WO2020188927A1 - マグネトプランバイト型六方晶フェライト粉体、電波吸収体、及びマグネトプランバイト型六方晶フェライト粉体の共鳴周波数を制御する方法 - Google Patents

マグネトプランバイト型六方晶フェライト粉体、電波吸収体、及びマグネトプランバイト型六方晶フェライト粉体の共鳴周波数を制御する方法 Download PDF

Info

Publication number
WO2020188927A1
WO2020188927A1 PCT/JP2019/049902 JP2019049902W WO2020188927A1 WO 2020188927 A1 WO2020188927 A1 WO 2020188927A1 JP 2019049902 W JP2019049902 W JP 2019049902W WO 2020188927 A1 WO2020188927 A1 WO 2020188927A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetoplumbite
powder
hexagonal ferrite
radio wave
type hexagonal
Prior art date
Application number
PCT/JP2019/049902
Other languages
English (en)
French (fr)
Inventor
橋本 浩一
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201980094053.5A priority Critical patent/CN113574021B/zh
Priority to KR1020217027114A priority patent/KR102538732B1/ko
Priority to EP19920317.5A priority patent/EP3943451A4/en
Priority to JP2021506169A priority patent/JP7179959B2/ja
Publication of WO2020188927A1 publication Critical patent/WO2020188927A1/ja
Priority to US17/469,166 priority patent/US20210407715A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0045Mixed oxides or hydroxides containing aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/348Hexaferrites with decreased hardness or anisotropy, i.e. with increased permeability in the microwave (GHz) range, e.g. having a hexagonal crystallographic structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0075Magnetic shielding materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Definitions

  • the present disclosure relates to a method for controlling the resonance frequency of a magnetoplumbite type hexagonal ferrite powder, a radio wave absorber, and a magnetoplumbite type hexagonal ferrite powder.
  • radio wave interference There are problems such as malfunctions and failures of electronic devices due to the above.
  • radio wave absorbers are made to absorb unnecessary radio waves to prevent reflection of radio waves.
  • the radio wave absorber As the radio wave absorber, the one using a magnetic material is often used. Radio waves incident on a radio wave absorber containing a magnetic material generate a magnetic field in the magnetic material. When the generated magnetic field is reduced to the energy of radio waves, some energy is lost and absorbed. Therefore, in the radio wave absorber containing the magnetic material, the frequency band in which the effect is exerted differs depending on the type of the magnetic material used.
  • Japanese Patent No. 4674380 describes the composition formula AFe (12-x) Al x O 19 , where A is one or more of Sr, Ba, Ca, and Pb, x: 1.0 to 2.2, A magnetic powder for a radio wave absorber having a peak particle size of 10 ⁇ m or more in the laser diffraction scattering particle size distribution is described in the magnetic powder of the magnetoplumbite type hexagonal ferrite represented by. According to the magnetic powder for a radio wave absorber described in Japanese Patent No. 4674380, it is said that it exhibits excellent radio wave absorption performance in the vicinity of 76 GHz.
  • radio wave absorber capable of exhibiting excellent radio wave absorption performance in the target frequency band (particularly, 60 GHz to 90 GHz).
  • the present inventor presents as a magnetic material suitable for a radio wave absorber, a magnetoplumbite-type hexagonal ferrite in which a part of iron is replaced with aluminum (hereinafter, also referred to as "Al-substituted magnetic plumbite-type hexagonal ferrite"). I paid attention to. However, it is very difficult to match the resonance frequency of the Al-substituted magnetoplumbite-type hexagonal ferrite with the target frequency band.
  • the present inventor has a correlation between the ratio of aluminum atoms to iron atoms in Al-substituted magnetoplumbite-type hexagonal ferrite and the resonance frequency of Al-substituted magnetoplumbite-type hexagonal ferrite. It has been found that the resonance frequency of the Al-substituted magnetoplumbite-type hexagonal ferrite can be controlled to a desired value by adjusting the ratio of the aluminum atom to the iron atom in the Al-substituted magnetoplumbite-type hexagonal ferrite.
  • An object to be solved by one embodiment of the present invention is to provide a magnetoplumbite-type hexagonal ferrite powder having a desired resonance frequency in the frequency band of 60 GHz to 90 GHz.
  • An object to be solved by another embodiment of the present invention is to provide a radio wave absorber containing the above-mentioned magnetoplumbite-type hexagonal ferrite powder.
  • a problem to be solved by another embodiment of the present invention is that the resonance frequency of the magnetoplumbite-type hexagonal ferrite powder can be satisfactorily controlled in the frequency band of 60 GHz to 90 GHz. It is to provide a method of controlling the resonance frequency of a powder.
  • Means for solving the above problems include the following aspects. ⁇ 1> A powder of a magnetoplumbite-type hexagonal ferrite represented by the following formula (1) and a powder of a compound represented by the following formula (2) are contained, and an external magnetic field of 50 kOe is applied. A magnetoplumbite-type hexagonal ferrite powder in which the magnetic field strength H ⁇ , which is 90% of the amount of magnetization at the time, satisfies 19 kOe ⁇ H ⁇ ⁇ 28 kOe.
  • A represents at least one metal element selected from the group consisting of Sr, Ba, Ca, and Pb, and x satisfies 1.5 ⁇ x ⁇ 8.0.
  • a a represents Sr, Ba, Ca, and at least one metal element selected from the group consisting of Pb.
  • ⁇ 2> The magnetoplumbite-type hexagonal ferrite powder according to ⁇ 1>, wherein A in the above formula (1) is Sr.
  • ⁇ 3> The magnetoplumbite-type hexagonal ferrite powder according to ⁇ 1> or ⁇ 2>, which has been surface-treated.
  • ⁇ 4> A radio wave absorber containing the magnetoplumbite-type hexagonal ferrite powder according to any one of ⁇ 1> to ⁇ 3> and a binder, and having a planar shape.
  • ⁇ 5> A radio wave absorber containing the magnetoplumbite-type hexagonal ferrite powder according to any one of ⁇ 1> to ⁇ 3> and a binder, and having a three-dimensional shape.
  • A represents at least one metal element selected from the group consisting of Sr, Ba, Ca, and Pb, and x satisfies 1.5 ⁇ x ⁇ 8.0.
  • a a represents Sr, Ba, Ca, and at least one metal element selected from the group consisting of Pb.
  • a magnetoplumbite-type hexagonal ferrite powder having a desired resonance frequency in the frequency band of 60 GHz to 90 GHz is provided.
  • a radio wave absorber containing the magnetoplumbite type hexagonal ferrite powder is provided.
  • the resonance of the magnetoplumbite-type hexagonal ferrite powder can be satisfactorily controlled in the frequency band of 60 GHz to 90 GHz. A method of controlling the frequency is provided.
  • the numerical range indicated by using "-" in the present disclosure means a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
  • a combination of two or more preferred embodiments is a more preferred embodiment.
  • the amount of each component means the total amount of the plurality of substances when there are a plurality of substances corresponding to each component, unless otherwise specified.
  • process is included in this term as long as the intended purpose of the process is achieved, not only in an independent process but also in cases where it cannot be clearly distinguished from other processes.
  • x' refers to the ratio of aluminum atoms to 100 atomic% of iron atoms in the magnetoplumbite type hexagonal ferrite powder.
  • the conversion coefficient from the non-SI unit “Oe” to the SI unit “A / m” is “10 3 / 4 ⁇ ”.
  • " ⁇ " is 3.1416.
  • the conversion coefficient from the non-SI unit “emu” to the SI unit “Am 2 " is "10 -3 ".
  • the magnetoplumbite-type hexagonal ferrite powder of the present disclosure includes a magnetoplumbite-type hexagonal ferrite powder represented by the formula (1) and a powder of a compound represented by the formula (2).
  • the magnetic field strength H ⁇ which is 90% of the magnetization amount when an external magnetic field of 50 kOe is applied, satisfies 19 kOe ⁇ H ⁇ ⁇ 28 kOe.
  • magnetic field strength H ⁇ which is 90% of the amount of magnetization when an external magnetic field of 50 kOe is applied
  • H ⁇ magnetic field strength
  • the present inventor has focused on a magnetoplumbite-type hexagonal ferrite in which a part of iron is replaced with aluminum (that is, an Al-substituted magnetic plumbite-type hexagonal ferrite) as a magnetic material suitable for a radio wave absorber.
  • aluminum that is, an Al-substituted magnetic plumbite-type hexagonal ferrite
  • it has been very difficult to match the resonance frequency of the Al-substituted magnetoplumbite-type hexagonal ferrite with the target frequency band.
  • the present inventor has conducted a diligent study and correlates between the ratio of aluminum atoms to iron atoms in Al-substituted magnetoplumbite-type hexagonal ferrite and the resonance frequency of Al-substituted magnetoplumbite-type hexagonal ferrite.
  • the resonance frequency of the Al-substituted magnetoplumbite-type hexagonal ferrite can be controlled to a desired value by adjusting the ratio of the aluminum atom to the iron atom in the Al-substituted magnetoplumbite-type hexagonal ferrite.
  • a compound containing Al and not containing Fe Detailedly, the present disclosure. It was found that a certain amount of the compound represented by the formula (2) in (2) was produced as a by-product.
  • the resonance frequency of the powder determines the ratio of aluminum atoms to iron atoms in Al-substituted magnetoplumbite-type hexagonal ferrite. By adjusting, it may deviate from the pre-designed resonance frequency.
  • the magnetoplumbite-type hexagonal ferrite powder of the present disclosure contains the magnetoplumbite-type hexagonal ferrite powder represented by the formula (1), and when an external magnetic field of 50 kOe is applied. Since the magnetic field strength H ⁇ , which is 90% of the amount of magnetization, satisfies 19 kOe ⁇ H ⁇ ⁇ 28 kOe, the desired resonance frequency is contained in the frequency band of 60 GHz to 90 GHz even though the powder of the compound represented by the formula (2) is contained. Has.
  • the magnetic field strength H ⁇ which is 90% of the amount of magnetization when an external magnetic field of 50 kOe is applied, is not easily affected by the presence of the powder of the compound represented by the formula (2). Therefore, it is presumed to have a desired resonance frequency in the frequency band of 60 GHz to 90 GHz while containing the powder of the compound represented by the formula (2).
  • Japanese Patent No. 4674380 does not mention that the resonance frequency of the magnetoplumbite-type hexagonal ferrite is adjusted to the target frequency band. Further, Japanese Patent No. 4674380 states that when a powder of magnetoplumbite-type hexagonal ferrite is mass-produced by the solid-phase method, a certain amount of powder of the compound represented by the formula (2) is produced. , None is mentioned.
  • the magnetic field strength H ⁇ which is 90% of the magnetization amount when an external magnetic field of 50 kOe is applied, satisfies 19 kOe ⁇ H ⁇ ⁇ 28 kOe.
  • the magnetic field strength H ⁇ and the resonance frequency show a correlation.
  • "19 kOe ⁇ H ⁇ ⁇ 28 kOe” means “60 GHz ⁇ resonance frequency ⁇ 90 GHz”.
  • the magnetoplobite type hexagonal ferrite powder of the present disclosure is supposed to be used for a millimeter-wave radar having a frequency band of 60 GHz to 90 GHz, for example, the magnetic field strength H ⁇ satisfies 19 kOe ⁇ H ⁇ ⁇ 28 kOe.
  • the magnetic field strength H ⁇ preferably satisfies 20 kOe ⁇ H ⁇ ⁇ 27 kOe, more preferably 21 kOe ⁇ H ⁇ ⁇ 26 kOe, and further preferably 22 kOe ⁇ H ⁇ ⁇ 25 kOe.
  • the magnetic field strength H ⁇ of the magnetoplumbite-type hexagonal ferrite powder of the present disclosure is a value obtained by the following method. Using a vibrating sample magnetometer, the magnetic field hexagonal ferrite powder with respect to the applied magnetic field under the conditions of a maximum applied magnetic field of 50 kOe and a magnetic field sweep rate of 25 Oe / s (seconds) in an environment with an ambient temperature of 23 ° C. Measure the intensity of magnetization. Then, based on the measurement result, a magnetic field (H) -magnetization (M) curve of the magnetoplumbite type hexagonal ferrite powder is obtained.
  • H magnetic field
  • M magnetization
  • a magnetic field strength that is 90% of the amount of magnetization at an applied magnetic field of 50 kOe is obtained, and this magnetic field strength is defined as H ⁇ .
  • the vibration sample type magnetometer for example, TM-TRVSM5050-SMSL type (model number) manufactured by Tamagawa Seisakusho Co., Ltd. can be preferably used. However, the vibration sample type magnetometer is not limited to this.
  • the coercive force (Hc) of the magnetoplumbite-type hexagonal ferrite powder of the present disclosure is not particularly limited, but is preferably 2.5 kOe or more, more preferably 4.0 kOe or more, for example. It is more preferably 0 kOe or more.
  • the coercive force (Hc) of the magnetoplumbite-type hexagonal ferrite powder of the present disclosure is 2.5 kOe or more, a radio wave absorber having better radio wave absorption performance can be manufactured.
  • the upper limit of the coercive force (Hc) of the magnetoplumbite-type hexagonal ferrite powder of the present disclosure is not particularly limited, but is preferably 18 kOe or less, for example.
  • the saturation magnetization ( ⁇ s) per unit mass of the magnetoplumbite-type hexagonal ferrite powder of the present disclosure is not particularly limited, but is preferably 10 emu / g or more, and more preferably 20 emu / g or more. It is preferably 30 emu / g or more, and more preferably 30 emu / g or more.
  • the saturation magnetization ( ⁇ s) per unit mass of the magnetoplumbite-type hexagonal ferrite powder of the present disclosure is 10 emu / g or more, a radio wave absorber having better radio wave absorption performance can be manufactured.
  • the upper limit of the saturation magnetization ( ⁇ s) per unit mass of the magnetoplumbite-type hexagonal ferrite powder of the present disclosure is not particularly limited, but is preferably 60 emu / g or less, for example.
  • the coercive force (Hc) and saturation magnetization ( ⁇ s) per unit mass of the magnetoplumbite-type hexagonal ferrite powder of the present disclosure are determined by using a vibrating sample magnetometer in an environment with an ambient temperature of 23 ° C. and a maximum applied magnetic field. It is a value measured under the conditions of 50 kOe and a magnetic field sweep speed of 25 Oe / s (sec).
  • the vibration sample type magnetometer for example, TM-TRVSM5050-SMSL type (model number) manufactured by Tamagawa Seisakusho Co., Ltd. can be preferably used. However, the vibration sample type magnetometer is not limited to this.
  • the magnetoplumbite-type hexagonal ferrite powder of the present disclosure is a powder of a magnetoplumbite-type hexagonal ferrite represented by the following formula (1) (hereinafter, also referred to as “specific magnetoplumbite-type hexagonal ferrite”). Includes a body (so-called aggregate of particles).
  • A represents at least one metal element selected from the group consisting of Sr, Ba, Ca, and Pb, and x satisfies 1.5 ⁇ x ⁇ 8.0.
  • a in the formula (1) is at least one metal element selected from the group consisting of Sr, Ba, Ca, and Pb, the type and number of the metal elements are not particularly limited.
  • a in the formula (1) is preferably at least one metal element selected from the group consisting of Sr, Ba, and Ca, for example, from the viewpoint of operability and handleability.
  • a in the formula (1) preferably contains Sr, and more preferably Sr, in that it can exhibit excellent radio wave absorption performance in the vicinity of, for example, 79 GHz.
  • X in the formula (1) preferably satisfies 1.5 ⁇ x ⁇ 8.0, preferably 1.5 ⁇ x ⁇ 6.0, and more preferably 1.5 ⁇ x ⁇ 4.0. , 1.5 ⁇ x ⁇ 3.0 is more preferable.
  • x in the formula (1) is 1.5 or more, radio waves in a frequency band higher than 60 GHz can be absorbed.
  • x in the formula (1) is 8.0 or less, the magnetoplumbite-type hexagonal ferrite has magnetism.
  • Specific magnetoplumbite type hexagonal ferrites include SrFe (10.44) Al (1.56) O 19 , SrFe (10.26) Al (1.74) O 19 , SrFe (10.10) Al (1 .90) O 19 , SrFe (10.04) Al (1.96) O 19 , SrFe (10.00) Al (2.00) O 19 , SrFe (9.95) Al (2.05) O 19 , SrFe (9.94) Al (2.06) O 19 , SrFe (9.88) Al (2.12) O 19 , SrFe (9.85) Al (2.15) O 19 , SrFe (9.
  • the composition of the specific magnetoplumbite-type hexagonal ferrite is confirmed by high-frequency inductively coupled plasma (ICP) emission spectroscopy.
  • ICP inductively coupled plasma
  • a pressure-resistant container containing 12 mg of sample powder and 10 mL of a hydrochloric acid aqueous solution of 4 mol / L (liter; the same applies hereinafter) is held in an oven at a set temperature of 120 ° C. for 12 hours to obtain a solution.
  • 30 mL of pure water is added to the obtained solution, and the mixture is filtered using a 0.1 ⁇ m membrane filter. Elemental analysis of the filtrate thus obtained is performed using a radio frequency inductively coupled plasma (ICP) emission spectroscopic analyzer.
  • ICP radio frequency inductively coupled plasma
  • the content of each metal atom with respect to 100 atomic% of iron atoms is determined. Confirm the composition based on the determined content.
  • the ICP emission spectroscopic analyzer for example, ICPS-8100 (model number) manufactured by Shimadzu Corporation can be preferably used. However, the ICP emission spectroscopic analyzer is not limited to this.
  • the crystal phase of the specific magnetoplumbite-type hexagonal ferrite may be a single phase or may not be a single phase, but is preferably a single phase.
  • the specific magnetoplumbite-type hexagonal ferrite whose crystal phase is a single phase is a specific magnetoplumbite-type hexagonal ferrite whose crystal phase is not a single phase (for example, the crystal phase is two phases) when the aluminum content is the same. Compared to hexagonal ferrite, it has a higher coercive force and tends to be superior in magnetic properties.
  • the case where "the crystal phase is monophasic" indicates the crystal structure of a specific magnetoplumbite-type hexagonal ferrite having an arbitrary composition in powder X-ray diffraction (XRD: X-Ray-Diffraction) measurement. This refers to the case where only one type of diffraction pattern is observed.
  • XRD X-Ray-Diffraction
  • the crystal phase is not a single phase
  • a plurality of specific magnetoplumbite-type hexagonal ferrites having an arbitrary composition are mixed, and two or more types of diffraction patterns are observed, or a specific magnetoplumbite is observed.
  • a diffraction pattern of a crystal other than type hexagonal ferrite is observed.
  • the crystal phase is not a single phase
  • a diffraction pattern in which a main peak and other peaks are present can be obtained.
  • the "main peak” refers to the peak having the highest value of diffraction intensity in the observed diffraction pattern.
  • the magnetoplumbite-type hexagonal ferrite powder of the present disclosure contains a specific magnesium-plumbite-type hexagonal ferrite powder that is not a single phase
  • the diffraction intensity of the main peak obtained by powder X-ray diffraction (XRD) measurement is obtained.
  • the ratio (Is / Im) of the value of the diffraction intensity of other peaks (hereinafter referred to as “Is”) to the value of (hereinafter referred to as “Im”) is, for example, a radio wave having better radio absorption performance. From the viewpoint of producing an absorber, it is preferably 1/2 or less, and more preferably 1/5 or less.
  • the respective maximum values are defined as Im and Is, and the ratio is obtained.
  • the maximum intensity value of the shoulder portion is defined as Is and the ratio is obtained. If there are two or more other peaks, the total value of each diffraction intensity is defined as Is, and the ratio is obtained.
  • a database of the International Center for Diffraction Data can be referred to.
  • ICDD International Center for Diffraction Data
  • the diffraction pattern of magnetoplumbite-type hexagonal ferrite containing Sr refer to "00-033-1340" of the International Center for Diffraction Data (ICDD).
  • ICDD International Center for Diffraction Data
  • the crystal phase of the specific magnetoplumbite-type hexagonal ferrite is a single phase.
  • the measurement is performed under the following conditions using a powder X-ray diffractometer.
  • the powder X-ray diffractometer for example, X'Pert Pro (product name) manufactured by PANalytical Co., Ltd. can be preferably used.
  • the powder X-ray diffractometer is not limited to this.
  • the shape of the specific magnetoplumbite-type hexagonal ferrite particles is not particularly limited.
  • the shape of the specific magnetoplumbite-type hexagonal ferrite particles is, for example, a flat plate shape, an indefinite shape, or the like.
  • the size of the particles of the specific magnetoplumbite-type hexagonal ferrite is not particularly limited.
  • the specific magnetic plumbite type hexagonal ferrite powder has, for example, a cumulative 50% diameter (D 50 ) of 2 ⁇ m to 100 ⁇ m in a number-based particle size distribution measured by a laser diffraction / scattering method.
  • the cumulative 50% diameter (D 50 ) of the specific magnetoplumbite-type hexagonal ferrite powder is specifically a value measured by the following method. Cyclohexanone (500 mL) is added to 10 mg of a specific magnetoplandite hexagonal ferrite powder to dilute it, and then the mixture is stirred for 30 seconds using a shaker, and the obtained liquid is used as a sample for particle size distribution measurement. Next, the particle size distribution is measured by the laser diffraction / scattering method using the sample for measuring the particle size distribution. A laser diffraction / scattering type particle size distribution measuring device is used as the measuring device.
  • the laser diffraction / scattering type particle size distribution measuring device for example, Partica LA-960 (product name) manufactured by HORIBA, Ltd. can be preferably used.
  • the laser diffraction / scattering type particle size distribution measuring device is not limited to this.
  • the magnetoplumbite-type hexagonal ferrite powder of the present disclosure may contain only one type of specific magnetoplumbite-type hexagonal ferrite powder, or may contain two or more types.
  • the content of the specific magnetoplumbite-type hexagonal ferrite powder in the magnetoplumbite-type hexagonal ferrite powder of the present disclosure is not particularly limited, but for example, from the viewpoint that a radio wave absorber having better radio wave absorption performance can be produced.
  • the amount is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more, based on the total mass of the magnetoplumbite type hexagonal ferrite powder.
  • the upper limit of the content of the specific magnetoplumbite-type hexagonal ferrite powder in the magnesium-type hexagonal ferrite powder of the present disclosure is not particularly limited, and for example, the total mass of the magnesium-type hexagonal ferrite powder is not particularly limited. On the other hand, 99% by mass or less can be mentioned.
  • the magnetoplumbite-type hexagonal ferrite powder of the present disclosure includes a powder (so-called aggregate of particles) of a compound represented by the formula (2) (hereinafter, also referred to as a “specific compound”).
  • the origin of the specific compound contained in the magnetoplumbite-type hexagonal ferrite powder of the present disclosure is not particularly limited. According to the study of the present inventor, it is known that the specific compound is a compound produced in a certain amount as a by-product in the process of producing the powder of the specific magnetoplumbite-type hexagonal ferrite. However, the specific compound is not limited to those derived from such a production method.
  • the magnetoplumbite-type hexagonal ferrite powder of the present disclosure may contain a specific compound by intentional addition, for example, or may inevitably contain a specific compound.
  • a a represents Sr, Ba, Ca, and at least one metal element selected from the group consisting of Pb.
  • a a in the formula (2) is at least one metal element selected from the group consisting of Sr, Ba, Ca, and Pb, the type and number of the metal elements are not particularly limited.
  • a a in the formula (2) usually corresponds to the type A in the formula (1).
  • Specific compounds include, for example, SrAl 2 O 4 , BaAl 2 O 4 , CaAl 2 O 4 , and PbAl 2 O 4 .
  • a in the formula (1) is Sr, Ba, and Ca
  • the specific compound is at least one selected from the group consisting of SrAl 2 O 4 , BaAl 2 O 4 , and CaAl 2 O 4. Seeds are mentioned.
  • the shape of the particles of the specific compound is not particularly limited.
  • the shape of the particles of the specific compound is, for example, a flat plate shape, an indefinite shape, or the like.
  • the size of the particles of the specific compound is not particularly limited.
  • the powder of the specific compound has, for example, a cumulative 50% diameter (D 50 ) of 2 ⁇ m to 100 ⁇ m in the number-based particle size distribution measured by the laser diffraction / scattering method. Since the cumulative 50% diameter (D 50 ) of the powder of the specific compound is measured by the same method as the cumulative 50% diameter (D 50 ) of the powder of the specific magnetoplumbite type hexagonal ferrite described above, here Then, the description is omitted.
  • the magnetoplumbite-type hexagonal ferrite powder of the present disclosure may contain only one specific compound, or may contain two or more specific compounds.
  • the content of the specific compound in the magnetoplumbite-type hexagonal ferrite powder of the present disclosure is not particularly limited, but for example, the magnetic characteristics of the magnetoplumbite-type hexagonal ferrite powder due to the inclusion of the specific compound having no magnetism. From the viewpoint of further suppressing the decrease in the amount, the amount is preferably 20% by mass or less, more preferably 10% by mass or less, and 5% by mass or less, based on the total mass of the magnetoplumbite type hexagonal ferrite powder. Is more preferable.
  • the lower limit of the content of the specific compound in the magnetoplumbite-type hexagonal ferrite powder of the present disclosure is not particularly limited, and is, for example, 1% by mass or more with respect to the total mass of the magnetoplumbite-type hexagonal ferrite powder. Can be mentioned.
  • the magnetoplumbite-type hexagonal ferrite powder of the present disclosure contains a specific compound in an amount of 10% by mass or more based on the total mass of the magnetoplumbite-type hexagonal ferrite powder, for example, from 60 GHz to 60 GHz. It has a desired resonance frequency in the frequency band of 90 GHz.
  • the content of the specific compound in the magnetoplumbite-type hexagonal ferrite powder of the present disclosure is measured by a powder X-ray diffraction (XRD) method using a standard of the specific compound. Specifically, it is measured by the method described in Examples described later.
  • XRD powder X-ray diffraction
  • the magnetoplumbite-type hexagonal ferrite powder of the present disclosure is preferably surface-treated.
  • the surface-treated powder it is possible to realize a radio wave absorber having an excellent balance of radio wave absorption performance, particularly, a reflection attenuation amount and a transmission attenuation amount.
  • the peak attenuation of the reflection of the radio wave absorber can be increased in particular.
  • the handleability and workability even when a large amount of powder is contained in the composition for forming the radio wave absorber (so-called composition for forming the radio wave absorber). Is not easily damaged.
  • the composition for forming a radio wave absorber contains a powder that has been surface-treated, the mechanical strength of the radio wave absorber to be formed can be improved.
  • the inventor speculates as follows.
  • the powder is surface-treated, the cohesive force between the particles constituting the powder is weakened, and the cohesion between the particles is suppressed.
  • the viscosity of the composition for forming a radio wave absorber is unlikely to increase. Therefore, it is considered that the composition for forming a radio wave absorber exhibits sufficient fluidity even when a large amount of powder is contained, and the handleability and processability are not easily impaired.
  • the affinity between the powder and the binder is enhanced.
  • the cohesive force between the particles constituting the powder is weakened, and the affinity between the powder and the binder is increased, so that the powder is more uniformly dispersed in the binder. Therefore, it is considered that the formed radio wave absorber is less likely to cause variation in radio wave absorption performance and has excellent mechanical strength.
  • a known surface treatment technique can be applied to the magnetoplumbite type hexagonal ferrite powder of the present disclosure.
  • the types of surface treatment include oil treatment with hydrocarbon oil, ester oil, lanolin, etc .; silicone treatment with dimethylpolysiloxane, methylhydrogenpolysiloxane, methylphenylpolysiloxane, etc .; perfluoroalkyl group-containing ester, perfluoroalkylsilane.
  • Perfluoropolyether and fluorine compound treatment with a polymer having a perfluoroalkyl group 3-methacryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, N-2- (aminoethyl) -3- Silane coupling agent treatment with aminopropyltrimethoxysilane, etc .; Titanium coupling agent treatment with isopropyltriisostearoyl titanate, isopropyltris (dioctylpyrophosphate) titanate, etc.; Metal soap treatment; Amino acid treatment with acylglutamic acid, etc .; Hydrophobic egg yolk lecithin Such as lecithin treatment; polyethylene treatment; mechanochemical treatment; treatment with a phosphoric acid compound with phosphoric acid, hydride, phosphate, hydride and the like; and the like.
  • a phosphoric acid compound treatment is preferable as the type of surface treatment.
  • a highly polar layer can be formed thickly on the surface of the particles constituting the powder.
  • aggregation due to hydrophobic interaction between the particles is suppressed, so that an increase in viscosity of the composition for forming a radio wave absorber can be suppressed more effectively. Therefore, in the case of the powder treated with the phosphoric acid compound, the fluidity of the radio wave absorber forming composition is less likely to be lowered due to the large amount of the powder, and the handleability and processability are less likely to be impaired. There is.
  • the radio wave absorber formed by the composition for forming a radio wave absorber containing the powder treated with the phosphoric acid compound tends to be less likely to cause variation in the radio wave absorption performance and to be more excellent in mechanical strength.
  • phosphoric acid compounds include phosphorous acid, hypophosphorous acid, pyrophosphoric acid, linear polyphosphoric acid, cyclic metaphosphoric acid, and salts thereof.
  • the phosphoric acid compound is preferably a metal salt.
  • the metal salt is not particularly limited, and examples thereof include alkali metal salts and alkaline earth metal salts.
  • the phosphoric acid compound may be an ammonium salt.
  • phosphoric acid compound treatment only one type of phosphoric acid compound may be used, or two or more types may be used.
  • the phosphoric acid compound is usually mixed with a chelating agent, a neutralizing agent or the like to obtain a surface treatment agent.
  • a commercially available aqueous solution containing a phosphoric acid compound can also be used as the surface treatment agent.
  • the phosphoric acid compound treatment of the powder can be performed, for example, by mixing the powder and a surface treatment agent containing the phosphoric acid compound. Conditions such as mixing time and temperature may be appropriately set according to the purpose.
  • an insoluble phosphoric acid compound is precipitated on the surface of particles constituting the powder by utilizing the dissociation (equilibrium) reaction of the phosphoric acid compound.
  • For the treatment of phosphoric acid compounds refer to, for example, "Surface Technology", Vol. 61, No. 3, p216, 2010, or "Surface Technology", Vol. 64, No. 12, p640, 2013. can do.
  • a silane coupling agent treatment is preferable.
  • a silane coupling agent having a hydrolyzable group is preferable.
  • the hydrolyzable group in the silane coupling agent is hydrolyzed by water to become a hydroxyl group, and this hydroxyl group is dehydrated with the hydroxyl group on the surface of the silica particles.
  • the surface of the particles is modified by the condensation reaction.
  • the hydrolyzable group include an alkoxy group, an acyloxy group, and a halogeno group.
  • the silane coupling agent may have a hydrophobic group as a functional group.
  • examples of the silane coupling agent having a hydrophobic group as a functional group include methyltrimethoxysilane (MTMS), dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, and n-propyl.
  • Alkoxysilanes such as trimethoxysilane, n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, and decyltrimethoxysilane; chlorosilanes such as methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, and phenyltrichlorosilane; Disilazan (HMDS); and the like.
  • the silane coupling agent may have a vinyl group as a functional group.
  • silane coupling agent having a vinyl group as a functional group examples include methacryloxypropyltriethoxysilane, methacryloxypropyltrimethoxysilane, methacryloxypropylmethyldiethoxysilane, methacryloxypropylmethyldimethoxysilane, vinyltriethoxysilane, and vinyltri.
  • Alkoxysilanes such as methoxysilane and vinylmethyldimethoxysilane; chlorosilanes such as vinyltrichlorosilane and vinylmethyldichlorosilane; and divinyltetramethyldisilazane; and the like can be mentioned.
  • silane coupling agent treatment only one type of silane coupling agent may be used, or two or more types may be used.
  • the surface treatment method is not particularly limited, and a known method can be applied.
  • a method of mixing the powder and the surface treatment agent or the like using a mixer such as a Henschel mixer, a method of spraying the surface treatment agent or the like on the particles constituting the powder, and a surface treatment agent examples thereof include a method of removing the solvent after mixing the powder and the liquid containing the surface treatment agent or the like in which the above is dissolved or dispersed in an appropriate solvent.
  • the method for producing the magnetoplumbite-type hexagonal ferrite powder of the present disclosure is not particularly limited, and for example, the magnetoplumbite-type hexagonal ferrite represented by the formula (1) (that is, a specific magnetoplumbite-type hexagonal ferrite) ) Is produced as the main product, and the compound represented by the formula (2) (that is, the specific compound) is produced as a by-product.
  • the present inventor tried to mass-produce the powder of the magnetoplumbite-type hexagonal ferrite represented by the formula (1) (that is, the specific magnetoplumbite-type hexagonal ferrite) by the solid-phase method.
  • a method for producing the magnetoplumbite-type hexagonal ferrite powder of the present disclosure is preferably a solid-phase method.
  • the method for producing the magnetoplumbite-type hexagonal ferrite powder of the present disclosure by the solid-phase method is not particularly limited, but for example, the method described below (hereinafter referred to as "production method X") is preferable.
  • the production method X is also referred to as at least one metal element selected from the group consisting of an inorganic compound containing Fe, an inorganic compound containing Al, and Sr, Ba, Ca, and Pb (hereinafter, also referred to as “specific metal element”.
  • a step of mixing an inorganic compound containing () to obtain a mixture, and a step of crushing the mixture obtained in step A to obtain a pulverized product and then firing the obtained pulverized product hereinafter referred to as).
  • (B1 step”), or a step of calcining the mixture obtained in step A to obtain a calcined product and then crushing the obtained calcined product hereinafter, also referred to as “b2 step”.
  • Step B of any one of the above is included.
  • Step A and step B may be divided into two or more steps, respectively.
  • the manufacturing method X may include steps other than steps A and B, if necessary. Hereinafter, each step will be described in detail.
  • Step A an inorganic compound containing Fe, an inorganic compound containing Al, and an inorganic compound containing at least one metal element (that is, a specific metal element) selected from the group consisting of Sr, Ba, Ca, and Pb. , To obtain a mixture.
  • the Fe-containing inorganic compound include Fe-containing oxides such as iron (III) oxide [ ⁇ -Fe 2 O 3 ], iron (III) chloride, iron (III) nitrate, and the like.
  • the inorganic compound containing Al include an oxide containing Al such as aluminum oxide [Al 2 O 3 ] and aluminum hydroxide.
  • Inorganic compounds containing specific metal elements include carbonates containing specific metal elements such as strontium carbonate [SrCO 3 ], barium carbonate, calcium carbonate, and lead carbonate, and specific metal elements such as strontium chloride, barium chloride, and calcium chloride. Chloride and the like can be mentioned.
  • the inorganic compound containing Fe, the inorganic compound containing Al, and the inorganic compound containing a specific metal element may be simply mixed.
  • an inorganic compound containing Fe, an inorganic compound containing Al, and an inorganic compound containing a specific metal element are also referred to as “raw materials”.
  • the raw material the whole amount may be mixed at once, or the inorganic compound containing Fe, the inorganic compound containing Al, and the inorganic compound containing a specific metal element may be gradually mixed little by little.
  • the method of mixing the inorganic compound containing Fe, the inorganic compound containing Al, and the inorganic compound containing a specific metal element is not particularly limited, and examples thereof include a method of mixing by stirring.
  • the stirring means is not particularly limited, and a general stirring device can be used. Examples of the stirring device include a mixer such as a paddle mixer and an impeller mixer.
  • the stirring time is not particularly limited, and can be appropriately set according to, for example, the blending amount of the raw material, the type of the stirring device, and the like.
  • the mixing ratio of the inorganic compound containing Fe, the inorganic compound containing Al, and the inorganic compound containing a specific metal element is not particularly limited, and can be appropriately set according to the composition of the target specific magnetoplumbite-type hexagonal ferrite. ..
  • the magnetic field strength H ⁇ can be adjusted in step A by changing, for example, the type of raw material, the particle size of the raw material, the amount of the raw material used, the method of mixing the raw materials, and the like of the magnetic plungite type hexagonal ferrite powder. Specifically, for example, the value of the magnetic field strength H ⁇ can be increased by increasing the blending ratio of the inorganic compound containing Al to the inorganic compound containing Fe used as a raw material. Further, for example, the value of the magnetic field strength H ⁇ can be increased by reducing the particle size of the inorganic compound containing Al used as a raw material.
  • Step B the mixture obtained in step A is crushed to obtain a pulverized product, and then the obtained pulverized product is calcined (that is, the b1 step), or the mixture obtained in step A is used.
  • This is one of the steps (that is, the b2 step) of crushing the obtained fired product after firing to obtain a fired product.
  • the obtained fired product is crushed, or the mixture obtained in step A is crushed to obtain a crushed product.
  • Step B may be b1 step or b2 step.
  • the step B is preferably the b2 step.
  • Firing can be performed using a heating device.
  • the heating device is not particularly limited as long as it can be heated to a target temperature, and any known heating device can be used.
  • a firing device originally manufactured according to the production line can be used as the heating device.
  • the firing is preferably performed in an air atmosphere.
  • the firing temperature is not particularly limited, but is preferably 900 ° C. or higher, more preferably 900 ° C. to 1400 ° C., and even more preferably 1000 ° C. to 1200 ° C.
  • the firing time is not particularly limited, but is preferably 1 hour to 10 hours, more preferably 2 hours to 6 hours, for example.
  • the pulverization means is not particularly limited as long as a magnetoplumbite-type hexagonal ferrite powder having a desired particle size can be obtained.
  • the crushing means include a mortar and pestle, a crusher (cutter mill, ball mill, bead mill, roller mill, jet mill, hammer mill, attritor, etc.).
  • the particle size of the medium is not particularly limited, but is preferably 0.1 mm to 5.0 mm, preferably 0.5 mm to 3.0 mm, for example. More preferred.
  • the "media diameter” means the diameter of the media (for example, beads) in the case of spherical media (for example, spherical beads), and is transparent in the case of non-spherical media (for example, non-spherical beads). It means the diameter obtained by measuring the equivalent circle diameter of a plurality of media (for example, beads) from the observation image of a type electron microscope (TEM) or a scanning electron microscope (SEM) and arithmetically averaging the measured values.
  • TEM type electron microscope
  • SEM scanning electron microscope
  • the material of the media is not particularly limited, and for example, media made of glass, alumina, steel, zirconia, ceramic, etc. can be preferably used.
  • the radio wave absorber of the present disclosure includes the magnetoplumbite type hexagonal ferrite powder of the present disclosure and a binder.
  • the magnetic field strength H ⁇ of the magnetic field-type hexagonal ferrite powder of the present disclosure has a correlation with the resonance frequency, and the resonance frequency can be controlled by adjusting the magnetic field strength H ⁇ . Therefore, the radio wave absorber of the present disclosure can efficiently enhance the absorption of radio waves of a desired frequency by containing the magnetoplumbite type hexagonal ferrite powder of the present disclosure, and is excellent in radio waves at a desired frequency. Can demonstrate absorption performance.
  • the shape of the radio wave absorber of the present disclosure is not particularly limited, and may have a planar shape, a three-dimensional shape, or a linear shape.
  • the planar shape is not particularly limited, and examples thereof include a sheet shape and a film shape.
  • Examples of the three-dimensional shape include a triangular pillar shape, a cylindrical shape, a pyramid shape, a conical shape, and a honeycomb shape having a polygonal shape of a triangle or more.
  • a shape obtained by combining the above two-dimensional shape and the above three-dimensional shape can also be mentioned.
  • the linear shape is not particularly limited, and examples thereof include a filament shape and a strand shape.
  • the radio wave absorption performance of the radio wave absorber of the present disclosure can be controlled not only by the content of the magnetoplumbite type hexagonal ferrite powder of the present disclosure in the radio wave absorber, but also by the shape of the radio wave absorber.
  • the radio wave absorber of the present disclosure may contain only one type of magnetoplumbite-type hexagonal ferrite powder of the present disclosure, or may contain two or more types of the radio wave absorber.
  • the radio wave absorber of the present disclosure may contain, for example, two or more kinds of magnetoplumbite type hexagonal ferrite powders of the present disclosure having different compositions.
  • the content of the magnetoplumbite-type hexagonal ferrite powder of the present disclosure in the radio wave absorber of the present disclosure is not particularly limited, and for example, the total solid content in the radio wave absorber from the viewpoint of the radio wave absorption performance of the radio wave absorber. On the other hand, 10% by mass or more is preferable, 30% by mass or more is more preferable, and 50% by mass or more is further preferable. Further, the content of the magnetoplumbite-type hexagonal ferrite powder of the present disclosure in the radio wave absorber of the present disclosure is, for example, relative to the total solid content in the radio wave absorber from the viewpoint of the strength and manufacturing suitability of the radio wave absorber. Therefore, 98% by mass or less is preferable, 95% by mass or less is more preferable, and 92% by mass or less is further preferable.
  • the total solid content in the radio wave absorber means the total mass of the radio wave absorber when the radio wave absorber does not contain a solvent, and the radio wave absorption when the radio wave absorber contains a solvent. It means the total mass of the body excluding the solvent.
  • the radio wave absorber of the present disclosure includes a binder.
  • the binder include thermoplastic resins and thermosetting resins.
  • thermoplastic resin acrylic resin; polyacetal; polyamide; polyethylene; polypropylene; polyethylene terephthalate; polybutylene terephthalate; polycarbonate; polystyrene; polyphenylene sulfide; polyvinyl chloride; ABS (acrylonitrile) obtained by copolymerization of acrylonitrile, butadiene, and styrene. butadiene styrene) resin; Examples thereof include AS (acrylonitrile styrene) resin obtained by copolymerization of acrylonitrile and styrene.
  • thermosetting resin include phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester, diallyl phthalate resin, urethane resin, silicon resin and the like.
  • the binder examples include rubber.
  • the rubber for example, from the viewpoint of being able to produce a radio wave absorber which has good mixing property with the magnetoprenebit type hexagonal ferrite powder of the present disclosure and is excellent in durability, weather resistance, and impact resistance.
  • Acrylic rubber obtained by polymerization
  • Ethylene-propylene rubber obtained by coordination polymerization of ethylene and propylene using a Cheegler catalyst
  • Butyl rubber obtained by copolymerization of isobutylene and isoprene
  • butadiene and styrene Styrene-butadiene rubber obtained by the copolymerization of the above
  • acrylonitrile-butadiene rubber NBR
  • thermoplastic elastomer examples include thermoplastic elastomer (TPE).
  • thermoplastic elastomer examples include an olefin-based thermoplastic elastomer (TPO), a styrene-based thermoplastic elastomer (TPS), an amide-based thermoplastic elastomer (TPA), and a polyester-based thermoplastic elastomer (TPC).
  • the radio wave absorber of the present disclosure contains rubber as a binder, it may contain various additives such as a vulcanizing agent, a vulcanization aid, a softening agent, and a plasticizer in addition to the rubber.
  • a vulcanizing agent include sulfur, organic sulfur compounds, and metal oxides.
  • the melt mass slow rate of the binder (hereinafter, also referred to as “MFR”) is not particularly limited, but is preferably 1 g / 10 min to 200 g / 10 min, and more preferably 3 g / 10 min to 100 g / 10 min. It is preferably 5 g / 10 min to 80 g / 10 min, more preferably 10 g / 10 min to 50 g / 10 min, and particularly preferably 10 g / 10 min to 50 g / 10 min.
  • MFR of the binder is 1 g / 10 min or more, the fluidity is sufficiently high and appearance defects are less likely to occur.
  • the MFR of the binder is 200 g / 10 min or less, it is easy to improve the mechanical properties such as the strength of the molded product.
  • the MFR of the binder is a value measured under the conditions of a measurement temperature of 230 ° C. and a load of 10 kg in accordance with JIS K 7210: 1999.
  • the hardness of the binder is not particularly limited, but for example, from the viewpoint of molding suitability, it is preferably 5 g to 150 g, more preferably 10 g to 120 g, further preferably 30 g to 100 g, and 40 g to 90 g. Is particularly preferable.
  • the hardness of the binder is an instantaneous value measured according to JIS K 6253-3: 2012.
  • the density of the binder is not particularly limited, but for example, from the viewpoint of molding suitability, it is preferably 600 kg / m 3 to 1100 kg / m 3 , more preferably 700 kg / m 3 to 1000 kg / m 3 , and 750 kg. further preferably / m 3 ⁇ 1050kg / m 3 , particularly preferably 800kg / m 3 ⁇ 950kg / m 3.
  • the binder density is a value measured according to JIS K 0061: 2001.
  • the 100% tensile stress of the binder is not particularly limited, but is preferably 0.2 MPa to 20 MPa, more preferably 0.5 MPa to 10 MPa, and 1 MPa to 5 MPa, for example, from the viewpoint of molding suitability. Is more preferable, and 1.5 MPa to 3 MPa is particularly preferable.
  • the tensile strength of the binder is not particularly limited, but for example, from the viewpoint of molding suitability, it is preferably 1 MPa to 20 MPa, more preferably 2 MPa to 15 MPa, further preferably 3 MPa to 10 MPa, and 5 MPa. It is particularly preferably about 8 MPa.
  • the elongation at the time of cutting of the binder is not particularly limited, but is preferably 110% to 1500%, more preferably 150% to 1000%, and 200% to 900%, for example, from the viewpoint of molding suitability. It is more preferable, and it is particularly preferable that it is 400% to 800%.
  • the above tensile properties are values measured in accordance with JIS K 6251: 2010. The measurement is performed using a JIS No. 3 dumbbell as a test piece under the condition of a tensile speed of 500 mm / min.
  • the radio wave absorber of the present disclosure may contain only one kind of binder, or may contain two or more kinds of binders.
  • the content of the binder in the radio wave absorber of the present disclosure is not particularly limited, and for example, from the viewpoint of the dispersibility of the magnetoplumbite type hexagonal ferrite powder of the present disclosure, and the manufacturing suitability and durability of the radio wave absorber.
  • the total solid content in the radio wave absorber is preferably 2% by mass or more, more preferably 5% by mass or more, and further preferably 8% by mass or more.
  • the content of the binder in the radio wave absorber of the present disclosure is preferably 50% by mass or less with respect to the total solid content in the radio wave absorber, for example, from the viewpoint of the radio wave absorption performance of the radio wave absorber. It is more preferably 40% by mass or less, and further preferably 30% by mass or less.
  • the radio wave absorber of the present disclosure includes various additives (so-called so-called additives) as necessary within the range not impairing the effect of the radio wave absorber of the present disclosure.
  • additives include antioxidants, light stabilizers, dispersants, dispersion aids, antifungal agents, antistatic agents, plasticizers, impact improvers, crystal nucleating agents, lubricants, surfactants, pigments, etc.
  • Dyes, fillers, mold release agents fatty acids, fatty acid metal salts, oxyfatty acids, fatty acid esters, aliphatic partially saponified esters, paraffins, low molecular weight polyolefins, fatty acid amides, alkylene bis fatty acid amides, aliphatic ketones, fatty acid lower alcohol esters, Fatty acid polyhydric alcohol ester, fatty acid polyglycol ester, modified silicone, etc.
  • processing aids antifogging agents, drip inhibitors, antibacterial agents, etc.
  • Other additives may have one component having two or more functions.
  • the radio wave absorber of the present disclosure preferably contains an antioxidant.
  • the antioxidant is not particularly limited, and a known antioxidant can be used. Examples of antioxidants are described in, for example, "Comprehensive Technology for Polymer Stabilization-Mechanism and Application Development-" published by CMC, supervised by Yasuichi Daikatsu. This description is incorporated herein by reference. Examples of the type of antioxidant include phenol-based antioxidants, amine-based antioxidants, phosphorus-based antioxidants, sulfur-based antioxidants, and the like. As the antioxidant, it is preferable to use a phenol-based antioxidant and / or an amine-based antioxidant and a phosphorus-based antioxidant and / or a sulfur-based antioxidant in combination.
  • IRGANOX 1010 As phenolic antioxidants, ADEKA's Adekastab AO-20, Adekastab AO-30, Adekastab AO-40, Adekastab AO-50, Adekastab AO-60, Adekastab AO-80, Adekastab AO-330, BASF Japan Ltd. )
  • IRGANOX 1010 As phenolic antioxidants, ADEKA's Adekastab AO-20, Adekastab AO-30, Adekastab AO-40, Adekastab AO-50, Adekastab AO-60, Adekastab AO-80, Adekastab AO-330, BASF Japan Ltd. )
  • IRGANOX 1010 As phenolic antioxidants, ADEKA's Adekastab AO-20, Adekastab AO-30, Adekastab AO-40, Adekastab AO-50, Adekastab AO-60, Adekastab AO-80, Adekastab AO-330, BASF Japan Ltd.
  • an amine compound capable of quenching radicals can also be used as an antioxidant.
  • examples of such amine compounds include polyethylene glycol bis TEMPO [Sigma-Aldrich], sebacate bis TEMPO and the like.
  • TEMPO is an abbreviation for tetramethylpiperidin-1-oxyl.
  • Examples of the phosphorus-based antioxidant include ADEKA's Adekastab PEP-8, Adekastab PEP-36, Adekastab HP-10, Adekastab 2112, and BASF Japan Ltd. IRGAFOS 168.
  • Adekastab PEP-8 Adekastab PEP-36
  • Adekastab HP-10 Adekastab 2112
  • IRGAFOS 168 IRGAFOS 168.
  • the above “Adecastab” and “IRGAFOS” are both registered trademarks.
  • sulfur-based antioxidant examples include ADEKA's ADEKA TAB AO-412S and ADEKA TAB AO-503S.
  • ADEKA's ADEKA TAB AO-412S examples include ADEKA TAB AO-503S.
  • ADEKA TAB AO-503S examples include ADEKA's ADEKA TAB AO-412S and ADEKA TAB AO-503S.
  • Adecastab is a registered trademark.
  • the phenolic antioxidant at least one selected from the group consisting of Adecastab AO-20, Adecastab AO-60, Adecastab AO-80, and IRGANOX 1010 is preferable, and the amine-based antioxidant is preferably one.
  • Adecastab LA-52 is preferable, the phosphorus-based antioxidant is preferably Adecastab PEP-36, and the sulfur-based antioxidant is preferably Adecastab AO-412S.
  • the radio wave absorber of the present disclosure contains an antioxidant, it may contain only one type of antioxidant, or may contain two or more types of antioxidant.
  • the content of the antioxidant in the radio wave absorber is not particularly limited, but for example, from the viewpoint of both suppressing the decomposition of the binder and suppressing the bleeding of the antioxidant.
  • the amount is preferably 0.1 parts by mass to 10 parts by mass, and more preferably 0.5 parts by mass to 5 parts by mass with respect to 100 parts by mass of the binder.
  • the radio wave absorber of the present disclosure preferably contains a light stabilizer.
  • the light stabilizer include HALS (that is, a hindered amine-based light stabilizer), an ultraviolet absorber, and a singlet oxygen quencher.
  • HALS may be a high molecular weight HALS, a low molecular weight HALS, or a combination of a high molecular weight HALS and a low molecular weight HALS.
  • the radio wave absorber of the present disclosure contains a light stabilizer, it may contain only one type of light stabilizer, or may contain two or more types of light stabilizer.
  • high molecular weight HALS means a hindered amine-based light stabilizer having a weight average molecular weight of more than 1000.
  • the high-molecular-weight HALS is poly [6- (1,1,3,3-tetramethylbutyl) imino-1,3,5-triazine-2,4-diyl] [(2,), which is an oligomer-type HALS.
  • the weight average molecular weight (Mw) in the present disclosure is a value measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • HLC registered trademark
  • -8220GPC manufactured by Tosoh Corporation
  • TSKgel registered trademark
  • Super HZM-M 46 mm ID ⁇
  • THF tetrahydrofuran
  • the measurement conditions are that the sample concentration is 0.2% by mass, the flow rate is 0.35 mL / min, the sample injection amount is 10 ⁇ L, the measurement temperature is 40 ° C., and a differential refractive index (RI) detector is used. it can.
  • the calibration curve is "Standard sample TSK standard, polystyrene” manufactured by Tosoh Corporation: "F-40", “F-20”, “F-4", “F-1”, "A-5000", " It can be produced by using "A-2500” and "A-1000".
  • the content of the high molecular weight HALS in the radio wave absorber is not particularly limited, but is, for example, 0.2% by mass with respect to the total mass of the radio wave absorber. It is preferably about 10% by mass.
  • the content of high molecular weight HALS in the radio wave absorber of the present disclosure is 0.2% by mass or more with respect to the total mass of the radio wave absorber, the desired weather resistance can be more sufficiently obtained.
  • the content of high molecular weight HALS in the radio wave absorber of the present disclosure is 10% by mass or less with respect to the total mass of the radio wave absorber, the decrease in mechanical strength and the occurrence of blooming tend to be further suppressed. is there.
  • low molecular weight HALS means a hindered amine-based light stabilizer having a molecular weight of 1000 or less (preferably 900 or less, more preferably 600 to 900).
  • Low molecular weight HALS include tris (2,2,6,6-tetramethyl-4-piperidyl) benzene-1,3,5-tricarboxylate and tris (2,2,6,6-tetramethyl-4).
  • Examples of commercially available low molecular weight HALS products include ADEKA's ADEKA STAB LA-57, ADEKA STAB LA-52, and BASF Japan Ltd.'s TINUVIN 144.
  • the above “Adecastab” and “TINUVIN” are both registered trademarks.
  • the content of the low molecular weight HALS in the radio wave absorber is not particularly limited, but is, for example, 0.2% by mass with respect to the total mass of the radio wave absorber. It is preferably from 10% by mass.
  • the content of low molecular weight HALS in the radio wave absorber of the present disclosure is 0.2% by mass or more with respect to the total mass of the radio wave absorber, the desired weather resistance can be more sufficiently obtained.
  • the content of low molecular weight HALS in the radio wave absorber of the present disclosure is 10% by mass or less with respect to the total mass of the radio wave absorber, the decrease in mechanical strength and the occurrence of blooming tend to be further suppressed. is there.
  • UV absorber examples include 2- (2'-hydroxy-3', 5'-di-t-butylphenyl) benzotriazole and 2- (3,5-di-t-amyl-2-hydroxyphenyl) benzotriazole.
  • UV absorbers examples include BASF Japan Ltd. TINUVIN 320, TINUVIN 328, TINUVIN 234, TINUVIN 1577, TINUVIN 622, IRGANOX series, ADEKA Corporation's ADEKA STAB LA31, and Cipro Kasei Co., Ltd. SEESORB 102. Examples thereof include SEESORB 103 and SEESORB 501.
  • TINUVIN examples include BASF Japan Ltd. TINUVIN 320, TINUVIN 328, TINUVIN 234, TINUVIN 1577, TINUVIN 622, IRGANOX series, ADEKA Corporation's ADEKA STAB LA31, and Cipro Kasei Co., Ltd.
  • SEESORB 102 examples thereof include SEESORB 103 and SEESORB 501.
  • the above-mentioned "TINUVIN”, “IRGANOX”, “Adecastab”, and “SEESORB” are all registered trademarks.
  • the content of the ultraviolet absorber in the radio wave absorber is not particularly limited, but for example, 0.2% by mass to 10% by mass with respect to the total mass of the radio wave absorber. It is preferably mass%.
  • the content of the ultraviolet absorber in the radio wave absorber of the present disclosure is 0.2% by mass or more with respect to the total mass of the radio wave absorber, the desired weather resistance can be more sufficiently obtained.
  • the content of the ultraviolet absorber in the radio wave absorber of the present disclosure is 10% by mass or less with respect to the total mass of the radio wave absorber, the decrease in mechanical strength and the occurrence of blooming tend to be further suppressed. ..
  • the content of the singlet oxygen quencher in the radio wave absorber is not particularly limited, but is, for example, 0.2 with respect to the total mass of the radio wave absorber. It is preferably mass% to 10% by mass.
  • the content of the singlet oxygen quencher in the radio wave absorber of the present disclosure is 0.2% by mass or more with respect to the total mass of the radio wave absorber, the desired weather resistance can be more sufficiently obtained.
  • the content of the singlet oxygen quencher in the radio wave absorber of the present disclosure is 10% by mass or less with respect to the total mass of the radio wave absorber, the decrease in mechanical strength and the occurrence of blooming tend to be further suppressed. There is.
  • the radio wave absorber of the present disclosure contains a light stabilizer, it may contain only one type of light stabilizer, or may contain two or more types of light stabilizer.
  • the radio wave absorber contains the powder of the specific magnetoplumbite type hexagonal ferrite. After finely chopping the radio wave absorber, it is immersed in a solvent (for example, acetone) for 1 to 2 days, and then dried. The structure can be confirmed by finely grinding the dried radio wave absorber and performing powder X-ray diffraction (XRD) measurement. Further, after cutting out a cross section of the radio wave absorber, the composition can be confirmed by using, for example, an energy dispersive X-ray analyzer.
  • a solvent for example, acetone
  • the radio wave absorber contains powder of a specific compound can be confirmed by, for example, the following method. After finely chopping the radio wave absorber, it is immersed in a solvent (for example, acetone) for 1 to 2 days, and then dried. Next, the dried radio wave absorber is further finely ground, and powder X-ray diffraction (XRD) measurement is performed. The powder X-ray diffraction (XRD) measurement is performed using a powder X-ray diffractometer under the following conditions. Then, the presence or absence of the specific compound can be confirmed by the presence or absence of the peak derived from the specific compound.
  • a solvent for example, acetone
  • the method for manufacturing the radio wave absorber of the present disclosure is not particularly limited.
  • the radio wave absorber of the present disclosure can be produced by a known method using the magnetoplumbite type hexagonal ferrite powder of the present disclosure, a binder, and if necessary, a solvent, other additives, and the like.
  • the radio wave absorber of the present disclosure can be manufactured by, for example, the following method.
  • a composition for forming a radio wave absorber containing the magnetoplumbite type hexagonal ferrite powder of the present disclosure, a binder, a solvent, other additives, etc., if necessary, is applied onto the support, and radio waves are applied.
  • a coating film of the composition for forming an absorber is formed. Then, it can be produced by drying the coating film of the formed composition for forming a radio wave absorber.
  • magnetoplumbite type hexagonal ferrite powder of the present disclosure is as described above, the description thereof is omitted here.
  • the content of the magnetoplumbite-type hexagonal ferrite powder of the present disclosure in the composition for forming a radio wave absorber is not particularly limited, and for example, the content of the finally obtained radio wave absorber is the above-mentioned radio wave absorption. It may be adjusted so that the content is in the body.
  • the binder in the method for manufacturing a radio wave absorber of the present disclosure has the same meaning as the binder described in the section of "radio wave absorber", and the preferred embodiment is also the same. Therefore, the description thereof is omitted here.
  • the content of the binder in the composition for forming a radio wave absorber is not particularly limited, and for example, if the content in the finally obtained radio wave absorber is adjusted to be the content in the radio wave absorber described above. Good.
  • the solvent is not particularly limited, and examples thereof include water, an organic solvent, or a mixed solvent of water and an organic solvent.
  • the organic solvent include alcohols such as methanol, ethanol, n-propanol, i-propanol and methoxypropanol, ketones such as acetone, methyl ethyl ketone, cyclohexane and cyclohexanone, tetrahydrofuran, acetonitrile, ethyl acetate and toluene.
  • cyclohexanone is preferable as the solvent from the viewpoint of an appropriate drying rate.
  • the content of the solvent in the composition for forming a radio wave absorber is not particularly limited, and for example, the type and amount of the components to be blended in the composition for forming a radio wave absorber. It can be set as appropriate.
  • the solvent content in the radio wave absorber forming composition is appropriately set depending on whether the radio wave absorber forming composition is applied or molded as described later.
  • the magnetoplumbite-type hexagonal ferrite powder of the present disclosure and the binder may be simply mixed.
  • the method of mixing the magnetoplumbite type hexagonal ferrite powder of the present disclosure and the binder is not particularly limited, and examples thereof include a method of mixing by stirring.
  • the stirring means is not particularly limited, and a general stirring device can be used. Examples of the stirring device include a mixer such as a paddle mixer and an impeller mixer.
  • the stirring time is not particularly limited, and can be appropriately set according to, for example, the type of stirring device, the composition of the composition for forming a radio wave absorber, and the like.
  • the support is not particularly limited, and a known support can be used.
  • the material constituting the support include a metal plate (metal plate such as aluminum, zinc, and copper), a glass plate, a plastic sheet [polyethylene (polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, etc.), polyethylene (direct).
  • plastic sheets on which the above-mentioned metals are laminated or vapor-deposited, and the like can be mentioned.
  • the plastic sheet is preferably biaxially stretched.
  • the support may function to retain the form of the radio wave absorber.
  • the radio wave absorber can retain its own form, for example, a glass plate, a metal plate, or a plastic sheet whose surface has been subjected to a mold release treatment is used as the support, and after the radio wave absorber is manufactured. It may be removed from the radio wave absorber.
  • the shape, structure, size, etc. of the support can be appropriately selected according to the purpose.
  • Examples of the shape of the support include a flat plate shape.
  • the structure of the support may be a single-layer structure or a laminated structure of two or more layers.
  • the size of the support can be appropriately selected according to the size of the radio wave absorber and the like.
  • the thickness of the support is not particularly limited, and is usually about 0.01 mm to 10 mm.
  • it is preferably 0.02 mm to 3 mm, and preferably 0.05 mm to 1 mm. More preferred.
  • the method of applying the composition for a radio wave absorber onto the support is not particularly limited, and examples thereof include a method using a die coater, a knife coater, an applicator, and the like.
  • the method for drying the coating film of the composition for forming a radio wave absorber is not particularly limited, and examples thereof include a method using a heating device such as an oven.
  • the drying temperature and drying time are not particularly limited, and it is sufficient that the solvent contained in the coating film of the composition for forming a radio wave absorber can be volatilized. For example, it is heated at 70 ° C. to 90 ° C. for 1 hour to 3 hours.
  • the radio wave absorber of the present disclosure can be manufactured by, for example, the following method.
  • a composition for forming a radio wave absorber containing a specific magnetoplumbite-type hexagonal ferrite powder, a binder, and if necessary, a solvent, other additives, etc. is kneaded using a kneader while heating.
  • Get the kneaded material is kneaded material.
  • the obtained kneaded product can be produced by molding into a planar shape or a three-dimensional shape. Examples of the molding process include press molding, extrusion molding, injection molding, in-mold molding and the like.
  • the radio wave absorber of the present disclosure may be manufactured by, for example, the following method.
  • a plane-shaped, three-dimensional-shaped, or linear-shaped radio wave absorber may be manufactured from the shaped molded body as a raw material.
  • the pellet-shaped molded product may contain a colorant such as carbon black, an additive for the purpose of improving antistatic property or weather resistance, and the like.
  • the size (so-called diameter) of the pellet-shaped molded product is not particularly limited, but is preferably, for example, 0.5 mm to 20 mm, more preferably 1 mm to 10 mm, and 2 mm to 8 mm. Further preferably, it is particularly preferably 3 mm to 6 mm.
  • the density of the pellet-shaped molded product is not particularly limited, but is preferably, for example, 500 kg / m 3 to 5000 kg / m 3 , more preferably 800 kg / m 3 to 4000 kg / m 3 , and 1000 kg / m. more preferably 3 is ⁇ 3500 kg / m 3, particularly preferably 1200kg / m 3 ⁇ 3000kg / m 3.
  • the above density is a value measured according to JIS K 0061: 2001.
  • the resonance frequency of the magnetoplumbite-type hexagonal ferrite powder can be satisfactorily controlled in the frequency band of 60 GHz to 90 GHz even when a specific compound is contained.
  • the magnetoplumbite-type hexagonal ferrite powder represented by the formula (1) in the control method of the present disclosure is represented by the formula (1) described in the section of "Magnetoplumbit-type hexagonal ferrite powder". Since it has the same meaning as the powder of the magnetoplumbite-type hexagonal ferrite (that is, the specific magnesium-plumbite-type hexagonal ferrite) and the preferred embodiment is also the same, the description thereof is omitted here.
  • magnetic field strength H ⁇ is synonymous with the magnetic field strength H ⁇ described in the section of “Magnetopranbit type hexagonal ferrite powder”, and the preferred embodiment is also the same, so the description thereof is omitted here.
  • the content of the magnetoplumbite-type hexagonal ferrite powder represented by the formula (1) in the magnetoplumbite-type hexagonal ferrite powder is not particularly limited. It is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more with respect to the total mass.
  • the upper limit of the content of the magnesium hexagonal ferrite powder represented by the formula (1) in the magnetoplumbite hexagonal ferrite powder is not particularly limited, and for example, the magnetoplumbite hexagonal ferrite powder is not particularly limited. 99% by mass or less is mentioned with respect to the total mass of the body.
  • the method for adjusting the magnetic field strength H ⁇ is not particularly limited.
  • the magnetic field strength H ⁇ can be adjusted, for example, by changing the type of raw material, the particle size of the raw material, the amount of the raw material used, the mixing method of the raw material, and the like of the magnetic plumbite type hexagonal ferrite powder.
  • the value of the magnetic field strength H ⁇ can be increased by increasing the blending ratio of the inorganic compound containing Al to the inorganic compound containing Fe used as a raw material.
  • the value of the magnetic field strength H ⁇ can be increased by reducing the particle size of the inorganic compound containing Al used as a raw material.
  • the magnetoplumbite type hexagonal ferrite powder may contain a compound represented by the formula (2).
  • the control method of the present disclosure can satisfactorily control the resonance frequency of the magnetoplumbite-type hexagonal ferrite powder in the frequency band of 60 GHz to 90 GHz even when the compound represented by the formula (2) is contained.
  • the powder of the compound represented by the formula (2) in the control method of the present disclosure is a compound represented by the formula (2) described in the section of "Magnetoprubite type hexagonal ferrite powder" (that is, a specific compound). ), And the preferred embodiment is also the same. Therefore, the description thereof is omitted here.
  • the content of the compound represented by the formula (2) in the magnetoplumbite-type hexagonal ferrite powder is not particularly limited, but is, for example, 20% by mass with respect to the total mass of the magnetoplumbite-type hexagonal ferrite powder. It is preferably less than or equal to, more preferably 10% by mass or less, and further preferably 5% by mass or less.
  • the lower limit of the content of the compound represented by the formula (2) in the magnetoplumbite-type hexagonal ferrite powder is not particularly limited, and is, for example, 1 with respect to the total mass of the magnetoplumbite-type hexagonal ferrite powder. Mass% or more can be mentioned.
  • the compound represented by the formula (2) is contained in an amount of 10% by mass or more based on the total mass of the magnetoplumbite type hexagonal ferrite powder, for example.
  • the resonance frequency of the magnetoplumbite type hexagonal ferrite powder can be well controlled.
  • the precursor-containing liquid was subjected to a centrifugation treatment [rotation speed: 3000 rpm (revolutions per minute; the same applies hereinafter), rotation time: 10 minutes] three times, and the obtained precipitate was recovered. Then, the recovered precipitate was dried in an oven having an internal atmospheric temperature of 80 ° C. for 12 hours to obtain an aggregate of particles composed of the precursor (that is, the powder of the precursor). Next, the precursor powder was placed in a muffle furnace, the temperature inside the furnace was set to a temperature condition of 1100 ° C. in an air atmosphere, and the mixture was fired for 4 hours to obtain powder A1.
  • the powder A8 was produced by subjecting the powder A5 to a surface treatment. Specifically, the following operations were performed. 20 g of powder A5 and 0.2 g of N-2- (aminoethyl) -3-aminopropyltrimethoxysilane [trade name: KBM-603, silane coupling agent, Shin-Etsu Chemical Co., Ltd.]. Using Wonder Crusher WC-3 (product name) of Osaka Chemical Co., Ltd., the variable speed dial was set to "3" and mixed for 60 seconds. Next, the obtained powder was placed in an oven at a set temperature of 90 ° C. and dried for 3 hours to obtain powder A8.
  • Radio wave absorber A1 Powder A1 9.0 g, acrylonitrile butadiene rubber (NBR) [grade: JSR N215SL, JSR Corporation, binder] 1.05 g, and cyclohexanone (solvent) 6.1, agitator [Product name: Awatori Rentaro ARE-310, Shinky Co., Ltd.] was used to stir and mix at a rotation speed of 2000 rpm for 5 minutes to prepare a composition for forming a radio wave absorber. Next, the prepared composition for forming a radio wave absorber was applied onto a glass plate (support) using an applicator to form a coating film of the composition for forming a radio wave absorber.
  • NBR acrylonitrile butadiene rubber
  • solvent solvent
  • agitator Product name: Awatori Rentaro ARE-310, Shinky Co., Ltd.
  • the coated film of the formed composition for forming a radio wave absorber was dried in an oven having an internal atmospheric temperature of 80 ° C. for 2 hours to form a radio wave absorbing layer on a glass plate.
  • the radio wave absorbing layer was peeled from the glass plate, and the peeled radio wave absorbing layer was used as a radio wave absorber A1 (shape: sheet shape, thickness: 0.3 mm).
  • Radio wave absorber A2 to radio wave absorber A8 Except that the powders A2 to A8 were used instead of the powder A1, the same operation as for the production of the radio wave absorber A1 was performed, and the radio waves of the radio wave absorbers A2 to A8 were used. Obtained an absorber.
  • the radio wave absorbers A2 to A8 had a sheet-like shape and a thickness of 0.3 mm.
  • Radio wave absorber B1 to radio wave absorber B6 Except for the fact that each powder of powder B1 to powder B6 was used instead of powder A1, the same operation as in the production of the radio wave absorber A1 was performed, and each radio wave of the radio wave absorber B1 to the radio wave absorber B6 was used. Obtained an absorber.
  • the radio wave absorbers B1 to B6 had a sheet-like shape and a thickness of 0.3 mm.
  • each of the powders of the powders A1 to A8 and the powders B1 to B6 contains a specific compound, and if so, the composition of the specific compound is X-ray diffraction ( Confirmed by the XRD) method. Specifically, it was confirmed by the following method.
  • the powder X-ray diffraction (XRD) measurement of each powder was performed using a powder X-ray diffractometer (product name: X'Pert Pro, PANalytical) under the following measurement conditions. Then, the presence or absence and composition of the peak derived from the specific compound were confirmed.
  • the magnetic substances A1 to A8 and the magnetic substances B1 to B6 all have a magnetoplumbite-type crystal structure.
  • Powder A1 to Powder A8 The composition of each of the powders A1 to A8 was confirmed by high frequency inductively coupled plasma (ICP) emission spectroscopy. Specifically, it was confirmed by the following method. A beaker containing 12 mg of powder and 10 mL of a 4 mol / L hydrochloric acid aqueous solution was held in an oven at a set temperature of 120 ° C. for 12 hours to obtain a solution. After adding 30 mL of pure water to the obtained solution, the mixture was filtered using a 0.1 ⁇ m membrane filter.
  • ICP inductively coupled plasma
  • Elemental analysis of the filtrate thus obtained was performed using a radio frequency inductively coupled plasma (ICP) emission spectroscopic analyzer [model number: ICPS-8100, Shimadzu Corporation]. Based on the results of the obtained elemental analysis, the content of each metal atom with respect to 100 atomic% of iron atoms was determined. Then, the composition of the powder was confirmed based on the obtained content. The composition of each powder is shown below.
  • ICP inductively coupled plasma
  • Powder A1 SrFe (9.65) Al (2.35) O 19 Powder A2: SrFe (9.72) Al (2.28) O 19 Powder A3: SrFe (9.79) Al (2.21) O 19 Powder A4: SrFe (9.86) Al (2.14) O 19 Powder A5: SrFe (10.00) Al (2.00) O 19 Powder A6: SrFe (10.13) Al (1.87) O 19 Powder A7: SrFe (10.20) Al (1.80) O 19 Powder A8: SrFe (10.00) Al (2.00) O 19
  • Table 3 shows the ratio x'of aluminum atoms to 100 atomic% of iron atoms in each of the powders A1 to A8 (hereinafter, also referred to as "Ax'"). Since each of the powders A1 to A8 does not contain a specific compound, the ratio x'(that is, Ax') of aluminum atoms to 100 atomic% of iron atoms in each powder is the formula (1). The same value as x in. It was confirmed that each of the powders A1 to A8 was a specific magnetoplumbite-type hexagonal ferrite powder.
  • Powder B1 to Powder B6 The composition of each of the powders B1 to B6 was confirmed by high frequency inductively coupled plasma (ICP) emission spectroscopy. Specifically, it was confirmed by the following method. A beaker containing 12 mg of powder and 10 mL of a 4 mol / L hydrochloric acid aqueous solution was held in an oven at a set temperature of 120 ° C. for 12 hours to obtain a solution. After adding 30 mL of pure water to the obtained solution, the mixture was filtered using a 0.1 ⁇ m membrane filter. Elemental analysis of the filtrate thus obtained was performed using a radio frequency inductively coupled plasma (ICP) emission spectroscopic analyzer [model number: ICPS-8100, Shimadzu Corporation].
  • ICP radio frequency inductively coupled plasma
  • the content of each metal atom with respect to 100 atomic% of iron atoms was determined. Then, based on the obtained content, the ratio x'of aluminum atoms to 100 atomic% of iron atoms (hereinafter, also referred to as "Bx'”) was determined. Next, the aluminum atom with respect to 100 atomic% of iron atom in each powder of the approximate straight line of the solid phase method shown in FIG. 1 [that is, powder B1 to powder B6 (hereinafter, also collectively referred to as “powder B”)).
  • the resonance frequency (hereinafter, also referred to as “resonance frequency B”) corresponding to the value of Bx ′ was obtained from the approximate straight line based on the value of the ratio x ′.
  • the aluminum atom with respect to 100 atomic% of the iron atom in each powder of the approximate straight line of the liquid phase method shown in FIG. 1 that is, powder A1 to powder A7 (hereinafter, also collectively referred to as “powder A”)).
  • the value of Ax'corresponding to the resonance frequency B was obtained from the approximate straight line based on the value of the ratio x'of, and was regarded as the value of x in the equation (1).
  • the composition of each powder is shown below.
  • Powder B1 SrFe (9.71) Al (2.29) O 19 and SrAl 2 O 4 Powder B2: SrFe (9.88) Al (2.12) O 19 and SrAl 2 O 4 Powder B3: SrFe (9.94) Al (2.06) O 19 and SrAl 2 O 4 Powder B4: SrFe (10.04) Al (1.96) O 19 and SrAl 2 O 4 Powder B5: SrFe (10.10) Al (1.90) O 19 and SrAl 2 O 4 Powder B6: SrFe (10.26) Al (1.74) O 19 and SrAl 2 O 4
  • Table 4 shows the ratio x'of aluminum atoms to 100 atomic% of iron atoms in each of the powders B1 to B6. Since each of the powders B1 to B6 contains a specific compound, the ratio x'of aluminum atoms to 100 atomic% of iron atoms in each powder is the same value as x in the formula (1). Did not show.
  • the content of SrAl 2 O 4 which is a specific compound contained in each of the powders B1 to B6, was measured by the following method. In the following method, the specific compound SrAl 2 O 4 was measured assuming that all of them were crystals.
  • the powder X-ray diffraction (XRD) measurement of each powder was performed using a powder X-ray diffractometer (product name: X'Pert Pro, PANalytical) under the following measurement conditions.
  • Powder B1 8.8% by mass Powder B2: 5.7% by mass Powder B3: 3.7% by mass Powder B4: 2.4% by mass Powder B5: 1.3% by mass Powder B6: 0.6% by mass
  • ⁇ Resonance frequency of radio wave absorber> For each radio wave absorber of the radio wave absorber A1 to the radio wave absorber A8 and the radio wave absorber B1 to the radio wave absorber B6, the peak frequency of the transmission attenuation was obtained, and this peak frequency was used as the resonance frequency.
  • a vector network analyzer product name: N5225B
  • a horn antenna product name: RH12S23
  • the S parameter was measured with the sweep frequency set to 60 GHz to 90 GHz.
  • the peak frequency of the magnetic permeability ⁇ '' of the imaginary part was calculated from this S parameter using the Nicholson loss model method, and this peak frequency was used as the resonance frequency. The results are shown in Tables 3 and 4.
  • the magnetic field strength H ⁇ of each of the powders A1 to A8 and the powders B1 to B6 was determined. Specifically, it was obtained as follows.
  • a vibrating sample magnetometer [model number: TM-TRVSM5050-SMSL type, Tamagawa Seisakusho Co., Ltd.] was used as the measuring device, and the maximum applied magnetic field was 50 kOe and the magnetic field sweep speed was 25 Oe / s (seconds) in an environment with an ambient temperature of 23 ° C. ), The magnetization strength of the powder with respect to the applied magnetic field was measured. From the measurement results, a magnetic field (H) -magnetization (M) curve of each powder was obtained.
  • ⁇ Relationship between x'value and resonance frequency> The value of x'(that is, the ratio of aluminum atoms to 100 atomic% of iron atoms) and the resonance frequency in the magnetoplumbite type hexagonal ferrite powder (that is, powders A1 to A7) produced by the liquid phase method. And the value of x'(that is, the ratio of aluminum atoms to 100 atomic% of iron atoms) in the magnetoplumbite type hexagonal ferrite powder (that is, powders B1 to B6) produced by the solid phase method. The relationship between and the resonance frequency is shown in FIG.
  • the relationship between the x'value and the resonance frequency in the powder prepared by the solid phase method resonates with the x'value in the powder prepared by the liquid phase method. It was confirmed that the tendency was different from the relationship with the frequency and that the deviation occurred. It is considered that the reason why such a deviation occurs is that a specific compound is produced in the powder mass-produced by the solid-phase method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

式(1)で表されるマグネトプランバイト型六方晶フェライトの粉体と、式(2)で表される化合物の粉体と、を含み、50kOeの外部磁場をかけたときの磁化量の90%となる磁場強度Hαが、19kOe/m≦Hα≦28kOeを満たすマグネトプランバイト型六方晶フェライト粉体、電波吸収体、及びマグネトプランバイト型六方晶フェライト粉体の共鳴周波数を制御する方法。式(1)中、Aは、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素を表し、xは、1.5≦x≦8.0を満たす。式(2)中、Aaは、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素を表す。 AFe(12-X)AlXO19…式(1) AaAl2O4…式(2)

Description

マグネトプランバイト型六方晶フェライト粉体、電波吸収体、及びマグネトプランバイト型六方晶フェライト粉体の共鳴周波数を制御する方法
 本開示は、マグネトプランバイト型六方晶フェライト粉体、電波吸収体、及びマグネトプランバイト型六方晶フェライト粉体の共鳴周波数を制御する方法に関する。
 近年、電子料金収受システム(ETC:Electronic Toll Collection System)、走行支援道路システム(AHS:Advanced Cruise-Assist Highway Systems)、衛星放送等、高周波数帯域における電波の利用形態の多様化に伴い、電波干渉による電子機器の誤作動、故障等が問題となっている。このような電波干渉が電子機器へ与える影響を低減するため、電波吸収体に不要な電波を吸収させ、電波の反射を防止することが行われている。
 電波吸収体としては、磁性体を使用したものが多用されている。磁性体を含む電波吸収体に入射した電波は、磁性体の中に磁場を発生させる。その発生した磁場が電波のエネルギーに還元される際、一部のエネルギーが失われて吸収される。そのため、磁性体を含む電波吸収体では、使用する磁性体の種類によって効果を奏する周波数帯域が異なる。
 例えば、特許第4674380号公報には、組成式AFe(12-x)Al19、但し、AはSr、Ba、Ca、及びPbの1種以上、x:1.0~2.2、で表されるマグネトプランバイト型六方晶フェライトの粉体において、レーザ回折散乱粒度分布のピーク粒径が10μm以上である電波吸収体用磁性粉体が記載されている。特許第4674380号公報に記載の電波吸収体用磁性粉体によれば、76GHz付近で優れた電波吸収性能を呈するとされている。
 近年の情報通信技術の急速な発展に伴い、電波の利用形態は、今後、益々多様化するものと思われる。そのため、様々な周波数の電波に対応する観点から、ターゲットの周波数帯域(特に、60GHz~90GHz)において、優れた電波吸収性能を示し得る電波吸収体の開発が望まれる。
 本発明者は、電波吸収体に好適な磁性体として、鉄の一部がアルミニウムに置換されたマグネトプランバイト型六方晶フェライト(以下、「Al置換マグネトプランバイト型六方晶フェライト」ともいう。)に着目した。しかし、Al置換マグネトプランバイト型六方晶フェライトの共鳴周波数をターゲットの周波数帯域に合わせることは非常に困難である。
 このような問題に対し、本発明者は、Al置換マグネトプランバイト型六方晶フェライトにおける鉄原子に対するアルミニウム原子の割合と、Al置換マグネトプランバイト型六方晶フェライトの共鳴周波数との間に相関性があり、Al置換マグネトプランバイト型六方晶フェライトにおける鉄原子に対するアルミニウム原子の割合を調整することにより、Al置換マグネトプランバイト型六方晶フェライトの共鳴周波数を所望の値に制御できることを見出した。
 しかし、本発明者が更に検討を進める過程で、Al置換マグネトプランバイト型六方晶フェライトの粉体を固相法(所謂、複数の固体原料から焼成により得る方法)により量産しようとしたところ、Alを含み、かつ、Feを含まない化合物が副生成物として一定量生成されること、また、上記化合物が存在すると、粉体の共鳴周波数が、Al置換マグネトプランバイト型六方晶フェライトにおける鉄原子に対するアルミニウム原子の割合を調整することにより予め設計した共鳴周波数とずれることがわかった。
 本発明の一実施形態が解決しようとする課題は、60GHz~90GHzの周波数帯域において、所望の共鳴周波数を有するマグネトプランバイト型六方晶フェライト粉体を提供することである。
 本発明の他の実施形態が解決しようとする課題は、上記マグネトプランバイト型六方晶フェライト粉体を含む電波吸収体を提供することである。
 また、本発明の他の実施形態が解決しようとする課題は、60GHz~90GHzの周波数帯域において、マグネトプランバイト型六方晶フェライト粉体の共鳴周波数を良好に制御できる、マグネトプランバイト型六方晶フェライト粉体の共鳴周波数を制御する方法を提供することである。
 上記課題を解決するための手段には、以下の態様が含まれる。
 <1> 下記の式(1)で表されるマグネトプランバイト型六方晶フェライトの粉体と、下記の式(2)で表される化合物の粉体と、を含み、50kOeの外部磁場をかけたときの磁化量の90%となる磁場強度Hαが、19kOe≦Hα≦28kOeを満たすマグネトプランバイト型六方晶フェライト粉体。
Figure JPOXMLDOC01-appb-C000005
 式(1)中、Aは、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素を表し、xは、1.5≦x≦8.0を満たす。
Figure JPOXMLDOC01-appb-C000006
 式(2)中、Aは、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素を表す。
 <2> 上記式(1)におけるAが、Srである<1>に記載のマグネトプランバイト型六方晶フェライト粉体。
 <3> 表面処理されている<1>又は<2>に記載のマグネトプランバイト型六方晶フェライト粉体。
 <4> <1>~<3>のいずれか1つに記載のマグネトプランバイト型六方晶フェライト粉体と、バインダーと、を含み、かつ、平面形状を有する電波吸収体。
 <5> <1>~<3>のいずれか1つに記載のマグネトプランバイト型六方晶フェライト粉体と、バインダーと、を含み、かつ、立体形状を有する電波吸収体。
 <6> 下記の式(1)で表されるマグネトプランバイト型六方晶フェライトの粉体を含むマグネトプランバイト型六方晶フェライト粉体に対し、50kOeの外部磁場をかけたときの磁化量の90%となる磁場強度Hαを、19kOe≦Hα≦28kOeを満たす範囲内で調整することにより、マグネトプランバイト型六方晶フェライト粉体の共鳴周波数を制御する方法。
Figure JPOXMLDOC01-appb-C000007
 式(1)中、Aは、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素を表し、xは、1.5≦x≦8.0を満たす。
 <7> 上記マグネトプランバイト型六方晶フェライト粉体が、下記の式(2)で表される化合物を含む<6>に記載の方法。
Figure JPOXMLDOC01-appb-C000008
 式(2)中、Aは、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素を表す。
 本発明の一実施形態によれば、60GHz~90GHzの周波数帯域において、所望の共鳴周波数を有するマグネトプランバイト型六方晶フェライト粉体が提供される。
 本発明の他の実施形態によれば、上記マグネトプランバイト型六方晶フェライト粉体を含む電波吸収体が提供される。
 また、本発明の他の実施形態によれば、60GHz~90GHzの周波数帯域において、マグネトプランバイト型六方晶フェライト粉体の共鳴周波数を良好に制御できる、マグネトプランバイト型六方晶フェライト粉体の共鳴周波数を制御する方法が提供される。
液相法により作製した粉体A1~粉体A7における、x’の値と共鳴周波数との関係、及び固相法により作製した粉体B1~粉体B6における、x’の値と共鳴周波数との関係を示すグラフである。 液相法により作製した粉体A1~粉体A7における、Hαの値と共鳴周波数との関係、及び固相法により作製した粉体B1~粉体B6における、Hαの値と共鳴周波数との関係を示すグラフである。
 以下、本発明を適用したマグネトプランバイト型六方晶フェライト粉体の実施形態の一例について説明する。但し、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜、変更を加えて実施できる。
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を意味する。
 本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 本開示において、各成分の量は、各成分に該当する物質が複数種存在する場合には、特に断らない限り、複数種の物質の合計量を意味する。
 本開示において、「工程」の用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば本用語に含まれる。
 本開示において、「x’」は、マグネトプランバイト型六方晶フェライト粉体における鉄原子100原子%に対するアルミニウム原子の割合を指す。
 本開示において、非SI単位「Oe」からSI単位「A/m」への変換係数は、「10/4π」とする。ここで、「π」は、3.1416とする。
 本開示において、非SI単位「emu」からSI単位「A・m」への変換係数は、「10-3」とする。
[マグネトプランバイト型六方晶フェライト粉体]
 本開示のマグネトプランバイト型六方晶フェライト粉体は、式(1)で表されるマグネトプランバイト型六方晶フェライトの粉体と、式(2)で表される化合物の粉体と、を含み、50kOeの外部磁場をかけたときの磁化量の90%となる磁場強度Hαが、19kOe≦Hα≦28kOeを満たす。
 以下、「50kOeの外部磁場をかけたときの磁化量の90%となる磁場強度Hα」を「磁場強度Hα」又は「Hα」ともいう。
 本発明者は、電波吸収体に好適な磁性体として、鉄の一部がアルミニウムに置換されたマグネトプランバイト型六方晶フェライト(即ち、Al置換マグネトプランバイト型六方晶フェライト)に着目した。しかし、Al置換マグネトプランバイト型六方晶フェライトの共鳴周波数をターゲットの周波数帯域に合わせることは非常に困難であった。
 これに対し、本発明者は、鋭意検討を行い、Al置換マグネトプランバイト型六方晶フェライトにおける鉄原子に対するアルミニウム原子の割合と、Al置換マグネトプランバイト型六方晶フェライトの共鳴周波数との間に相関性があり、Al置換マグネトプランバイト型六方晶フェライトにおける鉄原子に対するアルミニウム原子の割合を調整することにより、Al置換マグネトプランバイト型六方晶フェライトの共鳴周波数を所望の値に制御できることを見出した。
 その一方で、本発明者が、Al置換マグネトプランバイト型六方晶フェライトの粉体を固相法により量産しようとしたところ、Alを含み、かつ、Feを含まない化合物〔詳細には、本開示における式(2)で表される化合物〕が副生成物として一定量生成されることがわかった。Al置換マグネトプランバイト型六方晶フェライトの製造によって得られる粉体に、上記化合物が含まれると、粉体の共鳴周波数が、Al置換マグネトプランバイト型六方晶フェライトにおける鉄原子に対するアルミニウム原子の割合を調整することにより予め設計した共鳴周波数とずれる場合がある。
 これに対し、本開示のマグネトプランバイト型六方晶フェライト粉体は、式(1)で表されるマグネトプランバイト型六方晶フェライトの粉体を含み、かつ、50kOeの外部磁場をかけたときの磁化量の90%となる磁場強度Hαが、19kOe≦Hα≦28kOeを満たすため、式(2)で表される化合物の粉体を含みながらも、60GHz~90GHzの周波数帯域において、所望の共鳴周波数を有する。50kOeの外部磁場をかけたときの磁化量の90%となる磁場強度Hαは、式(2)で表される化合物の粉体の存在の影響を受け難い。そのため、式(2)で表される化合物の粉体を含みながらも、60GHz~90GHzの周波数帯域において、所望の共鳴周波数を有すると推測される。
 上述の点に関し、特許第4674380号公報では、ターゲットの周波数帯域にマグネトプランバイト型六方晶フェライトの共鳴周波数を合わせることについては、何ら言及していない。また、特許第4674380号公報には、マグネトプランバイト型六方晶フェライトの粉体を固相法により量産しようとすると、式(2)で表される化合物の粉体が一定量生成されることについて、何ら記載されていない。
 なお、上記の推測は、本開示のマグネトプランバイト型六方晶フェライト粉体を限定的に解釈するものではなく、一例として説明するものである。
〔マグネトプランバイト型六方晶フェライト粉体の磁気特性〕
 本開示のマグネトプランバイト型六方晶フェライト粉体は、50kOeの外部磁場をかけたときの磁化量の90%となる磁場強度Hαが、19kOe≦Hα≦28kOeを満たす。
 本開示のマグネトプランバイト型六方晶フェライト粉体では、磁場強度Hαと共鳴周波数とが相関性を示す。本開示において、「19kOe≦Hα≦28kOe」とは、「60GHz≦共鳴周波数≦90GHz」を意味する。本開示のマグネトプランバイト型六方晶フェライト粉体は、例えば、周波数帯域60GHz~90GHzのミリ波レーダーに使用する態様を想定していることから、磁場強度Hαが、19kOe≦Hα≦28kOeを満たす。
 磁場強度Hαは、20kOe≦Hα≦27kOeを満たすことが好ましく、21kOe≦Hα≦26kOeを満たすことがより好ましく、22kOe≦Hα≦25kOeを満たすことが更に好ましい。
 本開示のマグネトプランバイト型六方晶フェライト粉体の磁場強度Hαは、以下の方法により求めた値である。
 振動試料型磁力計を用い、雰囲気温度23℃の環境下、最大印加磁界50kOe、及び磁界掃引速度25Oe/s(秒)の条件にて、印加した磁界に対するマグネトプランバイト型六方晶フェライト粉体の磁化の強度を測定する。そして、測定結果に基づき、マグネトプランバイト型六方晶フェライト粉体の磁界(H)-磁化(M)曲線を得る。得られた磁界(H)-磁化(M)曲線に基づき、印加磁場50kOeでの磁化量の90%となる磁場強度を求め、この磁場強度をHαとする。
 振動試料型磁力計としては、例えば、(株)玉川製作所のTM-TRVSM5050-SMSL型(型番)を好適に用いることができる。但し、振動試料型磁力計は、これに限定されない。
 本開示のマグネトプランバイト型六方晶フェライト粉体の保磁力(Hc)は、特に限定されないが、例えば、2.5kOe以上であることが好ましく、4.0kOe以上であることがより好ましく、5.0kOe以上であることが更に好ましい。
 本開示のマグネトプランバイト型六方晶フェライト粉体の保磁力(Hc)が2.5kOe以上であると、電波吸収性能により優れる電波吸収体を製造できる。
 本開示のマグネトプランバイト型六方晶フェライト粉体の保磁力(Hc)の上限は、特に限定されないが、例えば、18kOe以下であることが好ましい。
 本開示のマグネトプランバイト型六方晶フェライト粉体の単位質量あたりの飽和磁化(δs)は、特に限定されないが、例えば、10emu/g以上であることが好ましく、20emu/g以上であることがより好ましく、30emu/g以上であることが更に好ましい。
 本開示のマグネトプランバイト型六方晶フェライト粉体の単位質量あたりの飽和磁化(δs)が10emu/g以上であると、電波吸収性能により優れる電波吸収体を製造できる。
 本開示のマグネトプランバイト型六方晶フェライト粉体の単位質量あたりの飽和磁化(δs)の上限は、特に限定されないが、例えば、60emu/g以下であることが好ましい。
 本開示のマグネトプランバイト型六方晶フェライト粉体の保磁力(Hc)及び単位質量あたりの飽和磁化(δs)は、振動試料型磁力計を用いて、雰囲気温度23℃の環境下、最大印加磁界50kOe、及び磁界掃引速度25Oe/s(秒)の条件にて測定した値である。
 振動試料型磁力計としては、例えば、(株)玉川製作所のTM-TRVSM5050-SMSL型(型番)を好適に用いることができる。但し、振動試料型磁力計は、これに限定されない。
<式(1)で表されるマグネトプランバイト型六方晶フェライトの粉体>
 本開示のマグネトプランバイト型六方晶フェライト粉体は、下記の式(1)で表されるマグネトプランバイト型六方晶フェライト(以下、「特定マグネトプランバイト型六方晶フェライト」ともいう。)の粉体(所謂、粒子の集合体)を含む。
Figure JPOXMLDOC01-appb-C000009
 式(1)中、Aは、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素を表し、xは、1.5≦x≦8.0を満たす。
 式(1)におけるAは、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素であれば、金属元素の種類及び数は、特に限定されない。
 式(1)におけるAは、例えば、操作性及び取り扱い性の観点から、Sr、Ba、及びCaからなる群より選ばれる少なくとも1種の金属元素であることが好ましい。
 また、式(1)におけるAは、例えば、79GHz付近で優れた電波吸収性能を示し得る点で、Srを含むことが好ましく、Srであることがより好ましい。
 式(1)におけるxは、1.5≦x≦8.0を満たし、1.5≦x≦6.0を満たすことが好ましく、1.5≦x≦4.0を満たすことがより好ましく、1.5≦x≦3.0を満たすことが更に好ましい。
 式(1)におけるxが1.5以上であると、60GHzよりも高い周波数帯域の電波を吸収できる。
 式(1)におけるxが8.0以下であると、マグネトプランバイト型六方晶フェライトが磁性を有する。
 特定マグネトプランバイト型六方晶フェライトとしては、SrFe(10.44)Al(1.56)19、SrFe(10.26)Al(1.74)19、SrFe(10.10)Al(1.90)19、SrFe(10.04)Al(1.96)19、SrFe(10.00)Al(2.00)19、SrFe(9.95)Al(2.05)19、SrFe(9.94)Al(2.06)19、SrFe(9.88)Al(2.12)19、SrFe(9.85)Al(2.15)19、SrFe(9.79)Al(2.21)19、SrFe(9.74)Al(2.26)19、SrFe(9.71)Al(2.29)19、SrFe(9.58)Al(2.42)19、SrFe(9.37)Al(2.63)19、SrFe(9.33)Al(2.67)19、SrFe(9.27)Al(2.73)19、SrFe(7.88)Al(4.12)19、SrFe(7.71)Al(4.29)19、SrFe(7.37)Al(4.63)19、SrFe(7.04)Al(4.96)19、SrFe(6.25)Al(5.75)19、BaFe(9.50)Al(2.50)19、BaFe(10.05)Al(1.95)19、CaFe(10.00)Al(2.00)19、PbFe(9.00)Al(3.00)19、Sr(0.80)Ba(0.10)Ca(0.10)Fe(9.83)Al(2.17)19、Sr(0.80)Ba(0.10)Ca(0.10)Fe(8.85)Al(3.15)19等が挙げられる。
 特定マグネトプランバイト型六方晶フェライトの組成は、高周波誘導結合プラズマ(ICP:Inductively Coupled Plasma)発光分光分析法により確認する。
 具体的には、試料粉体12mg及び4mol/L(リットル;以下、同じ。)の塩酸水溶液10mLを入れた耐圧容器を、設定温度120℃のオーブンで12時間保持し、溶解液を得る。次いで、得られた溶解液に純水30mLを加えた後、0.1μmのメンブレンフィルタを用いてろ過する。このようにして得られたろ液の元素分析を、高周波誘導結合プラズマ(ICP)発光分光分析装置を用いて行う。得られた元素分析の結果に基づき、鉄原子100原子%に対する各金属原子の含有率を求める。求めた含有率に基づき、組成を確認する。
 ICP発光分光分析装置としては、例えば、(株)島津製作所のICPS-8100(型番)を好適に用いることができる。但し、ICP発光分光分析装置は、これに限定されない。
 特定マグネトプランバイト型六方晶フェライトの結晶相は、単相でもよいし、単相でなくてもよいが、好ましくは単相である。
 結晶相が単相である特定マグネトプランバイト型六方晶フェライトは、アルミニウムの含有割合が同じである場合、結晶相が単相ではない(例えば、結晶相が二相である)特定マグネトプランバイト型六方晶フェライトと比較して、保磁力が高く、磁気特性により優れる傾向がある。
 本開示において、「結晶相が単相である」場合とは、粉末X線回折(XRD:X-Ray-Diffraction)測定において、任意の組成の特定マグネトプランバイト型六方晶フェライトの結晶構造を示す回折パターンが1種類のみ観察される場合をいう。
 一方、本開示において、「結晶相が単相ではない」場合とは、任意の組成の特定マグネトプランバイト型六方晶フェライトが複数混在し、回折パターンが2種類以上観察されたり、特定マグネトプランバイト型六方晶フェライト以外の結晶の回折パターンが観察されたりする場合をいう。
 結晶相が単相ではない場合、主たるピークとそれ以外のピークとが存在する回折パターンが得られる。ここで、「主たるピーク」とは、観察される回折パターンにおいて、回折強度の値が最も高いピークを指す。
 本開示のマグネトプランバイト型六方晶フェライト粉体が、単相ではない特定マグネトプランバイト型六方晶フェライトの粉体を含む場合、粉末X線回折(XRD)測定により得られる、主たるピークの回折強度の値(以下、「Im」と称する。)に対する、それ以外のピークの回折強度の値(以下、「Is」と称する。)の比(Is/Im)は、例えば、電波吸収性能により優れる電波吸収体を製造できるという観点から、1/2以下であることが好ましく、1/5以下であることがより好ましい。
 なお、2種以上の回折パターンが重なり、それぞれの回折パターンのピークが極大値を有している場合には、それぞれの極大値をIm及びIsと定義し、比を求める。また、2種以上の回折パターンが重なり、主たるピークの肩部として、それ以外のピークが観察される場合には、肩部の最大強度値をIsと定義し、比を求める。
 また、それ以外のピークが2つ以上存在する場合には、それぞれの回折強度の合計値をIsと定義し、比を求める。
 回折パターンの帰属には、例えば、国際回折データセンター(ICDD:International Centre for Diffraction Data、登録商標)のデータベースを参照できる。
 例えば、Srを含むマグネトプランバイト型六方晶フェライトの回折パターンは、国際回折データセンター(ICDD)の「00-033-1340」を参照できる。但し、鉄の一部がアルミニウムに置換されることで、ピーク位置については、シフトする。
 特定マグネトプランバイト型六方晶フェライトの結晶相が単相であることは、既述のとおり、粉末X線回折(XRD)測定により確認する。
 具体的には、粉末X線回折装置を用い、下記の条件にて測定する。
 粉末X線回折装置としては、例えば、PANalytical社のX’Pert Pro(製品名)を好適に用いることができる。但し、粉末X線回折装置は、これに限定されない。
-条件-
 X線源:CuKα線
〔波長:1.54Å(0.154nm)、出力:40mA,45kV〕
 スキャン範囲:20°<2θ<70°
 スキャン間隔:0.05°
 スキャンスピード:0.75°/min
 特定マグネトプランバイト型六方晶フェライトの粒子の形状は、特に限定されない。
 特定マグネトプランバイト型六方晶フェライトの粒子の形状としては、例えば、平板状、不定形状等である。
 特定マグネトプランバイト型六方晶フェライトの粒子の大きさは、特に限定されない。
 特定マグネトプランバイト型六方晶フェライトの粉体は、例えば、レーザ回折散乱法により測定した個数基準の粒度分布における累積50%径(D50)が、2μm~100μmである。
 特定マグネトプランバイト型六方晶フェライトの粉体の累積50%径(D50)は、具体的には、以下の方法により測定される値である。
 特定マグネトプランバイト型六方晶フェライトの粉体10mgにシクロヘキサノン500mLを加えて希釈した後、振とう機を用いて30秒間撹拌し、得られた液を粒度分布測定用サンプルとする。次いで、粒度分布測定用サンプルを用いて、レーザ回折散乱法により粒度分布を測定する。測定装置には、レーザ回折/散乱式粒子径分布測定装置を用いる。
 レーザ回折/散乱式粒子径分布測定装置としては、例えば、(株)堀場製作所のPartica LA-960(製品名)を好適に用いることができる。但し、レーザ回折/散乱式粒子径分布測定装置は、これに限定されない。
 本開示のマグネトプランバイト型六方晶フェライト粉体は、特定マグネトプランバイト型六方晶フェライトの粉体を1種のみ含んでいてもよく、2種以上含んでいてもよい。
 本開示のマグネトプランバイト型六方晶フェライト粉体における特定マグネトプランバイト型六方晶フェライトの粉体の含有率は、特に限定されないが、例えば、電波吸収性能により優れる電波吸収体を製造できるという観点から、マグネトプランバイト型六方晶フェライト粉体の全質量に対して、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることが更に好ましい。
 本開示のマグネトプランバイト型六方晶フェライト粉体における特定マグネトプランバイト型六方晶フェライトの粉体の含有率の上限は、特に限定されず、例えば、マグネトプランバイト型六方晶フェライト粉体の全質量に対して、99質量%以下が挙げられる。
<式(2)で表される化合物の粉体>
 本開示のマグネトプランバイト型六方晶フェライト粉体は、式(2)で表される化合物(以下、「特定化合物」ともいう。)の粉体(所謂、粒子の集合体)を含む。
 本開示のマグネトプランバイト型六方晶フェライト粉体に含まれる特定化合物の由来は、特に限定されない。
 本発明者の検討によれば、特定化合物は、特定マグネトプランバイト型六方晶フェライトの粉体を製造する過程で、副生成物として一定量生成される化合物であることがわかっている。但し、特定化合物は、このような製法に由来するものに限定されない。
 本開示のマグネトプランバイト型六方晶フェライト粉体は、例えば、意図的な添加により特定化合物を含んでいてもよく、不可避的に特定化合物を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000010
 式(2)中、Aは、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素を表す。
 式(2)におけるAは、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素であれば、金属元素の種類及び数は、特に限定されない。
 式(2)におけるAは、通常、式(1)におけるAの種類に対応する。
 特定化合物としては、例えば、SrAl、BaAl、CaAl、及びPbAlが挙げられる。
 例えば、式(1)におけるAが、Sr、Ba、及びCaである場合には、特定化合物としては、SrAl、BaAl、及びCaAlからなる群より選ばれる少なくとも1種が挙げられる。
 特定化合物の粒子の形状は、特に限定されない。
 特定化合物の粒子の形状としては、例えば、平板状、不定形状等である。
 特定化合物の粒子の大きさは、特に限定されない。
 特定化合物の粉体は、例えば、レーザ回折散乱法により測定した個数基準の粒度分布における累積50%径(D50)が、2μm~100μmである。
 特定化合物の粉体の累積50%径(D50)は、既述の特定マグネトプランバイト型六方晶フェライトの粉体の累積50%径(D50)と同様の方法により測定されるため、ここでは、説明を省略する。
 本開示のマグネトプランバイト型六方晶フェライト粉体は、特定化合物を1種のみ含んでいてもよく、2種以上含んでいてもよい。
 本開示のマグネトプランバイト型六方晶フェライト粉体における特定化合物の含有率は、特に限定されないが、例えば、磁性を有さない特定化合物を含むことによるマグネトプランバイト型六方晶フェライト粉体の磁気特性の低下をより抑制する観点から、マグネトプランバイト型六方晶フェライト粉体の全質量に対して、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることが更に好ましい。
 本開示のマグネトプランバイト型六方晶フェライト粉体における特定化合物の含有率の下限は、特に限定されず、例えば、マグネトプランバイト型六方晶フェライト粉体の全質量に対して、1質量%以上が挙げられる。
 本開示のマグネトプランバイト型六方晶フェライト粉体は、特定化合物を、例えば、マグネトプランバイト型六方晶フェライト粉体の全質量に対して10質量%以上含んでいる場合であっても、60GHz~90GHzの周波数帯域において、所望の共鳴周波数を有する。
 本開示のマグネトプランバイト型六方晶フェライト粉体における特定化合物の含有率は、特定化合物の標品を用いた粉末X線回折(XRD)法により測定される。
 具体的には、後述の実施例に記載の方法により測定される。
 本開示のマグネトプランバイト型六方晶フェライト粉体は、表面処理されていることが好ましい。
 表面処理されている粉体によれば、電波吸収性能、中でも、反射減衰量と透過減衰量とのバランスに優れる電波吸収体を実現できる。表面処理されている粉体によれば、特に、電波吸収体の反射のピーク減衰量を大きくすることができる。
 また、粉体が表面処理されていると、電波吸収体を形成するための組成物(所謂、電波吸収体形成用組成物)中に粉体を多く含有させた場合でも、ハンドリング性及び加工性が損なわれ難い。
 さらに、電波吸収体形成用組成物が表面処理されている粉体を含むと、形成される電波吸収体の機械強度が向上し得る。
 表面処理されている粉体によれば、上記のような効果が奏される理由は明らかではないが、発明者は、以下のように推測している。
 粉体に対し、表面処理を施すと、粉体を構成する粒子間の凝集力が弱まり、粒子同士の凝集が抑制される。粒子同士の凝集が抑制されると、電波吸収体形成用組成物の粘度は、上昇し難くなる。そのため、電波吸収体形成用組成物は、粉体を多く含む場合でも、十分な流動性を示し、ハンドリング性及び加工性が損なわれ難いと考えられる。
 また、粉体に対し、表面処理を施すと、粉体とバインダーとの親和性が高まる。粉体を構成する粒子間の凝集力が弱まったり、粉体とバインダーとの親和性が高まったりすることで、バインダー中に粉体がより均一に分散される。そのため、形成される電波吸収体は、電波吸収性能のバラツキが生じ難く、かつ、機械強度に優れると考えられる。
 本開示のマグネトプランバイト型六方晶フェライト粉体に対しては、公知の表面処理技術を適用することができる。
 表面処理の種類としては、炭化水素油、エステル油、ラノリン等による油剤処理;ジメチルポリシロキサン、メチルハイドロジェンポリシロキサン、メチルフェニルポリシロキサン等によるシリコーン処理;パーフルオロアルキル基含有エステル、パーフルオロアルキルシラン、パーフルオロポリエーテル及びパーフルオロアルキル基を有する重合体等によるフッ素化合物処理;3-メタクリロキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン等によるシランカップリング剤処理;イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルピロホスフェート)チタネート等によるチタンカップリング剤処理;金属石鹸処理;アシルグルタミン酸等によるアミノ酸処理;水添卵黄レシチン等によるレシチン処理;ポリエチレン処理;メカノケミカル処理;リン酸、亜リン酸、リン酸塩、亜リン酸塩等によるリン酸化合物処理;などが挙げられる。
 これらの中でも、表面処理の種類としては、リン酸化合物処理が好ましい。
 粉体に対し、リン酸化合物処理を施すと、粉体を構成する粒子の表面に、高極性の層を厚く形成することができる。
 粒子の表面に高極性の層が形成されると、粒子同士の疎水的相互作用による凝集が抑制されるため、電波吸収体形成用組成物の粘度上昇をより効果的に抑制することができる。そのため、リン酸化合物処理されている粉体の場合、粉体を多く含むことによる電波吸収体形成用組成物の流動性の低下がより生じ難くなり、ハンドリング性及び加工性がより損なわれ難い傾向がある。
 また、粒子の表面に高極性の層が形成されると、粒子同士の凝集が抑制されるのみならず、粉体とバインダーとの間の親和性がより高まるため、バインダー中に粉体がより均一に分散される。そのため、リン酸化合物処理されている粉体を含む電波吸収体形成用組成物により形成される電波吸収体は、電波吸収性能のバラツキがより生じ難く、かつ、機械強度により優れる傾向がある。
 リン酸化合物には、リン酸の他に、亜リン酸、次亜リン酸、ピロリン酸、直鎖状のポリリン酸、及び環状のメタリン酸、並びにこれらの塩が含まれる。
 リン酸化合物が塩の形態の場合、リン酸化合物は、金属塩であることが好ましい。
 金属塩としては、特に限定されず、例えば、アルカリ金属の塩、アルカリ土類金属の塩等が挙げられる。
 また、リン酸化合物は、アンモニウム塩であってもよい。
 リン酸化合物処理では、リン酸化合物を、1種のみ用いてもよく、2種以上用いてもよい。
 リン酸化合物処理では、リン酸化合物は、通常、キレート剤、中和剤等と混合して表面処理剤とされる。
 リン酸化合物処理では、表面処理剤として、一般に市販されているリン酸化合物を含む
水溶液を用いることもできる。
 粉体のリン酸化合物処理は、例えば、粉体とリン酸化合物を含む表面処理剤とを混合することにより行うことができる。混合時間、温度等の条件は、目的に応じて、適宜設定すればよい。リン酸化合物処理では、リン酸化合物の解離(平衡)反応を利用して、不溶性のリン酸化合物を、粉体を構成する粒子表面に析出させる。
 リン酸化合物処理については、例えば、「表面技術」,第61巻,第3号,p216,2010年、又は、「表面技術」,第64巻,第12号,p640,2013年の記載を参照することができる。
 また、表面処理の種類としては、シランカップリング剤処理が好ましい。
 シランカップリング剤としては、加水分解性基を有するシランカップリング剤が好ましい。
 加水分解性基を有するシランカップリング剤を用いたシランカップリング剤処理では、シランカップリング剤における加水分解性基が、水により加水分解されて水酸基となり、この水酸基がシリカ粒子表面の水酸基と脱水縮合反応することにより、粒子の表面が改質される。
 加水分解性基としては、アルコキシ基、アシルオキシ基、ハロゲノ基等が挙げられる。
 シランカップリング剤は、官能基として疎水性基を有していてもよい。
 官能基として疎水性基を有するシランカップリング剤としては、メチルトリメトキシシラン(MTMS)、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシラン等のアルコキシシラン;メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシラン等のクロロシラン;ヘキサメチルジシラザン(HMDS);などが挙げられる。
 また、シランカップリング剤は、官能基としてビニル基を有していてもよい。
 官能基としてビニル基を有するシランカップリング剤としては、メタクリロキシプロピルトリエトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルメチルジエトキシシラン、メタクリロキシプロピルメチルジメトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン等のアルコキシシラン;ビニルトリクロロシラン、ビニルメチルジクロロシラン等のクロロシラン;ジビニルテトラメチルジシラザン;などが挙げられる。
 シランカップリング剤処理では、シランカップリング剤を、1種のみ用いてもよく、2種以上用いてもよい。
 表面処理の方法としては、特に限定されず、公知の方法を適用することができる。
 表面処理の方法としては、粉体と表面処理剤等とをヘンシェルミキサー等の混合機を用いて混合する方法、粉体を構成する粒子に対し、表面処理剤等を噴霧する方法、表面処理剤等を適当な溶剤に溶解又は分散させた表面処理剤等を含む液と、粉体と、を混合した後、溶剤を除去する方法等が挙げられる。
[マグネトプランバイト型六方晶フェライト粉体の製造方法]
 本開示のマグネトプランバイト型六方晶フェライト粉体の製造方法は、特に限定されず、例えば、式(1)で表されるマグネトプランバイト型六方晶フェライト(即ち、特定マグネトプランバイト型六方晶フェライト)が主生成物として生成され、かつ、式(2)で表される化合物(即ち、特定化合物)が副生成物として生成される方法が挙げられる。
 本発明者は、式(1)で表されるマグネトプランバイト型六方晶フェライト(即ち、特定マグネトプランバイト型六方晶フェライト)の粉体を固相法により量産しようとしたところ、式(2)で表される化合物(即ち、特定化合物)が、副生成物として一定量生成されることを確認している。
 よって、本開示のマグネトプランバイト型六方晶フェライト粉体の製造方法としては、固相法により製造する方法が好ましい。
 本開示のマグネトプランバイト型六方晶フェライト粉体を固相法により製造する方法としては、特に限定されないが、例えば、以下で説明する方法(以下、「製造方法X」という。)が好ましい。
 製造方法Xは、Feを含む無機化合物と、Alを含む無機化合物と、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素(以下、「特定金属元素」ともいう。)を含む無機化合物と、を混合して、混合物を得る工程Aと、工程Aにて得られた混合物を粉砕して粉砕物を得た後、得られた粉砕物を焼成する工程(以下、「b1工程」ともいう。)、又は、工程Aにて得られた混合物を焼成して焼成物を得た後、得られた焼成物を粉砕する工程(以下、「b2工程」ともいう。)のいずれか一方の工程Bと、を含む。
 工程A及び工程Bは、それぞれ2段階以上に分かれていてもよい。
 製造方法Xは、必要に応じて、工程A及び工程B以外の工程を含んでいてもよい。
 以下、各工程について詳細に説明する。
(工程A)
 工程Aは、Feを含む無機化合物と、Alを含む無機化合物と、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素(即ち、特定金属元素)を含む無機化合物と、を混合して、混合物を得る工程である。
 Feを含む無機化合物としては、酸化鉄(III)〔α-Fe〕等のFeを含む酸化物、塩化鉄(III)、硝酸鉄(III)などが挙げられる。
 Alを含む無機化合物としては、酸化アルミニウム〔Al〕等のAlを含む酸化物、水酸化アルミニウムなどが挙げられる。
 特定金属元素を含む無機化合物としては、炭酸ストロンチウム〔SrCO〕、炭酸バリウム、炭酸カルシウム、炭酸鉛等の特定金属元素を含む炭酸塩、塩化ストロンチウム、塩化バリウム、塩化カルシウム等の特定金属元素を含む塩化物などが挙げられる。
 Feを含む無機化合物とAlを含む無機化合物と特定金属元素を含む無機化合物とは、単に混合すればよい。
 以下、Feを含む無機化合物、Alを含む無機化合物、及び特定金属元素を含む無機化合物を「原料」ともいう。
 原料は、全量を一度に混合してもよく、Feを含む無機化合物とAlを含む無機化合物と特定金属元素を含む無機化合物とを少しずつ徐々に混合してもよい。
 例えば、特定化合物の生成量を低減する観点からは、Feを含む無機化合物とAlを含む無機化合物と特定金属元素を含む無機化合物とを少しずつ徐々に混合することが好ましい。
 Feを含む無機化合物とAlを含む無機化合物と特定金属元素を含む無機化合物とを混合する方法は、特に限定されず、例えば、撹拌により混合する方法が挙げられる。
 撹拌手段としては、特に限定されず、一般的な撹拌装置を用いることができる。
 撹拌装置としては、パドルミキサー、インペラーミキサー等のミキサーが挙げられる。
 撹拌時間は、特に限定されず、例えば、原料の配合量、撹拌装置の種類等に応じて、適宜設定できる。
 Feを含む無機化合物とAlを含む無機化合物と特定金属元素を含む無機化合物との混合比率は、特に限定されず、目的とする特定マグネトプランバイト型六方晶フェライトの組成に応じて、適宜設定できる。
 磁場強度Hαは、工程Aにおいて、例えば、マグネトプランバイト型六方晶フェライト粉体の、原料の種類、原料の粒径、原料の使用量、原料の混合方法等を変更することで調整できる。
 具体的には、例えば、原料として使用する、Feを含む無機化合物に対するAlを含む無機化合物の配合割合を高めることで、磁場強度Hαの値を高めることができる。また、例えば、原料として使用する、Alを含む無機化合物の粒径を小さくすることで、磁場強度Hαの値を高めることができる。
(工程B)
 工程Bは、工程Aにて得られた混合物を粉砕して粉砕物を得た後、得られた粉砕物を焼成する工程(即ち、b1工程)、又は、工程Aにて得られた混合物を焼成して焼成物を得た後、得られた焼成物を粉砕する工程(即ち、b2工程)のいずれか一方の工程である。
 工程Aにて得られた混合物を焼成して焼成物を得た後、得られた焼成物を粉砕するか、或いは、工程Aにて得られた混合物を粉砕して粉砕物を得た後、得られた粉砕物を焼成することにより、マグネトプランバイト型六方晶フェライト粉体を得ることができる。
 工程Bは、b1工程であってもよく、b2工程であってもよい。
 例えば、焼成後の磁気特性をより均一にするという観点からは、工程Bは、b2工程であることが好ましい。
 焼成は、加熱装置を用いて行うことができる。
 加熱装置は、目的の温度に加熱することができれば、特に限定されず、公知の加熱装置をいずれも用いることができる。加熱装置としては、例えば、電気炉の他、製造ラインに合わせて独自に作製した焼成装置を用いることができる。
 焼成は、大気雰囲気下で行うことが好ましい。
 焼成温度としては、特に限定されないが、例えば、900℃以上が好ましく、900℃~1400℃がより好ましく、1000℃~1200℃が更に好ましい。
 焼成時間としては、特に限定されないが、例えば、1時間~10時間が好ましく、2時間~6時間がより好ましい。
 粉砕手段は、目的とする粒径のマグネトプランバイト型六方晶フェライト粉体を得ることができれば、特に限定されない。
 粉砕手段としては、乳鉢及び乳棒、粉砕機(カッターミル、ボールミル、ビーズミル、ローラーミル、ジェットミル、ハンマーミル、アトライター等)などが挙げられる。
 メディアを用いる粉砕の場合、メディアの粒径(所謂、メディア径)は、特に限定されないが、例えば、0.1mm~5.0mmであることが好ましく、0.5mm~3.0mmであることがより好ましい。
 本開示において、「メディア径」とは、球状メディア(例えば、球状ビーズ)の場合は、メディア(例えば、ビーズ)の直径を意味し、非球状メディア(例えば、非球状ビーズ)の場合は、透過型電子顕微鏡(TEM)又は走査型電子顕微鏡(SEM)の観察像から複数個のメディア(例えば、ビーズ)の円相当径を測定し、測定値を算術平均して求められる直径を意味する。
 メディアの材質は、特に限定されず、例えば、ガラス製、アルミナ製、スチール製、ジルコニア製、セラミック製等のメディアを好ましく用いることができる。
[電波吸収体]
 本開示の電波吸収体は、本開示のマグネトプランバイト型六方晶フェライト粉体と、バインダーと、を含む。
 本開示のマグネトプランバイト型六方晶フェライト粉体の磁場強度Hαと共鳴周波数とは相関性があり、磁場強度Hαの調整により、共鳴周波数の制御が可能である。そのため、本開示の電波吸収体は、本開示のマグネトプランバイト型六方晶フェライト粉体を含むことで、所望の周波数の電波の吸収を効率良く高めることができ、所望の周波数において、優れた電波吸収性能を発揮し得る。
 本開示の電波吸収体の形状としては、特に制限はなく、平面形状を有していてもよく、立体形状を有していてもよく、線形状を有していてもよい。
 平面形状としては、特に制限はなく、シート状、フィルム状等の形状が挙げられる。
 立体形状としては、例えば、三角形以上の多角形の柱形状、円柱形状、角錐形状、円錐形状、及びハニカム形状が挙げられる。また、立体形状としては、上記平面形状と上記立体形状とを組み合わせた形状も挙げられる。
 線形状としては、特に制限はなく、フィラメント状、ストランド状等の形状が挙げられる。
 本開示の電波吸収体の電波吸収性能は、電波吸収体における本開示のマグネトプランバイト型六方晶フェライト粉体の含有率のみならず、電波吸収体の形状によっても制御することが可能である。
 本開示の電波吸収体は、本開示のマグネトプランバイト型六方晶フェライト粉体を1種のみ含んでいてもよく、2種以上含んでいてもよい。
 本開示の電波吸収体は、例えば、組成の異なる2種以上の本開示のマグネトプランバイト型六方晶フェライト粉体を含んでいてもよい。
 本開示の電波吸収体における本開示のマグネトプランバイト型六方晶フェライト粉体の含有率は、特に限定されず、例えば、電波吸収体の電波吸収性能の観点から、電波吸収体中の全固形分量に対して、10質量%以上が好ましく、30質量%以上がより好ましく、50質量%以上が更に好ましい。
 また、本開示の電波吸収体における本開示のマグネトプランバイト型六方晶フェライト粉体の含有率は、例えば、電波吸収体の強度及び製造適性の観点から、電波吸収体中の全固形分量に対して、98質量%以下が好ましく、95質量%以下がより好ましく、92質量%以下が更に好ましい。
 本開示において、電波吸収体中の全固形分量とは、電波吸収体が溶剤を含まない場合には、電波吸収体の全質量を意味し、電波吸収体が溶剤を含む場合には、電波吸収体から溶剤を除いた全質量を意味する。
 本開示の電波吸収体は、バインダーを含む。
 バインダーとしては、例えば、熱可塑性樹脂及び熱硬化性樹脂が挙げられる。
 熱可塑性樹脂としては、アクリル樹脂;ポリアセタール;ポリアミド;ポリエチレン;ポリプロピレン;ポリエチレンテレフタレート;ポリブチレンテレフタレート;ポリカーボネート;ポリスチレン;ポリフェニレンサルファイド;ポリ塩化ビニル;アクリロニトリルとブタジエンとスチレンとの共重合により得られるABS(acrylonitrile butadiene styrene)樹脂;アクリロニトリルとスチレンとの共重合により得られるAS(acrylonitrile styrene)樹脂等が挙げられる。
 熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、ジアリルフタレート樹脂、ウレタン樹脂、シリコン樹脂等が挙げられる。
 バインダーとしては、例えば、ゴムが挙げられる。
 ゴムとしては、例えば、本開示のマグネトプランバイト型六方晶フェライト粉体との混合性が良好であり、かつ、耐久性、耐候性、及び耐衝撃性により優れる電波吸収体を製造できるという観点から、ブタジエンゴム;イソプレンゴム;クロロプレンゴム;ハロゲン化ブチルゴム;フッ素ゴム;ウレタンゴム;アクリル酸エステル(例えば、アクリル酸エチル、アクリル酸ブチル、及びアクリル酸2-エチルヘキシル)と他の単量体との共重合により得られるアクリルゴム(ACM);チーグラー触媒を用いたエチレンとプロピレンとの配位重合により得られるエチレン-プロピレンゴム;イソブチレンとイソプレンとの共重合により得られるブチルゴム(IIR);ブタジエンとスチレンとの共重合により得られるスチレンブタジエンゴム(SBR);アクリロニトリルとブタジエンとの共重合により得られるアクリロニトリルブタジエンゴム(NBR);シリコーンゴム等が好ましい。
 バインダーとしては、例えば、熱可塑性エラストマー(TPE)も挙げられる。
 熱可塑性エラストマーとしては、オレフィン系熱可塑性エラストマー(TPO)、スチレン系熱可塑性エラストマー(TPS)、アミド系熱可塑性エラストマー(TPA)、ポリエステル系熱可塑性エラストマー(TPC)等が挙げられる。
 本開示の電波吸収体は、バインダーとしてゴムを含む場合、ゴムに加えて、加硫剤、加硫助剤、軟化剤、可塑剤等の各種添加剤を含んでいてもよい。
 加硫剤としては、硫黄、有機硫黄化合物、金属酸化物等が挙げられる。
 バインダーのメルトマススローレイト(以下、「MFR」ともいう。)は、特に限定されないが、例えば、1g/10min~200g/10minであることが好ましく、3g/10min~100g/10minであることがより好ましく、5g/10min~80g/10minであることが更に好ましく、10g/10min~50g/10minであることが特に好ましい。
 バインダーのMFRが1g/10min以上であると、流動性が十分に高く、外観不良がより生じ難い。
 バインダーのMFRが200g/10min以下であると、成形体の強度等の機械特性をより高めやすい。
 バインダーのMFRは、JIS K 7210:1999に準拠して、測定温度230℃及び荷重10kgの条件で測定される値である。
 バインダーの硬度は、特に限定されないが、例えば、成形適性の観点から、5g~150gであることが好ましく、10g~120gであることがより好ましく、30g~100gであることが更に好ましく、40g~90gであることが特に好ましい。
 バインダーの硬度は、JIS K 6253-3:2012に準拠して測定される瞬間値である。
 バインダーの密度は、特に限定されないが、例えば、成形適性の観点から、600kg/m~1100kg/mであることが好ましく、700kg/m~1000kg/mであることがより好ましく、750kg/m~1050kg/mであることが更に好ましく、800kg/m~950kg/mであることが特に好ましい。
 バインダーの密度は、JIS K 0061:2001に準拠して測定される値である。
 バインダーの100%引張応力は、特に限定されないが、例えば、成形適性の観点から、0.2MPa~20MPaであることが好ましく、0.5MPa~10MPaであることがより好ましく、1MPa~5MPaであることが更に好ましく、1.5MPa~3MPaであることが特に好ましい。
 バインダーの引張強さは、特に限定されないが、例えば、成形適性の観点から、1MPa~20MPaであることが好ましく、2MPa~15MPaであることがより好ましく、3MPa~10MPaであることが更に好ましく、5MPa~8MPaであることが特に好ましい。
 バインダーの切断時伸びは、特に限定されないが、例えば、成形適性の観点から、110%~1500%であることが好ましく、150%~1000%であることがより好ましく、200%~900%であることが更に好ましく、400%~800%であることが特に好ましい。
 以上の引張特性は、JIS K 6251:2010に準拠して測定される値である。測定は、試験片としてJIS 3号ダンベルを用い、引張速度500mm/minの条件で行う。
 本開示の電波吸収体は、バインダーを1種のみ含んでいてもよく、2種以上含んでいてもよい。
 本開示の電波吸収体におけるバインダーの含有率は、特に限定されず、例えば、本開示のマグネトプランバイト型六方晶フェライト粉体の分散性、並びに、電波吸収体の製造適性及び耐久性の観点から、電波吸収体中の全固形分量に対して、2質量%以上であることが好ましく、5質量%以上であることがより好ましく、8質量%以上であることが更に好ましい。
 また、本開示の電波吸収体におけるバインダーの含有率は、例えば、電波吸収体の電波吸収性能の観点から、電波吸収体中の全固形分量に対して、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることが更に好ましい。
 本開示の電波吸収体は、本開示のマグネトプランバイト型六方晶フェライト粉体及びバインダー以外に、本開示の電波吸収体の効果を損なわない範囲において、必要に応じて、種々の添加剤(所謂、他の添加剤)を含んでいてもよい。
 他の添加剤としては、酸化防止剤、光安定剤、分散剤、分散助剤、防黴剤、帯電防止剤、可塑剤、衝撃性向上剤、結晶核剤、滑剤、界面活性剤、顔料、染料、充填剤、離型剤(脂肪酸、脂肪酸金属塩、オキシ脂肪酸、脂肪酸エステル、脂肪族部分鹸化エステル、パラフィン、低分子量ポリオレフィン、脂肪酸アミド、アルキレンビス脂肪酸アミド、脂肪族ケトン、脂肪酸低級アルコールエステル、脂肪酸多価アルコールエステル、脂肪酸ポリグリコールエステル、変性シリコーン等)、加工助剤、防曇剤、ドリップ防止剤、防菌剤などが挙げられる。他の添加剤は、1つの成分が2つ以上の機能を担うものであってもよい。
<酸化防止剤>
 本開示の電波吸収体は、酸化防止剤を含むことが好ましい。
 酸化防止剤としては、特に限定されず、公知の酸化防止剤を用いることができる。
 酸化防止剤の例としては、例えば、シーエムシー発行の、大勝靖一監修“高分子安定化の総合技術-メカニズムと応用展開-”に記載がある。この記載は、参照により本明細書に取り込まれる。
 酸化防止剤の種類としては、フェノール系酸化防止剤、アミン系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤等が挙げられる。
 酸化防止剤は、フェノール系酸化防止剤及び/又はアミン系酸化防止剤と、リン系酸化防止剤及び/又はイオウ系酸化防止剤とを併用することが好ましい。
 フェノール系酸化防止剤としては、ADEKA社のアデカスタブ AO-20、アデカスタブ AO-30、アデカスタブ AO-40、アデカスタブ AO-50、アデカスタブ AO-60、アデカスタブ AO-80、アデカスタブ AO―330、BASFジャパン(株)のIRGANOX 1010、IRGANOX 1035、IRGANOX 1076、IRGANOX 1098、IRGANOX 1135、IRGANOX 1330、IRGANOX 1726、IRGANOX 245、IRGANOX 259、IRGANOX 3114、IRGANOX 565等が挙げられる。なお、上記の「アデカスタブ」及び「IRGANOX」は、いずれも登録商標である。
 アミン系酸化防止剤としては、三共ライフテック(株)のサノール LS-770、サノール LS-765、サノール LS-2626、ADEKA社のアデカスタブ LA-77、アデカスタブ LA-57、アデカスタブ LA-52、アデカスタブ LA-62、アデカスタブ LA-63、アデカスタブ LA-67、アデカスタブ LA-68、アデカスタブ LA-72、BASFジャパン(株)のTINUVIN 123、TINUVIN 144、TINUVIN 622、TINUVIN 765、TINUVIN 944等が挙げられる。なお、上記の「アデカスタブ」及び「TINUVIN」は、いずれも登録商標である。
 また、本開示の電波吸収体は、酸化防止剤として、ラジカルをクエンチすることができるアミン系化合物を用いることもできる。このようなアミン系化合物としては、ポリエチレングリコールビスTEMPO〔シグマアルドリッチ社〕、セバシン酸ビスTEMPO等が挙げられる。なお、「TEMPO」は、テトラメチルピペリジン-1-オキシルの略称である。
 リン系酸化防止剤としては、ADEKA社のアデカスタブ PEP-8、アデカスタブ PEP-36、アデカスタブ HP-10、アデカスタブ 2112、BASFジャパン(株)のIRGAFOS 168等が挙げられる。なお、上記の「アデカスタブ」及び「IRGAFOS」は、いずれも登録商標である。
 イオウ系酸化防止剤としては、ADEKA社のアデカスタブ AO-412S、アデカスタブ AO-503S等が挙げられる。なお、上記の「アデカスタブ」は、登録商標である。
 上記の中でも、フェノール系酸化防止剤としては、アデカスタブ AO-20、アデカスタブ AO-60、アデカスタブ AO―80、及びIRGANOX 1010からなる群より選ばれる少なくとも1種が好ましく、アミン系酸化防止剤としては、アデカスタブ LA-52が好ましく、リン系酸化防止剤としては、アデカスタブ PEP-36が好ましく、イオウ系酸化防止剤としては、アデカスタブ AO-412Sが好ましい。
 本開示の電波吸収体は、酸化防止剤を含む場合、酸化防止剤を1種のみ含んでいてもよく、2種以上含んでいてもよい。
 本開示の電波吸収体が酸化防止剤を含む場合、電波吸収体における酸化防止剤の含有量は、特に限定されないが、例えば、バインダーの分解抑止と酸化防止剤のブリード抑止との両立の観点から、バインダー100質量部に対して、0.1質量部~10質量部であることが好ましく、0.5質量部~5質量部であることがより好ましい。
<光安定剤>
 本開示の電波吸収体は、光安定剤を含むことが好ましい。
 光安定剤としては、HALS(即ち、ヒンダードアミン系光安定剤)、紫外線吸収剤、一重項酸素クエンチャー等が挙げられる。
 HALSは、高分子量のHALSであってもよく、低分子量のHALSであってもよく、高分子量のHALSと低分子量のHALSとの組み合わせであってもよい。
 本開示の電波吸収体は、光安定剤を含む場合、光安定剤を1種のみ含んでいてもよく、2種以上含んでいてもよい。
-高分子量のHALS-
 本開示において、「高分子量のHALS」とは、重量平均分子量が1000を超えるヒンダードアミン系光安定剤を意味する。
 高分子量のHALSとしては、オリゴマー型のHALSであるポリ[6-(1,1,3,3-テトラメチルブチル)イミノ-1,3,5-トリアジン-2,4-ジイル][(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]ヘキサメチレン[(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物等が挙げられる。
 高分子量のHALSの市販品の例としては、BASFジャパン(株)のCHIMASSORB 944LD、TINUVIN 622LD等が挙げられる。なお、上記の「CHIMASSORB」及び「TINUVIN」は、いずれも登録商標である。
 本開示における重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)により測定した値である。ゲルパーミエーションクロマトグラフィー(GPC)による測定は、測定装置として、HLC(登録商標)-8220GPC〔東ソー(株)製〕を用い、カラムとして、TSKgel(登録商標)Super HZM-M〔4.6mmID×15cm、東ソー(株)製〕、Super HZ4000〔4.6mmID×15cm、東ソー(株)製〕、Super HZ3000〔4.6mmID×15cm、東ソー(株)製〕、Super HZ2000〔4.6mmID×15cm、東ソー(株)製〕をそれぞれ1本、直列に連結したものを用い、溶離液として、THF(テトラヒドロフラン)を使用できる。
 測定条件としては、試料濃度を0.2質量%、流速を0.35mL/min、サンプル注入量を10μL、及び測定温度を40℃とし、示差屈折率(RI)検出器を用いて行うことができる。
 検量線は、東ソー(株)製の「標準試料TSK standard,polystyrene」:「F-40」、「F-20」、「F-4」、「F-1」、「A-5000」、「A-2500」、及び「A-1000」を用いて作製できる。
 本開示の電波吸収体が高分子量のHALSを含む場合、電波吸収体における高分子量のHALSの含有率は、特に限定されないが、例えば、電波吸収体の全質量に対して、0.2質量%~10質量%であることが好ましい。
 本開示の電波吸収体における高分子量のHALSの含有率が、電波吸収体の全質量に対して0.2質量%以上であると、目的とする耐候性をより十分に得ることができる。
 本開示の電波吸収体における高分子量のHALSの含有率が電波吸収体の全質量に対して10質量%以下であると、機械的強度の低下、及び、ブルーミングの発生がより抑制される傾向がある。
-低分子量のHALS-
 本開示において、「低分子量のHALS」とは、分子量が1000以下(好ましくは900以下、より好ましくは600~900)であるヒンダードアミン系光安定剤を意味する。
 低分子量のHALSとしては、トリス(2,2,6,6-テトラメチル-4-ピペリジル)ベンゼン-1,3,5-トリカルボキシレート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-2-アセトキシプロパン-1,2,3-トリカルボキシレート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-2-ヒドロキシプロパン-1,2,3-トリカルボキシレート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)トリアジン-2,4,6-トリカルボキシレート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)ブタン-1,2,3-トリカルボキシレート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)プロパン-1,1,2,3-テトラカルボキシレート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)等が挙げられる。
 低分子量のHALSの市販品の例としては、ADEKA社のアデカスタブ LA-57、アデカスタブ LA-52、BASFジャパン(株)のTINUVIN 144等が挙げられる。なお、上記の「アデカスタブ」及び「TINUVIN」は、いずれも登録商標である。
 本開示の電波吸収体が低分子量のHALSを含む場合、電波吸収体における低分子量のHALSの含有率は、特に限定されないが、例えば、電波吸収体の全質量に対して、0.2質量%~10質量%であることが好ましい。
 本開示の電波吸収体における低分子量のHALSの含有率が、電波吸収体の全質量に対して0.2質量%以上であると、目的とする耐候性をより十分に得ることができる。
 本開示の電波吸収体における低分子量のHALSの含有率が電波吸収体の全質量に対して10質量%以下であると、機械的強度の低下、及び、ブルーミングの発生がより抑制される傾向がある。
-紫外線吸収剤-
 紫外線吸収剤としては、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチル-フェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-アミルフェニル)ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-(3’’,4’’,5’’,6’’-テトラヒドロ-フタルイミドメチル)-5’-メチルフェニル〕ベンゾトリアゾール、2,2’-メチレンビス〔4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール〕、2-〔2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル〕-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-オクチルオキシフェニル)-2H-ベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-4-メチル-6-(3,4,5,6-テトラヒドロフタルイミジルメチル)フェノール等のベンゾトリアゾール系紫外線吸収剤、2-ヒドロキシ-4-メトキシベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、4-ドデシロキシ-2-ヒドロキシベンゾフェノン、3,5-ジ-t-ブチル-4-ヒドロキシベンゾイル安息酸n-ヘクサデシルエステル、1,4-ビス(4-ベンゾイル-3-ヒドロキシフェノキシ)ブタン、1,6-ビス(4-ベンゾイル-3-ヒドロキシフェノキシ)ヘキサン等のベンゾフェノン系紫外線吸収剤、エチル-2-シアノ-3,3-ジフェニルアクリレートに代表されるシアノアクリレート系紫外線吸収剤などが挙げられる。
 紫外線吸収剤の市販品の例としては、BASFジャパン(株)のTINUVIN 320、TINUVIN 328、TINUVIN 234、TINUVIN 1577、TINUVIN 622、IRGANOXシリーズ、ADEKA社のアデカスタブ LA31、シプロ化成(株)のSEESORB 102、SEESORB 103、SEESORB 501等が挙げられる。なお、上記の「TINUVIN」、「IRGANOX」、「アデカスタブ」、及び「SEESORB」は、いずれも登録商標である。
 本開示の電波吸収体が紫外線吸収剤を含む場合、電波吸収体における紫外線吸収剤の含有率は、特に限定されないが、例えば、電波吸収体の全質量に対して、0.2質量%~10質量%であることが好ましい。
 本開示の電波吸収体における紫外線吸収剤の含有率が、電波吸収体の全質量に対して0.2質量%以上であると、目的とする耐候性をより十分に得ることができる。
 本開示の電波吸収体における紫外線吸収剤の含有率が電波吸収体の全質量に対して10質量%以下であると、機械的強度の低下、及び、ブルーミングの発生がより抑制される傾向がある。
-一重項酸素クエンチャー-
 本開示の電波吸収体が一重項酸素クエンチャーを含む場合、電波吸収体における一重項酸素クエンチャーの含有率は、特に限定されないが、例えば、電波吸収体の全質量に対して、0.2質量%~10質量%であることが好ましい。
 本開示の電波吸収体における一重項酸素クエンチャーの含有率が、電波吸収体の全質量に対して0.2質量%以上であると、目的とする耐候性をより十分に得ることができる。
 本開示の電波吸収体における一重項酸素クエンチャーの含有率が電波吸収体の全質量に対して10質量%以下であると、機械的強度の低下、及び、ブルーミングの発生がより抑制される傾向がある。
 本開示の電波吸収体は、光安定剤を含む場合、光安定剤を1種のみ含んでいてもよく、2種以上含んでいてもよい。
 電波吸収体が特定マグネトプランバイト型六方晶フェライトの粉体を含んでいることは、例えば、以下の方法により確認できる。
 電波吸収体を細かく切り刻んだ後、溶剤(例えば、アセトン)中に1日間~2日間浸漬した後、乾燥させる。乾燥後の電波吸収体を更に細かく磨り潰し、粉末X線回折(XRD)測定を行うことで、構造を確認できる。
 また、電波吸収体の断面を切り出した後、例えば、エネルギー分散型X線分析装置を用いることで、組成を確認できる。
 電波吸収体に特定化合物の粉体が含まれているか否かは、例えば、以下の方法により確認できる。
 電波吸収体を細かく切り刻んだ後、溶剤(例えば、アセトン)中に1日間~2日間浸漬した後、乾燥させる。次いで、乾燥後の電波吸収体を更に細かく磨り潰し、粉末X線回折(XRD)測定を行う。粉末X線回折(XRD)測定は、粉末X線回折装置を用い、下記の条件にて行う。そして、特定化合物に由来するピークの有無により、特定化合物の有無を確認できる。
-条件-
 X線源:CuKα線
〔波長:1.54Å(0.154nm)、出力:40mA,45kV〕
 スキャン範囲:20°<2θ<70°
 スキャン間隔:0.05°
 スキャンスピード:0.33°/min
 なお、電波吸収体に含まれる特定化合物の含有量が極めて少ない場合には、粉末X線回折(XRD)測定による特定化合物の検出が困難となるが、例えば、以下の方法により確認できる。
 電波吸収体の断面を切り出した後、エネルギー分散型X線分析装置を用いて、加速電圧5kVにて観察し、式(2)におけるA、Fe、Al、及びOの元素マッピングを行うことで、特定化合物の有無を確認できる。
[電波吸収体の製造方法]
 本開示の電波吸収体の製造方法は、特に限定されない。
 本開示の電波吸収体は、本開示のマグネトプランバイト型六方晶フェライト粉体と、バインダーと、必要に応じて、溶剤、他の添加剤等と、を用いて、公知の方法により製造できる。
 本開示の電波吸収体は、例えば、以下の方法により製造できる。
 本開示のマグネトプランバイト型六方晶フェライト粉体と、バインダーと、必要に応じて、溶剤、他の添加剤等と、を含む電波吸収体形成用組成物を、支持体上に塗布し、電波吸収体形成用組成物の塗布膜を形成する。次いで、形成された電波吸収体形成用組成物の塗布膜を乾燥させることにより製造できる。
 本開示のマグネトプランバイト型六方晶フェライト粉体は、既述のとおりであるため、ここでは説明を省略する。
 電波吸収体形成用組成物における本開示のマグネトプランバイト型六方晶フェライト粉体の含有率は、特に限定されず、例えば、最終的に得られる電波吸収体における含有率が、既述の電波吸収体における含有率になるように調整すればよい。
 本開示の電波吸収体の製造方法におけるバインダーは、「電波吸収体」の項において説明したバインダーと同義であり、好ましい態様も同様であるため、ここでは説明を省略する。
 電波吸収体形成用組成物におけるバインダーの含有率は、特に限定されず、例えば、最終的に得られる電波吸収体における含有率が、既述の電波吸収体における含有率になるように調整すればよい。
 本開示の電波吸収体の製造方法における他の添加剤は、「電波吸収体」の項において説明した他の添加剤と同義であり、好ましい態様も同様であるため、ここでは説明を省略する。
 電波吸収体形成用組成物が溶剤を含む場合、溶剤としては、特に限定されず、例えば、水、有機溶媒、又は、水と有機溶媒との混合溶媒が挙げられる。
 有機溶媒としては、メタノール、エタノール、n-プロパノール、i-プロパノール、メトキシプロパノール等のアルコール類、アセトン、メチルエチルケトン、シクロヘキサン、シクロヘキサノン等のケトン類、テトラヒドロフラン、アセトニトリル、酢酸エチル、トルエンなどが挙げられる。
 これらの中でも、溶剤としては、乾燥速度が適切であるという観点から、シクロヘキサノンが好ましい。
 電波吸収体形成用組成物が溶剤を含む場合、電波吸収体形成用組成物における溶剤の含有率は、特に限定されず、例えば、電波吸収体形成用組成物に配合される成分の種類、量等により、適宜設定できる。
 また、電波吸収体形成用組成物における溶剤の含有率は、電波吸収体形成用組成物を、塗布するか、或いは、後述のように成形加工するかによって、適宜設定される。
 電波吸収体形成用組成物中において、本開示のマグネトプランバイト型六方晶フェライト粉体とバインダーとは、単に混合されていればよい。
 本開示のマグネトプランバイト型六方晶フェライト粉体とバインダーとを混合する方法は、特に限定されず、例えば、撹拌により混合する方法が挙げられる。
 撹拌手段としては、特に限定されず、一般的な撹拌装置を用いることができる。
 撹拌装置としては、パドルミキサー、インペラーミキサー等のミキサーが挙げられる。
 撹拌時間は、特に制限されず、例えば、撹拌装置の種類、電波吸収体形成用組成物の組成等に応じて、適宜設定できる。
 支持体としては、特に限定されず、公知の支持体を用いることができる。
 支持体を構成する材料としては、例えば、金属板(アルミニウム、亜鉛、銅等の金属の板)、ガラス板、プラスチックシート〔ポリエステル(ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等)、ポリエチレン(直鎖状低密度ポリエチレン、低密度ポリエチレン、高密度ポリエチレン等)、ポリプロピレン、ポリスチレン、ポリカーボネート、ポリイミド、ポリアミド、ポリアミドイミド、ポリスルホン、ポリ塩化ビニル、ポリアクリロニトリル、ポリフェニレンスルフィド、ポリエーテルイミド、ポリエーテルスルホン、ポリビニルアセタール、アクリル樹脂等のシート〕、上述した金属がラミネートされ又は蒸着されたプラスチックシートなどが挙げられる。
 なお、プラスチックシートは、二軸延伸されていることが好ましい。
 支持体は、電波吸収体の形態を保持するために機能し得る。
 なお、電波吸収体がそれ自身の形態を保持できる場合には、支持体として、例えば、ガラス板、金属板、又は表面に離型処理が施されたプラスチックシートを用い、電波吸収体の製造後に電波吸収体から除去してもよい。
 支持体の形状、構造、大きさ等は、目的に応じて適宜選択できる。
 支持体の形状としては、例えば、平板状が挙げられる。
 支持体の構造は、単層構造であってもよいし、2層以上の積層構造であってもよい。
 支持体の大きさは、電波吸収体の大きさ等に応じて、適宜選択できる。
 支持体の厚みは、特に限定されず、通常は0.01mm~10mm程度であり、例えば、取り扱い性の観点から、0.02mm~3mmであることが好ましく、0.05mm~1mmであることがより好ましい。
 支持体上に、電波吸収体用組成物を塗布する方法は、特に限定されず、例えば、ダイコーター、ナイフコーター、アプリケーター等を用いる方法が挙げられる。
 電波吸収体形成用組成物の塗布膜を乾燥させる方法としては、特に限定されず、例えば、オーブン等の加熱装置を用いる方法が挙げられる。
 乾燥温度及び乾燥時間は、特に限定されず、電波吸収体形成用組成物の塗布膜に含まれる溶剤を揮発させることができればよい。
 一例を挙げれば、70℃~90℃にて、1時間~3時間加熱する。
 また、本開示の電波吸収体は、例えば、以下の方法により製造できる。
 特定マグネトプランバイト型六方晶フェライト粉体と、バインダーと、必要に応じて、溶剤、他の添加剤等と、を含む電波吸収体形成用組成物を加熱しながら、混練機を用いて混練し、混練物を得る。次いで、得られた混練物を平面形状又は立体形状に成形加工することにより製造できる。
 成形加工としては、例えば、プレス成形、押し出し成形、射出成形、インモールド成形等による加工が挙げられる。
 なお、本開示の電波吸収体は、例えば、以下の方法により製造してもよい。
 特定マグネトプランバイト型六方晶フェライト粉体と、バインダーと、必要に応じて、溶剤、他の添加剤等と、を含む電波吸収体形成用組成物をペレット状に成形加工し、得られたペレット状の成形体を原料として、平面形状、立体形状、又は線形状の電波吸収体を製造してもよい。
 ペレット状の成形体は、カーボンブラック等の着色剤、帯電防止性又は耐候性の向上を目的とした添加剤などを含んでいてもよい。
 ペレット状の成形体の大きさ(所謂、直径)は、特に限定されないが、例えば、0.5mm~20mmであることが好ましく、1mm~10mmであることがより好ましく、2mm~8mmであることが更に好ましく、3mm~6mmであることが特に好ましい。
 ペレット状の成形体の密度は、特に限定されないが、例えば、500kg/m~5000kg/mであることが好ましく、800kg/m~4000kg/mであることがより好ましく、1000kg/m~3500kg/mであることが更に好ましく、1200kg/m~3000kg/mであることが特に好ましい。
 上記密度は、JIS K 0061:2001に準拠して測定される値である。
[マグネトプランバイト型六方晶フェライト粉体の共鳴周波数を制御する方法]
 本開示の制御方法は、式(1)で表されるマグネトプランバイト型六方晶フェライトの粉体を含むマグネトプランバイト型六方晶フェライト粉体に対し、50kOeの外部磁場をかけたときの磁化量の90%となる磁場強度Hαを、19kOe≦Hα≦28kOeを満たす範囲内で調整することにより、マグネトプランバイト型六方晶フェライト粉体の共鳴周波数を制御する方法である。
 本開示の制御方法によれば、特定化合物を含む場合でも、60GHz~90GHzの周波数帯域において、マグネトプランバイト型六方晶フェライト粉体の共鳴周波数を良好に制御できる。
 本開示の制御方法における式(1)で表されるマグネトプランバイト型六方晶フェライトの粉体は、「マグネトプランバイト型六方晶フェライト粉体」の項において説明した式(1)で表されるマグネトプランバイト型六方晶フェライト(即ち、特定マグネトプランバイト型六方晶フェライト)の粉体と同義であり、好ましい態様も同様であるため、ここでは説明を省略する。
 また、磁場強度Hαは、「マグネトプランバイト型六方晶フェライト粉体」の項において説明した磁場強度Hαと同義であり、好ましい態様も同様であるため、ここでは説明を省略する。
 マグネトプランバイト型六方晶フェライト粉体における式(1)で表されるマグネトプランバイト型六方晶フェライトの粉体の含有率は、特に限定されないが、例えば、マグネトプランバイト型六方晶フェライト粉体の全質量に対して、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることが更に好ましい。
 マグネトプランバイト型六方晶フェライト粉体における式(1)で表されるマグネトプランバイト型六方晶フェライトの粉体の含有率の上限は、特に限定されず、例えば、マグネトプランバイト型六方晶フェライト粉体の全質量に対して、99質量%以下が挙げられる。
 磁場強度Hαを調整する方法としては、特に限定されない。
 磁場強度Hαは、例えば、マグネトプランバイト型六方晶フェライト粉体の、原料の種類、原料の粒径、原料の使用量、原料の混合方法等を変更することにより調整できる。
 具体的には、例えば、原料として使用する、Feを含む無機化合物に対するAlを含む無機化合物の配合割合を高めることで、磁場強度Hαの値を高めることができる。また、例えば、原料として使用する、Alを含む無機化合物の粒径を小さくすることで、磁場強度Hαの値を高めることができる。
 本開示の制御方法において、マグネトプランバイト型六方晶フェライト粉体は、式(2)で表される化合物を含んでいてもよい。
 本開示の制御方法は、式(2)で表される化合物を含む場合でも、60GHz~90GHzの周波数帯域において、マグネトプランバイト型六方晶フェライト粉体の共鳴周波数を良好に制御できる。
 本開示の制御方法における式(2)で表される化合物の粉体は、「マグネトプランバイト型六方晶フェライト粉体」の項において説明した式(2)で表される化合物(即ち、特定化合物)の粉体と同義であり、好ましい態様も同様であるため、ここでは説明を省略する。
 マグネトプランバイト型六方晶フェライト粉体における式(2)で表される化合物の含有率は、特に限定されないが、例えば、マグネトプランバイト型六方晶フェライト粉体の全質量に対して、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることが更に好ましい。
 マグネトプランバイト型六方晶フェライト粉体における式(2)で表される化合物の含有率の下限は、特に限定されず、例えば、マグネトプランバイト型六方晶フェライト粉体の全質量に対して、1質量%以上が挙げられる。
 本開示の制御方法によれば、式(2)で表される化合物を、例えば、マグネトプランバイト型六方晶フェライト粉体の全質量に対して10質量%以上含んでいる場合であっても、60GHz~90GHzの周波数帯域において、マグネトプランバイト型六方晶フェライト粉体の共鳴周波数を良好に制御できる。
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を超えない限り、以下の実施例に限定されるものではない。
[マグネトプランバイト型六方晶フェライト粉体の作製:液相法(スケール小)]
〔粉体A1〕
 35℃に保温した水400.0gを撹拌し、撹拌中の水に、塩化鉄(III)六水和物〔FeCl・6HO〕57.0g、塩化ストロンチウム六水和物〔SrCl・6HO〕27.8g、及び塩化アルミニウム六水和物〔AlCl・6HO〕10.7gを水216.0gに溶解して調製した原料水溶液と、5mol/Lの水酸化ナトリウム水溶液181.3gに水113.0gを加えて調製した溶液と、をそれぞれ10mL/minの流速にて、添加のタイミングを同じくして、全量添加し、第1の液を得た。
 次いで、第1の液の温度を25℃に変更した後、温度を保持した状態で、1mol/Lの水酸化ナトリウム水溶液24.7gを添加し、第2の液を得た。得られた第2の液のpHは、9.0であった。なお、第2の液のpHは、(株)堀場製作所の卓上型pHメータ F-71(商品名)を用いて測定した。
 次いで、第2の液を15分間撹拌し、反応を終了させて、マグネトプランバイト型六方晶フェライト粉体の前駆体となる反応生成物を含む液(即ち、前駆体含有液)を得た。
 次いで、前駆体含有液に対し、遠心分離処理〔回転数:3000rpm(revolutions per minute;以下、同じ。)、回転時間:10分間〕を3回行い、得られた沈殿物を回収した。
 次いで、回収した沈殿物を内部雰囲気温度80℃のオーブン内で12時間乾燥させて、前駆体からなる粒子の集合体(即ち、前駆体の粉体)を得た。
 次いで、前駆体の粉体をマッフル炉の中に入れ、大気雰囲気下において、炉内の温度を1100℃の温度条件に設定し、4時間焼成することにより、粉体A1を得た。
〔粉体A2~粉体A7〕
 第2液のpHを、表1に示すpHに調整したこと以外は、粉体A1の作製と同様の操作を行い、粉体A2~粉体A7を得た。
Figure JPOXMLDOC01-appb-T000011
〔粉体A8〕
 粉体A5に対し、表面処理を施すことにより、粉体A8を作製した。具体的には、以下の操作を行った。
 粉体A5を20gと、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン〔商品名:KBM-603、シランカップリング剤、信越化学工業(株)〕を0.2gとを、大阪ケミカル(株)のワンダークラッシャー WC-3(製品名)を用いて、可変速度ダイアルを「3」に設定して60秒間混合した。次いで、得られた粉体を設定温度90℃のオーブンに入れ、3時間乾燥させることにより、粉体A8を得た。
[マグネトプランバイト型六方晶フェライト粉体の作製:固相法(スケール大)]
〔粉体B1〕
 炭酸ストロンチウム〔SrCO〕30g、α-酸化鉄(III)〔α-Fe〕147g、及び酸化アルミニウム〔Al〕24.9gを、アイリッヒインテンシブミキサー(型式:EL1、アイリッヒ社)を用いて、1000rpmにて30分間撹拌して十分に混合し、原料混合物を得た。
 次いで、得られた原料混合物に対し、大阪ケミカル(株)のワンダークラッシャー WC-3(製品名)を用い、可変速度ダイアルを「3」に設定して60秒間粉砕処理を施し、粉体を得た。得られた粉体をマッフル炉の中に入れ、大気雰囲気下において、炉内の温度を1100℃の温度条件に設定し、4時間焼成することにより、粉体B1を得た。
〔粉体B2~粉体B6〕
 原料の使用量を、表2に示すとおりに変更したこと以外は、粉体B1の作製と同様の操作を行い、粉体B2~粉体B6を得た。
Figure JPOXMLDOC01-appb-T000012
[電波吸収体の作製]
〔電波吸収体A1〕
 粉体A1 9.0g、アクリロニトリルブタジエンゴム(NBR)〔グレード:JSR N215SL、JSR(株)、バインダー〕1.05g、及びシクロヘキサノン(溶剤)6.1を、撹拌装置〔製品名:あわとり練太郎 ARE-310、シンキー(株)〕を用い、回転数2000rpmにて5分間撹拌し、混合することにより、電波吸収体形成用組成物を調製した。
 次いで、ガラス板(支持体)上に、調製した電波吸収体形成用組成物を、アプリケーターを用いて塗布し、電波吸収体形成用組成物の塗布膜を形成した。
 次いで、形成した電波吸収体形成用組成物の塗布膜を、内部雰囲気温度80℃のオーブン内で2時間乾燥させることにより、ガラス板上に電波吸収層を形成した。
 次いで、ガラス板から電波吸収層を剥離し、剥離した電波吸収層を電波吸収体A1(形状:シート状、厚み:0.3mm)とした。
〔電波吸収体A2~電波吸収体A8〕
 粉体A1の代わりに、粉体A2~粉体A8の各粉体を用いたこと以外は、電波吸収体A1の作製と同様の操作を行い、電波吸収体A2~電波吸収体A8の各電波吸収体を得た。
 なお、電波吸収体A2~電波吸収体A8の電波吸収体は、いずれも形状がシート状であり、厚みが0.3mmであった。
〔電波吸収体B1~電波吸収体B6〕
 粉体A1の代わりに、粉体B1~粉体B6の各粉体を用いたこと以外は、電波吸収体A1の作製と同様の操作を行い、電波吸収体B1~電波吸収体B6の各電波吸収体を得た。
 なお、電波吸収体B1~電波吸収体B6の電波吸収体は、いずれも形状がシート状であり、厚みが0.3mmであった。
<特定化合物の有無及び組成の確認>
 粉体A1~粉体A8及び粉体B1~粉体B6の各粉体に特定化合物が含まれているか否か、また、含まれている場合には、特定化合物の組成を、X線回折(XRD)法により確認した。
 具体的には、以下のような方法により確認した。
 各粉体の粉末X線回折(XRD)測定を、粉末X線回折装置(製品名:X’Pert Pro、PANalytical社)を用いて、下記の測定条件により行った。そして、特定化合物に由来するピークの有無及び組成を確認した。
-測定条件-
 X線源:CuKα線
〔波長:1.54Å(0.154nm)、出力:40mA、45kV〕
 スキャン範囲:20°<2θ<70°
 スキャン間隔:0.05°
 スキャンスピード:0.33°/min
 その結果、粉体A1~粉体A8については、特定化合物に由来するピークが確認されず、特定化合物が含まれていないことが確認された。
 一方、粉体B1~粉体B6については、特定化合物に由来するピークが確認され、特定化合物であるSrAlが含まれていることが確認された。
<結晶構造の確認>
 粉体A1~粉体A8及び粉体B1~粉体B6の各粉体を形成する磁性体(以下、それぞれ「磁性体A1~磁性体A8及び磁性体B1~磁性体B6」ともいう。)の結晶構造を、X線回折(XRD)法により確認した。
 具体的には、以下のような方法により確認した。
 各粉体の粉末X線回折(XRD)測定を、粉末X線回折装置(製品名:X’Pert Pro、PANalytical社)を用いて、下記の測定条件により行った。
-測定条件-
 X線源:CuKα線
〔波長:1.54Å(0.154nm)、出力:40mA、45kV〕
 スキャン範囲:20°<2θ<70°
 スキャン間隔:0.05°
 スキャンスピード:0.75°/min
 その結果、磁性体A1~磁性体A8及び磁性体B1~磁性体B6は、いずれもマグネトプランバイト型の結晶構造を有していることが確認された。
<組成の確認>
(1)粉体A1~粉体A8
 粉体A1~粉体A8の各粉体の組成を、高周波誘導結合プラズマ(ICP)発光分光分析法により確認した。
 具体的には、以下のような方法により確認した。
 粉体12mg及び4mol/Lの塩酸水溶液10mLを入れたビーカーを、設定温度120℃のオーブンで12時間保持し、溶解液を得た。得られた溶解液に純水30mLを加えた後、0.1μmのメンブレンフィルタを用いて濾過した。このようにして得られた濾液の元素分析を、高周波誘導結合プラズマ(ICP)発光分光分析装置〔型番:ICPS-8100、(株)島津製作所〕を用いて行った。
 得られた元素分析の結果に基づき、鉄原子100原子%に対する各金属原子の含有率を求めた。そして、得られた含有率に基づき、粉体の組成を確認した。各粉体の組成を以下に示す。
(粉体の組成)
 粉体A1:SrFe(9.65)Al(2.35)19
 粉体A2:SrFe(9.72)Al(2.28)19
 粉体A3:SrFe(9.79)Al(2.21)19
 粉体A4:SrFe(9.86)Al(2.14)19
 粉体A5:SrFe(10.00)Al(2.00)19
 粉体A6:SrFe(10.13)Al(1.87)19
 粉体A7:SrFe(10.20)Al(1.80)19
 粉体A8:SrFe(10.00)Al(2.00)19
 粉体A1~粉体A8の各粉体における鉄原子100原子%に対するアルミニウム原子の割合x’(以下、「Ax’」ともいう。)を、表3に示す。
 粉体A1~粉体A8の各粉体は、特定化合物を含まないため、各粉体における鉄原子100原子%に対するアルミニウム原子の割合x’(即ち、Ax’)は、いずれも式(1)におけるxと同じ値を示した。
 粉体A1~粉体A8の各粉体は、いずれも特定マグネトプランバイト型六方晶フェライトの粉体であることが確認された。
(2)粉体B1~粉体B6
 粉体B1~粉体B6の各粉体の組成を、高周波誘導結合プラズマ(ICP)発光分光分析法により確認した。
 具体的には、以下のような方法により確認した。
 粉体12mg及び4mol/Lの塩酸水溶液10mLを入れたビーカーを、設定温度120℃のオーブンで12時間保持し、溶解液を得た。得られた溶解液に純水30mLを加えた後、0.1μmのメンブレンフィルタを用いて濾過した。このようにして得られた濾液の元素分析を、高周波誘導結合プラズマ(ICP)発光分光分析装置〔型番:ICPS-8100、(株)島津製作所〕を用いて行った。
 得られた元素分析の結果に基づき、鉄原子100原子%に対する各金属原子の含有率を求めた。そして、得られた含有率に基づき、鉄原子100原子%に対するアルミニウム原子の割合x’(以下、「Bx’」ともいう。)を求めた。
 次いで、図1に示す固相法の近似直線〔即ち、粉体B1~粉体B6(以下、総称して「粉体B」ともいう。)の各粉体における鉄原子100原子%に対するアルミニウム原子の割合x’の値に基づく近似直線〕から、Bx’の値に対応する共鳴周波数(以下、「共鳴周波数B」ともいう。)を求めた。
 次いで、図1に示す液相法の近似直線〔即ち、粉体A1~粉体A7(以下、総称して「粉体A」ともいう。)の各粉体における鉄原子100原子%に対するアルミニウム原子の割合x’の値に基づく近似直線〕から、共鳴周波数Bに対応するAx’の値を求め、式(1)におけるxの値とみなした。各粉体の組成を以下に示す。
(粉体の組成)
 粉体B1:SrFe(9.71)Al(2.29)19、及び、SrAl
 粉体B2:SrFe(9.88)Al(2.12)19、及び、SrAl
 粉体B3:SrFe(9.94)Al(2.06)19、及び、SrAl
 粉体B4:SrFe(10.04)Al(1.96)19、及び、SrAl
 粉体B5:SrFe(10.10)Al(1.90)19、及び、SrAl
 粉体B6:SrFe(10.26)Al(1.74)19、及び、SrAl
 粉体B1~粉体B6の各粉体における鉄原子100原子%に対するアルミニウム原子の割合x’を、表4に示す。
 なお、粉体B1~粉体B6の各粉体は、特定化合物を含むため、各粉体における鉄原子100原子%に対するアルミニウム原子の割合x’は、いずれも式(1)におけるxと同じ値を示さなかった。
 粉体B1~粉体B6の各粉体に含まれる特定化合物であるSrAlの含有率を、以下の方法により測定した。
 なお、以下の方法では、特定化合物であるSrAlが全て結晶であるとみなして測定した。
 各粉体の粉末X線回折(XRD)測定を、粉末X線回折装置(製品名:X’Pert Pro、PANalytical社)を用いて、下記の測定条件により行った。
-測定条件-
 X線源:CuKα線
〔波長:1.54Å(0.154nm)、出力:40mA、45kV〕
 スキャン範囲:20°<2θ<70°
 スキャン間隔:0.05°
 スキャンスピード:0.33°/min
 そして、SrAlの標品のピーク強度と、粉体B1~粉体B6の各粉体におけるSrAlのピーク強度とを対比することで、粉体B1~粉体B6の各粉体に含まれるSrAlの含有率を求めた。各粉体に含まれるSrAlの含有率を以下に示す。
(SrAlの含有率)
 粉体B1:8.8質量%
 粉体B2:5.7質量%
 粉体B3:3.7質量%
 粉体B4:2.4質量%
 粉体B5:1.3質量%
 粉体B6:0.6質量%
<電波吸収体の共鳴周波数>
 電波吸収体A1~電波吸収体A8及び電波吸収体B1~電波吸収体B6の各電波吸収体について、透過減衰量のピーク周波数を求め、このピーク周波数を共鳴周波数とした。
 具体的には、測定装置として、keysight社のベクトルネットワークアナライザ(製品名:N5225B)及びキーコム(株)のホーンアンテナ(製品名:RH12S23)を用い、自由空間法により、入射角度を0°とし、掃引周波数を60GHz~90GHzとして、Sパラメータを測定した。このSパラメータからニコルソンロスモデル法を用いて、虚部の透磁率μ’’のピーク周波数を算出し、このピーク周波数を共鳴周波数とした。結果を表3及び表4に示す。
<粉体の磁場強度Hα>
 粉体A1~粉体A8及び粉体B1~粉体B6の各粉体の磁場強度Hαを求めた。
 具体的には、以下のようにして求めた。
 測定装置として、振動試料型磁力計〔型番:TM-TRVSM5050-SMSL型、(株)玉川製作所〕を用い、雰囲気温度23℃の環境下、最大印加磁界50kOe、及び磁界掃引速度25Oe/s(秒)の条件にて、印加した磁界に対する粉体の磁化の強度を測定した。測定結果より、各粉体の磁界(H)-磁化(M)曲線を得た。得られた磁界(H)-磁化(M)曲線に基づき、印加磁場50kOeでの磁化量の90%となる磁場強度を求め、この磁場強度をHαとした。結果を表3及び表4に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
<x’の値と共鳴周波数との関係>
 液相法により作製したマグネトプランバイト型六方晶フェライト粉体(即ち、粉体A1~粉体A7)における、x’(即ち、鉄原子100原子%に対するアルミニウム原子の割合)の値と共鳴周波数との関係、及び固相法により作製したマグネトプランバイト型六方晶フェライト粉体(即ち、粉体B1~粉体B6)における、x’(即ち、鉄原子100原子%に対するアルミニウム原子の割合)の値と共鳴周波数との関係を、図1に示す。
<Hαの値と共鳴周波数との関係>
 液相法により作製したマグネトプランバイト型六方晶フェライト粉体(即ち、粉体A1~粉体A7)における、Hα(即ち、50kOeの外部磁場をかけたときの磁化量の90%となる磁場強度)の値と共鳴周波数との関係、及び固相法により作製したマグネトプランバイト型六方晶フェライト粉体(即ち、粉体B1~粉体B6)における、Hα(即ち、50kOeの外部磁場をかけたときの磁化量の90%となる磁場強度)の値と共鳴周波数との関係を、図2に示す。
 図1、表3、及び表4に示すように、固相法により作製した粉体におけるx’の値と共鳴周波数との関係は、液相法により作製した粉体におけるx’の値と共鳴周波数との関係と異なる傾向を示し、ずれが生じることが確認された。
 このようなずれが生じる理由は、固相法により量産した粉体では、特定化合物が生成されているためと考えられる。
 一方、図2、表3、及び表4に示すように、固相法により作製した粉体におけるHαの値と共鳴周波数との関係は、液相法により作製した粉体におけるHαの値と共鳴周波数との関係と同様の傾向を示した。
 以上の結果から、マグネトプランバイト型六方晶フェライト粉体におけるHαの値と共鳴周波数とは相関性があり、特定化合物を含む場合であっても、マグネトプランバイト型六方晶フェライト粉体のHαの値を調整することで、マグネトプランバイト型六方晶フェライト粉体の共鳴周波数を良好に制御できることがわかった。
 2019年3月19日に出願された日本国特許出願2019-051927号の開示、及び2019年6月25日に出願された日本国特許出願2019-117629号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的に、かつ、個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (7)

  1.  下記の式(1)で表されるマグネトプランバイト型六方晶フェライトの粉体と、下記の式(2)で表される化合物の粉体と、を含み、
     50kOeの外部磁場をかけたときの磁化量の90%となる磁場強度Hαが、19kOe≦Hα≦28kOeを満たすマグネトプランバイト型六方晶フェライト粉体。
    Figure JPOXMLDOC01-appb-C000001

     式(1)中、Aは、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素を表し、xは、1.5≦x≦8.0を満たす。
    Figure JPOXMLDOC01-appb-C000002

     式(2)中、Aは、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素を表す。
  2.  前記式(1)におけるAが、Srである請求項1に記載のマグネトプランバイト型六方晶フェライト粉体。
  3.  表面処理されている請求項1又は請求項2に記載のマグネトプランバイト型六方晶フェライト粉体。
  4.  請求項1~請求項3のいずれか1項に記載のマグネトプランバイト型六方晶フェライト粉体と、バインダーと、を含み、かつ、平面形状を有する電波吸収体。
  5.  請求項1~請求項3のいずれか1項に記載のマグネトプランバイト型六方晶フェライト粉体と、バインダーと、を含み、かつ、立体形状を有する電波吸収体。
  6.  下記の式(1)で表されるマグネトプランバイト型六方晶フェライトの粉体を含むマグネトプランバイト型六方晶フェライト粉体に対し、50kOeの外部磁場をかけたときの磁化量の90%となる磁場強度Hαを、19kOe≦Hα≦28kOeを満たす範囲内で調整することにより、マグネトプランバイト型六方晶フェライト粉体の共鳴周波数を制御する方法。
    Figure JPOXMLDOC01-appb-C000003

     式(1)中、Aは、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素を表し、xは、1.5≦x≦8.0を満たす。
  7.  前記マグネトプランバイト型六方晶フェライト粉体が、下記の式(2)で表される化合物を含む請求項6に記載の方法。
    Figure JPOXMLDOC01-appb-C000004

     式(2)中、Aは、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素を表す。
PCT/JP2019/049902 2019-03-19 2019-12-19 マグネトプランバイト型六方晶フェライト粉体、電波吸収体、及びマグネトプランバイト型六方晶フェライト粉体の共鳴周波数を制御する方法 WO2020188927A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980094053.5A CN113574021B (zh) 2019-03-19 2019-12-19 磁铅石型六方晶铁氧体粉体、电波吸收体及控制磁铅石型六方晶铁氧体粉体的共振频率的方法
KR1020217027114A KR102538732B1 (ko) 2019-03-19 2019-12-19 마그네토플럼바이트형 육방정 페라이트 분체, 전파 흡수체, 및 마그네토플럼바이트형 육방정 페라이트 분체의 공명 주파수를 제어하는 방법
EP19920317.5A EP3943451A4 (en) 2019-03-19 2019-12-19 MAGNETOPLUMBITE-TYPE HEXAGONAL FERRITE POWDER, RADIO WAVE ABSORBER AND CONTROL METHOD OF RESONANCE FREQUENCY OF MAGNETOPLUMBITE-TYPE HEXAGONAL FERRITE POWDER
JP2021506169A JP7179959B2 (ja) 2019-03-19 2019-12-19 マグネトプランバイト型六方晶フェライト粉体、電波吸収体、及びマグネトプランバイト型六方晶フェライト粉体の共鳴周波数を制御する方法
US17/469,166 US20210407715A1 (en) 2019-03-19 2021-09-08 Magnetoplumbite-type hexagonal ferrite powder, radio wave absorber, and method of controlling resonance frequency of magnetoplumbite-type hexagonal ferrite powder

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-051927 2019-03-19
JP2019051927 2019-03-19
JP2019-117629 2019-06-25
JP2019117629 2019-06-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/469,166 Continuation US20210407715A1 (en) 2019-03-19 2021-09-08 Magnetoplumbite-type hexagonal ferrite powder, radio wave absorber, and method of controlling resonance frequency of magnetoplumbite-type hexagonal ferrite powder

Publications (1)

Publication Number Publication Date
WO2020188927A1 true WO2020188927A1 (ja) 2020-09-24

Family

ID=72519790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049902 WO2020188927A1 (ja) 2019-03-19 2019-12-19 マグネトプランバイト型六方晶フェライト粉体、電波吸収体、及びマグネトプランバイト型六方晶フェライト粉体の共鳴周波数を制御する方法

Country Status (6)

Country Link
US (1) US20210407715A1 (ja)
EP (1) EP3943451A4 (ja)
JP (1) JP7179959B2 (ja)
KR (1) KR102538732B1 (ja)
CN (1) CN113574021B (ja)
WO (1) WO2020188927A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022154039A1 (ja) * 2021-01-18 2022-07-21 富士フイルム株式会社 電波吸収体用磁性粉体およびその製造方法、電波吸収体、電波吸収物品ならびに電波吸収性組成物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4011951A4 (en) * 2019-08-09 2022-11-02 FUJIFILM Corporation RADIO WAVE ABSORBENT COMPOSITION AND RADIO WAVE ABSORBER
CN114223319A (zh) * 2019-08-09 2022-03-22 富士胶片株式会社 电波吸收性组合物及电波吸收体
KR102560146B1 (ko) * 2021-11-17 2023-07-25 한국교통대학교산학협력단 육방정 페라이트, 전파 흡수체 조성물 및 이를 포함하는 전파 흡수 시트

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266902A (ja) * 1988-08-31 1990-03-07 Toda Kogyo Corp 高保磁力板状マグネトプランバイト型フェライト粒子粉末及びその製造法
JPH06150297A (ja) * 1992-10-30 1994-05-31 Toshiba Corp 磁気記録媒体およびその製造方法
JPH11354972A (ja) * 1998-06-10 1999-12-24 Tdk Corp 電波吸収体
JP2004104063A (ja) * 2002-07-18 2004-04-02 Hokkaido Univ 電磁波吸収体
JP2007250823A (ja) * 2006-03-16 2007-09-27 Dowa Holdings Co Ltd 電波吸収体用磁性粉体および製造法並びに電波吸収体
CN102030521A (zh) * 2010-10-29 2011-04-27 吉林大学 一种高矫顽力m型锶铁氧体的制备方法
JP2019051927A (ja) 2017-08-02 2019-04-04 ヴァレオ シーメンス イーオートモーティブ フランス エスアーエス 2つのハウジングのアセンブリのための冷却回路部分の接続
WO2019131675A1 (ja) * 2017-12-27 2019-07-04 富士フイルム株式会社 マグネトプランバイト型六方晶フェライトの粒子及びその製造方法、並びに電波吸収体
JP2019117629A (ja) 2017-12-25 2019-07-18 研能科技股▲ふん▼有限公司 揮発性有機化合物の検出警告方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4540076B2 (ja) * 1998-01-23 2010-09-08 日立金属株式会社 ボンド磁石、コンパウンド、マグネットロール及びそれらに用いるフェライト粉末並びにその製造方法
JP5071902B2 (ja) * 2008-02-20 2012-11-14 国立大学法人 東京大学 電波吸収材料および当該電波吸収材料を用いた電波吸収体
US20150170811A1 (en) * 2012-08-01 2015-06-18 Tdk Corporation Ferrite magnetic material, ferrite sintered magnet, and motor
JP7105435B2 (ja) * 2018-02-15 2022-07-25 国立大学法人 東京大学 磁性材料およびその製造方法、並びに電磁波吸収用シート
US20200156291A1 (en) * 2018-11-21 2020-05-21 Shin-Etsu Chemical Co., Ltd. Anisotropic film and method for manufacturing anisotropic film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266902A (ja) * 1988-08-31 1990-03-07 Toda Kogyo Corp 高保磁力板状マグネトプランバイト型フェライト粒子粉末及びその製造法
JPH06150297A (ja) * 1992-10-30 1994-05-31 Toshiba Corp 磁気記録媒体およびその製造方法
JPH11354972A (ja) * 1998-06-10 1999-12-24 Tdk Corp 電波吸収体
JP2004104063A (ja) * 2002-07-18 2004-04-02 Hokkaido Univ 電磁波吸収体
JP2007250823A (ja) * 2006-03-16 2007-09-27 Dowa Holdings Co Ltd 電波吸収体用磁性粉体および製造法並びに電波吸収体
JP4674380B2 (ja) 2006-03-16 2011-04-20 Dowaエレクトロニクス株式会社 電波吸収体用磁性粉体および製造法並びに電波吸収体
CN102030521A (zh) * 2010-10-29 2011-04-27 吉林大学 一种高矫顽力m型锶铁氧体的制备方法
JP2019051927A (ja) 2017-08-02 2019-04-04 ヴァレオ シーメンス イーオートモーティブ フランス エスアーエス 2つのハウジングのアセンブリのための冷却回路部分の接続
JP2019117629A (ja) 2017-12-25 2019-07-18 研能科技股▲ふん▼有限公司 揮発性有機化合物の検出警告方法
WO2019131675A1 (ja) * 2017-12-27 2019-07-04 富士フイルム株式会社 マグネトプランバイト型六方晶フェライトの粒子及びその製造方法、並びに電波吸収体

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
See also references of EP3943451A4
SH. SH. BASHKIROV, L. A. BASHKIROV, A. A. VALIULLIN, L. D. ZARIPOVA, S. V. KOKIN: "Synthesis of the Aluminum-Substituted Hexaferrite SrFe9.5A12.5019", INORGANIC MATERIALS, vol. 35, no. 12, 30 November 1998 (1998-11-30), US, pages 1301 - 1305, XP009529992, ISSN: 0020-1685 *
SURFACE TECHNOLOGY, vol. 61, no. 3, 2010, pages 216
SURFACE TECHNOLOGY, vol. 64, no. 12, 2013, pages 640
YASUKAZU OKATSU: "Comprehensive Technology for Polymer Stabilization - Mechanism and Application Development", CMC PUBLISHING CO., LTD.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022154039A1 (ja) * 2021-01-18 2022-07-21 富士フイルム株式会社 電波吸収体用磁性粉体およびその製造方法、電波吸収体、電波吸収物品ならびに電波吸収性組成物

Also Published As

Publication number Publication date
KR102538732B1 (ko) 2023-05-31
CN113574021A (zh) 2021-10-29
US20210407715A1 (en) 2021-12-30
EP3943451A4 (en) 2022-05-18
JPWO2020188927A1 (ja) 2021-10-28
KR20210116645A (ko) 2021-09-27
EP3943451A1 (en) 2022-01-26
JP7179959B2 (ja) 2022-11-29
CN113574021B (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
WO2020188927A1 (ja) マグネトプランバイト型六方晶フェライト粉体、電波吸収体、及びマグネトプランバイト型六方晶フェライト粉体の共鳴周波数を制御する方法
WO2019131675A1 (ja) マグネトプランバイト型六方晶フェライトの粒子及びその製造方法、並びに電波吸収体
JP7071513B2 (ja) マグネトプランバイト型六方晶フェライトの粉体の製造方法及び電波吸収体の製造方法
JP7113954B2 (ja) マグネトプランバイト型六方晶フェライトの粉体及びその製造方法、並びに電波吸収体
JP7303872B2 (ja) 電波吸収体
JP7489396B2 (ja) 電波吸収体および電波吸収性組成物
JP7303871B2 (ja) 電波吸収体
WO2020044702A1 (ja) マグネトプランバイト型六方晶フェライトの粉体混合物及びその製造方法、並びに電波吸収体
JP2023145469A (ja) 電波吸収体及びコンパウンド
WO2024018896A1 (ja) 電波吸収体の製造方法、電波吸収体および電波吸収物品
EP4175438A1 (en) Radio wave absorber and radio wave absorbing article
WO2022154039A1 (ja) 電波吸収体用磁性粉体およびその製造方法、電波吸収体、電波吸収物品ならびに電波吸収性組成物
CN116830219A (zh) 电波吸收体用磁性粉体及其制造方法、电波吸收体、电波吸收物品以及电波吸收性组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021506169

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217027114

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019920317

Country of ref document: EP

Effective date: 20211019