(形態)は、粒子形態に限られず、粒子形態以外の形態であってもよく、カーボンナノファイバー、カーボンナノチューブ等、いわゆるフィラー系導電助剤として実用化されている形態であってもよい。
被覆用樹脂と導電助剤の比率は特に限定されるものではないが、電池の内部抵抗等の観点から、重量比率で被覆用樹脂(樹脂固形分重量):導電助剤が1:0.01~1:50であることが好ましく、1:0.2~1:3.0であることがより好ましい。
被覆用樹脂としては、特開2017-054703号公報に非水系二次電池活物質被覆用樹脂として記載されたものを好適に用いることができる。
また、正極活物質層は、被覆正極活物質に含まれる導電助剤以外にも導電助剤を含んでもよい。
導電助剤としては、上述した被覆正極活物質に含まれる導電助剤と同様のものを好適に用いることができる。
正極活物質層は、正極活物質を含み、正極活物質同士を結着する結着材を含まない非結着体であることが好ましい。
ここで、非結着体とは、正極活物質同士が、互いに結合していないことを意味し、結合とは不可逆的に正極活物質同士が固定されていることを意味する。
正極活物質層には、粘着性樹脂が含まれていてもよい。
粘着性樹脂としては、例えば、特開2017-054703号公報に記載された非水系二次電池活物質被覆用樹脂に少量の有機溶剤を混合してそのガラス転移温度を室温以下に調整したもの、及び、特開平10-255805公報に粘着剤として記載されたもの等を好適に用いることができる。
なお、粘着性樹脂は、溶媒成分を揮発させて乾燥させても固体化せずに粘着性(水、溶剤、熱などを使用せずに僅かな圧力を加えることで接着する性質)を有する樹脂を意味する。一方、結着材として用いられる溶液乾燥型の電極バインダーは、溶媒成分を揮発させることで乾燥、固体化して活物質同士を強固に接着固定するものを意味する。
従って、溶液乾燥型の電極バインダー(結着材)と粘着性樹脂とは異なる材料である。
正極活物質層の厚みは、特に限定されるものではないが、電池性能の観点から、150~600μmであることが好ましく、200~450μmであることがより好ましい。
負極活物質層には負極活物質が含まれる。
負極活物質としては、公知のリチウムイオン電池用負極活物質が使用でき、炭素系材料[黒鉛、難黒鉛化性炭素、アモルファス炭素、樹脂焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス等)及び炭素繊維等]、珪素系材料[珪素、酸化珪素(SiOx)、珪素-炭素複合体(炭素粒子の表面を珪素及び/又は炭化珪素で被覆したもの、珪素粒子又は酸化珪素粒子の表面を炭素及び/又は炭化珪素で被覆したもの並びに炭化珪素等)及び珪素合金(珪素-アルミニウム合金、珪素-リチウム合金、珪素-ニッケル合金、珪素-鉄合金、珪素-チタン合金、珪素-マンガン合金、珪素-銅合金及び珪素-スズ合金等)等]、導電性高分子(例えばポリアセチレン及びポリピロール等)、金属(スズ、アルミニウム、ジルコニウム及びチタン等)、金属酸化物(チタン酸化物及びリチウム・チタン酸化物等)及び金属合金(例えばリチウム-スズ合金、リチウム-アルミニウム合金及びリチウム-アルミニウム-マンガン合金等)等及びこれらと炭素系材料との混合物等が挙げられる。
また、負極活物質は、上述した被覆正極活物質と同様の導電助剤及び被覆用樹脂で被覆された被覆負極活物質であってもよい。
導電助剤及び被覆用樹脂としては、上述した被覆正極活物質と同様の導電助剤及び被覆用樹脂を好適に用いることができる。
また、負極活物質層は、被覆負極活物質に含まれる導電助剤以外にも導電助剤を含んでもよい。導電助剤としては、上述した被覆正極活物質に含まれる導電助剤と同様のものを好適に用いることができる。
負極活物質層は、正極活物質層と同様に、負極活物質同士を結着する結着材を含まない非結着体であることが好ましい。また、正極活物質層と同様に、粘着性樹脂が含まれていてもよい。
負極活物質層の厚みは、特に限定されるものではないが、電池性能の観点から、150~600μmであることが好ましく、200~450μmであることがより好ましい。
正極集電体及び負極集電体(以下まとめて単に集電体ともいう)を構成する材料としては、銅、アルミニウム、チタン、ステンレス鋼、ニッケル及びこれらの合金等の金属材料、並びに、焼成炭素、導電性高分子材料、導電性ガラス等が挙げられる。
これらの材料のうち、軽量化、耐食性、高導電性の観点から、正極集電体としてはアルミニウムであることが好ましく、負極集電体としては銅であることが好ましい。
また、集電体は、導電性高分子材料からなる樹脂集電体であることが好ましい。
集電体の形状は特に限定されず、上記の材料からなるシート状の集電体、及び、上記の材料で構成された微粒子からなる堆積層であってもよい。
集電体の厚さは、特に限定されないが、50~500μmであることが好ましい。
樹脂集電体を構成する導電性高分子材料としては例えば、導電性高分子や、樹脂に必要に応じて導電剤を添加したものを用いることができる。
導電性高分子材料を構成する導電剤としては、上述した被覆正極活物質に含まれる導電助剤と同様のものを好適に用いることができる。
導電性高分子材料を構成する樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリシクロオレフィン(PCO)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリフッ化ビニリデン(PVdF)、エポキシ樹脂、シリコーン樹脂又はこれらの混合物等が挙げられる。
電気的安定性の観点から、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)及びポリシクロオレフィン(PCO)が好ましく、さらに好ましくはポリエチレン(PE)、ポリプロピレン(PP)及びポリメチルペンテン(PMP)である。
セパレータとしては、ポリエチレン又はポリプロピレン製の多孔性フィルム、多孔性ポリエチレンフィルムと多孔性ポリプロピレンとの積層フィルム、合成繊維(ポリエステル繊維及びアラミド繊維等)又はガラス繊維等からなる不織布、及びそれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたもの等の公知のリチウムイオン電池用のセパレータが挙げられる。
正極活物質層及び負極活物質層には電解液が含まれる。
電解液としては、公知のリチウムイオン電池の製造に用いられる、電解質及び非水溶媒を含有する公知の電解液を使用することができる。
電解質としては、公知の電解液に用いられているもの等が使用でき、例えば、LiN(FSO、LiPF、LiBF、LiSbF、LiAsF及びLiClO等の無機酸のリチウム塩、LiN(CFSO、LiN(CSO及びLiC(CFSO等の有機酸のリチウム塩等が挙げられる。これらの内、電池出力及び充放電サイクル特性の観点から好ましいのはイミド系電解質[LiN(FSO、LiN(CFSO及びLiN(CSO等]及びLiPFである。
非水溶媒としては、公知の電解液に用いられているもの等が使用でき、例えば、ラクトン化合物、環状又は鎖状炭酸エステル、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン、スルホラン等及びこれらの混合物を用いることができる。
電解液の電解質濃度は、1~5mol/Lであることが好ましく、1.5~4mol/Lであることがより好ましく、2~3mol/Lであることがさらに好ましい。
電解液の電解質濃度が1mol/L未満であると、電池の充分な入出力特性が得られないことがあり、5mol/Lを超えると、電解質が析出してしまうことがある。
なお、電解液の電解質濃度は、リチウムイオン電池用電極又はリチウムイオン電池を構成する電解液を、溶媒などを用いずに抽出して、その濃度を測定することで確認することができる。
本発明のリチウムイオン電池は、単電池が複数積層された積層電池であり、積層電池を構成する単電池ごとの状態を枠部材内に配置された前記電子部品により個別に検出するようになっているものであってもよい。
図7は、積層電池の一例を模式的に示す断面図である。
図7には、図1に示す単電池1が4つ積層された積層電池101を示している。
積層電池101では、隣り合う単電池1の負極集電体9の上面と正極集電体7の下面が隣接するように直列に積層されている。この積層電池101は容器120に収納されている。
容器120の下面には正極引出部107が設けられ、容器120の上面には負極引出部109が設けられる。
正極引出部107は最下部の単電池1の正極集電体7と電気的に接続されており、負極引出部109は最上部の単電池1の負極集電体9と電気的に接続されている。
単電池1の枠部材8にはそれぞれ電子部品10が配置されている。
図7では、断面図において電子部品10が左右交互に並んでいる形態のものを示しているが、各単電池における電子部品の配置位置は積層電池を構成する他の単電池と同じ位置であってもよく異なっていてもよい。
各単電池の枠部材内には電子部品が配置されているので各単電池内の状態を個別に検出することができる。そのため、積層電池の使用時に不良が発生した場合に、どの単電池に不具合が生じているのかを特定することができる。そして、不具合が生じている単電池のみを交換すれば積層電池の大部分を活かしたまま、不良が発生した積層電池を再利用することができる。
積層電池においても、単電池の枠部材内に配置される電子部品は、光信号を出力する発光素子であってもよい。
単電池の枠部材に配置される電子部品が発光素子である場合の例は、図3及び図4を参照して説明した通りとすることができる。
また、積層電池を構成する各単電池の枠部材内に発光素子が配置される場合には、積層電池の側面に、発光素子からの光信号が導入される光導波路を設けることが好ましい。
そして、積層電池及び光導波路を収容する容器を設けて、光導波路の一端がその外に出るようにして、容器の外に出た光導波路の一端から導出される光信号を受光部で受光するようにしてもよい。
図8は、積層電池を構成する単電池の枠部材内に発光素子が埋め込まれて配置されている様子の一例を模式的に示す断面図である。
図8に示す積層電池102を構成する単電池31においては、発光素子30が枠部材8の側面に露出する形で枠部材8内に埋め込まれている。
積層電池102の側面に、発光素子30からの光信号が導入される光導波路130が設けられている。光導波路130には各単電池31の各発光素子30からの光信号が導入される。
積層電池102と光導波路130は容器120に収容されている。但し、光導波路130の一端は容器120の外に出るようになっていて、その一端から導出される光信号が受光素子141で受光されるようになっている。
受光素子141では光信号を電気信号に逆変換することで積層電池に含まれる単電池内の状態を示す電気信号を得ることができる。
図9は、積層電池を構成する単電池の枠部材内に発光素子が埋め込まれて配置されている様子の別の一例を模式的に示す断面図である。
図9に示す積層電池103を構成する単電池31においても、発光素子30が枠部材8の側面に露出する形で枠部材8内に埋め込まれている。
積層電池103の側面には、発光素子30毎に受光素子142が設けられている。
各受光素子142では信号を電気信号に逆変換することで積層電池に含まれる単電池内の状態を示す電気信号を得る。
積層電池103と受光素子142は容器120に収容されている。但し、受光素子142と接続された配線143の一端は容器120の外に出るようになっていて、配線143によって容器120の外に電気信号が出力されるようになっている。
図8及び図9を参照して説明したこれらの積層電池の場合でも、単電池の枠部材内に配置される電子部品が光信号を出力する発光素子であると、発光素子と受光素子が無線状態となる。発光素子と受光素子は電気的に絶縁されているため安全性の観点から好ましい。
本発明のリチウムイオン電池は、単電池が複数積層された積層電池が複数組み合わせられた電池モジュールであり、電池モジュールを構成する積層電池ごとの状態を枠部材内に配置された電子部品により個別に検出するようになっているものであってもよい。
リチウムイオン電池が、積層電池が複数組み合わせられた電池モジュールである場合も、単電池の枠部材内には電子部品が配置されているので各単電池内の状態を個別に検出することができる。そのため、電池モジュールの使用時に不良が発生した場合に、どの積層電池のどの単電池に不具合が生じているのかを特定することができる。そして、不具合が生じている単電池のみを交換すれば電池モジュールの大部分を活かしたまま、不良が発生した電池モジュールを再利用することができる。
図8に示す積層電池102における受光素子141の先、及び、図9に示す積層電池103における配線143の先に送信される信号は、積層電池の外側にあるハードウエア装置によって処理される。当該ハードウエア装置はバッテリーマネジメントシステム(BMS)の一部として機能するものであり、ハードウエア装置と積層電池は分離可能となっている。
一般的にハードウエア装置はその耐久年数が10年程度に設定されているが、積層電池は使用の方法によってはさらに長期間にわたって使用することができる。そのため、積層電池とハードウエア装置が分離可能であると、ハードウエア装置の耐久年数が経過した際に、積層電池を分解せずにハードウエア装置だけを交換して積層電池を引き続き使用することができる。このようにすることによってバッテリーマネジメントシステム全体の長寿命化を図ることができる。
次に、本発明のリチウムイオン電池の使用方法の一例である、本発明のリチウムイオン電池の劣化判定方法につき説明する。
本発明のリチウムイオン電池を用いた本発明のリチウムイオン電池の劣化判定方法では、枠部材内に配置された電子部品は、充電時の電位推移を計測するためのセンサであり、センサにより充電時の電位推移と所要時間をモニタリングし、通常状態よりも短時間で電位上昇が生じた場合にそのセンサにより計測された単電池内の部位において劣化が生じていると判定する。
本発明のリチウムイオン電池において枠部材内に配置された電子部品が充電時の電位推移を計測するためのセンサであると、単電池内の所定部位における充電時の電位推移と所要時間をモニタリングすることができる。
充電時においては電流を一定にするので、電位上昇の速度が速ければ単電池の容量が小さくなっている、すなわち単電池が劣化していることを意味する。
とくに、本発明のリチウムイオン電池が積層電池である場合には、枠部材内に配置された電子部品により単電池ごとに充電時の電位推移をモニタリングして、電位上昇の速度が速い単電池が特定された場合に、その単電池が特に劣化の進んでいる状態であることを特定することができる。
また、本発明のリチウムイオン電池が電池モジュールである場合も、枠部材内に配置された電子部品により単電池ごと又は積層電池ごとに充電時の電位推移をモニタリングして、電位上昇の速度が速い単電池又は積層電池が特定された場合に、その単電池又は積層電池が特に劣化の進んでいる状態であることを特定することができる。
例えば、通常状態において電位上昇が生じる時間を100%とした際に、電位上昇が生じる時間が70%以下となった際に、単電池が劣化しているものと判断できる。
次に、本発明のリチウムイオン電池の使用方法の別の一例である、本発明のリチウムイオン電池の劣化判定方法につき説明する。
本発明のリチウムイオン電池を用いた本発明のリチウムイオン電池の劣化判定方法では、単電池の外周に設けられた枠部材内の複数箇所に電子部品がそれぞれ配置されており、電子部品は電位を測定するセンサであり、単電池内の異なる部位における電位ばらつきを検出し、電位ばらつきが所定値を超えた場合に当該単電池において劣化が生じていると判定する。
本発明のリチウムイオン電池において、単電池の外周に設けられた枠部材内の複数箇所に電子部品がそれぞれ配置されており、電子部品が電位を測定するセンサであると、単電池内の異なる部位における電位ばらつきを検出することができる。
劣化していない電池においては1つの単電池内の電位は単電池のどこで測定しても同じになるが、単電池内の各センサから検出された電位がばらついている場合、その単電池には劣化が生じていると考えられる。
そのため、1つの単電池の枠部材内に電位を測定するセンサを複数箇所設けておき、単電池内の電位を個別に検出させることによって、劣化した単電池を特定することができる。
例えば、1つの単電池内の複数箇所で測定した電位のばらつきにつき、電圧測定値の平均値から±0.2V以上離れた測定点が生じた際に、単電池が劣化しているものと判断する。
また、本発明のリチウムイオン電池が積層電池である場合には、枠部材内に配置された電子部品により単電池ごとに電位をモニタリングして、単電池ごとの電位のばらつきを検出して、単電池間で電位のばらつきが生じている場合に、他の単電池よりも電位が異なっている単電池が特に劣化の進んでいる状態であることを特定することができる。
また、本発明のリチウムイオン電池が電池モジュールである場合も、枠部材内に配置された電子部品により単電池ごと又は積層電池ごとに充電時の電位推移をモニタリングして、単電池間又は積層電池間で電位のばらつきが生じている場合に、他の単電池又は積層電池よりも電位が異なっている単電池又は積層電池が特に劣化の進んでいる状態であることを特定することができる。
なお、本発明において枠部材内に電子部品を配置する構成は、上記に示した、枠部材内に電子部品が埋め込まれて配置される構成に限定されない。例えば、枠部材の外周面に形成された切欠部(凹部)に電子部品を収容する構成としても良く、枠部材が配置される領域(正極集電体と負極集電体との間の周縁部の領域)内に電子部品が配置されていれば他の様々な構成に変更することが可能である。
本発明のリチウムイオン電池は、単電池が有する枠部材内に電子部品を配置することにより、単電池内の状態を検出することができ、その結果、リチウムイオン電池内で不具合が生じている箇所を特定することができる。
また、本発明のリチウムイオン電池を積層電池又は電池モジュールに用いた場合、不具合が生じている単電池のみを交換すれば、積層電池又は電池モジュールの大部分を活かしたまま、不良が発生した積層電池又は電池モジュールを再利用することができる。
1、11、31 単電池
2 正極
3 負極
4 セパレータ
5 正極活物質層
6 負極活物質層
7 正極集電体
8 枠部材
9 負極集電体
10、20 電子部品
18 貫通穴
21 配線基板
22 他の電子部品
30 発光素子
101、102、103 積層電池
107 正極引出部
109 負極引出部
120 容器
130 光導波路
141、142 受光素子
143 配線

Claims (14)

  1. 正極集電体、正極活物質層、セパレータ、負極活物質層及び負極集電体が順に積層されてなる単電池を有するリチウムイオン電池であって、
    前記正極集電体及び前記負極集電体の間に配置され、前記正極活物質層、前記セパレータ、及び前記負極活物質層を封止する枠部材を有し、
    前記枠部材内には、単電池内の状態を検出する電子部品が配置されていることを特徴とするリチウムイオン電池。
  2. 前記電子部品は、単電池内の所定部位における温度、電圧、電流又はアコースティックエミッションを測定するセンサである請求項1に記載のリチウムイオン電池。
  3. 前記単電池の外周に設けられた枠部材内の複数箇所に電子部品がそれぞれ配置されており、
    単電池内の異なる部位における状態を個別に検出する請求項1又は2に記載のリチウムイオン電池。
  4. 前記電子部品は前記負極集電体及び前記正極集電体と電気的に接続されており、リチウムイオン電池からの電力供給を受ける請求項1~3のいずれかに記載のリチウムイオン電池。
  5. 前記負極集電体及び前記正極集電体は樹脂集電体であり、前記負極集電体及び前記正極集電体が前記電子部品に直接結合して電気的に接続されている請求項4に記載のリチウムイオン電池。
  6. 前記枠部材には電子部品を配置するための貫通穴が設けられており、前記貫通穴に前記電子部品が配置されていて、前記枠部材の厚さと前記電子部品の高さが略同一である請求項1~5のいずれかに記載のリチウムイオン電池。
  7. 前記枠部材内に配線基板が設けられており、前記電子部品は前記配線基板に実装されている請求項1~5のいずれかに記載のリチウムイオン電池。
  8. 前記配線基板には前記電子部品に供給する電流及び/又は電圧を制御するための他の電子部品が実装されている請求項7に記載のリチウムイオン電池。
  9. 前記電子部品は、単電池内の状態を示す信号を単電池の外部に無線出力する請求項1~8のいずれかに記載のリチウムイオン電池。
  10. 前記単電池が複数積層された積層電池であり、
    前記積層電池を構成する前記単電池ごとの状態を前記枠部材内に配置された前記電子部品により個別に検出する請求項1~9のいずれかに記載のリチウムイオン電池。
  11. 前記単電池が複数積層された積層電池が複数組み合わせられた電池モジュールであり、
    前記電池モジュールを構成する前記積層電池ごとの状態を前記枠部材内に配置された前記電子部品により個別に検出する請求項1~9のいずれかに記載のリチウムイオン電池。
  12. 前記枠部材内に配置された前記電子部品により単電池内の状態の検出を行う、行わないの切り替えをするスイッチを有し、
    外部からの信号が与えられた場合に前記スイッチを切り替えて単電池内の状態の検出を行う請求項1~11のいずれかに記載のリチウムイオン電池。
  13. 請求項1~12のいずれかに記載のリチウムイオン電池を用いたリチウムイオン電池の劣化判定方法であり、
    前記枠部材内に配置された前記電子部品は、充電時の電位推移を計測するためのセンサであり、
    上記センサにより充電時の電位推移と所要時間をモニタリングし、通常状態よりも短時間で電位上昇が生じた場合にそのセンサにより計測された単電池内の部位において劣化が生じていると判定することを特徴とするリチウムイオン電池の劣化判定方法。
  14. 請求項1~12のいずれかに記載のリチウムイオン電池を用いたリチウムイオン電池の劣化判定方法であり、
    前記単電池の外周に設けられた枠部材内の複数箇所に電子部品がそれぞれ配置されており、
    前記電子部品は電位を測定するセンサであり、
    単電池内の異なる部位における電位ばらつきを検出し、電位ばらつきが所定値を超えた場合に当該単電池において劣化が生じていると判定することを特徴とするリチウムイオン電池の劣化判定方法。
PCT/JP2020/012213 2019-03-20 2020-03-19 リチウムイオン電池、及び、リチウムイオン電池の劣化判定方法 WO2020189750A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080022669.4A CN113632264A (zh) 2019-03-20 2020-03-19 锂离子电池和锂离子电池的劣化判定方法
EP20774160.4A EP3926717A4 (en) 2019-03-20 2020-03-19 LITHIUM-ION BATTERY AND METHOD OF ASSESSING DETERIORATION OF A LITHIUM-ION BATTERY
US17/296,173 US12003000B2 (en) 2019-03-20 2020-03-19 Lithium ion battery and method for assessing deterioration of lithium ion battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019053159 2019-03-20
JP2019-053159 2019-03-20
JP2019-163176 2019-09-06
JP2019163176 2019-09-06

Publications (1)

Publication Number Publication Date
WO2020189750A1 true WO2020189750A1 (ja) 2020-09-24

Family

ID=72520351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012213 WO2020189750A1 (ja) 2019-03-20 2020-03-19 リチウムイオン電池、及び、リチウムイオン電池の劣化判定方法

Country Status (5)

Country Link
EP (1) EP3926717A4 (ja)
JP (2) JP6928140B2 (ja)
CN (1) CN113632264A (ja)
TW (1) TW202040153A (ja)
WO (1) WO2020189750A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158515A1 (ja) * 2021-01-20 2022-07-28 Apb株式会社 リチウムイオン電池の良否推定方法、リチウムイオン電池の良否推定装置及びコンピュータプログラム
JP2022185439A (ja) * 2021-06-02 2022-12-14 長瀬産業株式会社 判定方法、受光装置およびプログラム
WO2023171746A1 (ja) * 2022-03-11 2023-09-14 Apb株式会社 電池モジュール及び電池モジュールの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022154390A (ja) * 2021-03-30 2022-10-13 Apb株式会社 単電池ユニットおよび単電池ユニットの製造方法
JP2022172639A (ja) * 2021-05-06 2022-11-17 三洋化成工業株式会社 単電池及び電池モジュール
WO2023127964A1 (ja) * 2021-12-28 2023-07-06 Apb株式会社 電池モジュール及びその製造方法
WO2023123234A1 (zh) * 2021-12-30 2023-07-06 宁德新能源科技有限公司 电芯、电池及用电设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106531A (ja) * 1996-09-25 1998-04-24 Asahi Chem Ind Co Ltd パッケージ扁平型電池
JPH10255805A (ja) 1997-03-06 1998-09-25 Nitto Denko Corp 電池活物質固定用もしくは活物質含有接着剤又は粘着剤
JP2007242593A (ja) * 2006-02-13 2007-09-20 Nissan Motor Co Ltd 電池モジュール、組電池及びそれらの電池を搭載した車両
US20130216867A1 (en) * 2012-01-26 2013-08-22 Li-Tec Battery Gmbh Electrochemical energy converter device with a cell housing, battery with at least two of these electrochemical energy converter devices and alsomethod for producing an electrochemical energy converter device
JP2017054703A (ja) 2015-09-09 2017-03-16 三洋化成工業株式会社 非水系二次電池活物質被覆用樹脂、非水系二次電池用被覆活物質及び非水系二次電池用被覆活物質の製造方法
JP2017224451A (ja) * 2016-06-14 2017-12-21 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG 蓄電素子
JP2018125213A (ja) 2017-02-02 2018-08-09 三洋化成工業株式会社 リチウムイオン電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008631A (ja) * 2000-06-16 2002-01-11 Mitsubishi Heavy Ind Ltd 内部短絡検出装置、内部エネルギ吸収装置及び二次電池
JP2007335352A (ja) * 2006-06-19 2007-12-27 Sony Corp 非水電解質二次電池及び電池制御システム
JP5219587B2 (ja) * 2008-03-31 2013-06-26 三洋電機株式会社 ラミネート式電池及びそのラミネート式電池を備えた電池モジュール
JP2009272113A (ja) * 2008-05-07 2009-11-19 Nippon Soken Inc 蓄電装置
JP2010040318A (ja) * 2008-08-05 2010-02-18 Toyota Motor Corp 二次電池のae信号発生部位検出方法およびその装置
JP5994240B2 (ja) * 2011-12-02 2016-09-21 日産自動車株式会社 組電池の制御装置
JP5568583B2 (ja) * 2012-03-08 2014-08-06 株式会社日立製作所 リチウムイオン二次電池システム、リチウムイオン二次電池の検査方法、リチウムイオン二次電池の制御方法
WO2013139463A1 (de) * 2012-03-21 2013-09-26 Li-Tec Battery Gmbh Wandlerzelle mit einem zellgehäuse, batterie mit zumindest zwei dieser wandlerzellen und verfahren zum herstellen einer wandlerzelle
FR3011336B1 (fr) * 2013-09-30 2017-06-09 Commissariat Energie Atomique Procede de surveillance d'une batterie li-ion et dispositif de surveillance pour sa mise en oeuvre
US9990578B2 (en) * 2014-05-13 2018-06-05 Arizon Board Of Regents On Behalf Of Arizona State University Redox active polymer devices and methods of using and manufacturing the same
JP6978207B2 (ja) * 2016-02-12 2021-12-08 三洋化成工業株式会社 リチウムイオン電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106531A (ja) * 1996-09-25 1998-04-24 Asahi Chem Ind Co Ltd パッケージ扁平型電池
JPH10255805A (ja) 1997-03-06 1998-09-25 Nitto Denko Corp 電池活物質固定用もしくは活物質含有接着剤又は粘着剤
JP2007242593A (ja) * 2006-02-13 2007-09-20 Nissan Motor Co Ltd 電池モジュール、組電池及びそれらの電池を搭載した車両
US20130216867A1 (en) * 2012-01-26 2013-08-22 Li-Tec Battery Gmbh Electrochemical energy converter device with a cell housing, battery with at least two of these electrochemical energy converter devices and alsomethod for producing an electrochemical energy converter device
JP2017054703A (ja) 2015-09-09 2017-03-16 三洋化成工業株式会社 非水系二次電池活物質被覆用樹脂、非水系二次電池用被覆活物質及び非水系二次電池用被覆活物質の製造方法
JP2017224451A (ja) * 2016-06-14 2017-12-21 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG 蓄電素子
JP2018125213A (ja) 2017-02-02 2018-08-09 三洋化成工業株式会社 リチウムイオン電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3926717A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158515A1 (ja) * 2021-01-20 2022-07-28 Apb株式会社 リチウムイオン電池の良否推定方法、リチウムイオン電池の良否推定装置及びコンピュータプログラム
JP2022185439A (ja) * 2021-06-02 2022-12-14 長瀬産業株式会社 判定方法、受光装置およびプログラム
JP7238018B2 (ja) 2021-06-02 2023-03-13 長瀬産業株式会社 判定方法、受光装置およびプログラム
WO2023171746A1 (ja) * 2022-03-11 2023-09-14 Apb株式会社 電池モジュール及び電池モジュールの製造方法

Also Published As

Publication number Publication date
CN113632264A (zh) 2021-11-09
JP2021182556A (ja) 2021-11-25
TW202040153A (zh) 2020-11-01
US20220021089A1 (en) 2022-01-20
EP3926717A1 (en) 2021-12-22
EP3926717A4 (en) 2022-04-27
JP2021044230A (ja) 2021-03-18
JP6928140B2 (ja) 2021-09-01

Similar Documents

Publication Publication Date Title
WO2020189750A1 (ja) リチウムイオン電池、及び、リチウムイオン電池の劣化判定方法
WO2021045222A1 (ja) 二次電池モジュール
WO2021045223A1 (ja) リチウムイオン電池モジュール
US20230358813A1 (en) Examination method and manufacturing method for assembled battery
CN114207930A (zh) 锂离子电池模块及电池组
WO2021241637A1 (ja) 単電池ユニット
US12003000B2 (en) Lithium ion battery and method for assessing deterioration of lithium ion battery
JP7102051B2 (ja) リチウムイオン電池モジュール
JP2022045668A (ja) リチウムイオン電池及び再生電極活物質の製造方法
WO2022220297A1 (ja) 電池モジュールの管理装置およびその管理方法
JP7090683B2 (ja) 単電池の検査方法、及び、組電池の製造方法
JP2022164044A (ja) 電池モジュールの管理装置およびその管理方法
WO2023136353A1 (ja) 電池の検査方法
JP2022164043A (ja) 電池モジュールの管理装置およびその管理方法
WO2021157741A1 (ja) リチウムイオン電池システムおよび電池状態推定システム
WO2023120732A1 (ja) 電池モジュール
JP2022030073A (ja) リチウムイオン電池モジュールおよびその制御方法
JP2021082592A (ja) 検査方法、及び、組電池の製造方法
JP2022176621A (ja) 電池シートの検査方法、電池シートの製造方法、及び、組電池の製造方法
JP2021044151A (ja) リチウムイオン電池モジュール及びリチウムイオン電池モジュールの充電方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020774160

Country of ref document: EP

Effective date: 20210916

NENP Non-entry into the national phase

Ref country code: JP