JP6945382B2 - 硫化物固体電解質 - Google Patents

硫化物固体電解質 Download PDF

Info

Publication number
JP6945382B2
JP6945382B2 JP2017153602A JP2017153602A JP6945382B2 JP 6945382 B2 JP6945382 B2 JP 6945382B2 JP 2017153602 A JP2017153602 A JP 2017153602A JP 2017153602 A JP2017153602 A JP 2017153602A JP 6945382 B2 JP6945382 B2 JP 6945382B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
sulfide solid
lithium
sulfide
crystal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017153602A
Other languages
English (en)
Other versions
JP2018045997A (ja
JP2018045997A5 (ja
Inventor
太 宇都野
太 宇都野
恒太 寺井
恒太 寺井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Publication of JP2018045997A publication Critical patent/JP2018045997A/ja
Publication of JP2018045997A5 publication Critical patent/JP2018045997A5/ja
Priority to JP2021149180A priority Critical patent/JP7187637B2/ja
Application granted granted Critical
Publication of JP6945382B2 publication Critical patent/JP6945382B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Description

本発明は、硫化物固体電解質、電極合材及びリチウムイオン電池に関する。
近年におけるパソコン、ビデオカメラ、及び携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。該電池の中でも、エネルギー密度が高いという観点から、リチウムイオン電池が注目を浴びている。
現在市販されているリチウムイオン電池は、可燃性の有機溶媒を含む電解液が使用されているため、短絡時の温度上昇を抑える安全装置の取り付けや短絡防止のための構造・材料面での改善が必要となる。これに対し、電解液を固体電解質に変えて、電池を全固体化したリチウムイオン電池は、電池内に可燃性の有機溶媒を用いないので、安全装置の簡素化が図れ、製造コストや生産性に優れると考えられている。
リチウムイオン電池に用いられる固体電解質として、硫化物固体電解質が知られている。硫化物固体電解質の結晶構造としては種々のものが知られているが、その1つとしてアルジロダイト(Argyrodite)型結晶構造がある(特許文献1〜5、非特許文献1〜3)。
アルジロダイト型結晶構造は、安定性が高い結晶であり、また、リチウムイオン伝導度の高いものも存在する。
特表2010−540396号公報 国際公開WO2015/011937 国際公開WO2015/012042 特開2016−24874号公報 国際公開WO2016/104702
Angew.chem Vol.47(2008),No.4,P.755−758 Phys.Status.Solidi Vol.208(2011),No.8,P.1804−1807 Solid State Ionics Vol.221(2012)P.1−5
本発明の目的の1つは、ハロゲン元素を多く含むことでイオン伝導度が高い、アルジロダイト型結晶構造を含む、新規な硫化物固体電解質を提供することである。
本発明の目的の1つは、製造時の塊状化を抑制できる、アルジロダイト型結晶構造を含む硫化物固体電解質を提供することである。
本発明の一実施形態によれば、リチウムと、リンと、硫黄と、ハロゲン元素から選択される1種以上の元素Xと、を含み、アルジロダイト型結晶構造を含み、前記リチウムのリンに対するモル比a(Li/P)、前記硫黄のリンに対するモル比b(S/P)及び前記元素Xのリンに対するモル比c(X/P)が、下記式(1)〜(3)を満たす、硫化物固体電解質が提供される。
5.0≦a<7.3 (1)
0.70≦a−b<1.0 (2)
7.0<a+c≦7.3 (3)
(式中、b>0且つc>0を満たす。)
本発明の一実施形態によれば、ハロゲン元素を多く含むことでイオン伝導度が高い、アルジロダイト型結晶構造を含む硫化物固体電解質を提供することができる。
また、本発明の一実施形態によれば、製造時の塊状化を抑制できる、アルジロダイト型結晶構造を含む硫化物固体電解質を提供することができる。
実施例1で得た中間体のX線回折パターンである。 回収直後の硫化物固体電解質の外観写真である。 実施例1で得た硫化物固体電解質のX線回折パターンである。 比較例7の混合粉末のX線回折パターンである。
本発明の一実施形態に係る硫化物固体電解質は、リチウムと、リンと、硫黄と、ハロゲン元素から選択される1種以上の元素Xと、を含む。そして、リチウムのリンに対するモル比a(Li/P)、硫黄のリンに対するモル比b(S/P)及び元素Xのリンに対するモル比c(X/P)が、下記式(1)〜(3)を満たすことを特徴とする。
5.0≦a<7.3 (1)
0.70≦a−b<1.0 (2)
7.0<a+c≦7.3 (3)
(式中、b>0且つc>0を満たす。)
一般的なアルジロダイト結晶を含む硫化物固体電解質の化学量論組成は、Li7−xPS6−xで表される。本実施形態の硫化物固体電解質は、一般的な組成と異なる組成を有する。Sの組成ずれをα、Xの組成ずれをβとした場合、本実施形態の硫化物固体電解質の組成はLi7−xPS6−x+αx+βで表される。この場合において、上記式(2)のa−bは、a−b=7−x−(6−x+α)=1−αとなり、Sの組成ずれと相関する値であり、上記式(3)のa+cは、a+c=7−x+x+β=7+βとなり、Xの組成ずれと相関する値である。
式(2)の0.70≦a−b<1.0は、0.70≦1−α<1.0となり、さらに式を変形すると0<α≦0.30となる。即ち、本実施形態の硫化物固体電解質は、一般的なアルジロダイト結晶を含む硫化物固体電解質よりも、S(硫黄)を過剰に含む硫化物固体電解質である。
また、式(3)の7.0<a+c≦7.3は、7.0<7+β≦7.3となり、さらに式を変形すると0<β≦0.3となる。即ち、本実施形態の硫化物固体電解質は、一般的なアルジロダイト結晶を含む硫化物固体電解質よりも、X(ハロゲン)を過剰に含む硫化物固体電解質である。
ハロゲン元素としては、F、Cl、Br、I等が挙げられる。
上記式(2)は、0.85≦a−b<1.0であることが好ましく、0.9≦a−b<1.0であることがより好ましい。
上記式(3)は、7.0<a+c≦7.15であることが好ましく、7.0<a+c≦7.1であることがより好ましい。
本実施形態の硫化物固体電解質では、上記式(1)、上記式(2)が0.70≦a−b<1.0及び上記式(3)が7.0<a+c≦7.3の場合には、イオン伝導度が5.0mS/cm以上である。上記式(1)、上記式(2)が0.85≦a−b<1.0及び上記式(3)が7.0<a+c≦7.15の場合には、イオン伝導度が5.5mS/cm以上と、より高くすることができる。さらに、上記式(1)、上記式(2)が0.9≦a−b<1.0及び上記式(3)が7.0<a+c≦7.1の場合には、イオン伝導度が6.5mS/cm以上と、さらに高くすることができる。
硫化物固体電解質における各元素のモル比や組成は、ICP発光分析法で測定することができる。ICP発光分析法の測定方法は、実施例に記載する。
各元素のモル比は、原料における各元素の含有量を調製することにより制御できる。
ハロゲン元素のイオン半径が小さいほどアルジロダイト型結晶構造中に含まれるハロゲン元素が多くなり、イオン伝導度が高くなることから、リチウムのリンに対するモル比aは、ハロゲン元素のイオン半径により調整することが好ましい。ハロゲン元素(X)は、例えば、イオン半径の大きさによりF、Cl(X)、Br(X)及びI(X)の3種に分類できる。
元素X全体において、元素Xの占めるモル比が最も大きい場合、上記式(1)は、5.1≦a≦6.6であることが好ましく、5.2≦a≦6.4であることがより好ましい。また、元素Xの占めるモル比が最も大きい場合、上記式(1)は、5.2≦a≦6.8であることが好ましく、5.3≦a≦6.6であることがより好ましい。また、元素Xの占めるモル比が最も大きい場合、上記式(1)は、5.3≦a≦7.0であることが好ましく、5.4≦a≦6.8であることがより好ましい。
本実施形態の硫化物固体電解質は、アルジロダイト型結晶構造を含む。アルジロダイト型結晶構造を含むことは、CuKα線を使用した粉末X線回折測定において、2θ=25.2±0.5deg及び29.7±0.5degに回折ピークを有することで確認できる。
2θ=25.2±0.5deg及び29.7±0.5degの回折ピークは、アルジロダイト型結晶構造に由来するピークである。アルジロダイト型結晶構造は、PS 3−を主たる骨格の単位構造とし、その周辺にリチウム元素(Li)で囲まれた硫黄元素(S)やハロゲン元素(X)が配置されている構造である。
アルジロダイト型結晶構造の回折ピークは、例えば、2θ=15.3±0.5deg、17.7±0.5deg、31.1.±0.5deg、44.9±0.5deg、47.7±0.5degにも現れることがある。本実施形態の硫化物固体電解質は、これらのピークを有していてもよい。
なお、本実施形態において回折ピークの位置は、中央値をAとした場合、A±0.5deg又はA±0.4degで判定しているが、A±0.3degであることが好ましい。例えば、上述した2θ=25.2±0.5degの回折ピークの場合、中央値Aは25.2degであり、2θ=25.2±0.3degの範囲に存在することが好ましい。本実施形態における他のすべての回折ピーク位置の判定についても同様である。
アルジロダイト型結晶構造としては、例えば、非特許文献1〜3、特表2010−540396号公報、特開2011−096630号公報、特開2013−211171号公報に開示されている結晶構造を挙げることができる。
本実施形態の硫化物固体電解質は、アルジロダイト型結晶構造以外の結晶構造を含んでいてもよい。一般に硫化物固体電解質中には、多種の結晶成分及び非晶質成分が混在している。結晶構造を含む硫化物固体電解質は、X線回折測定においてX線回折パターンに、硫化物固体電解質由来のピークが観測される硫化物固体電解質である。また、残留原料が含まれている場合も考えられる。
本実施形態の硫化物固体電解質は、上記リチウム、リン、硫黄及び元素Xの他に、Si、Ge、Sn、Pb、B、Al、Ga、As、Sb、Bi等の元素を含んでいてもよい。また、カルコゲン元素(酸素(O)、セレン(Se)、テルル(Te)等)を含んでいてもよい。硫化物固体電解質が、Si、Ge、Sn、Pb、B、Al、Ga、As、Sb及びBiからなる群より選択される1以上の元素Mを含む場合、上記(1)〜(3)における各元素のモル比は、元素Mとリンの合計に対するモル比とする。例えば、リチウムのリンに対するモル比a(Li/P)は、Li/(P+M)とする。
本実施形態の硫化物固体電解質は、例えば、下記式(4)で表される組成を満たすことが好ましい。
Li(P1−z)S (4)
(式中、Mは、Si、Ge、Sn、Pb、B、Al、Ga、As、Sb及びBiからなる群より選択される1以上の元素であり、Xは、F、Cl、Br及びIからなる群から選択される1以上の元素である。a〜cは上記式(1)〜(3)を満たす。zは0≦z≦0.3である。)
式(4)において、X全体に対するF及びClの占めるモル比が最も大きい場合、aは、5.1≦a≦6.6であることが好ましく、5.2≦a≦6.4であることがより好ましい。また、Brの占めるモル比が最も大きい場合、aは、5.2≦a≦6.8であることが好ましく、5.3≦a≦6.6であることがより好ましい。Iの占めるモル比が最も大きい場合、aは、5.3≦a≦7.0であることが好ましく、5.4≦a≦6.8であることがより好ましい。
式(4)のXにおいて、ハロゲン元素を2種以上含む場合、各元素の含有比は限定されない。
zは0がより好ましい。
本実施形態の硫化物固体電解質は、CuKα線を使用した粉末X線回折において、2θ=17.6±0.4deg及び2θ=18.1±0.4degに回折ピーク(アルジロダイト型結晶構造に起因する回折ピークではない)を有しないか、有する場合には下記式(5)を満たすことが好ましい。
0<I/I<0.05 (5)
(式中、Iは2θ=17.6±0.4deg及び2θ=18.1±0.4degのうちアルジロダイト型結晶構造の回折ピークではないものの回折ピークの強度を表し、Iは2θ=29.7±0.5degの回折ピークの強度を表す。)
で特定される結晶構造(以下、LiPS結晶構造という。)は、低イオン伝導性であるため、固体電解質のイオン伝導度を低下させる。上記式(5)は、アルジロダイト型結晶構造に比して、LiPS結晶構造の量が相対的に少ないことを表す。式(5)は、0<I/I<0.03であることがより好ましく、0<I/I<0.02であることがさらに好ましい。
なお、2θ=17.6±0.4deg及び2θ=18.1±0.4degのいずれかは、通常、比較的ピーク強度の強いアルジロダイト型結晶構造の回折ピークと重なるため測定できない場合がある。従って、2θ=17.6±0.4deg及び2θ=18.1±0.4degのうちアルジロダイト型結晶構造の回折ピークではないものとは、通常、観測されるこれら2つのピークのうち強度の弱い方を意味する。なお、ノイズがピークのように観察されるケースもある。かかる場合にこのノイズをIと仮定しても式(5)を満たすことはいうまでもない。
本実施形態の硫化物固体電解質は、後述する原料の混合物に、機械的応力を加えて反応させることにより、中間体を作製する工程と、中間体を熱処理して結晶化する工程を有する製造方法により作製できる。
使用する原料は、製造する硫化物固体電解質が必須として含む元素、すなわち、リチウム、リン、硫黄及びハロゲン元素Xを全体として含む2種以上の化合物又は単体を組み合わせて使用する。
リチウムを含む原料としては、例えば、硫化リチウム(LiS)、酸化リチウム(LiO)、炭酸リチウム(LiCO)等のリチウム化合物、及びリチウム金属単体等が挙げられる。中でも、リチウム化合物が好ましく、硫化リチウムがより好ましい。
上記硫化リチウムは、制限なく使用できるが、高純度のものが好ましい。硫化リチウムは、例えば、特開平7−330312号公報、特開平9−283156号公報、特開2010−163356号公報、特開2011−84438号公報に記載の方法により製造することができる。
具体的には、炭化水素系有機溶媒中で水酸化リチウムと硫化水素とを70℃〜300℃で反応させて、水硫化リチウムを生成し、次いでこの反応液を脱硫化水素化することにより硫化リチウムを合成できる(特開2010−163356号公報)。
また、水溶媒中で水酸化リチウムと硫化水素とを10℃〜100℃で反応させて、水硫化リチウムを生成し、次いでこの反応液を脱硫化水素化することにより硫化リチウムを合成できる(特開2011−84438号公報)。
リンを含む原料としては、例えば、三硫化二リン(P)、五硫化二リン(P)等の硫化リン、リン酸ナトリウム(NaPO)等のリン化合物、及びリン単体等が挙げられる。これらの中でも、硫化リンが好ましく、五硫化二リン(P)がより好ましい。五硫化二リン(P)等のリン化合物、リン単体は、工業的に製造され、販売されているものであれば、限定なく使用することができる。
ハロゲン元素Xを含む原料としては、例えば、下記式(6)で表される、ハロゲン化合物を含むことが好ましい。
−X (6)
式(6)中、Mは、ナトリウム(Na)、リチウム(Li)、ホウ素(B)、アルミニウム(Al)、ケイ素(Si)、リン(P)、硫黄(S)、ゲルマニウム(Ge)、ヒ素(As)、セレン(Se)、スズ(Sn)、アンチモン(Sb)、テルル(Te)、鉛(Pb)、ビスマス(Bi)、又はこれらの元素に酸素元素、硫黄元素が結合したものを示し、リチウム(Li)又はリン(P)が好ましく、リチウム(Li)がより好ましい。
Xは、フッ素(F)、塩素(Cl)、臭素(Br)、及びヨウ素(I)から選択されるハロゲン元素である。
また、lは1又は2の整数であり、mは1〜10の整数である。mが2〜10の整数の場合、すなわち、Xが複数存在する場合は、Xは同じであってもよいし、異なっていてもよい。例えば、後述するSiBrClは、mが4であって、XはBrとClという異なる元素からなるものである。
上記式(6)で表されるハロゲン化合物としては、具体的には、NaI、NaF、NaCl、NaBr等のハロゲン化ナトリウム;LiF、LiCl、LiBr、LiI等のハロゲン化リチウム;BCl、BBr、BI等のハロゲン化ホウ素;AlF、AlBr、AlI、AlCl等のハロゲン化アルミニウム;SiF、SiCl、SiCl、SiCl、SiBr、SiBrCl、SiBrCl、SiI等のハロゲン化ケイ素;PF、PF、PCl、PCl、POCl、PBr、POBr、PI、PCl、P等のハロゲン化リン;SF、SF、SF、S10、SCl、SCl、SBr等のハロゲン化硫黄;GeF、GeCl、GeBr、GeI、GeF、GeCl、GeBr、GeI等のハロゲン化ゲルマニウム;AsF、AsCl、AsBr、AsI、AsF等のハロゲン化ヒ素;SeF、SeF、SeCl、SeCl、SeBr、SeBr等のハロゲン化セレン;SnF、SnCl、SnBr、SnI、SnF、SnCl、SnBr、SnI等のハロゲン化スズ;SbF、SbCl、SbBr、SbI、SbF、SbCl等のハロゲン化アンチモン;TeF、Te10、TeF、TeCl、TeCl、TeBr、TeBr、TeI等のハロゲン化テルル;PbF、PbCl、PbF、PbCl、PbBr、PbI等のハロゲン化鉛;BiF、BiCl、BiBr、BiI等のハロゲン化ビスマス等が挙げられる。
中でも、塩化リチウム(LiCl)、臭化リチウム(LiBr)、ヨウ化リチウム(LiI)等のハロゲン化リチウム、五塩化リン(PCl)、三塩化リン(PCl)、五臭化リン(PBr)、三臭化リン(PBr)等のハロゲン化リンが好ましく挙げられる。中でも、LiCl、LiBr、LiI等のハロゲン化リチウム、PBrが好ましく、LiCl、LiBr、LiI等のハロゲン化リチウムがより好ましく、LiClとLiBrがさらに好ましい。
ハロゲン化合物は、上記の化合物の中から一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。すなわち上記の化合物の少なくとも1つを用いることができる。また、この場合において、ハロゲン元素は、上記のハロゲン元素の中から一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
本実施形態では、リチウム化合物、リン化合物、及びハロゲン化合物を含み、該リチウム化合物、及びリン化合物の少なくとも一方が硫黄元素を含むことが好ましく、硫化リチウムと硫化リンとハロゲン化リチウムとの組合せがより好ましく、硫化リチウムと五硫化二リンとハロゲン化リチウムの組合せが更に好ましい。
本実施形態では、硫化物固体電解質に含まれる硫黄の元素比が高い。これにより、イオン伝導度が高い硫化物固体電解質が得られる。また、硫化物固体電解質に含まれる硫黄の元素比が高いことで、ハロゲン元素の元素比が高い場合でも焼結時に塊状化しにくい硫化物固体電解質が得られる。
硫化物固体電解質の元素組成を調整するためには、例えば、原料として、硫化リチウム、硫化リン及びハロゲン化リチウム(LiX)を使用する場合、さらに、単体硫黄や、有機多硫化物、無機多硫化物、窒化硫黄等の硫黄化合物を原料として用い、硫黄元素の元素比を高くすることが挙げられる。これらを使用して、LiS、P、LiXの3つの原料から計算される量論比から、相対的に硫黄を多くすることが好ましい。なかでも、単体硫黄を原料として用いることが好ましい。
本実施形態においては、上記の原料に機械的応力を加えて反応させ、中間体とする。ここで、「機械的応力を加える」とは、機械的にせん断力や衝撃力等を加えることである。機械的応力を加える手段としては、例えば、遊星ボールミル、振動ミル、転動ミル等の粉砕機や、混練機等を挙げることができる。
従来技術(例えば、特許文献2等)では、原料粉末の結晶性を維持できる程度に粉砕混合している。一方、本実施形態では原料に機械的応力を加えて反応させ、ガラス成分を含む中間体とすることが好ましい。すなわち、従来技術よりも強い機械的応力により、原料粉末の少なくとも一部が結晶性を維持できない状態まで粉砕混合する。これにより、中間体の段階でアルジロダイト型結晶構造の基本骨格であるPS構造を生じさせ、かつ、ハロゲンを高分散させることができる。その結果、次工程の熱処理時に、安定相であるアルジロダイト型結晶構造となる際に、ハロゲンがアルジロダイト型結晶構造に取り込まれやすくなる。また、領域毎に異なる相を経ないため、LiPS結晶構造等の低イオン伝導相が生じにくいと推定している。これにより、本実施形態の硫化物固体電解質は高いイオン伝導度を発現すると推定している。
尚、中間体がガラス(非晶質)成分を含むことは、XRD測定において非晶質成分に起因するブロードなピーク(ハローパターン)の存在により確認できる。
また、本実施形態の硫化物固体電解質は、特許文献1のように原料を550℃で6日間も加熱する必要はないため、量産性が高い。
イオン伝導度の高い硫化物固体電解質は、アルジロダイト型結晶構造にハロゲンが多く入った硫化物固体電解質である。イオン伝導度の高い硫化物固体電解質を得るには、原料であるハロゲン化リチウム(LiX)の使用量を多くすると好ましい。一方で、LiXの使用量を多くした場合、LiSの使用量の割合が相対的に低下し、原料に占めるSの割合が低下することで、ガラス中間体の作製時に、中間体中にP構造及びP構造が生成しやすい。そうすると、ガラス中間体を熱処理してアルジロダイト型結晶構造を生成する際に、ハロゲンは中間体中で生成した上記構造を経由することになり、アルジロダイト型結晶構造のサイトに入る前に他相にハロゲンが取り込まれてしまたり、分散せずに凝集あるいは再凝集が起こったりするため、高いイオン伝導度が得られないことになる。本実施形態では、Sを過剰にしてガラス状の中間体を製造することで、上記を抑制することができる。
尚、ガラス成分を含む中間体を経由せずに、原料から直接、アルジロダイト型結晶構造を含む硫化物固体電解質を製造する場合、イオン伝導度の高い硫化物固体電解質を得るのは難しい。ハロゲンは安定した相に留まり易く、原料から直接、硫化物固体電解質を製造する場合に、硫化物固体電解質中でアルジロダイト型結晶構造が生成している最中に、ハロゲンが他の安定した相に取り込まれてしまったり、分散せずに凝集あるいは再凝集が起こったりするためである。
ガラス成分を含む中間体を製造し、原子レベルで材料成分を混ぜ合わせることで、ガラス成分を含む中間体の熱処理中に、ハロゲンがスムーズにアルジロダイト結晶構造のサイトに入ることがきる。
粉砕混合の条件としては、例えば、粉砕機として遊星ボールミル機を使用した場合、回転速度を数十〜数百回転/分とし、0.5時間〜100時間処理すればよい。より具体的に、本願実施例で使用した遊星型ボールミル(フリッチュ社製:型番P−7)の場合、遊星ボールミルの回転数は350rpm以上400rpm以下が好ましく、360rpm以上380rpm以下がより好ましい。
粉砕メディアであるボールは、例えば、ジルコニア製ボールを使用した場合、その直径は0.2〜20mmが好ましい。
粉砕混合で作製した中間体を、窒素、アルゴン等の不活性ガス雰囲気下、熱処理する。熱処理温度は350〜650℃が好ましく、特に、400〜550℃が好ましい。
本実施形態では、硫化水素気流下で原料混合物を熱処理してもよい。これにより、熱処理時における硫黄の蒸発が抑制されるため、硫黄の含有量を高く維持できる。なお、本実施形態では硫化水素不存在下で熱処理してもよい。
例えば、本実施形態の硫化物固体電解質の原料として、硫化リチウム、五硫化二リン、ハロゲン化リチウム、単体硫黄を使用する場合には、投入原料のモル比を、硫化リチウム:五硫化二リン:ハロゲン化リチウム:単体硫黄=45〜70:8〜15:20〜40:0より多く20以下とすることができる。これらの原料に、機械的応力を加えて反応させ、中間体とした後、上述したように熱処理することで、上記式(1)〜(3)を満たす本実施形態の硫化物固体電解質を得ることができる。
本実施形態の硫化物固体電解質は、リチウムイオン二次電池等の固体電解質層、正極、負極等に用いることができる。
例えば、本実施形態の硫化物固体電解質に活物質(正極活物質又は負極活物質)を加えて電極合材として、正極層、負極層の材料とできる。また、本実施形態の硫化物固体電解質は、電解質層の材料とできる。これら正極層、負極層及び電解質層は、リチウムイオン電池の各部材とすることができる。
[電極合材]
本発明の一実施形態に係る電極合材は、上述した本発明の硫化物固体電解質と、活物質を含む。又は、本発明の硫化物固体電解質により製造される。活物質として負極活物質を使用すると負極合材となる。一方、正極活物質を使用すると正極合材となる。
・負極合材
本発明の硫化物固体電解質に負極活物質を配合することにより負極合材が得られる。
負極活物質としては、例えば、炭素材料、金属材料等を使用することができる。これらのうち2種以上からなる複合体も使用できる。また、今後開発される負極活物質も使用することができる。
また、負極活物質は電子伝導性を有していることが好ましい。
炭素材料としては、グラファイト(例えば、人造黒鉛)、黒鉛炭素繊維、樹脂焼成炭素、熱分解気相成長炭素、コークス、メソカーボンマイクロビーズ(MCMB)、フルフリルアルコール樹脂焼成炭素、ポリアセン、ピッチ系炭素繊維、気相成長炭素繊維、天然黒鉛及び難黒鉛化性炭素等が挙げられる。
金属材料としては、金属単体、合金、金属化合物が挙げられる。当該金属単体としては、金属ケイ素、金属スズ、金属リチウム、金属インジウム、金属アルミニウムが挙げられる。当該合金としては、ケイ素、スズ、リチウム、インジウム及びアルミニウムのうち少なくとも1つを含む合金が挙げられる。当該金属化合物としては、金属酸化物が挙げられる。金属酸化物は、例えば酸化ケイ素、酸化スズ、酸化アルミニウムである。
負極活物質と固体電解質の配合割合は、負極活物質:固体電解質=95重量%:5重量%〜5重量%:95重量%が好ましく、90重量%:10重量%〜10重量%:90重量%がより好ましく、85重量%:15重量%〜15重量%:85重量%がさらに好ましい。
負極合材における負極活物質の含有量が少なすぎると電気容量が小さくなる。また、負極活物質が電子伝導性を有し、導電助剤を含まないか、又は少量の導電助剤しか含まない場合には、負極内の電子伝導性(電子伝導パス)が低下し、レート特性が低くなるおそれや、負極活物質の利用率が下がり、電気容量が低下するおそれがあると考える。一方、負極合材における負極活物質の含有量が多すぎると、負極内のイオン伝導性(イオン伝導パス)が低下し、レート特性が低くなるおそれや、負極活物質の利用率が下がり、電気容量が低下するおそれがあると考える。
負極合材は導電助剤をさらに含有することができる。
負極活物質の電子伝導性が低い場合には、導電助剤を添加することが好ましい。導電助剤は、導電性を有していればよく、その電子伝導度は、好ましくは1×10S/cm以上であり、より好ましくは1×10S/cm以上である。
導電助剤の具体例としては、好ましくは炭素材料、ニッケル、銅、アルミニウム、インジウム、銀、コバルト、マグネシウム、リチウム、クロム、金、ルテニウム、白金、ベリリウム、イリジウム、モリブデン、ニオブ、オスニウム、ロジウム、タングステン及び亜鉛からなる群より選択される少なくとも1つの元素を含む物質であり、より好ましくは導電性が高い炭素単体、炭素単体以外の炭素材料;ニッケル、銅、銀、コバルト、マグネシウム、リチウム、ルテニウム、金、白金、ニオブ、オスニウム又はロジウムを含む金属単体、混合物又は化合物である。
なお、炭素材料の具体例としては、ケッチェンブラック、アセチレンブラック、デンカブラック、サーマルブラック、チャンネルブラック等のカーボンブラック;黒鉛、炭素繊維、活性炭等が挙げられ、これらは単独でも2種以上でも併用可能である。なかでも、電子伝導性が高いアセチレンブラック、デンカブラック、ケッチェンブラックが好適である。
負極合材が導電助剤を含む場合の導電助剤の合材中の含有量は、好ましくは1〜40質量%、より好ましくは2〜20質量%である。導電助剤の含有量が少なすぎると、負極の電子伝導性が低下してレート特性が低くなるおそれや、負極活物質の利用率が下がり、電気容量が低下するおそれがあると考える。一方、導電助剤の含有量が多すぎると、負極活物質の量及び/又は固体電解質の量が少なくなる。負極活物質の量が少なくなると電気容量が低下すると推測する。また、固体電解質の量が少なくなると負極のイオン伝導性が低下し、レート特性が低くなるおそれや、負極活物質の利用率が下がり、電気容量が低下するおそれがあると考える。
負極活物質と固体電解質を互いに密に結着させるため、さらに結着剤を含んでもよい。
結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ素ゴム等の含フッ素樹脂、あるいはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンゴム(EPDM)、スルホン化EPDM、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。
負極合材は、固体電解質と負極活物質、並びに任意の導電助剤及び/又は結着剤を混合することで製造できる。
混合方法は特に限定されないが、例えば、乳鉢、ボールミル、ビーズミル、ジェットミル、遊星ボールミル、振動ボールミル、サンドミル、カッターミルを用いて混合する乾式混合;及び有機溶媒中に原料を分散させた後に、乳鉢、ボールミル、ビーズミル、遊星ボールミル、振動ボールミル、サンドミル、フィルミックスを用いて混合し、その後溶媒を除去する湿式混合を適用することができる。これらのうち、負極活物質粒子を破壊しないために湿式混合が好ましい。
・正極合材
本発明の固体電解質に正極活物質を配合することにより正極合材が得られる。
正極活物質は、リチウムイオンの挿入脱離が可能な物質であり、電池分野において正極活物質として公知のものが使用できる。また、今後開発される正極活物質も使用することができる。
正極活物質としては、例えば、金属酸化物、硫化物等が挙げられる。硫化物には、金属硫化物、非金属硫化物が含まれる。
金属酸化物は、例えば遷移金属酸化物である。具体的には、V、V13、LiCoO、LiNiO、LiMnO、LiMn、Li(NiCoMn)O(ここで、0<a<1、0<b<1、0<c<1、a+b+c=1)、LiNi1−YCo、LiCo1−YMn、LiNi1−YMn(ここで、0≦Y<1)、Li(NiCoMn)O(0<a<2、0<b<2、0<c<2、a+b+c=2)、LiMn2−ZNi、LiMn2−ZCo(ここで、0<Z<2)、LiCoPO、LiFePO、CuO、Li(NiCoAl)O(ここで、0<a<1、0<b<1、0<c<1、a+b+c=1)等が挙げられる。
金属硫化物としては、硫化チタン(TiS)、硫化モリブデン(MoS)、硫化鉄(FeS、FeS)、硫化銅(CuS)及び硫化ニッケル(Ni)等が挙げられる。
その他、金属酸化物としては、酸化ビスマス(Bi)、鉛酸ビスマス(BiPb)等が挙げられる。
非金属硫化物としては、有機ジスルフィド化合物、カーボンスルフィド化合物等が挙げられる。
上記の他、セレン化ニオブ(NbSe)、金属インジウム、硫黄も正極活物質として使用できる。
正極合材は、さらに導電助剤を含んでいてもよい。
導電助剤は、負極合材と同様である。
正極合材の固体電解質及び正極活物質の配合割合、導電助剤の含有量、並びに正極合材の製造方法は、上述した負極合材と同様である。
[リチウムイオン電池]
本発明の一実施形態に係るリチウムイオン電池は、上述した本発明の硫化物固体電解質及び電極合材のうち少なくとも1つを含む。又は、本発明の硫化物固体電解質及び電極合材のうち少なくとも1つにより製造される。
リチウムイオン電池の構成は特に限定されないが、一般に、負極層、電解質層及び正極層をこの順に積層した構造を有する。以下、リチウムイオン電池の各層について説明する。
(1)負極層
負極層は、好ましくは本発明の負極合材から製造される層である。
又は、負極層は、好ましくは本発明の負極合材を含む層である。
負極層の厚さは、100nm以上5mm以下が好ましく、1μm以上3mm以下がより好ましく、5μm以上1mm以下がさらに好ましい。
負極層は公知の方法により製造することができ、例えば、塗布法、静電法(静電スプレー法、静電スクリーン法等)により製造することができる。
(2)電解質層
電解質層は、固体電解質を含む層又は固体電解質から製造された層である。当該固体電解質は特に限定されないが、好ましくは本発明の硫化物固体電解質である。
電解質層は、固体電解質のみからなってもよく、さらにバインダーを含んでもよい。当該バインダーとしては、本発明の負極合材の結着剤と同じものが使用できる。
電解質層の厚さは、0.001mm以上1mm以下であることが好ましい。
電解質層の固体電解質は、融着していてもよい。融着とは、固体電解質粒子の一部が溶解し、溶解した部分が他の固体電解質粒子と一体化することを意味する。また、電解質層は、固体電解質の板状体であってもよく、当該板状体は、固体電解質粒子の一部又は全部が溶解し、板状体になっている場合も含む。
電解質層は、公知の方法により製造することができ、例えば、塗布法、静電法(静電スプレー法、静電スクリーン法等)により製造することができる。
(3)正極層
正極層は、正極活物質を含む層であり、好ましくは本発明の正極合材を含む層又は本発明の正極合材から製造された層である。
正極層の厚さは、0.01mm以上10mm以下であることが好ましい。
正極層は、公知の方法により製造することができ、例えば、塗布法、静電法(静電スプレー法、静電スクリーン法等)により製造することができる。
(4)集電体
本実施形態のリチウムイオン電池は、好ましくは集電体をさらに備える。例えば負極集電体は負極層の電解質層側とは反対側に、正極集電体は正極層の電解質層側とは反対側に設ける。
集電体として、銅、マグネシウム、ステンレス鋼、チタン、鉄、コバルト、ニッケル、亜鉛、アルミニウム、ゲルマニウム、インジウム、リチウム、又はこれらの合金等からなる板状体や箔状体等が使用できる。
本実施形態のリチウムイオン電池は、上述した各部材を貼り合せ、接合することで製造できる。接合する方法としては、各部材を積層し、加圧・圧着する方法や、2つのロール間を通して加圧する方法(roll to roll)等がある。
また、接合面にイオン伝導性を有する活物質や、イオン伝導性を阻害しない接着物質を介して接合してもよい。
接合においては、固体電解質の結晶構造が変化しない範囲で加熱融着してもよい。
また、本実施形態のリチウムイオン電池は、上述した各部材を順次形成することでも製造できる。公知の方法により製造することができ、例えば、塗布法、静電法(静電スプレー法、静電スクリーン法等)により製造することができる。
以下、本発明を実施例により、さらに詳細に説明する。
なお、評価方法は以下のとおりである。
(1)イオン伝導度測定と電子伝導性測定
各例で製造した硫化物固体電解質を、錠剤成形機に充填し、ミニプレス機を用いて407MPa(プレス表示値22MPa)の圧力を加え成形体とした。電極としてカーボンを成形体の両面に乗せ、再度錠剤成形機にて圧力を加えることで、測定用の成形体(直径約10mm、厚み0.1〜0.2cm)を作製した。この成形体について交流インピーダンス測定によりイオン伝導度を測定した。伝導度の値は25℃における数値を採用した。
なお、本実施例で用いたイオン伝導度の測定方法では、イオン伝導度が1.0×10−6S/cm未満の場合には、イオン伝導度を正確に測ることができないため、測定不能とした。
また、この成形体について直流電気測定により電子伝導度を測定した。電子伝導度の値は25℃における数値を採用した。なお、5Vの電圧を印加したときの電子伝導度が1.0×10−6S/cm未満の場合、電子伝導性は測定不能とした。
(2)X線回折(XRD)測定
各例で製造した硫化物固体電解質の粉末から、直径10mm、高さ0.1〜0.3cmの円形ペレットを成形して試料とした。この試料を、XRD用気密ホルダーを用いて空気に触れさせずに測定した。回折ピークの2θ位置は、XRD解析プログラムJADEを用いて重心法にて決定した。
株式会社リガクの粉末X線回折測定装置SmartLabを用いて以下の条件にて実施した。
管電圧:45kV
管電流:200mA
X線波長:Cu−Kα線(1.5418Å)
光学系:平行ビーム法
スリット構成:ソーラースリット5°、入射スリット1mm、受光スリット1mm
検出器:シンチレーションカウンター
測定範囲:2θ=10−60deg
ステップ幅、スキャンスピード:0.02deg、1deg/分
測定結果より結晶構造の存在を確認するためのピーク位置の解析では、XRD解析プログラムJADEを用い、3次式近似によりベースラインを引いて、ピーク位置を求めた。
ピーク強度においては、2θ=29.7deg±0.5degに存在するアルジロダイト型結晶構造の1本のピーク強度、2θ=17.6±0.4degかつ18.1±0.4degに存在するLiPS結晶構造の2本のピーク強度を次の手順で解析し、強度比を計算した。
実測データの5点のデータの移動平均によりスムージングを行い、17.5〜18.5degの間の最低強度点をバックグランドとして実測データから差し引いた。その後、17.0〜17.8deg及び17.9〜18.5degの実測データの最大値間の実測データの最大値を算出し、その小さい方のピーク強度をLiPS結晶構造のピーク強度として用いた。また、アルジロダイト型結晶構造のピーク強度は29.0〜32.0degの実測データの最大値をピーク強度として算出した。
(3)ICP測定
各例で製造した硫化物固体電解質の粉末を秤量し、アルゴン雰囲気中で、バイアル瓶に採取した。バイアル瓶にKOHアルカリ水溶液を入れ、硫黄分の捕集に注意しながらサンプルを溶解し、適宜希釈、測定溶液とした。これを、パッシェンルンゲ型ICP−OES装置(SPECTRO社製SPECTRO ARCOS)にて測定し、組成を決定した。
検量線溶液は、Li、P、SはICP測定用1000mg/L標準溶液を、Cl、Brはイオンクロマトグラフ用1000mg/L標準溶液を、Iはよう化カリウム(試薬特級)を用いて調製した。
各試料で2つの測定溶液を調整し、各測定溶液で5回の測定を行い、平均値を算出した。その2つの測定溶液の測定値の平均で組成を決定した。
製造例1
(硫化リチウム(LiS)の製造)
撹拌機付きの500mLセパラブルフラスコに、不活性ガス下で乾燥したLiOH無水物(本荘ケミカル社製)を200g仕込んだ。窒素気流下にて昇温し、内部温度を200℃に保持した。窒素ガスを硫化水素ガス(住友精化)に切り替え、500mL/minの流量にし、LiOH無水物と硫化水素を反応させた。
反応により発生する水分はコンデンサーにより凝縮して回収した。反応を6時間行った時点で水が144mL回収された。さらに3時間反応を継続したが、水の発生は見られなかった。
生成物粉末を回収して、純度及びXRDを測定した。その結果、純度は98.5%であり、XRDではLiSのピークパターンが確認できた。
実施例1
製造例1で製造した硫化リチウム(純度98.5%)、五硫化二リン(サーモフォス社製、純度99.9%以上)、塩化リチウム(シグマアルドリッチ社製、純度99%)及び単体硫黄(シグマアルドリッチ社製、純度99.9%)を出発原料に用いた(以下、全ての実施例において、各出発原料の純度は同様である)。硫化リチウム(LiS)、五硫化二リン(P)、塩化リチウム(LiCl)、及び単体硫黄(S)のmol比(LiS:P:LiCl:S)が42.2:11.1:35.6:11.1となるように、各原料を混合した。具体的には、硫化リチウム0.464g、五硫化二リン0.591g、塩化リチウム0.360g、単体硫黄0.085gを混合し、原料混合物とした。
原料混合物と、直径10mmのジルコニア製ボール30gとを遊星型ボールミル(フリッチュ社製:型番P−7)ジルコニア製ポット(45mL)に入れ、完全密閉した。ポット内はアルゴン雰囲気とした。遊星型ボールミルで回転数を370rpmにして25時間処理(メカニカルミリング)し、粉末(中間体)を得た。中間体について、XRDで評価した結果を図1に示す。得られたXRDパターンから大部分がガラスであることが確認できた。
上記中間体の粉末約1.5gをAr雰囲気下のグローブボックス内で、タンマン管(PT2,東京硝子機器株式会社製)内に詰め、石英ウールでタンマン管の口を塞ぎ、さらにSUS製の密閉容器で大気が入らないよう封をした。その後、密閉容器を電気炉(FUW243PA、アドバンテック社製)内に入れ熱処理した。具体的には、室温から520℃まで2.5℃/minで昇温し(3時間で520℃に昇温)、520℃で8時間保持した。その後、徐冷し、硫化物固体電解質を得た。
回収直後の硫化物固体電解質の外観写真を図2に示す。硫化物固体電解質の大部分が粉状であることが確認できる。なお、一部の塊状体も、乳鉢による粉砕により容易に解砕できた。
硫化物固体電解質のイオン伝導度(σ)は、8.9mS/cmであった。なお、電子伝導性は10−6S/cm未満であった。
硫化物固体電解質のXRDパターンを図3に示す。2θ=15.6、18.0、25.6、30.1、31.5、45.2、48.1degにアルジロダイト型結晶構造に由来するピークが観測された。一方、17.6±0.4degのLiPS結晶構造に由来するピークは観測されなかった。
硫化物固体電解質をICP分析し、各元素のモル比を測定した。また、イオン伝導度及び残量率を測定した。結果を表1に示す。
Figure 0006945382
実施例2−12 比較例1−6
原料組成、メカニカリミングの条件、及び中間体の熱処理条件を表2に示すように変更した他は、実施例1と同様にして硫化物固体電解質を作製し、評価した。結果を表1に示す。
なお、いずれの硫化物固体電解質も電子伝導性は10−6S/cm未満であった。
尚、実施例2−7及び9−11では、中間体は実施例1と同様にして製造しているが、中間体の熱処理時に硫化水素を導入した。
例えば実施例2では、Ar雰囲気下のグローブボックス内で、中間体の粉末約1.5gをシール機能付きのガラス管内に詰め、大気が入らないように、ガラス管の先端を専用治具で封をした。その後、ガラス管を電気炉内にセットした。専用治具を電気炉内にある継手に差し入れて、ガス流通管に繋ぎ、硫化水素を20mL/minで流通しながら熱処理した。具体的には室温から500℃まで2.5℃/minで昇温し(3時間で500℃に昇温)、500℃で4時間保持した。その後、徐冷し、硫化物固体電解質を得た。
実施例3−7及び9−11についても、表2の条件で実施例2と同様に硫化水素を導入しながら熱処理した。
比較例1では、2θ=15.5、17.7、25.5、30.0、31.4、44.8、48.0degにアルジロダイト型結晶構造に由来するピークが観測された。一方、LiPS結晶構造に由来するピークは観測されなかった。
比較例1及び2について、回収直後の硫化物固体電解質の外観写真を図2に示す。硫化物固体電解質が大きな塊状体となっていることが確認できる。なお、乳鉢による粉砕では粗粒子が残り、十分に解砕することはできなかった。
Figure 0006945382
比較例7
実施例1で用いた硫化リチウム(LiS)、五硫化二リン(P)及び塩化リチウム(LiCl)のmol比(LiS:P:LiCl)が1.9:0.5:1.6となるように、各原料を混合した。
原料混合物と、直径10mmのジルコニア製ボール30gとを遊星型ボールミル(フリッチュ社製:型番P−7)ジルコニア製ポット(45mL)に入れ、完全密閉した。ポット内はアルゴン雰囲気とした。遊星型ボールミルで原料粉末の結晶性を維持できる程度に混合し、混合粉末を得た。
得られた混合粉末のXRDパターンを図4に示す。得られたXRDパターンでは、原料であるLiS、P、LiClのピークが確認でき、原料粉末の結晶性が維持されていた。
上記混合粉末の約1.5gをAr雰囲気下のグローブボックス内で、シール機能付きのガラス管内に詰め、大気が入らないように、ガラス管の先端を専用治具で封をした。その後、ガラス管を電気炉内にセットした。専用治具を電気炉内にある継手に差し入れて、ガス流通管に繋ぎ、硫化水素を20mL/minで流通しながら熱処理した。具体的には室温から500℃まで2.5℃/minで昇温し(3時間で500℃に昇温)、500℃で4時間保持した。その後、徐冷し、硫化物固体電解質を得た。
得られた硫化物固体電解質をICP分析し、各元素のモル比を測定した。また、イオン伝導度を測定した。その結果、a(Li/P)=5.4、b(S/P)=4.4、c(Cl/P)=1.6であり、イオン伝導度(σ)は、2.7mS/cmであった。
実施例13
実施例1で用いた原料である硫化リチウム(LiS)、五硫化二リン(P)、塩化リチウム(LiCl)及び単体硫黄に、さらにヨウ化リチウム(LiI:シグマアルドリッチ社製、純度99%)を原料に用いた。これら原料のmol比(LiS:P:LiCl:LiI:S)が42.2:11.1:33.3:2.2:11.1となるように、各原料を混合した。具体的には、硫化リチウム0.449g、五硫化二リン0.572g、塩化リチウム0.327g、ヨウ化リチウム0.069g、硫黄0.083gを混合し、原料混合物とした。
得られた原料混合物を用いて、実施例2と同じメカニカルミリング条件及び熱処理条件で硫化物固体電解質を作製した。得られた硫化物固体電解質のイオン伝導度(σ)は、5.3mS/cmであった。なお、電子伝導性は10−6S/cm未満であった。
得られた硫化物固体電解質について、XRD測定した結果、アルジロダイト型結晶構造に由来するピークが観測された。
ICP分析の結果、モル比a(Li/P)は5.47、モル比b(S/P)は4.59、モル比c((Cl+I)/P)は1.67であった。

Claims (8)

  1. リチウムと、リンと、硫黄と、
    ハロゲン元素から選択される1種以上の元素Xと、を含み、
    アルジロダイト型結晶構造を含み、
    前記リチウムのリンに対するモル比a(Li/P)、前記硫黄のリンに対するモル比b(S/P)及び前記元素Xのリンに対するモル比c(X/P)が、下記式(1)〜(3)を満たす、硫化物固体電解質。
    5.0≦a<7.3 (1)
    0.70≦a−b<1.0 (2)
    7.0<a+c≦7.3 (3)
    (式中、b>0且つc>0を満たす。)
  2. CuKα線を使用した粉末X線回折において、2θ=25.2±0.5deg及び29.7±0.5degに回折ピークを有する、請求項に記載の硫化物固体電解質。
  3. さらに、CuKα線を使用した粉末X線回折において、2θ=15.3±0.5deg、17.7±0.5deg、31.1±0.5deg、44.9±0.5deg及び47.7±0.5degの回折ピークのうち少なくとも1つを有する、請求項に記載の硫化物固体電解質。
  4. 前記回折ピークの範囲が中央値の±0.3degである、請求項2又は3に記載の硫化物固体電解質。
  5. イオン伝導度が5.0mS/cm以上である、請求項1〜のいずれかに記載の硫化物固体電解質。
  6. CuKα線を使用した粉末X線回折において、2θ=17.6±0.4deg及び2θ=18.1±0.4degに回折ピーク(アルジロダイト型結晶構造に起因する回折ピークではない)を有しないか、有する場合には下記式(5)を満たす、請求項1〜のいずれかに記載の硫化物固体電解質。
    0<I/I<0.05 (5)
    (式中、Iは2θ=17.6±0.4deg及び2θ=18.1±0.4degのうちアルジロダイト型結晶構造の回折ピークではないものの回折ピークの強度を表し、Iは2θ=29.7±0.5degの回折ピークの強度を表す。)
  7. 請求項1〜のいずれかに記載の硫化物固体電解質と、活物質を含む電極合材。
  8. 請求項1〜のいずれかに記載の硫化物固体電解質及び請求項に記載の電極合材のうち少なくとも1つを含むリチウムイオン電池。
JP2017153602A 2016-09-08 2017-08-08 硫化物固体電解質 Active JP6945382B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021149180A JP7187637B2 (ja) 2016-09-08 2021-09-14 硫化物固体電解質の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016175359 2016-09-08
JP2016175359 2016-09-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021149180A Division JP7187637B2 (ja) 2016-09-08 2021-09-14 硫化物固体電解質の製造方法

Publications (3)

Publication Number Publication Date
JP2018045997A JP2018045997A (ja) 2018-03-22
JP2018045997A5 JP2018045997A5 (ja) 2020-03-12
JP6945382B2 true JP6945382B2 (ja) 2021-10-06

Family

ID=61281414

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017153602A Active JP6945382B2 (ja) 2016-09-08 2017-08-08 硫化物固体電解質
JP2021149180A Active JP7187637B2 (ja) 2016-09-08 2021-09-14 硫化物固体電解質の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021149180A Active JP7187637B2 (ja) 2016-09-08 2021-09-14 硫化物固体電解質の製造方法

Country Status (2)

Country Link
US (1) US10818966B2 (ja)
JP (2) JP6945382B2 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109526242B (zh) 2016-08-10 2022-04-15 出光兴产株式会社 硫化物固体电解质
JP6679736B2 (ja) * 2016-09-12 2020-04-15 出光興産株式会社 硫化物固体電解質
JP6477672B2 (ja) * 2016-11-18 2019-03-06 トヨタ自動車株式会社 硫化物固体電解質の製造方法
JP6595152B2 (ja) * 2017-07-07 2019-10-23 三井金属鉱業株式会社 リチウム二次電池の固体電解質及び当該固体電解質用硫化物系化合物
US11437612B2 (en) * 2017-08-09 2022-09-06 Toyota Jidosha Kabushiki Kaisha Cathode mixture and method for producing the same
KR102507008B1 (ko) * 2017-12-20 2023-03-06 현대자동차주식회사 단일 원소로부터 유래된 아지로다이트형 결정구조를 갖는 전고체 전지용 황화물계 고체전해질 및 이의 제조방법
JP7240932B2 (ja) * 2018-03-30 2023-03-16 三井金属鉱業株式会社 全固体電池負極及び全固体リチウム二次電池
JP7006510B2 (ja) 2018-06-01 2022-01-24 トヨタ自動車株式会社 正極合材及びその製造方法
CN112368862A (zh) * 2018-07-25 2021-02-12 三井金属矿业株式会社 正极活性物质
JP7105133B2 (ja) * 2018-08-10 2022-07-22 三井金属鉱業株式会社 結晶性硫化物系固体電解質の製造方法
WO2020050269A1 (ja) * 2018-09-04 2020-03-12 三井金属鉱業株式会社 硫化物系化合物粒子、固体電解質及びリチウム二次電池
EP3766832B1 (en) * 2018-11-08 2022-12-28 Mitsui Mining & Smelting Co., Ltd. Sulfur-containing compound, solid electrolyte, and battery
CN112106230A (zh) * 2018-11-19 2020-12-18 三井金属矿业株式会社 固体电解质、电极合剂、固体电解质层及全固体电池
JP7035984B2 (ja) 2018-11-27 2022-03-15 トヨタ自動車株式会社 正極合材、全固体電池および正極合材の製造方法
WO2020175506A1 (ja) * 2019-02-27 2020-09-03 三井金属鉱業株式会社 活物質、それを用いた正極合剤及び固体電池
US11575151B2 (en) 2019-03-28 2023-02-07 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte, precursor of sulfide solid electrolyte, all solid state battery and method for producing sulfide solid electrolyte
KR102292161B1 (ko) * 2019-10-22 2021-08-24 한국과학기술연구원 다중 칼코겐 원소가 도입된 황화물계 리튬-아지로다이트 이온 초전도체 및 이의 제조방법
CN114128005B (zh) 2019-12-11 2023-03-24 三井金属矿业株式会社 硫化物固体电解质
CN111092262B (zh) * 2019-12-28 2021-04-20 横店集团东磁股份有限公司 一种掺杂型磷硫碘化物固态电解质及其制备方法和用途
JP7301005B2 (ja) * 2020-01-08 2023-06-30 Jx金属株式会社 硫化物系固体電解質及び全固体リチウムイオン電池
KR20220028942A (ko) 2020-08-31 2022-03-08 삼성에스디아이 주식회사 전고체 이차전지용 황화물계 고체 전해질, 그 제조방법 및 이를 포함하는 전고체 이차전지
CN114267874A (zh) * 2021-12-23 2022-04-01 燕山大学 含卤化锂包覆层的硫银锗矿型硫化物固体电解质及其制备
JP2023096783A (ja) 2021-12-27 2023-07-07 エルジー エナジー ソリューション リミテッド 硫化物系固体電解質及び硫化物系固体電解質の製造方法
CN117836992A (zh) 2022-06-10 2024-04-05 株式会社Lg新能源 硫化物类固体电解质、其制备方法以及包含其的固态电池
WO2024010077A1 (ja) * 2022-07-07 2024-01-11 出光興産株式会社 硫化物固体電解質の製造方法
WO2024029479A1 (ja) * 2022-08-03 2024-02-08 出光興産株式会社 ガラス固体電解質及びリチウムイオン電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3528866B2 (ja) 1994-06-03 2004-05-24 出光石油化学株式会社 硫化リチウムの製造方法
JP3510420B2 (ja) 1996-04-16 2004-03-29 松下電器産業株式会社 リチウムイオン伝導性固体電解質およびその製造方法
DE102007048289A1 (de) 2007-10-08 2009-04-09 Universität Siegen Lithium-Argyrodite
JP5460283B2 (ja) 2008-12-15 2014-04-02 出光興産株式会社 硫化リチウムの製造方法
JP2011096630A (ja) 2009-10-02 2011-05-12 Sanyo Electric Co Ltd 固体リチウム二次電池及びその製造方法
JP5303428B2 (ja) 2009-10-16 2013-10-02 出光興産株式会社 硫化リチウム及びその製造方法
JP5701808B2 (ja) 2012-03-30 2015-04-15 三井金属鉱業株式会社 硫化物系固体電解質の製造方法
JP6122708B2 (ja) 2013-06-19 2017-04-26 出光興産株式会社 硫化物系固体電解質の製造方法
WO2015011937A1 (ja) 2013-07-25 2015-01-29 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質
JP5873533B2 (ja) * 2014-07-16 2016-03-01 三井金属鉱業株式会社 リチウムイオン電池用硫化物系固体電解質
CN107112586B (zh) * 2014-12-26 2018-11-02 三井金属矿业株式会社 锂离子电池用硫化物系固体电解质和固体电解质化合物
WO2017108105A1 (en) * 2015-12-22 2017-06-29 Toyota Motor Europe Materials for solid electrolyte

Also Published As

Publication number Publication date
US20180069262A1 (en) 2018-03-08
US10818966B2 (en) 2020-10-27
JP7187637B2 (ja) 2022-12-12
JP2022003641A (ja) 2022-01-11
JP2018045997A (ja) 2018-03-22

Similar Documents

Publication Publication Date Title
JP6945382B2 (ja) 硫化物固体電解質
JP6679730B2 (ja) 硫化物固体電解質
JP6936073B2 (ja) 硫化物固体電解質
JP6679736B2 (ja) 硫化物固体電解質
JP6934042B2 (ja) 硫化物固体電解質粒子
JP7012022B2 (ja) 硫化物固体電解質
US10020535B2 (en) Method for producing sulfide solid electrolyte
JP7013456B2 (ja) 硫化物固体電解質
JP2022125120A (ja) 硫化物固体電解質

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210914

R150 Certificate of patent or registration of utility model

Ref document number: 6945382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150