WO2020184285A1 - 直接形の電力変換装置 - Google Patents

直接形の電力変換装置 Download PDF

Info

Publication number
WO2020184285A1
WO2020184285A1 PCT/JP2020/008871 JP2020008871W WO2020184285A1 WO 2020184285 A1 WO2020184285 A1 WO 2020184285A1 JP 2020008871 W JP2020008871 W JP 2020008871W WO 2020184285 A1 WO2020184285 A1 WO 2020184285A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
torque
half cycle
waveform
motor
Prior art date
Application number
PCT/JP2020/008871
Other languages
English (en)
French (fr)
Inventor
大輔 樹
伸夫 林
卓郎 小川
関本 守満
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to BR112021016236-4A priority Critical patent/BR112021016236A2/pt
Priority to EP20770796.9A priority patent/EP3916986B1/en
Priority to CN202080010518.7A priority patent/CN113330680A/zh
Publication of WO2020184285A1 publication Critical patent/WO2020184285A1/ja
Priority to US17/472,392 priority patent/US11705843B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/28Stator flux based control
    • H02P21/30Direct torque control [DTC] or field acceleration method [FAM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/50Reduction of harmonics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present disclosure relates to a direct type power conversion device.
  • the power conversion device that converts the input AC power to AC power of a predetermined frequency is an indirect power conversion device and a direct power conversion depending on the presence or absence of an energy storage element (large-capacity capacitor or large-capacity inductor). It is roughly divided into devices. The former has energy storage elements (large-capacity capacitors and large-capacity inductors), and the latter does not.
  • the direct type power conversion devices there is one in which a capacitor having a relatively small capacity is provided in the DC link portion.
  • Patent Document 1 discloses a torque control technique for suppressing vibration of a compressor when the load torque fluctuates periodically in the direct type power conversion device.
  • the load torque fluctuation of the motor is obtained by superimposing the pulsation component caused by the frequency of the AC power source and the pulsation component synchronized with the load torque fluctuation generated during one rotation of the motor on the output torque of the motor. Torque control is performed to fluctuate the output torque of the motor according to the above.
  • a pulsating component caused by the frequency of the AC power supply and a pulsating component synchronized with the load torque fluctuation appear in the motor torque. Therefore, in the torque control, the peaks of the two pulsating components may overlap each other, and the peak of the motor torque may become unnecessarily high. Since the motor torque and the motor current are generally in a proportional relationship, the higher the peak of the motor torque, the higher the peak of the motor current.
  • the purpose of the present disclosure is to reduce the peak of the motor current in the power conversion device.
  • the power of the single-phase AC power supply (20) input by the switching operation of a plurality of switching elements is converted to AC at a predetermined frequency.
  • a direct-type power conversion device that converts electric power into electric power and supplies it to a motor (30) that drives a load having periodic load fluctuations.
  • a control unit (40) for controlling the switching operation is provided.
  • the control unit (40) The frequency of fdc is twice the frequency of the AC power supply (20).
  • fL is the frequency of the periodic load fluctuation
  • tb 1 /
  • n is defined as a positive integer that maximizes tb
  • It is a direct type power conversion device characterized by controlling switching elements (Su, Sv, Sw, Sx, Sy, Sz).
  • the peak of the motor current can be reduced in the power conversion device.
  • a second aspect of the present disclosure is, in the first aspect,
  • the control unit (40) In the power supply half cycle including the timing when the fundamental wave of the load torque becomes maximum, In the waveform obtained by synthesizing the second-order wave, the fourth-order wave, and the sixth-order wave of the power supply frequency included in the waveform of the absolute value of the motor current vector, so that two or more maximum points appear in the power supply half cycle.
  • It is a direct type power conversion device characterized by controlling switching elements (Su, Sv, Sw, Sx, Sy, Sz).
  • the peak of the motor current can be reduced in the power supply half cycle including the timing when the fundamental wave of the load torque becomes maximum.
  • a third aspect of the present disclosure is the first aspect.
  • the control unit (40) In the power supply half cycle in which the fundamental wave of the load torque is included in the phase range (R) of the mechanical angle exceeding a predetermined threshold value.
  • It is a direct type power conversion device characterized by controlling switching elements (Su, Sv, Sw, Sx, Sy, Sz).
  • the peak of the motor current can be reduced in the power supply half cycle in which the fundamental wave of the load torque is included in the phase range (R) of the mechanical angle exceeding a predetermined threshold value.
  • FIG. 1 is a block diagram of a power conversion device.
  • FIG. 2 shows an example of waveforms of the power supply voltage and the DC voltage.
  • FIG. 3 shows each waveform of the compressor load torque, the waveform obtained by adding the average torque to the fundamental wave of the compressor load torque, and the average torque.
  • FIG. 4 shows the basic data generated by the first table as a waveform.
  • FIG. 5 shows the basic data generated by the second table as a waveform.
  • FIG. 6 illustrates each waveform of the average torque, the waveform obtained by adding the average torque to the fundamental wave of the load torque, the motor torque, the vibration suppression component, the harmonic component, and the absolute value of the power supply voltage in the prior art.
  • FIG. 1 is a block diagram of a power conversion device.
  • FIG. 2 shows an example of waveforms of the power supply voltage and the DC voltage.
  • FIG. 3 shows each waveform of the compressor load torque, the waveform obtained by adding the average torque to the fundamental wave of the compressor load torque, and the average torque.
  • FIG. 7 illustrates each waveform of the average torque, the fundamental wave of the load torque plus the average torque, the motor torque, the vibration suppression component, the harmonic component, and the absolute value of the power supply voltage in the first embodiment.
  • FIG. 8 exemplifies each waveform of the average torque, the waveform obtained by adding the average torque to the fundamental wave of the load torque, the motor torque, the vibration suppression component, the harmonic component, and the absolute value of the power supply voltage in the prior art.
  • FIG. 9 illustrates each waveform of the average torque, the fundamental wave of the load torque plus the average torque, the motor torque, the vibration suppression component, the harmonic component, and the absolute value of the power supply voltage in the second embodiment.
  • FIG. 10 illustrates each waveform of the average torque, the waveform obtained by adding the average torque to the fundamental wave of the load torque, the motor torque, the vibration suppression component, the harmonic component, and the absolute value of the power supply voltage in the prior art.
  • FIG. 11 illustrates each waveform of the average torque, the fundamental wave of the load torque plus the average torque, the motor torque, the vibration suppression component, the harmonic component, and the absolute value of the power supply voltage in the third embodiment.
  • FIG. 1 is a block diagram of the power conversion device (10) according to the first embodiment.
  • the power converter (10) converts the input AC voltage (power supply voltage (v in )) into a predetermined AC voltage. More specifically, the power converter (10) is a "direct power converter” that does not have an energy storage element (capacitor or inductor). In this example, an AC voltage is input to the power converter (10) from a single-phase AC power supply (20). The power converter (10) supplies the converted AC voltage to the motor (30).
  • the power converter (10) includes a converter circuit (11), a DC link unit (12), an inverter circuit (13), and a control unit (40).
  • the motor (30) is, for example, an IPM motor (Interior Permanent Magnet Motor).
  • the motor (30) drives a compressor (not shown) of an air conditioner. In this compressor, in the fluid compression stroke, periodic fluctuations in torque (fluctuations in load torque) in the load (compressor) occur during one rotation of the motor (30).
  • the converter circuit (11) is connected to the AC power supply (20) via the reactor (L).
  • Converter circuit (11) the power supply voltage from the AC power supply (20) to (v in) for full-wave rectification.
  • the converter circuit (11) includes four diodes (D1, D2, D3, D4). The four diodes (D1, D2, D3, D4) are connected in a bridge shape.
  • the DC link unit (12) has a capacitor (C).
  • the capacitor (C) is connected between a pair of output nodes in the converter circuit (11).
  • the DC link unit (12) generates a DC voltage (v dc ) from the output of the converter circuit (11) (full-wave rectified power supply voltage (v in )).
  • the capacitance value of the capacitor (C) is such that the output of the converter circuit (11) can hardly be smoothed.
  • the capacitance value of the capacitor (C) is large enough to suppress the ripple voltage (voltage fluctuation according to the switching frequency) caused by the switching operation (described later) of the inverter circuit (13).
  • the capacitor (C) has a capacitance value (for example, a number) of about 0.01 times the capacitance value of a smoothing capacitor (for example, an electrolytic capacitor) used for smoothing the output of a converter circuit in a general power conversion device. It has about 10 ⁇ F).
  • a film capacitor is adopted for example.
  • the output of the converter circuit (11) is hardly smoothed in the DC link portion (12).
  • a pulsating component corresponding to the frequency of the power supply voltage (v in ) remains in the DC voltage (v dc ).
  • FIG. 2 shows an example of waveforms of the power supply voltage (v in ) and the DC voltage (v dc ).
  • the DC voltage (v dc ) is pulsating so that its maximum value is more than twice its minimum value.
  • the DC voltage (v dc ) contains a pulsating component that has twice the frequency of the power supply voltage (v in ).
  • the inverter circuit (13) converts the DC voltage (v dc ) generated by the DC link unit (12) into a three-phase AC voltage by a switching operation.
  • the inverter circuit (13) supplies the three-phase AC voltage to the motor (30).
  • the inverter circuit (13) has six switching elements (Su, Sv, Sw, Sx, Sy, Sz) and six freewheeling diodes (Du, Dv, Dw, Dx, Dy, Dz).
  • the six switching elements (Su, Sv, Sw, Sx, Sy, Sz) are bridge-connected. More specifically, the inverter circuit (13) has three switching legs. A switching leg is one in which two switching elements are connected in series with each other.
  • the midpoint between the upper arm switching element (Su, Sv, Sw) and the lower arm switching element (Sx, Sy, Sz) is the coil (u) of each phase of the motor (30). It is connected to each of the phase, v-phase, and w-phase coils).
  • a freewheeling diode (Du, Dv, Dw, Dx, Dy, Dz) is connected to each switching element (Su, Sv, Sw, Sx, Sy, Sz) one by one in antiparallel.
  • the control unit (40) outputs the inverter circuit (13) so that the rotation speed ( ⁇ ) of the motor (30) becomes a given command value (hereinafter referred to as a rotation speed command value ( ⁇ * )). Control the AC voltage.
  • the control unit (40) fluctuates the output torque of the motor (30) by controlling the switching operation when controlling the rotation speed ( ⁇ ).
  • the control unit (40) is equipped with a microcomputer and a memory device.
  • the memory device contains software that operates the microcomputer.
  • the control unit (40) has a speed control unit (41), a coordinate conversion unit (43), a dq-axis current control unit (44), a PWM calculation unit (45), and a torque control unit (48). ), And functions as a harmonic component superimposition unit (50) (see FIG. 1).
  • the speed control unit (41) generates a command value (hereinafter, average torque command value (T ave * )) of an average value of torque (hereinafter, average motor torque (T ave )) in the motor (30). Specifically, the speed control unit (41) performs, for example, PID calculation (proportional, integral, differential) based on the deviation between the rotation speed ( ⁇ ) of the motor (30) and the rotation speed command value ( ⁇ * ). Generates an average torque command value ( Tave * ). The speed control unit (41) outputs an average torque command value ( Tave * ) to the torque control unit (48).
  • PID calculation proportional, integral, differential
  • the torque control unit (48) superimposes a vibration suppression component on the average torque command value ( Tave * ) to generate a torque command value (hereinafter, first torque command (Tm * )) of the motor (30). ..
  • the first torque command (Tm * ) pulsates in synchronization with the load fluctuation (torque fluctuation) in the compressor.
  • the vibration suppression component is a pulsating waveform synchronized with the load fluctuation (torque fluctuation) in the compressor.
  • the vibration suppression component is calculated based on the mechanical angle ( ⁇ m) of the motor (30).
  • the mechanical angle ( ⁇ m) of the motor (30) may be detected by providing a sensor, for example, or calculated based on the motor current (iu, iv, iw) and the motor voltage (Vu, Vv, Vw). You may.
  • FIG. 3 shows the compressor load torque, the waveform obtained by adding the average torque to the fundamental wave of the compressor load torque, and the waveforms of the average torque.
  • the frequency component having the largest amplitude is the fundamental wave frequency component.
  • the deviation between the compressor load torque and the motor torque is the excitation torque. The compressor vibrates due to this excitation torque.
  • the torque control unit (48) suppresses compressor vibration due to the fundamental wave frequency component, which is the frequency component having the largest amplitude among the frequency components included in the compressor load torque waveform, so that the fundamental wave of the compressor load torque Generates the first torque command value (Tm * ) that pulsates in synchronization with.
  • the output torque of the motor (30) pulsates in synchronization with the fundamental wave of the compressor load torque. As a result, the exciting torque that causes the compressor vibration is reduced.
  • the harmonic component superimposing unit (50) superimposes a harmonic component on the first torque command (Tm * ) to generate a torque command (hereinafter referred to as a second torque command (T * )).
  • the second torque command (T * ) pulsates in synchronization with the fundamental wave of the compressor load torque, and pulsates in synchronization with the voltage fluctuation of the absolute value of the power supply voltage.
  • the harmonic component is a pulsating waveform synchronized with the voltage fluctuation of the absolute value of the power supply voltage. Harmonic components are generated based on the power supply phase ( ⁇ in). There are two modes for superimposing harmonic components by the harmonic component superimposing unit (50).
  • the second-order tuning and the fourth-order tuning of the power supply frequency included in the waveform of the absolute value of the motor current vector in a predetermined power supply half cycle (described later).
  • the first torque command (Tm * ) is modulated so that two or more maximum points appear in the waveform obtained by synthesizing the sixth-order harmonics.
  • the “power supply half cycle” is the period from a predetermined zero cross to the next zero cross in the voltage of the AC power supply (20) (hereinafter, the same applies).
  • the “motor current vector” is a composite vector of a vector of d-axis current ( id ) and a vector of q-axis current (i q ) when controlling the motor (30).
  • the second-order tuning and the fourth-order tuning of the power supply frequency included in the waveform of the absolute value of the motor current vector in a predetermined power supply half cycle (described later).
  • the first torque command (Tm * ) is modulated so that the maximum point becomes one in the waveform obtained by synthesizing the sixth-order harmonics.
  • control unit (40) is provided with a selector (46), a multiplier (47), and a data generation unit (49). Further, the control unit (40) includes two tables used for generating data used for modulation (hereinafter referred to as basic data (D)).
  • the basic data (D) is data (signal) including harmonic components.
  • One of the two tables is a table that generates basic data (D) for the first mode (M1) (hereinafter referred to as the first table (Tb1)).
  • the other table is a table (hereinafter referred to as a second table (Tb2)) that generates basic data (D) for the second mode (M2).
  • Tb1 the first table
  • Tb2 the second table
  • the value of the power supply phase ( ⁇ in) and the value of the basic data (D) in the power supply phase ( ⁇ in) are stored as a pair.
  • Each table is configured to take the power supply phase ( ⁇ in) as an argument and output the basic data (D) corresponding to the power supply phase ( ⁇ in).
  • FIG. 4 shows the basic data (D) generated by the first table (Tb1) as a waveform.
  • the horizontal axis is the power supply phase ( ⁇ in).
  • the vertical axis is a value indicating the amount of modulation.
  • This waveform corresponds to the second-order tuning, fourth-order tuning, and sixth-order tuning of the power supply frequency so that one or more maximum points appear in each of the first half and the second half of the power supply half cycle. It is made by synthesizing waveforms.
  • FIG. 5 shows the basic data (D) generated by the second table (Tb2) as a waveform.
  • the basic data (D) from the second table (Tb2) as shown in FIG. 5, only one maximum point appears in the power supply half cycle.
  • This waveform value in the table is created by using the secondary tuning of the power supply frequency so that only one maximum point appears in the power supply half cycle.
  • the data generation unit (49) generates a signal for selecting one of the two tables (Tb1, Tb2) (hereinafter, selection signal). The generation of the selection signal by the data generation unit (49) will be described in detail later.
  • the data generation unit (49) outputs the selection signal to the selector (46).
  • the selector (46) outputs one of the outputs of the two tables (Tb1, Tb2) to the multiplier (47) according to the selection signal.
  • the multiplier (47) multiplies the value output by the selector (46) with the first torque command (Tm * ).
  • the multiplier (47) outputs the multiplication result as a second torque command (T * ) to the dq-axis current control unit (44).
  • the coordinate conversion unit (43) is based on the u-phase current (iu), the w-phase current (iw), and the electric angle (mechanical angle ( ⁇ m)) of the rotor (not shown) of the motor (30).
  • the d-axis current ( id ) and q-axis current (i q ) of (30) are derived.
  • the coordinate conversion unit (43) performs dq conversion for deriving the d-axis current ( id ) and the q-axis current (i q ).
  • the values of the u-phase current (iu) and the w-phase current (iw) can be detected by providing, for example, a current sensor.
  • the dq-axis current control unit (44) uses the second torque command (T * ), d-axis current ( id ), q-axis current (i q ), and the command value ( ⁇ * ) of the phase ( ⁇ ) of the motor current vector . ), The d-axis voltage command value (v d * ) and the q-axis voltage command value (v q * ) are derived.
  • dq-axis current controller (44) based on the second torque command (T *), the target value of d-axis current necessary for obtaining the torque (d-axis current command value (i d * ) And the target value of the q-axis current (called the q-axis current command value (i q * )).
  • the deviation between the d-axis current command value ( id * ) and the d-axis current ( id ) and the deviation between the q-axis current command value and the q-axis current (i q ) are The d-axis voltage command value (v d * ) and the q-axis voltage command value (v q * ) are derived so that they become smaller.
  • the PWM calculation unit (45) is switched by so-called PWM (Pulse Width Modulation) control so that the output voltage is the output voltage indicated by the d-axis voltage command value (v d * ) and the q-axis voltage command value (v q * ). Controls the on / off of elements (Su, Sv, Sw, Sx, Sy, Sz). The PWM calculation unit (45) generates a signal for controlling this on / off (hereinafter, control signal (G)).
  • PWM Pulse Width Modulation
  • the time when the switching elements (Su, Sv, Sw, Sx, Sy, Sz) are turned on and the time when they are turned off are determined by the duty ratio in the control signal (G).
  • the PWM calculation unit (45) has a mechanical angle ( ⁇ m), DC voltage (v dc ), d-axis voltage command value (v d * ), q-axis voltage command value (v q * ), and d-axis voltage (v d ).
  • the duty ratio of the control signal (G) supplied to each of the switching elements (Su, Sv, Sw, Sx, Sy, Sz) is set based on the q-axis voltage (v q ).
  • each switching element (Su, Sv, Sw, Sx, Sy, Sz) performs a switching operation (on / off operation) with a duty ratio according to the control signal (G).
  • the PWM calculation unit (45) periodically updates the control signal (G). In response to this update, the inverter circuit (13) continuously performs the switching operation.
  • the control unit (40) realizes the selection of the first mode (M1) and the second mode (M2).
  • the power supply half cycle in which the first mode (M1) is executed is referred to as the first power supply half cycle
  • the power supply half cycle in which the second mode (M2) is executed is referred to as the second power supply half cycle. ..
  • the data generation unit (49) selects either the first table (Tb1) or the second table (Tb2) by executing the following steps.
  • Step 1 The data generation unit (49) obtains a frequency (hereinafter referred to as fdc) twice the frequency of the AC power supply (20) from the power supply phase ( ⁇ in). Further, the data generation unit (49) calculates the frequency (hereinafter referred to as fL) of the periodic load fluctuation (here, the load fluctuation of the compressor) from the machine angle ( ⁇ m).
  • fdc a frequency
  • fL the frequency of the periodic load fluctuation
  • Step 2 FIG. 6 shows each waveform of the average torque, the waveform obtained by adding the average torque to the fundamental wave of the load torque, the motor torque, the vibration suppression component, the harmonic component, and the absolute value of the power supply voltage in the prior art. Since the output torque of the motor (30) is the product of the average torque, the vibration suppression component, and the harmonic component, the output torque of the motor (30) includes the pulsation component due to the frequency of the AC power supply and the load torque fluctuation. A pulsating component synchronized with appears.
  • the waveform of FIG. 6 is a waveform in a conventional power conversion device, and the data generation unit (49) always generates basic data (D) using the second table (Tb2) to generate the basic data (D) in the power conversion device (10).
  • the waveform obtained by driving the power supply is illustrated.
  • an example in which the power conversion device (10) is always operated by using the second table (Tb2) will be referred to as a conventional example.
  • the pulsating component caused by the frequency of the AC power supply and the pulsating component synchronized with the load torque fluctuation generated during one rotation of the motor are superimposed.
  • the waveform of the output torque of the motor and the waveform of the motor current become waveforms including beats (beats) as shown in FIG.
  • beat cycle (tb) the beat cycle
  • the peaks of the motor output torque and motor current become large (circled) in the power supply half cycle in which the peaks of the two pulsating components overlap each other. See peak).
  • the output torque of the motor (30) is the product of the average torque, the vibration suppression component, and the harmonic component
  • the peaks of the vibration suppression component and the harmonic component overlap each other as shown in FIG.
  • the vibration suppression component is a pulsating waveform synchronized with the fundamental wave of the compressor load torque.
  • the vibration suppression component peaks at the timing when the fundamental wave of the compressor load torque peaks (see FIG. 6).
  • the harmonic component is a pulsating waveform synchronized with the voltage fluctuation of the absolute value of the power supply voltage.
  • the harmonic component peaks at the timing when the absolute value of the power supply voltage peaks (see FIG. 6).
  • the data generation unit (49) obtains the beat period (tb) expressed by the following equation.
  • tb 1 /
  • n is a positive integer having the maximum tb.
  • Step 4 The data generation unit (49) obtains the power supply phase ( ⁇ in) at each timing obtained in step 3.
  • Step 5 The data generation unit (49) has the peak of the absolute value of the power supply voltage (v in ) within the power supply phase ( ⁇ in) obtained in step 4 (90 ° or 270 ° corresponds to the value of the power supply phase ( ⁇ in)).
  • the power supply half cycle obtained by the data generation unit (49) is a power supply half cycle including a timing in which the peak of the fundamental wave of the load torque and the peak of the absolute value of the power supply voltage substantially match.
  • the first power supply half cycle includes the timing at which the peak of the fundamental wave of the load torque and the peak of the absolute value of the power supply voltage substantially coincide with each other.
  • the power supply half cycle excluding the first power supply half cycle is the second power supply half cycle.
  • Step 6 The data generation unit (49) outputs a selection signal for selecting the first table (Tb1) to the selector (46) in the first half cycle of the power supply, and the second table (Tb2) in the second half cycle of the power supply.
  • the selection signal for selecting is output to the selector (46).
  • the selector (46) In response to this selection signal, the selector (46) outputs the basic data (D) from the first table (Tb1) in the first power supply half cycle, and the second table in the second power supply half cycle.
  • the basic data (D) from (Tb2) is output.
  • the first mode (M1) is executed in the first power supply half cycle
  • the second mode (M2) is executed in the second power supply half cycle.
  • the speed control unit (41), the torque control unit (48), the coordinate conversion unit (43), the dq axis current control unit (44), and the harmonic component superimposition unit (50) are included. Operate. As a result, the control unit (40) generates a d-axis voltage command value (v d * ) and a q-axis voltage command value (v q * ). When the d-axis voltage command value (v d * ) and the q-axis voltage command value (v q * ) are generated, the PWM calculation unit (45) generates a control signal (G). As a result, the inverter circuit (13) performs a switching operation according to the control signal (G). A predetermined AC power is supplied to the motor (30) from the inverter circuit (13) according to the switching operation.
  • FIG. 7 shows each waveform of the average torque, the waveform obtained by adding the average torque to the fundamental wave of the load torque, the motor torque, the vibration suppression component, the harmonic component, and the absolute value of the power supply voltage in the present embodiment.
  • the first mode (M1) is executed in the first power supply half cycle.
  • the basic data (D) (see FIG. 4) based on the first table (Tb1) is used for control.
  • the basic data (D) (see FIG. 5) based on the second table (Tb2) is always used for control (see FIG. 6).
  • a large peak appears in the output torque in the beat cycle (tb) (see the peak circled).
  • the power supply half cycle including the circled peak includes the timing at which the peak of the fundamental wave of the load torque and the peak of the absolute value of the power supply voltage substantially coincide with each other.
  • the power supply half cycle including the circled peak is the first power supply half cycle.
  • a large peak does not appear in the output torque in the first power supply half cycle. In other words, when the basic data (D) based on the first table (Tb1) is used for control, the peak value of the output torque is reduced.
  • the waveform of the basic data (D) generated by the first table (Tb1) has a peak value as compared with the waveform of the basic data (D) generated by the second table (Tb2). Is a suppressed waveform (roughly speaking, a trapezoidal waveform). Since the output torque of the motor (30) is the product of the average torque, the vibration suppression component, and the harmonic component, the output of the motor (30) is output by making the waveform of the harmonic component a waveform with the peak value suppressed. The peak value of torque can be reduced.
  • the waveform of the basic data (D) should be a waveform with suppressed peak value (roughly speaking, a trapezoidal waveform). It is necessary to appropriately synthesize the amplitude and phase of the waveforms corresponding to the second-order wave, the fourth-order wave, and the sixth-order wave of the power supply frequency to generate the waveform of the basic data (D).
  • the waveform obtained by synthesizing the second-order, fourth-order, and sixth-order tunings of the power supply frequency included in the absolute value waveform is a waveform in which two or more maximum points appear (see FIG. 7).
  • the basic data (D) based on the first table (Tb1) is used for control, the peak values of output torque and motor current are reduced.
  • the peaks of the output torque and the motor current of the motor (30) are not suppressed.
  • the waveform obtained by combining the second-order wave, the fourth-order wave, and the sixth-order wave of the power supply frequency included in the waveforms of the absolute values of the output torque and the motor current has one maximum point.
  • the level of harmonics appearing in the input current (power supply current (i in )) to the converter circuit (11) is smaller than when the control is performed in the first mode (M1).
  • the power of the single-phase AC power supply (20) input by the switching operation of a plurality of switching elements is set to a predetermined frequency.
  • a direct-type power conversion device that converts AC power into AC power and supplies it to a motor (30) that drives a load having periodic load fluctuations, and includes a control unit (40) that controls the switching operation.
  • fdc is a frequency twice the frequency of the AC power supply (20)
  • fL is the frequency of the periodic load fluctuation
  • tb 1 /
  • the switching element (Su, Sv, so that two or more maximum points appear in the half cycle of the power supply in the combined waveform of the second-order, fourth-order, and sixth-order tunes of the power supply frequency included in the waveform. It is a direct type power converter characterized by controlling Sw, Sx, Sy, Sz).
  • the power converter (10) implements the second mode (M2) in the second power supply half cycle. In other words, the power converter (10) does not positively reduce the peak of the motor current in the second power supply half cycle. However, the power converter (10) reduces the peak of the motor current at least in the first half cycle of the power supply. In the power converter (10), even if the peak of the motor current is not positively reduced in the second half cycle of the power supply, the peak of the motor current is lowered when viewed throughout the operation of the power converter (10). ..
  • Embodiment 2 In the second embodiment, another configuration example of the control unit (40) will be described.
  • the control unit (40) of the second embodiment is the second-order tuning and the fourth-order tuning of the power supply frequency included in the waveform of the absolute value of the motor current vector in the power supply half cycle including the timing when the fundamental wave of the load torque is maximized.
  • the switching element (Su, Sv, Sw, Sx, Sy, Sz) is controlled so that two or more maximum points appear in the power supply half cycle in the waveform obtained by synthesizing the wave and the sixth-order wave.
  • the control unit (40) (more specifically, the data generation unit (49)) of the first embodiment is modified.
  • the data generation unit (49) of the present embodiment has a function of detecting the timing when the fundamental wave of the load torque peaks. Specifically, the data generation unit (49) detects the timing at which the machine angle ( ⁇ m) becomes 180 °. When the timing at which the fundamental wave of the load torque peaks is obtained, the data generation unit (49) generates a selection signal so that the first table (Tb1) is selected in the power supply half cycle including the obtained timing.
  • FIG. 8 exemplifies each waveform of the average torque, the waveform obtained by adding the average torque to the fundamental wave of the load torque, the motor torque, the vibration suppression component, the harmonic component, and the absolute value of the power supply voltage in the conventional power conversion device. ..
  • a large peak appears in the output torque (see the peak circled).
  • the power supply half cycle including the circled peak includes the timing when the fundamental wave of the load torque peaks.
  • Each waveform in the waveform diagram of FIG. 9 is a waveform obtained by adding the average torque to the fundamental wave of the average torque and the load torque, the motor torque, the vibration suppression component, the harmonic component, and the absolute value of the power supply voltage in the present embodiment. It is a waveform.
  • the first mode (M1) is executed in the power supply half cycle including the peak of the fundamental wave of the load torque.
  • the power supply half cycle including the peak of the fundamental wave of the load torque is the first power supply half cycle
  • the power supply half cycle excluding the first power supply half cycle is the second power supply half cycle.
  • the basic data (D) (see FIG. 4) based on the first table (Tb1) is used for control. Since the output torque and the motor current are generally in a proportional relationship, if the basic data (D) based on the first table (Tb1) is used for control, the output torque and the motor current will be in the first power supply half cycle.
  • the waveform obtained by combining the second-order, fourth-order, and sixth-order tunings of the power supply frequency included in the absolute value waveform is a waveform in which two or more maximum points appear (see FIG. 9).
  • the second mode (M2) is carried out during the operation period when the first mode (M1) is not carried out.
  • the peak of the motor current is reduced in the power supply half cycle including the timing when the fundamental wave of the load torque becomes maximum.
  • the power converter (10) implements the second mode (M2) in the second power supply half cycle.
  • the power converter (10) does not positively reduce the peak of the motor current in the second power supply half cycle.
  • the power converter (10) reduces the peak of the motor current at least in the first half cycle of the power supply. In the power converter (10), even if the peak of the motor current is not positively reduced in the second half cycle of the power supply, the peak of the motor current is lowered when viewed throughout the operation of the power converter (10). ..
  • Embodiment 3 In the third embodiment, another configuration example of the control unit (40) will be described.
  • the control unit (40) of the third embodiment is a waveform of the absolute value of the motor current vector in the power supply half cycle in which the fundamental wave of the load torque is included in the range of the mechanical angle exceeding a predetermined threshold (torque threshold (Tth) described later).
  • Tth torque threshold
  • Switching elements Su, Sv, Sw, so that two or more maximum points appear in the power supply half cycle in the combined waveform of the second-order tuning, fourth-order tuning, and sixth-order tuning of the power supply frequency included in Sx, Sy, Sz
  • the control unit (40) (more specifically, the data generation unit (49)) of the first embodiment is modified.
  • the data generation unit (49) of the present embodiment has a function of obtaining a range of mechanical angles ( ⁇ m) (hereinafter, phase range (R)) in which the fundamental wave of the load torque exceeds a predetermined threshold value.
  • the data generation unit (49) outputs a selection signal for selecting the first table (Tb1) in the power supply half cycle included in the obtained phase range (R). Specifically, the data generation unit (49) executes the following steps.
  • Step 31 The data generation unit (49) acquires an upper limit value of the output torque (hereinafter referred to as a torque upper limit value (Tmax)).
  • the value of the torque upper limit value (Tmax) is stored (set) in, for example, a memory device of the control unit (40).
  • the torque upper limit value (Tmax) is set according to the demagnetization strength of the motor (30) or the strength of the switching element (Su, Sv, Sw, Sx, Sy, Sz) as an example. Can be considered.
  • Step 32 The data generation unit (49) obtains the threshold value of the fundamental wave of the load torque (hereinafter, torque threshold value (Tth)).
  • Motor torque 1st torque command (Tm * ) x harmonic component
  • 1st torque command (Tm * ) is a waveform that pulsates in synchronization with the fundamental wave of load torque. Therefore, by comparing the value obtained by dividing the upper limit torque value (Tmax) by the peak value of the harmonic component of the second mode (M2) with the waveform obtained by adding the average torque to the fundamental wave of the load torque, the second mode is always used.
  • the range (phase range (R)) of the mechanical angle ( ⁇ m) in which the motor torque exceeds the torque upper limit value (Tmax) can be predicted.
  • the conventional example can be obtained.
  • the data generation unit (49) obtains a value obtained by subtracting the average torque from the value obtained by dividing the torque upper limit value (Tmax) by the peak value of the harmonic component of the second mode (M2) as the torque threshold value (Tth).
  • Step 33 The data generation unit (49) determines the range (phase range (R)) of the mechanical angle ( ⁇ m) at which the first mode (M1) should be executed. Specifically, the data generation unit (49) obtains a range (R) of the phase in which the fundamental wave of the load torque exceeds the torque threshold value (Tth).
  • Tth torque threshold value
  • the phase range (R) obtained by the data generation unit (49) is [ ⁇ 1, ⁇ 2].
  • Step 34 The data generator (49) has a power supply half whose phase range (R) includes the timing when the absolute value of the power supply voltage (v in ) reaches its peak (90 ° or 270 ° corresponds to the value of the power supply phase ( ⁇ in)). Find the cycle.
  • FIG. 10 exemplifies each waveform of the average torque, the waveform obtained by adding the average torque to the fundamental wave of the load torque, the motor torque, the vibration suppression component, the harmonic component, and the absolute value of the power supply voltage in the conventional power conversion device. ..
  • a large peak appears in the output torque (see the peak circled).
  • the power supply half cycle including the circled peak is the power supply half cycle in which the fundamental wave of the load torque is included in the phase range (R) exceeding the torque threshold value (Tth).
  • FIG. 11 exemplifies each waveform of the average torque, the waveform obtained by adding the average torque to the fundamental wave of the load torque, the motor torque, the vibration suppression component, the harmonic component, and the absolute value of the power supply voltage in the present embodiment.
  • the first mode (M1) is executed in the power supply half cycle in which the fundamental wave of the load torque is included in the phase range (R) exceeding the torque threshold value (Tth).
  • the power supply half cycle included in the phase range (R) in which the fundamental wave of the load torque exceeds the torque threshold value (Tth) is the first power supply half cycle, and the power supply excluding the first power supply half cycle.
  • the half cycle is the second power supply half cycle.
  • the basic data (D) (see FIG. 4) based on the first table (Tb1) is used for control. Since the output torque and the motor current are generally in a proportional relationship, if the basic data (D) based on the first table (Tb1) is used for control, the output torque and the motor current will be in the first power supply half cycle.
  • the waveform obtained by synthesizing the secondary tuning, the fourth tuning, and the sixth tuning of the power supply frequency included in the absolute value waveform is a waveform in which two or more maximum points appear (see FIG. 11).
  • the second mode (M2) is carried out during the operation period when the first mode (M1) is not carried out.
  • the peak of the motor current is reduced in the power supply half cycle in which the fundamental wave of the load torque is included in the phase range (R) of the mechanical angle ( ⁇ m) exceeding the torque threshold value (Tth).
  • the power converter (10) implements the second mode (M2) in the second power supply half cycle.
  • the power converter (10) does not positively reduce the peak of the motor current in the second power supply half cycle.
  • the power converter (10) reduces the peak of the motor current at least in the first half cycle of the power supply. In the power converter (10), even if the peak of the motor current is not positively reduced in the second half cycle of the power supply, the peak of the motor current is lowered when viewed throughout the operation of the power converter (10). ..
  • the motor current vector may be used as the command value, the upper limit value, or the threshold value instead of the torque command value, the upper limit value, or the threshold value.
  • the switching control between the first mode (M1) and the second mode (M2) described in the above embodiment can also be adopted for the matrix converter.
  • the matrix converter is also an example of a direct power conversion device that does not have an energy storage element (large-capacity capacitor or large-capacity inductor).
  • the application of the power converter (10) is not limited to the power supply to the compressor motor.
  • the power converter (10) can be applied to power a motor for various purposes.
  • the present disclosure is useful for power converters.
  • Power converter 20 AC power supply 30 Motor 40 Control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

fdcを単相の交流電源(20)の周波数の2倍の周波数、fLを周期的負荷変動の周波数、tb=1/|fdc-n×fL|、ただし、nは、tbが最大となる正の整数と定義すると、tbの期間における、負荷トルクの基本波のピークと電源電圧の絶対値のピークが略一致するタイミングを含む電源半周期において、モータ電流ベクトルの絶対値の波形に含まれる電源周波数の2次調波、4次調波、6次調波を合成した波形において、電源半周期において極大点が2つ以上出現するように、スイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)を制御する。

Description

直接形の電力変換装置
 本開示は、直接形の電力変換装置に関するものである。
 入力される交流電源の電力を所定の周波数の交流電力に変換する電力変換装置は、エネルギー蓄積要素(大容量コンデンサや大容量インダクタ)の有無により、間接形の電力変換装置と直接形の電力変換装置に大別される。前者はエネルギー蓄積要素(大容量コンデンサや大容量インダクタ)を有しており、後者は有していない。前記直接形の電力変換装置の中には、直流リンク部に比較的小容量のコンデンサを設けたものがある。特許文献1には、前記直接形の電力変換装置において、負荷トルクが周期的に変動する場合、圧縮機の振動を抑制するトルク制御の技術が開示されている。特許文献1では、交流電源の周波数に起因する脈動成分と、モータの一回転中に発生する負荷トルク変動に同期した脈動成分を前記モータの出力トルクに重畳させることで、前記モータの負荷トルク変動に応じて前記モータの出力トルクを変動させるトルク制御が行われる。
特許第4192979号公報
 しかしながら、前記トルク制御では、交流電源の周波数に起因する脈動成分と負荷トルク変動に同期した脈動成分とがモータトルクに現れる。そのため、前記トルク制御では、2つの脈動成分のピーク同士が重なって、モータトルクのピークが不要に高くなる場合がある。モータトルクとモータ電流は概ね比例の関係にあるので、モータトルクのピークが高くなると、モータ電流のピークも高くなる。
 本開示の目的は、電力変換装置において、モータ電流のピークの低下を図ることにある。
 本開示の第1の態様は、複数のスイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)のスイッチング動作によって、入力される単相の交流電源(20)の電力を所定の周波数の交流電力に変換して、周期的負荷変動を有する負荷を駆動するモータ(30)に供給する直接形の電力変換装置であって、
 前記スイッチング動作を制御する制御部(40)を備え、
 前記制御部(40)は、
 fdcを前記交流電源(20)の周波数の2倍の周波数、
 fLを前記周期的負荷変動の周波数、
 tb=1/|fdc-n×fL|
 ただし、nは、tbが最大となる正の整数
 と定義すると、
 tbの期間における、負荷トルクの基本波のピークと電源電圧の絶対値のピークが略一致するタイミングを含む電源半周期において、
 モータ電流ベクトルの絶対値の波形に含まれる電源周波数の2次調波、4次調波、6次調波を合成した波形において、電源半周期において極大点が2つ以上出現するように、前記スイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)を制御することを特徴とする直接形の電力変換装置である。
 第1の態様では、電力変換装置において、モータ電流のピークを低下できる。
 本開示の第2の態様は、第1の態様において、
 前記制御部(40)は、
 前記負荷トルクの基本波が最大となるタイミングを含む電源半周期において、
 モータ電流ベクトルの絶対値の波形に含まれる電源周波数の2次調波、4次調波、6次調波を合成した波形において、電源半周期において極大点が2つ以上出現するように、前記スイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)を制御することを特徴とする直接形の電力変換装置である。
 第2の態様では、負荷トルクの基本波が最大となるタイミングを含む電源半周期において、モータ電流のピークを低下できる。
 本開示の第3の態様は、第1の態様において、
 前記制御部(40)は、
 前記負荷トルクの基本波が所定閾値を超える機械角の位相範囲(R)に含まれる電源半周期において、
 モータ電流ベクトルの絶対値の波形に含まれる電源周波数の2次調波、4次調波、6次調波を合成した波形において、電源半周期において極大点が2つ以上出現するように、前記スイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)を制御することを特徴とする直接形の電力変換装置である。
 第3の態様では、負荷トルクの基本波が所定閾値を超える機械角の位相範囲(R)に含まれる電源半周期において、モータ電流のピークを低下できる。
図1は、電力変換装置のブロック図である。 図2は、電源電圧及び直流電圧の波形の一例を示す。 図3は、圧縮機負荷トルク、圧縮機負荷トルクの基本波に平均トルクを加算した波形、平均トルクの各波形を示す。 図4は、第1テーブルによって生成される基礎データを波形で示す。 図5は、第2テーブルによって生成される基礎データを波形で示す。 図6は、従来技術における、平均トルク、負荷トルクの基本波に平均トルクを加算した波形、モータトルク、振動抑制成分、高調波成分、電源電圧の絶対値の各波形を例示する。 図7は、実施形態1における、平均トルク、負荷トルクの基本波に平均トルクを加算した波形、モータトルク、振動抑制成分、高調波成分、電源電圧の絶対値の各波形を例示する。 図8は、従来技術における、平均トルク、負荷トルクの基本波に平均トルクを加算した波形、モータトルク、振動抑制成分、高調波成分、電源電圧の絶対値の各波形を例示する。 図9は、実施形態2における、平均トルク、負荷トルクの基本波に平均トルクを加算した波形、モータトルク、振動抑制成分、高調波成分、電源電圧の絶対値の各波形を例示する。 図10は、従来技術における、平均トルク、負荷トルクの基本波に平均トルクを加算した波形、モータトルク、振動抑制成分、高調波成分、電源電圧の絶対値の各波形を例示する。 図11は、実施形態3における、平均トルク、負荷トルクの基本波に平均トルクを加算した波形、モータトルク、振動抑制成分、高調波成分、電源電圧の絶対値の各波形を例示する。
 《実施形態1》
 図1は、実施形態1に係る電力変換装置(10)のブロック図である。電力変換装置(10)は、入力された交流電圧(電源電圧(vin))を所定の交流電圧に変換する。より詳しくは、電力変換装置(10)は、エネルギー蓄積要素(大容量コンデンサや大容量インダクタ)を有していない「直接形の電力変換装置」である。この例では、電力変換装置(10)には、単相の交流電源(20)から交流電圧が入力されている。電力変換装置(10)は、変換した交流電圧をモータ(30)に供給する。
 電力変換装置(10)は、図1に示すように、コンバータ回路(11)、直流リンク部(12)、インバータ回路(13)、及び制御部(40)を備えている。モータ(30)は、例えば、IPMモータ(Interior Permanent Magnet Motor)である。本実施形態では、モータ(30)は、空気調和機の圧縮機(図示を省略)を駆動する。この圧縮機では、流体の圧縮行程において、モータ(30)の一回転中に、負荷(圧縮機)におけるトルクの周期的変動(負荷トルクの変動)が発生する。
 〈コンバータ回路〉
 コンバータ回路(11)は、リアクトル(L)を介して交流電源(20)に接続されている。コンバータ回路(11)は、交流電源(20)からの電源電圧(vin)を全波整流する。コンバータ回路(11)は、4個のダイオード(D1,D2,D3,D4)を備えている。4個のダイオード(D1,D2,D3,D4)は、ブリッジ状に結線されている。
 〈直流リンク部〉
 直流リンク部(12)は、コンデンサ(C)を有している。コンデンサ(C)は、コンバータ回路(11)の一対の出力ノードの間に接続されている。直流リンク部(12)は、コンバータ回路(11)の出力(全波整流された電源電圧(vin))から直流電圧(vdc)を生成する。
 コンデンサ(C)の容量値は、コンバータ回路(11)の出力をほとんど平滑化することができない程度の大きさである。その一方で、コンデンサ(C)の容量値は、インバータ回路(13)のスイッチング動作(後述)に起因するリプル電圧(スイッチング周波数に応じた電圧変動)を抑制することができる大きさである。具体的にコンデンサ(C)は、一般的な電力変換装置においてコンバータ回路の出力の平滑化に用いられる平滑コンデンサ(例えば、電解コンデンサ)の容量値の約0.01倍の容量値(例えば、数十μF程度)を有する。コンデンサ(C)には、例えば、フィルムコンデンサが採用される。
 以上の通り、コンデンサ(C)では、直流リンク部(12)においてコンバータ回路(11)の出力がほとんど平滑化されない。直流電圧(vdc)には、電源電圧(vin)の周波数に応じた脈動成分が残留する。
 図2に、電源電圧(vin)及び直流電圧(vdc)の波形の一例を示す。この例では、直流電圧(vdc)は、その最大値がその最小値の2倍以上になるように脈動している。直流電圧(vdc)は、電源電圧(vin)の周波数の2倍の周波数を有する脈動成分を含んでいる。
 〈インバータ回路〉
 インバータ回路(13)は、直流リンク部(12)によって生成された直流電圧(vdc)をスイッチング動作によって三相の交流電圧に変換する。インバータ回路(13)は、前記三相の交流電圧をモータ(30)に供給する。
 インバータ回路(13)は、6つのスイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)と、6つの還流ダイオード(Du,Dv,Dw,Dx,Dy,Dz)とを有している。6つのスイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)は、ブリッジ結線されている。詳しく説明すると、インバータ回路(13)は、3つのスイッチングレグを備えている。スイッチングレグは、2つのスイッチング素子が互いに直列に接続されたものである。
 3つのスイッチングレグの各々において、上アームのスイッチング素子(Su,Sv,Sw)と下アームのスイッチング素子(Sx,Sy,Sz)との中点が、モータ(30)の各相のコイル(u相,v相,w相のコイル)にそれぞれ接続されている。各スイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)には、還流ダイオード(Du,Dv,Dw,Dx,Dy,Dz)がひとつずつ逆並列に接続されている。
 〈制御部〉
 制御部(40)は、モータ(30)の回転数(ω)が、与えられた指令値(以下、回転数指令値(ω*)という)となるように、インバータ回路(13)が出力する交流電圧を制御する。制御部(40)は、回転数(ω)の制御の際に、スイッチング動作を制御することによって、モータ(30)の出力トルクを変動させる。
 制御部(40)は、マイクロコンピュータとメモリディバイスを備えている。メモリディバイスには、マイクロコンピュータを動作させるソフトウエアが格納されている。制御部(40)は、ソフトウエアを実行することによって、速度制御部(41)、座標変換部(43)、dq軸電流制御部(44)、PWM演算部(45)、トルク制御部(48)、及び高調波成分重畳部(50)として機能する(図1を参照)。
 速度制御部(41)は、モータ(30)におけるトルクの平均値(以下、平均モータトルク(Tave))の指令値(以下、平均トルク指令値(Tave *))を生成する。具体的に速度制御部(41)は、モータ(30)の回転数(ω)と回転数指令値(ω*)との偏差に基づいて、例えばPID演算(比例、積分、微分)を行うことによって、平均トルク指令値(Tave *)を生成する。速度制御部(41)は、平均トルク指令値(Tave *)をトルク制御部(48)に出力する。
 トルク制御部(48)は、平均トルク指令値(Tave *)に振動抑制成分を重畳して、モータ(30)のトルクの指令値(以下、第1トルク指令(Tm*))を生成する。第1トルク指令(Tm*)は、圧縮機における負荷変動(トルク変動)に同期して脈動する。このような重畳を行うことで、モータ(30)の出力トルクには、圧縮機における負荷変動(トルク変動)に同期した脈動成分が現れる。振動抑制成分は、圧縮機における負荷変動(トルク変動)に同期した脈動波形である。振動抑制成分は、モータ(30)の機械角(θm)に基づいて演算される。なお、モータ(30)の機械角(θm)は、例えば、センサを設けて検出してもよいし、モータ電流(iu,iv,iw)及びモータ電圧(Vu,Vv,Vw)に基づいて算出してもよい。
 図3に、圧縮機負荷トルク、圧縮機負荷トルクの基本波に平均トルクを加算した波形、平均トルクのそれぞれの波形を示す。図3に示すように、圧縮機負荷トルクの波形に含まれる周波数成分の中で、振幅が最も大きい周波数成分は、基本波周波数成分である。また、圧縮機負荷トルクとモータトルクの偏差は、加振トルクとなる。この加振トルクによって圧縮機は振動する。
 トルク制御部(48)は、圧縮機負荷トルクの波形に含まれる周波数成分の中で最も振幅が大きい周波数成分である基本波周波数成分による圧縮機振動を抑制するため、圧縮機負荷トルクの基本波に同期して脈動する第1トルク指令値(Tm*)を生成する。第1トルク指令値(Tm*)が圧縮機負荷トルクの基本波に同期して脈動すると、モータ(30)の出力トルクは圧縮機負荷トルクの基本波に同期して脈動する。その結果、圧縮機振動の原因となる加振トルクが低減する。
 高調波成分重畳部(50)は、第1トルク指令(Tm*)に高調波成分を重畳して、トルク指令(以下、第2トルク指令(T*)という)を生成する。第2トルク指令(T*)は、圧縮機負荷トルクの基本波に同期して脈動しつつ、電源電圧の絶対値の電圧変動に同期して脈動する。このような重畳を行うと、モータの出力トルクには、交流電源の周波数に起因する脈動成分が現れる。高調波成分は、電源電圧の絶対値の電圧変動に同期した脈動波形である。高調波成分は、電源位相(θin)に基づいて生成される。高調波成分重畳部(50)による高調波成分の重畳には、2つのモードがある。
 一つめのモード(以下、第1モード(M1)という)では、所定の電源半周期(後述)において、モータ電流ベクトルの絶対値の波形に含まれる電源周波数の2次調波、4次調波、6次調波を合成した波形において、極大点が2つ以上出現するように、第1トルク指令(Tm*)を変調する。「電源半周期」とは、図2に示すように、交流電源(20)の電圧における所定のゼロクロスから次のゼロクロスまでの期間である(以下、同様)。「モータ電流ベクトル」とは、モータ(30)を制御する場合におけるd軸電流(id)のベクトルとq軸電流(iq)のベクトルの合成ベクトルである。
 二つめのモード(以下、第2モード(M2)という)では、所定の電源半周期(後述)において、モータ電流ベクトルの絶対値の波形に含まれる電源周波数の2次調波、4次調波、6次調波を合成した波形において、極大点が1つになるように、第1トルク指令(Tm*)を変調する。
 これらのモードを実現するため、制御部(40)は、セレクタ(46)、乗算器(47)、データ生成部(49)を備えている。更に、制御部(40)は、変調に使用するデータ(以下、基礎データ(D)という)の生成に用いるテーブルを2つ備えている。基礎データ(D)は、高調波成分を含むデータ(信号)である。
 2つのテーブルの一方は、第1モード(M1)用の基礎データ(D)を生成するテーブル(以下、第1テーブル(Tb1)という)である。もう一方のテーブルは、第2モード(M2)用の基礎データ(D)を生成するテーブル(以下、第2テーブル(Tb2)という)である。それぞれのテーブルは、電源位相(θin)の値と、その電源位相(θin)における基礎データ(D)の値とがペアで格納されている。それぞれのテーブルは、電源位相(θin)を引数として、その電源位相(θin)に対応する基礎データ(D)を出力するように構成されている。
 図4に、第1テーブル(Tb1)によって生成される基礎データ(D)を波形で示す。図4において、横軸は電源位相(θin)である。縦軸は、変調量を示す値である。図4に示すように、第1テーブル(Tb1)による基礎データ(D)は、電源半周期の前半と後半のそれぞれに、極大点が1つずつ現れている。この波形(テーブルの値)は、電源半周期の前半と後半のそれぞれに、極大点が1つ以上現れるように、電源周波数の2次調波、4次調波、6次調波に相当する波形を合成して作ったものである。
 図5に、第2テーブル(Tb2)によって生成される基礎データ(D)を波形で示す。第2テーブル(Tb2)による基礎データ(D)は、図5に示すように、電源半周期において、極大点が1つのみ現れている。この波形(テーブルの値)は、電源半周期において極大点が1つのみ現れるように、電源周波数の2次調波を用いて作ったものである。
 データ生成部(49)は、2つのテーブル(Tb1,Tb2)の何れかを選択する信号(以下、選択信号)を生成する。データ生成部(49)による選択信号の生成については後に詳述する。データ生成部(49)は、選択信号をセレクタ(46)に出力する。
 セレクタ(46)は、選択信号に応じて、2つのテーブル(Tb1,Tb2)の出力の一方を乗算器(47)に出力する。乗算器(47)は、セレクタ(46)が出力した値と、第1トルク指令(Tm*)とを乗算する。乗算器(47)は、乗算結果を第2トルク指令(T*)としてdq軸電流制御部(44)に出力する。
 座標変換部(43)は、u相電流(iu)、w相電流(iw)、及びモータ(30)の回転子(図示を省略)の電気角(機械角(θm))に基づいて、モータ(30)のd軸電流(id)及びq軸電流(iq)を導出する。座標変換部(43)は、d軸電流(id)とq軸電流(iq)の導出には、dq変換を行う。なお、u相電流(iu)及びw相電流(iw)の値は、例えば、電流センサを設けて検出することができる。
 dq軸電流制御部(44)は、第2トルク指令(T*)、d軸電流(id)、q軸電流(iq)、及びモータ電流ベクトルの位相(β)の指令値(β)に基づいて、d軸電圧指令値(vd *)及びq軸電圧指令値(vq *)を導出する。具体的に、dq軸電流制御部(44)は、第2トルク指令(T*)に基づいて、そのトルクを得るために必要なd軸電流の目標値(d軸電流指令値(id *)とよぶ)とq軸電流の目標値(q軸電流指令値(iq *)とよぶ)とを求める。dq軸電流制御部(44)は、d軸電流指令値(id *)とd軸電流(id)との偏差、及びq軸電流指令値とq軸電流(iq)との偏差がそれぞれ小さくなるように、d軸電圧指令値(vd *)及びq軸電圧指令値(vq *)を導出する。
 PWM演算部(45)は、d軸電圧指令値(vd *)及びq軸電圧指令値(vq *)によって指示された出力電圧となるように、いわゆるPWM(Pulse Width Modulation)制御によってスイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)のオンオフを制御する。PWM演算部(45)は、このオンオフを制御するための信号(以下、制御信号(G))を生成する。
 スイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)がオンになる時間及びオフになる時間は、制御信号(G)におけるデューティー比によって定まる。PWM演算部(45)は、機械角(θm)、直流電圧(vdc)、d軸電圧指令値(vd *)、q軸電圧指令値(vq *)、d軸電圧(vd)、及びq軸電圧(vq)に基づいて、スイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)の各々に供給する制御信号(G)のデューティー比を設定する。
 制御信号(G)が出力されると、各スイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)は、制御信号(G)に応じたデューティー比でスイッチング動作(オンオフ動作)を行う。PWM演算部(45)は、制御信号(G)を周期的に更新する。この更新に応じて、インバータ回路(13)では、スイッチング動作が継続的に行われる。
 〈モードの選択〉
 データ生成部(49)が選択信号を出力することによって、2つのテーブルの何れかが選択される。この選択により、制御部(40)において、第1モード(M1)と第2モード(M2)の選択が実現される。以下では、説明の便宜のため、第1モード(M1)が実行される電源半周期を第1電源半周期、第2モード(M2)が実行される電源半周期を第2電源半周期とする。具体的には、データ生成部(49)が、以下のステップを実行することによって、第1テーブル(Tb1)および第2テーブル(Tb2)の何れかが選択される。
 ステップ1:
 データ生成部(49)は、交流電源(20)の周波数の2倍の周波数(以下、fdcとする)を電源位相(θin)から求める。また、データ生成部(49)は、周期的負荷変動(ここでは圧縮機の負荷変動)の周波数(以下、fLとする)を機械角(θm)から計算する。
 ステップ2:
 図6に、従来技術における、平均トルク、負荷トルクの基本波に平均トルクを加算した波形、モータトルク、振動抑制成分、高調波成分、電源電圧の絶対値のそれぞれの波形を示す。モータ(30)の出力トルクは、平均トルクと振動抑制成分と高調波成分との積であるため、モータ(30)の出力トルクには、交流電源の周波数に起因する脈動成分と、負荷トルク変動に同期した脈動成分が現れる。
 図6の波形は、従来の電力変換装置における波形であり、データ生成部(49)において、常に第2テーブル(Tb2)を用いて基礎データ(D)を生成して、電力変換装置(10)を運転させた波形を例示している。以下では、説明の便宜のため、常に第2テーブル(Tb2)を用いて電力変換装置(10)を運転させた例を従来例と呼ぶ。
 直接形の電力変換装置にてトルク制御を行うと、交流電源の周波数に起因する脈動成分と、モータの一回転中に発生する負荷トルク変動に同期した脈動成分とが重畳する。その結果、モータの出力トルクの波形やモータ電流の波形は、図6に示すように、ビート(うなり)を含んだ波形になる。このビート(うなり)の周期(以下、ビート周期(tb)とする)では、2つの脈動成分のピーク同士が重なる電源半周期において、モータの出力トルクやモータ電流のピークが大きくなる(丸で囲んだピークを参照)。
 具体的には、モータ(30)の出力トルクは、平均トルクと振動抑制成分と高調波成分 との積であるため、図6に示すように、振動抑制成分と高調波成分のピーク同士が重なる電源半周期において、モータの出力トルクやモータ電流のピークが大きくなる。振動抑制成分は、圧縮機負荷トルクの基本波に同期した脈動波形である。振動抑制成分は、圧縮機負荷トルクの基本波がピークとなるタイミングでピークとなる(図6参照)。
 また、高調波成分は、電源電圧の絶対値の電圧変動に同期した脈動波形である。高調波成分は、電源電圧の絶対値がピークとなるタイミングでピークとなる(図6参照)。換言すると、直接形の電力変換装置にてトルク制御を行うと、圧縮機負荷トルクの基本波のピークと電源電圧の絶対値のピークが重なる電源半周期において、モータの出力トルクやモータ電流のピークが大きくなる(丸で囲んだピークを参照)。データ生成部(49)は、以下の式で表されたビート周期(tb)を求める。
 tb=1/|fdc-n×fL|
 ただし、nは、tbが最大となる正の整数である。なお、この式においてtb>1となった場合には、tb=1とする。
 ステップ3:
 データ生成部(49)は、ビート周期(tb)において負荷トルクの基本波がピーク(θm=180°)となるタイミングを機械角(θm)に基づいて、全て求める。
 ステップ4:
 データ生成部(49)は、ステップ3で求めた各タイミングにおける電源位相(θin)を求める。
 ステップ5:
 データ生成部(49)は、ステップ4で求めた電源位相(θin)の内で、電源電圧(vin)の絶対値のピーク(電源位相(θin)の値では90°または270°が対応)に最も近い電源位相(θin)を含む電源半周期を求める。データ生成部(49)が求めた電源半周期は、負荷トルクの基本波のピークと電源電圧の絶対値のピークが略一致するタイミングを含む電源半周期である。この実施形態では、前記負荷トルクの基本波のピークと、電源電圧の絶対値のピークが略一致するタイミングを含む電源半周期が第1電源半周期である。第1電源半周期を除く電源半周期が第2電源半周期である。
 ステップ6:
 データ生成部(49)は、第1電源半周期には、第1テーブル(Tb1)を選択する選択信号をセレクタ(46)に出力し、第2電源半周期には、第2テーブル(Tb2)を選択する選択信号をセレクタ(46)に出力する。
 この選択信号に応じて、セレクタ(46)からは、第1電源半周期には、第1テーブル(Tb1)からの基礎データ(D)が出力され、第2電源半周期には、第2テーブル(Tb2)からの基礎データ(D)が出力される。換言すると、第1電源半周期には、第1モード(M1)が実行され、第2電源半周期には、第2モード(M2)が実行される。
 〈電力変換装置の動作例〉
 電力変換装置(10)が起動されると、コンバータ回路(11)が、電源電圧(vin)を全波整流する。直流リンク部(12)には、コンバータ回路(11)の出力が与えられる。直流リンク部(12)は、電源電圧(vin)の周波数の2倍の周波数で脈動する直流電圧(vdc)を生成する。
 更に、電力変換装置(10)では、速度制御部(41)、トルク制御部(48)、座標変換部(43)、dq軸電流制御部(44)、および高調波成分重畳部(50)が動作する。その結果、制御部(40)では、d軸電圧指令値(vd *)とq軸電圧指令値(vq *)が生成される。d軸電圧指令値(vd *)とq軸電圧指令値(vq *)が生成されると、PWM演算部(45)が制御信号(G)を生成する。その結果、インバータ回路(13)は、制御信号(G)に応じたスイッチング動作を行う。スイッチング動作に応じて、インバータ回路(13)からは、モータ(30)に所定の交流電力が供給される。
 図7に、本実施形態における、平均トルク、負荷トルクの基本波に平均トルクを加算した波形、モータトルク、振動抑制成分、高調波成分、電源電圧の絶対値のそれぞれの波形を示す。本実施形態における電力変換装置(10)では、第1電源半周期において、第1モード(M1)が実行される。第1モード(M1)では、第1テーブル(Tb1)に基づく基礎データ(D)(図4参照)が制御に用いられる。一方、従来例における電力変換装置(10)では、常に第2テーブル(Tb2)に基づく基礎データ(D)(図5参照)が制御に用いられる(図6参照)。
 図6では、ビート周期(tb)において、出力トルクに大きなピークが出現している(丸で囲んだピークを参照)。丸で囲んだピークを含む電源半周期は、負荷トルクの基本波のピークと電源電圧の絶対値のピークが略一致するタイミングを含んでいる。換言すると、丸で囲んだピークを含む電源半周期は、第1電源半周期である。一方、図7では、第1電源半周期において、出力トルクに大きなピークが出現していない。換言すると、第1テーブル(Tb1)に基づく基礎データ(D)が制御に用いられると、出力トルクのピーク値が低減される。
 図4,5に示すように、第1テーブル(Tb1)によって生成される基礎データ(D)の波形は、第2テーブル(Tb2)によって生成される基礎データ(D)の波形に比べ、ピーク値が抑制された波形(大まかに言えば台形状の波形)である。モータ(30)の出力トルクは、平均トルクと振動抑制成分と高調波成分との積であるため、高調波成分の波形をピーク値が抑制された波形にすることで、モータ(30)の出力トルクのピーク値を低減することができる。換言すると、モータ(30)の出力トルクのピーク値を低減するためには、基礎データ(D)の波形をピーク値が抑制された波形(大まかに言えば台形状の波形)にするために、電源周波数の2次調波、4次調波、6次調波に相当する波形の振幅及び位相を適切に合成して、基礎データ(D)の波形を生成する必要がある。
 出力トルクとモータ電流とは、概ね比例の関係にあるので、第1テーブル(Tb1)に基づく基礎データ(D)が制御に用いられると、第1電源半周期には、出力トルク及びモータ電流の絶対値の波形に含まれる電源周波数の2次調波、4次調波、6次調波を合成した波形は、極大点が2つ以上出現する波形になる(図7参照)。換言すると、第1テーブル(Tb1)に基づく基礎データ(D)が制御に用いられると、出力トルク及びモータ電流のピーク値が低減される。
 なお、第2モード(M2)が実行される第2電源半周期は、モータ(30)の出力トルク及びモータ電流のピークは抑制されない。この場合、出力トルク及びモータ電流の絶対値の波形に含まれる電源周波数の2次調波、4次調波、6次調波を合成した波形は、極大点が1つである。第1モード(M1)で制御が行われている場合に比べ、コンバータ回路(11)への入力電流(電源電流(iin))に現れる高調波のレベルが小さくなる。
 以上をまとめると、本実施形態は、複数のスイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)のスイッチング動作によって、入力される単相の交流電源(20)の電力を所定の周波数の交流電力に変換して、周期的負荷変動を有する負荷を駆動するモータ(30)に供給する直接形の電力変換装置であって、前記スイッチング動作を制御する制御部(40)を備え、前記制御部(40)は、fdcを前記交流電源(20)の周波数の2倍の周波数、fLを前記周期的負荷変動の周波数、tb=1/|fdc-n×fL|、ただし、nは、tbが最大となる正の整数と定義すると、tbの期間における、負荷トルクの基本波のピークと電源電圧の絶対値のピークが略一致するタイミングを含む電源半周期において、モータ電流ベクトルの絶対値の波形に含まれる電源周波数の2次調波、4次調波、6次調波を合成した波形において、電源半周期において極大点が2つ以上出現するように、前記スイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)を制御することを特徴とする直接形の電力変換装置である。
 〈本実施形態における効果〉
 電力変換装置(10)は、第2電源半周期には、第2モード(M2)を実施する。換言すると、電力変換装置(10)は、第2電源半周期には、モータ電流のピークを積極的には低減していない。しかしながら、電力変換装置(10)は、少なくとも第1電源半周期には、モータ電流のピークを低減する。電力変換装置(10)では、第2電源半周期において、モータ電流のピークを積極的には低減しなくても、電力変換装置(10)の運転全体を通して見ると、モータ電流のピークが低下する。
 《実施形態2》
 実施形態2では、制御部(40)の他の構成例を説明する。実施形態2の制御部(40)は、負荷トルクの基本波が最大となるタイミングを含む電源半周期において、モータ電流ベクトルの絶対値の波形に含まれる電源周波数の2次調波、4次調波、6次調波を合成した波形において、電源半周期において極大点が2つ以上出現するようにスイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)を制御する。この制御を実現するため、本実施形態では、実施形態1の制御部(40)(より具体的にはデータ生成部(49))に変更を加えている。
 本実施形態のデータ生成部(49)は、負荷トルクの基本波がピークとなるタイミングを検出する機能を有する。具体的には、データ生成部(49)は、機械角(θm)が180°となるタイミングを検出する。負荷トルクの基本波がピークとなるタイミングが求まると、データ生成部(49)は、求めたタイミングを含む電源半周期において、第1テーブル(Tb1)が選択されるように選択信号を生成する。
 図8に、従来の電力変換装置における、平均トルク、負荷トルクの基本波に平均トルクを加算した波形、モータトルク、振動抑制成分、高調波成分、電源電圧の絶対値のそれぞれの波形を例示する。図8の波形図では、出力トルクに大きなピークが出現している(丸で囲んだピークを参照)。丸で囲んだピークを含む電源半周期は、負荷トルクの基本波がピークとなるタイミングを含んでいる。図9の波形図における各波形は、本実施形態における、平均トルク、負荷トルクの基本波に平均トルクを加算した波形、モータトルク、振動抑制成分、高調波成分、電源電圧の絶対値のそれぞれの波形である。
 本実施形態では、負荷トルクの基本波のピークを含んだ電源半周期において第1モード(M1)が実行される。換言すると、本実施形態では、負荷トルクの基本波のピークを含んだ電源半周期が、第1電源半周期であり、第1電源半周期を除く電源半周期が第2電源半周期である。第1モード(M1)では、第1テーブル(Tb1)に基づく基礎データ(D)(図4参照)が制御に用いられる。出力トルクとモータ電流とは、概ね比例の関係にあるので、第1テーブル(Tb1)に基づく基礎データ(D)が制御に用いられると、第1電源半周期には、出力トルク及びモータ電流の絶対値の波形に含まれる電源周波数の2次調波、4次調波、6次調波を合成した波形は、極大点が2つ以上出現する波形になる(図9を参照)。
 換言すると、第1テーブル(Tb1)に基づく基礎データ(D)が制御に用いられると、出力トルク及びモータ電流のピーク値が低減される。なお、本実施形態でも、第1モード(M1)が実施されていない動作期間には、第2モード(M2)が実施される。
 〈本実施形態における効果〉
 以上の通り、本実施形態では、負荷トルクの基本波が最大となるタイミングを含む電源半周期において、モータ電流のピークが低減される。
 本実施形態でも電力変換装置(10)は、第2電源半周期には、第2モード(M2)を実施する。換言すると、電力変換装置(10)は、第2電源半周期には、モータ電流のピークを積極的には低減していない。しかしながら、電力変換装置(10)は、少なくとも第1電源半周期には、モータ電流のピークを低減する。電力変換装置(10)では、第2電源半周期において、モータ電流のピークを積極的には低減しなくても、電力変換装置(10)の運転全体を通して見ると、モータ電流のピークが低下する。
 《実施形態3》
 実施形態3では、制御部(40)の他の構成例を説明する。実施形態3の制御部(40)は、負荷トルクの基本波が所定閾値(後述のトルク閾値(Tth))を超える機械角の範囲に含まれる電源半周期において、モータ電流ベクトルの絶対値の波形に含まれる電源周波数の2次調波、4次調波、6次調波を合成した波形において、電源半周期において極大点が2つ以上出現するように、スイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)を制御する。この制御を実現するため、本実施形態では、実施形態1の制御部(40)(より具体的にはデータ生成部(49))に変更を加えている。
 本実施形態のデータ生成部(49)は、負荷トルクの基本波が所定閾値を超える機械角(θm)の範囲(以下、位相範囲(R))を求める機能を有する。データ生成部(49)は、求めた位相範囲(R)に含まれる電源半周期において、第1テーブル(Tb1)を選択する選択信号を出力する。具体的にデータ生成部(49)は、以下のステップを実行する。
 ステップ31:
 データ生成部(49)は、出力トルクの上限値(以下、トルク上限値(Tmax)という)を取得する。トルク上限値(Tmax)の値は、例えば、制御部(40)のメモリディバイス等に格納(設定)される。トルク上限値(Tmax)は、一例として、モータ(30)の減磁耐力に応じて設定したり、スイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)の耐力に応じて設定したりすることが考えられる。
 ステップ32:
 データ生成部(49)は、負荷トルクの基本波の閾値(以下、トルク閾値(Tth))を求める。モータトルク=第1トルク指令(Tm*)×高調波成分であり、第1トルク指令(Tm*)は負荷トルクの基本波に同期して脈動する波形である。そのため、トルク上限値(Tmax)を第2モード(M2)の高調波成分のピーク値で割った値と、負荷トルクの基本波に平均トルクを加算した波形を比較することで、常に第2モード(M2)が実施された場合に、モータトルクがトルク上限値(Tmax)を超える機械角(θm)の範囲(位相範囲(R))を予測することができる。
 換言すると、トルク上限値(Tmax)を第2モード(M2)の高調波成分のピーク値で割った値から平均トルクを引いた値と、負荷トルクの基本波を比較することで、従来例が実施された場合に、モータトルクがトルク上限値(Tmax)を超えてしまう機械角(θm)の範囲(位相範囲(R))を予測することができる。データ生成部(49)は、トルク上限値(Tmax)を第2モード(M2)の高調波成分のピーク値で割った値から平均トルクを引いた値をトルク閾値(Tth)として求める。
 ステップ33:
 データ生成部(49)は、第1モード(M1)を実施すべき機械角(θm)の範囲(位相範囲(R))を決定する。具体的には、データ生成部(49)は、負荷トルクの基本波がトルク閾値(Tth)を超える位相の範囲を範囲(R)として求める。ここでは、データ生成部(49)が求めた位相範囲(R)が[θ1,θ2]であるとする。
 ステップ34:
 データ生成部(49)は、電源電圧(vin)の絶対値がピーク(電源位相(θin)の値では90°または270°が対応)となるタイミングが位相範囲(R)に含まれる電源半周期を求める。
 図10に、従来の電力変換装置における、平均トルク、負荷トルクの基本波に平均トルクを加算した波形、モータトルク、振動抑制成分、高調波成分、電源電圧の絶対値のそれぞれの波形を例示する。図10の波形図では、出力トルクに大きなピークが出現している(丸で囲んだピークを参照)。丸で囲んだピークを含む電源半周期は、負荷トルクの基本波がトルク閾値(Tth)を超える位相範囲(R)に含まれる電源半周期である。図11に、本実施形態における、平均トルク、負荷トルクの基本波に平均トルクを加算した波形、モータトルク、振動抑制成分、高調波成分、電源電圧の絶対値のそれぞれの波形を例示する。
 本実施形態では、負荷トルクの基本波がトルク閾値(Tth)を超える位相範囲(R)に含まれる電源半周期において第1モード(M1)が実行される。換言すると、本実施形態では、負荷トルクの基本波がトルク閾値(Tth)を超える位相範囲(R)に含まれる電源半周期が、第1電源半周期であり、第1電源半周期を除く電源半周期が第2電源半周期である。
 第1モード(M1)では、第1テーブル(Tb1)に基づく基礎データ(D)(図4参照)が制御に用いられる。出力トルクとモータ電流とは、概ね比例の関係にあるので、第1テーブル(Tb1)に基づく基礎データ(D)が制御に用いられると、第1電源半周期には、出力トルク及びモータ電流の絶対値の波形に含まれる電源周波数の2次調波、4次調波、6次調波を合成した波形は、極大点が2つ以上出現する波形になる(図11を参照)。
 換言すると、第1テーブル(Tb1)に基づく基礎データ(D)が制御に用いられると、出力トルク及びモータ電流のピーク値が低減される。なお、本実施形態でも、第1モード(M1)が実施されていない動作期間には、第2モード(M2)が実施される。
 〈本実施形態における効果〉
 以上の通り、本実施形態では、負荷トルクの基本波がトルク閾値(Tth)を超える機械角(θm)の位相範囲(R)に含まれる電源半周期において、モータ電流のピークが低減される。
 本実施形態でも電力変換装置(10)は、第2電源半周期には、第2モード(M2)を実施する。換言すると、電力変換装置(10)は、第2電源半周期には、モータ電流のピークを積極的には低減していない。しかしながら、電力変換装置(10)は、少なくとも第1電源半周期には、モータ電流のピークを低減する。電力変換装置(10)では、第2電源半周期において、モータ電流のピークを積極的には低減しなくても、電力変換装置(10)の運転全体を通して見ると、モータ電流のピークが低下する。
 《その他の実施形態》
 なお、基礎データ(D)の生成には、テーブルに代えて、例えば前記ソフトウエア内に実装された関数を用いてもよい。
 出力トルクとモータ電流とは、概ね比例の関係にあるので、トルクの指令値や上限値、閾値に変えて、例えばモータ電流ベクトルを指令値や上限値、閾値に用いてもよい。
 前記実施形態で説明した第1モード(M1)、第2モード(M2)の切り替え制御は、マトリックスコンバータにも採用できる。マトリックスコンバータもエネルギー蓄積要素(大容量コンデンサや大容量インダクタ)を有していない直接形の電力変換装置の一例である。
 電力変換装置(10)の用途は、圧縮機用モータへの電力供給には限定されない。電力変換装置(10)は、種々の用途のモータへの電力供給に適用できる。
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態および変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。
 以上説明したように、本開示は、電力変換装置について有用である。
 10   電力変換装置
 20   交流電源
 30   モータ
 40   制御部
 

Claims (3)

  1.  複数のスイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)のスイッチング動作によって、入力される単相の交流電源(20)の電力を所定の周波数の交流電力に変換して、周期的負荷変動を有する負荷を駆動するモータ(30)に供給する直接形の電力変換装置であって、
     前記スイッチング動作を制御する制御部(40)を備え、
     前記制御部(40)は、
     fdcを前記交流電源(20)の周波数の2倍の周波数、
     fLを前記周期的負荷変動の周波数、
     tb=1/|fdc-n×fL|
     ただし、nは、tbが最大となる正の整数
     と定義すると、
     tbの期間における、負荷トルクの基本波のピークと電源電圧の絶対値のピークが略一致するタイミングを含む電源半周期において、
     モータ電流ベクトルの絶対値の波形に含まれる電源周波数の2次調波、4次調波、6次調波を合成した波形において、電源半周期において極大点が2つ以上出現するように、前記スイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)を制御することを特徴とする直接形の電力変換装置。
  2.  請求項1において、
     前記制御部(40)は、
     前記負荷トルクの基本波が最大となるタイミングを含む電源半周期において、
     モータ電流ベクトルの絶対値の波形に含まれる電源周波数の2次調波、4次調波、6次調波を合成した波形において、電源半周期において極大点が2つ以上出現するように、前記スイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)を制御することを特徴とする直接形の電力変換装置。
  3.  請求項1において、
     前記制御部(40)は、
     前記負荷トルクの基本波が所定閾値を超える機械角の位相範囲(R)に含まれる電源半周期において、
     モータ電流ベクトルの絶対値の波形に含まれる電源周波数の2次調波、4次調波、6次調波を合成した波形において、電源半周期において極大点が2つ以上出現するように、前記スイッチング素子(Su,Sv,Sw,Sx,Sy,Sz)を制御することを特徴とする直接形の電力変換装置。
PCT/JP2020/008871 2019-03-14 2020-03-03 直接形の電力変換装置 WO2020184285A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112021016236-4A BR112021016236A2 (pt) 2019-03-14 2020-03-03 Dispositivo de conversão de potência direta
EP20770796.9A EP3916986B1 (en) 2019-03-14 2020-03-03 Direct power conversion device
CN202080010518.7A CN113330680A (zh) 2019-03-14 2020-03-03 直接型功率转换装置
US17/472,392 US11705843B2 (en) 2019-03-14 2021-09-10 Direct power conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019046890A JP6849000B2 (ja) 2019-03-14 2019-03-14 直接形の電力変換装置
JP2019-046890 2019-03-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/472,392 Continuation US11705843B2 (en) 2019-03-14 2021-09-10 Direct power conversion device

Publications (1)

Publication Number Publication Date
WO2020184285A1 true WO2020184285A1 (ja) 2020-09-17

Family

ID=72427508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008871 WO2020184285A1 (ja) 2019-03-14 2020-03-03 直接形の電力変換装置

Country Status (6)

Country Link
US (1) US11705843B2 (ja)
EP (1) EP3916986B1 (ja)
JP (1) JP6849000B2 (ja)
CN (1) CN113330680A (ja)
BR (1) BR112021016236A2 (ja)
WO (1) WO2020184285A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022162720A1 (ja) * 2021-01-26 2022-08-04 三菱電機株式会社 制御装置、電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
WO2023047486A1 (ja) * 2021-09-22 2023-03-30 三菱電機株式会社 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
WO2023067724A1 (ja) * 2021-10-20 2023-04-27 三菱電機株式会社 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
WO2023067774A1 (ja) * 2021-10-21 2023-04-27 三菱電機株式会社 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
WO2023067723A1 (ja) * 2021-10-20 2023-04-27 三菱電機株式会社 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113189513B (zh) * 2021-04-29 2022-10-21 电子科技大学 一种基于纹波的冗余电源均流状态识别方法
JP7344945B2 (ja) * 2021-09-27 2023-09-14 本田技研工業株式会社 制御装置、及びモータ駆動システム
DE102022204631A1 (de) 2022-05-11 2023-11-16 Volkswagen Aktiengesellschaft Wärmebereitstellung bei einem stehenden Elektrofahrzeug
WO2024142324A1 (ja) * 2022-12-27 2024-07-04 三菱電機株式会社 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020074969A1 (en) * 2000-08-21 2002-06-20 Jonathan Sidney Edelson PWM motor drive apparatus with increase of low speed capability
JP2007116862A (ja) * 2005-10-24 2007-05-10 Nsk Ltd モータ駆動制御装置及びそれを搭載した電動パワーステアリング装置
JP4192979B2 (ja) 2006-08-31 2008-12-10 ダイキン工業株式会社 モータ制御装置
JP2012165631A (ja) * 2011-01-18 2012-08-30 Daikin Ind Ltd 電力変換装置
JP2017103910A (ja) * 2015-12-01 2017-06-08 株式会社デンソー モータシステム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2710461B2 (ja) 1990-11-27 1998-02-10 日本電気アイシーマイコンシステム株式会社 ステレオ/sap検出回路
JP3867518B2 (ja) * 2001-06-06 2007-01-10 株式会社日立製作所 同期電動機のセンサレス制御システム
EP1553693B1 (en) * 2002-10-17 2007-12-19 Denso Corporation Ac rotary electric machine magnetic noise reduction method, motor control device and ac rotary electric machine using the same
US7786691B2 (en) * 2006-10-24 2010-08-31 Unico, Inc. Bus disturbance regulator
US7545113B2 (en) * 2006-10-24 2009-06-09 Unico, Inc. Harmonic disturbance regulator
US9257931B2 (en) * 2011-01-18 2016-02-09 Daikin Industries, Ltd. Power conversion apparatus
JP2013135568A (ja) * 2011-12-27 2013-07-08 Daikin Ind Ltd インバータの制御装置
JP5795980B2 (ja) * 2012-03-16 2015-10-14 株式会社東芝 電動機制御装置
EP2908416B1 (en) * 2013-12-24 2020-12-02 LG Electronics Inc. Motor driving device and air conditioner including the same
JP5928647B2 (ja) * 2014-09-30 2016-06-01 ダイキン工業株式会社 電力変換装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020074969A1 (en) * 2000-08-21 2002-06-20 Jonathan Sidney Edelson PWM motor drive apparatus with increase of low speed capability
JP2007116862A (ja) * 2005-10-24 2007-05-10 Nsk Ltd モータ駆動制御装置及びそれを搭載した電動パワーステアリング装置
JP4192979B2 (ja) 2006-08-31 2008-12-10 ダイキン工業株式会社 モータ制御装置
JP2012165631A (ja) * 2011-01-18 2012-08-30 Daikin Ind Ltd 電力変換装置
JP2017103910A (ja) * 2015-12-01 2017-06-08 株式会社デンソー モータシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3916986A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022162720A1 (ja) * 2021-01-26 2022-08-04 三菱電機株式会社 制御装置、電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
JPWO2022162720A1 (ja) * 2021-01-26 2022-08-04
JP7459312B2 (ja) 2021-01-26 2024-04-01 三菱電機株式会社 制御装置、電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
WO2023047486A1 (ja) * 2021-09-22 2023-03-30 三菱電機株式会社 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
JP7542751B2 (ja) 2021-09-22 2024-08-30 三菱電機株式会社 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
WO2023067724A1 (ja) * 2021-10-20 2023-04-27 三菱電機株式会社 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
WO2023067723A1 (ja) * 2021-10-20 2023-04-27 三菱電機株式会社 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
JP7515740B2 (ja) 2021-10-20 2024-07-12 三菱電機株式会社 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
JP7515739B2 (ja) 2021-10-20 2024-07-12 三菱電機株式会社 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
WO2023067774A1 (ja) * 2021-10-21 2023-04-27 三菱電機株式会社 電力変換装置、モータ駆動装置および冷凍サイクル適用機器

Also Published As

Publication number Publication date
EP3916986A1 (en) 2021-12-01
EP3916986B1 (en) 2024-07-31
JP6849000B2 (ja) 2021-03-24
CN113330680A (zh) 2021-08-31
US20210408953A1 (en) 2021-12-30
US11705843B2 (en) 2023-07-18
EP3916986A4 (en) 2022-10-19
BR112021016236A2 (pt) 2021-10-13
JP2020150702A (ja) 2020-09-17

Similar Documents

Publication Publication Date Title
WO2020184285A1 (ja) 直接形の電力変換装置
JP6566105B2 (ja) 電力変換装置
JP5288009B2 (ja) 電力変換装置
JP5212491B2 (ja) 電力変換装置
JP5304937B2 (ja) 電力変換装置
JP5126409B2 (ja) 電力変換装置
JP6521131B1 (ja) 電力変換装置
JP5928647B2 (ja) 電力変換装置
CN109546913A (zh) 一种电容小型化电机驱动装置
JP5673118B2 (ja) 電力変換装置
JP6550314B2 (ja) 電力変換装置
JP6330572B2 (ja) 電力変換装置
Abe et al. Realization of IPMSM drive systems without both an electrolytic capacitor and an line inductor
JP2018121524A (ja) 電力変換装置
JP2018121524A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770796

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021016236

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020770796

Country of ref document: EP

Effective date: 20210826

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112021016236

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210817