WO2020170783A1 - コイル装置および電力変換装置 - Google Patents
コイル装置および電力変換装置 Download PDFInfo
- Publication number
- WO2020170783A1 WO2020170783A1 PCT/JP2020/003913 JP2020003913W WO2020170783A1 WO 2020170783 A1 WO2020170783 A1 WO 2020170783A1 JP 2020003913 W JP2020003913 W JP 2020003913W WO 2020170783 A1 WO2020170783 A1 WO 2020170783A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core
- coil device
- coil
- case
- pieces
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/26—Fastening parts of the core together; Fastening or mounting the core on casing or support
- H01F27/263—Fastening parts of the core together
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2876—Cooling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/08—Cooling; Ventilating
- H01F27/22—Cooling by heat conduction through solid or powdered fillings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/26—Fastening parts of the core together; Fastening or mounting the core on casing or support
- H01F27/266—Fastening or mounting the core on casing or support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2804—Printed windings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/30—Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
- H01F27/306—Fastening or mounting coils or windings on core, casing or other support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/10—Composite arrangements of magnetic circuits
- H01F3/14—Constrictions; Gaps, e.g. air-gaps
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/003—Constructional details, e.g. physical layout, assembly, wiring or busbar connections
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/01—Resonant DC/DC converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33573—Full-bridge at primary side of an isolation transformer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2804—Printed windings
- H01F2027/2819—Planar transformers with printed windings, e.g. surrounded by two cores and to be mounted on printed circuit
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- the present invention relates to a coil device including a coil and a power conversion device.
- the coil shape such as the transformer and the reactor, which occupy a large area in the power converter, has a planar shape that can be easily cooled by radiating heat to the housing. It is effective to use the coil device.
- the planar coil device is also called a low profile coil device.
- a magnetic path is formed by a combination of an E-type core and an I-type core or a combination of an E-type core and an E-type core.
- the gap length which is the length of the gap between the cores, must be precisely adjusted to obtain the desired inductance value.
- the gap length may be adjusted by fixing the cores while sandwiching the gap sheet between the ground surfaces of the cores. In this case, it is known that the inductance value varies due to variations in the dimension of the gap sheet or variations in the polishing accuracy of the core. Further, in the coil device, the longer the gap length, the larger the leakage magnetic flux. When the leakage magnetic flux becomes large, the magnetic flux causes an eddy current to flow in the coil that constitutes the coil device, increasing the loss of the coil.
- Patent Document 1 discloses that in a coil device in which an I-type core and an E-type core are combined, a gap between the I-type core and the E-type core is formed by using a bobbin that holds the coil. Is disclosed. According to the technique of Patent Document 1, the gap length can be set accurately without using the gap sheet. Further, the coil device of Patent Document 1 can suppress the leakage magnetic flux per one gap by dispersing the gap in each foot portion of the E-shaped core.
- Patent Document 1 which is a conventional technique, the gap provided in the magnetic path is limited to two places at the maximum. Therefore, in the case of the conventional technique, there is a problem that it is difficult to reduce the loss of the coil, because the suppression of the leakage magnetic flux becomes insufficient.
- the present invention has been made in view of the above, and an object thereof is to obtain a coil device capable of reducing coil loss.
- a coil device includes a coil, a first core component having a foot portion around which the coil is wound, and a first core component in a row with a gap therebetween.
- a second core component having a plurality of aligned core pieces and forming a magnetic path together with the first core component by being connected to the foot portion.
- the coil device according to the present invention has an effect that the loss of the coil can be reduced.
- the top view of the main components which comprise the power converter device shown in FIG. Another top view of main parts constituting the power conversion device shown in FIG.
- Top view of the coil device according to the first embodiment The figure which shows the 1st modification of the core module which the coil device concerning Embodiment 1 has.
- the figure which shows the 4th modification of the core module which the coil device concerning Embodiment 1 has.
- Top view of the case shown in FIG. The figure which shows the 3rd modification of the case which the core module shown in FIGS.
- the figure which shows the modification of the case and lid shown in FIG. The figure which shows the 1st example of the structure for installation of the coil apparatus concerning Embodiment 1.
- Sectional drawing which shows the state which combined the coil apparatus shown in FIG. 18 and the structure for installation of a coil apparatus.
- the figure which shows the 1st modification of the base core which the coil device concerning Embodiment 1 has.
- Exploded view of the coil device according to the second embodiment of the present invention The figure which shows the state after assembling of the coil apparatus shown in FIG. Exploded view of a coil device according to a modification of the second embodiment.
- Exploded view of a coil device according to a third embodiment of the present invention The side view which shows the state after the assembly of the coil apparatus shown in FIG.
- the top view which shows the state after the assembly of the coil apparatus shown in FIG. Sectional drawing of the coil apparatus concerning Embodiment 4 of this invention.
- the top view which shows an example of the surface in which the coil device concerning Embodiment 4 is arrange
- the top view which shows the other example of the surface in which the coil apparatus concerning Embodiment 4 is arrange
- Sectional drawing of the coil apparatus concerning Embodiment 5 of this invention Sectional drawing of the coil apparatus concerning Embodiment 6 of this invention.
- FIG. 38 is an enlarged view of a partition part included in the coil device shown in FIG. 38. Sectional drawing of the coil apparatus concerning the modification of Embodiment 6.
- FIG. 41 An enlarged view showing a side view of a metal plate provided with the coil device shown in FIG. 41.
- Sectional drawing which shows the state at the time of the assembly of the coil device concerning the 1st modification of Embodiment 7.
- Sectional drawing which shows the state after the assembly of the coil apparatus shown in FIG. Sectional drawing of the coil apparatus concerning the 2nd modification of Embodiment 7.
- FIG. Exploded view of the coil device according to the eighth embodiment Sectional drawing which shows the state after the assembly of the coil apparatus shown in FIG. Exploded view of a coil device according to a first modification of the eighth embodiment. Exploded view of a coil device according to a second modification of the eighth embodiment.
- Sectional drawing which shows the state after the assembly of the coil apparatus shown in FIG.
- Embodiment 1. 1 is a circuit diagram showing an example of a power conversion device including a coil device according to a first embodiment of the present invention.
- the power converter 100 shown in FIG. 1 is an insulation type DC (Direct Current)/DC converter.
- the power conversion device 100 converts the DC voltage input to the input terminals 101 and 102 into a DC voltage and outputs the DC voltage from the output terminals 191 and 192.
- a high voltage of about 100 V to 600 V supplied from a high voltage battery mounted on the vehicle is input to the input terminals 101 and 102.
- From the output terminals 191, 192 a voltage of about 12 V to 16 V, which is the power supply voltage of the in-vehicle accessory system parts, is output.
- the power conversion device 100 includes a full bridge circuit 110, a resonance coil 120, a transformer 130, a secondary side rectification circuit 140, and a smoothing circuit 150.
- the high voltage of direct current supplied to the input terminals 101 and 102 is input to the full bridge circuit 110.
- the full bridge circuit 110 includes switching elements 111, 112, 113, 114. Each of the switching elements 111, 112, 113, 114 is a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), an IGBT (Insulated Gate Bipolar Transistor), or the like.
- the full bridge circuit 110 performs an operation of generating an AC voltage from a DC voltage by the switching elements 111, 112, 113, 114.
- the AC component generated on the input side by the operation of the full bridge circuit 110 is mainly absorbed by the input capacitor 103. This reduces the generation of noise on the input line.
- the resonance coil 120 and the primary coil 131 of the transformer 130 are connected in series.
- the AC voltage generated by the full bridge circuit 110 is applied to the resonance coil 120 and the primary coil 131.
- the resonance coil 120 causes a resonance operation with a capacitor component formed by a MOSFET or an external capacitor connected in parallel with the switching elements 111, 112, 113, 114, and suppresses loss of the switching elements 111, 112, 113, 114. ..
- the resonance coil 120 is required to have a small inductance value accuracy, that is, a small variation in the inductance value.
- an AC voltage corresponding to the winding ratio of the transformer 130 is generated in the secondary coils 132 and 133 of the transformer 130.
- the AC voltage generated in the secondary coils 132 and 133 is input to the secondary rectifier circuit 140.
- the AC voltage input to the secondary side rectifier circuit 140 is rectified by the rectifier elements 141 and 142 represented by Schottky barrier diodes. Therefore, a full-wave rectified AC voltage based on the ground potential is generated at the center tap, which is a connection point between the secondary coil 132 and the secondary coil 133.
- the smoothing circuit 150 has a smoothing coil 151 and an output capacitor 152.
- the AC voltage generated in the transformer 130 is smoothed by the smoothing circuit 150, so that a desired flat DC voltage is generated between the output terminal 191 and the output terminal 192.
- the smoothing coil 151 used here is required to have good DC superposition characteristics in addition to the accuracy of the inductance value.
- the output terminal 192 which is a negative terminal of the output terminals 191, 192, is not clearly provided, and the metal casing that is a structure serving as the ground (GND) 161, 162, 163 plays its role.
- FIG. 2 is a top view of the main parts constituting the power conversion device shown in FIG. In FIG. 2, among the components that are components of the power conversion device 100, some components are not shown. In addition, in FIG. 2, illustration of some of the components is omitted.
- the metal housing 160 is the housing of the power conversion device 100.
- the metal casing 160 is a structure that becomes the GNDs 161, 162, 163, and also serves as a cooler.
- the printed circuit board 170 is mounted with input terminals 101, 102, an input capacitor 103, control circuits for the switching elements 111, 112, 113, 114, and a drive circuit.
- the resonance coil 120 needs to have a small variation in inductance value in order to adjust the resonance frequency.
- the core forming the resonance coil 120 a core in which an E-shaped core and an E-shaped core are combined or a toroidal core is used.
- a dust core material such as pure iron or Fe—Si alloy is used as the soft magnetic material forming the magnetic path.
- the core forming the resonance coil 120 is a planar core, and is a Mn—Zn-based ferrite core provided with a plurality of gaps. Since the resonance coil 120 is provided with a plurality of gaps, it is possible to achieve high performance and to suppress the height from the installation surface as compared with the above-described conventional technique. It should be noted that, in FIG. 2, components to which the resonance coil 120 is connected and a configuration for fixing the resonance coil 120 to the metal housing 160 are not shown.
- the transformer 130 is a planar transformer.
- the primary coil 131 and the secondary coil 132 are coil parts included in the transformer 130.
- the transformer 130 has an E-shaped core, an I-shaped core, a printed board on which the primary coil 131 is formed, and a printed board on which the secondary coil 132 is formed. There is no gap in the magnetic path formed by the E-type core and the I-type core.
- the rectifying element 141 and the rectifying element 142 are mounted in one package.
- the smoothing coil 151 requires highly accurate inductance value and DC superimposition characteristic.
- the core forming the smoothing coil 151 a core in which an E-shaped core and an E-shaped core are combined or a toroidal core is used, as in the case of the resonance coil 120.
- a dust core material such as pure iron or Fe—Si alloy is used as the soft magnetic material forming the magnetic path.
- the core forming the smoothing coil 151 is a planar core, and is a Mn—Zn-based ferrite core provided with a plurality of gaps. Since the smoothing coil 151 is provided with a plurality of gaps, it is possible to achieve high performance and to suppress the height from the installation surface as compared with the above-described conventional technique.
- the coil forming the smoothing coil 151 is formed on the printed board. Note that, in FIG. 2, components to which the smoothing coil 151 is connected and a configuration for fixing the smoothing coil 151 to the metal housing 160 are not shown.
- the resonance coil 120, the smoothing coil 151, and the coil portion of the transformer 130 are configured using separate printed boards.
- the resonance coil 120, the smoothing coil 151, and the coil portion of the transformer 130 may be configured using a single printed board.
- FIG. 3 is another top view of the main parts constituting the power conversion device shown in FIG.
- the resonance coil 120, the smoothing coil 151, and the coil portion of the transformer 130 are configured by using one printed circuit board 170a.
- the rectifying elements 141, 142 may be mounted on the printed board 170a.
- the entire printed circuit board 170 and the printed circuit board 170a may be configured by one printed circuit board.
- the configuration of the resonance coil 120 and the configuration of the smoothing coil 151 included in the power conversion device 100 will be described below.
- the resonance coil 120 and the smoothing coil 151 are coil devices included in the power conversion device 100.
- FIG. 4 is an exploded view of the coil device according to the first embodiment.
- FIG. 5 is a sectional view of the coil device according to the first embodiment.
- FIG. 6 is a top view of the coil device according to the first embodiment.
- the X axis is the horizontal axis.
- the Y axis is the vertical axis.
- the Z axis is the axis in the depth direction.
- FIG. 5 shows an XY section parallel to the X axis and the Y axis.
- the coil device 12 includes a base core 7 that is a first core component, a core module 11 that is a second core component, and a coil unit 6.
- the core module 11 includes a plurality of core pieces 1, 2 and 3 arranged in a row with a gap therebetween, a partition plate 4 which is a plate material arranged between the core pieces 1, 2 and 3, and a core piece. 1, 2, 3 and a case 5 in which the partition plate 4 is housed.
- the core module 11 is an I-type core.
- the base core 7 is an E-shaped core having three legs.
- the outer foot portions 7e are foot portions formed at both ends of the base core 7 in the X-axis direction.
- the middle foot portion 7f is a foot portion formed at the center of the base core 7 in the X-axis direction.
- the coil part 6 is configured using a two-layer printed circuit board made of FR-4 (Flame Retardant Type 4). A pattern of wound windings is printed on both sides of the printed circuit board.
- a four-layer printed circuit board may be used for the coil portion 6 to divide the current paths into a plurality of current paths.
- the coil portion 6 may be formed by using a FR-5 base material or a ceramic base material in order to improve heat resistance.
- a copper plate or an aluminum plate having a thickness of about 0.5 mm to 2 mm may be used instead of using a printed circuit board.
- An opening is provided at the center of the coil portion 6.
- the coil portion 6 is installed in the coil device 12 with the middle foot portion 7f passing through the opening. As a result, the coil, which is the pattern of the winding printed on the printed circuit board, is wound around the middle leg 7f.
- the area of the ZX plane parallel to the Z axis and the X axis of the core piece 1 is equal to the area of the ZX plane of the outer leg portion 7e.
- the area of the YZ plane parallel to the Y axis and the Z axis of the core piece 1 is equal to the area of the ZX plane of the outer leg portion 7e.
- the area of the ZX plane of the core piece 1 may be larger than the area of the ZX plane of the outer leg portion 7e.
- the area of the YZ plane of the core piece 1 may be larger than the area of the ZX plane of the outer leg portion 7e.
- the area of the ZX plane of the core piece 2 is equal to the area of the ZX plane of the midfoot 7f.
- the area of the YZ plane of the core piece 2 is equal to the area of the ZX plane of the outer leg portion 7e.
- the area of the ZX plane of the core piece 2 may be larger than the area of the ZX plane of the middle foot portion 7f.
- the area of the YZ plane of the core piece 2 may be larger than the area of the ZX plane of the outer leg portion 7e.
- the height of the core piece 3 in the Y-axis direction is the same as the height of the core piece 1 in the Y-axis direction.
- the depth of the core piece 3 in the Z-axis direction is the same as the depth of the core piece 1 in the Z-axis direction.
- the dimensional difference of about ⁇ 3% between the core piece 3 and the core piece 1 due to the dimensional tolerance at the time of manufacturing does not matter.
- the fact that the height of the core piece 3 and the height of the core piece 1 are the same includes the case where there is a dimensional difference of about ⁇ 3%.
- the fact that the depth of the core piece 3 and the depth of the core piece 1 are the same includes the case where there is a dimensional difference of about ⁇ 3%.
- the thickness of the core piece 3 in the X-axis direction is smaller than the thickness of the core piece 1 in the X-axis direction.
- a soft magnetic material is used as a material for each of the core piece 1, the core piece 2, the core piece 3, and the base core 7. Examples of soft magnetic materials include Mn-Zn or Ni-Zn ferrite core materials, and pure iron, Fe-Si alloys, Fe-Si-Al alloys, Ni-Fe alloys, or Ni-Fe-Mo alloys. Dust-based core material is used. Powder resin for insulation may be applied to the core.
- a ferrite core made of a ferrite core material and a dust core made of a dust-based core material are fired by heat treatment after molding a powder material with a press machine. Since the material molded by the press machine shrinks during heat treatment, the dimensional accuracy decreases as the core size increases. In addition, a large core has a longer firing time and a larger loss than a small core.
- As the ferrite core material two types of general-purpose ferrite core material and low-loss ferrite core material are generally known. In the ferrite core material for low loss, the tendency that the dimensional accuracy is deteriorated and the loss is increased becomes more remarkable. Therefore, a large core for low loss requires a great deal of know-how for manufacturing because it is more difficult to control the firing temperature and the loss tends to increase.
- each core piece 1, 2, 3 is smaller than the integrated core when the second core component is formed as an integrated core, it is easier to fire than the integrated core. .. In addition, each core piece 1, 2, 3 can reduce loss as compared with the integral core.
- the core module 11 can have a high dimensional accuracy and a short firing time.
- a general-purpose ferrite core material or a low-loss ferrite core material may be used for each of the core pieces 1, 2, and 3. Since both the general-purpose ferrite core material and the low-loss ferrite core material can be used, the number of suppliers that can procure the materials of the core pieces 1, 2, and 3 increases. Therefore, it is possible to stabilize the procurement of parts for manufacturing the core module 11 and reduce the procurement cost. Further, the core module 11 can reduce loss and improve quality.
- FIG. 7 is a diagram showing a first modification of the core module included in the coil device according to the first embodiment.
- the core module 11 does not use the core piece 1 but includes a plurality of core pieces 2 and a plurality of core pieces 3.
- the number of types of parts is smaller than that shown in FIGS. 4 to 6. Since the core module 11 has a smaller number of types of parts than those shown in FIGS. 4 to 6, the productivity can be improved and the manufacturing cost can be reduced.
- FIG. 8 is a diagram showing a second modification of the core module included in the coil device according to the first embodiment.
- the core module 11 is configured by using the plurality of core pieces 2 without using the core pieces 1 and the core pieces 3.
- the core module 11 is composed of one type of core piece 2. That is, each of the plurality of core pieces 2 included in the core module 11 has the same size.
- the dimensional difference of about ⁇ 3% between the core pieces 2 due to the dimensional tolerance at the time of manufacture is not considered.
- the fact that the dimensions of the plurality of core pieces 2 are the same includes the case where there is a dimensional difference of about ⁇ 3%.
- the core module 11 can improve the productivity and reduce the manufacturing cost by reducing the number of types of parts.
- the width of the core piece 2 in the X axis direction is larger than the width of the foot portion of the base core 7 in the X axis direction.
- the core piece 2 above the foot portion is arranged so as to protrude from the foot portion in the X-axis direction. That is, the area of the surface of the core piece 2 connected to the foot portion is larger than the area of the surface of the foot portion connected to the core piece 2.
- the coil device 12 can reduce the leakage magnetic flux in the gap between the foot portion and the core piece 2.
- the width of the core piece 2 in the X-axis direction may be the same as the width of the foot portion of the base core 7 in the X-axis direction.
- the area of the surface of the core piece 2 connected to the foot portion may be the same as the area of the surface of the foot portion connected to the core piece 2. Also in this case, the coil device 12 can reduce the leakage magnetic flux in the gap between the foot and the core piece 2.
- FIG. 9 is a diagram showing a third modification of the core module included in the coil device according to the first embodiment.
- the core module 11 is configured by using a plurality of sheet-shaped core pieces 3b having a smaller width in the X-axis direction than the core pieces 3 in place of the core pieces 3.
- the core module 11 can disperse the core gap in the magnetic path 9 into more gaps as compared with the case shown in FIGS. 4 to 6.
- the core module 11 can reduce the loss of the coil portion 6 by reducing the leakage magnetic flux.
- the core piece 3b can be a low-loss ferrite core used in a small planar transformer. Since many such ferrite cores are distributed in the market, they are low in cost and easy to procure. By using the core piece 3b, the core module 11 can stabilize the procurement of parts and reduce the cost.
- the core module 11 may change the dimensions of the core pieces 1, 2 and 3 from the cases shown in FIGS. 4 to 6.
- the dimensions of the core pieces 1, 2, and 3 that constitute the core module 11 are not particularly determined, but may be various dimensions.
- FIG. 10 is a diagram showing a fourth modification of the core module included in the coil device according to the first embodiment.
- the core module 11 has a plurality of core pieces 1a, 2a, 3a.
- the height of each core piece 1a, 2a, 3a in the Y-axis direction is higher than the height of each core piece 1, 2, 3 in the Y-axis direction.
- each core piece 1a, 2a, 3a in the Y-axis direction that is the height direction is thicker than the thickness of the thin portion of the base core 7.
- the thin portion is the outer foot portion 7e shown in FIG. Note that, in the configurations shown in FIGS. 7 and 8, instead of the core pieces 2 and 3, core pieces 2a and 3a similar to those in the third modification may be provided.
- the partition plate 4 partitions adjacent core pieces of the plurality of core pieces 1, 2, and 3 from each other.
- the case 5 holds the plurality of core pieces 1, 2, 3 and the plurality of partition plates 4.
- the case 5 is provided with a partition plate 4 that is a component formed separately from the case 5.
- Case 5 has an I shape that allows a plurality of core pieces 1, 2, and 3 to be arranged in the X-axis direction.
- the partition plate 4 By partitioning the inside of the case 5, the partition plate 4 constitutes a space in which each of the core pieces 1, 2 and 3 is arranged together with the case 5.
- the partition plate 4 may have any size as long as it fits in the case 5.
- the area of the YZ plane of the partition plate 4 is equal to the area of the case 5 in the YZ direction or about half the area of the case 5 in the YZ direction.
- a gap is formed in the magnetic path 9 by the partition plate 4 and the case 5. In the following description, the gap formed in the magnetic path 9 may be called a core gap.
- the length of each core gap in the direction of the magnetic path 9 is set so that the total length of the gap matches the length determined by the design.
- the total gap length is the total length of the core gaps in the direction of the magnetic path 9 for all core gaps provided in the base core 7 and the core module 11.
- a core gap having a length direction in the Y-axis direction is formed between the core module 11 and the outer foot portion 7e and between the core module 11 and the middle foot portion 7f.
- a core gap whose length direction is the X-axis direction is formed.
- the relative permeability of the ferrite core is about 1500 to 4000.
- the total core gap length is about 1 mm to 30 mm. Further, the total length of the core gap is adjusted so that a desired inductance value can be obtained.
- the magnetic flux leaking from the core gap may cause an eddy current in the coil portion 6 by interlinking with the coil portion 6 arranged adjacent to the core gap. A loss occurs in the coil portion 6 due to the eddy current flowing in the coil portion 6. Leakage flux is reduced by reducing the length per core gap.
- the core gap length is preferably 1 mm or less.
- the partition plate 4 and the case 5 are made of a thin material capable of realizing a core gap having such a length.
- a non-magnetic material such as resin is used for the material of the partition plate 4 and the case 5.
- resins Liquid Crystal Polymer (LCP) etc. are suitable for the material of the partition plate 4 and the case 5.
- LCP is suitable as a material for the partition plate 4 and the case 5 because it can be formed as thin as about 0.5 mm, has high dimensional accuracy, and is suitable for processing a complicated shape.
- LCP has excellent heat resistance, and does not cause changes such as softening even when the core temperature reaches a high temperature of about 120 degrees. Since the partition plate 4 and the case 5 are thin, the amount of material used in processing the partition plate 4 and the case 5 is small.
- the core module 11 can suppress the cost increase even if the LCP, which is expensive in the resin, is used.
- the resin in addition to LCP, polyethylene terephthalate (PolyEthylene Terephthalate: PET), polybutylene terephthalate (PBT), polypropylene (PolyPropylene: PP), polyphenylene sulfide (PolyPhenylene Sulfide: PPS) and the like may be used.
- Injection molding is used as a method for processing the partition plate 4 and the case 5. Injection molding is excellent in cost and dimensional accuracy, and is also suitable for processing complicated shapes. As a method for processing the partition plate 4 and the case 5, extrusion molding, compression molding, or additional processing using a 3D printer may be used.
- the portion between the core piece 1 and the outer foot portion 7e and the portion between the core piece 2 and the middle foot portion 7f are portions that form a core gap, and thus are made thin. Is desirable.
- the other part of the case 5 does not have to be thin because it does not form the core gap.
- the portion of the case 5 other than the portion that forms the core gap may be formed with a thickness that ensures the strength of the case 5.
- FIG. 11 is a diagram showing a first modification of the case included in the core module shown in FIGS. 4 to 6.
- the case 5a according to the first modification shown in FIG. 11 includes a partition plate 4 on the case 5a. That is, the case 5a is a part integrally molded including the partition plate 4.
- Each of the core pieces 1, 2 and 3 is arranged between the partition plates 4. In this case, since it is not necessary to purchase a mold for processing the partition plate 4 separately from the mold for processing the case 5a, the core module 11 can reduce the manufacturing cost.
- FIG. 12 is a diagram showing a second modification of the case included in the core module shown in FIGS. 4 to 6.
- FIG. 13 is a top view of the case shown in FIG.
- the case 5b of the second modified example shown in FIGS. 12 and 13 is for positioning each of the plurality of core pieces 1, 2, 3 in the X-axis direction in place of the partition plate 4 included in the case 5a shown in FIG.
- the rib 13 is provided.
- Each of the core pieces 1, 2, 3 is arranged between the ribs 13. Also in this case, since it is not necessary to purchase a mold for processing the partition plate 4, the core module 11 can reduce the manufacturing cost.
- the case 5b since the amount of material required to form the ribs 13 is smaller than the amount of material required to form the partition plates 4, the case 5b has a lower manufacturing cost than the case 5a provided with the partition plates 4. It can be reduced. In the case 5a shown in FIG. 11, the larger the case 5a, the more easily the portion of the case 5a where the partition plate 4 is provided is warped. Since the case 5b is not provided with the partition plate 4, such warpage does not occur.
- the core module 11 has the core pieces 1, 2, and 3 arranged in the case 5, and the case 5 holds the core pieces 1, 2, and 3 together. Therefore, even if the number of core pieces 1, 2, 3 provided in the core module 11 is increased, the productivity of the core module 11 is hardly deteriorated. Further, in the core module 11, the core pieces 1, 2 and 3 are held by being inserted into the divided spaces in the case 5. No adhesive is used to hold the core pieces 1, 2, and 3. Therefore, in the core module 11, it is possible to eliminate the concern that cracks may occur in the core pieces 1, 2, 3 due to the difference in linear expansion coefficient between the core pieces 1, 2, 3 and the adhesive.
- the total gap length may vary due to the dimensional tolerance among the core pieces 1, 2, 3, the partition plate 4, and the case 5.
- the variation in the total gap length affects the variation in the inductance value.
- Such dimensional tolerance generally has a normal distribution.
- the core module 11 is provided with a plurality of core pieces 1, 2, 3 and a partition plate 4, but it is statistical that all of them have large errors such as ⁇ 3 ⁇ to ⁇ 6 ⁇ with respect to the average size. Can't happen to Further, as the number of core pieces 1, 2, 3 and the number of partition plates 4 provided in the core module 11 increase, the total gap length becomes closer to the total gap length when the dimension is an average value. As a result, in the core module 11, since the core is divided into the plurality of core pieces 1, 2, 3, it is possible to reduce the variation in the total gap length and increase the accuracy of the inductance value.
- the core dimensions have a percentage error. Assuming that the average dimension is 150 mm and the unpolished core has a dimensional tolerance of 1%, the dimensional tolerance is ⁇ 1.5 mm. If the core piece 3 is 30 mm, the dimensional tolerance of 1% is ⁇ 0.3 mm. When configuring a 150 mm core by using five 30 mm core pieces 3, the dimensional tolerance of ⁇ 0.3 mm, which is 1% of 30 mm, takes the square root of the square of the five core pieces 3, and thus 5 The total length of the core piece 3 can be reduced to a dimensional tolerance of ⁇ 0.67 mm.
- the coil device 12 can reduce the variation in the inductance value as the number of divisions of the core forming the magnetic path 9 is increased. Further, since the coil device 12 can eliminate the conventional polishing of the core for reducing the dimensional tolerance, it is possible to reduce the processing time and the manufacturing cost of the core module 11.
- the total gap length does not change even if the core pieces 1, 2, 3 are displaced in the X-axis direction in the case 5. Therefore, in the coil device 12, even if the core pieces 1, 2, 3 are not fixed to the case 5 with an adhesive or the like, it is possible to suppress variations in the inductance value and obtain stable electric characteristics. Further, the positional deviation of the core pieces 1, 2, 3 in the Z-axis direction has almost no influence on the inductance value as long as the positional deviation is about the size tolerance of the case 5.
- the coil device 12 can reduce the length per core gap as the number of core gaps increases.
- the coil device 12 can reduce the magnetic flux leaking from the core gap by shortening the core gap, and can reduce the eddy current loss of the coil portion 6 arranged adjacent to the core module 11. As a result, the coil device 12 can suppress the amount of heat generation.
- the power conversion device 100 can improve power efficiency.
- the coil device 12 can protect the core pieces 1, 2, 3 from vibration or impact.
- the coil device 12 can reduce damage to the core pieces 1, 2, and 3. Even if one of the core pieces 1, 2 or 3 is broken to cause a broken piece, since the core pieces 1, 2 and 3 are arranged in the case 5, such a broken piece having conductivity is a case. It stays within 5.
- the power conversion apparatus 100 can prevent a short circuit failure due to the entry of debris into the printed board 170 or the switching elements 111, 112, 113, 114.
- FIG. 14 is a diagram showing a third modified example of the case included in the core module shown in FIGS. 4 to 6.
- the case 5c of the third modified example shown in FIG. 14 is provided with a lid 8 that covers the space above the core pieces 1, 2, and 3 from above.
- FIG. 14 shows a state in which the case 5c, the core pieces 1, 2, 3 and the lid 8 are disassembled.
- the case 5c is obtained by adding a mechanism for fitting with the lid 8 to the case 5a shown in FIG.
- FIG. 15 is a diagram showing a state in which a lid is attached to the case shown in FIG. 16 is a diagram showing an example of a mechanism for fitting the case and the lid shown in FIG.
- the lid 8 and the case 5c are provided with a mechanism such as a snap fit shape in order to enhance the fitting strength.
- the coil device 12 can prevent the fragments generated by the damage from scattering outside the case 5c when any of the core pieces 1, 2, and 3 is damaged. Further, by providing the lid 8 and the case 5c with a mechanism for increasing the fitting strength, the core module 11 can increase the fixing strength of the core pieces 1, 2, and 3. As a result, the core module 11 can have improved vibration resistance.
- the lid 8 may be attached to the case 5 shown in FIGS. 4 to 6, or may be attached to the case 5b shown in FIG.
- FIG. 17 is a diagram showing a modified example of the case and lid shown in FIG.
- An opening 17 is formed on the upper surface of the lid 8 shown in FIG.
- An opening 18 is formed on each of the four side surfaces of the case 5c shown in FIG.
- the heat in the case 5c with the lid 8 attached is radiated to the outside of the case 5c through the openings 17 and 18.
- the coil device 12 can improve heat dissipation.
- the positions, shapes and numbers of the openings 17 and 18 may be set arbitrarily so that the core pieces 1, 2 and 3 in the case 5c do not pass through the openings 17 and 18 and fall off. There is.
- at least one of the opening 17 of the lid 8 and the opening 18 of the case 5c may be formed in the case 5c and the lid 8.
- FIG. 18 is a diagram illustrating a first example of a configuration for installing the coil device according to the first embodiment.
- the coil device 12 is installed in the metal housing 160 with the base core 7 in contact with the metal housing 160. Between the base core 7 and the metal housing 160, grease having heat conductivity or a heat dissipation sheet may be sandwiched.
- the metal casing 160 is a component for fixing the coil device 12 and also serves as a cooler.
- the coil device 12 is assembled with the base core 7 thermally coupled to the metal housing 160. Thereby, the coil device 12 can be cooled using the metal housing 160.
- the metal plate 160a is a plate material that covers the upper part of the coil device 12.
- the two metal blocks 160b are columnar structures that support the metal plate 160a on the metal housing 160.
- the metal block 160b is erected at a position adjacent to the coil device 12 in the X-axis direction in the metal housing 160.
- the screw 10 fixes the metal plate 160a and the metal block 160b to the metal housing 160.
- the configuration for installing the coil device 12 is a metal housing 160, a metal plate 160a, and a metal block 160b.
- FIG. 19 is a cross-sectional view showing a state in which the coil device shown in FIG. 18 and a configuration for installing the coil device are combined.
- the metal plate 160a has a structure for fixing the coil device 12 and also serves as a cooler.
- the coil device 12 is assembled with the core module 11 thermally coupled to the metal plate 160a. Thereby, the coil device 12 can be cooled using the metal plate 160a.
- the heat generated in the base core 7 is mainly transferred to the metal housing 160.
- the heat generated in the core module 11 is mainly transferred to the metal plate 160a.
- the heat transferred to the metal plate 160a is transferred to the metal housing 160 via the metal block 160b.
- the arrow shown in FIG. 19 represents the state of heat transfer.
- each of the base core 7 and the core module 11 is thermally joined to the cooler, so that the heat radiation of the coil device 12 can be promoted.
- FIGS. 18 and 19 are separate parts.
- the coil device 12 may be fixed by one structure made of a metal material instead of the metal plate 160a and the metal block 160b.
- FIG. 20 is a diagram illustrating a second example of a configuration for installing the coil device according to the first embodiment.
- the metal structure 160c according to the second example is provided in place of the metal plate 160a and the metal block 160b.
- the metal structure 160c has the same shape as the combination of the metal plate 160a and the metal block 160b, and is U-shaped. Also in this case, the coil device 12 is fixed so as to promote heat dissipation.
- the metal structure 160c may be provided with a radiation fin 166.
- FIG. 21 is a diagram illustrating a third example of a configuration for installing the coil device according to the first embodiment.
- the metal structure 160g according to the third example is obtained by adding a radiation fin 166 to the upper surface of the metal structure 160c. Since the coil device 12 is fixed by the metal structure 160g provided with the heat dissipation fins 166, heat dissipation of the coil device 12 is further promoted.
- the heat radiation fin may be added to the upper surface of the metal plate 160a.
- 22 and 23 are diagrams showing a fourth example of the configuration for installing the coil device according to the first embodiment.
- 22 and 23 show configuration examples in the case where it is not necessary to transfer the heat of the core module 11 to the metal housing 160.
- the metal spring 14 for fixing the coil device 12 to the metal housing 160 is provided.
- FIG. 22 shows a state where the metal spring 14 is attached to the metal housing 160.
- FIG. 23 shows a state in which the metal spring 14 is attached to the metal housing 160.
- 22 and 23 show side surfaces of the metal spring 14 and the screw 10a and cross sections of components other than the metal spring 14 and the screw 10a.
- the metal spring 14 is a metal plate of about 0.1 mm to 1 mm and has elasticity.
- the metal spring 14 is fixed to the metal housing 160 by the screw 10a.
- the metal spring 14 is provided with a protrusion 14a for fixing the position of the core module 11 in the Z-axis direction.
- the coil device 12 is fixed while being pressed against the metal housing 160 by the elasticity of the metal spring 14.
- the position of the coil device 12 in the metal housing 160 is fixed by limiting the displacement in the Z-axis direction by the protrusion 14a.
- a typical example of the case where it is not necessary to transfer the heat of the core module 11 to the metal housing 160 is a case where a ferrite core for low loss is used for the core pieces 1a, 2a, 3a as shown in FIG.
- the coil device 12 can reduce the loss in the core pieces 1a, 2a, 3a.
- the sizes of the core pieces 1a, 2a, 3a in the Y-axis direction are set so that the cross-sectional area of the magnetic path 9 becomes large in the range of about 1 to 2 times.
- the coil device 12 can reduce the loss in the core module 11 and the heat generation amount and the heat generation density in the core module 11, and can suppress the temperature rise of the core module 11. In the configuration shown in FIG.
- the coil device 12 can be fixed by using the metal spring 14.
- the metal spring 14 can be easily manufactured by bending a thin metal plate. By using the metal spring 14, the power conversion device 100 can reduce the manufacturing cost and can reduce the size and weight of the power conversion device 100.
- the coil device 12 may have a base core 7 other than the E-shaped core.
- FIG. 24 is a diagram showing a first modification of the base core included in the coil device according to the first embodiment.
- the coil device 12 has two base cores 7c that are U-shaped cores instead of the E-shaped base cores 7.
- the U-shaped core has two legs.
- the shape of the base core 7c is a shape obtained by dividing the E-shaped base core 7 at the center in the X-axis direction.
- FIG. 25 is a diagram showing a second modification of the base core included in the coil device according to the first embodiment.
- the coil device 12 has one base core 7d that is a U-shaped core instead of the E-shaped base core 7.
- the coil portion 6 is installed in the coil device 12 with one foot of the base core 7d being passed through the opening of the coil portion 6.
- FIG. 26 is a diagram illustrating a first example in which two coil units are provided in the coil device according to the first embodiment.
- two coil portions 6 are provided on one base core 7d, which is a U-shaped core.
- One of the two coil portions 6 is installed in the coil device 12 with one foot of the base core 7d being passed through the opening of the coil portion 6.
- the other of the two coil portions 6 is installed in the coil device 12 with the other leg of the base core 7d being passed through the opening of the coil portion 6.
- the two coil portions 6 are adjacent to each other in the XZ direction.
- FIG. 27 is a diagram showing a second example in which the coil device according to the first embodiment is provided with two coil portions.
- two coil portions 6 are provided on one base core 7c which is a U-shaped core.
- One of the two coil portions 6 is installed in the coil device 12 with one leg of the base core 7c being passed through the opening of the coil portion 6.
- the other of the two coil portions 6 is installed in the coil device 12 in a state where the other leg of the base core 7c is passed through the opening of the coil portion 6.
- a part of one coil part 6 and a part of the other coil part 6 are adjacent to each other in the Y-axis direction.
- the circuit configuration of the power conversion device 100 is not limited to that shown in FIG. 1, and may be a circuit of a system different from the circuit shown in FIG.
- the power conversion device 100 is not limited to having the resonance coil 120, the smoothing coil 151, and the transformer 130, and includes at least one of the resonance coil 120, the smoothing coil 151, and the transformer 130. It is sufficient if it is configured.
- the transformer 130 includes one or more coil units 6.
- the resonance coil 120 and the smoothing coil 151 may also include one or more coil units 6.
- the core module 11 has the plurality of core pieces 1, 2, and 3 arranged in a row with the gaps therebetween, so that the gaps are easily dispersed in the magnetic path 9. be able to.
- the coil device 12 can shorten the length per gap by dispersing the gap, and can reduce the leakage magnetic flux in the gap.
- the coil device 12 can reduce the loss of the coil portion 6 by reducing the leakage magnetic flux. As a result, the coil device 12 has an effect of reducing the loss of the coil portion 6.
- the coil device 12 can further reduce the loss by using a low-loss ferrite core for each of the core pieces 1, 2, and 3.
- the coil device 12 can reduce the tolerance of the inductance value during the production of the coil device 12 as compared with the case of the conventional technique. Since the coil device 12 can be easily assembled, the productivity can be improved. Further, since the coil device 12 does not need to polish the core, the procurement cost of the core can be reduced. By reducing the production cost of the coil device 12, the production cost of the power conversion device 100 can be reduced.
- the thermal coupling between the coil device 12 and the metal casing 160 enables the power conversion device 100 to efficiently cool the coil device 12, and also enables downsizing of the power conversion device 100.
- FIG. 28 is an exploded view of the coil device according to the second embodiment of the present invention.
- FIG. 29 is a diagram showing a state after the coil device shown in FIG. 28 is assembled.
- the case 5d included in the coil device 12a according to the second embodiment has a protrusion 5g for positioning the core module 11a on the base core 7.
- the same components as those in the above-mentioned first embodiment are designated by the same reference numerals, and the configuration different from the first embodiment will be mainly described.
- the case 5d is obtained by adding a protrusion 5g to the case 5a shown in FIG.
- the protrusion 5g provided on the case 5d is a rib.
- the protrusion 5g is provided so as to extend downward at each of the four corners of the case 5d on the ZX plane.
- the coil device 12a can position the core module 11a and the base core 7 in the X-axis direction and the Z-axis direction.
- the coil device 12a can be easily assembled.
- the case 5d is provided with the protrusion 5g, the coil device 12a can prevent the core module 11a and the base core 7 from being displaced in the X-axis direction and the Z-axis direction.
- the protrusion 5g may be attached to any of the case 5 shown in FIGS. 4 to 6, the case 5b shown in FIG. 12, the case 5c shown in FIG. 15, and the case 5c shown in FIG.
- FIG. 30 is an exploded view of a coil device according to a modification of the second embodiment.
- the case 5f included in the coil device 12a has four outer walls extending downward so as to cover the periphery of the base core 7.
- the coil device 12a can position the core module 11a and the base core 7, and thus the assembly can be simplified.
- the coil device 12a can prevent positional deviation between the core module 11a and the base core 7 in the X-axis direction and the Z-axis direction.
- the coil device 12a has the same effects as those of the first embodiment, and the case 5d or the case 5f is provided, so that the assembly is simplified and the core module 11a and the base core 7 are provided. It is possible to prevent misalignment.
- the power converter 100 can prevent the core module 11a and the base core 7 from being displaced when the power converter 100 is vibrated or impacted by providing the coil device 12a with the case 5d or the case 5f. To do.
- the coil device 12a can maintain the electrical characteristics by preventing the positional deviation between the core module 11a and the base core 7.
- the power converter 100 can improve the quality because the electric characteristics of the coil device 12a can be maintained.
- FIG. 31 is an exploded view of the coil device according to the third embodiment of the present invention.
- 32 is a side view showing a state after the coil device shown in FIG. 31 is assembled.
- FIG. 33 is a top view showing a state after the coil device shown in FIG. 31 is assembled.
- the case 5e included in the coil device 12b according to the third embodiment has the protrusion 5i formed by extending the outer wall of the case 5e downward.
- a fixing portion 5h for fixing the case 5e to the metal housing 160, which is a structure in which the coil device 12b is installed, is provided at the tip of the protrusion 5i.
- the same components as those in the first and second embodiments described above are designated by the same reference numerals, and configurations different from those in the first and second embodiments will be mainly described.
- the case 5e is obtained by adding a protrusion 5i to the case 5c shown in FIG.
- the protrusion 5i is formed by extending an outer wall, which is an end face in the X-axis direction, of the case 5e downward.
- the fixed portion 5h contacts the metal housing 160.
- the fixed portion 5h is provided at each of four corners of the case 5e in the X-axis direction and the Z-axis direction.
- each of the fixing portions 5h is formed with a hole having a diameter of about 3 mm to 6 mm.
- the coil device 12 b is fixed to the metal housing 160 by tightening the screw 10 a passed through the hole into the metal housing 160. Although the coil device 12b having the lid 8 is shown in FIG. 31, the coil device 12b may not have the lid 8.
- the coil device 12b since the coil device 12b has the case 5e, it is possible to simplify the assembly and prevent the core module 11b and the base core 7 from being displaced, as in the case of the second embodiment. Becomes Since the coil device 12b can be fixed to the metal casing 160 by the case 5e, it is not necessary to separately provide a configuration for fixing the coil device 12b to the metal casing 160.
- the power converter 100 can have a simpler structure than the case where a separate structure for the coil device 12b in the metal housing 160 is required.
- the lid 5 may be provided with the protrusion 5i and the fixing portion 5h instead of the case 5e.
- the protrusion 5i and the fixed portion 5h may be attached to any of the case 5 shown in FIGS. 4 to 6, the case 5b shown in FIG. 12, the case 5c shown in FIG. 15, and the case 5c shown in FIG. ..
- FIG. 34 is a sectional view of a coil device according to a fourth embodiment of the present invention.
- the E-shaped base core 7 shown in FIGS. 4 to 6 is divided into a plurality of core components arranged with a gap therebetween.
- the same components as those in the first to third embodiments are designated by the same reference numerals, and configurations different from those in the first to third embodiments will be mainly described.
- the first core component is composed of a plurality of core components that are two base cores 7a and one base core 7b.
- the base core 7b is arranged at the center of the coil device 12c in the X-axis direction.
- the base core 7a is adjacent to the base core 7b in the X-axis direction.
- a gap is provided between the base core 7a and the base core 7b. The thermal coupling between the base cores 7a and 7b and the metal housing 160 is secured as in the case of the base core 7.
- the coil device 12c can provide more gaps in the magnetic path 9 than in the cases shown in FIGS. 4 to 6.
- the coil device 12c can secure a sufficient number of gaps by providing the gaps in the base cores 7a and 7b when the number of gaps in the magnetic path 9 is insufficient in the configurations shown in FIGS. 4 to 6.
- FIG. 35 is a plan view showing an example of a surface of the metal housing on which the coil device according to the fourth embodiment is arranged.
- a groove 15 having a depth of about 1 mm to 2 mm is provided on the surface of the metal housing 160 on which the coil device 12c is arranged.
- the metal housing 160 is provided with three grooves 15.
- One of the three grooves 15 has the same shape as the shape of the base core 7b in the X-axis direction and the Z-axis direction.
- the base core 7b is fitted into the groove 15.
- the other two of the three grooves 15 have the same shape as the shape of the base core 7a in the X-axis direction and the Z-axis direction.
- the base core 7a is fitted into each of the two grooves 15.
- the base core 7a and the base core 7b can be positioned so that a gap having a predetermined length is formed between the base core 7a and the base core 7b. Further, the length of the gap between the base core 7a and the base core 7b can be kept constant.
- FIG. 36 is a plan view showing another example of the surface of the metal housing on which the coil device according to the fourth embodiment is arranged.
- a rib 16 having a height of about 1 mm to 2 mm is provided on the surface of the metal housing 160 on which the coil device 12c is arranged.
- One of the three regions surrounded by the rib 16 has the same shape as the shape of the base core 7b in the X-axis direction and the Z-axis direction.
- the base core 7b is fitted in this region.
- the other two of the three regions have the same shape as the shape of the base core 7a in the X-axis direction and the Z-axis direction.
- the base core 7a is fitted in each of these two regions.
- the base core 7a and the base core 7b can be positioned so that a gap having a predetermined length is formed between the base core 7a and the base core 7b. Further, the length of the gap between the base core 7a and the base core 7b can be kept constant.
- the coil device 12c can increase the number of gaps provided in the magnetic path 9 by providing the base cores 7a and 7b. Thereby, the coil device 12c can further reduce the loss of the coil portion 6.
- FIG. 37 is a sectional view of a coil device according to the fifth embodiment of the present invention.
- the base core 7b shown in FIG. 34 is divided into two base cores 7a. That is, in the coil device 12d, the E-shaped base core 7 shown in FIGS. 4 to 6 is divided into four base cores 7a arranged side by side with a gap therebetween.
- the same components as those in the first to fourth embodiments are designated by the same reference numerals, and configurations different from those in the first to fourth embodiments will be mainly described.
- the first core component is composed of four base cores 7a which are a plurality of core components.
- Each of the four base cores 7a is composed of one type of core component.
- Each of the four base cores 7a has the same shape.
- the dimensional difference of about ⁇ 3% between the base cores 7a due to the dimensional tolerance at the time of manufacturing does not matter.
- the case where each of the plurality of base cores 7a has the same shape includes the case where there is a dimensional difference of about ⁇ 3%.
- a gap is provided between the base cores 7a. Since the gap is provided between the base cores 7a, the coil device 12d can have more gaps in the magnetic path 9 than in the cases shown in FIGS. 4 to 6.
- the size of the core component mounted on the power conversion device 100 increases in proportion to the power. Further, the upper limit of the size of the manufacturable core component is restricted by the size of the core manufacturing equipment such as a press or a firing machine.
- the maximum size of the first core component is determined by the size of the core manufacturing facility.
- each of the four base cores 7a can be enlarged to the maximum size. Therefore, the size of the first core component provided in the coil device 12d can be up to four times the size of the case where the first core component is an integral core component.
- the maximum is 4 times as compared with the case where the first core component that is an integral core component is provided. It is possible to manufacture the coil device 12d including the first core component of the size
- the metal casing 160 may be provided with the groove 15 or the rib 16 for positioning the base core 7a.
- the base cores 7a can be positioned so that the base cores 7a form a gap having a predetermined length. Further, the length of the gap of each base core 7a can be kept constant.
- the coil device 12d can increase the number of gaps provided in the magnetic path 9 by providing the plurality of base cores 7a. Thereby, the coil device 12d can further reduce the loss of the coil portion 6.
- FIG. 38 is a sectional view of a coil device according to a sixth embodiment of the present invention.
- the core pieces adjacent to each other among the plurality of core pieces 1, 2, 3 are attached to each other with the partition portion 4b interposed therebetween.
- the same components as those in the first to fifth embodiments are designated by the same reference numerals, and configurations different from those in the first to fifth embodiments will be mainly described.
- the partition part 4b has the partition plate 4 which is a plate material. Double-sided tape 4a having high adhesive strength is attached to both surfaces of the partition plate 4. By sticking each core piece 1, 2, 3 to the double-sided tape 4a, the partition part 4b sticks mutually adjacent core pieces among the core pieces 1, 2, 3. A partition portion 4b is provided between adjacent core pieces of the core pieces 1, 2, and 3 to form a gap.
- the core pieces 1, 2, 3 are fixed in the core module 11c by bonding the core pieces 1, 2, 3 to each other. Since the fixing of the core pieces 1, 2, 3 is realized by the partition 4b, the coil device 12e does not need to be provided with the case 5 for fixing the core pieces 1, 2, 3. In this case, since the manufacturing cost of the case 5 and the mold for processing the case 5 are not necessary, the manufacturing cost of the core module 11c can be reduced. Furthermore, the coil device 12e can eliminate the gap between the base core 7 and the core module 11c. Since the coil device 12e can eliminate the leakage magnetic flux from between the base core 7 and the core module 11c, the loss of the coil portion 6 can be further reduced.
- FIG. 40 is a sectional view of a coil device according to a modification of the sixth embodiment.
- the adjacent core pieces of the core pieces 1, 2, and 3 that form the core module 11d are bonded to each other with the adhesive 4c interposed therebetween. Glass beads are mixed in the adhesive 4c. Since the glass beads are contained in the adhesive 4c, the core pieces adjacent to each other among the core pieces 1, 2 and 3 are bonded while maintaining a constant interval. As a result, a gap is formed by providing the adhesive 4c between the core pieces adjacent to each other among the core pieces 1, 2, and 3. Also in this modification, since the core module 11d does not require the case 5, the manufacturing cost can be reduced. Moreover, since the coil device 12f can eliminate the leakage magnetic flux from between the base core 7 and the core module 11d, the loss of the coil portion 6 can be further reduced.
- the coil devices 12e and 12f do not require the case 5 for fixing the core pieces 1, 2 and 3 because the core pieces 1, 2 and 3 are bonded to each other with a gap. Therefore, the manufacturing cost can be reduced. Further, since the coil devices 12e and 12f can eliminate the leakage magnetic flux from between the base core 7 and the core modules 11c and 11d, the loss of the coil portion 6 can be further reduced.
- FIG. 41 is a sectional view of a coil device according to a seventh embodiment of the present invention.
- each of the plurality of core pieces 1, 2, 3 is fixed to the metal plate 160d.
- the same components as those in the first to sixth embodiments are designated by the same reference numerals, and configurations different from those in the first to sixth embodiments will be mainly described.
- a metal block 160b that supports the metal plate 160d is erected on the metal housing 160.
- the metal plate 160d includes a rib 165 for positioning each of the plurality of core pieces 1, 2, 3 in the X-axis direction.
- the rib 165 is formed on the surface of the metal plate 160d on the core module 11e side.
- the rib 165 has a thickness of 1 mm or less in the X-axis direction.
- An adhesive 4d is used to attach each core piece 1, 2, 3 between the ribs 165.
- the ribs 165 position the core pieces 1, 2, 3 in the X-axis direction, so that a gap is formed between the core pieces 1, 2, 3.
- the core pieces 1, 2, 3 are fixed in the core module 11d by attaching the core pieces 1, 2, 3 to the metal plate 160d. Since the core pieces 1, 2, 3 are fixed by the metal plate 160d, the coil device 12g does not need to be provided with the case 5 for fixing the core pieces 1, 2, 3. In this case, since the manufacturing cost of the case 5 and the mold for processing the case 5 are unnecessary, the core module 11e can reduce the manufacturing cost. Further, the coil device 12g can eliminate the gap between the base core 7 and the core module 11e. Since the coil device 12g can eliminate the leakage magnetic flux from between the base core 7 and the core module 11e, the loss of the coil portion 6 can be further reduced.
- the electrical characteristics of the coil device 12g will be affected.
- the rib 165 is located at the outer edge portion of the annular magnetic path 9. Since the magnetic flux passes inside the annular magnetic path 9 with respect to the center of the cross section of the magnetic path 9, the coil device 12g has an effect on the electrical characteristics due to the provision of the rib 165, which is a metal material, in the magnetic path 9. Can be eliminated.
- the direction of the magnetic path 9 in the core module 11e is the X-axis direction
- the thickness direction of the adhesive 4d is the Y-axis direction.
- the core pieces 1, 2, and 3 vary in position in the Y-axis direction, but do not vary in position in the X-axis direction. Therefore, even if the thickness of the adhesive 4d varies, the length of the core gap is not affected. Therefore, the coil device 12g can eliminate the influence of the variation in the thickness of the adhesive 4d on the inductance value.
- FIG. 44 is a sectional view showing a state at the time of assembling the coil device according to the first modification of the seventh embodiment.
- 45 is a cross-sectional view showing a state after the coil device shown in FIG. 44 is assembled.
- the core pieces 1 and 2 are not arranged above the foot portion of the base core 7.
- the core piece 3 is attached to the metal plate 160e.
- the metal plate 160e to which the core piece 3 is attached is fixed to the metal block 160b by tightening the screw 10a.
- the feet of the base core 7 come into contact with the ribs 165.
- the rib 165 forms a gap between the foot of the base core 7 and the core piece 3.
- the coil device 12h can eliminate the influence on the electric characteristics due to the rib 165 being provided in the magnetic path 9.
- the coil device 12h can eliminate the influence on the inductance value due to the variation in the thickness of the adhesive 4d. Furthermore, since the coil device 12h does not have the core pieces 1 and 2 above the foot portion of the base core 7, it is possible to eliminate variations in the length of the gap above the foot portion. Thereby, the coil device 12h can further reduce the variation in the inductance value.
- FIG. 46 is a sectional view of a coil device according to a second modification of the seventh embodiment.
- the metal plate 160f is obtained by adding a radiation fin 166 to the upper surface of the metal plate 160d. By fixing the core piece 3 to the metal plate 160f having the heat radiation fins 166, heat dissipation of the core piece 3 can be promoted.
- the core pieces 1, 2, 3 are fixed to the metal plates 160d, 160e, 160f provided with the ribs 165, so that the core pieces 1, 2, The case 5 for fixing 3 is unnecessary, and the manufacturing cost can be reduced. Further, the coil devices 12g, 12h, 12i can eliminate the leakage magnetic flux from between the base core 7 and the core modules 11e, 11f, so that the loss of the coil portion 6 can be further reduced. In the coil devices 12g, 12h, 12i, the core pieces 1, 2, 3 can be fixed by providing a core gap having a desired length, and variations in the inductance value can be reduced.
- FIG. 47 is an exploded view of the coil device according to the eighth embodiment.
- 48 is a cross-sectional view showing a state after the coil device shown in FIG. 47 is assembled.
- the coil device 20 according to the eighth embodiment is not provided with the base core 7.
- the magnetic path 9 is composed of only the plurality of core pieces 1c, 2c, 3c.
- the same components as those in the above-described first to seventh embodiments are designated by the same reference numerals, and configurations different from those in the first to seventh embodiments will be mainly described.
- the coil device 20 has a core module 21 and a coil unit 6.
- the core module 21 has a core piece group that is a plurality of core pieces 1c, 2c, and 3c, and a case 22 that holds the core piece group.
- the core piece group includes two core pieces 1c, one core piece 2c, and an arbitrary number of core pieces 3c. Each of the two core pieces 1c constitutes the outer foot portion 26.
- the core piece 2c constitutes the middle foot portion 25.
- the core module 21 constitutes two magnetic paths 9 which are closed magnetic paths.
- a plurality of core pieces 1c, 2c, 3c provided in place of the base core 7 shown in FIG. 4 form a first core component.
- the core pieces 1c, 2c, 3c are arranged in the X-axis direction with a gap therebetween.
- the core pieces 3c included in the core piece group the core pieces 3c other than the core pieces 3c forming the first core component form the second core component.
- the core piece 3c and the core pieces 1c and 2c that form the second core component are arranged in the X-axis direction with a gap therebetween.
- the core piece 3c forming the first core component is arranged in the lower part of the case 22.
- the core piece 3c forming the second core component is arranged in the upper portion of the case 22.
- each core piece 1c in the Y-axis direction is higher than the height of each core piece 3c in the Y-axis direction.
- the height of the core piece 2c in the Y-axis direction is higher than the height of each core piece 3c in the Y-axis direction.
- the height of each core piece 1c in the Y-axis direction is the same as the height of the core piece 2c in the Y-axis direction.
- the dimensional difference of about ⁇ 3% between the core piece 1c and the core piece 2c due to the dimensional tolerance at the time of manufacture is irrelevant.
- the fact that the height of each core piece 1c and the height of the core piece 2c are the same includes the case where there is a dimensional difference of about ⁇ 3%.
- each core piece 1c, 2c, 3c is smaller than each base core 7, 7a, 7b, 7c, 7d of the first to seventh embodiments, each base core 7, 7a, 7b, 7c, 7d. Baking is easier than Each core piece 1c, 2c, 3c can reduce loss as compared with each base core 7, 7a, 7b, 7c, 7d.
- the core module 21 can improve the dimensional accuracy and shorten the firing time by using the core pieces 1c, 2c, 3c.
- the coil device 20 can reduce the variation in the inductance value by reducing the dimensional tolerance of each core piece 1c, 2c, 3c. Further, since the coil device 20 can eliminate the conventional polishing of the core for reducing the dimensional tolerance, the processing time of the core module 21 and the manufacturing cost can be reduced.
- either a general-purpose ferrite core material or a low-loss ferrite core material may be used. Since both the general-purpose ferrite core material and the low-loss ferrite core material can be used, the number of suppliers that can procure the materials of the core pieces 1c, 2c, 3c increases. Therefore, it is possible to stabilize the procurement of parts for manufacturing the core module 21 and reduce the procurement cost. Further, the core module 21 can reduce loss and improve quality.
- the case 22 When the case 22 is viewed from a position apart from the case 22 in the Z-axis direction, the outer edge of the case 22 has a rectangular shape.
- the case 22 has a three-dimensional shape that surrounds the hollow portion 24.
- a space for arranging the core pieces 1c, 2c, 3c is provided around the hollow portion 24.
- the case 22 includes a partition plate 23.
- the partition plate 23 partitions the core pieces 1c, 2c, 3c that are adjacent to each other in the X-axis direction.
- the case 22 is a component integrally molded including the partition plate 23. Since the case 22 is integrally molded including the partition plate 23, the manufacturing cost of the core module 21 can be reduced.
- the partition plate 23 may be a component formed separately from the case 22.
- the case 22 may include the ribs 13 shown in FIGS. 12 and 13 in place of the partition plate 23.
- each of the plurality of core pieces 1c, 2c, 3c is positioned in the X-axis direction.
- the manufacturing cost of the core module 21 can be reduced.
- the case 8 may be attached with the lid 8 shown in FIG.
- the lid 8 covers a space in which the core pieces 1c, 2c, 3c arranged in the upper portion of the case 22 are accommodated.
- the coil device 20 can prevent the fragments generated by the breakage from scattering outside the case 22 when any of the core pieces 1c, 2c, 3c is broken.
- Each core piece 1c is passed through a portion of the case 22 corresponding to the short side of the rectangle.
- the core piece 2c passes through the case 22 and the hollow portion 24 at the center of the case 22 in the X-axis direction.
- the coil portion 6 is arranged so as to penetrate the hollow portion 24.
- the coil portion 6 is installed in the coil device 20 with the core piece 2c passing through the opening of the coil portion 6.
- the core piece 2c is assembled in the case 22 after the coil portion 6 is arranged in the hollow portion 24.
- the core piece 1c and the core piece 3c may be assembled in the case 22 in any order.
- the magnetic path 9 is configured by the core pieces 1c, 2c, 3c, so that the core path between the core pieces is provided in the entire magnetic path 9. Therefore, the number of core gaps in the entire magnetic path 9 is larger than that in the case where the core gaps between the core pieces are provided only in a part of the magnetic path 9. Since the coil device 20 can increase the number of core gaps, the length per core gap can be shortened. In the coil device 20, since the core gap is shortened, the magnetic flux leaking from the core gap can be reduced, and the eddy current loss of the coil portion 6 can be reduced.
- the core pieces 1c, 2c, 3c forming the first core part are held at the lower end of the case 22 with the lower surfaces of the core pieces 1c, 2c, 3c exposed to the outside of the case 22.
- the coil device 20 is installed in the metal housing 160 with the lower surfaces of the core pieces 1c, 2c, 3c in contact with the metal housing 160.
- a part of the core pieces included in the core piece group is arranged so as to be capable of being thermally coupled to the metal housing 160 that is a structure outside the case 22.
- grease having heat conductivity or a heat dissipation sheet may be sandwiched.
- the metal casing 160 is a component for fixing the coil device 20 and also serves as a cooler.
- the coil device 20 is assembled with a part of the core pieces included in the core piece group being thermally coupled to the metal housing 160. Thereby, the coil device 20 can obtain high heat dissipation by using the metal housing 160.
- the coil device 20 is fixed to the metal housing 160 when the coil device 20 is assembled.
- the coil device 20 may be fixed to the metal housing 160 after the assembly of the coil device 20 is completed. Since the degree of freedom in the procedure for assembling the coil device 20 is improved in this way, it is possible to manufacture the coil device 20 by selecting a more efficient assembling procedure. This makes it possible to reduce the manufacturing time of the coil device 20.
- the sheet-shaped core piece 3b shown in FIG. 9 may be included in the core piece group forming the core module 21.
- the core module 21 can disperse the core gap in the magnetic path 9 into more gaps by including the plurality of core pieces 3b in the core piece group. Accordingly, the core module 21 can reduce the loss of the coil portion 6 by reducing the leakage magnetic flux.
- FIG. 49 is an exploded view of the coil device according to the first modified example of the eighth embodiment.
- the coil section 6 is not shown.
- a notch 27 is formed in the case 22a forming the core module 21a.
- the notches 27 are formed on both side surfaces of the case 22a in the X-axis direction.
- the notch 27 is formed by cutting a side surface of the case 22a in the Y-axis direction so that a part of the side surface is cut out.
- the coil device 20a can improve heat dissipation by forming the notch 27 in the case 22a. Further, the provision of the notch 27 can reduce the amount of material used for manufacturing the case 22a.
- the position, shape, and number of the cutouts 27 are arbitrary as long as they are set so that the core pieces 1c, 2c, 3c in the case 22a do not fall through the cutouts 27. And Further, by providing the notch 27, it is possible to visually confirm how the core pieces 1c, 2c, 3c are assembled in the case 22a from the outside of the case 22a. As a result, it is possible to prevent oversight of defective assembly of the core pieces 1c, 2c, 3c.
- FIG. 50 is an exploded view of the coil device according to the second modified example of the eighth embodiment.
- 51 is a cross-sectional view showing a state after the coil device shown in FIG. 50 is assembled. In FIG. 50, the coil section 6 is not shown.
- the magnetic path 9 of the coil device 20b according to the second modification of the eighth embodiment includes a portion where core pieces adjacent to each other are in contact with each other.
- the case 22b forming the core module 21b is not provided with the partition plate 23 that separates the core piece 1c from the core piece 3c. Further, the case 22b is not provided with a partition plate 23 that partitions the core piece 2c and the core piece 3c.
- Each core piece 1c constituting the core module 21b is in contact with each of the two core pieces 3c adjacent to the core piece 1c.
- the core piece 2c forming the core module 21b is in contact with each of the four core pieces 3c adjacent to the core piece 2c.
- a portion of the magnetic path 9 where the core piece 1c and the core piece 3c contact each other is a position near the outer end 6a of the coil portion 6. Since the core gap is not provided at a position close to the end 6a, the magnetic flux penetrating the end 6a can be suppressed. Further, in the magnetic path 9, a portion where the core piece 2c and the core piece 3c contact each other is a position near the inner peripheral side end portion 6b of the coil portion 6. Since the core gap is not provided at the position close to the end 6b, the magnetic flux penetrating the end 6b can be suppressed. As a result, the coil device 20b can suppress the generation of eddy currents at the end portions 6a and 6b and reduce the loss of the coil portion 6.
- each magnetic path 9 it is sufficient that adjacent core pieces are in contact with each other at any position. Further, the number of locations where core pieces adjacent to each other are in contact with each other is not limited to four, and is arbitrary. It suffices that each magnetic path 9 includes at least one location where adjacent core pieces are in contact with each other. Accordingly, the coil device 20b can suppress the generation of the eddy current in the coil portion 6 and reduce the loss of the coil portion 6.
- FIG. 52 is an exploded view of a coil device according to a third modification of the eighth embodiment.
- 53 is a cross-sectional view showing a state after the coil device shown in FIG. 52 is assembled. In FIG. 52, the coil portion 6 is not shown.
- the core module 2c does not use the core piece 2c shown in FIG.
- the core module 21c includes four core pieces 1c and an arbitrary number of core pieces 3c.
- the middle foot portion 25 is composed of two core pieces 1c arranged in the X-axis direction.
- the core piece 2c is not used in the core module 21c, the number of types of parts is reduced compared to the case of the core modules 21, 21a, and 21b described above. By reducing the number of types of components that make up the core module 21c, the productivity of the core module 21c can be improved and the manufacturing cost of the core module 21c can be reduced.
- FIG. 54 is an exploded view of the coil device according to the fourth modified example of the eighth embodiment.
- FIG. 55 is a cross-sectional view showing a state after the coil device shown in FIG. 54 is assembled. In FIG. 54, the illustration of the coil portion 6 is omitted.
- the core module 21d is provided with a plurality of core pieces 3d instead of the core pieces 1c, 2c, 3c shown in FIG. The core module 21d is composed of one type of core piece 3d.
- each core piece 3d is a rectangle.
- the long side of the rectangle is longer than the short side of the rectangle and up to about twice the short side.
- the core piece 3d that forms the middle foot portion 25 and the core piece 3d that forms the outer foot portion 26 are arranged with their long sides aligned in the Y-axis direction. ..
- the core pieces 3d other than the core piece 3d forming the middle foot portion 25 and the core foot 3d forming the outer foot portion 26 have their long sides aligned in the X-axis direction. Are arranged.
- the case 22d is configured so that each core piece 3d whose long side direction is determined as described above can be arranged.
- the core piece 3d whose long sides are aligned in the Y-axis direction on the middle foot portion 25 and the outer foot portion 26 the core piece 3d and the case 22d of the upper portion of the case 22d are disposed.
- a space for arranging the coil portion 6 is secured between the core piece 3d and the core piece 3d.
- the core module 21d has a smaller number of types of parts than the core modules 21, 21a, 21b, and 21c described above. By reducing the number of types of components that make up the core module 21d, the productivity of the core module 21d can be improved and the manufacturing cost of the core module 21d can be reduced.
- FIG. 56 is an exploded view of a coil device according to a fifth modification of the eighth embodiment.
- 57 is a cross-sectional view showing a state after the coil device shown in FIG. 56 is assembled.
- the coil portion 6 is not shown.
- the core module 21e is composed of one type of core piece 3d.
- the core pieces 3d arranged on the upper portion of the case 22e are arranged with their long sides aligned in the Y-axis direction.
- the core piece 3d arranged in the lower part of the case 22e is arranged in the same manner as the core piece 3d arranged in the lower part of the case 22d in the fourth modified example. That is, of the core pieces 3d arranged in the lower part of the case 22e, the core piece 3d forming the middle foot portion 25 and the core piece 3d forming the outer foot portion 26 have their long sides in the Y-axis direction. It is placed together. Of the core pieces 3d arranged in the lower part of the case 22e, the core pieces 3d other than the core piece 3d forming the middle foot portion 25 and the core piece 3d forming the outer foot portion 26 have their long sides on the X-axis. It is arranged according to the direction.
- the case 22e is configured so that each core piece 3d whose long side direction is determined as described above can be arranged.
- the core piece 3d forming the middle foot portion 25 and the core piece 3d forming the outer foot portion 26 have their long sides aligned in the Y-axis direction.
- a space for arranging the coil portion 6 is secured between the core piece 3d arranged in the upper part of the case 22e and the core piece 3d arranged in the lower part of the case 22e.
- the core module 21e can reduce the number of types of components forming the core module 21e, as in the case of the core module 21d of the fourth modification of the eighth embodiment. As a result, the productivity of the core module 21e can be improved and the manufacturing cost of the core module 21e can be reduced.
- the cross-sectional area of the magnetic path 9 in the upper part of the core module 21e is It is about 1 to 2 times larger than the case where the core piece 3d aligned in the X-axis direction is arranged.
- the coil device 20e can reduce the loss in the core module 21e by reducing the magnetic flux density in the upper part of the core module 21e. Further, in the coil device 20e, the heat generation amount and heat generation density of the core module 21e can be reduced, and the temperature rise of the core module 21e can be suppressed.
- the coil device 20e is configured by bringing the core module 21e into contact with a structure such as the metal plate 160a shown in FIGS. 18 and 19, the metal structure 160c shown in FIG. 20, or the metal structure 160g shown in FIG. It is not necessary to cool the module 21e.
- the power conversion device 100 can reduce the manufacturing cost and can reduce the size and weight of the power conversion device 100.
- the magnetic path 9 in each of the coil devices 20a, 20c, 20d, and 20e according to the first modified example of the eighth embodiment and the third to fifth modified examples of the eighth embodiment has the same structure as that of the eighth embodiment.
- at least one location where adjacent core pieces are in contact with each other may be included.
- the coil devices 20a, 20c, 20d, 20e can suppress the generation of eddy currents in the coil portion 6 and reduce the loss of the coil portion 6.
- each of the coil devices 12, 12a, 12b, 12c, 12d, 12g, 12h, 12i according to the first to fifth embodiments and the seventh embodiment, in the case of the second modification of the eighth embodiment.
- at least one location where adjacent core pieces are in contact with each other may be included.
- the coil devices 12, 12a, 12b, 12c, 12d, 12e, 12f, 12g, 12h, 12i can suppress the generation of the eddy current in the coil portion 6 and reduce the loss of the coil portion 6.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Dc-Dc Converters (AREA)
- Coils Or Transformers For Communication (AREA)
Abstract
コイル装置(12)は、コイルを有するコイル部(6)と、第1のコア部品であるベースコア(7)と、第2のコア部品であるコアモジュール(11)と、を備える。第1のコア部品は、コイルが巻回されている足部である中足部(7f)を有する。第2のコア部品は、互いにギャップを介して一列に並べられた複数のコア片(1)、(2)、(3)を有する。第2のコア部品は、足部に接続されることによって第1のコア部品とともに磁路を構成する。
Description
本発明は、コイルを備えたコイル装置および電力変換装置に関する。
電力変換装置の小型化と高出力密度化とを実現するためには、電力変換装置の中で大面積を占めるトランスおよびリアクトルといったコイル装置を、筐体等への放熱による冷却が容易なプレーナ形状のコイル装置とすることが有効である。プレーナ形状のコイル装置は、低背型のコイル装置とも称される。プレーナ形状のコイル装置には、E型のコアとI型のコアとの組み合わせ、またはE型のコアとE型のコアとの組み合わせなどによって磁路が形成される。
コイル装置は、所望のインダクタンス値を得るために、コア同士の間隙の長さであるギャップ長が精密に調整される必要がある。コア同士の研磨された面によってギャップシートを挟み込んだ状態でコア同士が固定されることによって、ギャップ長が調整されることがある。この場合、ギャップシートの寸法のばらつき、またはコアの研磨精度のばらつきによって、インダクタンス値にばらつきが生じることが知られている。また、コイル装置は、ギャップ長が長いほど漏れ磁束が大きくなる。漏れ磁束が大きくなると、その磁束によって、コイル装置を構成するコイルに渦電流が流れて、コイルの損失が増大する。
特許文献1には、I型のコアとE型のコアとが組み合わせられたコイル装置において、コイルを保持するボビンを用いて、I型のコアとE型のコアとの間隙が形成されることが開示されている。特許文献1の技術によると、ギャップシートを使用せずに、精度良くギャップ長を設定することができる。また、特許文献1のコイル装置は、E型のコアが有する各足部に間隙を分散させたことで、間隙1箇所当たりの漏れ磁束を抑制可能としている。
従来技術である上記特許文献1の技術によると、磁路に設けられる間隙は最大で2箇所に限られる。このため、従来技術の場合、漏れ磁束の抑制が不十分となることから、コイルの損失を低減することが困難であるという問題があった。
本発明は、上記に鑑みてなされたものであって、コイルの損失を低減可能とするコイル装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明にかかるコイル装置は、コイルと、コイルが巻回されている足部を有する第1のコア部品と、互いにギャップを介して一列に並べられた複数のコア片を有し、足部に接続されることによって第1のコア部品とともに磁路を構成する第2のコア部品と、を備える。
本発明にかかるコイル装置は、コイルの損失の低減が可能となるという効果を奏する。
以下に、本発明の実施の形態にかかるコイル装置および電力変換装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、本発明の実施の形態1にかかるコイル装置を有する電力変換装置の一例を示す回路図である。図1に示す電力変換装置100は、絶縁型DC(Direct Current)/DCコンバータである。電力変換装置100は、入力端子101,102へ入力される直流電圧を直流電圧に変換して出力端子191,192から出力する。入力端子101,102には、車載の高電圧バッテリから供給される100Vから600V程度の高電圧が入力される。出力端子191,192からは、車載補機系部品の電源電圧である12Vから16V程度の電圧が出力される。
図1は、本発明の実施の形態1にかかるコイル装置を有する電力変換装置の一例を示す回路図である。図1に示す電力変換装置100は、絶縁型DC(Direct Current)/DCコンバータである。電力変換装置100は、入力端子101,102へ入力される直流電圧を直流電圧に変換して出力端子191,192から出力する。入力端子101,102には、車載の高電圧バッテリから供給される100Vから600V程度の高電圧が入力される。出力端子191,192からは、車載補機系部品の電源電圧である12Vから16V程度の電圧が出力される。
電力変換装置100は、フルブリッジ回路110と、共振コイル120と、トランス130と、二次側整流回路140と、平滑回路150とを備える。フルブリッジ回路110には、入力端子101,102へ供給された直流の高電圧が入力される。フルブリッジ回路110は、スイッチング素子111,112,113,114を備える。スイッチング素子111,112,113,114のそれぞれは、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)またはIGBT(Insulated Gate Bipolar Transistor)などである。フルブリッジ回路110は、スイッチング素子111,112,113,114によって直流電圧から交流電圧を発生させる動作を行う。フルブリッジ回路110の動作によって入力側に発生する交流成分は、主に入力コンデンサ103によって吸収される。これにより、入力ラインにおけるノイズの発生が低減される。
共振コイル120と、トランス130の一次側コイル131とは、直列に接続されている。フルブリッジ回路110によって生成された交流電圧は、共振コイル120と一次側コイル131とに印加される。共振コイル120は、スイッチング素子111,112,113,114とそれぞれ並列に接続されるMOSFETもしくは外付けのコンデンサによるキャパシタ成分と共振動作を起こし、スイッチング素子111,112,113,114の損失を抑制する。かかる動作において、共振コイル120では、インダクタンス値の精度、すなわちインダクタンス値のばらつきが少ないことが要求される。
一次側コイル131に交流電圧が印加されることによって、トランス130の二次側コイル132,133には、トランス130の巻数比に応じた交流電圧が発生する。二次側コイル132,133において発生した交流電圧は、二次側整流回路140へ入力される。二次側整流回路140へ入力された交流電圧は、ショットキーバリアダイオードに代表される整流素子141,142によって整流される。このため、二次側コイル132と二次側コイル133との接続点であるセンタータップには、グランド電位を基準とする全波整流がなされた交流電圧が発生する。
平滑回路150は、平滑コイル151と出力コンデンサ152とを有する。トランス130で発生した交流電圧が平滑回路150によって平滑化されることによって、出力端子191と出力端子192との間には、所望の平坦な直流電圧が発生する。ここで使用される平滑コイル151では、インダクタンス値の精度のほかに、良好な直流重畳特性が要求される。なお、出力端子191,192のうちのマイナス端子である出力端子192は明確には設けられず、グランド(GND)161,162,163となる構造物である金属筐体がその役割を担う。
図2は、図1に示す電力変換装置を構成する主要部品の上面図である。図2では電力変換装置100の構成要素である部品のうち、一部の部品については図示を省略している。また、図2では、部品のうちの一部分について図示を省略している。
金属筐体160は、電力変換装置100の筐体である。金属筐体160は、GND161,162,163となる構造物であって、冷却器を兼ねている。プリント基板170には、入力端子101,102、入力コンデンサ103、スイッチング素子111,112,113,114の制御回路、ならびに駆動回路が実装されている。
共振コイル120では、共振周波数を調整するために、インダクタンス値のばらつきが少ないことが必要とされる。一般的に、共振コイル120を構成するコアには、E型のコアとE型のコアとを組み合わせたコア、もしくはトロイダル形状をなすコアが使用される。磁路を構成する軟磁性材料には、純鉄あるいはFe-Si合金などのダスト系コア材が使用される。実施の形態1では、共振コイル120を構成するコアは、プレーナ形状のコアであって、Mn-Zn系などのフェライトコアに複数のギャップを設けたものである。共振コイル120は、複数のギャップが設けられることによって、上記従来技術に比べて、高性能と、設置面からの高さの抑制とが可能となる。なお、図2では、共振コイル120の接続先の部品と、共振コイル120を金属筐体160に固定するための構成とについては図示を省略している。
トランス130は、プレーナトランスである。一次側コイル131と二次側コイル132とは、トランス130が有するコイル部である。トランス130は、E型のコアと、I型のコアと、一次側コイル131が形成されているプリント基板と、二次側コイル132が形成されているプリント基板とを有する。E型のコアとI型のコアとによって形成される磁路には、ギャップは存在しない。二次側整流回路140において、整流素子141と整流素子142とは、1つのパッケージに搭載されている。
平滑コイル151では、精度の高いインダクタンス値と直流重畳特性とを必要とする。一般的に、平滑コイル151を構成するコアには、共振コイル120の場合と同様に、E型のコアとE型のコアとを組み合わせたコア、もしくはトロイダル形状をなすコアが使用される。磁路を構成する軟磁性材料には、純鉄あるいはFe-Si合金などのダスト系コア材が使用される。実施の形態1では、平滑コイル151を構成するコアは、プレーナ形状のコアであって、Mn-Zn系などのフェライトコアに複数のギャップを設けたものである。平滑コイル151は、複数のギャップが設けられることによって、上記従来技術に比べて、高性能と、設置面からの高さの抑制とが可能となる。平滑コイル151を構成するコイルは、プリント基板に形成されている。なお、図2では、平滑コイル151の接続先の部品と、平滑コイル151を金属筐体160に固定するための構成とについては図示を省略している。
図2では、共振コイル120と平滑コイル151とトランス130のコイル部とが、それぞれ別個のプリント基板を用いて構成されている。共振コイル120と平滑コイル151とトランス130のコイル部とは、1枚のプリント基板を用いて構成されていても良い。
図3は、図1に示す電力変換装置を構成する主要部品の他の上面図である。図3において共振コイル120と平滑コイル151とトランス130のコイル部とは、1枚のプリント基板170aを用いて構成されている。プリント基板170aには、整流素子141,142が実装されても良い。プリント基板170とプリント基板170aとの全体が、1枚のプリント基板によって構成されても良い。
以下に、電力変換装置100が有する共振コイル120の構成と平滑コイル151の構成とについて説明する。共振コイル120と平滑コイル151とは、電力変換装置100が有するコイル装置である。
図4は、実施の形態1にかかるコイル装置の分解図である。図5は、実施の形態1にかかるコイル装置の断面図である。図6は、実施の形態1にかかるコイル装置の上面図である。X軸は水平方向の軸とする。Y軸は鉛直方向の軸とする。Z軸は奥行き方向の軸とする。図5には、X軸とY軸とに平行なXY断面を示している。
実施の形態1にかかるコイル装置12は、第1のコア部品であるベースコア7と、第2のコア部品であるコアモジュール11と、コイル部6とを有する。コアモジュール11は、互いにギャップを介して一列に並べられた複数のコア片1,2,3と、コア片1,2,3同士の間に配置された板材である仕切り板4と、コア片1,2,3および仕切り板4が収容されたケース5とを有する。コアモジュール11は、I型のコアである。
ベースコア7は、3つの足部を有するE型のコアである。外足部7eは、X軸方向におけるベースコア7の両端に形成されている足部である。中足部7fは、X軸方向におけるベースコア7の中心に形成されている足部である。コアモジュール11が中足部7fと2つの外足部7eとに接続されることによって、ベースコア7とコアモジュール11とは、いずれも閉磁路である2つの磁路9を構成する。
コイル部6は、FR-4(Flame Retardant Type 4)からなる2層のプリント基板を使用して構成されている。プリント基板の両面には、巻回された巻線のパターンが印刷されている。なお、コイル部6を流れる電流の電流密度を下げるために、コイル部6に4層のプリント基板を使用することによって電流経路を複数に分散させても良い。コイル部6は、耐熱性を高めるために、FR-5の基材またはセラミックの基材を使用して構成されても良い。コイル部6には、プリント基板が用いられる以外に、0.5mmから2mm程度の厚みをなす銅板あるいはアルミニウム板が用いられても良い。コイル部6の中心には、開口が設けられている。コイル部6は、開口に中足部7fが通された状態でコイル装置12に設置される。これにより、プリント基板に印刷されている巻線のパターンであるコイルは、中足部7fに巻回された状態とされている。
コア片1のうちZ軸とX軸とに平行なZX平面の面積は、外足部7eのうちのZX平面の面積と等しい。コア片1のうちY軸とZ軸とに平行なYZ平面の面積は、外足部7eのうちのZX平面の面積と等しい。コア片1のうちのZX平面の面積は、外足部7eのうちのZX平面の面積よりも大きくても良い。コア片1のうちのYZ平面の面積は、外足部7eのうちのZX平面の面積よりも大きくても良い。
コア片2のうちのZX平面の面積は、中足部7fのうちのZX平面の面積と等しい。コア片2のうちのYZ平面の面積は、外足部7eのうちのZX平面の面積と等しい。コア片2のうちのZX平面の面積は、中足部7fのうちのZX平面の面積よりも大きくても良い。コア片2のうちのYZ平面の面積は、外足部7eのうちのZX平面の面積よりも大きくても良い。
Y軸方向におけるコア片3の高さは、Y軸方向におけるコア片1の高さと同じである。Z軸方向におけるコア片3の奥行きは、Z軸方向におけるコア片1の奥行きと同じである。ここで、コア片3とコア片1とにおいて、製造時の寸法公差による±3%程度の寸法差は不問とする。コア片3の高さとコア片1の高さとが同じであるとは、±3%程度の寸法差がある場合を含むものとする。コア片3の奥行きとコア片1の奥行きとが同じであるとは、±3%程度の寸法差がある場合を含むものとする。X軸方向におけるコア片3の厚みは、X軸方向におけるコア片1の厚みよりも薄い。コア片1、コア片2、コア片3およびベースコア7である各コアの材料には、軟磁性材料が使用されている。軟磁性材料には、Mn-Zn系またはNi-Zn系のフェライトコア材、ならびに、純鉄、Fe-Si合金、Fe-Si-Al合金、Ni-Fe合金、またはNi-Fe-Mo合金といったダスト系コア材などが使用される。コアには、絶縁のための粉末樹脂が塗布されていても良い。
フェライトコア材からなるフェライトコアと、ダスト系コア材からなるダストコアとは、粉状の材料をプレス機で成形した後、熱処理によって焼成される。プレス機によって成形された材料は熱処理時に収縮するため、コアが大型化するに従って寸法精度が低くなる。また、大型のコアは、小型のコアに比べて、焼成時間が長くなり、損失が大きくなる。フェライトコア材としては、汎用のフェライトコア材と低損失用のフェライトコア材との2種類が一般的に知られている。低損失用のフェライトコア材では、寸法精度の悪化および損失の増加といった傾向がより顕著に現れる。このことから、低損失用かつ大型のコアは、焼成温度の管理がより難しくて損失が大きくなり易いことから、製造には多大なノウハウが必要となる。
各コア片1,2,3は、第2のコア部品が一体のコアとして形成される場合における当該一体のコアと比べて小型であることから、当該一体のコアに比べて焼成が容易である。また、各コア片1,2,3は、当該一体のコアに比べて損失を少なくすることができる。コアモジュール11にコア片1,2,3が使用されることによって、コアモジュール11は、寸法精度を高くすることができ、焼成時間を短くすることができる。各コア片1,2,3には、汎用のフェライトコア材と低損失用のフェライトコア材とのどちらが使用されても良い。汎用のフェライトコア材と低損失用のフェライトコア材とのどちらも使用可能であることで、コア片1,2,3の材料を調達可能な調達先が多くなる。したがって、コアモジュール11を製造するための部品調達の安定化と調達コストの低減とが可能となる。さらに、コアモジュール11は、損失の低減と品質向上とが可能となる。
図7は、実施の形態1にかかるコイル装置が有するコアモジュールの第1変形例を示す図である。図7に示す第1変形例では、コアモジュール11は、コア片1が用いられず、複数のコア片2と複数のコア片3とを使用して構成されている。第1変形例では、コア片1が用いられないことで、図4から図6に示す場合よりも部品の種類の数が減少している。コアモジュール11は、図4から図6に示す場合よりも部品の種類の数が減少することによって、より生産性を向上でき、かつ製造コストの低減が可能となる。
図8は、実施の形態1にかかるコイル装置が有するコアモジュールの第2変形例を示す図である。図8に示す第2変形例では、コアモジュール11は、コア片1とコア片3とが用いられず、複数のコア片2を使用して構成されている。コアモジュール11は、1種類のコア片2から構成される。すなわち、コアモジュール11が有する複数のコア片2の各々の寸法がいずれも同じである。ここで、コア片2同士において、製造時の寸法公差による±3%程度の寸法差は不問とする。複数のコア片2の各々の寸法が同じであるとは、±3%程度の寸法差がある場合を含むものとする。第2変形例では、コア片1とコア片3とが用いられていないことで、図4から図6に示す場合よりも部品の種類の数が減少している。第1変形例と第2変形例とによると、コアモジュール11は、部品の種類の数が減少することによって、生産性の向上および製造コストの低減が可能となる。
図7および図8において、X軸方向におけるコア片2の幅は、X軸方向におけるベースコア7の足部の幅よりも大きい。足部の上方にあるコア片2は、X軸方向において足部よりもはみ出るように配置されている。すなわち、コア片2のうち足部に接続される面の面積が、足部のうちコア片2に接続される面の面積よりも大きい。これにより、コイル装置12は、足部とコア片2とのギャップにおける漏れ磁束を低減できる。なお、X軸方向におけるコア片2の幅は、X軸方向におけるベースコア7の足部の幅と同じであっても良い。コア片2のうち足部に接続される面の面積は、足部のうちコア片2に接続される面の面積と同じであっても良い。この場合も、コイル装置12は、足部とコア片2とのギャップにおける漏れ磁束を低減できる。
コアモジュール11は、コア片3よりもX軸方向における幅が小さいコア片が用いられても良い。図9は、実施の形態1にかかるコイル装置が有するコアモジュールの第3変形例を示す図である。図9に示す第3変形例では、コアモジュール11は、コア片3に代えて、コア片3よりもX軸方向における幅が小さいシート状のコア片3bを複数使用して構成されている。コアモジュール11は、図4から図6に示す場合に比べて、磁路9におけるコアギャップをより多くのギャップに分散させることができる。第3変形例によると、コアモジュール11は、漏れ磁束の低減によりコイル部6の損失を低減できる。
コア片3bには、小型のプレーナトランスに使用される低損失用のフェライトコアを使用することができる。かかるフェライトコアは、市場において多数流通していることから、コストが低くかつ調達しやすい。コアモジュール11は、コア片3bが用いられることによって、部品調達の安定化とコストの低減とが可能となる。
コアモジュール11は、図4から図6に示す場合から各コア片1,2,3の寸法を変化させても良い。コアモジュール11を構成する各コア片1,2,3の寸法は、特に決められた寸法ではなく、さまざまな寸法とすることができる。図10は、実施の形態1にかかるコイル装置が有するコアモジュールの第4変形例を示す図である。図10に示す第4変形例では、コアモジュール11は、複数のコア片1a,2a,3aを有する。各コア片1a,2a,3aのY軸方向における高さは、各コア片1,2,3のY軸方向における高さよりも高い。なお、図10に示す構成による利点については後述する。高さ方向であるY軸方向における各コア片1a,2a,3aの厚みは、ベースコア7のうちの肉薄部の厚みよりも厚い。ベースコア7において、肉薄部は、図4に示す外足部7eである。なお、図7および図8に示す構成において、コア片2,3に代えて、第3変形例と同様のコア片2a,3aが設けられても良い。
次に、図4から図6に示すケース5と仕切り板4とについて説明する。仕切り板4は、複数のコア片1,2,3のうち互いに隣り合うコア片同士を仕切る。ケース5は、複数のコア片1,2,3と複数の仕切り板4とを保持する。ケース5には、ケース5とは別に形成された部品である仕切り板4が備えられる。
ケース5は、複数のコア片1,2,3をX軸方向へ配列可能とするI形状をなしている。仕切り板4は、ケース5内を仕切ることによって、コア片1,2,3の各々が配置されるスペースをケース5とともに構成している。仕切り板4の大きさは、ケース5に収まる大きさであれば良い。仕切り板4におけるYZ平面の面積は、YZ方向におけるケース5の面積と同等であるか、YZ方向におけるケース5の面積の半分程度である。磁路9の中には、仕切り板4とケース5とによってギャップが形成されている。以下の説明では、磁路9の中に形成されているギャップを、コアギャップと称することがある。
ギャップ総和長が、設計によって求められた長さと一致するように、磁路9の方向における各コアギャップの長さが設定される。ギャップ総和長は、磁路9の方向におけるコアギャップの長さを、ベースコア7とコアモジュール11とに設けられている全てのコアギャップについて合計した長さとする。コアモジュール11と外足部7eとの間、および、コアモジュール11と中足部7fとの間には、Y軸方向を長さ方向とするコアギャップが形成されている。コアモジュール11の中には、X軸方向を長さ方向とするコアギャップが形成されている。
フェライトコアの比透磁率は、1500から4000程度である。コアギャップ総和長は、1mmから30mm程度とされる。また、コアギャップ総和長は、所望のインダクタンス値が得られるように調整される。コアギャップから漏れる磁束は、コアギャップに隣接して配置されているコイル部6に鎖交することによって、コイル部6に渦電流を発生させることがある。コイル部6に渦電流が流れることで、コイル部6に損失が発生する。漏れ磁束は、コアギャップ1つ当たりの長さを短くすることによって低減される。具体的には、コアギャップの長さは1mm以下であることが望ましい。仕切り板4とケース5とには、かかる長さのコアギャップを実現可能な薄肉の材料が使用されている。
仕切り板4とケース5との材料には、樹脂などの非磁性体が使用される。樹脂の中では液晶ポリマー(Liquid Crystal Polymer:LCP)等が、仕切り板4およびケース5の材料に適している。LCPは、0.5mm程度の薄肉形成が可能であること、寸法精度が良いこと、ならびに複雑な形状の加工に適していることから、仕切り板4およびケース5の材料に適している。また、LCPは耐熱性に優れており、コアの温度が120度程度と高温になっても軟化などの変化を生じない。仕切り板4およびケース5が薄肉とされる分、仕切り板4およびケース5の加工における材料の使用量は少なくなる。このため、コアモジュール11は、樹脂の中では高価とされるLCPが使用されても、コストの高騰を抑えることができる。樹脂としては、LCPの他に、ポリエチレンテレフタレート(PolyEthylene Terephthalate:PET)、ポリブチレンテレフタレート(PolyButylene Terephthalate:PBT)、ポリプロピレン(PolyPropylene:PP)ならびにポリフェニレンサルファイド(PolyPhenyleneSulfide:PPS)などが用いられても良い。
仕切り板4およびケース5を加工するための工法には、射出成形が用いられる。射出成形は、コスト面と寸法精度に優れており、かつ複雑な形状の加工にも適している。仕切り板4およびケース5を加工するための工法には、押出成形、圧縮成形、または3Dプリンタによる付加加工が用いられても良い。
なお、ケース5のうち、コア片1と外足部7eとの間の部分とコア片2と中足部7fとの間の部分とは、コアギャップを形成する部分であることから薄肉にすることが望ましい。一方、ケース5のうちその他の部分はコアギャップを形成する部分ではないことから、薄肉にしなくても良い。ケース5のうちコアギャップを形成する部分以外の部分は、ケース5の強度を確保可能とする厚さで形成されても良い。
図11は、図4から図6に示すコアモジュールが有するケースの第1変形例を示す図である。図11に示す第1変形例のケース5aは、ケース5aに仕切り板4が具備されている。すなわち、ケース5aは、仕切り板4を含めて一体に成形された部品である。コア片1,2,3の各々は、仕切り板4同士の間に配置される。この場合、ケース5aの加工のための金型とは別に仕切り板4の加工のための金型を購入しなくても良いことから、コアモジュール11は、製造コストを低減できる。
コアモジュール11は、所望のギャップ長さを得ることができれば良く、ケース5には仕切り板4が設けられていなくても良い。図12は、図4から図6に示すコアモジュールが有するケースの第2変形例を示す図である。図13は、図12に示すケースの上面図である。図12および図13に示す第2変形例のケース5bは、図11に示すケース5aが有する仕切り板4に代えて、X軸方向において複数のコア片1,2,3の各々を位置決めするためのリブ13を具備している。コア片1,2,3の各々は、リブ13同士の間に配置される。この場合も、仕切り板4の加工のための金型を購入しなくても良いことから、コアモジュール11は、製造コストを低減できる。また、リブ13の形成に必要とされる材料量は仕切り板4の形成に必要とされる材料量よりも少ないことから、ケース5bは、仕切り板4が設けられるケース5aに比べて製造コストを低減できる。図11に示すケース5aの場合、ケース5aが大型になるほど、ケース5aのうち仕切り板4が設けられている部分に反りが生じ易くなる。ケース5bは、仕切り板4が設けられていないため、かかる反りが発生することはない。
実施の形態1では、コアモジュール11は、各コア片1,2,3がケース5に配置されて、ケース5によって各コア片1,2,3を一括して保持する。このため、コアモジュール11に設けられるコア片1,2,3の数が増えても、コアモジュール11の生産性の悪化にはほとんど繋がらない。また、コアモジュール11では、各コア片1,2,3は、ケース5内において区分けされたスペースへ挿入されることによって、保持されている。コア片1,2,3の保持には、接着剤を使用しない。このため、コアモジュール11は、各コア片1,2,3と接着剤とにおける線膨張係数の違いによって各コア片1,2,3にクラックが発生するという懸念をなくすことができる。
コアモジュール11の生産時において、複数のコア片1,2,3と、仕切り板4と、ケース5との寸法公差に起因して、ギャップ総和長にばらつきが発生することがある。ギャップ総和長のばらつきは、インダクタンス値のばらつきに影響を及ぼす。かかる寸法公差は、一般的に正規分布をとる。コアモジュール11には複数のコア片1,2,3と仕切り板4とが設けられているが、その全てが寸法の平均に対して±3σ~±6σ等の大きな誤差を持つことは統計的に起こりえない。また、コアモジュール11に設けられるコア片1,2,3の数と仕切り板4の数とが増えるほど、ギャップ総和長は寸法が平均値である場合のギャップ総和長に近づく。これにより、コアモジュール11は、コアが複数のコア片1,2,3に分割されていることによって、ギャップ総和長のばらつきを小さくすることができ、インダクタンス値の精度を高くすることができる。
上記内容について、コアを例にして定量的に説明する。コアの寸法は、パーセンテージの誤差を持つ。平均寸法が150mmであって研磨されていないコアの寸法公差を1%とすると、寸法公差は±1.5mmである。30mmのコア片3であれば、1%の寸法公差は±0.3mmである。30mmのコア片3を5個用いて150mmのコアを構成する場合、30mmの1%である±0.3mmの寸法公差が、5個のコア片3の2乗和平方根をとるので、5個のコア片3のトータル長を±0.67mmの寸法公差に縮小できる。これは、150mmのコアの寸法公差の45%に相当し、寸法公差の55%分を縮小できたことになる。同様に、15mmのコア片3を10個用いて150mmのコアを構成する場合、10個のコア片3のトータル長の寸法公差は±0.47mmになる。これは150mmのコアの寸法公差の32%に相当し、寸法公差の68%分を縮小できたことになる。
このように、コイル装置12は、磁路9を構成するコアの分割数を増やすほど、インダクタンス値のばらつきを小さくすることができる。また、コイル装置12は、寸法公差の縮小のために従来実施されていたコアの研磨を不要とすることができることから、コアモジュール11の加工時間の短縮と製造コストの低減とが可能となる。
コアモジュール11は、ケース5においてX軸方向における各コア片1,2,3の位置ずれが生じた場合でも、ギャップ総和長は変わらない。このため、コイル装置12は、コア片1,2,3が接着剤等によってケース5に固定されていなくても、インダクタンス値のばらつきを抑えることができ、安定した電気特性を得ることができる。また、Z軸方向における各コア片1,2,3の位置ずれは、ケース5の寸法公差程度のずれであれば、インダクタンス値にはほとんど影響がない。
コイル装置12は、コアギャップの数が多ければ多いほど、コアギャップ1つ当たりの長さを短くすることができる。コイル装置12は、コアギャップが短くなることで、コアギャップから漏れる磁束を小さくすることができ、コアモジュール11に隣接して配置されているコイル部6の渦電流損失を低減できる。その結果、コイル装置12は、発熱量を抑制することができる。電力変換装置100は、電力効率を改善することができる。
フェライトコアは、衝撃に弱いことから、衝撃によって欠けまたは割れが発生する可能性がある。実施の形態1では、コア片1,2,3の全てがケース5に収められていることによって、コイル装置12は、振動または衝撃からコア片1,2,3を保護することができる。コイル装置12は、コア片1,2,3の破損を低減できる。仮に、コア片1,2,3のいずれかが欠けることによって破片が生じたとしても、コア片1,2,3がケース5内に配置されていることによって、かかる導電性を持つ破片がケース5内に留められる。これにより、電力変換装置100は、プリント基板170またはスイッチング素子111,112,113,114への破片の入り込みによる短絡故障を防ぐことができる。
ケース5の上面には、蓋が設けられていても良い。図14は、図4から図6に示すコアモジュールが有するケースの第3変形例を示す図である。図14に示す第3変形例のケース5cには、コア片1,2,3が収容されるスペースの上方を覆う蓋8が取り付けられる。図14には、ケース5cとコア片1,2,3と蓋8とを分解した様子を示している。ケース5cは、図11に示すケース5aに、蓋8との嵌め合わせのための機構が追加されたものである。
図15は、図14に示すケースに蓋が取り付けられた状態を示す図である。図16は、図14に示すケースと蓋との嵌め合わせのための機構の一例を示す図である。蓋8とケース5cとには、嵌合強度を高めるために、スナップフィット形状などの機構が設けられている。
ケース5cに蓋8が設けられることによって、コイル装置12は、コア片1,2,3のいずれかが破損した場合に、破損によって生じた破片がケース5cの外へ飛散することを防止できる。また、嵌合強度を高めるための機構が蓋8とケース5cとに設けられることによって、コアモジュール11は、各コア片1,2,3の固定強度を高めることができる。これにより、コアモジュール11は、振動耐性の向上が可能となる。なお、蓋8は、図4から図6に示すケース5に取り付けられても良く、図12に示すケース5bに取り付けられても良い。
図17は、図14に示すケースおよび蓋の変形例を示す図である。図17に示す蓋8の上面には、開口17が形成されている。図17に示すケース5cのうち4つの側面の各々には、開口18が形成されている。蓋8が取り付けられた状態のケース5c内の熱は、開口17,18を通ってケース5cの外へ放出される。これにより、コイル装置12は、放熱性を向上できる。開口17,18が設けられることによって、蓋8とケース5cとの製造に使用される材料の量を減らすことができる。なお、開口17,18の位置、形状および数は、ケース5c内にあるコア片1,2,3が開口17,18を通り抜けて脱落することが無いように設定されていれば良く、任意であるものとする。また、ケース5cおよび蓋8には、蓋8の開口17とケース5cの開口18とのうちの少なくとも一方が形成されていれば良い。
図18は、実施の形態1にかかるコイル装置の設置のための構成の第1の例を示す図である。コイル装置12は、ベースコア7を金属筐体160に接触させた状態で、金属筐体160に設置される。ベースコア7と金属筐体160との間には、熱伝導性を有するグリスまたは放熱シートが挟み込まれていても良い。金属筐体160は、コイル装置12の固定のための構成であって冷却器を兼ねている。コイル装置12は、ベースコア7が金属筐体160に熱的に結合された状態で組み立てられている。これにより、コイル装置12は、金属筐体160を利用した冷却が可能とされている。
金属板160aは、コイル装置12の上部を覆う板材である。2つの金属ブロック160bは、金属筐体160上において金属板160aを支持する柱状の構造物である。金属ブロック160bは、金属筐体160のうちX軸方向においてコイル装置12に隣接する位置に立てられている。ねじ10は、金属板160aと金属ブロック160bとを金属筐体160に固定する。コイル装置12の設置のための構成とは、金属筐体160と金属板160aと金属ブロック160bとである。
図19は、図18に示すコイル装置とコイル装置の設置のための構成とが組み合わせられた状態を示す断面図である。金属板160aは、コイル装置12の固定のための構成であって冷却器を兼ねている。コイル装置12は、コアモジュール11が金属板160aに熱的に結合させた状態で組み立てられている。これにより、コイル装置12は、金属板160aを利用した冷却が可能とされている。
ベースコア7にて発生した熱は、主に金属筐体160へ伝わる。コアモジュール11にて発生した熱は、主に金属板160aへ伝わる。金属板160aへ伝わった熱は、金属ブロック160bを経て金属筐体160へ伝わる。図19に示す矢印は、伝熱の様子を表している。コイル装置12は、ベースコア7とコアモジュール11との各々が冷却器と熱的に接合されていることから、コイル装置12の放熱が促進可能とされている。
なお、図18および図19に示す金属板160aと金属ブロック160bとは、別部品である。コイル装置12は、金属板160aと金属ブロック160bとに代えて、金属材料からなる1つの構造物によって固定されていても良い。図20は、実施の形態1にかかるコイル装置の設置のための構成の第2の例を示す図である。第2の例にかかる金属構造物160cは、金属板160aおよび金属ブロック160bに代えて設けられている。金属構造物160cは、金属板160aと金属ブロック160bとの組み合わせと同じ形状であって、U字型をなす。この場合も、コイル装置12は、放熱を促進可能に固定される。
金属構造物160cには、放熱フィン166が設けられても良い。図21は、実施の形態1にかかるコイル装置の設置のための構成の第3の例を示す図である。第3の例にかかる金属構造物160gは、金属構造物160cの上面に放熱フィン166が追加されたものである。放熱フィン166が設けられた金属構造物160gによってコイル装置12が固定されることで、コイル装置12の放熱がさらに促進される。放熱フィンは、上記の金属板160aの上面に追加されても良い。
図22および図23は、実施の形態1にかかるコイル装置の設置のための構成の第4の例を示す図である。図22および図23には、コアモジュール11の熱を金属筐体160へ伝える必要がない場合の構成例を示している。第4の例では、コイル装置12を金属筐体160に固定するための金属ばね14が設けられている。図22では、金属ばね14が金属筐体160へ取り付けられるときの様子を示している。図23では、金属ばね14が金属筐体160へ取り付けられている状態を示している。なお、図22および図23には、金属ばね14とねじ10aとの各側面と、金属ばね14およびねじ10a以外の構成要素の各断面とを示している。
金属ばね14は、0.1mmから1mm程度の金属板であって、弾性を有する。金属ばね14は、ねじ10aによって金属筐体160に固定される。金属ばね14には、Z軸方向におけるコアモジュール11の位置を固定するための突起部14aが設けられている。コイル装置12は、金属ばね14の弾性によって、金属筐体160に押さえ付けられた状態で固定される。コイル装置12は、Z軸方向における位置ずれが突起部14aによって制限されることで、金属筐体160における位置が固定される。
コアモジュール11の熱を金属筐体160へ伝える必要がない場合の代表例は、図10に示すように、コア片1a,2a,3aに低損失用のフェライトコアが使用される場合である。低損失用のフェライトコアが使用されることによって、コイル装置12は、コア片1a,2a,3aにおける損失を低下させることができる。Y軸方向におけるコア片1a,2a,3aの大きさは、磁路9の断面積が1倍から2倍程度の範囲で大きくなるように設定される。コイル装置12は、コアモジュール11における損失の低下と、コアモジュール11における発熱量および発熱密度の低下とが可能となり、コアモジュール11の温度上昇を抑えることができる。図10に示す構成では、金属板160aまたは金属構造物160c,160gにコアモジュール11を接触させることによるコアモジュール11の冷却が不要となる。よって、図10に示す構成では、金属ばね14を用いてコイル装置12を固定することができる。金属ばね14は、薄型の板金に曲げ加工を施すことによって簡単に製作することができる。電力変換装置100は、金属ばね14が用いられることによって、製造コストの低減と、電力変換装置100の小型化および軽量化とが可能となる。
コイル装置12は、E型のコア以外のベースコア7を有しても良い。図24は、実施の形態1にかかるコイル装置が有するベースコアの第1変形例を示す図である。図24に示す第1変形例では、コイル装置12は、E型のベースコア7に代えて、U型のコアである2つのベースコア7cを有する。U型のコアは、2つの足部を有する。ベースコア7cの形状は、E型のベースコア7をX軸方向における中心にて分割することによって得られるような形状である。
図25は、実施の形態1にかかるコイル装置が有するベースコアの第2変形例を示す図である。図25に示す第2変形例では、コイル装置12は、E型のベースコア7に代えて、U型のコアである1つのベースコア7dを有する。コイル部6は、コイル部6の開口にベースコア7dの1つの足部が通された状態でコイル装置12に設置される。
コイル装置12は、2つ以上のコイル部6を有するものであっても良い。図26は、実施の形態1にかかるコイル装置に2つのコイル部が設けられている第1の例を示す図である。図26に示す第1の例では、U型のコアである1つのベースコア7dに2つのコイル部6が設けられている。2つのコイル部6の一方は、コイル部6の開口にベースコア7dの一方の足部が通された状態でコイル装置12に設置される。2つのコイル部6の他方は、コイル部6の開口にベースコア7dの他方の足部が通された状態でコイル装置12に設置される。2つのコイル部6は、XZ方向において互いに隣り合う。
図27は、実施の形態1にかかるコイル装置に2つのコイル部が設けられている第2の例を示す図である。図27に示す第2の例では、U型のコアである1つのベースコア7cに2つのコイル部6が設けられている。2つのコイル部6の一方は、コイル部6の開口にベースコア7cの一方の足部が通された状態でコイル装置12に設置される。2つのコイル部6の他方は、コイル部6の開口にベースコア7cの他方の足部が通された状態でコイル装置12に設置される。一方のコイル部6の一部と他方のコイル部6の一部とは、Y軸方向において互いに隣り合う。
電力変換装置100の回路構成は、図1に示すものに限られず、図1に示す回路とは異なる方式の回路であっても良い。電力変換装置100は、共振コイル120と平滑コイル151とトランス130とを有するものに限られず、1つの共振コイル120と1つの平滑コイル151と1つのトランス130とのうちの少なくとも1つを備えて構成されたものであれば良い。トランス130は、1つ以上のコイル部6を有して構成される。共振コイル120と平滑コイル151も、1つ以上のコイル部6を有して構成されても良い。
実施の形態1によると、コイル装置12は、互いにギャップを介して一列に並べられた複数のコア片1,2,3をコアモジュール11が有することによって、磁路9においてギャップを簡単に分散させることができる。コイル装置12は、ギャップを分散させることによって、ギャップ1つ当たりの長さを短くすることができ、ギャップにおける漏れ磁束を低減できる。コイル装置12は、漏れ磁束の低減によって、コイル部6の損失を低減できる。これにより、コイル装置12は、コイル部6の損失を低減できるという効果を奏する。
コイル装置12は、各コア片1,2,3に低損失用のフェライトコアを使用できることによって、損失をさらに低減できる。コイル装置12は、従来技術の場合に比べて、コイル装置12の生産時におけるインダクタンス値の公差を小さくすることができる。コイル装置12は、容易な組み立てが可能であることで、生産性の向上が可能となる。また、コイル装置12は、コアの研磨が不要となることでコアの調達コストを低減できる。コイル装置12の生産コストの低減によって、電力変換装置100の生産コストが低減可能となる。コイル装置12と金属筐体160との熱的な結合によって、電力変換装置100は、コイル装置12の効率良い冷却が可能となり、かつ電力変換装置100の小型化が可能となる。
実施の形態2.
図28は、本発明の実施の形態2にかかるコイル装置の分解図である。図29は、図28に示すコイル装置の組み立て後の状態を示す図である。実施の形態2にかかるコイル装置12aが有するケース5dは、ベースコア7へのコアモジュール11aの位置決めのための突起部5gを有する。実施の形態2では、上記の実施の形態1と同一の構成要素には同一の符号を付し、実施の形態1とは異なる構成について主に説明する。
図28は、本発明の実施の形態2にかかるコイル装置の分解図である。図29は、図28に示すコイル装置の組み立て後の状態を示す図である。実施の形態2にかかるコイル装置12aが有するケース5dは、ベースコア7へのコアモジュール11aの位置決めのための突起部5gを有する。実施の形態2では、上記の実施の形態1と同一の構成要素には同一の符号を付し、実施の形態1とは異なる構成について主に説明する。
ケース5dは、図11に示すケース5aに突起部5gが追加されたものである。ケース5dに設けられている突起部5gは、リブである。突起部5gは、ケース5dのうち、ZX平面における4つの隅のそれぞれにおいて下方へ延ばされて設けられている。ケース5dに突起部5gが設けられていることによって、コイル装置12aは、X軸方向およびZ軸方向におけるコアモジュール11aとベースコア7との位置決めが可能とされている。これにより、コイル装置12aは、組み立ての簡易化が可能となる。また、ケース5dに突起部5gが設けられていることによって、コイル装置12aは、X軸方向およびZ軸方向におけるコアモジュール11aとベースコア7との位置ずれを防止可能とする。突起部5gは、図4から図6に示すケース5、図12に示すケース5b、図15に示すケース5c、ならびに図17に示すケース5cのいずれかに取り付けられても良い。
図30は、実施の形態2の変形例にかかるコイル装置の分解図である。コイル装置12aが有するケース5fは、ベースコア7の周囲を被覆可能に下方へ延びている4つの外壁を有する。変形例の場合も、コイル装置12aは、コアモジュール11aとベースコア7との位置決めが可能となることで、組み立ての簡易化が可能となる。コイル装置12aは、X軸方向およびZ軸方向におけるコアモジュール11aとベースコア7との位置ずれを防止することができる。
実施の形態2によると、コイル装置12aは、実施の形態1と同様の効果が得られるとともに、ケース5dまたはケース5fが設けられることによって、組み立ての簡易化と、コアモジュール11aおよびベースコア7の位置ずれの防止が可能となる。
電力変換装置100は、コイル装置12aにケース5dまたはケース5fが設けられることによって、電力変換装置100に振動または衝撃が加えられた場合おけるコアモジュール11aとベースコア7との位置ずれを防止可能とする。コイル装置12aは、コアモジュール11aとベースコア7との位置ずれの防止によって、電気特性を維持可能とする。電力変換装置100は、コイル装置12aの電気特性が維持可能であることによって、品質の向上が可能となる。
実施の形態3.
図31は、本発明の実施の形態3にかかるコイル装置の分解図である。図32は、図31に示すコイル装置の組み立て後の状態を示す側面図である。図33は、図31に示すコイル装置の組み立て後の状態を示す上面図である。実施の形態3にかかるコイル装置12bが有するケース5eは、ケース5eの外壁を下方へ延伸させてなる突起部5iを有する。突起部5iの先端には、コイル装置12bが設置される構造物である金属筐体160へのケース5eの固定のための固定部5hが設けられている。実施の形態3では、上記の実施の形態1および2と同一の構成要素には同一の符号を付し、実施の形態1および2とは異なる構成について主に説明する。
図31は、本発明の実施の形態3にかかるコイル装置の分解図である。図32は、図31に示すコイル装置の組み立て後の状態を示す側面図である。図33は、図31に示すコイル装置の組み立て後の状態を示す上面図である。実施の形態3にかかるコイル装置12bが有するケース5eは、ケース5eの外壁を下方へ延伸させてなる突起部5iを有する。突起部5iの先端には、コイル装置12bが設置される構造物である金属筐体160へのケース5eの固定のための固定部5hが設けられている。実施の形態3では、上記の実施の形態1および2と同一の構成要素には同一の符号を付し、実施の形態1および2とは異なる構成について主に説明する。
ケース5eは、図14に示すケース5cに突起部5iが追加されたものである。突起部5iは、ケース5eのうちX軸方向における端面である外壁を下方へ延伸させて形成されている。固定部5hは、金属筐体160に接触する。固定部5hは、ケース5eのうち、X軸方向およびZ軸方向における4つの隅のそれぞれに設けられている。また、固定部5hの各々には、直径3mmから6mm程度の孔が形成されている。孔を通されたねじ10aが金属筐体160へ締め込まれることによって、コイル装置12bは、金属筐体160に固定される。なお、図31には蓋8を有するコイル装置12bを示しているが、コイル装置12bは、蓋8を有していなくても良い。
実施の形態3によると、コイル装置12bは、ケース5eを有することによって、実施の形態2の場合と同様に、組み立ての簡易化と、コアモジュール11bおよびベースコア7の位置ずれの防止とが可能となる。コイル装置12bは、ケース5eによって金属筐体160への固定が可能とされているため、金属筐体160への固定のための構成を別途設ける必要がない。電力変換装置100は、金属筐体160へのコイル装置12bのための構成が別途必要である場合に比べて、簡易な構成にできる。なお、蓋8を有するコイル装置12bでは、ケース5eに代えて蓋8に、突起部5iと固定部5hとが設けられても良い。突起部5iと固定部5hとは、図4から図6に示すケース5、図12に示すケース5b、図15に示すケース5c、ならびに図17に示すケース5cのいずれかに取り付けられても良い。
実施の形態4.
図34は、本発明の実施の形態4にかかるコイル装置の断面図である。実施の形態4にかかるコイル装置12cでは、図4から図6に示すE型のベースコア7が、互いにギャップを介して並べられた複数のコア部品に分割されている。実施の形態4では、上記の実施の形態1から3と同一の構成要素には同一の符号を付し、実施の形態1から3とは異なる構成について主に説明する。
図34は、本発明の実施の形態4にかかるコイル装置の断面図である。実施の形態4にかかるコイル装置12cでは、図4から図6に示すE型のベースコア7が、互いにギャップを介して並べられた複数のコア部品に分割されている。実施の形態4では、上記の実施の形態1から3と同一の構成要素には同一の符号を付し、実施の形態1から3とは異なる構成について主に説明する。
実施の形態4において、第1のコア部品は、2つのベースコア7aと1つのベースコア7bとである複数のコア部品からなる。ベースコア7bは、コイル装置12cのうちX軸方向における中心に配置されている。ベースコア7aは、X軸方向においてベースコア7bと隣り合う。ベースコア7aとベースコア7bとの間にはギャップが設けられている。ベースコア7a,7bと金属筐体160との熱的な結合は、ベースコア7の場合と同様に確保されている。
ベースコア7aとベースコア7bとの間にギャップが設けられたことによって、コイル装置12cは、図4から図6に示す場合と比べて、磁路9にさらに多くのギャップを設けることができる。コイル装置12cは、図4から図6に示す構成において磁路9におけるギャップの数が不足する場合に、ベースコア7a,7bにギャップが設けられることによって十分な数のギャップを確保することが可能となる。
図35は、金属筐体のうち実施の形態4にかかるコイル装置が配置される面の一例を示す平面図である。金属筐体160のうちコイル装置12cが配置される面には、1mmから2mm程度の深さを有する溝15が設けられている。金属筐体160には、3つの溝15が設けられている。3つの溝15のうちの1つは、X軸方向およびZ軸方向におけるベースコア7bの形状と同じ形状をなしている。かかる溝15には、ベースコア7bが嵌め込まれる。3つの溝15のうちの他の2つは、X軸方向およびZ軸方向におけるベースコア7aの形状と同じ形状をなしている。かかる2つの溝15のそれぞれには、ベースコア7aが嵌め込まれる。これにより、ベースコア7aとベースコア7bとの間が定められた長さのギャップをなすように、ベースコア7aとベースコア7bとを位置決めすることができる。また、ベースコア7aとベースコア7bとのギャップの長さを一定に保つことができる。
図36は、金属筐体のうち実施の形態4にかかるコイル装置が配置される面の他の例を示す平面図である。金属筐体160のうちコイル装置12cが配置される面には、1mmから2mm程度の高さを有するリブ16が設けられている。リブ16によって囲われた3つの領域のうちの1つは、X軸方向およびZ軸方向におけるベースコア7bの形状と同じ形状をなしている。かかる領域には、ベースコア7bが嵌め込まれる。3つの領域のうちの他の2つは、X軸方向およびZ軸方向におけるベースコア7aの形状と同じ形状をなしている。かかる2つの領域のそれぞれには、ベースコア7aが嵌め込まれる。これにより、ベースコア7aとベースコア7bとの間が定められた長さのギャップをなすように、ベースコア7aとベースコア7bとを位置決めすることができる。また、ベースコア7aとベースコア7bとのギャップの長さを一定に保つことができる。
実施の形態4によると、コイル装置12cは、ベースコア7a,7bが設けられたことによって、磁路9に設けられるギャップの数を増やすことができる。これにより、コイル装置12cは、コイル部6の損失をさらに低減することができる。
実施の形態5.
図37は、本発明の実施の形態5にかかるコイル装置の断面図である。実施の形態5にかかるコイル装置12dでは、図34に示すベースコア7bが2つのベースコア7aに分割されている。すなわち、コイル装置12dでは、図4から図6に示すE型のベースコア7が、互いにギャップを介して並べられた4つのベースコア7aに分割されている。実施の形態5では、上記の実施の形態1から4と同一の構成要素には同一の符号を付し、実施の形態1から4とは異なる構成について主に説明する。
図37は、本発明の実施の形態5にかかるコイル装置の断面図である。実施の形態5にかかるコイル装置12dでは、図34に示すベースコア7bが2つのベースコア7aに分割されている。すなわち、コイル装置12dでは、図4から図6に示すE型のベースコア7が、互いにギャップを介して並べられた4つのベースコア7aに分割されている。実施の形態5では、上記の実施の形態1から4と同一の構成要素には同一の符号を付し、実施の形態1から4とは異なる構成について主に説明する。
実施の形態5において、第1のコア部品は、複数のコア部品である4つのベースコア7aからなる。4つのベースコア7aの各々は、1種類のコア部品からなる。4つのベースコア7aの各々は、同一の形状を有する。ここで、ベースコア7a同士において、製造時の寸法公差による±3%程度の寸法差は不問とする。複数のベースコア7aの各々が同一の形状を有するとは、±3%程度の寸法差がある場合を含むものとする。ベースコア7a同士の間にはギャップが設けられている。ベースコア7a同士の間にギャップが設けられたことによって、コイル装置12dは、図4から図6に示す場合と比べて、磁路9にさらに多くのギャップを設けることができる。
電力変換装置100に搭載されるコア部品のサイズは、電力に比例して大きくなる。また、製造可能なコア部品のサイズの上限は、プレス機または焼成機といったコア製造設備のサイズにより制約されることとなる。4つのベースコア7aに代えて一体のコア部品である第1のコア部品をコイル装置12dに設けることとした場合、第1のコア部品の最大サイズは、コア製造設備のサイズによって決まる。実施の形態5では、第1のコア部品が4つのベースコア7aに分割されていることで、4つのベースコア7aの各々を当該最大サイズにまで大型化できる。このため、コイル装置12dに設けられる第1のコア部品のサイズは、第1のコア部品を一体のコア部品とする場合に対して最大で4倍のサイズとすることが可能となる。よって、第1のコア部品の製造において既存のコア製造設備よりも大型なコア製造設備が使用されなくても、一体のコア部品からなる第1のコア部品を備える場合に比べて最大で4倍のサイズの第1のコア部品を備えるコイル装置12dを製造することができる。
金属筐体160には、実施の形態4と同様に、ベースコア7aの位置決めのための溝15またはリブ16が設けられても良い。これにより、ベースコア7a同士の間が定められた長さのギャップをなすように、各ベースコア7aを位置決めすることができる。また、各ベースコア7aのギャップの長さを一定に保つことができる。
実施の形態5によると、コイル装置12dは、複数のベースコア7aが設けられたことによって、磁路9に設けられるギャップの数を増やすことができる。これにより、コイル装置12dは、コイル部6の損失をさらに低減することができる。
実施の形態6.
図38は、本発明の実施の形態6にかかるコイル装置の断面図である。実施の形態6にかかるコイル装置12eでは、複数のコア片1,2,3のうち互いに隣り合うコア片同士が仕切り部4bを挟んで貼り合わせられている。実施の形態6では、上記の実施の形態1から5と同一の構成要素には同一の符号を付し、実施の形態1から5とは異なる構成について主に説明する。
図38は、本発明の実施の形態6にかかるコイル装置の断面図である。実施の形態6にかかるコイル装置12eでは、複数のコア片1,2,3のうち互いに隣り合うコア片同士が仕切り部4bを挟んで貼り合わせられている。実施の形態6では、上記の実施の形態1から5と同一の構成要素には同一の符号を付し、実施の形態1から5とは異なる構成について主に説明する。
図39は、図38に示すコイル装置が有する仕切り部の拡大図である。仕切り部4bは、板材である仕切り板4を有する。仕切り板4の両面には、接着強度が高い両面テープ4aが貼り付けられている。各コア片1,2,3が両面テープ4aに貼り付けられることによって、仕切り部4bは、コア片1,2,3のうち互いに隣り合うコア片同士を互いに貼り合わせる。コア片1,2,3のうち互いに隣り合うコア片同士の間には、仕切り部4bが設けられることによりギャップが形成されている。
コア片1,2,3同士が互いに貼り合わせられることによって、コアモジュール11cにおいてコア片1,2,3が固定されている。コア片1,2,3の固定が仕切り部4bによって実現されていることから、コイル装置12eには、コア片1,2,3の固定のためにケース5を設ける必要がない。この場合、ケース5の製作費用とケース5の加工のための金型が不要となるため、コアモジュール11cは、製造コストを低減できる。さらに、コイル装置12eは、ベースコア7とコアモジュール11cとの間のギャップを無くすことが可能となる。コイル装置12eは、ベースコア7とコアモジュール11cとの間からの漏れ磁束を無くすことができるため、コイル部6の損失をより低減させることができる。
図40は、実施の形態6の変形例にかかるコイル装置の断面図である。コイル装置12fでは、コアモジュール11dを構成するコア片1,2,3のうち互いに隣り合うコア片同士は、接着剤4cを挟んで貼り合わせられている。接着剤4cには、ガラスビーズが混ぜ込まれている。接着剤4cにガラスビーズが入れられていることによって、コア片1,2,3のうち互いに隣り合うコア片同士は、一定の間隔を確保したまま接着される。これにより、コア片1,2,3のうち互いに隣り合うコア片同士の間には、接着剤4cが設けられることによりギャップが形成されている。本変形例においても、コアモジュール11dは、ケース5が不要となることにより製造コストを低減できる。また、コイル装置12fは、ベースコア7とコアモジュール11dとの間からの漏れ磁束を無くすことができるため、コイル部6の損失をより低減させることができる。
実施の形態6によると、コイル装置12e,12fは、コア片1,2,3同士がギャップをなして互いに貼り合わせられることによって、コア片1,2,3の固定のためのケース5が不要となり、製造コストを低減できる。また、コイル装置12e,12fは、ベースコア7とコアモジュール11c,11dとの間からの漏れ磁束を無くすことができるため、コイル部6の損失をより低減させることができる。
実施の形態7.
図41は、本発明の実施の形態7にかかるコイル装置の断面図である。実施の形態7にかかるコイル装置12gにおいて、複数のコア片1,2,3の各々は、金属板160dに固定されている。実施の形態7では、上記の実施の形態1から6と同一の構成要素には同一の符号を付し、実施の形態1から6とは異なる構成について主に説明する。金属筐体160には、金属板160dを支持する金属ブロック160bが立てられている。
図41は、本発明の実施の形態7にかかるコイル装置の断面図である。実施の形態7にかかるコイル装置12gにおいて、複数のコア片1,2,3の各々は、金属板160dに固定されている。実施の形態7では、上記の実施の形態1から6と同一の構成要素には同一の符号を付し、実施の形態1から6とは異なる構成について主に説明する。金属筐体160には、金属板160dを支持する金属ブロック160bが立てられている。
図42は、図41に示すコイル装置が設けられる金属板を下方から見た様子を示す拡大図である。図43は、図41に示すコイル装置が設けられる金属板を側方から見た様子を示す拡大図である。金属板160dは、X軸方向において複数のコア片1,2,3の各々を位置決めするためのリブ165を具備している。
リブ165は、金属板160dのうちコアモジュール11eの側の面に形成されている。リブ165は、X軸方向において1mm以下の厚みをなす。各コア片1,2,3は、接着剤4dが使用されて、リブ165同士の間に貼り付けられる。リブ165によって、各コア片1,2,3がX軸方向において位置決めされることによって、コア片1,2,3同士の間にギャップが形成される。
各コア片1,2,3が金属板160dに貼り付けられることによって、コアモジュール11dにおいてコア片1,2,3が固定されている。コア片1,2,3の固定が金属板160dによって実現されていることから、コイル装置12gには、コア片1,2,3の固定のためにケース5を設ける必要がない。この場合、ケース5の製作費用とケース5の加工のための金型が不要となるため、コアモジュール11eは、製造コストを低減できる。さらに、コイル装置12gは、ベースコア7とコアモジュール11eとの間のギャップを無くすことが可能となる。コイル装置12gは、ベースコア7とコアモジュール11eとの間からの漏れ磁束を無くすことができるため、コイル部6の損失をより低減させることができる。
一般的に、磁路9を遮断するように金属物が配置された場合、コイル装置12gの電気特性に影響が及ぶことになる。実施の形態7では、リブ165は、環状の磁路9のうちの外縁部分に位置している。磁束は、環状の磁路9において、磁路9の断面における中心よりも内側を通ることから、コイル装置12gは、金属物であるリブ165が磁路9に設けられることによる電気特性への影響を無くすことができる。
コアモジュール11eにおける磁路9の方向がX軸方向であるのに対し、接着剤4dの厚み方向はY軸方向とされている。接着剤4dの厚みにばらつきがある場合に、コア片1,2,3には、Y軸方向における位置のばらつきが生じる一方、X軸方向における位置のばらつきは生じない。このため、接着剤4dの厚みにばらつきがあっても、コアギャップの長さには影響しない。よって、コイル装置12gは、接着剤4dの厚みのばらつきによるインダクタンス値への影響を無くすことができる。
図44は、実施の形態7の第1変形例にかかるコイル装置の組み立ての際における状態を示す断面図である。図45は、図44に示すコイル装置の組み立て後の状態を示す断面図である。コイル装置12hでは、ベースコア7の足部の上方にコア片1,2が配置されていない。金属板160eには、コア片3が貼り付けられる。コア片3が貼り付けられた状態の金属板160eは、ねじ10aが締め込まれることによって金属ブロック160bに固定される。金属板160eが金属ブロック160bに固定されることによって、ベースコア7の足部は、リブ165に接触する。リブ165によって、ベースコア7の足部とコア片3との間にギャップが形成される。
実施の形態7の第1変形例でも、コイル装置12hは、リブ165が磁路9に設けられることによる電気特性への影響を無くすことができる。コイル装置12hは、接着剤4dの厚みのばらつきによるインダクタンス値への影響を無くすことができる。さらに、コイル装置12hは、ベースコア7の足部の上方にコア片1,2が無いため、足部の上方におけるギャップの長さのばらつきを無くすことができる。これにより、コイル装置12hは、インダクタンス値のばらつきをさらに低減できる。
図46は、実施の形態7の第2変形例にかかるコイル装置の断面図である。金属板160fは、上記の金属板160dの上面に放熱フィン166が追加されたものである。放熱フィン166を有する金属板160fにコア片3が固定されることで、コア片3の放熱が促進可能となる。
実施の形態7によると、コイル装置12g,12h,12iは、リブ165が設けられた金属板160d,160e,160fにコア片1,2,3が固定されることによって、コア片1,2,3の固定のためのケース5が不要となり、製造コストを低減できる。また、コイル装置12g,12h,12iは、ベースコア7とコアモジュール11e,11fとの間からの漏れ磁束を無くすことができるため、コイル部6の損失をより低減させることができる。コイル装置12g,12h,12iは、所望とする長さのコアギャップを設けてコア片1,2,3を固定することができ、インダクタンス値のばらつきを低減できる。
実施の形態8.
図47は、実施の形態8にかかるコイル装置の分解図である。図48は、図47に示すコイル装置の組み立て後の状態を示す断面図である。実施の形態8にかかるコイル装置20には、ベースコア7が設けられていない。コイル装置20において、磁路9は、複数のコア片1c,2c,3cのみによって構成されている。実施の形態8では、上記の実施の形態1から7と同一の構成要素には同一の符号を付し、実施の形態1から7とは異なる構成について主に説明する。
図47は、実施の形態8にかかるコイル装置の分解図である。図48は、図47に示すコイル装置の組み立て後の状態を示す断面図である。実施の形態8にかかるコイル装置20には、ベースコア7が設けられていない。コイル装置20において、磁路9は、複数のコア片1c,2c,3cのみによって構成されている。実施の形態8では、上記の実施の形態1から7と同一の構成要素には同一の符号を付し、実施の形態1から7とは異なる構成について主に説明する。
コイル装置20は、コアモジュール21とコイル部6とを有する。コアモジュール21は、複数のコア片1c,2c,3cであるコア片群と、コア片群を保持するケース22とを有する。コア片群には、2つのコア片1cと、1つのコア片2cと、任意の数のコア片3cとが含まれる。2つのコア片1cの各々は、外足部26を構成する。コア片2cは、中足部25を構成する。コアモジュール21は、いずれも閉磁路である2つの磁路9を構成する。
コア片群のうち、図4に示すベースコア7の代わりに設けられている複数のコア片1c,2c,3cは、第1のコア部品を構成する。コア片1c,2c,3cは、互いにギャップを介してX軸方向へ並べられている。コア片群に含まれるコア片3cのうち第1のコア部品を構成するコア片3c以外のコア片3cは、第2のコア部品を構成する。第2のコア部品を構成するコア片3cとコア片1c,2cとは、互いにギャップを介してX軸方向へ並べられている。第1のコア部品を構成するコア片3cは、ケース22のうちの下部分に配置される。第2のコア部品を構成するコア片3cは、ケース22のうちの上部分に配置される。
各コア片1cのY軸方向における高さは、各コア片3cのY軸方向における高さよりも高い。コア片2cのY軸方向における高さは、各コア片3cのY軸方向における高さよりも高い。各コア片1cのY軸方向における高さとコア片2cのY軸方向における高さとは、同じである。ここで、コア片1cとコア片2cとにおいて、製造時の寸法公差による±3%程度の寸法差は不問とする。各コア片1cの高さとコア片2cの高さとが同じであるとは、±3%程度の寸法差がある場合を含むものとする。
各コア片1c,2c,3cは、実施の形態1から7の各ベースコア7,7a,7b,7c,7dと比べて小型であることから、各ベースコア7,7a,7b,7c,7dに比べて焼成が容易である。各コア片1c,2c,3cは、各ベースコア7,7a,7b,7c,7dに比べて損失を少なくすることができる。コアモジュール21は、各コア片1c,2c,3cが使用されることによって、寸法精度を高くすることができ、かつ焼成時間を短くすることができる。
コイル装置20は、各コア片1c,2c,3cの寸法公差を縮小できることによって、インダクタンス値のばらつきを小さくすることができる。また、コイル装置20は、寸法公差の縮小のために従来実施されていたコアの研磨を不要とすることができることから、コアモジュール21の加工時間の短縮と製造コストの低減とが可能となる。
各コア片1c,2c,3cには、汎用のフェライトコア材と低損失用のフェライトコア材とのどちらが使用されても良い。汎用のフェライトコア材と低損失用のフェライトコア材とのどちらも使用可能であることで、コア片1c,2c,3cの材料を調達可能な調達先が多くなる。したがって、コアモジュール21を製造するための部品調達の安定化と調達コストの低減とが可能となる。さらに、コアモジュール21は、損失の低減と品質向上とが可能となる。
ケース22からZ軸方向へ離れた位置からケース22を見た場合に、ケース22の外縁は長方形形状である。ケース22は、中空部24を囲う立体形状である。中空部24の周囲に、コア片1c,2c,3cが配置されるスペースが設けられている。ケース22は、仕切り板23を具備する。仕切り板23は、コア片1c,2c,3cのうちX軸方向において互いに隣り合うコア片同士を仕切る。ケース22は、仕切り板23を含めて一体に成形された部品である。ケース22が仕切り板23を含めて一体に成形されることで、コアモジュール21は、製造コストを低減できる。仕切り板23は、ケース22とは別に形成された部品であっても良い。
なお、ケース22は、仕切り板23に代えて、図12および図13に示すリブ13を具備しても良い。リブ13が設けられることによって、X軸方向において複数のコア片1c,2c,3cの各々が位置決めされる。ケース22がリブ13を含めて一体に成形されることで、コアモジュール21は、製造コストを低減できる。
さらに、ケース22には、図14に示す蓋8が取り付けられても良い。蓋8は、ケース22のうちの上部分に配置されているコア片1c,2c,3cが収容されるスペースを覆う。蓋8が設けられることによって、コイル装置20は、コア片1c,2c,3cのいずれかが破損した場合に、破損によって生じた破片がケース22の外へ飛散することを防止できる。
各コア片1cは、ケース22のうち長方形の短辺に相当する部分に通される。コア片2cは、ケース22のうちX軸方向における中心においてケース22と中空部24とを貫いて通される。コイル部6は、中空部24を貫いて配置される。コイル部6は、コイル部6の開口にコア片2cが通された状態でコイル装置20に設置される。コアモジュール21が組み立てられる際に、コア片2cは、コイル部6が中空部24に配置されてから、ケース22内に組み付けられる。コア片1cとコア片3cとについては、ケース22内に組み付けられる順序は任意である。
コアモジュール21において、コア片1c,2c,3cによって磁路9が構成されることで、磁路9の全体にコア片同士のコアギャップが設けられる。このため、コア片同士のコアギャップが磁路9の一部のみに設けられる場合と比べて、磁路9の全体におけるコアギャップの数が多くなる。コイル装置20は、コアギャップの数を多くできることによって、コアギャップ1つ当たりの長さを短くすることができる。コイル装置20は、コアギャップが短くなることで、コアギャップから漏れる磁束を小さくすることができ、コイル部6の渦電流損失を低減できる。
第1のコア部品を構成するコア片1c,2c,3cは、ケース22の下端において各コア片1c,2c,3cの下面がケース22の外へ露出された状態で保持される。コイル装置20は、各コア片1c,2c,3cの下面を金属筐体160に接触させた状態で、金属筐体160に設置される。このように、コイル装置20では、コア片群に含まれる一部のコア片は、ケース22の外部の構造物である金属筐体160と熱的に結合可能に配置される。各コア片1c,2c,3cの下面と金属筐体160との間には、熱伝導性を有するグリスまたは放熱シートが挟み込まれていても良い。
金属筐体160は、コイル装置20の固定のための構成であって冷却器を兼ねている。コイル装置20は、コア片群に含まれる一部のコア片が金属筐体160に熱的に結合された状態で組み立てられている。これにより、コイル装置20は、金属筐体160の利用による高い放熱性を得ることができる。
コイル装置20は、コイル装置20が組み立てられる際に金属筐体160へ固定される。コイル装置20は、コイル装置20の組み立てが完了してから、金属筐体160へ固定されても良い。このようにコイル装置20の組み立て手順の自由度が向上することで、より効率的な組み立て手順を選択してコイル装置20を製造することが可能となる。これにより、コイル装置20の製造時間を短縮することが可能となる。
コアモジュール21を構成するコア片群には、図9に示すシート状のコア片3bが含まれても良い。コアモジュール21は、コア片群に複数のコア片3bが含まれることによって、磁路9におけるコアギャップをより多くのギャップに分散させることができる。これにより、コアモジュール21は、漏れ磁束の低減によりコイル部6の損失を低減できる。
図49は、実施の形態8の第1変形例にかかるコイル装置の分解図である。図49では、コイル部6の図示を省略する。実施の形態8の第1変形例にかかるコイル装置20aにおいて、コアモジュール21aを構成するケース22aには切り欠き27が形成されている。切り欠き27は、ケース22aのうちX軸方向における両側面の各々に形成されている。切り欠き27は、ケース22aの側面をY軸方向に切断することにより側面の一部を切り欠いたように形成されている。
コイル装置20aは、ケース22aに切り欠き27が形成されることによって、放熱性を向上できる。また、切り欠き27が設けられることによって、ケース22aの製造に使用される材料の量を減らすことができる。なお、切り欠き27の位置、形状および数は、ケース22a内にあるコア片1c,2c,3cが切り欠き27を通り抜けて脱落することが無いように設定されていれば良く、任意であるものとする。さらに、切り欠き27が設けられることによって、ケース22a内にてコア片1c,2c,3cが組み付けられる様子をケース22aの外からの目視によって確認することができる。これにより、コア片1c,2c,3cの組み付け不良の見落としを防ぐことができる。
図50は、実施の形態8の第2変形例にかかるコイル装置の分解図である。図51は、図50に示すコイル装置の組み立て後の状態を示す断面図である。図50では、コイル部6の図示を省略する。実施の形態8の第2変形例にかかるコイル装置20bの磁路9は、互いに隣り合うコア片同士が接触している箇所を含む。
コイル装置20bにおいて、コアモジュール21bを構成するケース22bには、コア片1cとコア片3cとを仕切る仕切り板23が設けられていない。また、ケース22bには、コア片2cとコア片3cとを仕切る仕切り板23が設けられていない。コアモジュール21bを構成する各コア片1cは、コア片1cと隣り合う2つのコア片3cの各々と接触している。コアモジュール21bを構成するコア片2cは、コア片2cと隣り合う4つのコア片3cの各々と接触している。
コイル部6の端部は磁束の影響を受け易いことから、コイル部6の損失は端部において発生し易い。図51に示すように、磁路9のうち、コア片1cとコア片3cとが接触する箇所は、コイル部6のうち外周側の端部6aから近い位置である。端部6aに近い位置にコアギャップが設けられないことによって、端部6aを貫通する磁束の抑制が可能となる。また、磁路9のうち、コア片2cとコア片3cとが接触する箇所は、コイル部6のうち内周側の端部6bから近い位置である。端部6bに近い位置にコアギャップが設けられないことによって、端部6bを貫通する磁束の抑制が可能となる。これにより、コイル装置20bは、端部6aと端部6bとにおける渦電流の発生を抑制可能とし、コイル部6の損失を低減できる。
図50および図51に示す例では、各磁路9における4つの箇所において、互いに隣り合うコア片同士が接触している。各磁路9では、任意の箇所において、互いに隣り合うコア片同士が接触していれば良いものとする。また、互いに隣り合うコア片同士が接触している箇所の数は4つに限られず、任意とする。各磁路9には、互いに隣り合うコア片同士が接触している箇所が少なくとも1つ含まれていれば良い。これにより、コイル装置20bは、コイル部6における渦電流の発生を抑制可能とし、コイル部6の損失を低減できる。
図52は、実施の形態8の第3変形例にかかるコイル装置の分解図である。図53は、図52に示すコイル装置の組み立て後の状態を示す断面図である。図52では、コイル部6の図示を省略する。実施の形態8の第3変形例にかかるコイル装置20cにおいて、コアモジュール21cには、図47に示すコア片2cが用いられていない。コアモジュール21cは、4つのコア片1cと任意の数のコア片3cにより構成されている。中足部25は、X軸方向に並べられた2つのコア片1cからなる。
コアモジュール21cは、コア片2cが用いられないことで、上記の各コアモジュール21,21a,21bの場合と比べて部品の種類の数が減少している。コアモジュール21cを構成する部品の種類の数が減少することによって、コアモジュール21cの生産性を向上でき、かつコアモジュール21cの製造コストの低減が可能となる。
図54は、実施の形態8の第4変形例にかかるコイル装置の分解図である。図55は、図54に示すコイル装置の組み立て後の状態を示す断面図である。図54では、コイル部6の図示を省略する。実施の形態8の第4変形例にかかるコイル装置20dにおいて、コアモジュール21dには、図47に示すコア片1c,2c,3cに代えて、複数のコア片3dが設けられる。コアモジュール21dは、1種類のコア片3dから構成される。
各コア片3dのXY平面は、長方形である。長方形の長辺は、長方形の短辺よりも長く、かつ短辺の2倍程度までの長さである。コアモジュール21dを構成する複数のコア片3dのうち、中足部25を構成するコア片3dと外足部26を構成するコア片3dとは、長辺をY軸方向に合わせて配置される。コアモジュール21dを構成する複数のコア片3dのうち、中足部25を構成するコア片3dおよび外足部26を構成するコア片3d以外のコア片3dは、長辺をX軸方向に合わせて配置される。
ケース22dは、上記のように長辺の方向が決められた各コア片3dを配置可能に構成される。中足部25と外足部26とに、長辺がY軸方向に合わせられたコア片3dが配置されることによって、ケース22dのうちの上部分に配置されるコア片3dとケース22dのうちの下部分に配置されるコア片3dとの間に、コイル部6が配置されるスペースが確保される。
コアモジュール21dは、上記の各コアモジュール21,21a,21b,21cの場合と比べて部品の種類の数が減少している。コアモジュール21dを構成する部品の種類の数が減少することによって、コアモジュール21dの生産性を向上でき、かつコアモジュール21dの製造コストの低減が可能となる。
図56は、実施の形態8の第5変形例にかかるコイル装置の分解図である。図57は、図56に示すコイル装置の組み立て後の状態を示す断面図である。図56では、コイル部6の図示を省略する。実施の形態8の第45変形例にかかるコイル装置20eにおいて、コアモジュール21eは、1種類のコア片3dから構成される。コアモジュール21eを構成するコア片3dのうち、ケース22eのうちの上部分に配置されるコア片3dは、いずれも長辺をY軸方向に合わせて配置される。
ケース22eのうちの下部分に配置されるコア片3dは、上記の第4変形例においてケース22dのうちの下部分に配置されるコア片3dと同様に配置される。すなわち、ケース22eのうちの下部分に配置されるコア片3dのうち、中足部25を構成するコア片3dと外足部26を構成するコア片3dとは、長辺をY軸方向に合わせて配置される。ケース22eのうちの下部分に配置されるコア片3dのうち、中足部25を構成するコア片3dおよび外足部26を構成するコア片3d以外のコア片3dは、長辺をX軸方向に合わせて配置される。
ケース22eは、上記のように長辺の方向が決められた各コア片3dを配置可能に構成される。ケース22eのうちの下部分に配置されるコア片3dのうち、中足部25を構成するコア片3dと外足部26を構成するコア片3dとが、長辺をY軸方向に合わせて配置されることによって、ケース22eのうちの上部分に配置されるコア片3dとケース22eのうちの下部分に配置されるコア片3dとの間に、コイル部6が配置されるスペースが確保される。また、コアモジュール21eは、実施の形態8の第4変形例のコアモジュール21dの場合と同様に、コアモジュール21eを構成する部品の種類の数を減少可能である。これにより、コアモジュール21eの生産性を向上でき、かつコアモジュール21eの製造コストの低減が可能となる。
いずれも長辺がY軸方向に合わせられたコア片3dがケース22eのうちの上部分に配置されることによって、コアモジュール21eのうちの上部分における磁路9の断面積は、長辺がX軸方向に合わせられたコア片3dが配置される場合と比較して1倍から2倍程度大きくなる。コイル装置20eは、コアモジュール21eのうちの上部分における磁束密度が低減されることによって、コアモジュール21eにおける損失を低減できる。また、コイル装置20eは、コアモジュール21eにおける発熱量と発熱密度との低下が可能となり、コアモジュール21eの温度上昇を抑えることができる。このため、コイル装置20eは、図18および図19に示す金属板160a、図20に示す金属構造物160c、または図21に示す金属構造物160gといった構造物にコアモジュール21eを接触させることによるコアモジュール21eの冷却が不要となる。
さらに、構造物にコアモジュール21eを接触させることによるコアモジュール21eの冷却が不要となることによって、図22に示す金属ばね14などを用いたコイル装置20eの固定が可能となる。電力変換装置100は、金属ばね14が用いられることによって、製造コストの低減と、電力変換装置100の小型化および軽量化とが可能となる。
なお、実施の形態8の第1変形例、および実施の形態8の第3から第5変形例にかかる各コイル装置20a,20c,20d,20eにおける磁路9には、実施の形態8の第2変形例の場合と同様に、互いに隣り合うコア片同士が接触している箇所が少なくとも1つ含まれていても良い。これにより、コイル装置20a,20c,20d,20eは、コイル部6における渦電流の発生を抑制可能とし、コイル部6の損失を低減できる。
実施の形態1から5、および実施の形態7にかかる各コイル装置12,12a,12b,12c,12d,12g,12h,12iにおける磁路9には、実施の形態8の第2変形例の場合と同様に、互いに隣り合うコア片同士が接触している箇所が少なくとも1つ含まれていても良い。これにより、コイル装置12,12a,12b,12c,12d,12e,12f,12g,12h,12iは、コイル部6における渦電流の発生を抑制可能とし、コイル部6の損失を低減できる。
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1,1a,1c,2,2a,2c,3,3a,3b,3c,3d コア片、4,23 仕切り板、4a 両面テープ、4b 仕切り部、4c,4d 接着剤、5,5a,5b,5c,5d,5e,5f,22,22a,22b,22d,22e ケース、5g,5i,14a 突起部、5h 固定部、6 コイル部、6a,6b 端部、7,7a,7b,7c,7d ベースコア、7e,26 外足部、7f,25 中足部、8 蓋、9 磁路、10,10a ねじ、11,11a,11b,11c,11d,11e,11f,21,21a,21b,21c,21d,21e コアモジュール、12,12a,12b,12c,12d,12e,12f,12g,12h,12i,20,20a,20b,20c,20d,20e コイル装置、13,16,165 リブ、14 金属ばね、15 溝、17,18 開口、24 中空部、27 切り欠き、100 電力変換装置、101,102 入力端子、103 入力コンデンサ、110 フルブリッジ回路、111,112,113,114 スイッチング素子、120 共振コイル、130 トランス、131 一次側コイル、132,133 二次側コイル、140 二次側整流回路、141,142 整流素子、150 平滑回路、151 平滑コイル、152 出力コンデンサ、160 金属筐体、160a,160d,160e,160f 金属板、160b 金属ブロック、160c,160g 金属構造物、161,162,163 GND、166 放熱フィン、170,170a プリント基板、191,192 出力端子。
Claims (27)
- コイルと、
前記コイルが巻回されている足部を有する第1のコア部品と、
互いにギャップを介して一列に並べられた複数のコア片を有し、前記足部に接続されることによって前記第1のコア部品とともに磁路を構成する第2のコア部品と、
を備えることを特徴とするコイル装置。 - 前記複数のコア片を保持するケースを備えることを特徴とする請求項1に記載のコイル装置。
- 前記複数のコア片のうち互いに隣り合うコア片同士を仕切る仕切り板を備えることを特徴とする請求項1または2に記載のコイル装置。
- 前記複数のコア片のうち前記足部に接続されるコア片では、前記コア片のうち前記足部に接続される面の面積が、前記足部のうち前記コア片に接続される面の面積以上であることを特徴とする請求項1から3のいずれか1つに記載のコイル装置。
- 前記複数のコア片の各々は、1種類のコア片からなることを特徴とする請求項1から4のいずれか1つに記載のコイル装置。
- 前記複数のコア片に、シート状のコア片が含まれていることを特徴とする請求項1から3のいずれか1つに記載のコイル装置。
- 高さ方向における前記複数のコア片の厚みは、前記第1のコア部品のうちの肉薄部の厚みよりも厚いことを特徴とする請求項1から4のいずれか1つに記載のコイル装置。
- 前記ケースは、前記複数のコア片のうち互いに隣り合うコア片同士を仕切る仕切り板を具備していることを特徴とする請求項2に記載のコイル装置。
- 前記ケースは、前記複数のコア片が並べられている方向において前記複数のコア片の各々を位置決めするためのリブを具備していることを特徴とする請求項2に記載のコイル装置。
- 前記ケースには、前記複数のコア片が収容されるスペースを覆う蓋が取り付けられていることを特徴とする請求項2に記載のコイル装置。
- 前記ケースと前記蓋との少なくとも一方に開口が形成されていることを特徴とする請求項10に記載のコイル装置。
- 前記ケースは、前記第1のコア部品に対する前記第2のコア部品の位置決めのための突起部を有することを特徴とする請求項2に記載のコイル装置。
- 前記ケースは、前記第1のコア部品に対する前記第2のコア部品の位置決めのための突起部を有し、
前記突起部には、前記コイル装置が設置される構造物への前記ケースの固定のための固定部が設けられていることを特徴とする請求項2に記載のコイル装置。 - 前記第1のコア部品は、互いにギャップを介して並べられた複数のコア部品からなることを特徴とする請求項1から3のいずれか1つに記載のコイル装置。
- 前記複数のコア部品の各々は、1種類のコア部品からなることを特徴とする請求項14に記載のコイル装置。
- 前記複数のコア片の各々は、金属板に固定されており、
前記金属板は、前記複数のコア片が並べられている方向において前記複数のコア片の各々を位置決めするためのリブを具備していることを特徴とする請求項1に記載のコイル装置。 - 前記磁路は、互いに隣り合うコア片同士が接触している箇所を少なくとも1つ含むことを特徴とする請求項1から16のいずれか1つに記載のコイル装置。
- 前記複数のコア片のうち互いに隣り合うコア片同士が貼り合わせられていることを特徴とする請求項1に記載のコイル装置。
- 前記第1のコア部品は、互いにギャップを介して並べられた複数のコア片を有し、
前記第1のコア部品を構成する前記複数のコア片と前記第2のコア部品を構成する前記複数のコア片とを含むコア片群を保持するケースを備え、
前記コア片群は、1つ以上の閉磁路を構成することを特徴とする請求項1に記載のコイル装置。 - 前記コア片群は、1種類のコア片からなることを特徴とする請求項19に記載のコイル装置。
- 前記コア片群に、シート状のコア片が含まれていることを特徴とする請求項19または20に記載のコイル装置。
- 前記ケースは、前記コア片群のうち互いに隣り合うコア片同士を仕切る仕切り板を具備していることを特徴とする請求項19から21のいずれか1つに記載のコイル装置。
- 前記ケースは、前記コア片群に含まれるコア片の各々を位置決めするためのリブを具備していることを特徴とする請求項19から22のいずれか1つに記載のコイル装置。
- 前記ケースには、前記コア片群に含まれる少なくとも一部のコア片が収容されるスペースを覆う蓋が取り付けられていることを特徴とする請求項19から23のいずれか1つに記載のコイル装置。
- 前記コア片群に含まれる少なくとも一部のコア片は、前記ケースの外部の構造物と熱的に結合可能に配置されることを特徴とする請求項19から24のいずれか1つに記載のコイル装置。
- 前記閉磁路は、互いに隣り合うコア片同士が接触している箇所を少なくとも1つ含むことを特徴とする請求項19から25のいずれか1つに記載のコイル装置。
- 請求項1から26のいずれか1つに記載のコイル装置を有することを特徴とする電力変換装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080014191.0A CN113439314B (zh) | 2019-02-22 | 2020-02-03 | 电力变换装置以及线圈装置 |
US17/421,503 US20220093321A1 (en) | 2019-02-22 | 2020-02-03 | Power converter and coil apparatus |
JP2021501812A JP7126600B2 (ja) | 2019-02-22 | 2020-02-03 | 電力変換装置およびコイル装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-030961 | 2019-02-22 | ||
JP2019030961 | 2019-02-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020170783A1 true WO2020170783A1 (ja) | 2020-08-27 |
Family
ID=72144645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/003913 WO2020170783A1 (ja) | 2019-02-22 | 2020-02-03 | コイル装置および電力変換装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220093321A1 (ja) |
JP (1) | JP7126600B2 (ja) |
CN (1) | CN113439314B (ja) |
WO (1) | WO2020170783A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4152351A4 (en) * | 2020-06-24 | 2023-07-26 | Huawei Technologies Co., Ltd. | ELECTRICAL COMPONENT, CIRCUIT BOARD AND SWITCHING POWER SUPPLY |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024167847A1 (en) * | 2023-02-06 | 2024-08-15 | Tesla, Inc. | Flux shaping inductor structures for reduced high-frequency losses |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62135415U (ja) * | 1986-02-21 | 1987-08-26 | ||
JPH09129434A (ja) * | 1995-09-19 | 1997-05-16 | Thomson Csf | 透磁率と損失の小さい合成磁気材料 |
US20060091989A1 (en) * | 2004-11-01 | 2006-05-04 | Patrizio Vinciarelli | Distributed gap magnetic cores |
JP2011082412A (ja) * | 2009-10-09 | 2011-04-21 | Jfe Steel Corp | リアクトルの鉄芯用部品 |
JP2014036157A (ja) * | 2012-08-09 | 2014-02-24 | Aisin Seiki Co Ltd | コイルボビン |
JP2015204431A (ja) * | 2014-04-16 | 2015-11-16 | コーセル株式会社 | 磁性コア及びこれを用いたインダクタ素子 |
US20180172733A1 (en) * | 2016-12-21 | 2018-06-21 | Delta Electronics, Inc. | Magnetic assembly and magnetic core set thereof |
JP2018113731A (ja) * | 2017-01-06 | 2018-07-19 | 三菱電機株式会社 | 電力変換装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH118130A (ja) * | 1997-06-16 | 1999-01-12 | Fuji Elelctrochem Co Ltd | 高周波トランス等の巻線部品用e型コア |
WO2007069403A1 (ja) * | 2005-12-16 | 2007-06-21 | Murata Manufacturing Co., Ltd. | 複合トランスおよび絶縁型スイッチング電源装置 |
JP5892337B2 (ja) * | 2012-11-01 | 2016-03-23 | 株式会社オートネットワーク技術研究所 | リアクトル、コンバータ、及び電力変換装置 |
CN104051138B (zh) * | 2013-03-15 | 2016-05-04 | 艾默生网络能源系统北美公司 | 变压器 |
JP6956484B2 (ja) * | 2016-12-01 | 2021-11-02 | 三菱電機株式会社 | コイル装置および電力変換装置 |
-
2020
- 2020-02-03 CN CN202080014191.0A patent/CN113439314B/zh active Active
- 2020-02-03 JP JP2021501812A patent/JP7126600B2/ja active Active
- 2020-02-03 WO PCT/JP2020/003913 patent/WO2020170783A1/ja active Application Filing
- 2020-02-03 US US17/421,503 patent/US20220093321A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62135415U (ja) * | 1986-02-21 | 1987-08-26 | ||
JPH09129434A (ja) * | 1995-09-19 | 1997-05-16 | Thomson Csf | 透磁率と損失の小さい合成磁気材料 |
US20060091989A1 (en) * | 2004-11-01 | 2006-05-04 | Patrizio Vinciarelli | Distributed gap magnetic cores |
JP2011082412A (ja) * | 2009-10-09 | 2011-04-21 | Jfe Steel Corp | リアクトルの鉄芯用部品 |
JP2014036157A (ja) * | 2012-08-09 | 2014-02-24 | Aisin Seiki Co Ltd | コイルボビン |
JP2015204431A (ja) * | 2014-04-16 | 2015-11-16 | コーセル株式会社 | 磁性コア及びこれを用いたインダクタ素子 |
US20180172733A1 (en) * | 2016-12-21 | 2018-06-21 | Delta Electronics, Inc. | Magnetic assembly and magnetic core set thereof |
JP2018113731A (ja) * | 2017-01-06 | 2018-07-19 | 三菱電機株式会社 | 電力変換装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4152351A4 (en) * | 2020-06-24 | 2023-07-26 | Huawei Technologies Co., Ltd. | ELECTRICAL COMPONENT, CIRCUIT BOARD AND SWITCHING POWER SUPPLY |
Also Published As
Publication number | Publication date |
---|---|
JP7126600B2 (ja) | 2022-08-26 |
CN113439314B (zh) | 2024-09-24 |
US20220093321A1 (en) | 2022-03-24 |
CN113439314A (zh) | 2021-09-24 |
JPWO2020170783A1 (ja) | 2021-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4222490B2 (ja) | プレーナ型トランス及びスイッチング電源 | |
US8013710B2 (en) | Magnetic element module | |
JP6525360B1 (ja) | 電力変換装置 | |
US7498917B1 (en) | Encapsulated transformer | |
JP6234537B1 (ja) | 電力変換装置 | |
JP6150844B2 (ja) | 電磁誘導機器 | |
WO2020170783A1 (ja) | コイル装置および電力変換装置 | |
CN111344821B (zh) | 电力转换装置 | |
JP6672724B2 (ja) | 電源装置 | |
US8188825B2 (en) | Transformer structure | |
JP2023083520A (ja) | トランス | |
WO2016027569A1 (ja) | リアクトルおよびそれを用いたdc-dcコンバータ | |
JP7061291B2 (ja) | リアクトル | |
JPH11176660A (ja) | コイルを含む電気回路装置 | |
JP2023514519A (ja) | トランスフォーマー及びこれを含むフラットパネルディスプレイ装置 | |
TWI758226B (zh) | 具有導熱填充物的磁性元件結構 | |
KR102221510B1 (ko) | 방열 효율이 개선된 트랜스포머 | |
WO2019163930A1 (ja) | フェライト磁心、並びにそれを用いたコイル部品及び電子部品 | |
JP6569404B2 (ja) | 電源装置及び電源装置の製造方法 | |
CN109906509A (zh) | 模块以及电力转换装置 | |
US20240177916A1 (en) | Transformer and circuit board comprising same | |
KR20190085715A (ko) | 누설 자속을 최소로 하는 인덕터 | |
US20240321498A1 (en) | Magnetic component | |
US20240321500A1 (en) | Magnetic component | |
JP2022142696A (ja) | 電子装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20760139 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021501812 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20760139 Country of ref document: EP Kind code of ref document: A1 |