WO2020175506A1 - 活物質、それを用いた正極合剤及び固体電池 - Google Patents

活物質、それを用いた正極合剤及び固体電池 Download PDF

Info

Publication number
WO2020175506A1
WO2020175506A1 PCT/JP2020/007578 JP2020007578W WO2020175506A1 WO 2020175506 A1 WO2020175506 A1 WO 2020175506A1 JP 2020007578 W JP2020007578 W JP 2020007578W WO 2020175506 A1 WO2020175506 A1 WO 2020175506A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
less
mode diameter
positive electrode
mouth
Prior art date
Application number
PCT/JP2020/007578
Other languages
English (en)
French (fr)
Inventor
淳 大村
大輔 鷲田
徹也 光本
仁彦 井手
薦田 康夫
柴田 泰宏
泰規 田平
知志 前田
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2021502292A priority Critical patent/JP6940716B2/ja
Priority to CN202080012950.XA priority patent/CN113396495B/zh
Priority to US17/431,907 priority patent/US20220149354A1/en
Priority to KR1020217027647A priority patent/KR102376785B1/ko
Priority to EP20762064.2A priority patent/EP3933979A4/en
Publication of WO2020175506A1 publication Critical patent/WO2020175506A1/ja
Priority to US17/987,974 priority patent/US20230074796A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an active material used for a solid state battery.
  • Solid electrolytes used for solid-state batteries are required to have as high ionic conductivity as possible and be chemically and electrochemically stable.
  • lithium halide, lithium nitride, lithium salt or their derivatives are known as candidate materials for the solid electrolyte.
  • a sulfide solid electrolyte has been studied as one of solid electrolytes used for a solid-state battery.
  • the interfacial resistance between the electrode active material and the sulfide solid electrolyte becomes high, which limits the movement of lithium ions.
  • the reason for this is believed to be that the electrode active material and the sulfide solid electrolyte react with each other to form a resistance layer at the interface between the two.
  • Patent Documents 1 and 2 attempt to suppress the increase in interfacial resistance by coating the surface of the positive electrode active material with a specific compound.
  • Patent Document 1 ⁇ 32009081 554 eight 1
  • Patent Document 2 113 201 82 1 9229 8 1
  • the present invention provides a lithium battery between a positive electrode active material and a solid electrolyte. ⁇ 0 2020/175 506 2 (: 170? 2020 /007578
  • the main purpose of the invention is to provide an active material capable of quickly transferring and receiving muion.
  • the present invention relates to an active material used in a solid-state battery,
  • At least one peak was observed in the range of 0.145 nm or more and 0.185 n or less, and 0.280 nm or more.
  • ⁇ At least one peak is observed in the range of 3 310 n or less,
  • Laser diffraction scattering particle size mode diameter of the active material due to volume particle size distribution measurement obtained by measuring the distribution measuring method and the mouth 1 0 (respectively "mode diameter", referred. To as “mouth 1 0") relates to, for mode diameter , Is the percentage of the absolute value of the difference between the mode diameter and ⁇ ! ⁇ ( ⁇ Mode diameter 10 ! ⁇
  • Fig. 1 is a radial distribution function obtained by measurement of an X-ray absorption fine structure measured for an oxide containing lithium and niobium.
  • FIG. 2 shows whether or not there is a peak in the radial distribution function obtained by measuring the X-ray absorption fine structure measured for the positive electrode active material obtained in Example 3. It is a graph which shows a method.
  • FIG. 3 is a radial distribution function obtained by measuring the X-ray absorption fine structure measured for the positive electrode active material obtained in Example 3.
  • the present invention relates to an active material used for a solid state battery.
  • the active material of the present invention has an X-ray absorption fine structure (hereinafter Also called. ), at least one peak is observed in the range of 0.145 nm or more and 0.185 nm or less, and 0.2. ⁇ 02020/175506 3 ⁇ (: 170? 2020 /007578
  • the active material of the present invention has a radial distribution function obtained by the measurement of 8 3 in a range of 0.1 45 nm or more and 0.1 85 n or less. At least one peak is observed. The peak position is specified by the position of the peak apex. The definition of peak will be described later.
  • the peak position observed in the present invention may be, for example, 0.18 nm or more, 0.151 or more, or 0.154 or more. On the other hand, the peak position may be, for example, 0.180 n or less.
  • the number of peaks observed in the above range may be at least one, and may be only one, or may be two or more.
  • the active material of the present invention is: At least one peak is observed in the following range.
  • the peak position observed in the present invention may be, for example, ⁇ .285 ⁇ ! or more. On the other hand, the peak position is, for example, ⁇ . It may be the following.
  • the active material of the present invention preferably has core particles and a coating layer arranged on the surfaces of the core particles.
  • a coating layer composed of an element of lithium (!_ ⁇ ), a metal element of 8 (excluding lithium (!_ ⁇ ) element) and an oxygen element and containing an oxide having a specific chemical structure is used. Is preferred.
  • this oxide is referred to as "!_ _80 compound” for convenience.
  • the !_ ⁇ compound used in the present invention is characterized by observing a peak at a specific interatomic distance in the radial distribution function obtained by measurement of the active material.
  • the metal element eight is niobium
  • the vertical axis shows the existence probability of atoms located around niobium.
  • the peak observed in the range of 0.145 nm or more and 0.185 n or less corresponds to the distance between the niobium atom and the oxygen atom, and is 0.280 nm or more.
  • the active material of the present invention has an interface with the solid electrolyte. It is possible to suppress an increase in resistance and consequently improve battery performance.
  • the peak is observed in the radial distribution function, which means that the radial distribution function may include a portion or Shiyoruda _ moiety, such as a convex upward.
  • the presence/absence of a peak was determined by differentiating the radial distribution function twice using a 3 I ⁇ 1 ⁇ company. Note that, for example, in Example 3 described later, as shown in FIG. A minimum value is obtained by differentiating the radial distribution function twice for the peaks observed in the following range. From this, it can be said that in Example 3, peaks are observed in the range of 0.145 nm or more and 0.185 n or less.
  • the !__80 compound preferably used in the present invention is Has a peak at a specific position of a specific interatomic distance in the radial distribution function obtained from the measurement. In contrast to this, so far known !_
  • the compound of the I_8_O system does not have a peak at the predetermined position defined in the present invention in the radial distribution function obtained from Eq.
  • !_ ⁇ 1 ⁇ 1 ⁇ ⁇ 3 which is one of the conventionally known !_ ⁇ 1810 series compounds, is ⁇ . 1 4 5 ⁇ !
  • Also known in the past! -1 _ ⁇ 3 1 ⁇ 1 13 ⁇ 4 which is another kind of ⁇ 18100 series compounds is 0.28
  • XA FS is a method for analyzing an absorption spectrum obtained by irradiating a substance with X-rays. In the absorption spectrum obtained by irradiating a substance with X-rays, a sharp rising edge peculiar to the elements contained in the substance, that is, the absorption edge is observed. The fine structure that appears in the soil near the absorption edge of about 50 eV is called XANES (X-ray Absorption Near Edge Structure).
  • the vibrating structure that appears from the absorption edge to the high energy side of about 1000 eV is called EXAFS (Extended X-ray Absorption Fine Structure).
  • the area that combines XANES and EXAFS is called XAFS.
  • XAFS it is possible to evaluate the local structure (interatomic distance, coordination number) and chemical state (valence, coordination structure) around the element of interest in the sample.
  • XAFS is a non-destructive measurement method and is a measurement method capable of obtaining information on the outermost surface of a substance
  • the active material itself of the present invention can be used as a measurement target, and the coating layer of the active material Can get information
  • the operation is performed, for example, by the procedure described below.
  • the amount of the sample and boron nitride is optimized as appropriate according to the concentration of the A element contained in the sample to be measured and the X-ray absorption coefficient of the L i AO compound and the compound forming the core material particles.
  • X-ray absorbance (y axis) is calculated by the following formula, and XAFS scan is performed by plotting on X axis _ y axis. I got a vector.
  • the P re-edge region (the region from 150 eV to 45 eV below the absorption edge), which is the background absorption, and P ⁇ st
  • the XAFS spectrum is standardized by fitting with the _ edge region (a region of about 150 eV or more and 1 300 eV or less from the absorption edge).
  • fitting with a spline curve is performed.
  • the parameters used for fitting the spline curve in the analysis with the software are as follows.
  • the active material of the present invention preferably has core particles and a coating layer arranged on the surfaces of the core particles.
  • the coating layer is selected from the group consisting of L i, A element (A is T i, Z r, T a, N b, Z n, W and AI). 1 or 2 or more elements) and ⁇ , that is, the above-mentioned L i AO compound.
  • the compound includes, on the surface of the core material particles, a mode of existing as particles, a mode of existing as agglomerated particles formed by agglomeration of particles, and a mode of existing as a layer. “Existing in the form of a layer” means a state in which the Li AO compound exists with a thickness.
  • the thickness thereof is preferably 0.5 nm or more and 200 nm or less, of which 0.7 nm or more or 100 nm or less, and 1 nm or more or 90 nm or more thereof. It is preferably not more than nm, more preferably not more than 80 nm, still more preferably not more than 70 nm, still more preferably not more than 60 nm, still more preferably not more than 50 nm. It is preferably not more than 40 nm, and more preferably not more than 40 nm. By setting it in such a range, it can be made to function as a favorable lithium ion conductive layer with a small interface resistance. Layer thickness ⁇ 0 2020/175 506 8 ⁇ (: 170? 2020 /007578
  • the surface of the core material particle There may be a part of the surface of the core material particle or a part thereof where the 1_O compound does not exist. Above all, it is preferable that the 1-800 compound covers 30% or more of the entire surface area of the core material particles, of which 40% or more, and more preferably 50% or more.
  • the fact that the surface of the core particles is covered with 1_O compound means that, for example, the scanning transmission electron microscope (3 chome 1 ⁇ /1) and the energy dispersive X-ray This can be confirmed by observing the surface of the core material particles by combining analysis (Mr.
  • the thickness of the 1-880 compound coating the surface of the core material particles does not have to be uniform.
  • the 1_80 compound is preferably amorphous. Since the 1__80 compound is amorphous, the 1__80 compound exists as a buffer layer between the active material and the solid electrolyte, and the interface resistance can be further reduced. Whether the compound coating the surface of the core material particles is crystalline or amorphous can be judged by confirming whether or not a halo pattern can be obtained by selected area electron diffraction. A halo-battern is a low-angle, broad diffraction pattern with no distinct diffraction peaks.
  • each element in the compound can be shown as, for example, !_ ⁇ , 80 ⁇ , if the element is at least one element of the 3 and 1 ⁇ 1 ⁇ .
  • X and S in the formula can take arbitrary values within the range according to the valence of the element. Above all, for 1 mol of eight elements,! It is particularly preferable that the composition has a composition containing more than 1 mol of _ (father> 1). By doing so, it is possible to suppress the formation of the compound of 8 and O and effectively reduce the interface resistance.
  • the core particle is not particularly limited as long as it functions as an active material.
  • the core material particles may include, for example, a lithium metal composite oxide.
  • a lithium metal composite oxide a known lithium metal composite oxide can be used.
  • a lithium-containing complex oxide with a layered rock-salt structure represented by the general formula 1_ ⁇ 1 ⁇ /1 ⁇ 2 (IV! is a metallic element
  • Lithium-containing composite oxide, general formula (IV! is a metal element) or 1_ ⁇ 1 ⁇ /1 3 1 0 4 (IV! is a metal element), and any one or a combination of two or more of the olivine-structured lithium-containing composite oxides. It may be. However, it is not limited to these.
  • the core particles are! _ ⁇ , IV! n and 0, and particles of spinel-type composite oxide containing one or more, preferably two or more elements other than these, are preferable. Is also referred to as "core material particle eight.”).
  • the active material of the present invention containing the core particle 8 When used as the positive electrode active material, it has an operating potential of 4.5 V or more in terms of metal standard potential.
  • Metal !_ has a working potential of 4.5 or more at reference potential” means that it is not necessary to have only a working potential of 4.5 V or more as a plateau region, and a working potential of 4.5 V or more is required. It also includes the case where a part of the electric potential is included.
  • the present invention is not limited to the positive electrode active material composed only of the 5 V class positive electrode active material having an operating potential of 4.5 or more as the plateau region.
  • the active material of the present invention may include a positive electrode active material having an operating potential of 4.5 as a plateau region. Specifically, ⁇ 0 2020/175 506 10 (: 170? 2020 /007578
  • the V-class positive electrode active material accounts for 30% by mass or more, preferably 50% by mass or more, and particularly preferably 80% by mass or more (including 100% by mass). Is tolerated.
  • the core particle 8 is! It is preferable that the particles are made of a spinel-type composite oxide containing Mn and ⁇ and two or more kinds of elements other than these. At least one element of “two or more elements other than these” is preferably a metal element IV! 1 selected from the group consisting of 1 ⁇ ! and ⁇ and 6, and the other one element is N 3, IV! 9, 8 I,, [ ⁇ , ⁇ 3, Ding I, V, ⁇ “, 6, ⁇ , ⁇ ri, ⁇ , ⁇ , “, It is preferable that the metal element IV! 2 is composed of one kind or a combination of two or more kinds selected from the group consisting of ⁇ and ⁇ 6.
  • the metal element IV! 1 is a substitution element that mainly contributes to the development of an operating potential of 4.5 V or more at the metal !_ ⁇ reference potential, and 1 ⁇ 1 and XX and 6 are listed. However, it is only necessary to contain at least one of these elements, and it is particularly preferable to contain at least one element selected from 1 ⁇ 1 and 000.
  • the metal element IV! 2 is a substitution element which mainly contributes to stabilizing the crystal structure and enhancing the characteristics.
  • a substitutional element that contributes to improving the capacity retention rate for example, N 8, 1 ⁇ /19, 8 ⁇ , [ ⁇ , D, V, ⁇ ”, ⁇ , ⁇ ⁇ , ⁇ re, ⁇
  • the metallic element IV! 2 may be one or a combination of two or more of the above-mentioned elements.
  • the metal element IV! 2 preferably contains at least one of the above-mentioned elements, and may contain a metal element other than the above-mentioned elements. ⁇ 02020/175506 11 ⁇ (: 170? 2020 /007578
  • the metal element IV! 2 contained in the structure is a different element species from the metal element IV! 1.
  • equation (1) 1_ ⁇ X
  • "X” is ...! .00 or more! It is preferably .20 or less, more preferably 1.01 or more or 1.10 or less, and even more preferably 1.02 or more or 1.08 or less.
  • “V”, which indicates the content of metallic element IV! 1, is ⁇ .20 or more! It is preferably .20 or less, more preferably ⁇ .30 or more or 1.10 or less, and even more preferably ⁇ .35 or more or 1.05 or less. It is preferable that the value “A” indicating the content of the metal element IV! 2 is ⁇ 0.001 and ⁇ 400.
  • it is 002 or more or ⁇ .400 or less, of which 0.005 or more or 0.30 or less, and more preferably ⁇ 10 or more. Particularly, by setting it to 0.10 or more, the cycle characteristics can be more effectively improved.
  • the formula (2) - general formula [!_ ⁇ X (1 ⁇ 1 ⁇ 3 2 -5 ] and a spinel-type lithium manganese-containing composite oxide.
  • “X” is 1.00 or more 1.
  • “So” is preferably 0.20 or more and ⁇ .70 or less, particularly ⁇ .30 or more or ⁇ .60 or less, and ⁇ .35 or more or 0.55 or less among them. It is even more preferred to be present.
  • the metal element IV! 3 may be, for example, N 3, IV! 9 , 8 ⁇ , [ ⁇ , 03 % ⁇ , V, ⁇ ‘ ⁇
  • the metal element M3 may be one kind or a combination of two or more kinds of the above-mentioned elements. “Z” indicating the molar ratio of the metal element M3 is preferably larger than 0 and not more than 0.5, more preferably not less than 0.01 or not more than 0.45, and even more preferably not less than 0.55 or 0. It is even more preferably 0.40 or less, more preferably 0.10 or more or 0.35 or less. In particular, by setting it to 0.10 or more, the cycle characteristics can be improved more effectively.
  • S is preferably 0 or more or 0.2 or less, more preferably 0.1 or less, and most preferably 0.05 or less.
  • the core material particles A may contain components other than the above Li, Mn, metal element M 1, metal element M 2, metal element M 3 and ⁇ .
  • other elements may be contained as long as they are 0.5% by weight or less, respectively. This is because it is considered that the amount of this amount has almost no effect on the performance of the core material particles.
  • the core material particles A may contain B (boron).
  • the existing state of B may include a complex oxide phase containing Ni, Mn and B in addition to the spinel crystal phase.
  • N i examples of the composite oxide phase containing M n and B, for example, N i 5 M n 0 4 (can be cited a crystal phase of Boy 2.
  • the content of the complex oxide phase containing Ni, Mn and B should be 0.02% by mass or more and 0.80% by mass or less. It is preferable to contain the complex oxide phase in ⁇ 0 2020/175 506 13 ⁇ (: 170? 2020 /007578
  • the complex oxide phase in an amount of 0.60 mass% or less, of which 0.30 mass% or less, and particularly 0.25 mass% or less. If the content of the Min element is 0.02 mass% or more, the discharge capacity at a high temperature (for example, 45 ° ⁇ can be maintained, and the content of the Min element is 0.80 mass% or less. This is preferable because rate characteristics can be maintained.
  • the core material particles 8 are, for example, (0 r I 9 I n ⁇ ⁇
  • the structure is a spinel structure.
  • the primary particles of the core material particles 8 are preferably not a single crystal body but a polycrystal body.
  • the single crystal means a particle in which a primary particle is composed of one crystallite
  • the polycrystal means a particle in which a plurality of crystallites exist in the primary particle.
  • the core particles are! _ ⁇ , IV! element (IV! is at least And a combination of one or more elements selected from the group consisting of 8 I. It is also preferable that the particles are composed of a lithium nickel metal composite oxide having a layered structure containing (1) and () (hereinafter, the core particles are also referred to as “core particles”).
  • the active material of the present invention may contain other components in addition to the core particle. However, from the viewpoint that the characteristics of the core particle can be effectively obtained, the core particle content is 80% by mass or more, 90% by mass or more, and 95% by mass or more (100% by mass) % Is included).
  • the core material particle is represented by the general formula (3) (In the formula, IV! is 1 ⁇ 1 ⁇
  • Equation (3) May contain the three elements 1 ⁇ / ⁇ , ⁇ and ⁇ .
  • it may be composed of only three elements of Mn, 0.00, and ⁇ , the three elements may contain one or more kinds of the other elements, or may have another structure.
  • transition metal elements existing between Group 3 elements and Group 11 elements of the Periodic Table and typical metal elements from the 1st to 3rd periods of the Periodic Table include
  • the atomic ratio of oxygen content is described as “2” for convenience, but it may have some non-stoichiometry. That is, the atomic ratio of oxygen content may be "2-5", in which "1-5" indicates oxygen deficiency, and 5 is preferably 0 or more or 0.2 or less. Above all, it is less than 0.1, and even more preferably below 0.05.
  • the core material particle may contain unavoidable impurities.
  • each element of unavoidable impurities may be contained in an amount of 0.17% by mass or less. This is because it is considered that the amount of this amount has almost no effect on the characteristics of the core particle.
  • the core particle M represents, for example, the degree of agreement between the observed intensity and the calculated intensity when fitted with the hexagonal crystal structure model of space group 3,
  • the primary particles of the core material particles are preferably not a single crystal body but a polycrystal body.
  • the definition of single crystal and polycrystal is the same as that of the core particle 8.
  • the active material of the present invention preferably has the following features.
  • the primary particles of the active material of the present invention are preferably polycrystalline rather than single crystalline. Specifically, it is preferable that an amorphous amorphous compound is present on the surface of the core material particles that are polycrystalline.
  • a single crystal means a particle in which a primary particle is composed of one crystallite, and a polycrystal means a particle in which a plurality of crystallites are present in the primary particle.
  • the primary particles of the active material are not single-crystal, that is, whether they are polycrystalline or not is determined by the ratio of the crystallite size to the average _ primary particle diameter (crystallite size/average _ secondary particle diameter) being 0. It can be judged by confirming that it is close to, specifically, larger than 0 and smaller than 1. Close to 0 means that there are many crystallites in the primary particles. ⁇ 0 2020/175 506 16 ⁇ (: 170? 2020 /007578
  • the term "primary particle” means 3 1 1//1 (scanning electron microscope, for example, 5
  • the average primary particle size is 3 1//1 (scanning electron microscope, for example, 500 times or more and 500 times or less), and arbitrarily select 30 primary particles and The particle size of the selected primary particles can be calculated using analysis software, and the average particle size of 30 primary particles can be obtained.
  • the “secondary particle” means a particle in which a plurality of primary particles are aggregated so as to share a part of their outer circumferences (grain boundaries) and are isolated from other particles. ..
  • crystallite means a primary particle that can be regarded as a single crystal, It can be obtained by measuring and performing a Rietveld analysis.
  • the mode diameter of the active material of the present invention is preferably 0.40 or more and 11.0 or less. Greater than 1 . ⁇ or less than 1 1 .01, among them ...! .0 0 0 greater than 1 or less than 1 0 0 0, especially greater than 1 .50 0 or less than 1 0 0 0, Further, among them, it is particularly preferable that it is greater than 2.001 or less than 9.0.
  • Mouth 5 ⁇ by mouth 5 0, i.e. the volume particle size distribution measurement obtained by measuring Ri by the laser diffraction scattering particle size distribution measuring method of the active material of the present invention is preferably for example ⁇ . 5 or more, 1. It is preferably 0 or more, 2. ⁇ 02020/175506 17 ⁇ (: 170? 2020 /007578
  • the mouth 50 is, for example, preferably 150 or less, more preferably 10.0 or less, and particularly preferably 8.0 or less.
  • the percentage of the absolute value of the difference between the mode diameter and the mouth 50 with respect to the mode diameter (( ⁇ mode diameter _ 0 5 . ⁇ /mode diameter) X 1 ⁇ ⁇ ) is 0% £ ( (
  • ⁇ / mode _ de diameter) X 1 00 it is preferable to satisfy (( ⁇ mode diameter over B 50 I / mode diameter) X 1 00) £ 20% , in particular ((I mode diameter _ port 50 I / mod diameter) X 100) It is preferable to meet £ 17%, and (( I mode diameter -50 I / mod diameter) X 100 ) It is preferable to satisfy £ 16%, and above all ((
  • I/mode diameter) X 100 is preferably 0% ⁇ ((( mode diameter bit 5 1. 1/mode diameter) X 100), among which 1% £ (
  • ⁇ / mode diameter) X 100 value in the above range means that the particle size distribution is unimodal, that is, it does not have multiple peaks. , It means a normal distribution or a distribution close to it.
  • Mouth of the active material of the present invention ⁇ That is, it is preferable that the mouth 10 measured by the laser diffraction/scattering particle size distribution measurement method by volume particle size distribution measurement is, for example, 0.2 or more and 8.0 or less.
  • the active material mouth 10 is 1. ⁇ 02020/175506 18 ⁇ (: 170? 2020 /007578
  • the mouth 10 of the active material is preferably 6.0 or less, and particularly preferably 5.0 or less. mouth! By adjusting ⁇ within the above range, side reactions can be suppressed.
  • the active material of the present invention has a mode diameter and a mouth diameter that are different from the mode diameter.
  • the percentage of the absolute value of the difference with ⁇ ((
  • (( ⁇ mode diameter _ ⁇ 10 ⁇ / mode diameter) XI 00) is preferably (( ⁇ mode diameter one bit ] ⁇ I / mode diameter) X 1 00) £55.0%, Especially (( ⁇ mode diameter bite!.
  • / mode diameter) X 100) It is preferable to satisfy £45.0%, and further ((
  • / mode diameter) X 100) can satisfy 1% £ ((
  • /mode diameter) XI 00) in the above range means that the mode diameter of the active material is equal to the value! It means that the range of distribution up to ⁇ is narrow.
  • the percentage of the absolute value of the difference between the mode diameter and the mouth 5 ⁇ ((
  • the particles of the active material having a sharp particle size distribution have the coating layer containing the above-mentioned 1_O compound, the advantageous effect that the charging characteristics are improved can be obtained. Played.
  • the active material manufacturing method described below the phenomenon of adsorption to the core particles is used when introducing the structure of the coating layer containing the above-mentioned 1_0 compound, so that a sharp particle with a uniform particle size is used.
  • the coverage ratio and coating thickness of each particle can be leveled successfully, and the coating state of the particles is uniform for each particle, and the active material has a sharp particle size distribution. Particles are obtained. Due to this, the movement of lithium ions during charging is leveled for each particle, and the charging characteristics are improved.
  • the volume average particle size distribution measured by the laser diffraction/scattering particle size distribution measurement method is, for example, preferably 0.1 or more, and more preferably 0.15 or more, and particularly 2 .. is preferably larger than .0, and more preferably larger than .0.6.
  • it is preferably not more than 6.0, particularly preferably less than 5.0, particularly preferably less than 4.0, and further preferably less than 3.0. Further, among them, it is preferably 2.0 or less, and further preferably less than 1.8 IX. Side reactions can be suppressed and cycle characteristics can be improved.
  • the average primary particle diameter of the active material of the present invention is preferably, for example, ⁇ .10 or more, and more preferably greater than ⁇ 25. In particular, it is preferable that it is larger than 0.40, and it is further preferable that it is larger than 0.50.
  • the average primary ⁇ 2020/175506 20 20 (: 170? 2020/007578
  • the particle size is, for example, preferably 5.0 or less, more preferably 4.00 or less, and particularly preferably 3.0 or less. When the average primary particle diameter is within the above range, improvement in rate characteristics can be achieved.
  • the above ratio is preferably 0.1 or more, particularly preferably 0.2 or more, among them, preferably 0.3 or more, and further preferably 0.4 or more. ..
  • the above ratio is preferably 0.9 or less, particularly preferably 0.85 or less, and particularly preferably 0.7 or less.
  • Average primary particle size/mouth 5 By setting the above range, the dispersibility of the primary particles can be increased.
  • each of the primary particles can sufficiently come into contact with the solid electrolyte. With this! _ As the reaction area between the particles and the particles increases, the resistance at the interface between the primary particles in the secondary particles can be reduced, which leads to the improvement of the end-of-life characteristics of the discharge.
  • a firing temperature may be adjusted, or a substance such as a boron compound or a fluorine compound which enhances reactivity during firing may be used. It is preferable to produce an active material by adding and firing. However, it is not limited to this method.
  • the active material of the present invention preferably has a crystallite size of, for example, 80 n or more and 490 n or less.
  • the crystallite size is preferably 100 nm or more, particularly preferably 110 nm or more, further preferably 120 n or more, and among them, 130 mm or more. Is preferred.
  • the crystallite size is preferably 350 n or less, and more preferably 240 n or less. To define the crystallite size within the above range ⁇ 0 2020/175 506 21 ⁇ (: 170? 2020 /007578
  • the ionic conductivity in the crystallite can be increased and the resistance can be reduced. Further, by reducing the resistance, it is possible to suppress polarization during cycling, and it is possible to suppress a gradual decrease in discharge capacity that accompanies repeated charging and discharging at high temperatures.
  • the ratio of the average primary particle size to the crystallite size is preferably, for example, 0.011 or more and 0.50 or less.
  • the above ratio is preferably 0.02 or more, particularly preferably 0.03 or more, further preferably 0.04 or more, and among them, 0.05 or more. It is preferable.
  • the above ratio is ⁇ .
  • the active material of the present invention is preferably a polycrystal
  • the crystallite size/average primary particle diameter is a value of less than 1, and within the above range, the primary particles in the powder are The dispersibility is improved, the contact area between the primary particles and the solid electrolyte is increased, and the resistance at the interface between the primary particles in the secondary particles can be reduced, which improves the end-of-discharge characteristics.
  • the active material of the present invention has an X-ray diffraction pattern measured by an X-ray diffractometer ([0]), and the strain value obtained from the Rietveld analysis is, for example, ⁇ .
  • the strain of the active material of the present invention is less than 0.35 among them, less than 0.32 among them, less than 0.30 among them, and further less than 0.28 among them, and among them with ⁇ . Less than .25, of which ⁇ . ⁇ 02020/175506 22 ⁇ (: 170? 2020 /007578
  • heat treatment may be performed under preferable conditions. However, it is not limited to these methods.
  • the active material of the present invention has a specific surface area, for example, from the viewpoint of suppressing side reactions.
  • 1 0 12/9 or more 1 2. is 0 2/9 or less, preferably ⁇ . 20 12/9 greater than or 1 ⁇ . More preferably less than ⁇ 2/9, the inter alia 8.0 less than 2/9, further 7.0 less than 2/9 among them, it is more preferable in particular 5. hundred! 2 / less among them.
  • the specific surface area of the active material of the present invention for example, 0.40 ⁇ / 9 or more or 1 2. ⁇ 2 /
  • the specific surface area is measured as follows. First, sample 2.09 is weighed in a glass cell (standard cell) for a fully automatic specific surface area measuring device IV! 8 ⁇ 3 ⁇ “Tsubo (manufactured by Mountech Co., Ltd.), and set on a Saito Tosun Blur. After replacing the inside of the glass cell with gas, heat-treat in the nitrogen gas atmosphere at 200 ° for 15 minutes, and then cool for 4 minutes while flowing a nitrogen-helium mixed gas.After cooling, sample (powder) The mixed gas of nitrogen 30 V 0%% : helium 70% 0% is used for the adsorption gas during cooling and measurement.
  • the ratio of !__ and element on the surface of the active material is controlled within a predetermined range.
  • the ⁇ I ratio (1_ ⁇ /) of 1- ⁇ content to the element content on the surface of the active material (particles) obtained by X-ray photoelectron spectroscopy analysis (3) is 0.5 or more. 33.3 or less ⁇ 0 2020/175 506 23 ⁇ (: 170? 2020 /007578
  • the ⁇ ratio (1- ⁇ /) is 0.5 or more and 3.5 or less, and in particular, it is greater than 0.7 or less than 3.4, in particular greater than 1.0 or It is preferably less than 3.0, more preferably more than 1.1 or less than 2.5, and still more preferably more than 1.2 or less than 2.1.
  • the above-mentioned I ratio (1_ ⁇ /) is a value including 1_ ⁇ due to lithium carbonate.
  • carbonate ion amount i.e. ⁇ 3_Rei 3 2 considered from carbonate -.. Amount is preferably 4 less than 0 wt% with respect to the active material of the present invention, among them 3 less than 0 wt%, the It is particularly preferably less than 2.5% by mass, more preferably less than 2.0% by mass, and most preferably less than 1.0% by mass.
  • firing is performed in a carbon dioxide-free atmosphere such as an oxygen atmosphere, and more preferably, hydrolysis is performed while irradiating ultrasonic waves. preferable.
  • the active material of the present invention is, for example,! _Shi IV! element (IV! is one or a combination of two or more elements selected from the group consisting of 0, IV! n and 8 I.
  • the core material particles are added to a mixed solution of a lithium raw material and an element raw material dissolved in a solvent, followed by drying and firing under predetermined conditions.
  • the core material particles are subjected to surface coating treatment by adding the core material particles to a mixed solution of a lithium raw material and an elemental raw material dissolved in a solvent, followed by drying and firing under predetermined conditions.
  • these manufacturing methods are preferable examples, and the present invention is not limited to such manufacturing methods.
  • the rolling fluid coating method sol-gel method
  • mechanofusion method mechanofusion method
  • XX method and V0 method can also be manufactured by adjusting the conditions.
  • the method for producing the core particles there can be mentioned a production method including a raw material mixing step, a wet pulverizing step, a granulating step, a firing step, a heat treatment step, a washing/drying step and a pulverizing step.
  • a production method including a raw material mixing step, a wet pulverizing step, a granulating step, a firing step, a heat treatment step, a washing/drying step and a pulverizing step.
  • a manufacturing method is a preferable example, and the manufacturing method is not limited to such a manufacturing method.
  • a core material particle powder is added to a mixed solution of a lithium raw material and an eight-element raw material dissolved in a solvent, It may be dried and fired under predetermined conditions. For example, by dissolving a water-soluble octo-element salt and a lithium raw material in water to prepare a surface treatment liquid, introducing core material particles into the surface treatment liquid, kneading the mixture to form a slurry, and drying it. It can be suitably manufactured.
  • the method for producing the active material is not limited to such a method. For example, rolling fluid coating method (sol-gel method)
  • the mechanofusion method, the ⁇ method and the ⁇ method can also be manufactured by adjusting the conditions.
  • the active material of the present invention can be reduced, and the end-of-discharge characteristics and cycle characteristics can be improved.
  • the method of simply spraying the complex solution on the active material particles serving as the core can obtain the above effects. May not be.
  • the method of reducing !! is not limited to this method.
  • the active material of the present invention can be usually used as a positive electrode active material. Further, the active material of the present invention is used for a solid state battery. In particular, the active material of the present invention is advantageously used in a solid battery containing a solid electrolyte as the solid electrolyte. In the solid state battery, the effect of the present invention can be enjoyed by the existence of the contact portion between the active material of the present invention and the solid electrolyte.
  • “there is a contact portion between the active material and the solid electrolyte” means that (a) the solid electrolyte should be contained in the electrode mixture such as the positive electrode mixture (in this case, the solid electrolyte layer may be a sulfide.
  • Non-sulphide is also possible.
  • Electrode mixture such as positive electrode mixture does not contain solid electrolyte and solid electrolyte layer contains solid electrolyte
  • electrode such as positive electrode mixture. This means that either the solid electrolyte is contained in the mixture, and the solid electrolyte is contained in the solid electrolyte layer.
  • the electrode mixture of the present invention such as a positive electrode mixture contains an active material and a solid electrolyte.
  • the active material contained in the electrode mixture can be the same as the content described in the above section ". Active material", and thus the description thereof is omitted here.
  • the solid electrolyte used in the present invention may be the same as the solid electrolyte used in a general solid battery. Examples thereof include sulfide solid electrolytes, oxide solid electrolytes, nitride solid electrolytes, halide solid electrolytes, and the like. Among them, sulfide solid electrolytes containing a sulfur (3) element are preferable.
  • the sulfide solid electrolyte in the present invention may be, for example, one containing a lithium (!_ ⁇ ) element and a sulfur (3) element and having lithium ion conductivity, or ⁇ 02020/175506 26 ⁇ (: 170? 2020 /007578
  • the sulfide solid electrolyte may be any of crystalline materials, glass ceramics, and glass.
  • the sulfide solid electrolyte may have a crystal phase having an aldyrodiite type structure.
  • Such sulfide solid electrolytes include, for example, 1_ ⁇ 2 3_? 2 3 5 , 1_ ⁇ 2 3_? 2 3 5 _1_ 1
  • the active material contained in the electrode mixture of the present invention may be only the active material of the present invention, or may be used in combination with other active materials.
  • the other active material include particles made of the above-mentioned known lithium-transition metal composite oxide, and the particles may or may not have a coating layer.
  • the active material of the present invention is contained in an amount of 50 mol% or more, more preferably 70% or more, based on the whole active material.
  • the proportion of the sulfide solid electrolyte in the electrode mixture of the present invention is typically 5% by mass or more and 50% by mass or less.
  • the electrode mixture may contain other materials such as a conductive auxiliary agent and a binder, if necessary.
  • an electrode layer such as a positive electrode layer can be prepared by mixing an electrode mixture and a solvent to prepare a paste, applying the mixture on a current collector such as an aluminum foil, and drying.
  • the solid battery of the present invention includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer, and the positive electrode layer contains the positive electrode mixture described above.
  • the solid-state battery of the present invention can be produced, for example, by stacking three layers of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer produced as described above under pressure.
  • Solid-state battery means a solid substance that does not contain any liquid or gelled substance as an electrolyte. ⁇ 0 2020/175 506 27 ⁇ (: 170? 2020 /007578
  • embodiments including, for example, 50% by mass or less, 30% by mass or less, and 10% by mass or less of a liquid substance or a gel substance as an electrolyte are also included.
  • the negative electrode active material used for the negative electrode layer may be the same as the negative electrode active material used for general solid-state batteries.
  • a specific negative electrode active material a material that absorbs and releases lithium ion, for example, a known material such as carbon material, silicon and silicon oxide compounds such as 3___, tin compounds, and lithium titanate is used. be able to.
  • the carbon material include polyacrylonitrile, a phenol resin, a phenol novolac resin, a sintered material of an organic polymer compound such as cellulose, artificial graphite and natural graphite.
  • the negative electrode layer can be produced in the same manner as the positive electrode layer except that such a negative electrode active material is used.
  • An average particle diameter ( ⁇ 5 0) 7 of lithium carbonate, average particle size (0 5 ⁇ ) and 2 3 a specific surface area of 4 0 0 ⁇ / 9 of the electrolytic manganese dioxide, average particle size (0 5 ⁇ ) 2 2 Of nickel hydroxide and titanium oxide having an average particle size of (0 50 ) 2 were weighed.
  • An aqueous solution of ammonium polycarboxylic acid salt (3 1 ⁇ 1 Dispersant 5 4 6 8 manufactured by San Nobuco Co., Ltd.) was added as a dispersant to ion-exchanged water.
  • the weighed 1 ⁇ 1 IV!n raw material is added to the ion-exchanged water in which the dispersant has been dissolved in advance, mixed and stirred, and subsequently, a wet mill is used for 1300° , 1 2 0 minutes ground to an average particle diameter (mouth 5 0) was obtained ⁇ . 6 0 ground slurry follows. then, by adding the remaining ingredients in the slurry, and stirred, followed by 1 3 0 0 ", grind for 120 minutes to obtain an average particle size (0 50 ) of 0 ⁇ 0 2020/175 506 28 ⁇ (: 170? 2020 /007578
  • a pulverized slurry of .60 or less was obtained.
  • the solid content concentration at this time was 40 mass %.
  • the obtained pulverized slurry is a hot spray dryer (spray dryer, manufactured by Okawara Kakoki Co., Ltd.). 0") was used for granulation and drying. At this time, a twin-jet nozzle was used for atomization, the atomization pressure was 0.46 1 ⁇ /1 3, and the slurry supply amount 3 4 n % Drying tower exit temperature 100. Granulation drying was performed by adjusting the temperature so that it was ⁇ or more and 110° or less.
  • the obtained granulated powder was calcined in a static electric furnace in an air atmosphere so as to hold 900 ° ⁇ for 37 hours, and then crushed by a crusher (Orient rigid crusher, Orient It was crushed with a crusher (manufactured by Co., Ltd.).
  • the disintegrated using a stationary electric furnace, in air atmosphere, 7 5 0 ° ⁇ heat-treated to hold 3 7 hours (first heat treatment), disintegrator (Orient Ken type powder mill, Orient crusher (Made by a corporation).
  • the mixture was put into a plastic beaker (capacity 500 0 !_) containing 1 to 16 or more and 7 or less and a temperature of 25 ° ⁇ and ion-exchanged water 200 0 !_.
  • a propeller area of 3300! 2 the mixture was stirred for 40 minutes at 40 0 " ⁇ 1 or more and 5 50 0" or less.
  • the stirring was stopped and the stirrer was taken out of the water.
  • the supernatant was removed by decantation, and the remaining sediment was collected using a suction filter (filter paper 1 ⁇ 10. 1 31 1), and the collected sediment was collected 1 2 It was dried in an environment of 0 ° for 12 hours, and then dried for 7 hours while being heated so that the product temperature was 500°.
  • the powder after the second heat treatment is classified with a sieve with a mesh size of 53, and the bottom of the sieve is collected and reprocessed. ⁇ 02020/175506 29 ⁇ (: 170? 2020 /007578
  • a um-manganese-containing composite oxide was prepared. As described later, this lithium manganese-containing composite oxide was identified by measurement to be a spinel-type lithium manganese-containing composite oxide. The same applies to the following examples and comparative examples.
  • the temperature during the firing and the heat treatment is the temperature of the processed product measured by bringing a thermocouple into contact with the processed product in the furnace.
  • Example described later ⁇ Comparative example is the same
  • An aqueous solution was obtained by dissolving 1_5 1 of 13.5 9 1 to 1.1 to 1 2 0 and ammonium peroxoniobate 29.39 containing fluorine in water of 5861_. This water solution I got a crystal.
  • the core material particles 109 obtained in the above (1) were A slurry was prepared by adding it to an aqueous solution of lithium hydroxide 45 1_ whose concentration was adjusted to 1 1. 4 9 / 1_. The slurry was heated to 90° ⁇ or more, and 1_ _ _1 ⁇ 1 ⁇ _ ⁇ aqueous solution 1 5 1_ was added thereto. 1_ ⁇ 1 1 ⁇ 1 sq. 10 Aqueous solution is 1 _ ⁇ 1 1 ⁇ 1 sq. 10 crystals ⁇ .
  • This sample has one peak in the range of 0.1 45 ⁇ ⁇ 1 or more ⁇ 0.1 85 ⁇ or less in the radial distribution function obtained by the measurement of X 8 3 and 0.28 01 ⁇ ⁇ ! or more ⁇ . There was also one peak in the range below 3 1 01 ⁇ !
  • Example 1 heat treatment (second heat treatment) was performed in a tubular static furnace so that the holding time was maintained for 6 hours, and after drying at 1 30 ° ⁇ at the time of manufacturing the positive electrode active material, at 3 50 ° ⁇ A positive electrode active material was obtained in the same manner as in Example 1 except that the heat treatment was performed for 2 hours.
  • This sample has one peak in the radial distribution function obtained by the measurement of X 8 3 in the range of 0. 1 45 doors or more and 0. 1 85 doors or less.
  • Example 1 a static electric furnace was used to perform heat treatment (first heat treatment) so as to maintain 750° ⁇ for 38 hours in the air atmosphere, and after drying at 1 30° ⁇ during production of the positive electrode active material, A positive electrode active material was obtained in the same manner as in Example 1 except that heat treatment was performed at 500° for 2 hours.
  • This sample has one peak in the range of 0.145 nm or more and 0.185 n or less in the radial distribution function obtained by the measurement of 8.3. It also had a single peak in the range below 3 10 mm.
  • Example 1 a static electric furnace was used to perform heat treatment (first heat treatment) in an air atmosphere so as to maintain 750° ⁇ for 36 hours, and after drying at 1 30° ⁇ during production of the positive electrode active material, A positive electrode active material was obtained in the same manner as in Example 1 except that heat treatment was performed at 700° for 2 hours.
  • This sample has one peak in the range of 0.145 nm or more and 0.185 n or less in the radial distribution function obtained by the measurement of 8.3. It also had a single peak in the range below 3 10 mm.
  • the electrolytic manganese dioxide of and the nickel hydroxide having an average particle size of (0 50 ) 22 were weighed.
  • a polycarboxylic acid ammonium salt aqueous solution (3! ⁇ 1 Dispersant 5468 manufactured by San Nobuco Co., Ltd.) was added to the ion-exchanged water as a dispersant.
  • ⁇ 02020/175506 31 ⁇ (: 170? 2020 /007578
  • the amount of dispersant added is the same as above! -It was made to be 6% by mass with respect to the total of the raw materials, the raw materials and the IV! n raw materials, and sufficiently dissolved and mixed in the ion exchange water.
  • the weighed raw materials were added to the ion-exchanged water in which the dispersant was dissolved in advance, and mixed and stirred to prepare a slurry having a solid content concentration of 40% by mass.
  • the obtained pulverized slurry is a hot spray dryer (spray dryer, manufactured by Okawara Kakoki Co., Ltd.). 0") was used for granulation and drying. At this time, a twin jet nozzle was used for spraying, and the spray pressure was 0.1 Slurry supply amount 35 n % Drying tower exit temperature 100. Granulation drying was performed by adjusting the temperature so that it was ⁇ or more and 110° or less.
  • the obtained granulated powder was subjected to oxygen partial pressure ⁇ .
  • calcination was carried out so that 950° was maintained for 37 hours, and then heat treatment was carried out so that 750° was maintained for 37 hours in an atmosphere with an oxygen partial pressure of 0.02 11 1 ⁇ /1 3.
  • the calcined powder obtained by the heat treatment was classified with a sieve having openings of 53, and the powder under the sieve was collected to obtain a spinel type lithium manganese-containing composite oxide powder, that is, a positive electrode active material (sample).
  • a spinel type lithium manganese-containing composite oxide powder was prepared.
  • a chemical analysis of the obtained spinel-type lithium-manganese-containing composite oxide powder was carried out.
  • This sample has a radial distribution function obtained by the measurement of X 8 3 ⁇ .1 45 ⁇ ! The following ranges, and ⁇ .
  • the port 50 of the recovered layered lithium metal oxide powder that is, the core material particles, was 6.8. Cross-section of primary particles III. Photo! It was confirmed from the photograph that the core particles were polycrystalline.
  • the positive electrode active material was obtained by drying at 310 ° by a spray dry granulation method.
  • a positive electrode active material was obtained in the same manner as in Example 1 except these. This sample is more than 0.145 n in the radial distribution function obtained by measuring X 83. There was one peak in the following range, and one peak in the range of 0.2081 ⁇ 111 or more and 0.301 n or less.
  • Example 5 a layered lithium metal oxide 0 50 powder i.e. core particles child was recovered was 2.4 Rei_1. Drying was carried out at 320° ⁇ by the spray dry granulation method, and further vacuum drying was carried out at 120° ⁇ for 2 hours.
  • a positive electrode active material was obtained in the same manner as in Example 5 except for the above. This sample has one peak in the radial distribution function obtained by measurement of ⁇ 8 3 in the range of 0.145 nm or more and 0.185 n or less, and ⁇ 280 or more and ⁇ 0.31 or less There was one peak in the range.
  • Example 5 ammonium peroxoniobate 59 and lithium hydroxide .709 were dissolved in ion-exchanged water 100!_ to prepare a surface treatment solution.
  • This surface treatment liquid is called a treatment liquid tank.
  • the lithium raw material reacts with the ammonium peroxoniobate in the solution. This makes it easy to adsorb onto the surface of core particles 1- A compound is formed on the surface of the core particles. After that, it was dried in a hot-air oven at 120 ° ⁇ and heat-treated at 500 ° ⁇ for 5 hours.
  • a positive electrode active material was obtained in the same manner as in Example 5 except for the above. This sample has no peak in the range of 0.145 nm or more and 0.185 or less in the radial distribution function obtained by the measurement of VIII. It had one peak in the range of 310 n or less.
  • an automatic sample feeder for a laser diffraction particle size distribution measuring device manufactured by Microtrac Bell Co., Ltd. "1 ⁇ /1 ⁇ ⁇ " ⁇ Using 30(3), put the sample (powder) in the water-soluble solvent, irradiate 40 ultrasonic waves multiple times for 360 seconds at a flow rate of 40%, and then use laser diffraction measuring the particle size distribution using a particle size distribution measuring instrument "1 ⁇ / 1 chome 300011", Chiyato the resulting volume-based particle size distribution Karamo - de diameter was measured ⁇ 50 and ⁇ 10.
  • the number of times of ultrasonic wave irradiation was the number of times until the rate of change of the mouth 50 before and after ultrasonic wave irradiation was 8% or less.
  • the water-soluble solvent used in the measurement was passed through a 60 filter, the "solvent refractive index” was 1.33, the particle permeability condition was "transmitted”, the particle refractive index was 2.46, and the "shape" was "non-spherical".
  • the measurement range was set to 0.133 or more and 704.0 or less, and the measurement time was set to 30 seconds.
  • the average primary particle diameters of the positive electrode active materials obtained in Examples and Comparative Examples were measured as follows.
  • the sample (powder) was observed at 1 000 times, and selecting the size of the particles corresponding to the mouth 5 ⁇ .
  • the magnification was changed to 20000 or more and 10000 or less, and the image was taken.
  • An example of the magnification is mouth 5 . When the value is about 7, it is 10000 times, when it is about 15 it is 5 000 times, and when it is about 22, it is 2000 times, and it is an image suitable for obtaining the average primary particle size in the image analysis software described later. Can be taken.
  • the average primary particle diameter, cumulative 50% particle diameter on volume distribution is that of (1-1 6 7 ⁇ Rei_rei_1 diameter circle equivalent diameter).
  • the average primary particle diameter it is preferable to measure 30 or more primary particles and calculate the average value. If the measured number is insufficient, taken by adding selecting the size of the particles corresponding to the mouth 5 0, a total of primary particles was measured to be 3 0 than on.
  • the crystal structure was identified as follows using an X 8 mouth device.
  • the core material particle it is attributed to the hexagonal crystal of the space group _ 301, 1_ ⁇ in 3 3 sites, 1 ⁇ 1 ⁇ , ⁇ ⁇ , IV! IV! It is assumed that ⁇ is occupied in an excess of 1 _ ⁇ , 60 sites, and the seat occupancy rate and atomic displacement parameter of 3 3, 3 and 60 sites are set to 1, and the observed intensity and the calculated intensity are calculated. It represents the degree of agreement [3 ⁇ 4, repeated calculations were performed until 3 converged.
  • Scattering slit Open
  • Light receiving slit Open
  • Offset angle 0 °
  • the X-ray diffraction pattern for determining the crystallite size was measured using an X-ray diffractometer (D8 ADV ANCE manufactured by Bruker AXS KK) using Cu _Ka line under the following measurement conditions 2. I went.
  • the crystal structure was assigned to a cubic crystal of the space group F d _3m (Origin Choice 2), and L i was present at the 8 a site, and the 16 d site was present. Mn, metallic element M 1, metallic element M 2, and excess L i are present in
  • the hexagonal crystals of the space group R— 3 m (Origin Choice 2) are assigned, and L i is at the 3a site, N i, C ⁇ , Mn is at the 3b site. , M element and excess L i, and occupy 6 c sites, ⁇ is assumed to be occupied, and the seat occupancy and atomic displacement parameter B of 3 a and 3 b sites are set to 1 and 6 c sites.
  • the fractional coordinate and the seat occupancy rate were changed and repeated calculations were performed until Rw p and GO F, which represent the degree of agreement between the observed intensity and the calculated intensity, converged.
  • the crystallite size was calculated by analysis using a Gaussian function.
  • a positive electrode mixture was prepared using the positive electrode active material and solid electrolyte prepared in Examples and Comparative Examples, and a solid lithium secondary battery (solid Gr/positive electrode active material cell) was prepared, and battery characteristics were evaluated. It was
  • the positive electrode active materials prepared in Examples and Comparative Examples were used, the negative electrode active material was graphite (G r) powder, and the solid electrolyte powder was sulfide solid electrolyte having an aldirodite structure. ..
  • the positive electrode mixture powder is the positive electrode active material, the solid electrolyte powder and the conductive material (force carbon material) produced in the examples and comparative examples.
  • the powder is mixed in a mortar in a ratio of 60% by mass: 30% by mass: 10% by mass. I adjusted it by doing.
  • the negative electrode mixture powder was prepared by mixing graphite (G r) powder and solid electrolyte powder in a mortar mixture at a ratio of 50% by mass: 50% by mass.
  • a positive electrode mixture powder pellet was prepared by filling 13 mg of the positive electrode mixture powder (sample) into the insulating cylinder (09 mm) of a closed cell and uniaxially molding at 368 MPa. The positive electrode mixture powder pellets obtained were placed in an insulating cylinder of a closed cell ( ⁇ 10.
  • solid electrolyte powder was axially molded at 1 84 M Pa together with the positive electrode material mixture powder pellets. Further, 10 mg of the negative electrode mixture powder was filled on the solid electrolyte, uniaxially molded at 55 1 MPa, and tightened with a pressure screw to provide a positive electrode layer, a negative electrode layer, and a solid electrolyte layer.
  • a solid-state battery solid-state lithium secondary battery
  • the solid-state batteries of Examples 1 to 4 were subjected to constant current charging at a charge end voltage of 5.0 V at ⁇ 0.10 in the first cycle. After that, constant voltage charging was performed until the current value reached 0.010 at 5.0.
  • the capacity obtained by constant-current charging until reaching 5.0 V was defined as the XX capacity.
  • the value obtained by multiplying 100 by the value obtained by dividing the capacity by the total charging capacity in the first cycle was used as the charging characteristic.
  • the value obtained by subtracting the charge characteristic of Comparative Example 1 from the charge characteristics of Examples 1 to 4 was divided by the charge characteristic of Comparative Example 1 and multiplied by 100, and the value obtained thereby was used as the charge characteristic improvement index. , Listed in Table 1.
  • the charge characteristic improvement index shows the improvement rate of the mobility (desorption property) of lithium ions during charging, and the charge characteristic improvement index can be used to evaluate rapid charging.
  • the solid-state batteries of Examples 5 to 7 were subjected to constant current charging at a charge end voltage of 4.5 V at 0.30 in the first cycle. After that, constant voltage charging was performed at a voltage of 4.5 V until the current value reached 0.01. With respect to the charging characteristics of Comparative Example 2, the charging characteristic improvement indexes of Examples 5 to 7 were calculated in the same manner as in Examples 1 to 4, and are shown in Table 1.
  • FIG. 3 shows the radial distribution function obtained by the X-83 measurement for the positive electrode active material of Example 3.
  • an active material having improved desorption of lithium ions during charging. Therefore, by using the active material of the present invention, solid-state batteries can be rapidly charged.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

固体電池に用いられる活物質である。X線吸収微細構造の測定によって得られる動径分布関数において、0.145nm以上0.185nm以下の範囲にピークが少なくとも一つ観察されるとともに、0.280nm以上0.310nm以下の範囲にピークが少なくとも一つ観察される。レーザー回折散乱式粒度分布測定法により測定して得られる体積粒度分布測定による前記活物質のモード径及びD10(それぞれ「モード径」、「D10」と称する。)に関し、モード径に対する、モード径とD10との差の絶対値の百分率である(|モード径-D10|/モード径)×100の値が、0%<((|モード径-D10|/モード径)×100)≦58.0%を満たす。

Description

\¥02020/175506 1 卩(:17 2020 /007578 明 細 書
発明の名称 : 活物質、 それを用いた正極合剤及び固体電池 技術分野
[0001] 本発明は、 固体電池に用いられる活物質に関する。
背景技術
[0002] 固体電池に用いる固体電解質には、 できるだけイオン導電率が高く、 且つ 化学的 ·電気化学的に安定であることが求められている。 例えばハロゲン化 リチウム、 窒化リチウム、 リチウム酸塩又はこれらの誘導体などが固体電解 質の材料候補として知られている。
[0003] 固体電池に用いる固体電解質の一つとして、 硫化物固体電解質が検討され ている。 しかし硫化物固体電解質を含む固体電池は、 これに対して充放電を 行うと、 電極活物質と硫化物固体電解質との界面抵抗が高くなり、 リチウム イオンの移動が制限されるという問題がある。 この理由は、 電極活物質と硫 化物固体電解質とが反応することによって、 両者の界面に抵抗層が形成され るからであると考えられている。 この問題に対して、 例えば特許文献 1及び 2においては、 正極活物質の表面を特定の化合物で被覆することによって、 界面抵抗の上昇を抑制することが試みられている。
先行技術文献
特許文献
[0004] 特許文献 1 : □32009081 554八 1
特許文献 2 : 113201 82 1 9229八 1
発明の概要
[0005] ところで、 固体電池では急速充電が期待されている。 急速充電のためには リチウムイオンを正極活物質から引き抜いて固体電解質へと受け渡す反応を 速めることが必要である。 しかし、 現在の技術では満足すべき反応速度が得 られていない。
[0006] 前記の課題に鑑み、 本発明は、 正極活物質と固体電解質との間でのリチウ \¥0 2020/175506 2 卩(:170? 2020 /007578
ムイオンの授受を迅速に行い得る活物質を提供することを主目的とする。 [0007] 本発明は、 固体電池に用いられる活物質であって、
X線吸収微細構造の測定によって得られる動径分布関数において、 〇. 1 4 5 n m以上〇. 1 8 5 n 以下の範囲にピークが少なくとも一つ観察され るとともに、 〇. 2 8 0 n m以上〇. 3 1 0 n 以下の範囲にピークが少な くとも一つ観察され、
レーザー回折散乱式粒度分布測定法により測定して得られる体積粒度分布 測定による前記活物質のモード径及び口 1 0 (それぞれ 「モード径」 、 「口1 0 」 と称する。 ) に関し、 モード径に対する、 モード径と〇 !〇との差の絶対値 の百分率である (丨 モード径一〇 !〇 | /モード径) X 1 0 0の値が、 0 %<
( ( 丨 モード径一口!。 丨 /モード径) X 1 0 0) £ 5 8 . 0 %を満たす活物 質を提供することによって前記の課題を解決したものである。
図面の簡単な説明
[0008] [図 1]図 1は、 リチウム及びニオブを含む酸化物を対象として測定された X線 吸収微細構造の測定によって得られる動径分布関数である。
[図 2]図 2は、 実施例 3で得られた正極活物質を対象として測定された X線吸 収微細構造の測定によって得られる動径分布関数にピークが存在するか否か を判定する方法を示すグラフである。
[図 3]図 3は、 実施例 3で得られた正極活物質を対象として測定された X線吸 収微細構造の測定によって得られる動径分布関数である。
発明を実施するための形態
[0009] 以下本発明を、 その好ましい実施形態に基づき説明する。 本発明は、 固体 電池に用いられる活物質に関するものである。
[0010] 八. 活物質
1 . X八 3
本発明の活物質は、 X線吸収微細構造 (以下
Figure imgf000004_0001
ともいう。 ) の 測定によって得られる動径分布関数において、 〇. 1 4 5 n m以上 0 . 1 8 5门 以下の範囲にピークが少なくとも一つ観察されるとともに、 0 . 2 8 \¥02020/175506 3 卩(:170? 2020 /007578
〇门 以上 0. 3 1 0门 以下の範囲にピークが少なくとも一つ観察される
[0011] 詳細には、 図 1 に示すとおり、 本発明の活物質は、 乂八 3の測定によっ て得られる動径分布関数において、 0. 1 45 n m以上 0. 1 85 n 以下 の範囲にピークが少なくとも一つ観察される。 ピーク位置は、 ピーク頂点の 位置により特定される。 なお、 ピークの定義については後述する。
本発明において観察されるピーク位置は、 例えば、 〇. 1 48 n m以上で あってもよく、 〇. 1 5 1 门 以上であってもよく、 〇. 1 54门 以上で あってもよい。 一方、 前記ピーク位置は、 例えば、 0. 1 80 n 以下であ ってもよい。 前記範囲に観察されるピークは、 少なくとも一つであればよく 、 例えば一つのみであってもよく、 2つ以上であってもよい。 これとともに 本発明の活物質は、 〇.
Figure imgf000005_0001
以下の範囲にピーク が少なくとも一つ観察される。 本発明において観察されるピーク位置は、 例 えば、 〇. 285 〇!以上であってもよい。 一方、 前記ピーク位置は、 例え ば、 〇.
Figure imgf000005_0002
以下であってもよい。
[0012] 本発明の活物質は、 好適には、 芯材粒子と、 該芯材粒子の表面に配置され た被覆層とを有する。 本発明においては、 リチウム (!_ 丨) 元素、 金属元素 八 (ただしリチウム (!_ 丨) 元素を除く) 及び酸素元素からなり、 特定の化 学構造を有する酸化物を含む被覆層を用いることが好適である。 以下、 この 酸化物のことを便宜的に 「!_ 丨 八〇化合物」 と表記する。 本発明で用いられ る !_ 丨 〇化合物は、 活物質に対する乂 3の測定によって得られる動径 分布関数において、 特定の原子間距離にピークが観察されることによって特 徴付けられる。 例えば金属元素八がニオブ
Figure imgf000005_0003
元素である場合、 図 1 に 示す動径分布関数の横軸は、 ニオブ原子の位置を基準とした原子間距離を示 している。 縦軸は、 ニオブの周囲に位置する原子の存在確率を示している。 〇. 1 45 n m以上〇. 1 85 n 以下の範囲に観察されるピークは、 ニオ ブ原子と酸素原子との距離に相当するものであり、 〇. 280 n m以上〇.
3 1 0 n
Figure imgf000005_0004
以下の範囲に観察されるピークはニオブ原子どうしの距離に相当 \¥0 2020/175506 4 卩(:170? 2020 /007578
するものである。 X八 3の測定から得られる動径分布関数において、 上述 した所定の範囲にピークが観察される 1_ 丨 〇化合物を被覆層に含有させる ことで、 本発明の活物質は、 固体電解質との界面抵抗の増加を抑制し、 結果 として電池性能の向上を図ることが可能である。
[0013] 動径分布関数にピークが観察されるとは、 動径分布関数が上に凸のような 部分やシヨルダ _部分を含んでいてもよいことを意味する。 動径分布関数の 横軸を X、 縦軸を Vとする関数 7 =干 (X) を 2回微分することにより得ら れた二次導関数が極小値を持つ場合のことを、 ピークを有すると定義する。 本発明においては〇
Figure imgf000006_0001
3 I 〇 1^㊀社製) を用 いて動径分布関数を 2回微分することによりピークの有無の判定を行った。 なお、 例えば、 後述する実施例 3においては、 図 2に示すように、 0 . 1 4 5
Figure imgf000006_0002
以下の範囲に観察されるピークについて動径分布 関数を 2回微分することにより極小値を持つ。 このことから、 実施例 3は、 〇. 1 4 5 n m以上〇. 1 8 5 n 以下の範囲にピークが観察されるといえ る。
[0014] 上述のとおり、 本発明で好適に用いられる !_ 丨 八〇化合物は、
Figure imgf000006_0003
の 測定から得られる動径分布関数における特定の原子間距離の所定の位置にピ —クを有するものである。 このこととは対照的に、 これまで知られている !_
I _八_〇系の化合物は、 乂八 3から得られる動径分布関数において、 本 発明で規定する所定の位置にピークを有するものではない。 例えば図 1 に示 すとおり、 従来知られている !_ 丨 一八一〇系の化合物の 1種である !_ 丨 1\1匕 〇 3は、 〇. 1 4 5 〇!以上〇.
Figure imgf000006_0004
以下の範囲、 及び〇. 2 8 0门 以上〇. 3 1 0 n
Figure imgf000006_0005
以下の範囲にピークは観察されない。 また、 従来知られ ている!- 丨 一八一〇系の化合物の別の 1種である 1_ 丨 3 1\1 13〇4は、 0 . 2 8
〇门 以上〇.
Figure imgf000006_0006
下の範囲にピークが観察されるものの、 〇. 1 4 5 1^ 111以上〇. 1 8 5 01以下の範囲にピークは観察されない。 このよう に、 本発明で好適に用いられる 1- 丨 八〇化合物は、 これまでに知られていな い新規な構造を有する。 [0015] XA F Sは、 物質に X線を照射することで得られる吸収スペクトルを解析 する手法である。 物質に X線を照射することで得られる吸収スぺクトルには 、 物質中に含まれる元素特有の急峻な立ち上がり、 すなわち吸収端が観察さ れる。 この吸収端近傍土 50 e V程度に現れる微細構造は X A N E S (X-ray Absorption Near Edge Structure) と呼ばれる。 また、 吸収端から高エネル ギー側 1 000 e V程度に現れる振動構造は E X A F S (Extended X-ray Ab sorption Fine Structure) と呼ばれる。 X A N E Sと E X A F Sを合わせた 領域が X A F Sと呼ばれる。 XA F Sによれば、 試料中の着目元素周囲の局 所構造 (原子間距離、 配位数) や、 化学状態 (価数、 配位構造) の評価が可 能である。 また X A F Sは非破壊測定法であり、 且つ物質の最表面の情報が 得られる測定方法であることから、 本発明の活物質そのものを測定対象とし て用いることができ、 且つ活物質における被覆層の情報を得ることができる
[0016] 本発明において、 活物質の X A F Sを測定するには、 例えば以下に述べる 手順で操作を行う。
試料調製
試料をメノウ乳鉢で粉砕した後、 窒化ホウ素粉末と混合し、 直径 1 〇mm 、 厚さ約 1 mmの錠剤にする。 測定する試料に含まれる A元素の濃度や、 L i AO化合物及び芯材粒子を構成する化合物の X線吸収係数に応じて、 試料 と窒化ホウ素の分量を適宜最適にする。
[0017] N b— K端の X A F Sを測定するときの条件は以下のとおりである。
-実験施設: S P r i n g - 8
-実験ステーシヨン : B L 1 4 b 2
分光器 : モノクロメータ S i (3 1 1 )
高次光除去: R hコートミラー 2. 4m r a d X2枚
-入射 X線サイズ:縦 1 m m X横 5 m m (試料前スリッ トサイズ)
-測定法:透過法
検出器:イオンチヤンバー -測定吸収端 : N b _ K吸収端 ( 1 8986 e V)
各入射 X線エネルギー (E、 X軸) において、 I 0、 I tを測定し、 次式 により、 X線吸光度 (y軸) を求め、 X軸 _ y軸でプロッ トすることにより 、 X A F Sスぺクトルを得た。
X線吸光度 Mt = _ 丨 n ( I t/ I 0)
[0018] 以上のようにして得られたデータに基づき動径分布関数を取得して原子間 距離を決定するには、 以下に述べる手順で操作を行う。
EXA F Sスぺクトルをフーリエ変換して得られる動径分布関数について 説明する。
解析ソフトウェアとして 「A t h e n a」 (D e me t e r v e r. 0 . 9. 25) を用いる。
初めに、 同ソフトウェアにて X A F Sスペクトルを読み込んだ後に、 バッ クグラウンド吸収である P r e— e d g e領域 (吸収端から一 1 50 e V以 上一 45 e V以下程度の領域) と、 P〇 s t _ e d g e領域 (吸収端から 1 50 e V以上 1 300 e V以下程度の領域) とをフィッティングして、 X A F Sスペクトルを規格化する。 次に EXA F Sスペクトル (% (k) ) を抽 出するために、 スプライン曲線でフィッティングを行う。 同ソフトウェアで の解析においてスプライン曲線のフィッティングに用いたパラメータは以下 の値である。
Rbkg= 1
- Spline range in k : 1以上 15以下
- Spline c Lamps Low : None、 high:None
- k-weight=3
Plotting k-weights : 3
最後に EXA F Sスペクトル (x (k) ) をフーリエ変換して、 動径分布 関数を示すスぺクトルを得る。 同ソフトウェアでのフーリエ変換のパラメー 夕は、 以下の値を用いた。
- k-range : 3.5以上 11.5以下 dk : 1
w i ndow : Hanning
- arbi trary k-weight : 1
- phase correction :未使用
[0019] 2. L i AO化合物
上述のとおり本発明の活物質は、 芯材粒子と、 該芯材粒子の表面に配置さ れた被覆層とを有することが好ましい。 本発明の活物質がこのような形態で ある場合、 被覆層は、 L i、 A元素 (Aは T i、 Z r、 T a、 N b、 Z n、 W及び A Iからなる群から選ばれた 1種又は 2種以上の元素) 及び〇を含む 化合物からなること、 すなわち上述した L i AO化合物からなることが好ま しい。 芯材粒子の表面が L i AO化合物で被覆されていることにより、 リチ ウムイオン伝導性が向上し、 正極活物質と固体電解質間の界面抵抗を低減す ることができ、 レート特性を高めることができる。 なお、 上記の好ましい態 様における A元素はバルブメタルと呼ばれる、 同様の性質を有する一群の金 属元素である。
[0020] 「芯材粒子の表面が L i AO化合物で被覆されている」 状態とは、 L i A
〇化合物が、 芯材粒子の表面において、 粒子として存在している態様、 粒子 が凝集してなる凝集粒子として存在している態様、 及び層を形成して存在し ている態様を包含する。 「層を形成して存在する」 とは、 L i AO化合物が 厚みをもって存在している状態を意味する。
[0021] L i AO化合物が層を形成する場合、 その厚みは 0. 5 n m以上 200 n m以下であることが好ましく、 中でも 0. 7 n m以上或いは 1 00 n m以下 、 その中でも 1 n m以上或いは 90 n m以下であることが好ましく、 更にそ の中でも 80 n m以下であることが好ましく、 更にその中でも 70 n m以下 であることが好ましく、 更にその中でも 60 n m以下であることが好ましく 、 更にその中でも 50 n m以下であることが好ましく、 更にその中でも 40 n m以下であることが好ましい。 このような範囲にすることで、 界面抵抗が 小さく良好なリチウムイオン伝導層として機能させることができる。 層の厚 \¥0 2020/175506 8 卩(:170? 2020 /007578
みは、 例えば、 走査型透過電子顕微鏡 (3丁巳1\/1) により測定することがで きる。 また、 必要に応じてエネルギー分散型 X線分析 (巳 0 3) を組み合わ せて観察し、 測定することもできる。
[0022] 芯材粒子の表面の一部又は部分的に 1_ 丨 〇化合物が存在しない箇所があ つてもよい。 中でも、 1- 丨 八〇化合物が芯材粒子の表面全体の面積の 3 0 % 以上を被覆していることが好ましく、 中でも 4 0 %以上、 その中でも 5 0 % 以上が好ましい。 芯材粒子の表面を 1_ 丨 〇化合物が被覆していることは、 例えば、 前記と同様に、 走査型透過電子顕微鏡 (3丁巳1\/1) と、 必要に応じ てエネルギー分散型 X線分析 (巳 0 3) を組み合わせて芯材粒子の表面を観 察することや、 才ージェ電子分光分析法により確認することができる。
また、 芯材粒子の表面を被覆する 1- 丨 八〇化合物の厚みは均一でなくても 構わない。
[0023] 1_ 丨 八〇化合物は非晶質であることが好ましい。 1_ 丨 八〇化合物が非晶質 であることにより、 1_ 丨 八〇化合物が活物質と固体電解質の間の緩衝層とし て存在することになり、 界面抵抗をより低減することができる。 芯材粒子の 表面を被覆する化合物が、 結晶質であるか非晶質であるかは、 制限視野電子 回折によりハローパターンが得られるかを確認することで判断できる。 ハロ —バターンとは、 明瞭な回折ピークのない、 低角度でブロードな回折図形の ことである。
[0024] 1_ 丨 〇化合物における各元素の組成は、 元素が丁 3及び 1\1匕のうち、 少なくとも 1種の元素である場合、 例えば !_ 丨 ,八〇^で示すことができる。 式中の X、 ソは元素の価数に即した範囲内で任意の値を取り得る。 中でも、 八元素 1モルに対して、 !_ 丨が 1モルより過剰に含まれている組成 (父>1 ) であることが特に好ましい。 そうすることで、 八と〇との化合物が生成す ることを抑制し、 界面抵抗を効果的に低減することができる。
[0025] !_ 丨 八〇化合物が !_ 丨 X
Figure imgf000010_0001
で表される場合において、 父>1 を満足させ る方法としては、 元素原料に対するリチウム原料の配合量を、 生成が想定 される組成、 例えば !_ 丨 〇3の化学量論組成比よりも過剰にする方法を挙げ \¥0 2020/175506 9 卩(:170? 2020 /007578
ることができる。 この際、 単に 1_ 丨 を過剰に添加しただけでは、 活物質の表 面に、 過剰分の 1- 丨 に起因して炭酸リチウムが生成し、 これが抵抗となって 、 かえってレート特性及びサイクル特性を悪化させる傾向がある。 そのため 、 望ましくない化合物である炭酸リチウムが生成することを考慮して、 し ! 八〇 Vが所定の組成になるように、 元素原料配合量及びリチウム原料配合量 を調整することが好ましい。
[0026] 3 . 芯材粒子
芯材粒子は、 活物質として機能するものであればよく、 特に限定されない 。 芯材粒子は、 例えば、 リチウム金属複合酸化物を含んでいてもよい。 リチ ウム金属複合酸化物としては、 公知のリチウム金属複合酸化物を用いること ができる。 例えば一般式 1_ 丨 1\/1〇2 (IV!は金属元素) で示される層状岩塩型構 造のリチウム含有複合酸化物、 一般式 1_ 丨 1\/124で示されるスピネル型構造の リチウム含有複合酸化物、 一般式
Figure imgf000011_0001
(IV!は金属元素) 又は 1_ 丨 1\/1 3 1 〇4 (IV!は金属元素) で示されるオリビン構造のリチウム含有複合酸化物の うちのいずれか 1種或いは二種類以上の組み合わせであってもよい。 ただし 、 これらに限定するものではない。
[0027] 3 - 1 . 芯材粒子八
芯材粒子は、 !_ 丨、 IV! n及び 0と、 これら以外の 1種類以上好ましくは 2 種類以上の元素とを含むスピネル型複合酸化物からなる粒子であることが好 ましい (以下、 この芯材粒子のことを 「芯材粒子八」 ともいう。 ) 。 芯材粒 子八を含む本発明の活物質を正極活物質として用いた場合、 金属し 丨基準電 位で 4 . 5 V以上の作動電位を有する。 「金属 !_ 丨基準電位で 4 . 5 以上 の作動電位を有する」 とは、 プラトー領域として 4 . 5 V以上の作動電位の みを有している必要はなく、 4 . 5 V以上の作動電位を一部有している場合 も包含する意である。 したがって本発明は、 プラトー領域として 4 . 5 以 上の作動電位を有する 5 V級正極活物質のみからなる正極活物質に限定され るものではない。 例えば本発明の活物質は、 プラトー領域として 4 . 5 未 満の作動電位を有する正極活物質を含んでいてもよい。 具体的には、 当該 5 \¥0 2020/175506 10 卩(:170? 2020 /007578
V級正極活物質が 3 0質量%以上を占めていることが好ましく、 好ましくは 5 0質量%以上、 その中でも特に好ましくは 8 0質量%以上 ( 1 0 0質量% 含む) を占める正極活物質を許容するものである。
[0028] 上述のとおり、 芯材粒子八は、 !_ し M n及び〇と、 これら以外の 2種類 以上の元素とを含むスピネル型複合酸化物からなる粒子であることが好まし い。 「これら以外の 2種以上の元素」 のうちの少なくとも 1元素は、 1\! し 〇〇及び 6からなる群から選択される金属元素 IV! 1であることが好ましく 、 他の 1元素は、 N 3、 IV! 9、 八 I、 、 [<、 〇 3、 丁 I、 V、 〇 「、 6 、 〇〇、 〇リ、 〇 、 丫、 「、
Figure imgf000012_0001
㊀及び〇 6からなる群から選択される 1種又は 2種以上の組み合わせからなる金属元 素 IV! 2であることが好ましい。
[0029] 芯材粒子八の好ましい組成例として、 !_ 丨 IV! n 24 _ 5における IV! nサイ ト の一部を、 !_ 丨 と、 金属元素 IV! 1 と、 他の金属元素 IV! 2とで置換してなる結 晶構造を有するスピネル型リチウムマンガン含有複合酸化物を含むものを挙 げることができる。
[0030] 金属元素 IV! 1は、 主に金属 !_ 丨基準電位で 4 . 5 V以上の作動電位を発現 させるのに寄与する置換元素であり、 1\1 し 〇〇及び 6などを挙げること ができ、 これらのうち少なくとも 1種を含んでいればよく、 中でも 1\1 丨及び 〇〇のうちの少なくとも 1種類の元素を含んでいることが特に好ましい。
[0031] 金属元素 IV! 2は、 主に結晶構造を安定化させて特性を高めるのに寄与する 置換元素である。 例えば容量維持率向上に寄与する置換元素として、 例えば N 8、 1\/1 9、 八 丨、 、 [<、
Figure imgf000012_0002
丁 丨、 V、 〇 「、 ㊀、 〇〇、 〇リ、 ◦
3、 丫、 1%
Figure imgf000012_0003
〇 6などを挙げること ができ、 中でも N 3、 IV! 9、 八 I、 、 [<、 〇 3、 7 , 〇 1% 6、 〇〇
Figure imgf000012_0004
金属元素 IV! 2は、 上述した元素のうちの 1種又は 2種以上の組み合わせであ つてもよい。 金属元素 IV! 2は、 上述した元素のうちの少なくとも 1種を含ん でいることが好ましく、 上述した元素以外の金属元素を含んでいてもよい。 \¥02020/175506 11 卩(:170? 2020 /007578
構造中に含まれる金属元素 IV! 2は金属元素 IV! 1 と異なる元素種である。
[0032] 芯材粒子八の組成の一例として、 式 ( 1) : 1_ 丨 X
Figure imgf000013_0001
_ 2) 〇 4 _ 5で示されるスピネル型リチウムマンガン含有複合酸化物を含むもの を挙げることができる。 式 (1) における金属元素 IV! 1及び金属元素 IV! 2は 上述のとおりである。
[0033] 前記の式 (1) において、 「X」 は、 ·! . 00以上·! . 20以下であるこ とが好ましく、 中でも 1. 01以上或いは 1. 1 0以下、 その中でも 1. 0 2以上或いは 1. 08以下であることがより一層好ましい。 金属元素 IV! 1の 含有量を示す 「V」 は、 〇. 20以上·! . 20以下であることが好ましく、 中でも〇. 30以上或いは 1. 1 0以下、 その中でも〇. 35以上或いは 1 . 05以下であることがより一層好ましい。 金属元素 IV! 2の含有量を示す 「 å」 は、 〇. 001以上〇. 400以下であることが好ましく、 中でも〇.
002以上或いは〇. 400以下、 その中でも〇. 005以上或いは 0. 3 〇以下、 更にその中でも〇. 1 0以上であることがより一層好ましい。 特に 〇. 1 0以上とすることでより効果的にサイクル特性を向上させることがで きる。
[0034] 芯材粒子八の組成の他の例として、 式 (2) :—般式 [!_ 丨 X (1\1 丨 32
Figure imgf000013_0002
-5] で示されるスピネル型リチウムマンガン含有複合酸化 物を挙げることができる。 式 (2) において、 「X」 は、 1. 00以上1.
20以下であることが好ましく、 中でも 1. 01以上或いは 1. 1 0以下、 その中でも 1. 02以上或いは 1. 08以下であることがより一層好ましい 。 式 (2) において、 「ソ」 は、 0. 20以上〇. 70以下であることが好 ましく、 中でも〇. 30以上或いは〇. 60以下、 その中でも〇. 35以上 或いは 0. 55以下であることがより一層好ましい。
[0035] 前記の式 (2) において、 金属元素 IV! 3としては、 例えば、 N 3、 IV! 9、 八 丨、 、 [<、 03 % 丁 丨、 V、 〇 「、 ㊀、 〇〇、 〇リ、
Figure imgf000013_0003
Figure imgf000013_0004
及び〇 6等が挙げられ、 中でも N 3、 1^9、 八 1、 、 [<、 03 % 丁 丨、 〇 「、 ㊀、 〇〇、 〇リ、 丫、 r、 N b、 Mo、 T a及び Wであることが好ましい。 金属元素 M3は、 上述 した元素のうちの 1種又は 2種以上の組み合わせであつてもよい。 金属元素 M3のモル比を示す 「z」 は、 0より大きく且つ 0. 5以下であることが好 ましく、 中でも 0. 01 より大きく或いは 0. 45以下、 その中でも 0. 0 5以上或いは 0. 40以下、 更にその中でも 0. 1 0以上或いは 0. 35以 下であることがより一層好ましい。 特に 0. 1 0以上とすることでより効果 的にサイクル特性を向上させることができる。
[0036] なお、 前記の式 (1) 及び (2) における 「4-5」 は、 酸素欠損を含ん でいてもよいことを示している。 また、 酸素の一部がフッ素又はその他の元 素で置換されていてもよい。 この際、 Sは 0以上或いは 0. 2以下であるこ とが好ましく、 その中でも 0. 1以下、 その中でも 0. 05以下であること が更に好ましい。
[0037] 芯材粒子 Aは、 前記の L i、 Mn、 金属元素 M 1、 金属元素 M2、 金属元 素 M 3及び〇以外の他の成分を含有してもよい。 特にその他の元素をそれぞ れ 0. 5重量%以下であれば含んでいてもよい。 この程度の量であれば、 芯 材粒子の性能にほとんど影響しないと考えられるからである。
[0038] 芯材粒子 Aは B (ホウ素) を含有してもよい。 Bの存在状態としては、 ス ピネルの結晶相の他に、 N i、 M n及び Bを含む複合酸化物相を含有してい てもよい。 N i、 M n及び Bを含む前記複合酸化物相としては、 例えば N i 5 M n 04 (Boy 2の結晶相を挙げることができる。 N i 5Mn〇4 (B〇3
2の結晶相を含有することは、 X線回折 (XRD) により得られた回折バター ンを、 P D F (P owd e r D i f f r a c t i o n F i l e) 番号 「 01 -079- 1 029」 と照合することにより確認することができる。 N i、 M n及び Bを含む前記複合酸化物は、 芯材粒子 Aの表面や粒界に存在し ているものと推察される。
[0039] N i、 M n及び Bを含む前記複合酸化物相の含有量に関しては、 芯材粒子 A中の B元素の含有量が 0. 02質量%以上 0. 80質量%以下となるよう に前記複合酸化物相を含有することが好ましく、 中でも 0. 05質量%以上 \¥0 2020/175506 13 卩(:170? 2020 /007578
或いは〇. 6 0質量%以下、 その中でも〇. 3 0質量%以下、 特に 0 . 2 5 質量%以下となるように前記複合酸化物相を含有することが更に好ましい。 巳元素の含有量が〇. 0 2質量%以上であれば、 高温 (例えば 4 5 °〇 での 放電容量を維持することができ、 巳元素の含有量が〇. 8 0質量%以下であ ればレート特性を維持することができるから、 好ましい。
[0040] なお、 芯材粒子八は、 例えば、
Figure imgf000015_0001
(0 r I 9 I n 〇 〇
1 〇 6 2) の立方晶の結晶構造モデルとフィッティングした際、 観測強度と 計算強度の一致の程度を表す 8 、
Figure imgf000015_0002
5であることにより、 スピネル型構造であると確認することができる。
[0041 ] 芯材粒子八の一次粒子は、 単結晶体ではなく、 多結晶体であることが好ま しい。 単結晶体とは、 一次粒子が一つの結晶子で構成されている粒子を意味 し、 多結晶体とは一次粒子内に複数の結晶子が存在している粒子であること を意味する。 芯材粒子が多結晶体であるか否かは、 電子線後方散乱回折法 ( £ 6 3 0) により、 一次粒子断面を観察することで確認することができる。 多結晶体である場合は、 _次粒子内に複数の方位を持つ結晶体が存在するこ とを確認できる。
[0042] 3 - 2 . 芯材粒子巳
芯材粒子は、 !_ 丨、 IV!元素 (IV!は、 少なくとも し 〇〇、
Figure imgf000015_0003
及び八 I からなる群から選択される 1種又は 2種以上の元素の組み合わせを含む。 ) 及び〇を含む層状構造を持つリチウムニッケル金属複合酸化物からなる粒子 であることも好ましい (以下、 この芯材粒子のことを 「芯材粒子巳」 ともい う。 ) 。 本発明の活物質は、 芯材粒子巳の他に、 他の成分を含んでいてもよ い。 尤も、 芯材粒子巳の特性を効果的に得ることができる観点から、 芯材粒 子巳が 8 0質量%以上、 中でも 9 0質量%以上、 その中でも 9 5質量%以上 (1 0 0質量%を含む) を占めることが好ましい。
[0043] 芯材粒子巳は、 一般式 (3)
Figure imgf000015_0004
(式中、 IV!は、 1\1 し 〇
〇、 M n及び 丨からなる群から選択される 1種又は 2種以上の元素の組み 合わせであるか、 若しくは、 !\1 し 0〇, IV! n及び八 丨からなる群から選択 \¥02020/175506 14 卩(:170? 2020 /007578
される 1種又は 2種以上の元素の組み合わせと、 周期律表の第 3族元素から 第 1 1族元素の間に存在する遷移金属元素、 及び、 周期律表の第 1周期から 第 3周期までの典型金属元素からなる群のうちのいずれか 1種或いは 2種以 上の組み合わせとを含む (これらを 「構成元素 1\/1」 と称する) 。 ) で表され る層状構造を持つリチウム金属複合酸化物からなる粒子であることが好まし い。
Figure imgf000016_0001
1. 09以下、 中でも〇. 97以上或いは 1. 07以下、 その中でも 0. 9 8以上·! . 05以下であることが好ましい。
[0045] 前記の式 (3) 中の
Figure imgf000016_0002
は、 1\/^、 〇〇及び 丨の 3元素を含んでいて もよい。 例えば Mn、 0〇及び 丨の 3元素のみから構成されていてもよい し、 当該 3元素に前記その他の元素の 1種以上を含んでいてもよいし、 その 他の構成でもよい。
[0046] 周期律表の第 3族元素から第 1 1族元素の間に存在する遷移金属元素、 及 び、 周期律表の第 1周期から第 3周期までの典型金属元素としては、 例えば
Figure imgf000016_0003
「、 IV!〇、 、 7 as
Figure imgf000016_0004
どを挙げることができ、 中でも 、 V、 6
Figure imgf000016_0005
あることが好ましい。
[0047] 前記の式 (3) 中の
Figure imgf000016_0006
が、 Mn、 0〇及び 丨の 3元素を含有する場 合、 IV! 〇〇及び 1\1 丨の含有モル比率は、 1\/^ : 〇〇 : 1\1 丨 =〇. 00以 上〇. 45以下: 〇. 00以上〇. 40以下: 〇. 30以上·! . 00以下で あることが好ましく、 1\/^ : 〇〇 : 1\1 丨 =0. 01以上〇. 45以下: 〇. 01以上〇. 40以下: 〇. 30以上〇. 95以下であることが好ましく、 中でも1\/1 n : 〇〇 : 1\1 丨 = 0. 05以上〇. 40以下: 〇. 03以上 0. 4 0以下: 0. 30以上 0. 85以下、 その中でも IV! n : 〇〇 : 1\1 丨 = 0. 0 5以上〇. 40以下: 0. 03以上〇. 40以下: 0. 30以上〇. 75以 下であることが更に好ましい。 \¥0 2020/175506 15 卩(:170? 2020 /007578
[0048] 前記の式 (3) において、 酸素量の原子比は、 便宜上 「2」 と記載してい るが、 多少の不定比性を有してもよい。 すなわち、 酸素量の原子比は 「2 - 5」 であってよく、 この際 「一5」 は酸素欠損を示しており、 5は 0以上或 いは〇. 2以下であることが好ましく、 その中でも〇. 1以下、 その中でも 〇. 0 5以下であることが更に好ましい。
[0049] 芯材粒子巳は、 不可避不純物を含んでいてもよい。 例えば不可避不純物の 元素をそれぞれ 0 . 1 7質量%以下であれば含んでいてもよい。 この程度の 量であれば、 芯材粒子巳の特性にほとんど影響しないと考えられるからであ る。
[0050] なお、 芯材粒子巳は、 例えば、 空間群 3 の六方晶の結晶構造モデル とフィッティングした際、 観測強度と計算強度の一致の程度を表す 、
3の範囲が、 [¾ \/\/ < 1 0又は 3 < 2 . 5であることにより、 それが層状構 造であると確認することができる。
[0051 ] 芯材粒子巳の一次粒子は、 芯材粒子八と同様に、 単結晶体ではなく、 多結 晶体であることが好ましい。 単結晶体及び多結晶体の定義は、 芯材粒子八の 場合と同じである。
[0052] 4 . 活物質
本発明の活物質は、 次のような特徴を有することが好ましい。
[0053] (結晶性)
本発明の活物質の一次粒子は、 単結晶体ではなく、 多結晶体であることが 好ましい。 詳細にいえば、 多結晶体である芯材粒子の表面に非晶質である非 晶質化合物が存在していることが好ましい。 単結晶体とは、 一次粒子が一つ の結晶子で構成されている粒子を意味し、 多結晶体とは一次粒子内に複数の 結晶子が存在している粒子であることを意味する。
[0054] 活物質の一次粒子が単結晶体ではない、 つまり多結晶体であるか否かは、 平均 _次粒子径に対する結晶子サイズの比率 (結晶子サイズ/平均 _次粒子径 ) が 0に近い、 具体的には 0より大きく、 1 より小さい範囲内であることを 確認することでも判断できる。 0に近いことは、 一次粒子内に結晶子が多く \¥0 2020/175506 16 卩(:170? 2020 /007578
含まれることを意味する。 尤も、 この判断方法に限定するものではない。
[0055] 本発明において 「一次粒子」 とは、 3巳1\/1 (走査型電子顕微鏡、 例えば 5
0 0倍以上 5 0 0 0倍以下) で観察したときに、 粒界によって囲まれた最も 小さな単位の粒子を意味する。 平均一次粒子径は、 3巳1\/1 (走査型電子顕微 鏡、 例えば 5 0 0倍以上 5 0 0 0倍以下) で観察して、 任意に 3 0個の一次 粒子を選択し、 画像解析ソフトウェアを用い、 選ばれた一次粒子の粒子径を 算出し、 3 0個の一次粒子径を平均して求めることができる。 他方、 本発明 において 「二次粒子」 とは、 複数の一次粒子がそれぞれの外周 (粒界) の一 部を共有するようにして凝集し、 他の粒子と孤立した粒子を意味するもので ある。 そして、 レーザー回折散乱式粒度分布測定法により測定して得られる 体積基準粒度分布による 0 5 0は、 これら一次粒子及び二次粒子を含めた粒子 の平均径の代替値としての意味を有する。 また、 「結晶子」 とは、 単結晶と みなせる一次粒子を意味し、
Figure imgf000018_0001
測定し、 リートべルト解析を行うことに より求めることができる。
[0056] (モード径)
本発明の活物質のモード径、 すなわちレーザー回折散乱式粒度分布測定法 により測定して得られる体積粒度分布測定によるモード径は〇. 4〇 以 上 1 1 .〇 以下であることが好ましく、 中でも 1 . 〇〇 より大きい或 いは 1 1 . 0 01未満、 その中でも ·! . 0 0 〇1より大きい或いは 1 0 . 0 未満、 その中でも特に 1 . 5 0 より大きい或いは 1 0 . 0 未満、 更 にその中でも 2 . 0 0 〇1より大きい或いは 9 . 0 未満であることが特に 好ましい。 モード径を前記の範囲内とすることで、 二次粒子内に!- 丨が拡散 するときの抵抗を小さくすることができ、 その結果、 放電末期特性を向上さ せられる。
[0057] (0 5〇)
本発明の活物質の口 5 0、 すなわちレーザー回折散乱式粒度分布測定法によ り測定して得られる体積粒度分布測定による口 5〇は、 例えば〇. 5 以上 であることが好ましく、 1 . 0 以上であることが好ましく、 2 . \¥02020/175506 17 卩(:170? 2020 /007578
以上であることが好ましく、 2. 5 以上であることが好ましい。 一方、 前記口50は、 例えば 1 5.〇 以下であることが好ましく、 中でも 1 0.0 以下であることが好ましく、 特に 8. 0 以下であることが好ましい 。 〇50を前記の範囲とすることで、 二次粒子内に !_ 丨が拡散するときの抵抗 を小さくすることができ、 その結果、 放電末期特性を向上させることができ る。
[0058] ( | モード径ーロ50 丨 /モ_ド径)
本発明の活物質は、 モード径に対する、 モード径と口50との差の絶対値の 百分率 ( (丨 モード径_〇5。 丨 /モード径) X 1 〇〇) の値が 0%£ ( ( | モ—ド径 _〇50 | /モード径) X I 〇〇) £25%を満たすことが好ましい 。 中でも ( (丨 モード径 _5。 丨 /モ_ド径) X 1 00) は、 ( (丨 モード 径ーロ50 I /モード径) X 1 00) £20%を満たすことが好ましく、 特に ( ( I モード径 _口50 I /モ_ド径) X 1 00) £ 1 7%を満たすことが好 ましく、 更に ( ( I モード径ーロ50 I /モ_ド径) X 1 00) £ 1 6%を満 たすことが好ましく、 中でもまた ( ( | モード径 _50 | /モード径) X I 00) £ 1 5%以下を満たすことが好ましい。 一方、 (
Figure imgf000019_0001
I /モ_ド径) X 1 00) は、 0%< ( (丨 モード径一口 5。 1 /モ_ド径) X 1 00) を満たすことが好ましく、 中でも 1 %£ (
Figure imgf000019_0002
/モード径) X I 00) を満たすことが好ましく、 特に 2%£ ( ( | モード 径 _〇50 | /モード径) X I 00) を満たすことが好ましく、 更にまた 2. 5%£ (
Figure imgf000019_0003
ド径) X 1 〇〇) を満たすことが好ま しい。 (丨 モード径 _口 5。 丨 /モ_ド径) X 1 〇〇の値が前記の範囲である ということは、 粒度分布が単峰型、 すなわち複数のピークを持たない分布で あり、 しかも、 正規分布であるかそれに近い分布であることを意味する。
[0059] (010
本発明の活物質の口!〇、 すなわちレーザー回折散乱式粒度分布測定法によ り測定して得られる体積粒度分布測定による口 10は、 例えば〇. 2 以上 8. 0 〇!以下であることが好ましい。 活物質の口 10は、 中でも 1. 〇 \¥02020/175506 18 卩(:170? 2020 /007578
以上であることが好ましく、 特に 2. 0 以上であることが好ましい。 一 方、 活物質の口 10は、 中でも 6. 〇 以下であることが好ましく、 特に、 5. 0 以下であることが好ましい。 口!〇を前記の範囲に調整することに より、 副反応を抑制することができる。
[0060] ( | モード径一
Figure imgf000020_0001
ド径)
本発明の活物質は、 モード径に対する、 モード径と口!〇との差の絶対値の 百分率 ( ( | モード径—〇1。 I /モード径) X 1 00) の値が 0%< ( ( | モ—ド径—〇10 I /モード径) X I 〇〇) £ 58. 0%であることが好まし い。 中でも ( (丨 モード径 _10 丨 /モ_ド径) X I 00) は、 ( (丨 モー ド径一口 ]〇 I /モード径) X 1 00) £55. 0 %を満たすことが好ましく 、 特に ( (丨 モード径一口!。 丨 /モ_ド径) X 1 00) £45. 0%を満た すことが好ましく、 更に ( ( | モード径ーロ10 | /モード径) X 1 00) £ 40. 0%を満たすことが好ましい。 一方、 ( ( | モード径 _〇10 | /モ_ ド径) X 1 00) は、 1 %£ ( ( | モード径一 0 !〇 I /モ_ド径) X 1 00 ) を満たすことが好ましく、 特に 2%£ ( ( I モード径ーロ10 I /モ_ド径 ) X I 00) を満たすことが好ましく、 更にまた 2. 5%£ ( ( | モード径 —〇50 | /モ_ド径) X 1 00) を満たすことが好ましい。 ( ( | モード径 _010 | /モード径) X I 00) の値が前記の範囲であるということは、 活 物質のモード径から口!〇までの分布の幅が狭いことを意味する。
[0061] また、 モード径に対する、 モード径と口 5〇との差の絶対値の百分率 ( ( | モード径— 050 | /モード径) X I 〇〇) を前記の範囲に調整すること、 又 は、 モード径に対する、 モード径と〇 !〇との差の絶対値の百分率 ( ( I モー ド径ーロ10 I /モード径) X I 00) の値を前記の範囲にすることにより、 粒度分布が正規分布に近く、 シャープな分布となる。 つまり、 一次粒子及び 二次粒子の大きさを均一化することができる。 このことは、 粒度分布全体に おける微粉領域の割合を小さくすることができることを意味している。 微粉 はサイクル特性に悪影響を及ぼすため、 微粉の占める割合を小さくすること で、 サイクル特性を改善できる。 \¥0 2020/175506 19 卩(:170? 2020 /007578
[0062] しかも本発明においては、 シャープな粒度分布を有する活物質の粒子が、 上述した 1_ 丨 〇化合物を含む被覆層を有していることで、 充電特性が改善 されるという有利な効果が奏される。 特に、 後述する活物質の製造方法を採 用する場合、 上述した 1_ 丨 0化合物を含む被覆層の構造を導入する際に芯 材粒子への吸着現象を利用するので、 粒子径が揃ったシャープな粒度分布を 有する芯材粒子を用いると、 各粒子での被覆率や被覆厚みの平準化が首尾よ く行われ、 粒子の被覆状態が粒子毎で揃った、 シャープな粒度分布を有する 活物質の粒子が得られる。 そのことに起因して、 充電時にリチウムイオンの 移動が粒子毎に平準化され、 充電特性が向上する。
[0063] ( 0 , ,„)
本発明の活物質の
Figure imgf000021_0001
すなわちレーザー回折散乱式粒度分布測定法によ り測定して得られる体積粒度分布測定による „は、 例えば〇. 1 以上 であることが好ましく、 中でも 0 . 1 5 より大きいことが好ましく、 特 に 2 . 〇 より大きいことが好ましく、 更にその中でも〇. 6 より大 きいことが好ましい。 一方、
Figure imgf000021_0002
例えば 6 . 〇 以下であることが好 ましく、 中でも 5 . 〇 未満であることが好ましく、 特に 4 . 〇 未満 であることが好ましく、 更にその中でも 3 . 0 未満であることが好まし く、 更にその中でも 2 . 〇 以下であることが好ましく、 更には 1 . 8 IX 未満であることが好ましい。
Figure imgf000021_0003
副反応 を抑制でき、 またサイクル特性を向上させることができる。
[0064] 本発明の活物質の二次粒子の粒度分布を前記のように調整するには、 例え ば焼成して粉砕するとともに該粉砕後に熱処理をすればよい。 ただし、 かか る方法に限定するものではない。
[0065] (平均一次粒子径)
本発明の活物質の平均一次粒子径、 すなわち 3巳 IV!画像より算出した平均 —次粒子径は、 例えば〇. 1 〇 以上であることが好ましく、 中でも〇. 2 5 より大きいことが好ましく、 特に〇. 4 0 より大きいことが好 ましく、 更に〇. 5〇 より大きいことが好ましい。 一方、 前記平均一次 \¥0 2020/175506 20 卩(:170? 2020 /007578
粒子径は、 例えば、 5 . 0 0 以下であることが好ましく、 中でも 4 . 0 〇 以下であることが好ましく、 特に 3 . 0 0 以下であることが好ま しい。 平均一次粒子径が前記の範囲内であることにより、 レート特性の向上 を達成できる。
[0066] (平均一次粒子径/ 0 5〇)
本発明の活物質は、 口 5 0に対する平均一次粒子径の比率 (平均一次粒子径 /〇 5 0) が〇. 0 1以上〇. 9 9以下であることが好ましい。 中でも、 上記 比率は、 〇. 1以上であることが好ましく、 特に、 〇. 2以上であることが 好ましく、 その中でも〇. 3以上であることが好ましく、 更に〇. 4以上で あることが好ましい。 一方、 上記比率は、 〇. 9以下であることが好ましく 、 中でも〇. 8 5以下であることが好ましく、 特に〇. 7以下であることが 好ましい。 平均一次粒子径 /口 5。を前記の範囲にすることにより、 一次粒子 の分散性を高めることができる。 そのため、 二次粒子が粒度分布の半分以上 を占める場合に比べて、 一次粒子 1つ 1つが充分に固体電解質と接触するこ とができる。 これにより、 !_ 丨 と粒子との反応面積が増加するとともに、 二 次粒子内の一次粒子どうしの界面における抵抗を減少させることができ、 放 電末期特性改善に繫がる。
[0067] 本発明の活物質の平均一次粒子径を前記のように調整するには、 焼成温度 を調整したり、 ホウ素化合物やフッ素化合物のように、 焼成時の反応性を高 める物質を添加して焼成したりして活物質を製造することが好ましい。 尤も 、 この方法に限定するものではない。
[0068] (結晶子サイズ)
本発明の活物質は、 結晶子サイズが例えば 8 0 n 以上 4 9 0 n 以下で あることが好ましい。 中でも、 結晶子サイズは、 1 0 0 n m以上であること が好ましく、 特に 1 1 〇门 以上であることが好ましく、 更に 1 2 0 n 以 上であることが好ましく、 その中でも 1 3 0门 以上であることが好ましい 。 一方、 結晶子サイズは、 3 5 0 n 以下であることが好ましく、 2 4 0 n 以下であることが好ましい。 結晶子サイズを前記の範囲に規定することに \¥0 2020/175506 21 卩(:170? 2020 /007578
より、 結晶子内のイオン導電性を高めることができ、 抵抗を低減することが できる。 また、 抵抗低減により、 サイクル時の分極を抑えることができ、 高 温時における充放電の繰り返しに伴って徐々に放電容量が低下するのを抑制 することができる。
[0069] (結晶子サイズ/平均 _次粒子径)
本発明の活物質は、 結晶子サイズに対する平均一次粒子径の比率 (結晶子 サイズ/平均一次粒子径) が例えば〇. 0 1以上〇. 5 0以下であることが好 ましい。 中でも、 上記比率は、 〇. 0 2以上であることが好ましく、 特に 0 . 0 3以上であることが好ましく、 更に〇. 0 4以上であることが好ましく 、 その中でも〇. 0 5以上であることが好ましい。 一方、 上記比率は、 〇.
4 1以下であることが好ましく、 中でも〇. 3 2以下であることが好ましく 、 特に〇. 2 6以下であることが好ましい。 上述のように、 本発明の活物質 は好適には多結晶体であるから、 結晶子サイズ/平均一次粒子径は 1未満の 値となり、 更に前記の範囲であれば粉体中の一次粒子の分散性が良好となり 、 一次粒子と固体電解質との接触面積が増加するとともに、 二次粒子内の一 次粒子どうしの界面における抵抗を減少させることができ、 放電末期特性改 善に繫げることができる。 結晶子サイズを前記の範囲に調整するには、 焼成 温度、 焼成時間、 反応性を高める助剤、 焼成雰囲気、 原料種などを調節する ことが好ましい。 尤も、 これらの方法に限定するものではない。
[0070] (歪み)
本発明の活物質は、 X線回折装置 (乂[¾ 0) により測定される X線回折パ 夕 _ンにおいて、 リートべルト解析から得られる歪みの数値が、 例えば〇.
0 0以上〇. 3 5以下であることが好ましい。 この程度に歪みが少なければ 、 リチウムニッケル金属複合酸化物の骨格が充分に強固であるから、 リチウ ムニ次電池の活物質として使用した場合に、 放電末期特性及びサイクル特性 を更に高めることができる。 かかる観点から、 本発明の活物質の歪みは、 中 でも〇. 3 5未満、 その中でも〇. 3 2未満、 その中でも〇. 3 0未満、 そ の中でも更に〇. 2 8未満、 その中でも〇. 2 5未満、 その中でも更に〇. \¥02020/175506 22 卩(:170? 2020 /007578
20未満、 更にその中でも〇. 1 5未満であることがより一層好ましい。 本 発明の活物質の歪みを前記の範囲にするには、 好ましい条件で熱処理すれば よい。 尤も、 これらの方法に限定するものではない。
[0071] (比表面積)
本発明の活物質はその比表面積が、 副反応を抑える観点から、 例えば〇.
1 012/9以上 1 2. 0 2/9以下であることが好ましく、 中でも〇. 2012 /9より大きい或いは 1 〇. 〇 2/9未満であることが更に好ましく、 その 中でも 8. 0 2/ 9未満、 その中でも更に 7. 0 2/ 9未満、 その中でも 特に 5. 〇〇!2/ 未満であることがより一層好ましい。 場合によっては、 本 発明の活物質の比表面積は、 例えば 0. 40^/9以上或いは 1 2. 〇 2/
9以下であることが好ましく、 中でも〇. 5012/9以上或いは 1 〇. 〇 2 / 9以下であることが更に好ましく、 その中でも 8.0 2/ 9以下、 その中 でも更に 5. 0 2/ 以下であることがより一層好ましい。
[0072] 比表面積は次のように測定する。 先ず、 サンプル 2. 09を全自動比表面 積測定装置 IV! 8〇 3〇 「匕 (株式会社マウンテック製) 用のガラスセル (標 準セル) に秤量し、 才一トサンブラーにセッ トする。 窒素ガスでガラスセル 内を置換した後、 前記窒素ガス雰囲気中で 200°〇 1 5分間、 熱処理する。 その後、 窒素 ·ヘリウム混合ガスを流しながら、 4分間冷却する。 冷却後、 サンプル (粉体) を巳巳丁_点法にて測定する。 冷却時及び測定時の吸着ガ スは、 窒素 30 V〇 丨% :ヘリウム 70 〇 丨%の混合ガスを用いる。
[0073] (表面組成)
本発明の活物質が、 芯材粒子の表面が非晶質化合物で被覆されてなる構成 を備えている場合には、 活物質の表面における !_ 丨 と 元素との比率を所定 範囲に制御することにより、 リチウムイオン伝導性向上と抵抗抑制を両立さ せることができ、 放電末期特性を改善するとともに、 レート特性、 サイクル 特性を有効に改善することができる。 詳細には、 X線光電子分光分析 (乂 3) によって得られる、 活物質 (粒子) の表面における 元素含有量に対す る 1- 丨含有量の 〇 I比率 (1_ 丨 / ) は〇. 5以上 33. 3以下であるこ \¥0 2020/175506 23 卩(:170? 2020 /007578
とが好ましく、 中でも〇. 7より大きい或いは 3 0 . 0未満、 その中でも 1 . 0より大きい或いは 2 0 . 0未満、 その中でも 1 . 1 より大きい或いは 1 5 . 0未満、 更にその中でも 1 . 2より大きい或いは 1 0 . 0未満であるこ とが好ましい。 場合によっては、 前記 〇 丨比率 (1 - 丨 / ) は〇. 5以上 3 . 5以下であることが好ましく、 中でも〇. 7より大きい或いは 3 . 4以 下、 その中でも 1 . 0より大きい或いは 3 . 0未満、 その中でも 1 . 1 より 大きい或いは 2 . 5未満、 更にその中でも 1 . 2より大きい或いは 2 . 1未 満であることが好ましい。 前記 〇 I比率 (1_ 丨 / ) は炭酸リチウム起因 の 1_ 丨 も含めた値である。
[0074] 本発明の活物質の表面における 1_ 丨 と 元素との比率を前記の範囲に制御 するためには、 前述したように、 活物質の表面に生成する炭酸リチウム起因 の 1_ 丨分を考慮した上で、 前記 〇 丨比率 (1_ 丨 / ) が前記範囲になるよ うに、 元素原料配合量及びリチウム原料配合量を調整することが好ましい
[0075] (炭酸イオン量: 〇〇 -量)
本発明の活物質の表面に存在する炭酸塩 (炭酸リチウムや炭酸ナトリウム など) の量が多いと抵抗となってリチウムイオン伝導性を低下させる可能性 がある。 そのため、 炭酸塩由来と考えられる炭酸イオン量すなわち<3〇3 2 -量 は、 本発明の活物質に対して 4 . 0質量%未満であることが好ましく、 中でも 3 . 0質量%未満、 その中でも 2 . 5質量%未満、 更にその中でも 2 . 0質量 %未満、 とりわけその中でも 1 . 0質量%未満であることが更に好ましい。 活物質の表面に存在する炭酸リチウム量を低下させるためには、 例えば、 酸 素雰囲気下などの二酸化炭素を含まない雰囲気で焼成し、 更に好ましくは、 超音波を照射しながら加水分解することが好ましい。
[0076] <活物質の製造方法>
本発明の活物質は、 例えば、 !_ し IV!元素 (IV!は し 0〇、 IV! n及び八 Iからなる群から選択される 1種又は 2種以上の元素の組み合わせである。
) 及び〇を含む層状構造を持つリチウム金属複合酸化物からなる芯材粒子粉 \¥0 2020/175506 24 卩(:170? 2020 /007578
末を調整する一方、 リチウム原料、 元素原料を溶媒に溶解させた混合溶液 に芯材粒子を加えた後、 所定条件の下で乾燥、 焼成することにより製造でき る。 或いは、 リチウム原料、 元素原料を溶媒に溶解させた混合溶液に芯材 粒子を加えた後、 所定条件の下で乾燥、 焼成することにより、 芯材粒子に表 面被覆処理を施して製造することができる。 尤も、 これらの製造方法は好ま しい一例であって、 このような製造方法に限定するものではない。 例えば、 転動流動コーティング法 (ゾルゲル法) 、 メカノフュージョン法、 〇 〇法 及び V 0法等でも、 条件を調整することにより製造することは可能である
[0077] <芯材粒子の製造方法>
芯材粒子の製造方法の一例として、 原料混合工程、 湿式粉砕工程、 造粒エ 程、 焼成工程、 熱処理工程、 洗浄 ·乾燥工程及び粉砕工程を備えた製造方法 を挙げることができる。 尤も、 かかる製造方法は好ましい一例であって、 こ のような製造方法に限定するものではない。
[0078] <表面被覆処理>
前記のように作製した芯材粒子の表面を、 1_ 丨 〇化合物で被覆させるた めには、 例えば、 リチウム原料、 八元素原料を溶媒に溶解させた混合溶液に 芯材粒子粉末を加えて、 所定条件下で乾燥、 焼成すればよい。 例えば、 水溶 性八元素塩及びリチウム原料を水に溶解して表面処理液を調製し、 この表面 処理液中に芯材粒子を投入し、 混練してスラリー状とし、 これを乾燥するこ とによって好適に製造できる。 ただし、 活物質の製造方法をこのような方法 に限定するものではない。 例えば、 転動流動コーティング法 (ゾルゲル法)
、 メカノフュージョン法、 ◦ 〇法及び 〇法等でも、 条件を調整するこ とにより製造することは可能である。
[0079] より具体的には、 1_ 丨量と 元素量との比率を所定範囲に調整したリチウ ム原料及び 元素原料を溶媒に撹拌溶解した後、 これに芯材粒子粉末を投入 することが好ましい。 なお、 本発明の活物質製造方法では、 溶媒中に芯材粒 子粉末を投入することにより、 芯材粒子の表面に存在する残存不純物を溶媒 \¥0 2020/175506 25 卩(:170? 2020 /007578
中に溶解させてから表面処理することができるため好ましい。 この方法によ り、 本発明の活物質の ! !を低減させることができ、 放電末期特性及びサイ クル特性の向上させることができる。 例えば、 特開 2 0 1 6— 1 7 0 9 7 3 号公報に記載されているように、 単にコアとなる活物質粒子に錯体溶液を噴 霧する方法では、 前記のような効果が得られない可能性がある。 ただし、 ! !を低減する方法をこの方法に限定するものではない。
[0080] <活物質の用途>
本発明の活物質は、 通常、 正極活物質として用いることができる。 また、 本発明の活物質は、 固体電池に用いられるものである。 特に本発明の活物質 は、 固体電解質として固体電解質を含む固体電池に用いられることが有利で ある。 固体電池において、 本発明の活物質と、 固体電解質との接触部分が存 在することにより、 本発明の効果を享受することができる。 ここで 「活物質 と、 固体電解質との接触部分が存在する」 とは、 (ア) 正極合剤等の電極合 剤中に固体電解質を含有させること (この場合、 固体電解質層は硫化物でも 非硫化物でも可。 ) 、 (イ) 正極合剤等の電極合剤中に固体電解質を含有さ せず、 固体電解質層に固体電解質を含有させること、 及び (ウ) 正極合剤等 の電極合剤中に固体電解質を含有させ、 且つ固体電解質層に固体電解質を含 有させることのいずれかを意味する。
[0081 ] 巳. 電極合剤
正極合剤等の本発明の電極合剤は、 活物質と、 固体電解質とを含む。 なお 、 電極合剤に含まれる活物質については、 前記 「 . 活物質」 の項に記載し た内容と同様とすることができるため、 ここでの記載は省略する。
[0082] 本発明で用いる固体電解質は、 一般的な固体電池に用いられる固体電解質 と同様とすることができる。 例えば、 硫化物固体電解質、 酸化物固体電解質 、 窒化物固体電解質、 ハロゲン化物固体電解質等が挙げられるが、 中でも硫 黄 (3) 元素を含有する硫化物固体電解質であることが好ましい。 本発明に おける硫化物固体電解質は、 例えば、 リチウム (!_ 丨) 元素及び硫黄 (3) 元素を含みリチウムイオン伝導性を有するものであってもよく、 或いは、 リ \¥02020/175506 26 卩(:170? 2020 /007578
チウム (1_ 丨) 元素、 リン ( ) 元素及び硫黄 (3) 元素を含みリチウムイ オン伝導性を有するものであってもよい。 硫化物固体電解質は、 結晶性材料 、 ガラスセラミックス、 ガラスのいずれであってもよい。 硫化物固体電解質 は、 アルジロダイ ト型構造の結晶相を有していてもよい。 このような硫化物 固体電解質としては、 例えば、 1_ 丨 23_?235、 1_ 丨 23_?235_1_ 1 乂
Figure imgf000028_0001
、 1_ 丨 7_^36_^;< (アルジロダイ ト型構造の結晶相を有する固体電解質 、 「X」 は 1種以上のハロゲン元素を示し、 〇. 2<父<2. 0又は 0. 2 <父<1. 8である。 ) などが挙げられる。
[0083] 本発明の電極合剤に含まれる活物質は、 本発明の活物質のみであってもよ く、 その他の活物質と組み合わせて使用することもできる。 その他の活物質 としては、 前記の公知のリチウム遷移金属複合酸化物からなる粒子が挙げら れ、 当該粒子は被覆層を有していてもよく、 或いは有していなくてもよい。 組み合わせて使用する場合は、 活物質全体に対して本発明の活物質を 50モ ル%以上、 更に好ましくは 70 %以上含有していることが好ましい。
[0084] 本発明の電極合剤における硫化物固体電解質の割合は、 典型的には 5質量 %以上 50質量%以下である。 また、 電極合剤は、 必要に応じて導電助剤や バインダー等の他の材料を含んでもよい。 また、 電極合剤と溶剤とを混合し てべーストを作製し、 アルミニウム箔等の集電体上に塗布、 乾燥させること によって正極層等の電極層を作製できる。
[0085] 0. 固体電池
本発明の固体電池は、 正極層、 負極層、 及び固体電解質層を備え、 前記正 極層が、 上述した正極合剤を含む。
[0086] 本発明の固体電池は、 例えば、 前記のようにして作製した正極層、 固体電 解質層、 及び負極層を 3層重ねて加圧成型することによって作製できる。 「 固体電池」 とは、 液状物質又はゲル状物質を電解質として一切含まない固体 \¥0 2020/175506 27 卩(:170? 2020 /007578
電池の他、 例えば 5 0質量%以下、 3 0質量%以下、 1 0質量%以下の液状 物質又はゲル状物質を電解質として含む態様も包含する。
[0087] 前記負極層に用いる負極活物質は、 一般的な固体電池に用いられる負極活 物質と同様とすることができる。 具体的な負極活物質としては、 リチウムイ オンを吸蔵放出する材料、 例えば炭素材料、 シリコン及び 3 丨 _〇などの酸 化ケイ素系化合物、 スズ系化合物、 チタン酸リチウム等の公知の材料を用い ることができる。 前記炭素材料としては、 例えばポリアクリロニトリル、 フ エノール樹脂、 フエノールノボラック樹脂、 セルロースなどの有機高分子化 合物を焼結したもの、 人造黒鉛や天然黒鉛を挙げることができる。 前記負極 層は、 このような負極活物質を用いる以外は正極層の作製と同様にして作製 できる。
実施例
[0088] 以下、 実施例により本発明を更に詳細に説明する。 しかしながら本発明の 範囲は、 かかる実施例に制限されない。
[0089] 〔実施例 1〕
平均粒径 (〇5 0) 7 の炭酸リチウムと、 平均粒径 (0 5〇) 2 3 で 比表面積が 4 0 0^ / 9の電解二酸化マンガンと、 平均粒径 (0 5〇) 2 2 の水酸化ニッケルと、 平均粒径 (0 5 0) 2 の酸化チタンをそれぞれ秤量 した。
イオン交換水中へ、 分散剤としてポリカルボン酸アンモニウム塩水溶液 ( サンノブコ (株) 製 3 1\1デイスパーサント 5 4 6 8) を添加した。 この際 、 分散剤の添加量は、 前述の !_ 丨原料、 1\! 丨原料、 IV! n原料及び丁 丨原料の 合計に対して、 6質量%になるようにし、 イオン交換水中へ充分に溶解混合 させた。 そして、 秤量しておいた 1\1 し IV! n原料を、 あらかじめ分散剤を溶 解させた前記イオン交換水中へ加えて、 混合撹拌して、 続いて、 湿式粉砕機 で 1 3 0 0 「 、 1 2 0分間粉砕して平均粒径 (口5 0) を〇. 6 0 以 下の粉砕スラリーを得た。 次いで、 残りの原料を前記スラリー中に加えて、 撹拌し、 続いて 1 3 0 0 「 、 1 2 0分間粉砕して平均粒径 (0 5 0) を 0 \¥0 2020/175506 28 卩(:170? 2020 /007578
. 6〇 以下の粉砕スラリーを得た。 この際の固形分濃度は 4 0質量%と した。
得られた粉砕スラリーを熱噴霧乾燥機 (スプレードライヤー、 大川原化工 機 (株) 製
Figure imgf000030_0001
0」 ) を用いて造粒乾燥させた。 この際、 噴霧にはツ インジェッ トノズルを用い、 噴霧圧を〇. 4 6 1\/1 3、 スラリー供給量 3 4
Figure imgf000030_0002
n % 乾燥塔の出口温度 1 0 0。〇以上 1 1 0 °〇以下となるように 温度を調節して造粒乾燥を行った。
[0090] 得られた造粒粉を、 静置式電気炉を用いて、 大気雰囲気において、 9 0 0 °〇を 3 7時間保持するように焼成した後、 解砕機 (オリエント堅型粉砕機、 オリエント粉砕機株式会社製) で解砕した。
前記解砕後、 静置式電気炉を用いて、 大気雰囲気において、 7 5 0 °◦を 3 7時間保持するように熱処理 (第 1熱処理) し、 解砕機 (オリエント堅型粉 砕機、 オリエント粉砕機株式会社製) で解砕した。
前記解砕後、 1~1 6以上 7以下、 温度 2 5 °〇のイオン交換水 2 0 0 0 !_ を入れたプラスチックビーカー (容量 5 0 0 0 !_) の中に投入し、 攪拌機 (プロペラ面積 3 3〇〇! 2) を用いて 4 0 0 「 〇1以上 5 5 0 「 以下の回 転で 2 0分間撹拌した。 撹拌後、 撹拌を停止して攪拌機を水中から取り出し 、 1 〇分間静置した。 そして、 デカンテーシヨンにより上澄み液を除去し、 残りについて吸引ろ過器 (ろ紙 1\1〇. 1 3 1) を使用して沈降物を回収し、 回収した沈降物を 1 2 0 °〇環境下で 1 2時間乾燥させた。 その後、 品温が 5 0 0 °〇となるように加熱した状態で 7時間乾燥させた。
[0091 ] そして、 乾燥後、 カウンタージェッ トミル (粉砕分級装置、 ホソカワミク ロン株式会社製) で解砕した (解砕条件:分級機回転数 1 1 0 0 0 「 〇〇 。 その後、 目開き 5 3 の舗で分級した。
[0092] その後、 管状型静置炉にて酸素供給量〇. 5 !_ / 丨 nにて流入させなが ら、 炉設定温度を 7 2 5 °〇として、 5時間保持するように熱処理 (第 2熱処 理) を実施した。
第 2熱処理後の粉体を目開き 5 3 の篩で分級し、 篩下を回収してリチ \¥02020/175506 29 卩(:170? 2020 /007578
ウムマンガン含有複合酸化物を準備した。 このリチウムマンガン含有複合酸 化物は、 後述するように、 測定で、 スピネル型リチウムマンガン含有 複合酸化物であることを同定した。 以後の実施例及び比較例についても同様 である。
[0093] このスピネル型リチウムマンガン含有複合酸化物、 すなわち芯材粒子の化 学分析を実施したところ、 化学分析の結果、 1- 丨 : 4. 2質量%、 Mn : 4 1. 6質量%、 1\1 丨 : 1 3. 5質量%、 丁 丨 : 5. 1質量%であった。
Figure imgf000031_0001
粒子の断面 3巳 IV!写真から芯材粒子が多結晶体であることを確認した。
なお、 前記焼成時及び熱処理時の温度は、 炉内の処理物に熱電対を接触さ せて測定した処理物の品温である。 後述する実施例 ·比較例でも同じである
[0094] 正極活物質の製造
1 3. 59の 1_ 丨 〇1~1 . 1~12〇と、 フッ素を含有するペルオキソニオブ酸ア ンモニウム 29. 39とを 586 1_の水に溶解して水溶液を得た。 この水 溶液を
Figure imgf000031_0002
の結晶を得 た。 前記 ( 1 巳) で得られた芯材粒子 1 09を、 !_ 丨濃度を 1 1. 49/1_ に調整した水酸化リチウム水溶液 45 1_に添加しスラリーを作製した。 そ のスラリーを 90°〇以上に加熱し、 そこへ、 1_ 丨 _1\1匕_〇水溶液 1 5 1_ を加えた。 1_ 丨 一 1\1匕一〇水溶液は 1_ 丨 一 1\1匕一〇結晶〇.
Figure imgf000031_0003
1-を混合して作製した。 更にそのスラリーを 90°〇以上で 1 0分間加熱した 。 90°〇以上で加熱することにより正極活物質の表面に吸着し易い性質を持 つ !_ 丨 _ 1\1匕 _〇系化合物が芯材粒子の表面に生成する。 液をデカンテーシ ョンして、 〇. 1 4 〇 I /!_の硫酸リチウム溶液 90 !_で 2回洗浄した 。 その後 1 30°〇で乾燥後、 200°〇で 2時間熱処理して正極活物質を得た 。 このサンプルは X八 3の測定によって得られる動径分布関数において 0 . 1 45门〇1以上〇. 1 85门 以下の範囲に 1本ピークを有し、 0. 28 01^〇!以上〇. 3 1 01^〇!以下の範囲にも 1本ピークを有した。
[0095] 〔実施例 2〕 \¥02020/175506 30 卩(:170? 2020 /007578
実施例 1 において、 管状型静置炉にて保持時間を 6時間保持するように熱 処理 (第 2熱処理) を実施し、 正極活物質の製造時に 1 30°〇で乾燥後、 3 50 °〇で 2時間熱処理した以外は実施例 1 と同様にして正極活物質を得た。 このサンプルは X八 3の測定によって得られる動径分布関数において〇. 1 45门〇1以上〇. 1 85门 以下の範囲に 1本ピークを有し、 〇. 280
Figure imgf000032_0001
[0096] 〔実施例 3〕
実施例 1 において、 静置式電気炉を用いて、 大気雰囲気において、 750 °〇を 38時間保持するように熱処理 (第 1熱処理) し、 正極活物質の製造時 に 1 30°〇で乾燥後、 500°〇で 2時間熱処理した以外は実施例 1 と同様に して正極活物質を得た。 このサンプルは乂八 3の測定によって得られる動 径分布関数において〇. 1 45 n m以上〇. 1 85 n 以下の範囲に 1本ピ —クを有し、 〇.
Figure imgf000032_0002
3 1 0门 以下の範囲にも 1本ピーク を有した。
[0097] 〔実施例 4〕
実施例 1 において、 静置式電気炉を用いて、 大気雰囲気において、 750 °〇を 36時間保持するように熱処理 (第 1熱処理) し、 正極活物質の製造時 に 1 30°〇で乾燥後、 700°〇で 2時間熱処理した以外は実施例 1 と同様に して正極活物質を得た。 このサンプルは乂八 3の測定によって得られる動 径分布関数において〇. 1 45 n m以上〇. 1 85 n 以下の範囲に 1本ピ —クを有し、 〇.
Figure imgf000032_0003
3 1 0门 以下の範囲にも 1本ピーク を有した。
[0098] 〔比較例 1〕
平均粒径 (〇50) 7 の炭酸リチウムと、 平均粒径 (05〇) 23 で 比表面積が 40
Figure imgf000032_0004
の電解二酸化マンガンと、 平均粒径 (050) 22 の水酸化ニッケルとそれぞれ秤量した。
イオン交換水中へ、 分散剤としてポリカルボン酸アンモニウム塩水溶液 ( サンノブコ (株) 製 3 !\1デイスパーサント 5468) を添加した。 この際 \¥02020/175506 31 卩(:170? 2020 /007578
、 分散剤の添加量は、 前述の!- 丨原料、 丨原料及び IV! n原料の合計に対し て、 6質量%になるようにし、 イオン交換水中へ充分に溶解混合させた。 秤 量しておいた原料を、 あらかじめ分散剤を溶解させた前記イオン交換水中へ 加えて、 混合撹拌して、 固形分濃度 40質量%のスラリーを調整した。
湿式粉砕機で 1 300 「 、 1 20分間粉砕して平均粒径 (050) を 〇. 60 以下とした。
得られた粉砕スラリーを熱噴霧乾燥機 (スプレードライヤー、 大川原化工 機 (株) 製
Figure imgf000033_0001
0」 ) を用いて造粒乾燥させた。 この際、 噴霧にはツ インジエッ トノズルを用い、 噴霧圧を 0. 1
Figure imgf000033_0002
スラリー供給量 35
Figure imgf000033_0003
n% 乾燥塔の出口温度 1 00。〇以上 1 1 0°〇以下となるように 温度を調節して造粒乾燥を行った。
[0099] 得られた造粒粉を、 静置式電気炉を用いて、 酸素分圧〇.
Figure imgf000033_0004
の 雰囲気において、 950°〇を 37時間保持するように焼成した後、 酸素分圧 〇. 02 1 1\/1 3の雰囲気において 750°〇を 37時間保持するように熱処 理した。
熱処理して得られた焼成粉を目開き 53 の篩で分級し、 篩下粉を回収 してスピネル型リチウムマンガン含有複合酸化物粉末すなわち正極活物質 ( サンプル) を得た。
[0100] スピネル型リチウムマンガン含有複合酸化物粉末を準備した。 得られたス ピネル型リチウムマンガン含有複合酸化物粉末の化学分析を実施したところ 、 !_ 丨 : 3. 9質量%、 1\1 丨 : 1 6. 0質量%、 IV! n : 43. 0質量%であ った。 このサンプルは X八 3の測定によって得られる動径分布関数におい て〇. 1 45 〇!以上〇.
Figure imgf000033_0005
以下の範囲、 及び〇.
Figure imgf000033_0006
〇. 3 1 0门 以下の範囲にピークを有さなかった。
[0101] 〔実施例 5〕
先ず、 硫酸ニッケルと硫酸コバルトと硫酸マンガンを溶解した水溶液に、 水酸化ナトリウムとアンモニアを供給し、 共沈法により、 ニッケルとコバル 卜とマンガンのモル比が〇. 6 : 0. 2 : 0. 2である金属複合水酸化物を \¥02020/175506 32 卩(:170? 2020 /007578
作製した。
[0102] 次に、 炭酸リチウムと金属複合水酸化物を秤量した後、 ボールミルを用い て充分混合し、 得られた混合粉を、 静置式電気炉を用いて 720°◦で 1 0時 間仮焼成した。
得られた仮焼粉を解砕し、 再度、 静置式電気炉を用いて、 920°◦で 22 時間焼成を行った。 焼成して得られた焼成塊を乳鉢に入れて乳棒で解砕し、 目開き 53 の篩で分級し、 篩下のリチウム金属酸化物粉体を回収した。 このリチウム金属酸化物は、 後述する乂[¾〇測定で、 層状構造を有するリチ ウム金属酸化物であることを同定した。 よって、 このリチウム金属酸化物を 層状リチウム金属酸化物と称する。 以後の実施例及び比較例についても同様 である。
[0103] 回収した層状リチウム金属酸化物粉体すなわち芯材粒子の口 50は 6. 8 であった。 一次粒子の断面 3巳 IV!写真から芯材粒子が多結晶体であること を確認した。
[0104] 3. 689の!_ 丨 〇1~1 . 1~12〇及び249のぺルオキソニオブ酸アンモニウ ムを、 2000 !_の水に溶解して処理液を調製した。 この処理液を処理液 八という。 前記で得られた芯材粒子 2009に処理液八を添加し、 90 °〇以 上で加熱した。 90°〇以上で加熱することにより、 リチウム原料とペルオキ ソニオブ酸アンモニウムとが溶液内で反応する。 これにより、 芯材粒子の表 面に吸着し易い性質を持つ !_ 丨 _ 1\1匕 _〇系化合物が、 芯材粒子の表面に生 成する。 その後、 スプレードライ造粒法によって 3 1 0°〇で乾燥して正極活 物質を得た。 これら以外は実施例 1 と同様にして正極活物質を得た。 このサ ンプルは X八 3の測定によって得られる動径分布関数において〇. 1 45 n 以上〇.
Figure imgf000034_0001
以下の範囲に 1本ピークを有し、 〇. 2801^ 111以 上〇. 3 1 0 n 以下の範囲にも 1本ピークを有した。
[0105] 〔実施例 6〕
実施例 5において、 芯材粒子の組成を 1\1 丨 : 〇〇 : 1\/^ = 0. 33 : 0.
33 : 0. 33にし、 回収した層状リチウム金属酸化物粉体すなわち芯材粒 \¥02020/175506 33 卩(:170? 2020 /007578
子の [550を 2. 5 〇1とした。 スプレードライ造粒法によって 1 1 0°〇で乾 燥し、 その後 350 °〇で熱処理した以外は実施例 5と同様にして正極活物質 を得た。 このサンプルは X八 3の測定によって得られる動径分布関数にお いて〇. 1 45门〇1以上〇. 1 85门 以下の範囲に 1本ピークを有し、 0 . 280 n 以上〇. 3 1 0 n 以下の範囲にも 1本ピークを有した。
[0106] 〔実施例 7〕
実施例 5において、 回収した層状リチウム金属酸化物粉体すなわち芯材粒 子の 050を 2. 4 〇1とした。 スプレードライ造粒法によって 320°〇で乾 燥し、 更に 1 20°〇で 2時間真空乾燥を行った。 それ以外は実施例 5と同様 にして正極活物質を得た。 このサンプルは乂八 3の測定によって得られる 動径分布関数において〇. 1 45 n m以上 0. 1 85 n 以下の範囲に 1本 ピークを有し、 〇. 280门 以上〇. 3 1 0门 以下の範囲にも 1本ピー クを有した。
[0107] 〔比較例 2〕
実施例 5において、 ペルオキソニオブ酸アンモニウム 59及び水酸化リチ ウム〇. 709をイオン交換水 1 00 !_に溶解して表面処理液を調製した 。 この表面処理液を処理液巳という。
Figure imgf000035_0001
を投入し、 90 °〇以上で加熱した
。 90°〇以上で加熱することにより、 リチウム原料とペルオキソニオブ酸ア ンモニウムとが溶液内で反応する。 これにより、 芯材粒子の表面に吸着し易 い性質を持つ 1- 丨
Figure imgf000035_0002
系化合物が、 芯材粒子の表面に生成する。 その 後、 熱風炉を用い 1 20°〇で乾燥し、 更に 500°〇で 5時間にわたり熱処理 した。 それ以外は実施例 5と同様にして正極活物質を得た。 このサンプルは 乂八 3の測定によって得られる動径分布関数において 0. 1 45 n m以上 〇. 1 85门 以下の範囲にピークを有さず、 〇.
Figure imgf000035_0003
3 1 0 n 以下の範囲に 1本ピークを有した。
[0108] <各種物性値の測定方法>
実施例及び比較例で得られた正極活物質の各種物性値を次のように測定し \¥02020/175506 34 卩(:170? 2020 /007578
た。
[0109] (組成分析)
実施例及び比較例で得られた正極活物質について、 誘導結合プラズマ (丨 09)発光分光分析により、 各元素の含有量を測定した。
[0110] (モード径、 05〇, 010
実施例及び比較例で得られた正極活物質について、 レーザー回折粒子径分 布測定装置用自動試料供給機 (マイクロトラック ·ベル株式会社製 「1\/1 丨 〇 「〇
Figure imgf000036_0001
30(3」 ) を用い、 サンプル (粉体) を水溶性溶媒に投入し 、 40%の流速中、 4〇 の超音波を 360秒間複数回照射した後、 マイク 口トラック ベル株式会社製レーザー回折粒度分布測定機 「1\/1丁 300011 」 を用いて粒度分布を測定し、 得られた体積基準粒度分布のチヤートからモ —ド径、 〇50及び〇10を測定した。
超音波の照射回数は、 超音波照射前後における口 50の変化率が 8%以下と なるまでの回数とした。
なお、 測定の際の水溶性溶媒は 60 のフィルターを通し、 「溶媒屈折 率」 を 1. 33、 粒子透過性条件を 「透過」 、 粒子屈折率 2. 46、 「形状 」 を 「非球形」 とし、 測定レンジを〇. 1 33 以上 704. 〇 以下 、 測定時間を 30秒とした。
[0111] (平均一次粒子径)
実施例及び比較例で得られた正極活物質の平均一次粒子径を、 次のように 測定した。
3巳1\/1 (走査型電子顕微鏡) を用いて、 サンプル (粉体) を 1 000倍で 観察し、 口 5〇に相当する大きさの粒子を選択した。 次に、 口 50に応じて、 2 000倍以上 1 0000倍以下に倍率を変更して撮影した。 撮影倍率を例示 すると、 口5。が 7 程度の場合は 1 0000倍、 1 5 程度の場合は 5 000倍、 22 程度の場合は 2000倍にすると、 後述する画像解析ソ フ トウェアでの平均一次粒子径を求めるのに適した画像を撮影できる。
[0112] 撮影した画像を画像解析ソフトウェア (株式会社マウンテック社製 !\/!八〇 \¥0 2020/175506 35 卩(:170? 2020 /007578
- V I
Figure imgf000037_0001
4) を用いて、 選択した粒子の平均一次粒子径を求めた 。 なお、 この平均一次粒子径は、 体積分布での累積 5 0 %粒径 (1~1 6 7 〇 〇〇1径:円相当径) のことである。
また、 平均一次粒子径を算出するためには、 一次粒子を 3 0個以上測定し 、 その平均値を算出するのが好ましい。 測定個数が足りない場合は、 口5 0に 相当する大きさの粒子を追加選択して撮影し、 合計して一次粒子が 3 0個以 上になるように測定を行った。
[01 13] (結晶構造の同定)
実施例及び比較例で得られた芯材粒子について、 X 8口装置を使用して結 晶構造を、 次のように同定した。
Figure imgf000037_0002
(株) リガク製」 を用い、 下 記測定条件 1で測定を行って、 乂[¾ロパターンを得た。 統合粉末 X線解析ソ フトウェア 0 X 1- ( (株) リガク製) を用いて、 得られた乂[¾ロバターン について結晶相情報を決定した。
[01 14] 結晶相情報としては、 芯材粒子八に関しては、 空間群 _ 3 (〇 「 I
9 I 1^
Figure imgf000037_0003
の立方晶に帰属され、 8 8サイ トに 1_ 1、 1 6 ¢1 サイ トに IV! n、 金属元素 IV! 1、 金属元素 IV! 2、 そして過剰な !_ 丨分、 3 2 6 サイ トに〇が占有されていると仮定し、 各サイ トの席占有率及び原子変位パ ラメ—夕巳を 1 とし、 観測強度と計算強度の一致の程度を表す 、 3が 収束するまで繰り返し計算を行った。
—方、 芯材粒子巳に関しては、 空間群 _ 3〇1の六方晶に帰属され、 3 3 サイ トに 1_ 丨、 3匕サイ トに 1\1 丨、 〇〇、 IV! IV!元素そして過剰な 1_ 丨分 、 6〇サイ トに〇が占有されていると仮定し、 3 3、 3匕、 6〇サイ トの席 占有率及び原子変位パラメータ巳を 1 とし、 観測強度と計算強度の一致の程 度を表す[¾ 、 3が収束するまで繰り返し計算を行った。
観測強度と計算強度が充分に一致しているということは、 得られたサンプ ルが空間群に限定されず、 スピネル型の結晶構造である信頼性が高いことを 意味している。 [0115] =X R D測定条件 1 =
線源: C u K a (線焦点) 、 波長: 1. 54 1 836 A
操作軸: 26/6,測定方法:連続、 計数単位: c p s
開始角度 = 1 5. 0° 、 終了角度 = 1 20. 0° 、 積算回数: 1回 サンプリング幅: 0. 01 ° 、 スキヤンスピード: 1. 0° /m i n 電圧: 40 k V、 電流: 40mA
発散スリッ ト : 0. 2 mm、 発散縦制限スリッ ト : 1 0mm
散乱スリッ ト :開放、 受光スリッ ト :開放
オフセッ ト角度: 0°
ゴニオメーター半径: 285 mm、 光学系:集中法
アタッチメント : A S C-48
スリッ ト : D/t eX U l t r a用スリッ ト
検出器: D/t e X U l t r a
インシデントモノクロ : C B 0
N i -K/Sフイルター:無
回転速度: 50 r p m
[0116] (結晶子サイズ)
結晶子サイズを求めるための X線回折バターンの測定は、 C u _Ka線を 用いた X線回折装置 (ブルカー ·エイエックスエス株式会社製 D 8 ADV ANCE) を使用し、 下記測定条件 2で測定を行った。
回折角 20= 1 0° 以上 1 20° 以下の範囲より得られた X線回折バター ンのピークについて解析ソフトウェア (製品名 「T o p a s Ve r s i o n 3」 ) を用いて解析することにより、 サンプルの結晶子サイズ及び歪みを 求めた。
[0117] 結晶構造は、 芯材粒子 Aに関しては、 空間群 F d _3m (O r i g i n C h o i c e 2) の立方晶に帰属され、 その 8 aサイ トに L iが存在し、 1 6 dサイ トにMn、 金属元素 M 1、 金属元素 M2、 過剰な L i分が存在し、
32eサイ トを〇が占有していると仮定し、 パラメータ B e q.を 1と固定し、 32 eサイ トの 0の分率座標と席占有率を変数として、 観測強度と計算強度 の一致の程度を表す指標 Rw p< 1 0. 0、 GO F<2. 8を目安に収束す るまで繰り返し計算を行った。
—方、 芯材粒子 Bに関しては、 空間群 R— 3 m (O r i g i n C h o i c e 2) の六方晶に帰属され、 3 aサイ トに L i、 3 bサイ トに N i、 C〇 、 Mn、 M元素そして過剰な L i分、 6 cサイ トに〇が占有されていると仮 定し、 3 a、 3 bサイ トの席占有率及び原子変位パラメータ Bを 1、 6 cサ イ トの分率座標と席占有率を可変とし、 観測強度と計算強度の一致の程度を 表す Rw p、 GO Fが収束するまで繰り返し計算を行った。
なお、 結晶子サイズはガウス関数を用いて解析を行い算出した。
[0118] =XRD測定条件 2 =
線源: C u K a、 操作軸: 26/6, 測定方法:連続、 計数単位: c p s 開始角度: 1 0° 、 終了角度 = 1 20°
D e t e c t o r : PS D
D e t e c t o r T y p e : VANT EC— 1
H i g h Vo l t a g e : 5585 V
D i s c r . L owe r L e v e l : 0. 25 V
D i s c r. W i n d ow W i d t h : 0. 1 5 V
G r i d L owe r L e v e l : 0. 075 V
G r i d W i n d ow W i d t h : 0. 524V
F l o o d F i e l d Co r r e c t i o n : D i s a b l e d
P r i m a r y r a d i u s : 250mm
S e c o n d a r y r a d i u s : 250mm
R e c e i v i n g S l i t W i d t h : 0. 1 436626 mm
D i v e r g e n c e S I i t : 0. 3 °
F i I ame n t L e n g t h : 1 2mm
S am p l e L e n g t h : 25 mm
R e c i e v i n g S I i t L e n g t h : 1 2mm P r i m a r y S o l I e r s : 2. 623
S e c o n d a r y S o l I e r s : 2. 623°
L o r e n t z i a n, 1 /Co s : 0 004933548 T h 電圧: 40 k V、 電流: 35 m A
[0119] <固体型リチウムニ次電池の作製と評価>
実施例及び比較例で作製した正極活物質と固体電解質とを用いて正極合剤 を作製し、 固体型リチウムニ次電池 (固体 G r/正極活物質セル) を作製し て、 電池特性評価を行った。
[0120] (材料)
正極活物質として実施例及び比較例で作製したものを用い、 負極活物質と してグラフアイ ト (G r) 粉末を用い、 固体電解質粉末としてアルジロダイ 卜型構造を持つ硫化物固体電解質を用いた。
正極合剤粉末は、 実施例及び比較例で作製した正極活物質、 固体電解質粉 末及び導電材 (力ーボン系材料) 粉末を 60質量% : 30質量% : 1 0質量 %の割合で乳鉢混合することで調整した。
負極合剤粉末は、 グラフアイ ト (G r) 粉末と固体電解質粉末を 50質量 % : 50質量%の割合で乳鉢混合することで調整した。
[0121] (固体型リチウムニ次電池の作製)
正極合剤粉末 (サンプル) 1 3 m gを密閉型セルの絶縁筒内 (09 mm) に充填して、 368M P aで一軸成型することで正極合剤粉末ペレッ トを作 製した。 得られた正極合剤粉末ペレッ トを密閉型セルの絶縁筒内 (ø 1 0.
5 mm) に移し、 正極合剤粉末ペレッ ト上に固体電解質粉末 5 Om gを充填 した。
次に、 正極合剤粉末ペレッ トとともに、 固体電解質粉末を 1 84 M P aで —軸成型した。 更に、 前記固体電解質の上に 1 〇m gの負極合剤粉末を充填 し、 55 1 MP aで一軸成型し、 加圧ネジで締め込み、 正極層、 負極層、 及 び固体電解質層を備えた固体電池 (固体型リチウムニ次電池) を作製した。
[0122] (電池特性評価) \¥0 2020/175506 39 卩(:170? 2020 /007578
実施例 1〜 4の固体電池については、 1サイクル目に充電終止電圧 5 . 0 Vまで〇. 1 〇で定電流充電を行った。 その後、 5 . 〇 で電流値が 0 . 0 1 〇になるまで定電圧充電を行った。 5 . 0 Vに到達するまで定電流充電で 得られた容量を〇〇容量とした。 〇〇容量を 1サイクル目の全充電容量で除 した値に 1 0 0を乗じた値を充電特性とした。 比較例 1の充電特性を実施例 1〜 4の充電特性から引いた値を、 比較例 1の充電特性で除した値に 1 0 0 を乗じ、 それによって得られた値を充電特性改善指数とし、 表 1 に記載した 。 前記充電特性改善指数は、 充電時におけるリチウムイオンの移動性 (脱離 性) の改善率を示しており、 当該充電特性改善指数により、 急速充電につい て評価することができる。 実施例 5〜 7の固体電池については、 1サイクル 目に充電終止電圧 4 . 5 Vまで〇. 3〇で定電流充電を行った。 その後、 4 . 5 Vで電流値が〇. 0 1 〇になるまで定電圧充電を行った。 比較例 2の充 電特性に対して実施例 1〜 4と同様の方法で実施例 5〜 7の充電特性改善指 数を算出し、 表 1 に記載した。
[0123]
〇 2020/175506 40 卩(:170? 2020 /007578
[表 1 ]
Figure imgf000042_0001
[0124] 表 1 に示す結果から明らかなとおり、 各実施例で得られた正極活物質を用 いた固体電池は、 比較例よりも充電特性が良好であり、 急速充電に適したも のであることが判る。 \¥0 2020/175506 41 卩(:170? 2020 /007578
なお、 図 3に、 実施例 3の正極活物質についての X八 3測定によって得 られた動径分布関数を示す。
産業上の利用可能性
[0125] 以上、 詳述したとおり、 本発明によれば、 充電時におけるリチウムイオン の脱離性が改善された活物質が提供される。 したがって本発明の活物質を用 いることで、 固体電池の急速充電が可能となる。

Claims

\¥02020/175506 42 卩(:170? 2020 /007578 請求の範囲
[請求項 1] 固体電池に用いられる活物質であって、
X線吸収微細構造の測定によって得られる動径分布関数において、 〇. 1 45门〇1以上〇. 1 85门 01以下の範囲にピークが少なくとも —つ観察されるとともに、 〇. 280门 以上〇. 3 1 0门〇1以下の 範囲にピークが少なくとも一つ観察され、
レーザー回折散乱式粒度分布測定法により測定して得られる体積粒 度分布測定による前記活物質のモード径及び口 10 (それぞれ 「モー ド径」 、 「口 10」 と称する。 ) に関し、 モード径に対する、 モード 径と口】〇との差の絶対値の百分率である (丨 モード径一口】〇 丨 /モ —ド径) X 1 00の値が、 0 %く ( (丨 モード径一口 1。 丨 /モード 径) X I 〇〇) £58. 0%を満たす活物質。
[請求項 2] 結晶子サイズが 80 n 以上 490 n 以下であり、
走査型電子顕微鏡により得られる画像から算出した平均一次粒子径 に対する前記結晶子サイズの比率である結晶子サイズ/平均 _次粒子 径の値が 0. 01以上 0. 50以下である請求項 1 に記載の活物質。
[請求項 3] レーザー回折散乱式粒度分布測定法により測定して得られる体積粒 度分布測定による前記活物質の口50 ( 「050」 と称する。 ) が〇.
5 以上 1 5. 〇 以下であり、
モード径に対する、 モード径と口 5〇との差の絶対値の百分率であ る (丨 モード径ーロ50 丨 /モ_ド径) X 1 00の値が、 0%£ ( (
I モード径 _口50 I /モ_ド径) X 1 00) £25. 0%を満たし 口50に対する、 走査型電子顕微鏡により得られる画像から算出し
Figure imgf000044_0001
1以上 0. 99以下である請求項 1又は 2に記載の活物質。
[請求項 4] 芯材粒子と、 前記芯材粒子の表面に配置された被覆層とを有し、 前 記芯材粒子がリチウム金属複合酸化物を含み、 前記リチウム金属複合 \¥0 2020/175506 43 卩(:170? 2020 /007578
酸化物が、 層状岩塩型構造の化合物であるか又はスピネル型構造の化 合物である請求項 1ないし 3のいずれか一項に記載の活物質。
[請求項 5] 請求項 1ないし 4のいずれか一項に記載の活物質と、 固体電解質と を含む正極合剤。
[請求項 6] 前記固体電解質が、 リチウム (!_ 丨) 元素、 リン ( ) 元素及び硫 黄 (3) 元素を含み、 且つリチウムイオン伝導性を有する請求項 5に 記載の正極合剤。
[請求項 7] 前記固体電解質が、 アルジロダイ ト型構造の結晶相を有する請求項
6に記載の正極合剤。
[請求項 8] 正極層、 負極層、 及び固体電解質層を備えた固体電池において、 前記正極層が、 請求項 1ないし 4のいずれか一項に記載の活物質を 含む固体電池。
PCT/JP2020/007578 2019-02-27 2020-02-26 活物質、それを用いた正極合剤及び固体電池 WO2020175506A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021502292A JP6940716B2 (ja) 2019-02-27 2020-02-26 活物質、それを用いた正極合剤及び固体電池
CN202080012950.XA CN113396495B (zh) 2019-02-27 2020-02-26 活性物质、使用了该活性物质的正极合剂和固体电池
US17/431,907 US20220149354A1 (en) 2019-02-27 2020-02-26 Active material, positive electrode mixture using same, and solid-state battery
KR1020217027647A KR102376785B1 (ko) 2019-02-27 2020-02-26 활물질, 그것을 사용한 정극 합제 및 고체 전지
EP20762064.2A EP3933979A4 (en) 2019-02-27 2020-02-26 ACTIVE MATERIAL, POSITIVE ELECTRODE MIXTURE WITH IT AND SOLID STATE BATTERY
US17/987,974 US20230074796A1 (en) 2019-02-27 2022-11-16 Active Material, Positive Electrode Mixture Using Same, And Solid-State Battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019034984 2019-02-27
JP2019-034984 2019-02-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/431,907 A-371-Of-International US20220149354A1 (en) 2019-02-27 2020-02-26 Active material, positive electrode mixture using same, and solid-state battery
US17/987,974 Continuation US20230074796A1 (en) 2019-02-27 2022-11-16 Active Material, Positive Electrode Mixture Using Same, And Solid-State Battery

Publications (1)

Publication Number Publication Date
WO2020175506A1 true WO2020175506A1 (ja) 2020-09-03

Family

ID=72239921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007578 WO2020175506A1 (ja) 2019-02-27 2020-02-26 活物質、それを用いた正極合剤及び固体電池

Country Status (6)

Country Link
US (2) US20220149354A1 (ja)
EP (1) EP3933979A4 (ja)
JP (1) JP6940716B2 (ja)
KR (1) KR102376785B1 (ja)
CN (1) CN113396495B (ja)
WO (1) WO2020175506A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020140839A (ja) * 2019-02-27 2020-09-03 三井金属鉱業株式会社 活物質、それを用いた正極合剤及び固体電池
JP2020140837A (ja) * 2019-02-27 2020-09-03 三井金属鉱業株式会社 活物質、それを用いた正極合剤及び固体電池
EP4122890A1 (en) * 2021-07-23 2023-01-25 Samsung SDI Co., Ltd. Positive active material for an all-solid-state battery, method of preparing the same, and all-solid-state battery
US11569503B2 (en) 2016-07-20 2023-01-31 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
WO2023140288A1 (ja) * 2022-01-20 2023-07-27 住友金属鉱山株式会社 被覆付きリチウム二次電池用正極活物質、リチウム二次電池
US11742482B2 (en) 2016-07-20 2023-08-29 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210105254A (ko) * 2020-02-18 2021-08-26 삼성에스디아이 주식회사 음극 및 이를 포함하는 전고체 이차전지
CN116799337B (zh) * 2023-08-21 2024-01-23 深圳海辰储能控制技术有限公司 正极片、补钠颗粒分布均匀的确定方法及储能装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090081554A1 (en) 2005-07-01 2009-03-26 National Institute For Materials Science All-solid lithium battery
JP2010080407A (ja) * 2008-09-29 2010-04-08 Sony Corp 正極活物質、正極および非水電解質二次電池に関する。
JP2011138718A (ja) * 2009-12-29 2011-07-14 Sony Corp 正極活物質、正極および非水電解質二次電池
JP2016170973A (ja) 2015-03-12 2016-09-23 トヨタ自動車株式会社 活物質複合粒子及びリチウム電池
WO2017150504A1 (ja) * 2016-02-29 2017-09-08 三井金属鉱業株式会社 スピネル型リチウムマンガン含有複合酸化物
WO2018012522A1 (ja) * 2016-07-14 2018-01-18 三井金属鉱業株式会社 全固体型リチウム二次電池用正極活物質
US20180219229A1 (en) 2017-02-02 2018-08-02 Toyota Jidosha Kabushiki Kaisha Composite active material particle, cathode, all-solid-state lithium ion battery, and methods for producing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200423458A (en) * 2002-11-29 2004-11-01 Seimi Chem Kk Method for preparing positive electrode active material for lithium secondary cell
JP4586991B2 (ja) * 2006-03-24 2010-11-24 ソニー株式会社 正極活物質およびその製造方法、並びに二次電池
JP2011187435A (ja) * 2010-02-09 2011-09-22 Sanyo Electric Co Ltd 非水電解質二次電池
JP5500158B2 (ja) * 2011-12-05 2014-05-21 トヨタ自動車株式会社 固体電池用電極の製造方法
JPWO2014007357A1 (ja) * 2012-07-06 2016-06-02 住友化学株式会社 リチウム複合金属酸化物、正極活物質、正極および非水電解質二次電池
US9391313B2 (en) * 2013-03-04 2016-07-12 Mitsui Mining & Smelting Co., Ltd. Lithium metal composite oxide powder
JP6083406B2 (ja) * 2014-03-19 2017-02-22 トヨタ自動車株式会社 活物質粉体及びその製造方法
JP6090249B2 (ja) * 2014-07-10 2017-03-08 トヨタ自動車株式会社 複合活物質及びその製造方法
JP6945382B2 (ja) * 2016-09-08 2021-10-06 出光興産株式会社 硫化物固体電解質
EP3671916A4 (en) * 2017-08-14 2021-04-28 Mitsui Mining & Smelting Co., Ltd. POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM SOLID STATE SECONDARY BATTERIES
EP3859841A4 (en) * 2018-09-27 2021-11-24 Mitsui Mining & Smelting Co., Ltd. ACTIVE MATERIAL, AND MIXTURE OF POSITIVE ELECTRODE AND SOLID STATE BATTERY USING THIS ACTIVE MATERIAL

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090081554A1 (en) 2005-07-01 2009-03-26 National Institute For Materials Science All-solid lithium battery
JP2010080407A (ja) * 2008-09-29 2010-04-08 Sony Corp 正極活物質、正極および非水電解質二次電池に関する。
JP2011138718A (ja) * 2009-12-29 2011-07-14 Sony Corp 正極活物質、正極および非水電解質二次電池
JP2016170973A (ja) 2015-03-12 2016-09-23 トヨタ自動車株式会社 活物質複合粒子及びリチウム電池
WO2017150504A1 (ja) * 2016-02-29 2017-09-08 三井金属鉱業株式会社 スピネル型リチウムマンガン含有複合酸化物
WO2018012522A1 (ja) * 2016-07-14 2018-01-18 三井金属鉱業株式会社 全固体型リチウム二次電池用正極活物質
US20180219229A1 (en) 2017-02-02 2018-08-02 Toyota Jidosha Kabushiki Kaisha Composite active material particle, cathode, all-solid-state lithium ion battery, and methods for producing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAKAO, AIKO; SAKUDA, ATSUSHI; TAKEUCHI, TOMONARI; OWADA, MASAHIRO; YAMANAKA, KEISUKE; OHTA, TOSHIAKI: "2G20 Surface Analysis for thin coating layer or LiNi1/3Co1/3Mn1/302 power for cathode by XAFS and XPS", THE 57TH BATTERY SYMPOSIUM IN JAPAN; CHIBA; NOVEMBER 29 - DECEMBER 1, 2016, vol. 57, 28 November 2016 (2016-11-28), pages 438, XP009529701 *
See also references of EP3933979A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11569503B2 (en) 2016-07-20 2023-01-31 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
US11742482B2 (en) 2016-07-20 2023-08-29 Samsung Sdi Co., Ltd. Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
JP2020140839A (ja) * 2019-02-27 2020-09-03 三井金属鉱業株式会社 活物質、それを用いた正極合剤及び固体電池
JP2020140837A (ja) * 2019-02-27 2020-09-03 三井金属鉱業株式会社 活物質、それを用いた正極合剤及び固体電池
EP4122890A1 (en) * 2021-07-23 2023-01-25 Samsung SDI Co., Ltd. Positive active material for an all-solid-state battery, method of preparing the same, and all-solid-state battery
WO2023140288A1 (ja) * 2022-01-20 2023-07-27 住友金属鉱山株式会社 被覆付きリチウム二次電池用正極活物質、リチウム二次電池

Also Published As

Publication number Publication date
EP3933979A1 (en) 2022-01-05
US20230074796A1 (en) 2023-03-09
JP6940716B2 (ja) 2021-09-29
CN113396495B (zh) 2022-06-07
KR102376785B1 (ko) 2022-03-21
US20220149354A1 (en) 2022-05-12
KR20210112393A (ko) 2021-09-14
JPWO2020175506A1 (ja) 2021-09-13
EP3933979A4 (en) 2022-07-27
CN113396495A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
WO2020175506A1 (ja) 活物質、それを用いた正極合剤及び固体電池
JP6849812B2 (ja) 全固体型リチウム二次電池用正極活物質
JP7028701B2 (ja) スピネル型リチウムマンガン含有複合酸化物
KR101637412B1 (ko) 리튬 금속 복합 산화물 분체
CN109478645B (zh) 全固体型锂二次电池用正极活性物质
JP6864104B2 (ja) 全固体型リチウム二次電池用正極活物質
KR101487468B1 (ko) 스피넬형 리튬 망간 니켈 함유 복합 산화물
US20210234158A1 (en) Active material, and positive electrode mixture and solid-state battery that use said active material
JP4919147B2 (ja) 非水系リチウム二次電池用正極活物質の製造方法
JP7348728B2 (ja) 活物質、それを用いた正極合剤及び固体電池
JP4172024B2 (ja) リチウム二次電池用正極活物質とその製造方法並びに非水系リチウム二次電池
JP2006318928A (ja) リチウム二次電池用正極活物質及び非水系リチウム二次電池
JP2020135949A (ja) 活物質、それを用いた正極合剤及び固体電池
JP2020140837A (ja) 活物質、それを用いた正極合剤及び固体電池
JP2020140839A (ja) 活物質、それを用いた正極合剤及び固体電池
JP2020135950A (ja) 活物質、それを用いた正極合剤及び固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502292

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217027647

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020762064

Country of ref document: EP

Effective date: 20210927