WO2020170367A1 - 発光デバイス、発光デバイスの製造方法 - Google Patents

発光デバイス、発光デバイスの製造方法 Download PDF

Info

Publication number
WO2020170367A1
WO2020170367A1 PCT/JP2019/006367 JP2019006367W WO2020170367A1 WO 2020170367 A1 WO2020170367 A1 WO 2020170367A1 JP 2019006367 W JP2019006367 W JP 2019006367W WO 2020170367 A1 WO2020170367 A1 WO 2020170367A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
temperature
shell
emitting device
quantum dot
Prior art date
Application number
PCT/JP2019/006367
Other languages
English (en)
French (fr)
Inventor
久保 真澄
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US17/430,489 priority Critical patent/US20220149338A1/en
Priority to PCT/JP2019/006367 priority patent/WO2020170367A1/ja
Publication of WO2020170367A1 publication Critical patent/WO2020170367A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/441Thermal treatment, e.g. annealing in the presence of a solvent vapour in the presence of solvent vapors, e.g. solvent vapour annealing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/361Temperature
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]

Definitions

  • the present invention relates to a light emitting device including a light emitting element including a quantum dot, and a method for manufacturing the light emitting device.
  • a method for manufacturing a light emitting device provides a substrate of a light emitting element including a first electrode, a second electrode, and a quantum dot layer between the first electrode and the second electrode.
  • a method for manufacturing a light emitting device provided above comprising: a quantum dot layer forming step of forming the quantum dot layer, wherein the quantum dot layer forming step comprises applying a first solution to a position overlapping the substrate. 1 coating step, a first heating step of heating the ambient temperature of the substrate to a first temperature or higher after the first coating step, and a temperature of the ambient temperature up to a second temperature after the first heating step.
  • a second heating step of heating wherein the first solution includes a first solvent, a plurality of quantum dots, a ligand coordinated with each of the quantum dots, and a first inorganic precursor,
  • the quantum dot includes a core and a first shell coating the core, the first temperature is a higher temperature of the melting point of the ligand and the boiling point of the first solvent, and the second temperature. Is a temperature higher than the first temperature, and the first inorganic precursor is epitaxially grown around the first shell to form a second shell that coats the first shell.
  • at least one pair of quantum dots adjacent to each other are connected to each other via the second shell.
  • a method for manufacturing a light emitting device is a light emitting device including a first electrode, a second electrode, and a quantum dot layer between the first electrode and the second electrode.
  • a quantum dot layer comprising a quantum dot structure, the quantum dot structure comprising: a quantum dot comprising a core and a first shell coating the core; A second shell coating the first shell, wherein the first shell and the second shell have a crystal structure, and at least one pair of mutually adjacent quantum dots has a crystal structure of the second shell.
  • FIG. 1A and 1B are a schematic top view and a schematic cross-sectional view of a light emitting device according to Embodiment 1 of the present invention, and a schematic enlarged view around a light emitting layer of the light emitting device.
  • 3 is a flowchart illustrating a method for manufacturing the light emitting device according to the first embodiment of the invention.
  • 3 is a flowchart illustrating a method of forming a light emitting layer according to Embodiment 1 of the present invention.
  • 5 is a graph for explaining the relationship between elapsed time and temperature in the light emitting layer forming step according to Embodiment 1 of the present invention.
  • FIG. 6 is a process cross-sectional view for explaining a process for forming a light emitting layer according to the first embodiment of the present invention.
  • FIG. 6 is another process cross-sectional view for explaining the process of forming the light emitting layer according to the first embodiment of the present invention.
  • FIG. 3 is a schematic top view and a schematic cross-sectional view of a light emitting device according to a second embodiment of the present invention, and a schematic enlarged view around a light emitting layer of the light emitting device.
  • FIG. 6 is a schematic top view and a schematic cross-sectional view of a light emitting device according to a third embodiment of the present invention, and a schematic enlarged view of the periphery of a light emitting layer of the light emitting device.
  • FIG. 9 is a flowchart illustrating a method for manufacturing a light emitting device according to Embodiment 4 of the present invention. It is a graph for demonstrating the relationship between elapsed time and temperature in the formation process of the light emitting layer which concerns on Embodiment 4 of this invention.
  • FIG. 9 is a process cross-sectional view for explaining a process for forming a light emitting layer according to Embodiment 4 of the present invention.
  • FIG. 9 is another process cross-sectional view for explaining the process of forming the light emitting layer according to the fourth embodiment of the present invention.
  • FIG. 9 is another process cross-sectional view for explaining the process of forming the light emitting layer according to the fourth embodiment of the present invention.
  • FIG. 1A is a schematic top view of the light emitting device 1 according to this embodiment.
  • 1B is a cross-sectional view taken along the line AA in FIG. 1C is an enlarged cross-sectional view in the region B in FIG. 1B, that is, an enlarged cross-sectional view around the second light emitting layer 8G described later.
  • the light emitting element layer 2 includes a first electrode 4, a first charge transport layer 6, a light emitting layer 8 which is a quantum dot layer, a second charge transport layer 10, and a second electrode 12, which are sequentially stacked from the lower layer. And prepare for it.
  • the first electrode 4 of the light emitting element layer 2 formed on the upper layer of the array substrate 3 is electrically connected to the TFT of the array substrate 3.
  • the first electrode 4 is an anode and the second electrode 12 is a cathode.
  • the light emitting element layer 2 includes a first light emitting element 2R, a second light emitting element 2G, and a third light emitting element 2B.
  • the first light emitting element 2R, the second light emitting element 2G, and the third light emitting element 2B are QLED elements in which the light emitting layer 8 is provided with a semiconductor nanoparticle material, that is, a quantum dot material.
  • the first light emitting element 2R includes the first electrode 4R, the first charge transport layer 6R, the first light emitting layer 8R, the second charge transport layer 10, and the second electrode 12.
  • the second light emitting element 2G includes a first electrode 4G, a first charge transport layer 6G, a second light emitting layer 8G, a second charge transport layer 10, and a second electrode 12.
  • the third light emitting element 2B includes a first electrode 4B, a first charge transport layer 6B, a third light emitting layer 8B, a second charge transport layer 10, and a second electrode 12.
  • the first light emitting layer 8R, the second light emitting layer 8G, and the third light emitting layer 8B are the red light which is the light of the first color and the light of the second color, respectively. It emits green light and blue light which is the light of the third color. That is, the first light emitting element 2R, the second light emitting element 2G, and the third light emitting element 2B are light emitting elements that emit red light, green light, and blue light, which are lights of different colors, respectively. is there.
  • the blue light is, for example, light having an emission center wavelength in a wavelength band of 400 nm or more and 500 nm or less.
  • the green light is, for example, light having an emission center wavelength in a wavelength band of more than 500 nm and 600 nm or less.
  • the red light is, for example, light having an emission center wavelength in a wavelength band of more than 600 nm and 780 nm or less.
  • the array substrate 3 is a transparent substrate and the first electrode 4 is a transparent electrode.
  • the second electrode 12 may be a reflective electrode. Therefore, the light from the light emitting layer 8 passes through the first charge transport layer 6, the first electrode 4, and the array substrate 3, and is emitted from the light emitting surface DS to the outside of the light emitting device 1. Therefore, the light emitting device 1 is configured as a bottom emission type light emitting device. Since both the light emitted from the light emitting layer 8 in the upward direction and the light emitted in the downward direction can be used as the light emitted from the light emitting device 1, the light emitting device 1 can emit light emitted from the light emitting layer 8. The utilization efficiency of can be improved.
  • the configuration of the first electrode 4 and the second electrode 12 described above is an example, and may be made of another material.
  • the first charge transport layer 6 is a layer that transports charges from the first electrode 4 to the light emitting layer 8.
  • the first charge transport layer 6 may have a function of inhibiting the transport of charges from the second electrode 12.
  • the first charge transport layer 6 may be a hole transport layer that transports holes from the first electrode 4, which is an anode, to the light emitting layer 8.
  • the second charge transport layer 10 is a layer that transports charges from the second electrode 12 to the light emitting layer 8.
  • the second charge transport layer 10 may have a function of inhibiting the transport of charges from the first electrode 4.
  • the second charge transport layer 10 may be an electron transport layer that transports electrons from the second electrode 12 that is the cathode to the light emitting layer 8.
  • FIG. 1C shows a schematic cross-sectional view in the region B of FIG. 1B, that is, around the second light emitting layer 8G of the second light emitting element 2G.
  • each member shown in FIG. 1C is regarded as having a common configuration in each light emitting element. Therefore, in the present embodiment, each member shown in FIG. 1C may have the same configuration in each light emitting element unless otherwise specified.
  • the light emitting layer 8 includes the quantum dot structure 16 and the ligand 18.
  • the quantum dot structure 16 includes a plurality of quantum dots 20.
  • the quantum dot 20 has a core/shell structure including a core 22 and a first shell 24 coating the periphery of the core 22.
  • the quantum dot structure 16 also includes a second shell 26. The second shell 26 coats the periphery of the first shell 24, which is the outer shell of each quantum dot 20.
  • the quantum dot 20 may have a multi-shell structure in which a plurality of shells are provided around the core 22.
  • the first shell 24 refers to the outermost shell of the plurality of shells.
  • the ligand 18 may coordinate-bond with the quantum dot structure 16 on the outer surface of the second shell 26 to fill the void of the quantum dot structure 16.
  • the ligand 18 may be, for example, TOPO (trioctylphosphine oxide).
  • the quantum dots 20 are connected via the second shell 26.
  • the first shell 24 and the second shell 26 have a crystal structure, and in particular, in the present embodiment, the second shell 26 has a crystal structure formed by epitaxial growth on the first shell 24. Prepare Therefore, the quantum dots 20 adjacent to each other described above are connected by the crystal structure of the second shell 26.
  • all the quantum dots 20 in the same light emitting element may be connected by the crystal structure of the second shell 26 to form an integral quantum dot structure 16.
  • the first shell 24 and the second shell 26 may be polycrystalline.
  • the core 22 and the first shell 24 of the quantum dot 20 may be provided with an inorganic material used for a quantum dot having a known core/shell structure. That is, the first light emitting layer 8R, the second light emitting layer 8G, and the third light emitting layer 8B are provided with known quantum dot materials used for the light emitting layers of red, green, and blue QLED elements, respectively. Good.
  • the second shell 26 may be provided with an inorganic shell material used for a quantum dot having a known core/shell structure, like the first shell 24.
  • the first shell 24 and the second shell 26 may be made of the same material.
  • the specific resistance of the second shell 26 is preferably equal to or higher than the specific resistance of the first shell 24.
  • the size of the band gap of the second shell 26 is preferably equal to or larger than the size of the band gap of the first shell 24. With this configuration, the efficiency of charge injection from the second shell 26 to the first shell 24 is improved.
  • Specific materials for the core 22 include CdSe (bandgap 1.73 eV), CdTe (bandgap 1.44 eV), ZnTe (bandgap 2.25 eV), CdS (bandgap 2.42 eV), and the like. II-VI group semiconductors can be mentioned. Other specific materials for the core 22 include III-V group semiconductors such as InP (bandgap 1.35 eV) or InGaP (bandgap 1.88 eV).
  • the wavelength emitted by a quantum dot is determined by the particle size of the core. Therefore, a semiconductor material having an appropriate band gap is adopted as the material of the core 22 so that the light emitted by the core 22 can be controlled to any of red, green, and blue by controlling the particle size of the core 22. It is preferable.
  • the band gap of the material of the core 22 included in the first light emitting layer 8R is preferably 1.97 eV or less so that the first light emitting layer 8R which is the red light emitting layer emits red light having a wavelength of 630 nm. Further, since the second light emitting layer 8G which is a green light emitting layer emits green light having a wavelength of 532 nm, the band gap of the material of the core 22 included in the second light emitting layer 8G is preferably 2.33 eV or less.
  • the third light emitting layer 8B which is a blue light emitting layer, emits blue light having a wavelength of 630 nm
  • the band gap of the material of the core 22 included in the third light emitting layer 8B is preferably 2.66 eV or less.
  • the light emitting device 1 including the first light emitting layer 8R, the second light emitting layer 8G, and the third light emitting layer 8B described above is preferable in that it satisfies the color space standard in the UHDTV international standard BT2020.
  • first shell 24 and the second shell 26 include Group II-VI semiconductors such as ZnSe (bandgap 2.7 eV) or ZnS (bandgap 3.6 eV).
  • Other specific materials for the first shell 24 and the second shell 26 include III-V group semiconductors such as GaP (bandgap 2.26 eV).
  • the material of the core 22 has a lower specific resistance and a smaller band gap than the materials of the first shell 24 and the second shell 26. With this configuration, the efficiency of charge injection from the first shell 24 and the second shell 26 to the core 22 is improved.
  • the average film thickness of the first shell 24 from the outer surface of the core 22 is smaller than the minimum film thickness of the second shell 26.
  • the minimum thickness of the second shell 26 means the thickness of the second shell 26 between two quantum dots 20 connected to each other via the second shell 26, or the first shell 24 to the first The smallest film thickness among the film thicknesses up to the outer surface of the 2 shell 26 is indicated.
  • the shortest distance from the core 22 of one quantum dot 20 to the core 22 of another adjacent quantum dot 20 is set as d.
  • the average value of the distance d is preferably 3 nm or more.
  • the average value of the distance d is preferably 1 nm or more.
  • FIG. 2 is a flowchart for explaining the method of manufacturing the light emitting device 1 according to this embodiment.
  • the first electrode 4 is formed (step S2).
  • the first electrode 4 may be formed for each sub-pixel by forming a conductive transparent electrode material such as ITO by sputtering and then patterning it according to the shape of the sub-pixel. Good.
  • the transparent electrode material may be vapor-deposited using a vapor deposition mask to form the first electrode for each sub-pixel.
  • the edge cover 14 is formed (step S3).
  • the edge cover 14 is applied on the array substrate 3 and the first electrode 4 and then patterned between the adjacent first electrodes 4 leaving a position covering the side surface and the peripheral end of the first electrode 4. It may be obtained by The patterning of the edge cover 14 may be performed by photolithography.
  • the first charge transport layer 6 is formed (step S4).
  • the first charge transport layer 6 may be formed for each sub-pixel by separate coating by an inkjet method, vapor deposition using a mask, or patterning using photolithography.
  • step S5 the light emitting layer 8 is formed.
  • the process of forming the light emitting layer 8 will be described in more detail with reference to FIGS. 3 to 6.
  • FIG. 3 is a flow chart for explaining the light emitting layer forming step, which is the quantum dot layer forming step in the present embodiment.
  • FIG. 4 is a graph for explaining the relationship between elapsed time and temperature in the light emitting layer forming step.
  • the horizontal axis represents the elapsed time of the light emitting layer forming step and the vertical axis represents the temperature.
  • the solid line in FIG. 4 indicates the temperature of the atmosphere around the array substrate 3, and the broken line indicates the temperature around the quantum dots 20 on the array substrate 3.
  • the “atmosphere” simply means the atmosphere around the array substrate 3.
  • FIG. 5 and 6 are process cross-sectional views for explaining the light emitting layer forming process.
  • the process cross-sectional views in this specification including FIG. 5 and FIG. 6 show processes at a region B in FIG. 1B, that is, at a position corresponding to the periphery of the second light emitting layer 8G of the second light emitting element 2G.
  • a sectional view is shown.
  • the method described with reference to the process cross-sectional views in this specification may be applied to the method for forming the light emitting layer 8 of another light emitting element unless otherwise specified.
  • a first applying step is performed in which the first solution 28 shown in FIG. 5B is applied to a position overlapping the array substrate 3 (step S10).
  • the first solution 28 is a solution in which a plurality of quantum dots 20 having the ligands 18 coordinated thereto and the first inorganic precursor 30 are dispersed in the first solvent 32. ..
  • the first solvent 32 may be, for example, hexane.
  • the first inorganic precursor 30 includes the same material as the second shell 26 described above.
  • the first inorganic precursor 30 may include, for example, zinc chloride and 1-dodecanethiol.
  • the first coating step is performed under the ambient temperature of temperature T0 shown in FIG. Since the application of the first solution 28 is performed under the ambient temperature of the temperature T0, the ambient temperature of the quantum dots 20 in the applied first solution 28 is also the temperature T0 as shown in FIG. ..
  • the temperature T0 may be room temperature, for example.
  • the array substrate 3 coated with the first solution 28 is put into a heating furnace or the like to start heating the atmosphere.
  • the first heating step is performed by heating the atmosphere until the atmosphere temperature becomes equal to or higher than the first temperature T1 shown in FIG. 4 (step S11).
  • the first temperature T1 is the higher temperature of the melting point of the ligand 18 and the boiling point of the first solvent 32.
  • the temperature TA shown in FIG. 4 is the lower temperature of the melting point of the ligand 18 and the boiling point of the first solvent 32.
  • the first temperature T1 and the temperature TA are higher than the temperature T0.
  • the melting point of TOPO is 50 to 54 degrees Celsius
  • the boiling point of hexane is 68.5 to 69.1 degrees Celsius. Therefore, when the ligand 18 is TOPO and the first solvent is hexane, the temperature TA is the melting point of TOPO and the first temperature T1 is the boiling point of hexane.
  • the ambient temperature of the quantum dots 20 follows the rise of the ambient temperature until the ambient temperature changes from the temperature T0 to the temperature TA. However, when the ambient temperature of the quantum dots 20 rises to the temperature TA and one of the melting of the ligand 18 and the evaporation of the first solvent 32 starts, the ambient temperature of the quantum dots 20 maintains the temperature TA for a while.
  • the ambient temperature of the quantum dots 20 starts to rise again. Then, when the ambient temperature of the quantum dots 20 rises to the first temperature T1 and the other one of the melting of the ligand 18 and the evaporation of the first solvent 32 starts, the ambient temperature of the quantum dots 20 is kept at the first temperature T1 for a while. maintain.
  • the melting of the ligand 18 and the evaporation of the first solvent 32 are completed by the first heating step.
  • the first temperature T1 is the boiling point of the first solvent 32
  • the first solvent 32 is vaporized after the ligand 18 is melted in the first heating step.
  • the first temperature T1 is the melting point of the ligand 18
  • the ligand 18 melts after the first solvent 32 is vaporized in the first heating step.
  • the quantum dot 20 and the inorganic precursor 30 are separated from each other in the melted ligand 18 by vaporizing the first solvent 32 from the array substrate 3. It is dispersed.
  • step S12 the heating of the atmosphere is continued until the atmosphere temperature reaches the second temperature T2 shown in FIG.
  • the ambient temperature of the quantum dots 20 rises from the first temperature T1 and reaches the second temperature T2.
  • the ambient temperature of the quantum dots 20 after reaching the second temperature T2 is also maintained at the second temperature T2.
  • the second temperature T2 is higher than the first temperature T1 and is a temperature for the first inorganic precursor 30 to grow epitaxially around the first shell 24 by a thermochemical reaction. Therefore, while the ambient temperature of the quantum dots 20 is maintained at the second temperature T2, the first inorganic substance precursor 30 gradually grows epitaxially around the first shell 24. As a result, as shown in FIG. 6B, the second shell 26 is formed around the first shell 24 of each quantum dot 20.
  • the first inorganic material precursor 30 includes zinc chloride and 1-dodecanethiol described above, the second temperature T2 is about 200 degrees Celsius.
  • the second shell 26 is formed around each quantum dot 20 from the outer surface of the first shell 24 so that the film thickness gradually increases.
  • the second heating step is performed until at least one set of quantum dots 20 adjacent to each other are connected via the second shell 26.
  • the quantum dot structure 16 including the quantum dots 20 and the second shell 26 is formed.
  • the array substrate 3 is taken out from the heating furnace and cooled to solidify the melted ligand 18 again.
  • the light emitting layer 8 including the quantum dot structure 16 and the ligand 18 shown in FIG. 6B is obtained.
  • the process of forming the light emitting layer 8 has been described with reference to the enlarged cross-sectional view around the second light emitting layer 8G.
  • the only difference in the method of forming each of the first light emitting layer 8R, the second light emitting layer 8G, and the third light emitting layer 8B is the difference in the material contained in the first solution 28. That is, the first coating step, the first heating step, and the second heating step may be realized by the same method regardless of the emission color of the formed light emitting layer 8.
  • the material in the first solution 28 is changed for each emission color of the corresponding light emitting element, the first solution 28 is applied separately by an inkjet method, and then the above-described first heating step and You may implement a 2nd heating process. Accordingly, light emitting elements having different emission colors can be formed by continuous single heating.
  • the second charge transport layer 10 is formed (step S6).
  • the second charge transport layer 10 may be applied and formed by spin coating or the like in common to all the sub-pixels.
  • the second electrode 12 is formed (step S7).
  • the second electrode 12 may be formed in common by all the sub-pixels by vapor deposition or the like. As described above, the light emitting element layer 2 is formed on the array substrate 3, and the light emitting device 1 shown in FIG. 1 is obtained.
  • the second shells 26 are epitaxially grown around the first shells 24 of the respective quantum dots 20. .. Therefore, the thickness of the shell in each quantum dot 20 can be increased as compared with the case where the quantum dots 20 having a core/shell structure are simply stacked.
  • a quantum dot having a core/shell structure it is conceivable to increase the thickness of the shell in order to reduce exudation of electrons injected into the core of the quantum dot.
  • quantum dots having a thick shell are stacked to form quantum dots, the filling rate of the quantum dots with respect to the volume of the light emitting layer is low. Therefore, it becomes difficult to realize a sufficient quantum dot density in the light emitting layer, which leads to a reduction in the light emitting efficiency of the light emitting element.
  • the quantum dots 20 having the thin first shells 24 are applied, and then the second shells 26 are formed on the respective quantum dots 20.
  • the thickness of the shell formed around the core 22 can be regarded as the total thickness of the first shell 24 and the second shell 26.
  • the density of the quantum dots 20 in the light emitting layer 8 can be improved as compared with the case where the quantum dots having the shells of the same film thickness are simply stacked. Therefore, the density of the quantum dots 20 in the light emitting layer 8 is improved while reducing the leakage of electrons from the quantum dots 20, which leads to the improvement of the luminous efficiency of the light emitting device 1.
  • At least one set of quantum dots 20 is connected via the second shell 26, so that in the one set of quantum dots 20, the area of the outer surface of the second shell 26 is , Becomes smaller than when not connected. That is, in the present embodiment, the area of the outer surface of the quantum dot structure 16 can be reduced as compared with the case where the quantum dots are simply stacked.
  • the area of the outer surface can be reduced to reduce the amount of the ligand 18 that can be damaged by water penetration. Therefore, the damage to the second shell 26 due to the loss of the protection function of the second shell 26 by the ligand 18 due to the damage can be reduced.
  • the surface area of the second shell 26 that can be damaged when the light emitting device 1 is driven can be reduced. Therefore, with this configuration, damage to the second shell 26 due to the driving of the light emitting device 1 and eventually formation of defects in the second shell 26 due to the damage can be reduced. Therefore, by reducing the area of the outer surface of the quantum dot structure 16, a non-light emitting process occurs due to the recombination of electrons and holes in the defect, and thus the light emitting device 1 The decrease in luminous efficiency is reduced.
  • the area of the outer surface of the quantum dot structure 16 is small, the area of the outer surface of the quantum dot structure 16 that can be damaged is reduced, and the quantum dot 20 is damaged. Deactivation can be reduced.
  • the average value of the random close-packed filling ratio in filling the rigid spheres is approximately 63.66%. Therefore, in the present embodiment, the volume ratio of the quantum dot structures 16 in the light emitting layer 8 is preferably 63.7% or more.
  • the quantum dots 20 in the light emitting layer 8 can be compared with the case where the quantum dots provided with the shells having the thickness equal to the total thickness of the first shell 24 and the second shell 26 are randomly stacked. The density can be improved. Further, with the above configuration, the area of the outer surface of the quantum dot structure 16 can be reduced more efficiently than in the case where the quantum dots are randomly stacked.
  • the quantum dots 20 are arranged in m rows and n columns on a plane.
  • the number of sets of the quantum dots 20 connected to each other is the minimum.
  • all the adjacent pairs of quantum dots are connected between all the rows, and any one pair of the adjacent quantum dots are connected between all the columns.
  • the ratio of the positions at which the quantum dots 20 are actually connected to each other via the second shell 26 to the positions at which the quantum dots 20 can be connected via the second shell 26 is ( mn-1)/(2mn-mn).
  • all the quantum dots 20 on the same plane are connected via the second shell 26, and of all the groups of the quantum dots 20 adjacent to each other, the set connected via the second shell 26 is the smallest.
  • the group can be considered to be about 50% of all groups. Therefore, in a case where the group connected through the second shell 26 exceeds 50% among all the groups of the quantum dots 20 adjacent to each other, all the quantum dots 20 in each layer stacked are changed to the first group. It can be said that there is a high probability that the two shells 26 are connected.
  • the quantum dot structures 16 are such that the quantum dots 20 are in the second shell 26. It can be regarded as forming a crystal structure connected by. With this configuration, the area of the outer surface of the quantum dot structure 16 can be reduced more efficiently. Therefore, in the quantum dot structure 16, the rate at which the quantum dots 20 adjacent to each other are connected by the crystal structure of the second shell 26 is higher than 50% and preferably 100% or less.
  • the average film thickness of the first shell 24 from the outer surface of the core 22 is smaller than the minimum film thickness of the second shell 26. Therefore, the quantum dots 20 may be stacked more densely between the first heating step and the second heating step, and the second shell 26 having a relatively thick film thickness may be formed in the subsequent second heating step. it can.
  • the first shell 24 and the first shell 24 and the first shell 24 having a film thickness that can sufficiently reduce the exudation of electrons from the core 22 derived from the electron wave function are provided.
  • a two-shell 26 can be formed. Therefore, with this configuration, it is possible to increase the density of the quantum dots 20 in the quantum dot structure 16 while sufficiently ensuring the film thicknesses of the first shell 24 and the second shell 26.
  • the light emitting layer 8 is formed after the array substrate 3, the first electrode 4, the edge cover 14, and the first charge transport layer 6 are formed. Therefore, it is preferable that the array substrate 3, the first electrode 4, the edge cover 14, and the first charge transport layer 6 include a material having heat resistance against heating in the heating step described above.
  • the array substrate 3 may be, for example, a glass substrate including alkali glass or the like having a sufficiently high strain point.
  • the array substrate 3 may be an organic substrate containing an organic material having a high glass transition temperature such as polyimide.
  • the first electrode 4 when the light emitting element layer 2 forms a bottom emission type light emitting element and the first electrode 4 is an anode, ITO is generally used for the first electrode 4.
  • the first electrode 4 preferably contains a material having high heat resistance such as a composite material of FTO and ITO.
  • the first charge transport layer 6 is a hole transport layer, it should contain an inorganic material having higher heat resistance than an organic material, such as NiO, MgNiO, Cr 2 O 3 , Cu 2 O, or LiNbO 3. Is preferred.
  • the edge cover 14 preferably contains an organic material having a high glass transition temperature, such as polyimide, from the viewpoint of reducing damage due to heating in the heating process described above.
  • the second charge transport layer 10 and the second electrode 12 are formed after the light emitting layer 8 is formed. Therefore, as the material of the second charge transport layer 10 and the second electrode 12, it is possible to employ a material that does not have heat resistance to the heating in the heating step described above.
  • the second charge transport layer 10 may include a material used for a conventionally known electron transport layer
  • the second electrode 12 may include a material used for a conventionally known cathode.
  • FIG. 7A is a schematic top view of the light emitting device 1 according to this embodiment.
  • 7B is a cross-sectional view taken along the line AA in FIG. 7A.
  • 7C is an enlarged cross-sectional view of the region B in FIG. 7B.
  • the light emitting device 1 according to this embodiment has the same configuration as the light emitting device 1 according to the previous embodiment, except that the stacking order of the layers of the light emitting element layer 2 is reversed. Good. That is, in the light emitting element layer 2 according to the present embodiment, the second charge transport layer 10, the light emitting layer 8, the first charge transport layer 6, and the first electrode 4 are formed on the second electrode 12 from the lower layer. Prepared by sequentially stacking.
  • each of the second electrode 12 and the second charge transport layer 10 is separated by the edge cover 14.
  • the second electrode 12 is formed by the edge cover 14 into the second electrode 12R for the first light emitting element 2R, the second electrode 12G for the second light emitting element 2G, and the third light emitting element 2B.
  • the second charge transport layer 10 is provided by the edge cover 14 for the second charge transport layer 10R for the first light emitting element 2R, the second charge transport layer 10G for the second light emitting element 2G, and the third light emitting element 2B. Of the second charge transport layer 10B.
  • first charge transport layer 6 and the first electrode 4 are not separated by the edge cover 14 but are formed in common as compared with the light emitting element 1 according to the previous embodiment.
  • the first electrode 4 may be a transparent electrode and the second electrode 12 may be a reflective electrode. Therefore, the light from the light emitting layer 8 passes through the first charge transport layer 6 and the first electrode 4, and is emitted from the light emitting surface DS to the outside of the light emitting device 1. Therefore, the light emitting device 1 is configured as a top emission type light emitting device. Therefore, in this embodiment, the array substrate 3 does not necessarily have to be a transparent substrate.
  • the light emitting device 1 performs the steps shown in FIG. 2 in the same order as in the previous embodiment in the order of step S1, step S7, step S3, step S6, step S5, step S4, and step S2. Can be manufactured by. Therefore, in this embodiment, the light emitting layer 8 is formed after the array substrate 3, the second electrode 12, the edge cover 14, and the second charge transport layer 10 are formed. Therefore, it is preferable that the array substrate 3, the second electrode 12, the edge cover 14, and the second charge transport layer 10 include a material having heat resistance against heating in the heating step described above.
  • the second electrode 12 when the light emitting element layer 2 forms a top emission type light emitting element and the second electrode 12 is a cathode, the second electrode 12 has a high melting point from the viewpoint of increasing the heat resistance against heating in the heating step described above. It is preferable to include a metallic material.
  • the second electrode 12 preferably contains a metal such as Al or Ag, or an intermetallic compound such as AgMg.
  • the second charge transport layer 10 is an electron transport layer, it preferably contains an inorganic material having higher heat resistance than an organic material such as MgO.
  • the above-mentioned materials are also materials generally used as a cathode material and an electron transport layer material.
  • the first charge transport layer 6 and the first electrode 4 are formed after the light emitting layer 8 is formed. Therefore, as the material of the first charge transport layer 6 and the first electrode 4, it is possible to employ a material that does not have heat resistance against heating in the heating step described above.
  • the first charge transport layer 6 may include a material used for a conventionally known hole transport layer
  • the first electrode 4 is a transparent conductive material used for a conventionally known anode such as ITO. It may also include a conductive material.
  • the light emitting device 1 according to the present embodiment is less required to change the material of each layer of the light emitting element layer 2 from the conventionally used material, as compared with the light emitting device 1 according to the previous embodiment. Therefore, the light emitting device 1 according to the present embodiment can improve the degree of freedom in material selection as compared with the light emitting device 1 according to the previous embodiment.
  • FIG. 8A is a schematic top view of the light emitting device 1 according to this embodiment.
  • 8B is a cross-sectional view taken along the line AA in FIG. 8A.
  • 8C is an enlarged cross-sectional view of the region B in FIG. 8B.
  • the light emitting device 1 according to the present embodiment may have the same configuration as the light emitting device 1 according to the first embodiment, except that the light emitting layer 8 does not include the ligand 18. As shown in FIG. 8C, the light emitting layer 8 may include voids 34 in the space not filled with the quantum dot structure 16.
  • the light emitting device 1 according to the present embodiment is manufactured by the same method as each of the steps shown in FIG. 2 except for step S5, that is, the light emitting layer forming step.
  • step S5 that is, the light emitting layer forming step.
  • the light emitting layer forming process of the light emitting device 1 according to the present embodiment will be described in more detail with reference to FIGS. 9 to 11.
  • FIG. 9 is a flowchart for explaining the light emitting layer forming step, which is the quantum dot layer forming step in the present embodiment.
  • FIG. 10 is a graph for explaining the relationship between elapsed time and temperature in the light emitting layer forming step. As in FIG. 4, the solid line in FIG. 10 indicates the ambient temperature around the array substrate 3, and the broken line indicates the ambient temperature around the quantum dots 20 on the array substrate 3.
  • FIG. 11 is a process cross-sectional view for explaining the light emitting layer forming process.
  • step S10 the same method as the method described in the first embodiment is executed from step S10 to step S12.
  • step S12 the same method as the method described in the first embodiment is executed from step S10 to step S12.
  • step S12 the same method as the method described in the first embodiment is executed from step S10 to step S12.
  • step S12 the same method as the method described in the first embodiment is executed from step S10 to step S12.
  • step S12 the same method as the method described in the first embodiment is executed from step S10 to step S12.
  • step S12 the quantum dot structure 16 and the ligand 18 are formed in the upper layer of the first charge transport layer 6.
  • a third heating step is performed in which the atmosphere temperature is further raised and the atmosphere is heated so that the atmosphere temperature becomes the third temperature T3 or higher (step S13).
  • the third temperature T3 is higher than the second temperature T2 and corresponds to the boiling point of the ligand 18.
  • the third temperature T3 is 411.2 degrees Celsius.
  • the ambient temperature of the quantum dots 20 reaches the third temperature T3 due to the heating of the atmosphere in the third heating step, the evaporation of the ligand 18 starts, and the ambient temperature of the quantum dots 20 maintains the third temperature T3 for a while.
  • the ligand 18 is vaporized in the third heating step, and as shown in FIG. 11B, the light emitting layer 8 having no ligand 18 is obtained.
  • the light emitting device 1 according to this embodiment does not include the ligand 18 in the light emitting layer 8.
  • the ligand coordinated to the quantum dot often contains an organic material. Therefore, the light emitting layer 8 in the present embodiment that does not include the ligand 18 has a low content rate of the organic material with respect to the inorganic material and is resistant to deterioration due to water permeation or the like. Therefore, the light emitting device 1 according to the present embodiment can further improve reliability.
  • the average value of the ratio of voids not occupied by the rigid spheres in the space where the rigid spheres are randomly closest packed is about 36.34 volume percent. Therefore, for example, in the light emitting layer 8, the volume ratio of the organic substance to the inorganic substance is preferably 36.3 volume percent or less. In this case, the ratio of organic substances in the light emitting layer 8 can be reduced as compared to a conventional light emitting layer in which quantum dots are packed in a random closest manner and voids between the quantum dots are filled with an organic ligand. Therefore, with the above configuration, it is possible to more efficiently improve the reliability of the light emitting layer 8.
  • the expression “having no ligand” means substantially not having a ligand.
  • residues of impurities or ligands may remain to such an extent that the reliability of the light emitting layer 8 is not significantly deteriorated.
  • the light emitting layer 8 in the present embodiment may include the above-mentioned impurity or ligand residue in an amount of about 3 volume% with respect to the entire volume of the light emitting layer 8.
  • the area of the outer surface of the quantum dot structure 16 can be reduced as in the above-described embodiments.
  • the surface area of the second shell 26 that can be damaged by heating can be reduced. Therefore, with the configuration, as described above, it is possible to reduce the formation of defects in the second shell 26 due to the damage to the second shell 26, and thus reduce the reduction in the luminous efficiency of the light emitting device 1 due to the defects.
  • FIG. 12A is a schematic top view of the light emitting device 1 according to this embodiment.
  • 12B is a cross-sectional view taken along the line AA in FIG.
  • FIG. 12C is an enlarged cross-sectional view of the region B in FIG. 8B.
  • the light emitting device 1 according to the present embodiment is the same as the light emitting device 1 according to the previous embodiment, except that the light emitting layer 8 includes a quantum dot structure 36 instead of the quantum dot structure 16. May be provided.
  • the quantum dot structure 16 further includes a third shell 38 in addition to the quantum dots 20 and the second shell 26, as shown in FIG.
  • the quantum dot structure 36 may be formed by providing the third shell 38 in the void 34 which is not filled with the quantum dot structure 16 in the light emitting layer 8 in the previous embodiment.
  • the third shell 38 fills at least a part of the void around the second shell 26.
  • the third shell 38 may include the same material as the second shell 26, or may include an inorganic shell material used for a quantum dot having a known core/shell structure.
  • the light emitting device 1 according to the present embodiment is manufactured by the same method as each of the steps shown in FIG. 2 except for step S5, that is, the light emitting layer forming step.
  • step S5 that is, the light emitting layer forming step.
  • the light emitting layer forming process of the light emitting device 1 according to the present embodiment will be described in more detail with reference to FIGS. 13 to 17.
  • FIG. 13 is a flowchart for explaining the light emitting layer forming step, which is the quantum dot layer forming step in the present embodiment.
  • FIG. 14 is a graph for explaining the relationship between elapsed time and temperature in the light emitting layer forming step. Similar to FIG. 4, the solid line in FIG. 14 indicates the ambient temperature around the array substrate 3, and the broken line indicates the ambient temperature around the quantum dots 20 on the array substrate 3. 15 to 17 are process cross-sectional views for explaining the light emitting layer forming process.
  • step S14 a cooling step of lowering the ambient temperature below the third temperature T3 is performed (step S14).
  • the cooling process is performed until the ambient temperature reaches the temperature TB lower than the temperature TA.
  • the temperature TB may be higher than the temperature T0 or may be the same as the temperature T0.
  • the temperature around the quantum dots 20 also follows.
  • the quantum dot structure 16 is formed in the upper layer of the first charge transport layer 6.
  • the void 34 is formed between the second shells 26 of the quantum dot structure 16.
  • the second coating process is performed in which the second solution 40 is coated on the position overlapping the array substrate 3 (step). S15).
  • the second coating step as shown in FIG. 15B, at least a part of the voids 34 around the quantum dot structure 16 may be filled with the second solution 40.
  • the second solution 40 includes a second solvent 42, an organic material 44, and a second inorganic precursor 46.
  • the second solvent 42 may be the same as the first solvent 32 or hexane.
  • the organic material 44 may be an organic material used for a conventionally known quantum dot ligand, or may be the same as the material for the ligand 18.
  • the second inorganic precursor 46 includes the same material as the third shell 38 described above. When the material of the third shell 38 is the same as the material of the second shell 26, the second inorganic precursor 46 is the same as the first inorganic precursor 30.
  • step S16 heating of the array substrate 3 coated with the second solution 40 is restarted.
  • the fourth heating step is performed by heating the atmosphere to the fourth temperature T4 or higher shown in FIG. 14 (step S16).
  • the fourth temperature T4 is the higher temperature of the melting point of the organic material 44 and the boiling point of the second solvent 42.
  • the temperature TC shown in FIG. 4 is the lower temperature of the melting point of the organic material 44 and the boiling point of the second solvent 42.
  • the fourth temperature T4 and the temperature TC are higher than the temperature T0.
  • the fourth temperature T4 may be the same as the first temperature T1 and the temperature TC may be the same as the temperature TA.
  • the ambient temperature of the quantum dots 20 follows the rise of the ambient temperature until the ambient temperature changes from the temperature T0 to the temperature TC. However, when the ambient temperature of the quantum dots 20 rises to the temperature TC and one of the melting of the organic material 44 and the evaporation of the second solvent 42 starts, the ambient temperature of the quantum dots 20 maintains the temperature TC for a while.
  • one of the melting of the organic material 44 and the evaporation of the second solvent 42 ends, and the ambient temperature of the quantum dots 20 begins to rise again. Then, when the ambient temperature of the quantum dots 20 rises to the fourth temperature T4 and the other one of the melting of the organic material 44 and the evaporation of the second solvent 42 starts, the ambient temperature of the quantum dots 20 is kept at the fourth temperature T4 for a while. To maintain.
  • the melting of the organic material 44 and the evaporation of the second solvent 42 are completed by the fourth heating step.
  • the first heating step As shown in FIG. 16A, in the organic material 44 in which the second solvent 42 is vaporized and melted from above the array substrate 3, voids around the quantum dot structure 16 are formed.
  • the second inorganic precursor 46 is dispersed in 34. Although the scale of the second inorganic precursor 46 is changed only in FIG. 16A for the sake of illustration, the actual shape of the second inorganic precursor 46 remains unchanged before and after the first heating step. May be
  • heating of the array substrate 3 is continued until the ambient temperature reaches the fifth temperature T5 shown in FIG.
  • the heating condition is adjusted to maintain the ambient temperature near the fifth temperature T5, and the fifth heating step is performed (step S17).
  • the ambient temperature of the quantum dots 20 rises from the fourth temperature T4 and reaches the fifth temperature T5.
  • the ambient temperature of the quantum dots 20 after reaching the fifth temperature T5 is also maintained at the fifth temperature T5.
  • the fifth temperature T5 is higher than the fourth temperature T4, and is the temperature for the second inorganic precursor 46 to grow epitaxially around the second shell 26 by a thermochemical reaction. Therefore, while the ambient temperature of the quantum dots 20 is maintained at the fifth temperature T5, the second inorganic precursor 46 is gradually epitaxially grown around the second shell 26. Thereby, as shown in FIG. 16B, the third shell 38 is formed around the second shell 26 of each quantum dot structure 16.
  • the quantum dot structure 36 including the quantum dots 20, the second shell 26, and the third shell 38 is formed.
  • the void 34 is filled with the third shell 38, the molten organic material 44 is extruded to the upper layer, so that the organic material 44 remains in the upper layer of the quantum dot structure 36.
  • a sixth heating step is performed in which the atmosphere temperature is further raised and the atmosphere is heated so that the atmosphere temperature becomes the sixth temperature T6 or higher (step S18).
  • the sixth temperature T6 is higher than the fifth temperature T5 and corresponds to the boiling point of the organic material 44.
  • the ambient temperature of the quantum dots 20 reaches the sixth temperature T6 due to the heating of the atmosphere in the sixth heating step, the evaporation of the organic material 44 starts and the ambient temperature of the quantum dots 20 maintains the sixth temperature T6 for a while.
  • the organic material 44 is vaporized, and the organic material 44 is removed from the upper layer of the quantum dot structure 36 as shown in FIG. With the above, the light emitting layer forming step in the present embodiment is completed.
  • the third shell 38 is formed around the second shell 26. Further, the third shell 38 is formed so as to fill the void 34 around the quantum dot structure 16.
  • the quantum dot structure 36 has a higher volume ratio with respect to the entire volume of the light emitting layer 8 than the quantum dot structure 16 in the previous embodiment. That is, in the light emitting layer 8 in the present embodiment, the filling rate of the shell formed around the core 22 of the quantum dot 20 in the light emitting layer 8 is further improved. In other words, after the execution of the fifth heating step, the density of the inorganic substance with respect to the entire volume of the light emitting layer 8 is higher than that before the execution of the fifth heating step. Therefore, with the above configuration, the light emitting device 1 according to the present embodiment can further improve the reliability of the light emitting layer 8.
  • the third heating step may be omitted and the cooling step and the subsequent steps may be sequentially performed. That is, the vaporization of the ligand 18 and the vaporization of the organic material 44 may be collectively performed in the sixth heating step. As a result, the number of heating steps is reduced, which leads to a reduction in tact time and a reduction in manufacturing cost.
  • the fourth temperature T4 is the same as the first temperature T1
  • the fifth temperature T5 is the same as the second temperature T2
  • the sixth temperature T6 is the third temperature.
  • the light emitting layer forming process when the temperature is the same as T3 has been described.
  • the first solvent 32 and the second solvent 42 are the same
  • the material of the ligand 18 and the organic material 44 are the same
  • the first inorganic substance precursor 30 and the second inorganic substance precursor are the same. It can be easily realized by making 46 the same.
  • the quantum dot layer including the quantum dots 20 is the light emitting layer 8
  • the present invention is not limited to this, and for example, the first charge transport layer 6 or the second charge transport layer 10 may be a quantum dot layer including the quantum dots 20.
  • the quantum dot 20 may be provided with a function of transporting carriers.
  • the stability of the quantum dots 20 in each charge transport layer is improved as compared with the conventional charge transport layer including quantum dots, so that the carrier transport efficiency of each charge transport layer is improved, and as a result, light emission is achieved. This leads to an improvement in the luminous efficiency of the device 1.
  • Each charge transport layer including the quantum dots 20 described above can also be formed by the same method as the quantum dot layer forming step in each embodiment.
  • the configuration of the light emitting device 1 is described by exemplifying a display device including a plurality of light emitting elements and having the display surface DS.
  • the light emitting device 1 according to each of the above-described embodiments is not limited to this, and may be a light emitting device including a single light emitting element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

発光デバイス(1)は、第1電極(4)と、第2電極(12)と、前記第1電極および前記第2電極の間の量子ドット層(8)とを含む発光素子(2R・2G・2B)を基板(3)上に備える。前記量子ドット層は、コア(22)および該コアを被膜する第1シェル(24)を備えた量子ドット(20)と、前記第1シェルを被膜する第2シェル(26)とを備えた量子ドット構造体(16)を備える。前記第1シェルと前記第2シェルとは結晶構造を有し、少なくとも一組の互いに隣接する前記量子ドット同士が、前記第2シェルの結晶構造により接続している。前記量子ドット層の形成工程において、前記基板の周囲の雰囲気温度を第1温度以上に加熱する第1加熱工程と、前記第1加熱工程に次いで、前記雰囲気温度を第2温度まで加熱する第2加熱工程と、を備える。

Description

発光デバイス、発光デバイスの製造方法
 本発明は、量子ドットを含む発光素子を備えた発光デバイス、および当該発光デバイスの製造方法に関する。
 特許文献1は、コア/シェル構造を備えた半導体ナノ粒子(量子ドット)と、当該半導体ナノ粒子に配位する配位子とを開示している。
日本国公開特許公報「特開2017-25220号」
種村正美、"ランダム充填について(形の物理学,研究会報告)"、物性研究(1984),42(1):76-77
 発明者は、特許文献1に開示されているような従来の量子ドットを、単に積層した量子ドット層を備えた発光デバイスよりも、より当該発光デバイスの発光効率を改善する手法を見出した。
 上記課題を解決するために、本発明の発光デバイスの製造方法は、第1電極と、第2電極と、前記第1電極および前記第2電極の間の量子ドット層とを含む発光素子を基板上に備えた発光デバイスの製造方法であって、前記量子ドット層を形成する量子ドット層形成工程を備え、前記量子ドット層形成工程は、第1溶液を前記基板と重畳する位置に塗布する第1塗布工程と、前記第1塗布工程に次いで、前記基板の周囲の雰囲気温度を第1温度以上に加熱する第1加熱工程と、前記第1加熱工程に次いで、前記雰囲気温度を第2温度まで加熱する第2加熱工程と、を備え、前記第1溶液は、第1溶媒と、複数の量子ドットと、該量子ドットのそれぞれと配位結合するリガンドと、第1無機物前駆体とを含み、前記量子ドットは、コアと、該コアを被膜する第1シェルとを備え、前記第1温度は、前記リガンドの融点と前記第1溶媒の沸点とのうちの高い温度であり、前記第2温度は、前記第1温度より高く、かつ、前記第1無機物前駆体が、前記第1シェルの周囲にエピタキシャル成長し、前記第1シェルを被膜する第2シェルを形成する温度であり、前記第2加熱工程において、少なくとも一組の互いに隣接する前記量子ドット同士が、前記第2シェルを介して接続する。
 また、上記課題を解決するために、本発明の発光デバイスの製造方法は、第1電極と、第2電極と、前記第1電極および前記第2電極の間の量子ドット層とを含む発光素子を基板上に備えた発光デバイスであって、前記量子ドット層は、量子ドット構造体を備え、前記量子ドット構造体は、コアおよび該コアを被膜する第1シェルを備えた量子ドットと、前記第1シェルを被膜する第2シェルとを備え、前記第1シェルと前記第2シェルとが結晶構造を有し、少なくとも一組の互いに隣接する前記量子ドット同士が、前記第2シェルの結晶構造により接続する。
 上記構成により、量子ドットを備えた発光デバイスにおいて、より発光効率を改善できる。
本発明の実施形態1に係る発光デバイスの概略上面図および概略断面図、ならびに当該発光デバイスの発光層周辺の概略拡大図である。 本発明の実施形態1に係る発光デバイスの製造方法を説明するためのフローチャートである。 本発明の実施形態1に係る発光層の形成方法を説明するためのフローチャートである。 本発明の実施形態1に係る発光層の形成工程における、経過時間と温度との関係を説明するためのグラフである。 本発明の実施形態1に係る発光層の形成工程を説明するための工程断面図である。 本発明の実施形態1に係る発光層の形成工程を説明するための他の工程断面図である。 本発明の実施形態2に係る発光デバイスの概略上面図および概略断面図、ならびに当該発光デバイスの発光層周辺の概略拡大図である。 本発明の実施形態3に係る発光デバイスの概略上面図および概略断面図、ならびに当該発光デバイスの発光層周辺の概略拡大図である。 本発明の実施形態3に係る発光層の形成方法を説明するためのフローチャートである。 本発明の実施形態3に係る発光層の形成工程における、経過時間と温度との関係を説明するためのグラフである。 本発明の実施形態3に係る発光層の形成工程を説明するための工程断面図である。 本発明の実施形態4に係る発光デバイスの概略上面図および概略断面図、ならびに当該発光デバイスの発光層周辺の概略拡大図である。 本発明の実施形態4に係る発光デバイスの製造方法を説明するためのフローチャートである。 本発明の実施形態4に係る発光層の形成工程における、経過時間と温度との関係を説明するためのグラフである。 本発明の実施形態4に係る発光層の形成工程を説明するための工程断面図である。 本発明の実施形態4に係る発光層の形成工程を説明するための他の工程断面図である。 本発明の実施形態4に係る発光層の形成工程を説明するための他の工程断面図である。
 〔実施形態1〕
 図1の(a)は、本実施形態に係る発光デバイス1の概略上面図である。図1の(b)は、図1の(a)における、A-A線矢視断面図である。図1の(c)は、図1の(b)における、領域Bにおける拡大断面図、すなわち、後述する第2発光層8Gの周辺における拡大断面図である。
 図1の(a)に示すように、本実施形態に係る発光デバイス1は、発光が取り出される発光面DSと、当該発光面DSの周囲を囲う額縁領域NAとを備える。額縁領域NAにおいては、後に詳述する発光デバイス1の発光素子を駆動するための信号が入力される端子Tが形成されていてもよい。
 平面視において発光面DSと重畳する位置において、図1の(b)に示すように、本実施形態に係る発光デバイス1は、発光素子層2とアレイ基板3とを備える。発光デバイス1は、図示しないTFT(Thin Film Transistor)が形成されたアレイ基板3上に、発光素子層2の各層が積層された構造を備える。なお、本明細書においては、発光デバイス1の発光素子層2からアレイ基板3への方向を「下方向」、発光デバイス1の発光素子層2から発光面DSへの方向を「上方向」として記載する。
 発光素子層2は、第1電極4上に、第1電荷輸送層6と、量子ドット層である発光層8と、第2電荷輸送層10と、第2電極12とを、下層から順次積層して備える。アレイ基板3の上層に形成された発光素子層2の第1電極4は、アレイ基板3のTFTと電気的に接続されている。本実施形態において、例えば、第1電極4は陽極であり、第2電極12は陰極である。
 本実施形態において、発光素子層2は、第1発光素子2Rと、第2発光素子2Gと、第3発光素子2Bとを備える。第1発光素子2Rと、第2発光素子2Gと、第3発光素子2Bとは、発光層8に、半導体ナノ粒子材料、すなわち、量子ドット材料を備えた、QLED素子である。
 ここで、第1電極4、第1電荷輸送層6、および発光層8のそれぞれは、エッジカバー14によって分離されている。特に、本実施形態においては、第1電極4は、エッジカバー14によって、第1発光素子2R用の第1電極4R、第2発光素子2G用の第1電極4G、および第3発光素子2B用の第1電極4Bに分離されている。また、第1電荷輸送層6は、エッジカバー14によって、第1発光素子2R用の第1電荷輸送層6R、第2発光素子2G用の第1電荷輸送層6G、および第3発光素子2B用の第1電荷輸送層6Bに分離されている。さらに、発光層8は、エッジカバー14によって、第1発光層8R、第2発光層8G、および第3発光層8Bに分離されている。
 なお、第2電荷輸送層10と、第2電極12とは、エッジカバー14によって分離されず、共通して形成されている。エッジカバー14は、図1の(b)に示すように、第1電極4の側面と上面の周囲端部付近とを覆う位置に形成されていてもよい。
 本実施形態において、第1発光素子2Rは、第1電極4R、第1電荷輸送層6Rと、第1発光層8Rと、第2電荷輸送層10と、第2電極12とからなる。また、第2発光素子2Gは、第1電極4Gと、第1電荷輸送層6Gと、第2発光層8Gと、第2電荷輸送層10と、第2電極12とからなる。さらに、第3発光素子2Bは、第1電極4Bと、第1電荷輸送層6Bと、第3発光層8Bと、第2電荷輸送層10と、第2電極12とからなる。
 本実施形態においては、第1発光層8Rと、第2発光層8Gと、第3発光層8Bとは、それぞれ、第1の色の光である赤色光と、第2の色の光である緑色光と、第3の色の光である青色光とを発する。すなわち、第1発光素子2Rと、第2発光素子2Gと、第3発光素子2Bとは、それぞれ、互いに異なる色の光である、赤色光と、緑色光と、青色光とを発する発光素子である。
 ここで、青色光とは、例えば、400nm以上500nm以下の波長帯域に発光中心波長を有する光である。また、緑色光とは、例えば、500nm超600nm以下の波長帯域に発光中心波長を有する光のことである。また、赤色光とは、例えば、600nm超780nm以下の波長帯域に発光中心波長を有する光のことである。
 第1電極4および第2電極12は導電性材料を含み、それぞれ、第1電荷輸送層6および第2電荷輸送層10と電気的に接続されている。第1電極4と第2電極12とのうち、発光面DSに近い電極は透明電極である。
 特に、本実施形態において、アレイ基板3は透明基板であり、第1電極4は透明電極である。また、第2電極12は反射電極であってもよい。このため、発光層8からの光は、第1電荷輸送層6、第1電極4、およびアレイ基板3を透過して、発光面DSから発光デバイス1の外部に出射される。このため、発光デバイス1は、ボトムエミッション型の発光デバイスとして構成されている。発光層8から上方向に発せられた光、および下方向に発せられた光の両方を、発光デバイス1からの発光として利用可能であるため、発光デバイス1は、発光層8から発せられた光の利用効率を向上させることができる。
 なお、上述した第1電極4と第2電極12との構成は一例であり、別の材料によって構成されていてもよい。
 第1電荷輸送層6は、第1電極4からの電荷を発光層8へと輸送する層である。第1電荷輸送層6は、第2電極12からの電荷の輸送を阻害する機能を有していてもよい。本実施形態においては、第1電荷輸送層6は、陽極である第1電極4からの正孔を発光層8へと輸送する正孔輸送層であってもよい。
 第2電荷輸送層10は、第2電極12からの電荷を発光層8へと輸送する層である。第2電荷輸送層10は、第1電極4からの電荷の輸送を阻害する機能を有していてもよい。本実施形態においては、第2電荷輸送層10は、陰極である第2電極12からの電子を発光層8へと輸送する電子輸送層であってもよい。
 次に、発光層8の構成について、図1の(c)を参照して詳細に説明する。なお、図1の(c)は、図1の(b)の領域B、すなわち、第2発光素子2Gの第2発光層8Gの周囲における概略断面図を示す。しかしながら、本実施形態においては、特に断りのない限り、図1の(c)に示す各部材は、各発光素子において共通の構成であるとみなして示している。したがって、本実施形態においては、特に断りのない限り、図1の(c)に示す各部材は、各発光素子において同一の構成であってもよい。
 本実施形態において、発光層8は、量子ドット構造体16とリガンド18とを備える。量子ドット構造体16は、複数の量子ドット20を備える。量子ドット20は、コア22と該コア22の周囲を被膜する第1シェル24とを含む、コア/シェル構造を備えている。また、量子ドット構造体16は、第2シェル26を備える。第2シェル26は、量子ドット20のそれぞれの外殻である第1シェル24の周囲を被膜する。
 なお、量子ドット20は、コア22の周囲に複数のシェルを備えた、マルチシェル構造を備えていてもよい。この場合、第1シェル24は、上記複数のシェルのうち、最外層にあたるシェルを指す。
 リガンド18は、第2シェル26の外表面において、量子ドット構造体16と配位結合し、量子ドット構造体16の空隙を充填していてもよい。リガンド18は、例えば、TOPO(trioctylphosphine oxide)であってもよい。
 ここで、量子ドット20のうち、少なくとも一組の互いに隣接する量子ドット20同士は、第2シェル26を介して接続している。また、第1シェル24と第2シェル26とは、結晶構造を有し、特に、本実施形態においては、第2シェル26は、第1シェル24上にエピタキシャル成長することにより形成された結晶構造を備える。したがって、上述した互いに隣接する量子ドット20同士は、第2シェル26の結晶構造により接続している。なお、本実施形態においては、同一の発光素子内における全ての量子ドット20同士が、第2シェル26の結晶構造により接続し、一体の量子ドット構造体16を形成していてもよい。また、第1シェル24と第2シェル26とは、多結晶であってもよい。
 量子ドット20のコア22および第1シェル24は、公知のコア/シェル構造の量子ドットに用いられる無機の材料を備えていてもよい。すなわち、第1発光層8R、第2発光層8G、および第3発光層8Bは、それぞれ、赤色、緑色、および青色のQLED素子の発光層に使用される、公知の量子ドット材料を備えていてもよい。
 また、第2シェル26は、第1シェル24と同様に、公知のコア/シェル構造の量子ドットに用いられる、無機のシェル材料を備えていてもよい。また、第1シェル24と第2シェル26とは、同一材料からなっていてもよい。なお、第2シェル26の比抵抗は、第1シェル24の比抵抗以上であることが好ましい。また、第2シェル26のバンドギャップの大きさは、第1シェル24のバンドギャップの大きさ以上であることが好ましい。当該構成により、第2シェル26から第1シェル24への電荷注入の効率が向上する。
 コア22の具体的な材料としては、例えば、CdSe(バンドギャップ1.73eV)、CdTe(バンドギャップ1.44eV)、ZnTe(バンドギャップ2.25eV)、またはCdS(バンドギャップ2.42eV)等のII-VI族半導体が挙げられる。他に、コア22の具体的な材料としては、例えば、InP(バンドギャップ1.35eV)、またはInGaP(バンドギャップ1.88eV)などのIII-V族半導体が挙げられる。
 一般に、量子ドットの発する波長はコアの粒径によって決定される。ゆえに、コア22の粒径の制御によって、コア22が発する光を、赤色、緑色、および青色の何れかに制御できるように、適切なバンドギャップを有する半導体材料を、コア22の材料として採用することが好ましい。
 赤色発光層である第1発光層8Rが630nmの波長の赤色光を発するために、第1発光層8Rが含むコア22の材料のバンドギャップは、1.97eV以下であることが好ましい。また、緑色発光層である第2発光層8Gが532nmの波長の緑色光を発するために、第2発光層8Gが含むコア22の材料のバンドギャップは、2.33eV以下であることが好ましい。さらに、青色発光層である第3発光層8Bが630nmの波長の青色光を発するために、第3発光層8Bが含むコア22の材料のバンドギャップは、2.66eV以下であることが好ましい。上述した第1発光層8R、第2発光層8G、および第3発光層8Bを備えた発光デバイス1は、UHDTVの国際規格BT2020における色空間の基準を満たす点において好ましい。
 第1シェル24および第2シェル26の具体的な材料としては、例えば、ZnSe(バンドギャップ2.7eV)、またはZnS(バンドギャップ3.6eV)等のII-VI族半導体が挙げられる。他に、第1シェル24および第2シェル26の具体的な材料としては、GaP(バンドギャップ2.26eV)等のIII-V族半導体が挙げられる。
 コア22の材料は、第1シェル24および第2シェル26の材料と比較して、比抵抗が低く、バンドギャップが小さいことが好ましい。当該構成により、第1シェル24および第2シェル26からコア22への電荷注入の効率が向上する。
 なお、本実施形態において、第1シェル24の、コア22の外表面からの平均膜厚は、第2シェル26の最小膜厚よりも小さい。ここで、第2シェル26の最小膜厚とは、第2シェル26を介して互いに接続している2つの量子ドット20の間における第2シェル26の膜厚、あるいは、第1シェル24から第2シェル26の外表面までの膜厚のうち最も小さい膜厚を指す。
 ここで、図1の(c)に示すように、ある量子ドット20のコア22から、隣接する他の量子ドット20のコア22までの最短距離をdとおく。例えば、コア22がInP、第1シェル24および第2シェル26がZnSである場合、距離dの平均値は3nm以上であることが好ましい。また、例えば、コア22がCdSe、第1シェル24および第2シェル26がZnSである場合、距離dの平均値は1nm以上であることが好ましい。当該構成によれば、電子波動関数から導き出される、コア22からの電子の染み出しを、第1シェル24および第2シェル26によって効率的に低減できる。
 次に、本実施形態に係る発光デバイス1の製造方法について、図2を参照して説明する。図2は、本実施形態に係る発光デバイス1の製造方法について説明するためのフローチャートである。
 はじめに、アレイ基板を形成する(ステップS1)。アレイ基板の形成は、基板に対し、サブ画素の位置に合せて、複数のTFTを形成することにより実行されてもよい。
 次いで、第1電極4を形成する(ステップS2)。ステップS2において、例えば、ITO等の導電性を有する透明電極材料を、スパッタにより成膜した後、サブ画素の形状に合わせてパターニングすることにより、第1電極4をサブ画素ごとに形成してもよい。あるいは、透明電極材料を、蒸着マスクを使用し蒸着することにより、第1電極をサブ画素ごとに形成してもよい。
 次いで、エッジカバー14を形成する(ステップS3)。エッジカバー14は、アレイ基板3および第1電極4上に塗布された後、隣接する第1電極4同士の間において、当該第1電極4の側面および周囲端部を覆う位置を残してパターニングされることにより得られてもよい。エッジカバー14のパターニングは、フォトリソグラフィによって行われてもよい。
 次いで、第1電荷輸送層6を形成する(ステップS4)。第1電荷輸送層6は、インクジェット方式による塗り分け、マスクを使用した蒸着、またはフォトリソグラフィを使用したパターニングによって、サブ画素ごとに形成されてもよい。
 次いで、発光層8を形成する(ステップS5)。発光層8の形成工程について、図3から図6を参照して、より詳細に説明する。
 図3は、本実施形態における量子ドット層形成工程にあたる、発光層形成工程について説明するためのフローチャートである。
 図4は、当該発光層形成工程における、経過時間と温度との関係を説明するためのグラフである。図4において、横軸は、発光層形成工程の経過時間、縦軸は温度を表している。図4における実線は、アレイ基板3の周囲の雰囲気の温度を示し、破線は、アレイ基板3上の量子ドット20の周囲の温度を示している。以下、単に「雰囲気」とは、アレイ基板3の周囲の雰囲気を示す。
 図5および図6は、当該発光層形成工程を説明するための工程断面図である。以降、図5および図6を含む、本明細書における工程断面図は、図1の(b)の領域B、すなわち、第2発光素子2Gの第2発光層8Gの周囲に対応する位置における工程断面図を示す。しかしながら、本明細書における工程断面図を参照して説明する手法は、特に断りのない限り、他の発光素子の発光層8の形成方法に適用してもよい。
 発光層形成工程までにおいて、図5の(a)に示すように、第1電荷輸送層6までが、アレイ基板3上に形成されている。発光層形成工程において、はじめに、図5の(b)に示す第1溶液28をアレイ基板3と重畳する位置に塗布する、第1塗布工程を実施する(ステップS10)。
 第1溶液28は、図5の(b)に示すように、リガンド18が配位した複数の量子ドット20と、第1無機物前駆体30とが、第1溶媒32中に分散した溶液である。第1溶媒32は、例えば、ヘキサンであってもよい。第1無機物前駆体30は、前述した第2シェル26と同じ材料を含む。第1無機物前駆体30は、例えば、塩化亜鉛および1-ドデカンチオールを含んでいてもよい。
 第1塗布工程は、図4に示す、温度T0の雰囲気温度下において行う。第1溶液28の塗布が、温度T0の雰囲気温度下において実施されるために、図4に示すように、塗布される第1溶液28中の量子ドット20の周囲温度についても、温度T0となる。温度T0は、例えば、常温であってもよい。
 次いで、第1溶液28が塗布されたアレイ基板3を、加熱炉等に投入し、雰囲気の加熱を開始する。ここで、雰囲気を、雰囲気温度が図4に示す第1温度T1以上となるまで加熱することにより、第1加熱工程を実施する(ステップS11)。
 第1温度T1は、リガンド18の融点と、第1溶媒32の沸点とのうちの、高い温度である。なお、図4に示す温度TAは、リガンド18の融点と、第1溶媒32の沸点とのうちの、低い温度である。また、第1温度T1および温度TAは、温度T0より高い。
 ここで、TOPOの融点は摂氏50度から摂氏54度であり、ヘキサンの沸点は摂氏68.5度から摂氏69.1度である。したがって、リガンド18がTOPOであり、第1溶媒がヘキサンである場合、温度TAはTOPOの融点であり、第1温度T1はヘキサンの沸点である。
 雰囲気温度が、温度T0から温度TAになるまでは、図4に示すように、量子ドット20の周囲温度は、雰囲気温度の上昇に追従する。しかしながら、量子ドット20の周囲温度が温度TAまで上昇し、リガンド18の溶融または第1溶媒32の蒸発のうちの一方が開始すると、量子ドット20の周囲温度は、しばらく温度TAを維持する。
 さらに雰囲気の加熱を進めることにより、リガンド18の溶融または第1溶媒32の蒸発のうちの一方が終了し、再び量子ドット20の周囲温度が上昇し始める。次いで、量子ドット20の周囲温度が第1温度T1まで上昇し、リガンド18の溶融または第1溶媒32の蒸発のうちの他方が開始すると、量子ドット20の周囲温度は、しばらく第1温度T1を維持する。
 これにより、第1加熱工程によって、リガンド18の溶融および第1溶媒32の蒸発が完了する。第1温度T1が第1溶媒32の沸点である場合、第1加熱工程において、リガンド18が溶融した後に、第1溶媒32が気化する。一方、第1温度T1がリガンド18の融点である場合、第1加熱工程において、第1溶媒32が気化した後に、リガンド18が溶融する。
 ここで、リガンド18の溶融が第1溶媒32の気化よりも早い場合、第1溶媒32の気化の直後において、第1電荷輸送層6の上層においては、固体のリガンド18が周囲に付着した量子ドット20の集合体が形成される。当該集合体は膜として不安定であるため、無機物前駆体30の存在が困難となる場合がある。したがって、第1加熱工程において、量子ドット20と無機物前駆体30とを含む、安定した膜を形成する観点から、リガンド18の溶融の後に、第1溶媒32が気化することが好ましい。
 第1加熱工程の完了後、図6の(a)に示すように、アレイ基板3上から第1溶媒32が気化し、溶融したリガンド18中においては、量子ドット20と無機物前駆体30とが分散している。
 次いで、雰囲気の加熱を、雰囲気温度が、図4に示す第2温度T2になるまで継続する。ここで、雰囲気温度が第2温度T2に到達した時点から、加熱条件を調節し、雰囲気温度を第2温度T2付近に維持する、第2加熱工程を実施する(ステップS12)。
 リガンド18の溶融および第1溶媒32の蒸発が完了した後、量子ドット20の周囲温度は、第1温度T1から上昇し、第2温度T2に到達する。ここで、雰囲気温度が第2温度T2に維持されているために、第2温度T2に到達後の量子ドット20の周囲温度についても、第2温度T2に維持される。
 第2温度T2は、第1温度T1より高く、第1無機物前駆体30が、熱化学反応により、第1シェル24の周囲にエピタキシャル成長するための温度である。このため、量子ドット20の周囲温度が第2温度T2に維持されている間、第1シェル24の周囲に、第1無機物前駆体30が、次第にエピタキシャル成長する。これにより、図6の(b)に示すように、それぞれの量子ドット20の第1シェル24の周囲に、第2シェル26が形成される。第1無機物前駆体30が、前述した、塩化亜鉛および1-ドデカンチオールを含む場合、第2温度T2は約摂氏200度である。
 第2シェル26は、それぞれの量子ドット20の周囲に、第1シェル24の外表面から、次第に膜厚が大きくなるように形成される。ここで、互いに隣接する2つの量子ドット20において形成される第2シェル26の膜厚の合計が、当該量子ドット20の第1シェル24間の距離よりも大きくなった位置において、当該2つの量子ドット20が、第2シェル26を介して接続する。本実施形態においては、少なくとも一組の互いに隣接する量子ドット20同士が、第2シェル26を介して接続するまで、第2加熱工程が実施される。
 以上により、図6の(b)に示すように、量子ドット20と第2シェル26とを備えた量子ドット構造体16が形成される。この後、加熱炉からアレイ基板3を取り出し、冷却させることにより、溶融したリガンド18が再び固化する。これにより、図6の(b)に示す、量子ドット構造体16とリガンド18とを備えた発光層8が得られる。
 なお、本実施形態においては、第2発光層8Gの周囲における拡大断面図を参照して、発光層8の形成工程を説明した。しかしながら、第1発光層8R、第2発光層8G、および第3発光層8Bのそれぞれの形成方法における差異は、第1溶液28に含まれる材料の差異のみである。すなわち、形成される発光層8の発光色に関わらず、第1塗布工程、第1加熱工程、および第2加熱工程は、同一の手法によって実現してもよい。
 ここで、第1塗布工程において、対応する発光素子の発光色ごとに、第1溶液28中の材料を変更し、インクジェット法によって第1溶液28を塗り分け、次いで、上述した第1加熱工程および第2加熱工程を実施してもよい。これにより、互いに異なる発光色の発光素子を、連続した一度の加熱によって形成することができる。
 次いで、第2電荷輸送層10を形成する(ステップS6)。第2電荷輸送層10は、全てのサブ画素に共通して、スピンコート等により塗布形成されてもよい。
 最後に第2電極12を形成する(ステップS7)。第2電極12は、全てのサブ画素に共通して、蒸着等により成膜されてもよい。以上により、発光素子層2がアレイ基板3上に形成され、図1に示す発光デバイス1が得られる。
 本実施形態における発光デバイス1の製造方法においては、コア/シェル構造を有する量子ドット20を塗布した後に、それぞれの量子ドット20の第1シェル24の周囲に、第2シェル26をエピタキシャル成長させている。このため、単にコア/シェル構造を有する量子ドット20を積層させた場合と比較して、それぞれの量子ドット20におけるシェルの膜厚を厚くすることができる。
 例えば、コア/シェル構造を備えた量子ドットにおいて、当該量子ドットのコアに注入された電子の染み出しを低減するためには、シェルの膜厚を厚くすることが考えられる。しかしながら、シェルの膜厚が厚い量子ドットを積層して量子ドットを形成した場合、発光層の体積に対する、量子ドットの充填率が低くなる。このため、発光層において十分な量子ドットの密度を実現することが困難となり、発光素子の発光効率の低減につながる。
 本実施形態における発光デバイス1の製造方法においては、薄い第1シェル24を備えた量子ドット20を塗布した後に、第2シェル26をそれぞれの量子ドット20に形成する。本実施形態における発光層8において、コア22の周囲に形成されるシェルの膜厚は、第1シェル24および第2シェル26の合計膜厚とみなすことができる。
 これにより、同じ膜厚のシェルを備えた量子ドットを単に積層する場合と比較して、発光層8における量子ドット20の密度を向上させることができる。このため、量子ドット20からの電子の染み出しを低減しつつ、発光層8における量子ドット20の密度を向上させるため、発光デバイス1の発光効率の改善につながる。
 また、本実施形態においては、少なくとも1組の量子ドット20が、第2シェル26を介して接続しているため、当該1組の量子ドット20においては、第2シェル26の外表面の面積が、接続していない場合と比較して小さくなる。すなわち、本実施形態においては、量子ドットを単に積層する場合と比較して、量子ドット構造体16の外表面の面積を小さくできる。
 量子ドット構造体16の外表面の面積を小さくすることにより、外部から水分が侵入し得る、第2シェル26の表面の面積を小さくできる。このため、当該構成により、水分侵入による第2シェル26へのダメージ、ひいては、当該ダメージによる第2シェル26の量子ドット20の表面保護機能の低下を低減できる。
 また、量子ドット構造体16の外表面にリガンド18が配位する場合、当該外表面の面積を小さくすることにより、水分侵入によりダメージを受け得るリガンド18を低減できる。したがって、当該ダメージにより、リガンド18による第2シェル26の保護機能が失われることによる、第2シェル26へのダメージを低減することができる。
 さらに、量子ドット構造体16の外表面の面積を小さくすることにより、発光デバイス1の駆動時にダメージを受け得る第2シェル26の表面積を小さくできる。このため、当該構成により、発光デバイス1の駆動に伴う第2シェル26のダメージ、ひいては、当該ダメージによる、第2シェル26における欠陥の形成を低減できる。このため、量子ドット構造体16の外表面の面積を小さくすることにより、当該欠陥において電子と正孔との再結合が発生することに起因する、非発光過程の発生、ひいては、発光デバイス1の発光効率の低下が低減される。
 以上のように、量子ドット構造体16の外表面の面積が小さいことにより、ダメージを受け得る量子ドット構造体16の外表面の面積を低減し、量子ドット構造体16のダメージによる量子ドット20の失活を低減できる。
 ここで、非特許文献1によれば、剛体の球の充填における、ランダム最密充填率の平均値は、おおよそ63.66パーセントである。したがって、本実施形態において、発光層8における量子ドット構造体16の体積の割合は、63.7パーセント以上であることが好ましい。上記構成であれば、第1シェル24と第2シェル26との合計膜厚と等しい膜厚のシェルを備えた量子ドットをランダムに積層した場合と比較して、発光層8における量子ドット20の密度を向上させることができる。また、上記構成であれば、量子ドットをランダムに積層した場合と比較して、より効率よく、量子ドット構造体16の外表面の面積を低減できる。
 ここで、量子ドット構造体16における全ての量子ドット20が、第2シェル26を介して接続するために必要な条件について説明する。
 量子ドット20が、平面上に、m行n列に配列していると仮定する。ここで、互いに隣接する量子ドット20が接続しうる位置、すなわち、m行n列に配列した格子点同士の間の個数は、m×(n-1)+n×(m-1)=2mn-m-nとなる。
 また、同一平面上の全ての量子ドット20が、第2シェル26を介して接続している場合に、互いに接続している量子ドット20の組数が最小であるとする。このような場合の1例として、全ての行間において、全ての互いに隣接する量子ドットの組が接続し、全ての列間のそれぞれにおいて、何れか1組の互いに隣接する量子ドット同士が接続している例が挙げられる。このような場合、互いに隣接する量子ドット20が接続している位置の個数は、m×(n-1)+1×(m-1)=mn-1となる。
 したがって、上述した条件の場合、全て量子ドット20が第2シェル26を介して接続しうる位置に対する、実際に量子ドット20同士が第2シェル26を介して接続している位置の割合は、(mn-1)/(2mn-m-n)となる。
 ここで、実際の発光デバイス1の発光層8に含まれる量子ドット20の個数は非常に膨大であるため、mおよびnは何れも十分に大きいとみなすことができる。このため、mおよびnを正に発散させると、上述した割合は、おおよそ0.5と導出できる。
 ゆえに、同一平面上の全ての量子ドット20が、第2シェル26を介して接続し、全ての互いに隣接する量子ドット20の組のうち、第2シェル26を介して接続している組が最小である場合、当該組は全ての組のうちの50パーセント程度であるとみなせる。したがって、全ての互いに隣接する量子ドット20の組のうち、第2シェル26を介して接続している組が50パーセントを超えた場合には、積層された各層における全ての量子ドット20が、第2シェル26を介して接続している蓋然性が高いといえる。
 全ての量子ドット20が、第2シェル26を介して接続している場合には、量子ドット20を1つの原子とみなした場合、量子ドット構造体16は、量子ドット20同士が第2シェル26によって接続された結晶構造を形成しているとみなせる。当該構成により、より効率よく、量子ドット構造体16の外表面の面積を低減できる。ゆえに、量子ドット構造体16において、互いに隣接する量子ドット20同士が、第2シェル26の結晶構造により接続している比率が、50パーセントよりも高く、100パーセント以下であることが好ましい。
 本実施形態において、第1シェル24の、コア22の外表面からの平均膜厚は、第2シェル26の最小膜厚よりも小さい。このため、第1加熱工程と第2加熱工程との間において、量子ドット20をより密に積層し、その後の第2加熱工程において、膜厚が比較的厚い第2シェル26を形成することができる。
 したがって、当該加熱工程においては、量子ドット20を密に積層した状態において、電子波動関数から導き出される、コア22からの電子の染み出しを十分に低減できる膜厚を有する、第1シェル24および第2シェル26を形成することができる。ゆえに、当該構成により、第1シェル24および第2シェル26の膜厚を十分に確保しつつ、量子ドット構造体16における量子ドット20の密度を高めることができる。
 本実施形態においては、アレイ基板3、第1電極4、エッジカバー14、および第1電荷輸送層6の形成後に、発光層8の形成を行う。このため、アレイ基板3、第1電極4、エッジカバー14、および第1電荷輸送層6は、上述した加熱工程における加熱に対する耐熱性を有した材料を含むことが好ましい。
 アレイ基板3は、例えば、十分に高い歪点を有する、アルカリガラス等を含むガラス基板であってもよい。また、アレイ基板3は、ポリイミド等、ガラス転移温度の高い有機材料を含む有機基板であってもよい。
 また、例えば、発光素子層2がボトムエミッション型の発光素子を形成し、第1電極4が陽極である場合、第1電極4にはITOが一般的に使用される。しかしながら、上述した加熱工程における加熱による比抵抗の上昇を低減するために、第1電極4は、FTOとITOとの複合材料等、耐熱性の高い材料を含むことが好ましい。また、第1電荷輸送層6が正孔輸送層である場合には、NiO、MgNiO、Cr、CuO、またはLiNbO等、有機材料よりも耐熱性の高い無機材料を含むことが好ましい。
 なお、ある程度の高さおよび傾斜を有する形状を実現するために、エッジカバー14には、一般的に、有機材料が用いられる。本実施形態においては、上述した加熱工程の加熱によるダメージを低減する観点から、エッジカバー14は、ポリイミド等、ガラス転移温度の高い有機材料を含むことが好ましい。
 また、第2電荷輸送層10および第2電極12は、発光層8の形成後に形成される。このため、第2電荷輸送層10および第2電極12の材料には、上述した加熱工程における加熱に対する耐熱性を有していない材料を採用することが可能である。例えば、第2電荷輸送層10は、従来公知の電子輸送層に使用される材料を含んでいてもよく、第2電極12は、従来公知の陰極に使用される材料を含んでいてもよい。
 〔実施形態2〕
 図7の(a)は、本実施形態に係る発光デバイス1の概略上面図である。図7の(b)は、図7の(a)における、A-A線矢視断面図である。図7の(c)は、図7の(b)における、領域Bにおける拡大断面図である。
 本実施形態に係る発光デバイス1は、前実施形態に係る発光デバイス1と比較して、発光素子層2の各層の積層順が逆転している点を除いて、同一の構成を備えていてもよい。すなわち、本実施形態に係る発光素子層2は、第2電極12上に、第2電荷輸送層10と、発光層8と、第1電荷輸送層6と、第1電極4とを、下層から順次積層して備える。
 ここで、前実施形態に係る発光素子1と比較して、第2電極12および第2電荷輸送層10のそれぞれは、エッジカバー14によって分離されている。特に、本実施形態においては、第2電極12は、エッジカバー14によって、第1発光素子2R用の第2電極12R、第2発光素子2G用の第2電極12G、および第3発光素子2B用の第2電極12Bに分離されている。また、第2電荷輸送層10は、エッジカバー14によって、第1発光素子2R用の第2電荷輸送層10R、第2発光素子2G用の第2電荷輸送層10G、および第3発光素子2B用の第2電荷輸送層10Bに分離されている。
 なお、前実施形態に係る発光素子1と比較して、第1電荷輸送層6と、第1電極4とは、エッジカバー14によって分離されず、共通して形成されている。
 本実施形態においては、第1電極4は透明電極であり、第2電極12は反射電極であってもよい。このため、発光層8からの光は、第1電荷輸送層6および第1電極4を透過して、発光面DSから発光デバイス1の外部に出射される。このため、発光デバイス1は、トップエミッション型の発光デバイスとして構成されている。このため、本実施形態において、アレイ基板3は、必ずしも透明基板である必要はない。
 本実施形態に係る発光デバイス1は、図2に示す各工程を、ステップS1、ステップS7、ステップS3、ステップS6、ステップS5、ステップS4、ステップS2の順に、前実施形態と同様に実施することにより製造できる。このため、本実施形態においては、アレイ基板3、第2電極12、エッジカバー14、および第2電荷輸送層10の形成後に、発光層8の形成を行う。このため、アレイ基板3、第2電極12、エッジカバー14、および第2電荷輸送層10は、上述した加熱工程における加熱に対する耐熱性を有した材料を含むことが好ましい。
 例えば、発光素子層2がトップエミッション型の発光素子を形成し、第2電極12が陰極である場合、第2電極12は、上述した加熱工程における加熱に対する耐熱性を高める観点から、融点の高い金属材料を含むことが好ましい。例えば、第2電極12は、Al、またはAg等の金属、あるいは、AgMg等の金属間化合物を含むことが好ましい。また、第2電荷輸送層10が電子輸送層である場合には、MgO等、有機材料よりも耐熱性の高い無機材料を含むことが好ましい。なお、上述した材料は、一般に、陰極材料および電子輸送層材料として使用される材料でもある。
 また、第1電荷輸送層6および第1電極4は、発光層8の形成後に形成される。このため、第1電荷輸送層6および第1電極4の材料には、上述した加熱工程における加熱に対する耐熱性を有していない材料を採用することが可能である。例えば、第1電荷輸送層6は、従来公知の正孔輸送層に使用される材料を含んでいてもよく、第1電極4は、ITO等、従来公知の陽極に使用される、透明の導電性材料を含んでいてもよい。
 本実施形態に係る発光デバイス1は、前実施形態に係る発光デバイス1と比較して、発光素子層2の各層の材料を、従来使用される材料から変更する必要性が低い。このため、本実施形態に係る発光デバイス1は、前実施形態に係る発光デバイス1と比較して、材料選択の自由度を改善することができる。
 〔実施形態3〕
 図8の(a)は、本実施形態に係る発光デバイス1の概略上面図である。図8の(b)は、図8の(a)における、A-A線矢視断面図である。図8の(c)は、図8の(b)における、領域Bにおける拡大断面図である。
 本実施形態に係る発光デバイス1は、実施形態1に係る発光デバイス1と比較して、発光層8がリガンド18を含まない点を除いて、同一の構成を備えていてもよい。発光層8は、図8の(c)に示すように、量子ドット構造体16によって充填されない空間に、空隙34を備えていてもよい。
 本実施形態に係る発光デバイス1は、図2に示す各工程のうち、ステップS5、すなわち、発光層形成工程を除いて、同一の方法によって製造される。ここで、本実施形態に係る発光デバイス1の発光層形成工程について、図9から図11を参照して、より詳細に説明する。
 図9は、本実施形態における量子ドット層形成工程にあたる、発光層形成工程について説明するためのフローチャートである。図10は、当該発光層形成工程における、経過時間と温度との関係を説明するためのグラフである。図4と同様に、図10における実線は、アレイ基板3の周囲の雰囲気温度を示し、破線は、アレイ基板3上の量子ドット20の周囲の温度を示している。図11は、当該発光層形成工程を説明するための工程断面図である。
 本実施形態に係る発光層形成工程において、ステップS10からステップS12までは、実施形態1において説明した方法と同一の方法を実行する。ステップS12の完了時点において、図11の(a)に示すように、第1電荷輸送層6の上層には、量子ドット構造体16とリガンド18とが形成されている。
 本実施形態においては、ステップS12に次いで、さらに雰囲気温度を上昇させて、雰囲気温度が第3温度T3以上となるように、雰囲気を加熱する、第3加熱工程を実施する(ステップS13)。第3温度T3は、第2温度T2よりも高く、かつ、リガンド18の沸点に相当する。例えば、リガンド18が前述のTOPOである場合、第3温度T3は、摂氏411.2度である。
 第3加熱工程における雰囲気の加熱により、量子ドット20の周囲温度が第3温度T3に到達すると、リガンド18の蒸発が開始し、量子ドット20の周囲温度がしばらく第3温度T3を維持する。これにより、第3加熱工程において、リガンド18が気化し、図11の(b)に示すように、リガンド18を備えていない発光層8が得られる。
 本実施形態に係る発光デバイス1は、発光層8にリガンド18を備えていない。一般に、量子ドットに配位するリガンドは有機材料を含むことが多い。このため、リガンド18を備えていない本実施形態における発光層8は、無機材料に対する有機材料の含有率が低く、水分浸透等による劣化に強くなる。したがって、本実施形態に係る発光デバイス1は、より信頼性を改善することが可能である。
 ここで、上述した非特許文献1の記載から、剛体球がランダム最密充填した空間における、当該剛体球が占めない空隙の割合の平均値は、約36.34体積パーセントとなる。したがって、例えば、発光層8において、無機物に対する有機物の体積比率が、36.3体積パーセント以下であることが好ましい。この場合には、従来の量子ドットをランダム最密充填し、当該量子ドット間の空隙を有機リガンドによって充填した発光層と比較して、発光層8中の有機物の割合を低減できる。したがって、上記構成により、より効率的に発光層8の信頼性を向上させることが可能である。
 なお、本明細書において、「リガンドを備えていない」との表現は、実質的にリガンドを備えていないことを指す。例えば、本実施形態における発光層8は、不純物またはリガンドの残渣が、発光層8の信頼性を著しく低下させない程度に残留していてもよい。具体的には、本実施形態における発光層8は、上述した不純物またはリガンドの残渣を、発光層8の全体の体積に対し、3体積パーセント程度含んでいてもよい。
 また、本実施形態においても、前述までの実施形態と同様に、量子ドット構造体16の外表面の面積を小さくすることができる。これにより、本実施形態における第3加熱工程において、加熱によるダメージを受け得る第2シェル26の表面積を小さくできる。このため、当該構成により、上述のように、第2シェル26のダメージに伴う第2シェル26の欠陥の形成、ひいては、当該欠陥による発光デバイス1の発光効率の低下を低減できる。
 〔実施形態4〕
 図12の(a)は、本実施形態に係る発光デバイス1の概略上面図である。図12の(b)は、図12の(a)における、A-A線矢視断面図である。図12の(c)は、図8の(b)における、領域Bにおける拡大断面図である。
 本実施形態に係る発光デバイス1は、前実施形態に係る発光デバイス1と比較して、発光層8が、量子ドット構造体16の代わりに、量子ドット構造体36を備える点を除いて、同一の構成を備えていてもよい。
 量子ドット構造体16は、図12の(c)に示すように、量子ドット20と、第2シェル26とに加えて、第3シェル38をさらに備える。量子ドット構造体36は、前実施形態における発光層8の、量子ドット構造体16によって充填されない空隙34に、第3シェル38を備えることにより、形成されていてもよい。
 第3シェル38は、第2シェル26の周囲の空隙の少なくとも一部を充填する。第3シェル38は、第2シェル26と同一の材料を含んでいてもよく、公知のコア/シェル構造の量子ドットに用いられる、無機のシェル材料を含んでいてもよい。
 本実施形態に係る発光デバイス1は、図2に示す各工程のうち、ステップS5、すなわち、発光層形成工程を除いて、同一の方法によって製造される。ここで、本実施形態に係る発光デバイス1の発光層形成工程について、図13から図17を参照して、より詳細に説明する。
 図13は、本実施形態における量子ドット層形成工程にあたる、発光層形成工程について説明するためのフローチャートである。図14は、当該発光層形成工程における、経過時間と温度との関係を説明するためのグラフである。図4と同様に、図14における実線は、アレイ基板3の周囲の雰囲気温度を示し、破線は、アレイ基板3上の量子ドット20の周囲の温度を示している。図15から図17は、当該発光層形成工程を説明するための工程断面図である。
 本実施形態に係る発光層形成工程において、ステップS10からステップS13までは、前実施形態において説明した方法と同一の方法を実行する。本実施形態においては、ステップS13に次いで、雰囲気温度を第3温度T3よりも低下させる冷却工程を実施する(ステップS14)。
 本実施形態においては、冷却工程により、雰囲気温度が温度TAよりも低い温度TBとなるまで冷却を実施する。温度TBは、温度T0よりも高くてもよく、あるいは、温度T0と同一であってもよい。雰囲気温度が低下する際、量子ドット20の周囲の温度も追従する。冷却工程の完了時点において、図15の(a)に示すように、第1電荷輸送層6の上層には、量子ドット構造体16が形成されている。なお、当該時点において、量子ドット構造体16の第2シェル26の間には、空隙34が形成されている。
 冷却工程により、雰囲気温度が温度TBに到達した後、図15の(b)に示すように、第2溶液40をアレイ基板3と重畳する位置に塗布する、第2塗布工程を実施する(ステップS15)。第2塗布工程により、図15の(b)に示すように、量子ドット構造体16の周囲の空隙34の少なくとも一部が、第2溶液40によって充填されてもよい。
 第2溶液40は、第2溶媒42と、有機材料44と、第2無機物前駆体46とを含む。第2溶媒42は、第1溶媒32と同一であってもよく、ヘキサンであってもよい。有機材料44は、従来公知の量子ドットのリガンドに使用される有機材料であってもよく、リガンド18の材料と同一であってもよい。第2無機物前駆体46は、前述した第3シェル38と同じ材料を含む。第3シェル38の材料が、第2シェル26の材料と同一である場合、第2無機物前駆体46は、第1無機物前駆体30と同一である。
 次いで、第2溶液40が塗布されたアレイ基板3の加熱を再開する。ここで、雰囲気を、図14に示す第4温度T4以上に加熱することにより、第4加熱工程を実施する(ステップS16)。
 第4温度T4は、有機材料44の融点と、第2溶媒42の沸点とのうちの、高い温度である。なお、図4に示す温度TCは、有機材料44の融点と、第2溶媒42の沸点とのうちの、低い温度である。また、第4温度T4および温度TCは、温度T0より高い。なお、第4温度T4は第1温度T1と同一であってもよく、温度TCは温度TAと同一であってもよい。
 雰囲気温度が、温度T0から温度TCになるまでは、図14に示すように、量子ドット20の周囲温度は、雰囲気温度の上昇に追従する。しかしながら、量子ドット20の周囲温度が温度TCまで上昇し、有機材料44の溶融または第2溶媒42の蒸発のうちの一方が開始すると、量子ドット20の周囲温度は、しばらく温度TCを維持する。
 さらに雰囲気の加熱を進めることにより、有機材料44の溶融または第2溶媒42の蒸発のうちの一方が終了し、再び量子ドット20の周囲温度が上昇し始める。次いで、量子ドット20の周囲温度が第4温度T4まで上昇し、有機材料44の溶融または第2溶媒42の蒸発のうちの他方が開始すると、量子ドット20の周囲温度は、しばらく第4温度T4を維持する。
 これにより、第4加熱工程によって、有機材料44の溶融および第2溶媒42の蒸発が完了する。第1加熱工程の完了後、図16の(a)に示すように、アレイ基板3上から第2溶媒42が気化し、溶融した有機材料44中においては、量子ドット構造体16の周囲の空隙34に、第2無機物前駆体46が分散している。なお、図示のために第2無機物前駆体46の縮尺を、図16の(a)においてのみ変更しているが、第1加熱工程の前後において、第2無機物前駆体46の実際の形状は不変であってよい。
 次いで、アレイ基板3の加熱を、雰囲気温度が、図14に示す第5温度T5になるまで継続する。ここで、雰囲気温度が第5温度T5に到達した時点から、加熱条件を調節し、雰囲気温度を第5温度T5付近に維持する、第5加熱工程を実施する(ステップS17)。
 有機材料44の溶融および第2溶媒42の蒸発が完了した後、量子ドット20の周囲温度は、第4温度T4から上昇し、第5温度T5に到達する。ここで、雰囲気温度が第5温度T5に維持されているために、第5温度T5に到達後の量子ドット20の周囲温度についても、第5温度T5に維持される。
 第5温度T5は、第4温度T4より高く、第2無機物前駆体46が、熱化学反応により、第2シェル26の周囲にエピタキシャル成長するための温度である。このため、量子ドット20の周囲温度が第5温度T5に維持されている間、第2シェル26の周囲に、第2無機物前駆体46が、次第にエピタキシャル成長する。これにより、図16の(b)に示すように、それぞれの量子ドット構造体16の第2シェル26の周囲に、第3シェル38が形成される。
 以上により、図16の(b)に示すように、量子ドット20と第2シェル26と第3シェル38とを備えた量子ドット構造体36が形成される。なお、第2加熱工程において、空隙34が第3シェル38によって充填されることにより、溶融した有機材料44が上層へ押し出されるため、量子ドット構造体36の上層に有機材料44が残留する。
 次いで、さらに雰囲気温度を上昇させて、雰囲気温度が第6温度T6以上となるように、雰囲気を加熱する、第6加熱工程を実施する(ステップS18)。第6温度T6は、第5温度T5よりも高く、かつ、有機材料44の沸点に相当する。
 第6加熱工程における雰囲気の加熱により、量子ドット20の周囲温度が第6温度T6に到達すると、有機材料44の蒸発が開始し、量子ドット20の周囲温度がしばらく第6温度T6を維持する。これにより、第6加熱工程において、有機材料44が気化し、図17に示すように、有機材料44が量子ドット構造体36の上層から除去される。以上により、本実施形態における発光層形成工程が完了する。
 本実施形態に係る発光デバイス1においては、第2シェル26の周囲に第3シェル38が形成されている。また、第3シェル38は、量子ドット構造体16の周囲の空隙34を充填するように形成されている。
 このため、量子ドット構造体36は、前実施形態における量子ドット構造体16と比較して、発光層8の全体の体積に対する、体積の割合が高い。すなわち、本実施形態における発光層8は、量子ドット20のコア22の周囲に形成されるシェルの、発光層8における充填率が、より向上している。換言すれば、第5加熱工程の実施後においては、第5加熱工程の実施前と比較して、発光層8の全体の体積に対する無機物の密度が高くなっている。したがって、上記構成により、本実施形態に係る発光デバイス1は、発光層8の信頼性をより向上させることができる。
 なお、本実施形態においては、第2加熱工程の実施後、第3加熱工程を省略し、冷却工程以降を順次実施してもよい。すなわち、リガンド18の気化、および有機材料44の気化を、第6加熱工程においてまとめて実施してもよい。これにより、加熱工程の工程数が低減するため、タクトタイムの減少および製造コストの低減につながる。
 また、これに限られないが、本実施形態においては、第4温度T4が第1温度T1と同一であり、第5温度T5が第2温度T2と同一であり、第6温度T6が第3温度T3と同一である場合の、発光層形成工程について説明した。このような構成は、上述したように、第1溶媒32と第2溶媒42とを同一とし、リガンド18の材料と有機材料44とを同一とし、第1無機物前駆体30と第2無機物前駆体46とを同一とすることにより、簡便に実現できる。
 これにより、第1加熱工程から第3加熱工程までと、第4加熱工程から第6加熱工程までとの間において、各加熱工程における加熱の基準となる温度を揃えることができる。したがって、上記構成によれば、発光層形成工程全体の簡素化につながる。
 上述した各実施形態においては、量子ドット20を含む量子ドット層が、発光層8である場合について説明を行った。しかしながら、これに限られず、例えば、第1電荷輸送層6または第2電荷輸送層10が量子ドット20を含む量子ドット層であってもよい。このように、各電荷輸送層が量子ドット20を含む場合、当該量子ドット20は、キャリアを輸送する機能を付与されてもよい。この場合、従来の量子ドットを含む電荷輸送層と比較して、各電荷輸送層における量子ドット20の安定性が向上するため、当該各電荷輸送層のキャリア輸送の効率が改善し、ひいては、発光デバイス1の発光効率の改善につながる。上述した量子ドット20を含む各電荷輸送層についても、各実施形態における量子ドット層形成工程と同一の手法によって形成することができる。
 また、上述した各実施形態においては、複数の発光素子を備え、表示面DSを有する表示デバイスを例示して、発光デバイス1の構成を説明している。しかしながら、これに限られず、上述した各実施形態における発光デバイス1は、単一の発光素子を備えた発光デバイスであってもよい。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
1     発光デバイス
2     発光素子層
2R    第1発光素子
2G    第2発光素子
2B    第3発光素子
4     第1電極
6     第1電荷輸送層
8     発光層(量子ドット層)
10    第2電荷輸送層
12    第2電極
16、36 量子ドット構造体
18    リガンド
20    量子ドット
22    コア
24    第1シェル
26    第2シェル
28    第1溶液
30    第1無機物前駆体
32    第1溶媒
34    空隙
38    第3シェル
40    第2溶液
42    第2溶媒
44    有機材料
46    第2無機物前駆体
T1~T6 第1~第6温度

Claims (26)

  1.  第1電極と、第2電極と、前記第1電極および前記第2電極の間の量子ドット層とを含む発光素子を基板上に備えた発光デバイスの製造方法であって、
     前記量子ドット層を形成する量子ドット層形成工程を備え、
     前記量子ドット層形成工程は、
      第1溶液を前記基板と重畳する位置に塗布する第1塗布工程と、
      前記第1塗布工程に次いで、前記基板の周囲の雰囲気温度を第1温度以上に加熱する第1加熱工程と、
      前記第1加熱工程に次いで、前記雰囲気温度を第2温度まで加熱する第2加熱工程と、
     を備え、
     前記第1溶液は、第1溶媒と、複数の量子ドットと、該量子ドットのそれぞれと配位結合するリガンドと、第1無機物前駆体とを含み、
     前記量子ドットは、コアと、該コアを被膜する第1シェルとを備え、
     前記第1温度は、前記リガンドの融点と前記第1溶媒の沸点とのうちの高い温度であり、
     前記第2温度は、前記第1温度より高く、かつ、前記第1無機物前駆体が、前記第1シェルの周囲にエピタキシャル成長し、前記第1シェルを被膜する第2シェルを形成する温度であり、
     前記第2加熱工程において、少なくとも一組の互いに隣接する前記量子ドット同士が、前記第2シェルを介して接続する発光デバイスの製造方法。
  2.  前記第1温度が前記第1溶媒の沸点であって、前記第1加熱工程において、前記リガンドが溶融した後に、前記第1溶媒が気化する請求項1に記載の発光デバイスの製造方法。
  3.  前記第1温度が前記リガンドの融点であって、前記第1加熱工程において、前記第1溶媒が気化した後に、前記リガンドが溶融する請求項1に記載の発光デバイスの製造方法。
  4.  前記量子ドット層形成工程は、さらに、前記第2加熱工程に次いで、前記雰囲気温度を第3温度以上に加熱する第3加熱工程をさらに備え、
     前記第3温度は、前記第2温度より高く、かつ、前記リガンドの沸点であり、前記第3加熱工程において、前記リガンドが気化する請求項1から3の何れか1項に記載の発光デバイスの製造方法。
  5.  前記量子ドット層形成工程は、さらに、
      前記第2加熱工程に次いで、前記雰囲気温度を前記リガンドの融点と前記第1溶媒の沸点のうちの低い温度以下に冷却する冷却工程と、
      前記冷却工程に次いで、第2溶液を前記基板と重畳する位置に塗布する第2塗布工程と、
      前記第2塗布工程に次いで、前記雰囲気温度を第4温度以上に加熱する第4加熱工程と、
      前記第4加熱工程に次いで、前記雰囲気温度を第5温度まで加熱する第5加熱工程と、
     を備え、
     前記第2溶液は、第2溶媒と、有機材料と、第2無機物前駆体とを含み、
     前記第4温度は、前記有機材料の融点と前記第2溶媒の沸点のうちの高い温度であり、
     前記第5温度は、前記第4温度より高く、かつ、前記第2無機物前駆体が、前記第2シェルの周囲にエピタキシャル成長し、前記第2シェルの周囲の空隙の少なくとも一部を充填する第3シェルを形成する温度である請求項1から3の何れか1項に記載の発光デバイスの製造方法。
  6.  前記第5加熱工程の実施後においては、前記第5加熱工程の実施前と比較して、前記量子ドット層の全体の体積に対する無機物の密度が高い請求項5に記載の発光デバイスの製造方法。
  7.  前記第4温度が、前記第1温度と同一である請求項5または6に記載の発光デバイスの製造方法。
  8.  前記第5温度が、前記第2温度と同一である請求項5から7の何れか1項に記載の発光デバイスの製造方法。
  9.  前記量子ドット層形成工程は、さらに、前記第5加熱工程に次いで、前記雰囲気温度を第6温度まで加熱する第6加熱工程をさらに備え、
     前記第6温度は、前記第5温度より高く、かつ、前記有機材料の沸点であり、前記第6加熱工程において、前記有機材料が気化する請求項5から8の何れか1項に記載の発光デバイスの製造方法。
  10.  前記有機材料が、前記リガンドの材料と同一である請求項9に記載の発光デバイスの製造方法。
  11.  前記量子ドット層形成工程は、さらに、前記第2加熱工程と前記冷却工程との間に、前記雰囲気温度を第3温度まで加熱する第3加熱工程をさらに備え、
     前記第3温度は、前記第2温度より高く、かつ、前記リガンドの沸点であり、前記第3加熱工程において、前記リガンドが気化する請求項9または10に記載の発光デバイスの製造方法。
  12.  前記第6温度が、前記第3温度と同一である請求項11に記載の発光デバイスの製造方法。
  13.  第1電極と、第2電極と、前記第1電極および前記第2電極の間の量子ドット層とを含む発光素子を基板上に備えた発光デバイスであって、
     前記量子ドット層は、量子ドット構造体を備え、
     前記量子ドット構造体は、コアおよび該コアを被膜する第1シェルを備えた量子ドットと、前記第1シェルを被膜する第2シェルとを備え、
     前記第1シェルと前記第2シェルとが結晶構造を有し、
     少なくとも一組の互いに隣接する前記量子ドット同士が、前記第2シェルの結晶構造により接続する発光デバイス。
  14.  前記第1シェルの平均膜厚が、前記第2シェルの最小膜厚よりも小さい請求項13に記載の発光デバイス。
  15.  前記第1シェルと前記第2シェルとが、同一材料からなる請求項13または14に記載の発光デバイス。
  16.  前記第1シェルと前記第2シェルとが、多結晶である請求項13から15の何れか1項に記載の発光デバイス。
  17.  前記量子ドット構造体において、互いに隣接する前記量子ドット同士が、前記第2シェルの結晶構造により接続している比率が、50パーセントよりも高く、100パーセント未満である請求項13から16の何れか1項に記載の発光デバイス。
  18.  前記量子ドット層全体の体積に対する、前記量子ドット構造体の体積の割合が63.7パーセント以上である請求項13から17の何れか1項に記載の発光デバイス。
  19.  前記量子ドット層は、リガンドを備えていない請求項13から18の何れか1項に記載の発光デバイス。
  20.  前記量子ドット層における、無機物に対する有機物の体積比率が、36.3体積パーセント以下である請求項13から19の何れか1項に記載の発光デバイス。
  21.  前記コアがInPであり、前記第1シェルおよび前記第2シェルがZnSである請求項13から20の何れか1項に記載の発光デバイス。
  22.  ある前記量子ドットの前記コアから、隣接する他の前記量子ドットの前記コアまでの最短距離の平均値が、3nm以上である請求項21に記載の発光デバイス。
  23.  前記コアがCdSeであり、前記第1シェルおよび前記第2シェルがZnSである請求項13から20の何れか1項に記載の発光デバイス。
  24.  ある前記量子ドットの前記コアから、隣接する他の前記量子ドットの前記コアまでの最短距離の平均値が、1nm以上である請求項23に記載の発光デバイス。
  25.  前記第2シェルの比抵抗が、前記第1シェルの比抵抗以上である請求項13から24の何れか1項に記載の発光デバイス。
  26.  前記第2シェルのバンドギャップが、前記第1シェルのバンドギャップ以上である請求項13から25の何れか1項に記載の発光デバイス。
PCT/JP2019/006367 2019-02-20 2019-02-20 発光デバイス、発光デバイスの製造方法 WO2020170367A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/430,489 US20220149338A1 (en) 2019-02-20 2019-02-20 Light-emitting device, and method for manufacturing light-emitting device
PCT/JP2019/006367 WO2020170367A1 (ja) 2019-02-20 2019-02-20 発光デバイス、発光デバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/006367 WO2020170367A1 (ja) 2019-02-20 2019-02-20 発光デバイス、発光デバイスの製造方法

Publications (1)

Publication Number Publication Date
WO2020170367A1 true WO2020170367A1 (ja) 2020-08-27

Family

ID=72143380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006367 WO2020170367A1 (ja) 2019-02-20 2019-02-20 発光デバイス、発光デバイスの製造方法

Country Status (2)

Country Link
US (1) US20220149338A1 (ja)
WO (1) WO2020170367A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170371A1 (ja) * 2019-02-20 2020-08-27 シャープ株式会社 発光デバイスの製造方法
WO2020170368A1 (ja) * 2019-02-20 2020-08-27 シャープ株式会社 発光デバイスの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090321692A1 (en) * 2005-01-05 2009-12-31 Locascio Michael Nanostructured material comprising semiconductor nanocrystal complexes
JP2010520603A (ja) * 2007-03-08 2010-06-10 イーストマン コダック カンパニー 量子ドット発光デバイス
JP2010526420A (ja) * 2007-05-07 2010-07-29 イーストマン コダック カンパニー 電力の分配が改善されたエレクトロルミネッセンス・デバイス
JP2011502333A (ja) * 2007-10-30 2011-01-20 イーストマン コダック カンパニー ブリンキングのない量子ドットを含む装置
JP2011076798A (ja) * 2009-09-29 2011-04-14 Hoya Corp 電界発光素子およびその製造方法
US20140027713A1 (en) * 2011-04-02 2014-01-30 Qd Vision, Inc. Device including quantum dots

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090321692A1 (en) * 2005-01-05 2009-12-31 Locascio Michael Nanostructured material comprising semiconductor nanocrystal complexes
JP2010520603A (ja) * 2007-03-08 2010-06-10 イーストマン コダック カンパニー 量子ドット発光デバイス
JP2010526420A (ja) * 2007-05-07 2010-07-29 イーストマン コダック カンパニー 電力の分配が改善されたエレクトロルミネッセンス・デバイス
JP2011502333A (ja) * 2007-10-30 2011-01-20 イーストマン コダック カンパニー ブリンキングのない量子ドットを含む装置
JP2011076798A (ja) * 2009-09-29 2011-04-14 Hoya Corp 電界発光素子およびその製造方法
US20140027713A1 (en) * 2011-04-02 2014-01-30 Qd Vision, Inc. Device including quantum dots

Also Published As

Publication number Publication date
US20220149338A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
KR100435054B1 (ko) 유기전계 발광소자와 그 제조방법
WO2020170370A1 (ja) 発光デバイスの製造方法
US20180122870A1 (en) Organic light-emitting device and organic light-emitting display device using the same
CN112074966A (zh) 用于提供辅助电极的方法和包含辅助电极的装置
WO2021100104A1 (ja) 発光素子、発光デバイス
CN107968107B (zh) 印刷型电致发光显示器及其制作方法
KR100473590B1 (ko) 유기전계 발광소자와 그 제조방법
US7710024B2 (en) Organic light emitting display device and method of fabricating the same
WO2020170367A1 (ja) 発光デバイス、発光デバイスの製造方法
KR20210023963A (ko) 마이크로 led 구조체, 이의 제조방법 및 이를 포함하는 디스플레이
WO2021157019A1 (ja) 発光デバイス、発光デバイスの製造方法
WO2020170371A1 (ja) 発光デバイスの製造方法
WO2021157018A1 (ja) 量子ドット層の製造方法、および、発光デバイスの製造方法
WO2020170368A1 (ja) 発光デバイスの製造方法
WO2021157021A1 (ja) 発光デバイスの製造方法、及び発光デバイス
US11289667B2 (en) Light-emitting device with high electron injection efficiency
JP2006338916A (ja) 有機el素子、表示装置、及び有機el素子の製造方法
WO2020041993A1 (zh) 一种采用混合型发光二极管的显示屏幕及其制备方法
WO2021244121A1 (zh) 显示面板及其制备方法、显示装置
US20210151717A1 (en) Pixel configurations for high resolution OVJP printed OLED displays
WO2021157020A1 (ja) 発光デバイスの製造方法
WO2020016998A1 (ja) 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置
JP2006019375A (ja) 有機発光素子およびその製造方法並びに表示装置
CN113540187B (zh) 显示面板及显示面板制备方法
WO2021249162A1 (zh) 显示器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP