WO2020173131A1 - 核壳结构钙钛矿薄膜,其制备方法以及可控荧光显示方法 - Google Patents

核壳结构钙钛矿薄膜,其制备方法以及可控荧光显示方法 Download PDF

Info

Publication number
WO2020173131A1
WO2020173131A1 PCT/CN2019/117555 CN2019117555W WO2020173131A1 WO 2020173131 A1 WO2020173131 A1 WO 2020173131A1 CN 2019117555 W CN2019117555 W CN 2019117555W WO 2020173131 A1 WO2020173131 A1 WO 2020173131A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite film
display substrate
core
bromide
shell structure
Prior art date
Application number
PCT/CN2019/117555
Other languages
English (en)
French (fr)
Inventor
孙宝全
宋涛
谈叶舒
Original Assignee
苏州英纳电子材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州英纳电子材料有限公司 filed Critical 苏州英纳电子材料有限公司
Publication of WO2020173131A1 publication Critical patent/WO2020173131A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to the field of fluorescent display technology, and in particular to a core-shell structure perovskite film, its preparation method and a controllable fluorescent display method.
  • LCD liquid crystal display
  • backlight sources such as inorganic light-emitting diodes or fluorescent lights
  • the color gamut of LCD display is relatively narrow.
  • OLED Organic Light Emitting Display
  • QLED Quantum Dot Display
  • It is an active light emitting method that does not require a backlight.
  • the organic or quantum dot light-emitting layer directly emits light.
  • the peak half-height width is relatively narrow (25-40 nanometers), and the color rendering index is relatively good. It has received widespread attention in the industry at present, but the preparation cost is high. Since the half-height width (15 ⁇ 20 nm) of the light peak of commercial perovskite materials is narrower than that of OLED and QLE materials.
  • the technical problem to be solved by the present invention is to provide an all-inorganic core-shell structure perovskite film.
  • the perovskite film has excellent thermal stability and humidity stability, and its fluorescence is sensitive to temperature response.
  • the present invention provides a method for preparing a core-shell structure perovskite film, which includes: reacting the perovskite film with water vapor with a humidity of 10%-70% for 1 to 60 hours, so that the calcium A protective layer is formed on the surface of the titanium ore film, thereby obtaining the core-shell structure perovskite film; wherein the perovskite molecules in the perovskite film are selected from one of the following molecules:
  • the doping materials in the doping molecules include LiCl, At least one of LiBr, Lil, BiBr 3 , BiCl 3 , Bil 3 , NaCl, NaBr, Nal, KCl, KBr, KI, RbCl, RbBr, Rbl, and MgBr 2 .
  • the optimized humidity of the water vapor is 30%-40%, and the optimized reaction time is 20-30 hours.
  • the perovskite film is a patterned perovskite film
  • its preparation method includes: providing a display substrate and a patterned mask covering the display substrate; and depositing raw materials on the display substrate layer by layer On the top, heating causes the raw materials to react to obtain a patterned perovskite film on the display substrate; or mix and grind the raw materials evenly, treat them at 80-300 ° C for 10-60 minutes, and put them in the evaporator Inside, it is vapor-deposited on the display substrate, thereby obtaining a patterned perovskite film on the display substrate.
  • the perovskite molecules in the patterned perovskite film are doped CsPbBr 3 , doped
  • the molecule is sodium bromide, bromide, magnesium bromide, potassium bromide or bromide; the raw materials are cesium bromide, lead bromide and the doped molecules; moles of cesium bromide and lead bromide The ratio is 0.5: 1 ⁇ 2: 1, and the optimal molar ratio of doped molecules to cesium bromide is 0.1: 1 ⁇ 0.2:1.
  • the layer-by-layer deposition of the raw materials on the display substrate specifically includes: depositing cesium bromide, doping molecules, and lead bromide on the display substrate layer by layer in order, repeating 1-10 times, so that the display substrate A 15-150nm thick film is obtained.
  • the heating is specifically: heating the film deposited on the display substrate in a nitrogen environment to fully react the raw materials, the heating temperature is 100-300 ° C, and the heating time is 5-60 minutes.
  • Another aspect of the present invention provides a core-shell structure perovskite film prepared by the above method.
  • Another aspect of the present invention also provides a controllable fluorescent display method, including: providing a display substrate on which a patterned core-shell structure perovskite film is deposited; depositing on the back of the display substrate Conductive polymer loop; use light source to irradiate to display patterned fluorescent light on the display substrate, and by applying/withdrawing voltage on the loop, the fluorescent light in the corresponding area of the loop disappears/recovers, thereby achieving Controllable fluorescent display on the display substrate.
  • the deposition method is printing, spin coating or smearing, and the conductive high molecular polymer is PEDOT: PSS or polyaniline. Furthermore, after depositing the conductive high molecular polymer circuit on the back of the display substrate, it further includes a step of performing annealing treatment at 80-200 ° C. for 10-30 minutes.
  • the all-inorganic perovskite film has very weak fluorescence due to its low exciton binding energy; the core-shell structure perovskite fluorescent film of the present invention can enhance the fluorescence intensity of the all-inorganic perovskite film; and preparation Method brief Single, large area preparation and patterning are possible.
  • the perovskite film of the present invention has excellent thermal stability and humidity stability. After being placed in the air for more than 6 months, its fluorescent brightness can be maintained above 95%.
  • the fluorescent light of the perovskite film of the present invention is sensitive to temperature response. When heated at more than 100 ° C., the fluorescent light disappears, the normal temperature is restored, and the fluorescent light recovers. There is no significant change in the brightness of the fluorescent light after hundreds of times.
  • FIG. 1 is a schematic diagram of physical vapor deposition of a pure inorganic perovskite film prepared in Example 1 of the present invention.
  • FIG. 2 is a TEM and SEM image of a pure inorganic perovskite film prepared in Example 1 of the present invention.
  • Figure 3 is the TEM and SEM images of the perovskite film prepared in Example 2 of the present invention standing in the air for more than 24 d, where the ruler length is 200nm;
  • Figure 4 is a core-shell structure of the perovskite film of Example 2 of the present invention after being exposed to air for 24 hours;
  • Figure 5 is a schematic diagram of physical vapor deposition of the pure inorganic perovskite film prepared in Example 3 of the present invention.
  • Figure 6 is the implementation of the present invention
  • Example 5 Patterned high-luminescence perovskite film;
  • Fig. 7 is a schematic diagram of the preparation of the controllable fluorescence display film of Example 6 of the present invention;
  • Fig. 8 is a dynamic pattern of the controllable fluorescence display of Example 6 of the present invention.
  • DETAILED DESCRIPTION As described in the background art, the all-inorganic perovskite film itself has very low fluorescence efficiency.
  • the present invention provides a preparation of a core-shell structure perovskite film
  • the method includes: reacting the perovskite film with water vapor with a humidity of 10%-70% for 1 to 60 hours to form a protective layer on the surface of the perovskite film, thereby obtaining the core-shell structure perovskite film;
  • the perovskite molecules in the perovskite film are selected from one of the following molecules: CsPbCl 3 , CsPbBr 3 , CsPbI 3 , CsPbCl x Br 3-x , CsPbBr x I 3-x (l ⁇ x ⁇ 3); and their doping molecules; the doping materials in the doping molecules include LiCl, LiBr, Lil, BiBr 3 , BiCl 3
  • the energy of the light causes some electrons to transition from the original orbit to a higher energy orbit, that is, from the ground state to the excited state.
  • the electrons in the excited state are unstable, so they will recover.
  • the ground state when the electron returns from the excited state to the ground state, radiative recombination occurs, and energy is released in the form of light, so fluorescent light is produced.
  • the semiconductor fluorescent material is placed at a higher temperature, the electrons that transition to the excited state are affected by the thermal temperature and transfer energy to the crystal lattice, or recombine in the defect state, and non-radiative recombination is dominant, leading to the gradual annihilation of the fluorescent light.
  • CsPbBr 3 when the perovskite film is placed in the air with higher humidity, the water in the air will strip the cesium bromide and at the same time form a CsPbBr 3 /CsPb 2 Br 5 core-shell structure ,
  • the core is CsPbBr 3 and the shell is CsPb 2 Br 5 .
  • This core-shell structure has excellent stability.
  • the outer CsPb 2 Br 5 structure is stable and resistant to water and oxygen. It ensures that the inner CsPbBr 3 structure is not destroyed, so it can make the fluorescent light quenched hundreds of times and burn. The intensity is basically unchanged.
  • the fluorescence intensity of the perovskite film is increased.
  • the core-shell structure perovskite film is placed on a heating table, and as the temperature rises, the fluorescent light gradually disappears, and when the temperature reaches above 100 ° C, the fluorescent light completely disappears; when the temperature is removed, the fluorescent light will be in a few seconds When the clock is restored, the intensity of the fluorescent light is basically unchanged.
  • the stable core-shell structure ensures that the fluorescent light can be stably restored/annihilated hundreds of times without changing, and the stability is extremely good. After more than 6 months in the air, it can still maintain more than 95% of the fluorescent light.
  • the humidity of the water vapor is preferably 30%-40%, and the reaction time is preferably 20-30 hours.
  • the perovskite film is preferably a patterned perovskite film.
  • the present invention also provides a method for preparing a patterned perovskite film, which includes: providing a display substrate and a patterned mask covering the display substrate; and depositing raw materials layer by layer on the display substrate, and heating The raw materials are reacted to obtain a patterned perovskite film on the display substrate.
  • the mask plate can be a metal plate or a paper plate, which is patterned by a laser cutting machine.
  • the substrate may be a rigid or flexible substrate, such as silicon, quartz glass, polyethylene terephthalate, etc.
  • the deposition adopts physical vapor deposition.
  • the calcine molecules in the patterned calcine ore film are doped
  • the doping molecules are sodium bromide, bromide, magnesium bromide, potassium bromide or bromide; the raw materials are cesium bromide, lead bromide and the doping molecules; cesium bromide and
  • the molar ratio of lead bromide is 0.5:1 to 2: 1, preferably 0.8:1 to 1.2:1; the molar ratio of doping molecule to cesium bromide is 0.1:1 to 0.2:1.
  • the layer-by-layer deposition of the raw materials on the display substrate specifically includes: depositing cesium bromide, doping molecules and lead bromide on the display substrate layer by layer in order, repeating 1 to 10 times, preferably 3 ⁇ 4 times to obtain a 15-150nm thick film on the display substrate, preferably 45-60nm thick.
  • the heating is specifically: heating the film deposited on the display substrate in a nitrogen environment to fully react the raw materials, the heating temperature is 100 ⁇ 300 ° C, preferably 100 ⁇ 150 ° C, the heating time is 5 ⁇ 60 minutes, preferably 10 ⁇ 20 minutes.
  • the present invention also provides another method for preparing a patterned perovskite film, which includes: providing a display substrate and a patterned mask covering the display substrate; and mixing and grinding the raw materials to achieve a uniformity between 80 and 300 It is treated at a temperature of ° C for 10-60 minutes, and then placed in an evaporator, and evaporated on the display substrate, thereby obtaining a patterned perovskite film on the display substrate.
  • the grinding time is preferably 30 minutes or more.
  • the heating temperature is 150-200 ° C, and the heating time is 20-30 minutes.
  • the thickness of the film is 10 to 200 nm, preferably 30 to
  • the present invention also provides a controllable fluorescent display method, including: providing a display substrate on which a patterned core-shell structure perovskite film is deposited; and depositing a conductive film on the back of the display substrate Macromolecular polymer loop; using light source to irradiate to display patterned fluorescent light on the display substrate, applying voltage to the loop, the conductive high molecular polymer heating up causes the corresponding area of the fluorescent light to disappear; removing the voltage, fluorescent light recovery, A dynamic fluorescent display is formed.
  • the deposition method include, but are not limited to printing, spin coating or painting, preferably for the print;
  • the conductive polymer include, but are not limited to PEDOT: PSS and polyaniline, preferably of PEDOT: PSS of the present invention O
  • the deposition method after depositing the conductive high molecular polymer circuit on the back of the display substrate, it further includes a step of performing annealing treatment at 80-200 ° C for 10-30 minutes.
  • the temperature is 100-150 ° C
  • the time is 10-20 minutes.
  • the light source may be an ultraviolet light source.
  • the high-brightness fluorescent perovskite film of the present invention can be patterned and applied to a display based on ultraviolet LED in a large area, and its special fluorescent light-sensitive property can be applied to dynamic backlight display technology.
  • the formed perovskite core-shell structure greatly improves the water, oxygen and thermal stability of the perovskite film.
  • Example 1 provides a method for preparing an all-inorganic lead system perovskite film, which is specifically as follows: Take about 50 mg of brilliant bromide, 80 mg of lead bromide, and 10 mg of sodium bromide, and add them to the vacuum heat. Among the three evaporation sources of the deposition apparatus, the glass substrate is placed above the evaporation chamber, so that the medicine can be directly deposited on the substrate. Close the vacuum chamber and pump the air pressure in the chamber to 10_ 5 Pa.
  • the three evaporation sources are heated in sequence, and 6.5 nm thick bromide is first evaporated, then 0.5 nm thick sodium bromide is evaporated, and then 7.9 nm thick lead bromide is evaporated, and the cycle is three to four times.
  • the thickness and molar ratio of each material need to be calibrated by a step meter.
  • the above data is the corresponding film thickness obtained from the experiment. For different evaporators, the film thickness needs to be calibrated manually.
  • the deposited perovskite film is taken out of the vacuum chamber, and annealed at 100-150 ° C for more than 10 minutes to obtain a preliminary 4-tonite film.
  • FIG. 1 A schematic diagram of the above-mentioned deposition method is shown in FIG. 1.
  • Example 2 This example provides a method for improving the luminescence of the all-inorganic lead-based perovskite film, which is specifically as follows: The perovskite film prepared in Example 1 is allowed to stand in the air for more than 24 hours, and the humidity is maintained at At about 30%, the film becomes more and more rough visible to the naked eye. At the same time, its fluorescent light gradually increases under the irradiation of the ultraviolet lamp. This is because water will peel off the cesium bromide on the surface and make the film appear lead-rich.
  • the addition of the mixed material sodium bromide accelerates the process of transforming pure CsPbBr 3 into CsPb 2 Br 5 , thereby forming a core-shell structure, enhancing the dielectric trapping effect, and thereby enhancing the fluorescence.
  • the TEM and SEM images of the above-mentioned high-fluorescence perovskite film after standing in the air are shown in FIG. 3, and the schematic diagram of the core-shell structure is shown in FIG.
  • Example 3 provides a method for preparing an all-inorganic lead system perovskite film, which is specifically as follows: 42.6 mg of bromide brilliant, 73.4 mg of lead bromide, and 2.4 mg of sodium bromide are added to a mortar for sufficient grinding to make It becomes an orange powder, heated at 100 ° C for 30 minutes, then put all the powder into a heating source of the vacuum thermal deposition apparatus, and place the substrate on the top of the evaporation chamber, so that the medicine can be directly deposited on the substrate , short positions aiming off, the pressure in the chamber is evacuated to 10- 5 Pa, and then directly heat the drug, so that all deposited on the substrate, the deposition thickness is preferably 40-60nm, self-control.
  • the vapor deposition schematic diagram of this embodiment is shown in FIG. 5.
  • Example 4 provides a method for preparing an all-inorganic lead system perovskite film, which is specifically as follows: Take about 50 mg of bromide brilliant, 80 mg of lead bromide, and 10 mg of bromide into the vacuum thermal deposition apparatus.
  • the perovskite films of Example 1 and Example 2 are used to prepare patterned and highly fluorescent perovskite films.
  • the mask can be cut with a laser marking machine to obtain a patterned mask.
  • the mask is fixed on the substrate, so that a patterned, large-area perovskite film can be obtained, and then a high-fluorescence perovskite film can be obtained through the steps of Example 2.
  • the patterned high-fluorescence perovskite film is shown in Figure 6.
  • Example 6 The perovskite films of Example 1 and Example 2 were used to prepare display films with controllable fluorescence.
  • the high-fluorescence, patterned perovskite films prepared in Examples 1 and 2 were deposited on the flexible transparent substrate polyethylene terephthalate, and then the highly conductive polymer (PEDOT:PSS) was printed on the spare of the flexible substrate
  • the circuit corresponding to the front-patterned 4-powder ore film is applied to the two ends of the corresponding circuit, heating the circuit, the temperature of the corresponding area rises above 100 ° C, the corresponding area's fluorescent light disappears, the corresponding voltage is removed, and the fluorescent light recovers.
  • the fluorescence of the perovskite film prepared by Examples 1 and 2 is sensitive to temperature, and the number of temperature recovery can reach hundreds of times and the fluorescence can be maintained basically unchanged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

核壳结构钙钛矿薄膜及其制备方法、以及可控荧光显示方法,该核壳结构钙钛矿薄膜的制备方法包括:在湿度为10%~70%的空气环境中,将钙钛矿薄膜与水汽反应1~60小时,使得该钙钛矿薄膜的表面形成保护层,从而得到核壳结构钙钛矿薄膜;其中,该钙钛矿薄膜中的钙钛矿分子选自下述分子中的一种:CsPbCl 3、CsPbBr 3、CsPbI 3、CsPbCl xBr 3-x(1<x<3)、CsPbBr xI 3-x(1<x<3)、以及它们的掺杂分子;该掺杂分子中的掺杂材料包括LiCl、LiBr、LiI、BiBr 3、BiCl 3、BiI 3、NaCl、NaBr、NaI、KCl、KBr、KI、RbCl、RbBr、RbI和MgBr 2中的至少一种。

Description

核壳结构钙钛矿薄膜, 其制备方法以及可控荧光显示方法 技术领域 本发明涉及荧光显示技术领域, 具体涉及一种核壳结构钙钛矿薄膜, 其制 备方法以及可控焚光显示方法。 背景技术 随着显示技术的发展, 市场竞争日益激烈。 目前主流的显示技术有两种, 一种是液晶显示 (LCD), 是被动式发光方式, 基于无机发光二极管或熒光灯光 等背光源, 通过三基色滤光片, 实现不同的颜色显示。 由于受其发光模式的限 制, LCD显示的显色色域相对比较窄。 由于工艺成熟, 基于背光源的显示技术 在大规模的应用中显示了优势, 是目前产业显示的主流显示技术。 另一种是有 机发光显示 (OLED)、 量子点显示 (QLED) 作为一种发展比较快的显示技术, 是主动式发光方式, 不需要背光源, 由有机或量子点发光层直接发光, 其发光 峰半峰高宽相对比较窄 (25~ 40纳米), 显色指数比较好, 目前在产业界得到了 广泛关注, 但是制备成本很高。 由于商化钙钛矿材料光峰半峰高宽 ( 15 ~ 20纳米) 比 OLED、 QLE材料的 发光峰更窄。 目前在发光领域研究较多, 目前制备钙钛矿量子点的合成工作比 较多, 但在纯无机的薄膜 铁矿的领域中没有较大突破, 全无机的 铁矿薄膜 本身的熒光效率很低, 面对较高的温度和湿度, 钙钛矿薄膜会被破坏, 不利于 发光二极管的制备及应用。 传统的全无机钙钛矿簿膜通过前驱体溶液制备的方 法制备, 无法大面积和图案化的应用。 基于背光源的 钬矿的发光二极管应用 很多, 从绿光, 红光到白光, 显示了其在背光显示领域的前景。 但是图案化和 动态化的显示应用缺鲜有人研究, 一是高荧光的钙钛矿薄膜无法大面积制备, 二是钙钛矿薄膜的热和湿度稳定性十分差。 发明内容 本发明要解决的技术问题是提供一种全无机的核壳结构钙钛矿薄膜, 该钙 钦矿薄膜的热稳定性和对湿度的稳定性极好, 焚光性对温度响应敏感 , 焚光可 恢复 /泮灭几百次没有焚光损失。 为了解决上述技术问题, 本发明提供了一种核壳结构钙钛矿薄膜的制备方 法, 包括: 将钙钛矿薄膜与湿度为 10% - 70%的水汽反应 1 ~ 60小时, 使得所述钙钛 矿薄膜的表面形成保护层, 从而得到所述核壳结构钙钛矿薄膜; 其中, 所述钙钛矿薄膜中的钙钛矿分子选自下述分子中的一种:
CsPbCl3、 CsPbBr3、 CsPbI3、 CsPbClxBr3-x、 CsPbBrxI3-x ( l<x<3) ; 以及它们 的掺杂分子; 所述掺杂分子中的掺杂材料包括 LiCl、 LiBr、 Lil、 BiBr3、 BiCl3、 Bil3、 NaCl、 NaBr、 Nal、 KC1、 KBr、 KI、 RbCl、 RbBr、 Rbl和 MgBr2中的至少一种。 进一步地, 所述水汽的优化湿度为 30% - 40%, 优化反应时间为 20 ~ 30 小时。 进一步地, 所述钙钛矿薄膜为图案化钙钛矿薄膜, 其制备方法包括: 提供显示基底以及覆盖在所述显示基底上的图案化掩模板; 以及 将原料逐层沉积于所述显示基底上, 加热使得原料发生反应, 从而在显示 基底上得到图案化的钙钛矿薄膜; 或 将原料混合、 研磨均勾, 在 80 ~ 300°C温度下处理 10 ~ 60分钟, 再放入蒸 发仪内, 蒸镀在所述显示基底上, 从而在显示基底上得到图案化的钙钛矿薄膜。 进一步地, 所述图案化钙钛矿薄膜中钙钛矿分子为掺杂的 CsPbBr3, 掺杂 分子为溴化納、 溴化裡、 溴化镁、 溴化钾或溴化 4如; 所述原料为溴化铯、 溴化铅以及所述掺杂分子; 溴化铯和溴化铅的摩尔比 为 0.5: 1 ~ 2: 1, 掺杂分子与溴化铯的优化摩尔比为 0.1 : 1 ~ 0.2: 1。 进一步地, 所述将原料逐层沉积于所述显示基底具体为: 将溴化铯、 掺杂分子和溴化铅按顺序逐层沉积在显示基底上, 重复 1 ~ 10 次, 从而在显示基底上得到 15 ~ 150nm厚的薄膜。 进一步地, 所述加热具体为: 将沉积在显示基底上的薄膜于氮气环境中加热, 使原料充分反应, 加热温 度为 100 ~ 300°C, 加热时间为 5 ~ 60分钟。 本发明另一方面提供了由上述的方法制备得到的核壳结构钙钛矿薄膜。 本发明另一方面还提供了一种可控焚光显示方法, 包括: 提供一显示基底, 所述显示基底上沉积有图案化的核壳结构钙钛矿薄膜; 在所述显示基底的背面沉积导电高分子聚合物回路; 采用光源照射以使显示基底上显示图案化的焚光, 通过在所述回路上加上 / 撤走电压, 使得所述回路对应区域的焚光消失 /恢复, 从而实现在显示基底上可 控地焚光显示。
进一步地, 所述沉积的方法为打印、 旋涂或涂抹, 所述导电高分子聚合物 为 PEDOT: PSS或聚苯胺。 进一步地, 在显示基底的背面沉积导电高分子聚合物回路后, 还包括在 80 ~ 200°C下进行退火处理 10 ~ 30分钟的步骤。 本发明的有益效果:
1.全无机钙钛矿薄膜因其低的激子结合能, 焚光十分微弱; 本发明的核壳 结构钙钛矿焚光薄膜, 能够增强全无机钙钛矿薄膜的焚光强度; 且制备方法简 单、 可大面积制备, 可图案化。
2.本发明的钙钛矿薄膜的热稳定性和对湿度的稳定性极好, 放置在空气中 6个月以上, 其焚光亮度还能维持在 95%以上。
3.本发明的钙钛矿薄膜焚光对于温度响应敏感, 在超过 100°C的加热下, 焚光消失, 恢复常温, 焚光恢复, 重复几百次焚光亮度无明显变化。
4.本发明的钙钛矿薄膜可应用于图案化基于背光源的显示中以及可控的动 态焚光显示中。 附图说明 图 1是本发明实施例 1制备的纯无机钙钛矿薄膜的物理气相沉积示意图 图 2是本发明实施例 1制备的纯无机钙钛矿薄膜的 TEM和 SEM图, 其中 标尺长度均为 200nm ; 图 3是本发明实施例 2制备的钙钛矿薄膜静置在空气中 24 d、时以上的 TEM 和 SEM图, 其中标尺长度均为 200nm;
图 4是本发明实施例 2的钙钛矿薄膜暴露空气 24小时后的核壳结构; 图 5是本发明实施例 3制备的纯无机钙钛矿薄膜的物理气相沉积示意图 图 6是本发明实施例 5图案化的高焚光的钙钛矿薄膜; 图 7是本发明实施例 6可控焚光的显示薄膜的制备示意图 图 8是本发明实施例 6可控焚光显示的动态图案。 具体实施方式 如背景技术所述, 全无机的钙钛矿薄膜本身的焚光效率很低, 由于活化能 较低, 面对较高的温度和湿度时, 钙钛矿薄膜会被破坏, 限制了其在发光二极 管中的应用。 为了解决该问题, 本发明提供了一种核壳结构钙钛矿薄膜的制备 方法, 包括: 将钙钛矿薄膜与湿度为 10% - 70%的水汽反应 1 ~ 60小时, 使得所述钙钛 矿薄膜的表面形成保护层, 从而得到所述核壳结构钙钛矿薄膜; 其中, 所述钙钛矿薄膜中的钙钛矿分子选自下述分子中的一种: CsPbCl3、 CsPbBr3、 CsPbI3、 CsPbClxBr3-x、 CsPbBrxI3-x ( l <x<3 ) ; 以及它们 的掺杂分子; 所述掺杂分子中的掺杂材料包括 LiCl、 LiBr、 Lil、 BiBr3、 BiCl3、 Bil3、 NaCl、 NaBr、 Nal、 KC1、 KBr、 KI、 RbCl、 RbBr、 Rbl和 MgBr2中的至少一种。 当紫外光照射到半导体焚光材料时, 光的能量使一些电子由原来的轨道跃 迁到了能量更高的轨道, 即从基态跃迁到激发态, 激发态上的电子是不稳定的, 所以会恢复基态, 当电子由激发态恢复到基态时, 产生辐射复合, 能量会以光 的形式释放, 所以产生焚光。 但当半导体焚光材料置于较高的温度时, 跃迁到 激发态的电子受热温度影响, 将能量传递给了晶格, 或者在缺陷态复合, 非辐 射复合占主导, 导致焚光逐渐泮灭, 温度越高, 焚光泮灭越彻底, 但当温度降 低时, 激发态的电子还是会恢复到基态, 产生焚光。 这种现象在钙钛矿焚光薄膜也有出现, 但是由于钙钛矿材料形成能低, 抗 水氧能力差, 在反复施加温度的过程中, 晶体结构可能被破坏, 焚光本身就会 因为结构的变化而降低, 无法实现上百次的焚光回复过程, 所以稳定的结构对 于半导体焚光回复的过程十分重要。 因此本发明中, 以 CsPbBr3 为例, 当钙钛矿薄膜置于湿度较高的空气中时, 空气中的水会剥离溴化铯, 同时形成一种 CsPbBr3/CsPb2Br5 核壳结构, 核为 CsPbBr3, 壳为 CsPb2Br5。 这种核壳结构的稳定性极好, 外层 CsPb2Br5结构稳 定, 抗水氧, 保证了内层的 CsPbBr3结构不被破坏, 所以能使焚光泮灭回复几 百次而焚光强度基本不变。 同时因为介电限域效应, 提高了钙钛矿薄膜的焚光 强度。 本发明中, 将核壳结构钙钛矿薄膜置于加热台上, 随着温度升高, 焚光逐 步消失, 温度达到 100°C以上, 焚光完全消失; 当撤去温度, 焚光在几秒钟中 恢复, 焚光强度基本不变。 稳定的核壳结构保证了焚光能稳定地恢复 /泮灭几百 次而不变, 且稳定性极好, 在空气中放置 6个月以上, 仍能保持 95%以上焚光。 本发明中, 所述水汽的湿度优选为 30% - 40%, 反应时间优选为 20 ~ 30 小时。 本发明中, 所述钙钛矿薄膜优选为图案化钙钛矿薄膜。 本发明还提供了图案化钙钛矿薄膜的一种制备方法, 包括: 提供显示基底以及覆盖在所述显示基底上的图案化掩模板; 以及 将原料逐层沉积于所述显示基底上, 加热使得原料发生反应, 从而在显示 基底上得到图案化的钙钛矿薄膜。 本发明中, 掩膜板可以采用金属板或纸质板, 用激光切割机进行图案化。 基底可以为刚性或者柔性基底, 如硅, 石英玻璃, 聚对苯二甲酸乙二醇酯等。 本发明中, 所述沉积采用物理气相沉积的方式。 本发明的一种实施方式中, 所述图案化钙钦矿薄膜中钙钦矿分子为掺杂的
CsPbBr3, 掺杂分子为溴化納、 溴化裡、 溴化镁、 溴化钾或溴化 4如; 所述原料为 溴化铯、 溴化铅以及所述掺杂分子; 溴化铯和溴化铅的摩尔比为 0.5: 1 ~ 2: 1, 优 选为 0.8: 1-1.2: 1 ; 掺杂分子与溴化铯的摩尔比为 0.1 : 1 ~ 0.2: 1。 本发明中, 所述将原料逐层沉积于所述显示基底具体为: 将溴化铯、 掺杂 分子和溴化铅按顺序逐层沉积在显示基底上, 重复 1 ~ 10次, 优选为 3 ~ 4次, 从而在显示基底上得到 15 ~ 150nm厚, 优选为 45 ~ 60nm厚的薄膜。 本发明中, 所述加热具体为: 将沉积在显示基底上的薄膜于氮气环境中加 热, 使原料充分反应, 加热温度为 100 ~ 300°C, 优选为 100 ~ 150°C, 加热时间 为 5 ~ 60分钟, 优选为 10 ~ 20分钟。 本发明还提供了图案化钙钛矿薄膜的另一种制备方法, 包括: 提供显示基底以及覆盖在所述显示基底上的图案化掩模板; 以及 将原料混合、 研磨均勾, 在 80 ~ 300°C温度下处理 10 ~ 60分钟, 再放入蒸 发仪内, 蒸镀在所述显示基底上, 从而在显示基底上得到图案化的钙钛矿薄膜。
本发明中,优选地,研磨时间 30分钟以上。优选地,加热温度为 150 ~ 200°C , 加热时间为 20 ~ 30分钟。 优选地, 薄膜厚度为 10 ~ 200nm, 优选地厚度 30 ~
60nmo
此外, 本发明还提供了一种可控焚光显示方法, 包括: 提供一显示基底, 所述显示基底上沉积有图案化的核壳结构钙钛矿薄膜; 在所述显示基底的背面沉积导电高分子聚合物回路; 采用光源照射以使显示基底上显示图案化的焚光,在所述回路上加上电压, 导电高分子聚合物升温导致对应区域焚光消失; 撤去电压, 焚光回复, 形成了 动态焚光显示。
本发明中, 所述沉积的方法包括但不限于打印、 旋涂或涂抹, 优选为打印; 所述导电高分子聚合物包括但不限于 PEDOT : PSS和聚苯胺, 优选为 PEDOT: PSSo 本发明中, 在显示基底的背面沉积导电高分子聚合物回路后, 还包括在 80 ~ 200°C下进行退火处理 10 ~ 30分钟的步骤。 优选地, 温度为 100 ~ 150°C, 时 间为 10 ~ 20分钟。 本发明中, 所述光源可采用紫外光源。 本发明的高亮度焚光钙钛矿薄膜可图案化并大面积应用在基于紫外 LED 的显示, 其特殊的焚光对温度敏感的性质可应用在动态背光显示技术中。 同时, 形成的钙钛矿核壳结构极大的提高了钙钛矿薄膜的水氧和热稳定性。
下面结合附图和实施例, 对本发明的具体实施方式作进一步详细描述。 以 下实施例用于说明本发明, 但不用来限制本发明的范围。 本发明以下实施例中使用的材料纯度如下: 溴化铅(99.999%), 溴化铯(99.999%), 溴化钠(99.9%), 溴化钾(99.9%), 溴化锂 (99.999%), 溴化铷 (99.999%) 和溴化镁 (99.999%)。 实施例 1 本实施例提供了一种全无机铅体系钙钛矿薄膜的制备方法, 具体如下: 取大约 50mg的溴化艳, 80mg的溴化铅, 10mg的溴化納, 分别加入到真 空热沉积仪器的三个蒸发源中, 再把玻璃基底放置在蒸镀仓内的上方, 使药品 能直接沉积在基底上。 关上真空仓, 将腔内的气压抽至 10_5 Pa。 然后依次加热 三个蒸镀源, 先蒸镀 6.5nm厚的溴化艳, 然后蒸镀 0.5nm厚的溴化納, 再蒸镀 7.9 nm厚的溴化铅, 循环三至四次。 各个材料的的厚度和摩尔比需要通过台阶 仪进行校准, 上述数据是根据实验得出的相应膜厚, 针对不同蒸发仪, 膜厚需 手动校准。 将沉积好的钙钛矿薄膜取出真空仓, 在 100 ~ 150°C下退火 10分钟以上, 得到初步的 4弓钦矿薄膜。 上述的沉积方法示意图如图 1所示。 对上述薄膜进行 SEM和 TEM的表征, 如图 2, 薄膜表面平整, 均一。 实施例 2 本实施例提供了一种使全无机铅系钙钛矿薄膜焚光提高的方法,具体如下: 将实施例 1制备的钙钛矿薄膜静置在空气中 24小时以上,湿度维持在 30% 左右, 肉眼可见薄膜变得越来越粗糙, 同时其在紫外灯的照射下焚光逐步增强, 这是因为水会剥离表面的溴化铯, 使薄膜呈现富铅的状态, 此时掺杂材料溴化 钠的加入加速了纯的 CsPbBr3转变成 CsPb2Br5的过程, 从而形成核壳结构, 增 强了介电陷域效应, 从而增强了焚光。 上述在空气中静置后高焚光的钙钛矿薄膜的 TEM和 SEM图如图 3所示, 核壳结构的示意图如图 4所示。
实施例 3 本实施例提供了一种全无机铅体系钙钛矿薄膜制备方法, 具体如下: 将溴化艳 42.6 mg,溴化铅 73.4 mg和溴化納 2.4 mg加入研钵进行充分研磨, 使之成为橘黄色的粉末, 在 100°C加热 30分钟, 之后把所有粉末放入真空热沉 积仪器的一个加热源中, 把基底放置在蒸镀仓内的上方, 使药品能直接沉积在 基底上, 关上真空仓, 将腔内的气压抽至 10-5 Pa, 然后直接加热药品, 使之全 部沉积在基底上, 优选沉积膜厚 40-60nm, 可自行控制。 本实施例的蒸镀示意图如图 5所示。
实施例 4 本实施例提供了一种全无机铅体系钙钛矿薄膜的制备方法, 具体如下: 取大约 50mg的溴化艳, 80mg的溴化铅, 10mg的溴化裡分别加入真空热 沉积仪器的三个蒸发源中, 把基底放置在蒸镀仓内的上方, 使药品能直接沉积 在基底上, 关上真空仓, 将腔内的气压抽至 Ur5 Pa, 然后依次加热三个蒸镀源, 先蒸镀 6.5 nm的溴化艳, 然后蒸镀 0.5 nm的溴化裡, 再蒸镀 7.9 nm的溴化铅, 循环三至四次; 将沉积好的钙钛矿薄膜取出真空仓, 在 100 ~ 150°C下退火 10 分钟以上, 得到初步的钙钛矿薄膜。 实施例 5
采用实施例 1和实施例 2的钙钛矿薄膜, 制备图案化的和高焚光的钙钛矿 薄膜, 掩膜板可以用激光打标机进行切割, 得到图案化的掩膜板, 在蒸镀过程 中, 把掩膜板固定在基底上, 这样就能得到图案化, 大面积的钙钛矿薄膜, 之 后经过实例 2的步骤得到高焚光的钙钛矿薄膜。 图案化的高焚光的钙钛矿薄膜如图 6所示。 实施例 6 采用实施例 1和实施例 2的钙钛矿薄膜, 制备可控焚光的显示膜。 将实施 例 1和 2制备的高焚光, 图案化的钙钛矿薄膜沉积在柔性透明基底聚对苯二甲 酸乙二酯上, 之后在柔性基底的备用打印高导电聚合物 (PEDOT:PSS) 的回路, 对应正面图案化的 4弓钦矿薄膜, 在相应回路两端加上电压, 加热回路, 对应区 域温度上升至 100°C以上, 对应区域焚光消失, 撤去相应电压, 焚光恢复。 由 实例 1和 2制备的钙钛矿薄膜焚光对温度响应灵敏, 其温度的恢复次数能达到 几百次还能维持基本不变的焚光。 可控焚光薄膜的导电回路和钙钛矿沉积示意图如图 7所示, 可控焚光的动 态图案如图 8所示。 以上所述实施例仅是为充分说明本发明而所举的较佳的实施例, 本发明的 保护范围不限于此。 本技术领域的技术人员在本发明基础上所作的等同替代或 变换, 均在本发明的保护范围之内。 本发明的保护范围以权利要求书为准。

Claims

权 利 要 求 书
1.一种核壳结构钙钛矿薄膜的制备方法, 其特征在于, 包括: 将通过蒸发仪沉积好的钙钛矿薄膜与湿度为 10% - 70%的水汽反应 1 ~ 60 小时, 使得所述钙钛矿薄膜的表面形成保护层, 从而得到所述核壳结构钙钛矿 薄膜; 其中, 所述钙钛矿薄膜中的钙钛矿分子选自下述分子中的一种:
CsPbCl3、 CsPbBr3、 CsPbI3、 CsPbClxBr3-x、 CsPbBrxI3.x ( l<x<3 ) ; 以及它们 的掺杂分子; 所述掺杂分子中的掺杂材料包括 LiCl、 LiBr、 Lil、 BiBr3、 BiCl3、 Bil3、 NaCl、 NaBr、 Nal、 KC1、 KBr、 KI、 RbCl、 RbBr、 Rbl和 MgBr2中的至少一种。
2.如权利要求 1 所述的核壳结构钙钛矿薄膜的制备方法, 其特征在于, 所 述水汽的优化湿度为 30% - 40% , 反应时间为 20 ~ 30小时。
3.如权利要求 1 所述的核壳结构钙铁矿薄膜的制备方法, 其特征在于, 所 述钙钛矿薄膜为图案化钙钛矿薄膜, 其制备方法包括: 提供显示基底以及覆盖在所述显示基底上的图案化掩模板; 以及 将原料逐层沉积于所述显示基底上, 加热使得原料发生反应, 从而在显示 基底上得到图案化的钙钛矿薄膜; 或 将原料混合、 研磨均勾, 在 80 ~ 300°C温度下处理 10 ~ 60分钟, 再放入蒸 发仪内, 蒸镀在所述显示基底上, 从而在显示基底上得到图案化的钙钛矿薄膜。
4.如权利要求 3所述的核壳结构 4弓铁矿薄膜的制备方法, 其特征在于, 所述图案化钙钛矿薄膜中钙钛矿分子为掺杂的 CsPbBr3, 掺杂分子为溴化 納、 溴化裡、 溴化镁、 溴化钾或溴化 4如; 所述原料为溴化铯、 溴化铅以及所述掺杂分子; 溴化铯和溴化铅的摩尔比 为 0.5: 1 ~ 2: 1, 掺杂分子与溴化铯的优化摩尔比为 0.1 : 1 ~ 0.2: 1。
5.如权利要求 3 所述的核壳结构钙钛矿薄膜的制备方法, 其特征在于, 所 述将原料逐层沉积于所述显示基底具体为: 将溴化铯、 掺杂分子和溴化铅按顺序逐层沉积在显示基底上, 重复 1 ~ 10 次, 从而在显示基底上得到 15 ~ 150nm厚的薄膜。
6.如权利要求 3 所述的核壳结构钙钛矿薄膜的制备方法, 其特征在于, 所 述加热具体为: 将沉积在显示基底上的薄膜于氮气环境中加热, 使原料充分反应, 加热温 度为 100 ~ 300。(:, 加热时间为 5 ~ 60分钟。
7.根据权利要求 1-6任一项所述的方法制备得到的核壳结构钙钛矿薄膜。
8.—种可控焚光显示方法, 其特征在于, 包括: 提供一显示基底, 所述显示基底上沉积有图案化的如权利要求 7所述的核 壳结构钙钛矿薄膜; 在所述显示基底的背面沉积导电高分子聚合物回路; 采用光源照射以使显示基底上显示图案化的焚光, 通过在所述回路上加上 / 撤走电压, 使得所述回路对应区域的焚光消失 /恢复, 从而实现在显示基底上可 控地焚光显示。
9.如权利要求 8 所述的可控焚光显示方法, 其特征在于, 所述沉积的方法 为打印、 旋涂或涂抹, 所述导电高分子聚合物为 PEDOT: PSS或聚苯胺。
10. 如权利要求 8 所述的可控焚光显示方法, 其特征在于, 在显示基底的 背面沉积导电高分子聚合物回路后, 还包括在 80〜 200°C下进行退火处理 10〜 30分钟的步骤。
PCT/CN2019/117555 2019-02-25 2019-11-12 核壳结构钙钛矿薄膜,其制备方法以及可控荧光显示方法 WO2020173131A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910137583.5 2019-02-25
CN201910137583.5A CN109888083B (zh) 2019-02-25 2019-02-25 核壳结构钙钛矿薄膜,其制备方法以及可控荧光显示方法

Publications (1)

Publication Number Publication Date
WO2020173131A1 true WO2020173131A1 (zh) 2020-09-03

Family

ID=66929114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117555 WO2020173131A1 (zh) 2019-02-25 2019-11-12 核壳结构钙钛矿薄膜,其制备方法以及可控荧光显示方法

Country Status (2)

Country Link
CN (1) CN109888083B (zh)
WO (1) WO2020173131A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888083B (zh) * 2019-02-25 2020-09-01 苏州英纳电子材料有限公司 核壳结构钙钛矿薄膜,其制备方法以及可控荧光显示方法
CN111326657B (zh) * 2020-03-09 2021-03-16 成都信息工程大学 一种CsPbBr3/CsPb2Br5复合薄膜及其制备方法
CN111384198B (zh) * 2020-03-20 2022-07-19 陕西师范大学 一种适用于高温环境的x射线探测器及其制备方法
CN111403616B (zh) * 2020-03-30 2021-07-13 浙江大学 一种溴无机盐钙钛矿薄膜及其制备方法和应用
CN113636588B (zh) * 2020-04-27 2022-10-14 南京大学 Cs4PbBr6及其类似物纳米晶和制备方法
CN113413839B (zh) * 2021-07-07 2022-04-05 西南交通大学 一种盐响应聚苯胺微胶囊、自预警涂层及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107099290A (zh) * 2017-07-05 2017-08-29 向爱双 制备核壳结构钙钛矿量子点的方法
CN107117646A (zh) * 2017-05-17 2017-09-01 北京交通大学 铅卤钙钛矿量子点材料的制备方法
US20170346024A1 (en) * 2014-11-06 2017-11-30 Postech Academy-Industry Foundation Perovskite nanocrystal particle light emitting body with core-shell structure, method for fabricating same, and light emitting element using same
CN109355638A (zh) * 2018-12-14 2019-02-19 常州工学院 一种相变可控的全无机钙钛矿薄膜制备方法及器件应用
CN109888083A (zh) * 2019-02-25 2019-06-14 苏州英纳电子材料有限公司 核壳结构钙钛矿薄膜,其制备方法以及可控荧光显示方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104019922B (zh) * 2014-04-29 2016-11-23 北京理工大学 一种将有机-无机杂化钙钛矿材料用于温度探测
CN108269940A (zh) * 2018-01-22 2018-07-10 苏州大学 碱金属卤化物掺杂的钙钛矿发光二极管及其制备方法
CN108365077B (zh) * 2018-02-09 2019-08-02 深圳市鹏信捷通科技有限公司 一种高色域背光模组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170346024A1 (en) * 2014-11-06 2017-11-30 Postech Academy-Industry Foundation Perovskite nanocrystal particle light emitting body with core-shell structure, method for fabricating same, and light emitting element using same
CN107117646A (zh) * 2017-05-17 2017-09-01 北京交通大学 铅卤钙钛矿量子点材料的制备方法
CN107099290A (zh) * 2017-07-05 2017-08-29 向爱双 制备核壳结构钙钛矿量子点的方法
CN109355638A (zh) * 2018-12-14 2019-02-19 常州工学院 一种相变可控的全无机钙钛矿薄膜制备方法及器件应用
CN109888083A (zh) * 2019-02-25 2019-06-14 苏州英纳电子材料有限公司 核壳结构钙钛矿薄膜,其制备方法以及可控荧光显示方法

Also Published As

Publication number Publication date
CN109888083B (zh) 2020-09-01
CN109888083A (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
WO2020173131A1 (zh) 核壳结构钙钛矿薄膜,其制备方法以及可控荧光显示方法
Su et al. Excitation‐dependent long‐life luminescent polymeric systems under ambient conditions
Yan et al. Heterogeneous Transparent Ultrathin Films with Tunable‐Color Luminescence Based on the Assembly of Photoactive Organic Molecules and Layered Double Hydroxides
CN103688385B (zh) 有机发光元件、光源装置及有机发光元件的制造方法
Ge et al. One-step synthesis of self-quenching-resistant biomass-based solid-state fluorescent carbon dots with high yield for white lighting emitting diodes
CN109713100B (zh) 一种制备全无机钙钛矿发光二极管活性层的方法
JP2004022544A (ja) 燐鉱材料の混合物を発光材料として使用した高分子有機電界発光素子
Zhang et al. Strong linearly polarized photoluminescence and electroluminescence from halide perovskite/azobenzene dye composite film for display applications
Chu et al. Large‐area and efficient sky‐blue perovskite light‐emitting diodes via Blade‐coating
Song et al. Utilization of All Hydrothermally Synthesized Red, Green, Blue Nanophosphors for Fabrication of Highly Transparent Monochromatic and Full‐Color Plasma Display Devices
CN106575547A (zh) 透明电极、透明电极的制造方法、及电子器件
Dou et al. Ten‐Gram‐Scale Synthesis of FAPbX3 Perovskite Nanocrystals by a High‐Power Room‐Temperature Ultrasonic‐Assisted Strategy and Their Electroluminescence
Yin et al. Ultralong excimer phosphorescence by the self‐assembly and confinement of terpyridine derivatives in polymeric matrices
Xu et al. Large‐Area Deep‐Blue Polymer Light‐Emitting Diodes with Well‐Resolved Emission from Planar Conformational Segments Fabricated via Brush Coating
JP2019164973A (ja) 熱転写フィルムの利用による有機発光ダイオードの準備方法
JP3284766B2 (ja) 有機電界発光素子
CN111799396B (zh) 一种蓝绿光色度可调的钙钛矿发光二极管的制备方法
JP3243887B2 (ja) 有機電界発光素子
Wei et al. Interfacing Lanthanide Metal‐Organic Frameworks with ZnO Nanowires for Alternating Current Electroluminescence
EP0700235B1 (en) Process for patterning poly(arylenevinylene) polymer films by irradiation with light
CN100442533C (zh) 全彩有机电致发光显示装置
JPH0485388A (ja) 有機エレクトロルミネッセンス素子
JP2019186185A (ja) 熱転写フィルムの利用による有機発光ダイオードの連続的準備方法
JPH04129191A (ja) 有機エレクトロルミネッセンス素子の製造法
Wang et al. Large‐Area Blade‐Coated Deep‐Blue Polymer Light‐Emitting Diodes with a Narrowband and Uniform Emission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917373

Country of ref document: EP

Kind code of ref document: A1