WO2020179750A1 - 運転支援装置 - Google Patents

運転支援装置 Download PDF

Info

Publication number
WO2020179750A1
WO2020179750A1 PCT/JP2020/008752 JP2020008752W WO2020179750A1 WO 2020179750 A1 WO2020179750 A1 WO 2020179750A1 JP 2020008752 W JP2020008752 W JP 2020008752W WO 2020179750 A1 WO2020179750 A1 WO 2020179750A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
oncoming
oncoming vehicle
lane
driving support
Prior art date
Application number
PCT/JP2020/008752
Other languages
English (en)
French (fr)
Inventor
高橋 徹
慶 神谷
昇悟 松永
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202080019115.9A priority Critical patent/CN113544031A/zh
Publication of WO2020179750A1 publication Critical patent/WO2020179750A1/ja
Priority to US17/466,643 priority patent/US12005894B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/022Collision avoidance systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/024Collision mitigation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/53Road markings, e.g. lane marker or crosswalk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4043Lateral speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4044Direction of movement, e.g. backwards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention

Definitions

  • a driving support device that performs driving support processing for avoiding or mitigating a collision between an own vehicle and an object.
  • Patent Document 1 describes a driving support device that performs a driving support process for avoiding or mitigating a collision with an object when it is determined that an object around the vehicle is an object that may collide with the vehicle. It is disclosed. When it is determined that the own vehicle and an object may collide with each other, the driving support device increases the warning to the driver and the braking force of the brake as the driving support process.
  • the timing of operating each device is calculated according to the relative speed of the object with respect to the own vehicle. Therefore, when an oncoming vehicle existing in front of the own vehicle passes by the own vehicle, the relative speed of the oncoming vehicle with respect to the own vehicle may increase, and the driving support process may be excessively activated. However, there is a concern that if the driving support processing is not uniformly performed for the oncoming vehicle due to concern about unnecessary operation of the driving support processing for the oncoming vehicle, it may be in a dangerous state for the own vehicle depending on the course of the oncoming vehicle. It
  • the present disclosure is in view of the above problems, and an object of the present disclosure is to provide an oncoming vehicle with a driving support device capable of appropriately performing driving support processing for the own vehicle.
  • the present disclosure is a driving support device that performs a driving support process for avoiding or mitigating a collision with the vehicle on an object detected in a predetermined area in front of the vehicle.
  • the oncoming vehicle determination unit that determines a vehicle traveling on the opposite side of the vehicle as an oncoming vehicle, the course of the own vehicle, and the course of the oncoming vehicle, the other enters one of the own vehicle and the oncoming vehicle.
  • the operation of the driving support process is activated. It is provided with an operation control unit that limits the operation of the driving support process when it is determined that there is a high possibility that the other of the own vehicle and the oncoming vehicle will enter the course.
  • the presence or absence of restrictions on the operation of the driving support processing can be switched according to the degree of danger of the oncoming vehicle to the own vehicle, so that the driving support processing can be properly performed when the oncoming vehicle is in front of the own vehicle. can do.
  • FIG. 1 is a block diagram of a driving support device
  • FIG. 2 is a diagram for explaining an operation area set in front of the own vehicle
  • FIG. 3 is a diagram for explaining an oncoming vehicle entering the own lane
  • FIG. 4 is a diagram for explaining the limitation of the operation of PCS control
  • FIG. 5 is a flowchart illustrating the procedure of PCS control.
  • the driving support device is mounted on the vehicle.
  • the driving support device determines that there is a high possibility that an object located in a predetermined area in front of the vehicle and the vehicle collides with the vehicle, the driving support device causes the vehicle to avoid or mitigate the collision between the vehicle and the object.
  • Carry out PCS control pre-crash safety control.
  • PCS control corresponds to driving support processing.
  • the ECU 10 which is a driving support device, is a computer including a CPU, a ROM, a RAM, an I/O, and the like.
  • the CPU realizes each function by executing a program installed in the ROM.
  • a millimeter-wave radar 21 and an image sensor 22 are connected to the ECU 10 as sensor devices for detecting the position of an object located in front of the vehicle.
  • the millimeter wave radar 21 detects, for example, the position of an object around the own vehicle as the first position by transmitting a high frequency signal in the millimeter wave band and receiving the reflected wave generated by the reflection of the millimeter wave on the object. To do.
  • the millimeter-wave radar 21 is provided at the front end of the vehicle and has an area within a predetermined detection angle as a detection area in which an object can be detected.
  • the image sensor 22 includes an imaging unit that acquires an image captured in front of the vehicle, and detects the position of an object included in the acquired image as a second position.
  • the image sensor 22 is attached to a predetermined height at the center of the vehicle width (horizontal direction) of the vehicle, and acquires a region extending in a predetermined angle range toward the front of the vehicle as an image.
  • the image sensor 22 extracts feature points of an object in a captured image, and detects the position and shape of the object using the extracted feature points.
  • the imaging unit is, for example, a monocular camera or a compound eye camera.
  • the accelerator sensor 23 is provided on the accelerator pedal, and detects whether or not the driver operates the accelerator pedal and the amount of the operation.
  • the brake sensor 24 is provided on the brake pedal and detects whether or not the driver operates the brake pedal and the amount of the operation.
  • the steering sensor 25 detects the steering amount ⁇ associated with the steering operation by the driver.
  • the vehicle speed sensor 26 detects the own vehicle speed Vc based on the number of rotations of the wheels.
  • the yaw rate sensor 27 detects the yaw rate ⁇ indicating the time change of the direction when the own vehicle turns.
  • An alarm device 31, a brake device 32, and a seatbelt device 33 are connected to the ECU 10.
  • the alarm device 31 is a speaker or display installed in the vehicle interior, and outputs an alarm sound, an alarm message, or the like in response to a control command from the ECU 10.
  • the braking device 32 applies a braking force to the own vehicle.
  • the seatbelt device 33 is a pretensioner for pulling in a seatbelt provided in each seat of the own vehicle.
  • the ECU 10 acquires the object position P (i), which is the position of the object around the own vehicle, based on the detection results of the millimeter wave radar 21 and the image sensor 22.
  • the ECU 10 is based on the same object that is located in the vicinity of the first position of the object detected by the millimeter wave radar 21 and the second position of the object detected by the image sensor 22. Correspond as.
  • the state in which the position of the object is accurately earned by the millimeter wave radar 21 and the image sensor 22 is referred to as a fusion state.
  • the ECU 10 is new to the object by fusing the highly accurate information of the information contained in the first position and the information contained in the second position with respect to the object determined to be in the fusion state. Obtain the object position P(i).
  • the ECU 10 calculates the relative position of the object with respect to the own vehicle and the relative velocity of the object with respect to the own vehicle for each object for which the object position P (i) has been acquired.
  • the case where the relative speed of the object with respect to the own vehicle changes in the direction opposite to the traveling direction of the own vehicle is positive.
  • the ECU 10 corresponds to the relative speed calculation unit.
  • the ECU 10 determines whether or not there is a high possibility that the own vehicle and the object collide with each other based on the course of the object and the position of the own vehicle.
  • the ECU 10 calculates the course of the object based on the change in the object position P (i).
  • the operating area is, for example, a region smaller than the detection region of the millimeter wave radar 21 or the image sensor 22.
  • the ECU 10 determines whether or not to operate each of the devices 31 to 33. Specifically, as shown in FIG. 2, the object position P (i) of the object determined to have a high possibility of colliding with the own vehicle 100 is located in the operating area B defined in front of the own vehicle.
  • TTC collision prediction time
  • TTC is an estimated time until the vehicle 100 collides with an object, and is calculated by dividing the distance between the vehicle 100 and the object by the relative speed of the object with respect to the vehicle 100 in the present embodiment. ..
  • the operation timing is the timing at which the operations of the devices 31 to 33 are started, and when the operation timing is early, the TTC for starting the operation of the devices 31 to 33 is larger than when the operation timing is late.
  • the operation timing is set for each of the alarm device 31, the brake device 32, and the seat belt device 33.
  • the operation timing TTC1 of the alarm device 31 is set to the earliest timing.
  • the ECU 10 activates the alarm device 31.
  • the warning device 31 notifies the driver of the danger of collision.
  • the ECU 10 operates the brake device 32 when the TTC becomes the operation timing TTC2 or less of the brake device 32.
  • the operation of the brake device 32 by the ECU 10 includes an automatic brake that operates the brake device 32 when the driver is not stepping on the brake pedal, and a braking force by the brake device 32 when the driver is stepping on the brake pedal. It includes brake assist to increase the.
  • the operation timing TTC2 of the brake device 32 may be provided separately for the brake assist and the automatic brake, or may be at the same timing.
  • the operation timing of the seatbelt device 33 is set to the same value as the operation timing TTC2 of the brake device 32. For example, with the start of operation of the brake device 32, a preliminary operation of pulling in the seat belt by the seat belt device 33 is performed.
  • the ECU 10 sets a restriction on the operation of the PCS control in the situation where the oncoming vehicle is in front of the own vehicle and the possibility that the oncoming vehicle enters the course of the own vehicle is low, and the oncoming vehicle is in the course of the own vehicle. If there is a high possibility that the vehicle will enter, there will be no restrictions on the operation of the PCS control.
  • the ECU 10 determines that the vehicle traveling on the opposite side of the own vehicle is an oncoming vehicle.
  • the ECU 10 determines a vehicle traveling in a direction opposite to the traveling direction of the own vehicle as an oncoming vehicle in a lane adjacent to the own lane.
  • the ECU 10 detects a vehicle detected in the adjacent oncoming lane as an oncoming vehicle whose relative distance to the own vehicle changes in the direction approaching the own vehicle.
  • the ECU 10 corresponds to an oncoming vehicle determination unit.
  • FIG. 3 shows a scene in which an oncoming vehicle 200 in front of the own vehicle enters the own lane from the oncoming lane as the time t1 to t3 progresses.
  • the lateral distance W indicating the lateral distance from the division line C that divides the own lane and the oncoming lane to the oncoming vehicle 200 is reduced, and the lateral distance W is reduced.
  • the oncoming vehicle 200 When the reduction speed of is larger than the predetermined reduction determination value THW, it is determined that the oncoming vehicle 200 enters the own lane.
  • the oncoming vehicle 200 is traveling so as to approach the lane marking C, and the lateral distance W (t2) of the oncoming vehicle 200 at time t2 is the lateral distance W (t2) of the oncoming vehicle 200 at time t1. It is smaller than t1).
  • the slope ⁇ W indicating the decrease speed of the lateral distance W is larger than the decrease determination value THW, and it can be determined that the oncoming vehicle 200 is likely to enter the own lane.
  • the determination of whether or not an oncoming vehicle is likely to enter the own lane is referred to as a lane deviation determination.
  • the ECU 10 corresponds to the entry determination unit.
  • the ECU 10 does not limit the operation of the PCS control when it is determined by the lane deviation determination that the oncoming vehicle is likely to enter the own lane.
  • the ECU 10 limits the operation of the PCS control. Specifically, the ECU 10 limits the operation of the PCS control by reducing the operation area B, which is a position condition of an object for operating the devices 31 to 33, and delaying the operation timing of the devices 31 to 33. carry out.
  • the ECU 10 corresponds to the operation control unit.
  • the ECU 10 When limiting the operation of the PCS control, the ECU 10 reduces the operation area B laterally with respect to the lateral center of the own vehicle 100 as shown in FIG. 4A.
  • the operating area B When the operating area B is reduced, the oncoming vehicles in front of the own vehicle, which are subject to the operating conditions for operating the devices 31 to 33, are limited as compared with the case where the operating area B is not reduced. ⁇ 33 becomes difficult to operate.
  • the ECU 10 delays the operation timing of each of the devices 31 to 33 as shown in FIG. 4 (b) as compared with the case where the limit is not set.
  • the operation timing of the brake device 32 is delayed from TTC2 to TTC3. Since the operation timing of the devices 31 to 33 is delayed, it becomes difficult for the devices 31 to 33 to operate.
  • the ECU 10 may not delay the operation timing of each of the devices 31 to 33 after starting the operation of each of the devices 31 to 33. This is to prevent the operation timings of the devices 31 to 33 from being changed and the operations of the devices 31 to 33 to be interrupted.
  • step S11 the steering amount ⁇ acquired by the steering sensor 25, the own vehicle speed Vc detected by the vehicle speed sensor 26, and the yaw rate ⁇ detected by the yaw rate sensor 27 are acquired.
  • step S12 the object position P(i), which is the position of the object in front of the vehicle, is detected.
  • step S13 the object corresponding to the oncoming vehicle is determined from the objects whose object position P(i) was detected in step S12.
  • step S14 it is determined whether or not there is a high possibility of collision between the own vehicle and the object due to the fact that the path of the object intersects the operation area B set in front of the own vehicle.
  • step S19 it is determined whether or not there is a high possibility of collision between the own vehicle and the object due to the fact that the path of the object intersects the operation area B set in front of the own vehicle.
  • step S19 is affirmatively determined due to the intersection of the object path and the operation area B
  • the process proceeds to step S20 to determine whether or not the current TTC has passed the operation timing of each of the devices 31 to 33. If the current TTC determines that the operation timings of the devices 31 to 33 have not passed, the process of FIG. 5 is temporarily terminated.
  • step S20 If it is determined in step S20 that the current TTC has passed the operation timing of any of the devices 31 to 33, the process proceeds to step S21.
  • step S21 PCS control is performed by operating the devices 31 to 33 at which the TTC has reached the operation timing. Then, the process of FIG. 5 is once ended.
  • step S15 determines the lane deviation for the oncoming vehicle. If it is determined in the lane deviation determination in step S15 that the possibility that the oncoming vehicle will enter the own lane is low, the determination in step S16 is negative and the process proceeds to step S18. If the negative determination in step S16 is made, it is unlikely that the oncoming vehicle will enter the own lane. Therefore, in step S18, the operating condition of the PCS control is changed to the limiting side. Specifically, as described with reference to FIG. 4, the operating area B is reduced in the lateral direction to delay the operating timing of each of the devices 31 to 33.
  • step S16 If it is determined in the lane deviation determination in step S15 that there is a high possibility that the oncoming vehicle will enter the own lane, the affirmative determination is made in step S16 and the process proceeds to step S17.
  • the relative speed of the oncoming vehicle to the own vehicle is low, the driver can afford to perform the collision avoidance operation of the own vehicle even when the oncoming vehicle enters the own lane.
  • the relative speed of the oncoming vehicle to the own vehicle becomes low. In such a case, it is possible to preferably suppress unnecessary operation of PCS control by entrusting the operation of the own vehicle to the driver. Therefore, in step S17, it is determined whether or not the relative speed V1 of the oncoming vehicle is larger than the speed determination value THV.
  • step S17 when it is determined that the relative speed V1 of the oncoming vehicle with respect to the own vehicle is equal to or lower than the speed determination value THV, the process proceeds to step S18, and the PCS control operation is limited.
  • the speed determination value THV is an upper limit value of the speed at which the driver of the own vehicle can perform a collision avoidance operation when the oncoming vehicle enters the own lane.
  • step S19 it is determined whether or not the oncoming vehicle has entered the operation area B narrowed in the lateral direction in step S18.
  • step S20 it is determined whether or not the current TTC has passed the operation timing delayed in step S18.
  • PCS control is performed by proceeding to step S21 and operating the devices 31 to 33 that have reached the operation timing. Then, the process of FIG. 5 is once ended.
  • step S17 If it is determined in step S17 that the relative speed V1 of the oncoming vehicle is greater than the speed determination value THV, the oncoming vehicle enters the own lane, which increases the possibility of collision between the own vehicle and the oncoming vehicle. The process proceeds to step S19 without limiting the operation of the control.
  • the ECU 10 determines whether or not the oncoming vehicle is likely to enter the own lane based on the route of the own vehicle and the route of the oncoming vehicle.
  • the ECU 10 limits the operation of the PCS when the oncoming vehicle is unlikely to enter the own lane, and does not limit the operation of the PCS when the oncoming vehicle is likely to enter the own lane.
  • the presence or absence of restrictions on the operation of the PCS control can be switched according to the degree of danger of the oncoming vehicle to the own vehicle, so that the PCS control can be properly performed when the oncoming vehicle is in front of the own vehicle. Can be done.
  • the speed of the own vehicle or the oncoming vehicle tends to increase. In such a situation, there is a high possibility that an oncoming vehicle will enter the own lane.
  • the ECU 10 determines a vehicle traveling opposite to the own vehicle as an oncoming vehicle in a lane adjacent to the own lane.
  • the PCS control can be suitably operated by not limiting the operation of the PCS.
  • the ECU 10 limits the operation of the PCS control when it is determined that the relative speed of the oncoming vehicle with respect to the own vehicle is larger than the speed determination value THV and the oncoming vehicle enters the own lane. Thereby, the unnecessary operation of the PCS control can be appropriately suppressed.
  • the ECU 10 may not set a limit on the operation of the PCS control when there is a high possibility that the own vehicle enters the adjacent oncoming lane from the own lane depending on the course of the own vehicle.
  • the lane deviation determination in step S15 the lateral distance W from the own vehicle to the lane marking that separates the own lane and the adjacent oncoming lane is reduced, and the decreasing speed ⁇ W of the lateral distance W is reduced.
  • it is larger than the decrease determination value THW it may be determined that the vehicle enters the oncoming lane from the vehicle lane. Also in the present embodiment described above, the same effect as that of the first embodiment can be obtained.
  • step S15 the ECU 10 determines whether or not the own vehicle width range defined by the vehicle width of the own vehicle and the oncoming vehicle width range defined by the vehicle width of the oncoming vehicle intersect in the vehicle width direction. judge. Then, the ECU 10 affirms step S16 when it determines that the own vehicle width range and the oncoming vehicle width range intersect in the vehicle width direction and then determines that the own vehicle and the oncoming vehicle are likely to go straight as they are. Just make a decision.
  • the oncoming vehicle is not limited to traveling in a lane adjacent to the own lane, and may be traveling on a road where the road width is narrow and the own lane and the oncoming lane are not separated by a lane marking.
  • the oncoming vehicle when traveling so as to approach the course of the own vehicle, it may be determined that the oncoming vehicle is likely to enter the course of the own vehicle.
  • the ECU 10 calculates the course of the own vehicle based on the yaw rate ⁇ of the own vehicle and the own vehicle speed Vc. Then, when the object position P (i) of the oncoming vehicle is changed so as to approach the calculated course of the own vehicle, it may be determined that the oncoming vehicle is likely to enter the course of the own vehicle. ..
  • step S17 may be erased, and if step S16 is affirmatively determined, the process may proceed to step S19.
  • the driving support device is not limited to the one provided with the millimeter wave radar 21 and the image sensor 22, and may be provided with either the millimeter wave radar 21 or the image sensor 22.
  • the position of the object detected by the millimeter wave radar 21 or the image sensor 22 may be used as the object position P (i).
  • the driving support device may include a laser scanner instead of the millimeter wave radar 21.
  • ⁇ Driving support processing is not limited to PCS control.
  • the controls and techniques described in this disclosure are provided by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. May be realized.
  • the controls and methods thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits.
  • the control unit and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured.
  • the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

運転支援装置(10)は、自車(100)前方の所定領域で検出された物体に対して、自車(100)との衝突を回避又は緩和する運転支援処理を実施する。運転支援装置(10)は、自車(100)及び対向車(200)のうち、一方の進路に他方が進入する可能性が高いか否かを判定する。運転支援装置(10)は、自車(100)及び対向車(200)のうち一方の進路に他方が進入する可能性が低いと判定した場合に、運転支援処理の作動を制限し、自車及(100)び対向車(200)のうち一方の進路に他方が進入する可能性が高いと判定した場合に、運転支援処理の作動を制限しない。

Description

運転支援装置 関連出願の相互参照
 本出願は、2019年3月6日に出願された日本出願番号2019-041044号に基づくもので、ここにその記載内容を援用する。
 自車と物体との衝突を回避又は緩和する運転支援処理を実施する運転支援装置に関する。
 特許文献1には、自車周囲の物体が自車に衝突する可能性がある物体であると判定した場合に、この物体との衝突を回避又は緩和する運転支援処理を実施する運転支援装置が開示されている。運転支援装置は、自車と物体とが衝突する可能性があると判定した場合に、運転支援処理として、運転者に対する警報やブレーキの制動力を増加させる。
特開2017-114429号公報
 例えば、運転支援処理では、自車に対する物体の相対速度に応じて各装置を作動させるタイミングを算出している。そのため、自車前方に存在する対向車が自車とすれ違う場面では、自車に対する対向車の相対速度が大きくなり、運転支援処理を過剰に作動させてしまうことが考えられる。しかし、対向車に対する運転支援処理の不要作動を懸念して、対向車に対して一律に運転支援処理を実施しないと、対向車の進路によっては、自車にとって危険な状態となることが懸念される。
 本開示は、上記課題を鑑みたものであり、対向車に対して、自車に対する運転支援処理を適正に実施することができる運転支援装置を提供することを目的とする。
 上記課題を解決するために本開示では、自車前方の所定領域で検出された物体に対して、自車との衝突を回避又は緩和する運転支援処理を実施する運転支援装置であって、自車に対して対向走行する車両を対向車として判定する対向車判定部と、自車の進路と前記対向車の進路とに基づいて、自車及び前記対向車のうち一方の進路に他方が進入する可能性が高いか否かを判定する進入判定部と、自車及び前記対向車のうち一方の進路に他方が進入する可能性が低いと判定された場合に、前記運転支援処理の作動を制限し、自車及び前記対向車のうち一方の進路に他方が進入する可能性が高いと判定された場合に、前記運転支援処理の作動を制限しない作動制御部と、を備える。
 上記構成では、自車の進路と対向車の進路とに基づいて、自車及び対向車のうち一方の進路に他方が進入する可能性が高いか否かが判定される。自車及び対向車のうち一方の進路に他方が進入する可能性が低い場面では、運転支援処理の作動が制限されることにより、不要作動の抑制が優先される。一方で、自車及び対向車のうち一方の進路に他方が進入する可能性が高い場面では、運転支援処理の作動が制限されない。これにより、対向車の進路の自車に対する危険度に応じて運転支援処理の作動に対する制限の有無が切り換えられることにより、自車前方に対向車が存在する場面での運転支援処理を適正に実施することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、運転支援装置の構成図であり、 図2は、自車前方に設定される作動エリアを説明する図であり、 図3は、自車線に進入する対向車を説明する図であり、 図4は、PCS制御の作動の制限を説明する図であり、 図5は、PCS制御の手順を説明するフローチャートである。
 (第1実施形態)
 運転支援装置の実施形態を、図面を用いて説明する。本実施形態に係る運転支援装置は、車両に搭載されている。運転支援装置は、自車前方の所定領域に位置する物体と自車とが衝突する可能性が高いと判定した場合に、自車と物体との衝突を回避又は緩和すべく自車に対してPCS制御(プリクラッシュセイフティー制御)を実施する。本実施形態では、PCS制御が、運転支援処理に相当する。
 図1において、運転支援装置であるECU10は、CPU、ROM、RAM、I/O等を備えたコンピュータである。このECU10は、CPUが、ROMにインストールされているプログラムを実行することにより各機能を実現する。
 ECU10には、自車前方に位置する物体の位置を検出するセンサ装置として、ミリ波レーダ21、及び画像センサ22が接続されている。
 ミリ波レーダ21は、例えば、ミリ波帯の高周波信号を送信し、ミリ波が物体に反射することで生じた反射波を受信することにより、自車周囲の物体の位置を第1位置として検出する。ミリ波レーダ21は、自車の前端部に設けられており、所定の検知角に入る領域を、物体を検出可能な検出領域とする。
 画像センサ22は、自車前方の撮像画像を取得する撮像部を備えており、取得した撮像画像内に含まれる物体の位置を第2位置として検出する。画像センサ22は、自車の車幅(横方向)における中央の所定高さに取り付けられており、自車前方へ向けて所定角度範囲で広がる領域を撮像画像として取得する。例えば、画像センサ22は、撮像画像における、物体の特徴点を抽出し、抽出した特徴点を用いて物体の位置や形状を検出する。撮像部は、例えば、単眼カメラや、複眼カメラである。
 ECU10には、自車の運転状態を検出する各種センサ23~27が接続されている。アクセルセンサ23は、アクセルペダルに設けられており、運転者によるアクセルペダルの操作の有無、及びその操作量を検出する。ブレーキセンサ24は、ブレーキペダルに設けられており、運転者によるブレーキペダルの操作の有無、及びその操作量を検出する。ステアセンサ25は、運転者によるステアリングの操作に伴う操舵量θを検出する。車速センサ26は、車輪の回転数に基づいて、自車速度Vcを検出する。ヨーレートセンサ27は、自車が旋回する際の向きの時間変化を示すヨーレートψを検出する。
 ECU10には、警報装置31、ブレーキ装置32、及びシートベルト装置33が接続されている。警報装置31は、車室内に設置されたスピーカやディスプレイであり、ECU10からの制御指令により、警報音や警報メッセージ等を出力する。ブレーキ装置32は、自車に制動力を付与する。シートベルト装置33は、自車の各座席に設けられたシートベルトを引き込むプリテンショナである。
 次に、ECU10の各機能を説明する。ECU10は、ミリ波レーダ21及び画像センサ22の検出結果に基づいて、自車周囲の物体の位置である物体位置P(i)を取得する。本実施形態では、ECU10は、ミリ波レーダ21により検出された物体の第1位置と、画像センサ22により検出された物体の第2位置とについて、近傍に位置するものを、同じ物体に基づくものであるとして対応付ける。第1位置の近傍に、第2位置が存在する場合、その第1位置に実際に物体が存在する可能性が高い。ミリ波レーダ21及び画像センサ22により物体の位置が精度よく所得できている状態を、フュージョン状態と称す。ECU10は、フュージョン状態であると判定した物体に対して、第1位置に含まれる情報と第2位置に含まれる情報とのうち、精度の高い情報を融合することにより、物体に対して新たな物体位置P(i)取得する。
 ECU10は、物体位置P(i)を取得した物体ごとに、自車に対する物体の相対位置、及び、自車に対する物体の相対速度を算出する。本実施形態では、自車に対する物体の相対速度が自車の進行方向と反対方向に変化する場合を正としている。本実施形態では、ECU10が相対速度算出部に相当する。
 ECU10は、物体の進路と、自車の位置とに基づいて、自車と物体とが衝突する可能性が高いか否かを判定する。本実施形態では、ECU10は、物体位置P(i)の変化に基づいて、物体の進路を算出する。算出した物体の進路が自車前方に仮想的に設定した作動エリアと交わる場合に、自車と物体とが衝突すると判定する。作動エリアは、例えば、ミリ波レーダ21や画像センサ22の検出領域よりも小さな領域である。なお、自車のヨーレートψや自車速度Vcに基づいて自車の進路を算出し、算出した自車進路と物体の進路とが交わる場合に、自車と物体とが衝突する可能性が高いと判定してもよい。
 ECU10は、自車と物体とが衝突する可能性が高いと判定した場合に、各装置31~33を作動させるか否かを判定する。具体的には、ECU10は、図2に示すように、自車100と衝突する可能性が高いと判定した物体の物体位置P(i)が、自車前方に定められた作動エリアB内に位置しており、衝突予測時間(以下、TTCと称す)が各装置31~33に対応付けられた作動タイミングに達している場合に、各装置31~33を作動させる。
 TTCは、自車100と物体とが衝突するまでの予測時間であり、本実施形態では、自車100から物体までの車間距離を、自車100に対する物体の相対速度で割ることにより算出される。作動タイミングは、各装置31~33の作動を開始するタイミングであり、作動タイミングが早い場合は、遅い場合よりも各装置31~33の作動を開始するTTCが大きくなる。
 作動タイミングは、警報装置31、ブレーキ装置32、及びシートベルト装置33について、それぞれ定められている。本実施形態では、各装置31~33の作動タイミングのうち、警報装置31の作動タイミングTTC1が最も早いタイミングに定められている。
 自車100と衝突すると判定された物体が、自車100に接近することにより、TTCが警報装置31の作動タイミングTTC1以下となった場合に、ECU10は、警報装置31を作動させる。これにより、警報装置31により運転者に衝突の危険が報知される。
 その後、ECU10は、TTCがブレーキ装置32の作動タイミングTTC2以下となった場合に、ブレーキ装置32を作動させる。ECU10によるブレーキ装置32の作動には、運転者がブレーキペダルを踏んでいない状態で、ブレーキ装置32を作動させる自動ブレーキと、運転者がブレーキペダルを踏んでいる状態で、ブレーキ装置32による制動力を増加させるブレーキアシストとを含んでいる。ブレーキ装置32の作動タイミングTTC2は、ブレーキアシストと自動ブレーキとについて、別に設けられていてもよいし、同じタイミングであってもよい。
 本実施形態では、シートベルト装置33の作動タイミングは、ブレーキ装置32の作動タイミングTTC2と同じ値に定められている。例えば、ブレーキ装置32の作動開始に伴って、シートベルト装置33によるシートベルトの引き込みの予備動作が実施される。
 ところで、自車前方に存在する対向車が自車とすれ違う場面では、自車に対する対向車の相対速度が大きくなり、PCS制御を過剰に作動させてしまうことが考えられる。また、自車から対向車までの距離が遠いことによりミリ波レーダ21や画像センサ22の検出誤差が大きくなる場合や、対向車を検出した後に、自車又は対向車の進路が変化する場合が懸念される。しかし、対向車に対するPCS制御の不要作動を懸念して対向車に対して一律にPCS制御を作動させないと、対向車の進路によっては、自車にとって危険な状態となることが懸念される。
 そこで、ECU10は、自車前方に対向車が存在する場面において、対向車が自車の進路に進入する可能性が低い場面では、PCS制御の作動に制限を設け、対向車が自車の進路に進入する可能性が高い場面では、PCS制御の作動に制限を設けないこととしている。
 ECU10は、自車前方の物体のうち、自車に対して対向走行している車両を対向車として判定する。本実施形態では、ECU10は、自車線と隣接する車線において、自車進行方向と反対方向に走行する車両を対向車両として判定する。具体的には、ECU10は、隣接対向車線内で検出された車両であって、自車に対する相対距離が、自車に近づく方向に変化しているものを対向車として検出する。本実施形態では、ECU10が対向車判定部に相当する。
 ECU10は、自車の進路と対向車の位置変化とに基づいて、対向車が対向車線から自車線に進入する可能性が高いか否かを判定する。本実施形態では、図3では、自車前方の対向車200が、時刻t1からt3に進むに従い、対向車線から自車線に進入する場面を示している。図3に示すように、ECU10は、自車線と対向車線とを区画する区画線Cから、対向車200までの横方向の距離を示す横方向距離Wが減少しており、かつ横方向距離Wの減少速度が所定の減少判定値THWよりも大きい場合に、対向車200が自車線に進入すると判定する。図3では、対向車200が区画線Cに近づくように走行しており、時刻t2での対向車200の横方向距離W(t2)が、時刻t1での対向車200の横方向距離W(t1)よりも小さくなっている。そして、横方向距離Wの減少速度を示す傾きΔWが減少判定値THWよりも大きくなっており、対向車200が自車線に進入する可能性が高いと判定できる。以下では、対向車が自車線に進入する可能性が高いか否かの判定を車線逸脱判定と称す。本実施形態では、ECU10が進入判定部に相当する。
 ECU10は、車線逸脱判定により対向車が自車線に進入する可能性が高いと判定した場合は、PCS制御の作動に制限を設けない。一方で、ECU10は、車線逸脱判定により対向車が自車線に進入する可能性が低いと判定した場合は、PCS制御の作動に制限を設ける。具体的には、ECU10は、PCS制御の作動制限として、各装置31~33を作動させるための物体の位置条件である作動エリアBの縮小と、各装置31~33の作動タイミングの遅延とを実施する。本実施形態では、ECU10が作動制御部に相当する。
 ECU10は、PCS制御の作動に制限を設ける場合、図4(a)に示すように、作動エリアBを自車100における横方向の中心を基準として横方向に縮小する。作動エリアBが縮小された場合、縮小されない場合よりも、自車前方の対向車のうち、各装置31~33を作動する作動条件の対象となる対向車が制限されることにより、各装置31~33が作動しにくくなる。
 ECU10は、PCS制御の作動に制限を設ける場合、図4(b)に示すように、制限を設けない場合よりも各装置31~33の作動タイミングを遅らせる。図4(b)の例では、ブレーキ装置32の作動タイミングがTTC2からTTC3まで遅延されている。各装置31~33の作動タイミングが遅れることにより、各装置31~33が作動しにくくなる。
 なお、ECU10は、各装置31~33の作動を開始した後は、各装置31~33の作動タイミングの遅延を実施しないものとしてもよい。これは、各装置31~33が作動した後に、作動タイミングが変更されて、各装置31~33の作動が中断するのを防止するためである。
 次に、PCS制御の処理手順について、図5のフローチャートを用いて説明する。図5の処理は、ECU10により、所定の制御周期毎に繰り返し実施される。
 ステップS11では、ステアセンサ25により取得された操舵量θと、車速センサ26により検出された自車速度Vcと、ヨーレートセンサ27により検出されたヨーレートψとを取得する。
 ステップS12では、自車前方の物体の位置である物体位置P(i)を検出する。ステップS13では、ステップS12で物体位置P(i)を検出した物体のうち、対向車に該当するものを判定する。
 ステップS12の対向車判定において、対向車を判定できない場合、ステップS14を否定判定し、ステップS19に進む。ステップS19では、物体の進路が自車前方に設定した作動エリアBと交わることにより、自車と物体とが衝突する可能性が高いか否かを判定する。物体の進路と作動エリアBとが交わらない場合、ステップS19を否定判定して、図5の処理を一旦終了する。
 一方、物体の進路と作動エリアBとが交わることにより、ステップS19を肯定判定すると、ステップS20に進み、現在のTTCが各装置31~33の作動タイミングを経過しているか否かを判定する。現在のTTCが各装置31~33の作動タイミングを経過していないと判定すると、図5の処理を一旦終了する。
 ステップS20において、現在のTTCがいずれかの装置31~33の作動タイミングを経過していると判定すると、ステップS21に進む。ステップS21では、TTCが作動タイミングに達している装置31~33を作動させることによりPCS制御を実施する。そして、図5の処理を一旦終了する。
 ステップS14において、自車前方の物体を対向車と判定した場合、ステップS15に進み、対向車に対して車線逸脱判定を行う。ステップS15の車線逸脱判定において、対向車が自車線に進入する可能性が低いと判定した場合、ステップS16を否定判定して、ステップS18に進む。ステップS16を否定判定した場合、対向車が自車線に進入する可能性が低いため、ステップS18ではPCS制御の作動条件を制限側に変更する。具体的には、図4で説明したように、作動エリアBを横方向に縮小し、各装置31~33の作動タイミングを遅延させる。
 ステップS15の車線逸脱判定において、対向車が自車線に進入する可能性が高いと判定した場合、ステップS16を肯定判定し、ステップS17に進む。自車に対する対向車の相対速度が低い場合、対向車が自車線に進入する場合でも、運転者が自車の衝突回避操作を行う余裕がある。また、対向車が交差点を右左折する場面では、自車の対する対向車の相対速度が低くなる。このような場合、運転者に自車の操作を委ねた方が、PCS制御の不要作動を好適に抑制することができる。そこで、ステップS17では、対向車の相対速度V1が速度判定値THVよりも大きいか否かを判定する。
 ステップS17において、自車に対する対向車の相対速度V1が速度判定値THV以下であると判定すると、ステップS18に進み、PCS制御の作動に制限を設ける。例えば、速度判定値THVは、対向車が自車線に進入する場合に、自車の運転者が衝突回避操作を行うことができる速度の上限値である。
 ステップS18を経由してステップS19に進む場合、ステップS19では、対向車が、ステップS18で横方向に狭められた作動エリアBに進入しているか否かを判定する。ステップS19を肯定判定すると、ステップS20では、現在のTTCが、ステップS18で遅延された作動タイミングを経過しているか否か判定する。ステップS20を肯定判定する場合、ステップS21に進み、作動タイミングに達している装置31~33を作動させることによりPCS制御を実施する。そして、図5の処理を一旦終了する。
 ステップS17において対向車両の相対速度V1が速度判定値THVよりも大きいと判定する場合、対向車が自車線に進入することにより、自車と対向車とが衝突する可能性が高くなるため、PCS制御の作動に制限を設けることなく、ステップS19に進む。
 以上説明したように、本実施形態では以下の効果を奏することができる。
 ・ECU10は、自車の進路と対向車の進路とに基づいて、対向車が自車線に進入する可能性が高いか否かを判定する。ECU10は、対向車が自車線に進入する可能性が低い場面では、PCSの作動を制限し、対向車が自車線に進入する可能性が高い場面では、PCSの作動を制限しない。これにより、対向車の進路の自車に対する危険度に応じてPCS制御の作動に対する制限の有無が切り換えられることにより、自車前方に対向車が存在する場面でのPCS制御を適正に実施することができる。
 ・自車線と対向車線とが区画されている場面では、自車又は対向車の速度が大きく成り易くなる。このような場面では、対向車が自車線に進入する可能性が高くなる。ECU10は、自車線に隣接する車線において、自車と対向走行する車両を対向車として判定する。これにより、対向車が車線を逸脱して自車線に進入する可能性が高い場面において、PCSの作動を制限しないことにより、PCS制御を好適に作動させることができる。
 ・ECU10は、対向車から自車線と対向車線とを区画する区画線までの横方向距離Wが減少しており、かつ横方向距離Wの減少速度が所定の減少判定値THWよりも大きい場合に、対向車が自車線に進入すると判定する。これにより、対向車が実際に自車線に進入する前に、対向車の車線逸脱を予測できるため、PCS制御の作動に対する制限の有無を早めに切り換えることができる。
 ・ECU10は、自車に対する対向車の相対速度が、速度判定値THVよりも大きく、かつ対向車が自車線に進入すると判定した場合に、PCS制御の作動を制限する。これにより、PCS制御の不要作動を好適に抑制することができる。
 (第1実施形態の変形例)
 ECU10は、自車の進路により、自車が自車線から隣接する対向車線に進入する可能性が高い場合に、PCS制御の作動に制限を設けないこととしてもよい。この場合、ステップS15の車線逸脱判定において、自車から、自車線と隣接する対向車線とを区画する区画線までの横方向距離Wが減少しており、かつ横方向距離Wの減少速度ΔWが減少判定値THWよりも大きい場合に、自車が自車線から対向車線に進入すると判定すればよい。以上説明した本実施形態においても第1実施形態と同様の効果を奏することができる。
 (その他の実施形態)
 ・自車前方に対向者が存在する場面において、自車と対向車とが直進することにより、その後に両者が衝突すると想定される場合に、ECU10は、PCS制御の作動を制限するものであってもよい。この場合、ステップS15において、ECU10は、自車の車幅により規定される自車幅範囲と、対向車の車幅により規定される対向車幅範囲とが、車幅方向で交わるか否かを判定する。そして、ECU10は、自車幅範囲と対向車幅範囲とが車幅方向で交わると判定した後に、自車と対向車とがそのまま直進する可能性が高いと判定した場合に、ステップS16を肯定判定すればよい。
 ・対向車は、自車線と隣接する車線を走行するものに限定されず、道幅が狭く区画線により自車線と対向車線とが区画されていない道路を走行するものであってもよい。この場合において、対向車が自車の進路に近づくように走行している場合に、対向車が自車の進路に進入する可能性が高いと判定すればよい。具体的には、ECU10は、自車のヨーレートψや自車速度Vcに基づいて自車の進路を算出する。そして、算出した自車進路に対して、対向車の物体位置P(i)が近づくように変化している場合に、対向車が自車の進路に進入する可能性が高いと判定すればよい。
 ・自車に対する対向車の相対速度に依らず、自車又は対向車のうち一方の進路に他方が進入する可能性が高い場合に、PCS制御の作動を制限しないようにしてもよい。この場合、ステップS17を抹消し、ステップS16を肯定判定した場合は、ステップS19に進めばよい。
 ・運転支援装置は、ミリ波レーダ21及び画像センサ22を備えるものに限定されず、ミリ波レーダ21又は画像センサ22のいずれかを備えるものであってもよい。この場合、ミリ波レーダ21又は画像センサ22により検出された物体の位置を物体位置P(i)として用いればよい。また、運転支援装置は、ミリ波レーダ21に代えて、レーザースキャナーを備えるものであってもよい。
 ・運転支援処理は、PCS制御に限定されない。
 ・本開示に記載の制御装置及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (4)

  1.  自車前方の所定領域で検出された物体に対して、自車との衝突を回避又は緩和する運転支援処理を実施する運転支援装置(10)であって、
     自車に対して対向走行する車両を対向車として判定する対向車判定部と、
     自車の進路と前記対向車の進路とに基づいて、自車及び前記対向車のうち一方の進路に他方が進入する可能性が高いか否かを判定する進入判定部と、
     自車及び前記対向車のうち一方の進路に他方が進入する可能性が低いと判定された場合に、前記運転支援処理の作動を制限し、自車及び前記対向車のうち一方の進路に他方が進入する可能性が高いと判定された場合に、前記運転支援処理の作動を制限しない作動制御部と、
    を備える運転支援装置。
  2.  前記対向車判定部は、自車が走行する自車線に隣接する対向車線において、自車と対向走行する車両を前記対向車として判定する請求項1に記載の運転支援装置。
  3.  前記進入判定部は、自車及び前記対向車のうち一方から、自車線と前記対向車線とを区画する区画線までの横方向距離が減少しており、かつ前記横方向距離の減少速度が所定の減少判定値よりも大きい場合に、自車及び前記対向車のうち一方の進路に他方が進入する可能性が高いと判定する請求項2に記載の運転支援装置。
  4.  自車に対する前記対向車の相対速度を算出する相対速度算出部を備え、
     前記作動制御部は、自車に対する前記対向車の相対速度が所定の判定値よりも大きく、かつ自車及び前記対向車のうち一方の進路に他方が進入すると判定された場合に、前記運転支援処理の作動を制限する請求項1~3のいずれか一項に記載の運転支援装置。
PCT/JP2020/008752 2019-03-06 2020-03-02 運転支援装置 WO2020179750A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080019115.9A CN113544031A (zh) 2019-03-06 2020-03-02 驾驶辅助装置
US17/466,643 US12005894B2 (en) 2019-03-06 2021-09-03 Vehicle pre-collision detection and response device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-041044 2019-03-06
JP2019041044A JP7255240B2 (ja) 2019-03-06 2019-03-06 運転支援装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/466,643 Continuation US12005894B2 (en) 2019-03-06 2021-09-03 Vehicle pre-collision detection and response device

Publications (1)

Publication Number Publication Date
WO2020179750A1 true WO2020179750A1 (ja) 2020-09-10

Family

ID=72337767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008752 WO2020179750A1 (ja) 2019-03-06 2020-03-02 運転支援装置

Country Status (4)

Country Link
US (1) US12005894B2 (ja)
JP (1) JP7255240B2 (ja)
CN (1) CN113544031A (ja)
WO (1) WO2020179750A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7413985B2 (ja) 2020-11-24 2024-01-16 トヨタ自動車株式会社 車両制御装置
JP2023031160A (ja) * 2021-08-24 2023-03-08 日立Astemo株式会社 自動緊急ブレーキ装置
KR20230041411A (ko) * 2021-09-17 2023-03-24 주식회사 에이치엘클레무브 차량의 주행을 보조하는 장치 및 그 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247330A (ja) * 2007-03-30 2008-10-16 Honda Motor Co Ltd 車両の走行安全装置
JP2009166764A (ja) * 2008-01-18 2009-07-30 Honda Motor Co Ltd 車両の接触回避支援装置
JP2010097261A (ja) * 2008-10-14 2010-04-30 Toyota Motor Corp 車両進路予測装置
JP2011051570A (ja) * 2009-09-04 2011-03-17 Honda Motor Co Ltd 車両用接触回避支援装置
JP2016085712A (ja) * 2014-10-29 2016-05-19 アルパイン株式会社 走行支援装置、走行支援プログラムおよび走行支援方法
JP2018097548A (ja) * 2016-12-13 2018-06-21 株式会社明電舎 ヒューマンインターフェースのデータ作成装置
JP2018156253A (ja) * 2017-03-16 2018-10-04 トヨタ自動車株式会社 衝突回避装置
JP2018154174A (ja) * 2017-03-16 2018-10-04 トヨタ自動車株式会社 衝突回避装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0721935A8 (pt) * 2007-08-15 2017-12-19 Volvo Tech Corporation Método e sistema de operação para suporte de manuntenção de faixa de um veículo
DE102008003205A1 (de) * 2008-01-04 2009-07-09 Wabco Gmbh Vorrichtung, Verfahren und Computerprogramm zur Kollisionsvermeidung oder zur Verminderung der Kollisionsschwere infolge einer Kollision für Fahrzeuge, insbesondere Nutzfahrzeuge
JP5167051B2 (ja) * 2008-09-30 2013-03-21 富士重工業株式会社 車両の運転支援装置
DE102012004791A1 (de) * 2012-03-07 2013-09-12 Audi Ag Verfahren zum Warnen des Fahrers eines Kraftfahrzeugs vor einer sich anbahnenden Gefahrensituation infolge eines unbeabsichtigten Driftens auf eine Gegenverkehrsfahrspur
WO2014064831A1 (ja) * 2012-10-26 2014-05-01 トヨタ自動車 株式会社 運転支援装置及び運転支援方法
JP5952859B2 (ja) * 2014-06-23 2016-07-13 富士重工業株式会社 車両の運転支援装置
JP6453695B2 (ja) 2015-03-31 2019-01-16 株式会社デンソー 運転支援装置、及び運転支援方法
JP6412457B2 (ja) * 2015-03-31 2018-10-24 株式会社デンソー 運転支援装置、及び運転支援方法
JP2017030472A (ja) * 2015-07-31 2017-02-09 トヨタ自動車株式会社 運転支援装置
JP6361618B2 (ja) * 2015-09-15 2018-07-25 トヨタ自動車株式会社 運転支援装置
JP6622584B2 (ja) 2015-12-25 2019-12-18 株式会社デンソー 運転支援装置及び運転支援方法
JP6547969B2 (ja) * 2016-11-30 2019-07-24 トヨタ自動車株式会社 車両運転支援装置
CN108128304B (zh) * 2016-12-01 2021-12-07 奥迪股份公司 驾驶辅助系统和方法
JP6938903B2 (ja) * 2016-12-14 2021-09-22 株式会社デンソー 車両における衝突回避装置および衝突回避方法
JP6922479B2 (ja) * 2017-07-03 2021-08-18 スズキ株式会社 運転支援装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247330A (ja) * 2007-03-30 2008-10-16 Honda Motor Co Ltd 車両の走行安全装置
JP2009166764A (ja) * 2008-01-18 2009-07-30 Honda Motor Co Ltd 車両の接触回避支援装置
JP2010097261A (ja) * 2008-10-14 2010-04-30 Toyota Motor Corp 車両進路予測装置
JP2011051570A (ja) * 2009-09-04 2011-03-17 Honda Motor Co Ltd 車両用接触回避支援装置
JP2016085712A (ja) * 2014-10-29 2016-05-19 アルパイン株式会社 走行支援装置、走行支援プログラムおよび走行支援方法
JP2018097548A (ja) * 2016-12-13 2018-06-21 株式会社明電舎 ヒューマンインターフェースのデータ作成装置
JP2018156253A (ja) * 2017-03-16 2018-10-04 トヨタ自動車株式会社 衝突回避装置
JP2018154174A (ja) * 2017-03-16 2018-10-04 トヨタ自動車株式会社 衝突回避装置

Also Published As

Publication number Publication date
US12005894B2 (en) 2024-06-11
JP7255240B2 (ja) 2023-04-11
US20210394754A1 (en) 2021-12-23
CN113544031A (zh) 2021-10-22
JP2020142665A (ja) 2020-09-10

Similar Documents

Publication Publication Date Title
JP6347262B2 (ja) 車両の制御装置
WO2020179750A1 (ja) 運転支援装置
US10854081B2 (en) Driving assistance device and driving assistance method
JP5825239B2 (ja) 車両制御装置
US11427166B2 (en) Adaptive AEB system considering steerable path and control method thereof
JP6491596B2 (ja) 車両制御装置及び車両制御方法
JP6740970B2 (ja) 走行支援装置
WO2018074287A1 (ja) 車両制御装置
JP7155993B2 (ja) 車両の走行制御装置
JP2008296887A (ja) 車両制御装置
WO2016204213A1 (ja) 車両制御装置、及び車両制御方法
JP2019046143A (ja) 走行支援装置
JP2008273479A (ja) 車両制御装置および車両制御方法
JP2017194926A (ja) 車両制御装置、車両制御方法
JP2004136785A (ja) 車両用制御装置
JP3734553B2 (ja) 車両認識装置
JP7226011B2 (ja) 運転支援装置
JP2004136787A (ja) 車両用制御装置
JP2004136788A (ja) 車両用制御装置
JP2020083275A (ja) 運転支援装置
JP7183769B2 (ja) 運転支援装置
JP2019012322A (ja) 車両制御装置
JP7035862B2 (ja) 走行支援装置
WO2019225407A1 (ja) 走行支援装置
JP7413548B2 (ja) 走行支援装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20765500

Country of ref document: EP

Kind code of ref document: A1