WO2021244121A1 - 显示面板及其制备方法、显示装置 - Google Patents

显示面板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2021244121A1
WO2021244121A1 PCT/CN2021/084822 CN2021084822W WO2021244121A1 WO 2021244121 A1 WO2021244121 A1 WO 2021244121A1 CN 2021084822 W CN2021084822 W CN 2021084822W WO 2021244121 A1 WO2021244121 A1 WO 2021244121A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
transport layer
electron transport
sub
doping concentration
Prior art date
Application number
PCT/CN2021/084822
Other languages
English (en)
French (fr)
Inventor
陈亚文
史文
庄锦勇
付东
Original Assignee
广东聚华印刷显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东聚华印刷显示技术有限公司 filed Critical 广东聚华印刷显示技术有限公司
Priority to US17/781,226 priority Critical patent/US20220416192A1/en
Publication of WO2021244121A1 publication Critical patent/WO2021244121A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • This application relates to the field of display technology, and in particular to a display panel, a manufacturing method thereof, and a display device.
  • Quantum dots have excellent characteristics such as high light color purity, high luminous quantum efficiency, adjustable luminous color, and long service life. These characteristics make quantum dot light-emitting diodes (QLEDs) with quantum dot materials as the light-emitting layer have a wide range of application prospects in solid-state lighting, flat-panel displays and other fields, and have received extensive attention from academia and industry.
  • QLEDs quantum dot light-emitting diodes
  • HTL cannot use FMM deposition, but can only use open mask deposition, that is, HTL can only be used as a common layer of RGB, and cannot be used for RGB.
  • Different thicknesses or different p-doping concentrations are used for different requirements, so that the performance of each color device cannot be effectively optimized independently according to the different requirements of RGB.
  • Each exemplary embodiment of the present application aims to independently optimize the performance of each color device according to the different requirements of RGB.
  • a display panel includes a plurality of pixel units, the pixel unit includes a red sub-pixel, a green sub-pixel and a blue sub-pixel, the red sub-pixel, the green sub-pixel and the blue sub-pixel
  • Each pixel includes a stacked cathode, an electron transport layer, a quantum dot light-emitting layer, a hole function layer and an anode;
  • the material of the electron transport layer is Mg-doped ZnO nanoparticles, the doping concentration of Mg in the electron transport layer of the red sub-pixel, the doping concentration of Mg in the electron transport layer of the green sub-pixel and The doping concentration of Mg in the electron transport layer of the blue sub-pixel gradually decreases.
  • the above-mentioned display panel can meet the different needs of red sub-pixels, green sub-pixels, and blue sub-pixels by adjusting the doping concentration of Mg in the electron transport layer of the red sub-pixel and the doping concentration of Mg in the electron transport layer of the green sub-pixel.
  • concentration and the doping concentration of Mg in the electron transport layer of the blue sub-pixel are successively decreased to adjust the carrier balance respectively, and finally the red sub-pixel, the green sub-pixel and the blue sub-pixel can achieve the optimal carrier balance at the same time. Thereby improving the performance of the display panel.
  • the doping concentration of Mg in the electron transport layer of the red sub-pixel is 5wt%-20wt%
  • the doping concentration of Mg in the electron transport layer of the green sub-pixel is 2wt%-10wt%
  • the doping concentration of Mg in the electron transport layer of the blue sub-pixel is 0wt% to 5wt%.
  • the doping concentration of Mg in the electron transport layer of the red sub-pixel is 5 wt% to 10 wt%
  • the doping concentration of Mg in the electron transport layer of the green sub-pixel is 2.5 wt% to 7.5 wt% wt%.
  • the thickness of the electron transport layer of the red sub-pixel, the thickness of the electron transport layer of the green sub-pixel, and the thickness of the electron transport layer of the blue sub-pixel decrease in order.
  • the thickness of the electron transport layer of the red sub-pixel is 40 nm to 100 nm
  • the thickness of the electron transport layer of the green sub-pixel is 30 nm to 80 nm
  • the thickness of the electron transport layer of the blue sub-pixel is The thickness is 20nm-60nm.
  • the thickness of the electron transport layer of the red sub-pixel is 40 nm to 70 nm
  • the thickness of the electron transport layer of the green sub-pixel is 30 nm to 50 nm
  • the thickness of the electron transport layer of the blue sub-pixel is The thickness is 20nm-40nm.
  • a method for manufacturing a display panel includes the following steps:
  • a substrate is provided, and a cathode, an electron transport layer, a quantum dot light-emitting layer, a hole function layer, and an anode are stacked on the substrate, wherein the step of forming the electron transport layer includes:
  • a solution method is used to deposit ZnO nanoparticles with different Mg doping concentrations on the cathode or on the quantum dot light-emitting layer to form the electron transport layer of the red sub-pixel, the electron transport layer of the green sub-pixel, and the blue sub-pixel, respectively The electron transport layer; wherein the doping concentration of Mg in the electron transport layer of the red sub-pixel, the doping concentration of Mg in the electron transport layer of the green sub-pixel and the electron transport layer of the blue sub-pixel The doping concentration of Mg decreases successively.
  • the preparation method of the above-mentioned display panel is simple and can meet the different needs of red sub-pixels, green sub-pixels and blue sub-pixels by adjusting the doping concentration of Mg in the electron transport layer of the red sub-pixel and the electron transport layer
  • the doping concentration of Mg in the middle Mg and the doping concentration of Mg in the electron transport layer of the blue sub-pixel are successively decreased, respectively, and the carrier balance is adjusted respectively, and finally the red sub-pixel, the green sub-pixel and the blue sub-pixel are optimized at the same time.
  • the carrier balances thereby improving the performance of the display panel.
  • the solution method is an inkjet printing process.
  • the thickness of the electron transport layer of the red sub-pixel, the thickness of the electron transport layer of the green sub-pixel, and the thickness of the electron transport layer of the blue sub-pixel decrease in order.
  • a display device includes the above-mentioned display panel.
  • a display device includes a display panel prepared by the above-mentioned preparation method.
  • the display device applying each exemplary embodiment of the present application since it includes the above display panel, can meet the different requirements of the red sub-pixel, the green sub-pixel, and the blue sub-pixel.
  • the concentration, the doping concentration of Mg in the electron transport layer of the green sub-pixel and the doping concentration of Mg in the electron transport layer of the blue sub-pixel are successively decreased to adjust the carrier balance respectively, and finally make the red sub-pixel, green sub-pixel and The blue sub-pixels achieve optimal carrier balance at the same time, thereby improving the performance of the display panel and the display device.
  • FIG. 1 is a flowchart of a manufacturing method of a display panel according to an embodiment of the application
  • FIG. 2 is a schematic diagram of forming a cathode and a pixel defining layer on a substrate in a method for manufacturing a display panel according to an embodiment of the application;
  • FIG. 3 is a schematic diagram of forming an electron transport layer on a cathode in a method for manufacturing a display panel according to an embodiment of the application;
  • FIG. 4 is a schematic diagram of forming a quantum dot light-emitting layer on an electron transport layer in a method for manufacturing a display panel according to an embodiment of the application;
  • FIG. 5 is a schematic structural diagram of a display panel according to an embodiment of the application.
  • a substrate is provided, and a stacked cathode, an electron transport layer, a quantum dot light-emitting layer, a hole function layer and an anode are formed on the substrate, wherein the step of forming the electron transport layer includes:
  • the solution method is used to deposit ZnO nanoparticles with different Mg doping concentrations on the cathode or on the quantum dot light-emitting layer to form the electron transport layer of the red sub-pixel, the electron transport layer of the green sub-pixel, and the electron transport layer of the blue sub-pixel.
  • the doping concentration of Mg in the electron transport layer of the red sub-pixel, the doping concentration of Mg in the electron transport layer of the green sub-pixel, and the doping concentration of Mg in the electron transport layer of the blue sub-pixel decrease in order.
  • the display panel prepared by the method for manufacturing the display panel of the present application may be a display panel with a upright structure or a display panel with an inverted structure.
  • the step of forming the electron transport layer includes: depositing ZnO nanoparticles with different Mg doping concentrations on the quantum dot light-emitting layer using a solution method to form the electron transport layer of the red sub-pixel, The electron transport layer of the green sub-pixel and the electron transport layer of the blue sub-pixel; among them, the doping concentration of Mg in the electron transport layer of the red sub-pixel, the doping concentration of Mg in the electron transport layer of the green sub-pixel and the blue sub-pixel The doping concentration of Mg in the electron transport layer of the pixel gradually decreases.
  • the step of forming the electron transport layer includes: depositing ZnO nanoparticles with different Mg doping concentrations on the cathode using a solution method to form the electron transport layer of the red sub-pixel and the green sub-pixel respectively.
  • the electron transport layer and the electron transport layer of the blue sub-pixel among them, the doping concentration of Mg in the electron transport layer of the red sub-pixel, the doping concentration of Mg in the electron transport layer of the green sub-pixel and the electron transport of the blue sub-pixel
  • the doping concentration of Mg in the layer gradually decreases.
  • the display panel obtained by the method for manufacturing the display panel of the above-mentioned embodiment of the present application includes a plurality of pixel units.
  • the pixel units include red sub-pixels, green sub-pixels and blue sub-pixels, red sub-pixels, green sub-pixels and blue sub-pixels
  • Each includes a stacked cathode, an electron transport layer, a quantum dot light-emitting layer, a hole function layer and an anode.
  • the quantum dot light-emitting layer includes a quantum dot light-emitting layer of a red sub-pixel, a quantum dot light-emitting layer of a green sub-pixel, and a quantum dot light-emitting layer of a blue sub-pixel.
  • the cathode of the red sub-pixel, the cathode of the green sub-pixel, and the cathode of the blue sub-pixel are respectively formed ;
  • the quantum dot light-emitting layer of the sub-pixel; the hole function layer of the red sub-pixel, the hole function layer of the green sub-pixel, and the hole function layer of the blue sub-pixel are formed respectively;
  • the anode of the red sub-pixel and the hole function layer of the green sub-pixel are formed respectively The anode and the anode of the blue sub
  • a method for manufacturing a display panel according to an embodiment of the present application includes the following steps:
  • a substrate is provided, and a cathode is formed on the substrate.
  • the TFT array driving circuit, the patterned cathode 110 and the corresponding pixel definition layer 170 are fabricated on the substrate 160, as shown in FIG. 2.
  • the substrate 160 includes a substrate and an array driving unit, wherein the substrate may be a rigid substrate or a flexible substrate.
  • the rigid substrate may be glass, and the flexible substrate may be PI or the like.
  • the array driving unit is used to drive the upper electroluminescence pixel unit.
  • the cathode 110 is a transparent cathode or a reflective cathode.
  • the transparent cathode is ITO or ITO/thin metal.
  • the thin-layer metal includes Mg, Ba, Yb, Ag, Al, or their alloys or laminated structures, and the thickness is 5 nm to 20 nm.
  • the reflective cathode is an ITO/thick metal layer or a separate thick metal layer.
  • the thick metal includes Mg, Ba, Yb, Ag, Al or their alloys or laminated structures, and the thickness is 40nm-200nm.
  • the cathode can be a reflective cathode, that is, a top-emission display panel, which is beneficial to increase the aperture ratio.
  • the material surface of the pixel definition layer 170 may be a lyophobic photoresist material, and the thickness is generally about 1 ⁇ m, which is prepared by a yellow light process.
  • the pixel opening of the pixel defining layer 170 corresponds to the pixel light-emitting area of the panel and forms an electrical connection hole with the array driving unit to define the light-emitting area and position of each sub-pixel.
  • the solution method is an inkjet printing process. That is, ZnO nanoparticles with different Mg doping concentrations are deposited on the cathode through an inkjet printing process to form the electron transport layer 120 of the red sub-pixel, the electron transport layer 120 of the green sub-pixel, and the electron transport layer 120 of the blue sub-pixel, respectively. ,As shown in Figure 3.
  • the doping concentration of Mg in the electron transport layer 120 of the red sub-pixel is 5 wt% to 20 wt%
  • the doping concentration of Mg in the electron transport layer 120 of the green sub-pixel is 2 wt% to 10 wt%.
  • the doping concentration of Mg in the electron transport layer 120 of the sub-pixel is 0 wt% to 5 wt%.
  • the doping concentration of Mg in the electron transport layer 120 of the red sub-pixel is 5 wt% to 10 wt%, and the doping concentration of Mg in the electron transport layer 120 of the green sub-pixel is 2.5 wt% to 7.5 wt% .
  • the thickness of the electron transport layer 120 of the red sub-pixel, the thickness of the electron transport layer 120 of the green sub-pixel, and the thickness of the electron transport layer 120 of the blue sub-pixel decrease in order. This is conducive to achieving a better optical cavity length structure.
  • the thickness of the electron transport layer 120 of the red sub-pixel is 40 nm-100 nm
  • the thickness of the electron transport layer 120 of the green sub-pixel is 30 nm-80 nm
  • the thickness of the electron transport layer 120 of the blue sub-pixel is 20 nm- 60nm.
  • the thickness of the electron transport layer 120 of the red sub-pixel is 40 nm to 70 nm
  • the thickness of the electron transport layer 120 of the green sub-pixel is 30 nm to 50 nm
  • the thickness of the electron transport layer 120 of the blue sub-pixel is 20 nm. ⁇ 40nm.
  • the carrier balance of the light-emitting sub-pixels of the inverted structure RGB display panel and the optimal optical cavity length can be achieved at the same time, and finally the panel performance can be improved.
  • Quantum dot light-emitting layers 130 are respectively deposited on the ZnO nanoparticle electron transport layer 120 with different thicknesses and different Mg doping concentrations, as shown in FIG. 4.
  • An open mask is used to deposit a hole functional layer 140 on the entire surface of the quantum dot light-emitting layer 130, as shown in FIG.
  • the anode 150 is deposited on the entire surface of the hole function layer 140 by using an open mask to obtain a display panel as shown in FIG. 5.
  • a polarizer layer CPL may be further deposited, which is beneficial to improve the light extraction efficiency.
  • the entire display panel is packaged.
  • the preparation method of the above-mentioned display panel is simple and can meet the different needs of red sub-pixels, green sub-pixels and blue sub-pixels by adjusting the doping concentration of Mg in the electron transport layer of the red sub-pixel and the electron transport layer
  • the doping concentration of Mg in the middle Mg and the doping concentration of Mg in the electron transport layer of the blue sub-pixel are successively decreased, respectively, and the carrier balance is adjusted respectively, and finally the red sub-pixel, the green sub-pixel and the blue sub-pixel are optimized at the same time.
  • the carrier balances thereby improving the performance of the display panel.
  • the display panel 100 of an embodiment of the present application includes a plurality of pixel units.
  • the pixel units include red sub-pixels, green sub-pixels, and blue sub-pixels.
  • the red sub-pixels, green sub-pixels, and blue sub-pixels all include The cathode 110, the electron transport layer 120, the quantum dot light-emitting layer 130, the hole function layer 140 and the anode 150 are stacked.
  • the arrangement rules of pixel units and the arrangement rules of sub-pixels are not limited.
  • the sub-pixels can be arranged side by side in the shape of " ⁇ ", or can be arranged in the shape of " ⁇ ".
  • the red sub-pixels, the green sub-pixels, and the blue sub-pixels are arranged side by side in order from left to right.
  • the red sub-pixel, the green sub-pixel, and the blue sub-pixel may have an inverted structure or an upright structure.
  • the red sub-pixel, the green sub-pixel, and the blue sub-pixel are all inverted structures, that is, from bottom to top, the red sub-pixel, the green sub-pixel, and the blue sub-pixel all include a stacked cathode 110 and an electron transmission
  • the layer 120, the quantum dot light-emitting layer 130, the hole function layer 140 and the anode 150 are all inverted structures, that is, from bottom to top, the red sub-pixel, the green sub-pixel, and the blue sub-pixel all include a stacked cathode 110 and an electron transmission
  • the layer 120, the quantum dot light-emitting layer 130, the hole function layer 140 and the anode 150 are all inverted structures, that is, from bottom to top.
  • the material of the electron transport layer 120 is Mg-doped ZnO nanoparticles, the doping concentration of Mg in the electron transport layer 120 of the red sub-pixel, the doping concentration of Mg in the electron transport layer 120 of the green sub-pixel and that of the blue sub-pixel
  • the doping concentration of Mg in the electron transport layer 120 gradually decreases. That is, according to the characteristics of more electrons in red light and less electrons in blue light in RGB devices, the electronic current of red light devices is reduced, the electronic current of blue light devices is increased, and the carrier balance of RGB is realized at the same time.
  • the display panel 100 may further include a substrate 160.
  • the substrate 160 includes a substrate and an array driving unit, wherein the substrate may be a rigid substrate or a flexible substrate.
  • the rigid substrate may be glass, and the flexible substrate may be PI or the like.
  • the array driving unit is used to drive the upper electroluminescence pixel unit.
  • the cathode 110 is a transparent cathode or a reflective cathode.
  • the transparent cathode is ITO or ITO/thin metal.
  • the thin-layer metal includes Mg, Ba, Yb, Ag, Al, or their alloys or laminated structures, and the thickness is 5 nm to 20 nm.
  • the reflective cathode is an ITO/thick metal layer or a separate thick metal layer.
  • the thick metal includes Mg, Ba, Yb, Ag, Al or their alloys or laminated structures, and the thickness is 40nm-200nm.
  • the cathode can be a reflective cathode, that is, a top-emission display panel, which is beneficial to increase the aperture ratio.
  • the cathode 110 is stacked on the surface of the substrate 160.
  • the display panel 100 may further include a pixel definition layer 170, and the pixel definition layer 170 has a pixel opening at a position opposite to the cathode 110.
  • the material surface of the pixel definition layer 170 may be a liquid-repellent photoresist material, and the thickness is generally about 1 ⁇ m, which is prepared by a yellow light process.
  • the pixel opening of the pixel defining layer 170 corresponds to the pixel light-emitting area of the panel and forms an electrical connection hole with the array driving unit to define the light-emitting area and position of each sub-pixel.
  • the quantum dot light-emitting layer 130 is a group II-VI compound semiconductor and its core-shell structure, such as CdS, CdSe, CdS/ZnS, CdSe/ZnS or CdSe/CdS/ZnS, etc.; it can also be III-V or IV-VI Group compound semiconductor and its core-shell structure, such as GaAs, InP, PbS/ZnS or PbSe/ZnS, etc.
  • the hole function layer 140 can be made of a polymer processed by a solution method, including but not limited to TFB, PVK, and the like.
  • the hole function layer 140 is a hole transport layer (HTL)
  • HTL hole transport layer
  • the small molecule hole transport material deposited by the evaporation method includes the original Common vapor deposition type small molecule hole transport materials in all fields.
  • the HTL layer is a P-type doped HTL layer, which can effectively improve the hole transport performance of the HTL layer.
  • the doped HTL layer can be a stacked structure of HTL/P-doped HTL to prevent excitons from the quantum dot light-emitting layer 130 from being quenched by the P-type doping; in one embodiment, the HTL and the quantum dot light-emitting layer
  • An electron blocking layer (EBL) can be further introduced between the 130, and a hole injection layer (HIL) can be introduced between the HTL and the anode 150 to further improve the device performance.
  • HIL hole injection layer
  • the anode 150 is a reflective anode or a transparent anode.
  • the reflective anode is a thick metal layer, and the thick layer metal includes but is not limited to Ag, Al, Cu or their alloy or laminated structure, and the thickness is 80 nm to 200 nm.
  • the transparent anode is IZO or thin-layer metal/IZO.
  • the thin-layer metal includes but not limited to Ag, Al, Cu or their alloys or laminated structure, with a thickness of 5nm to 18nm; the thin metal cathode can effectively reduce the impact on the lower layer when depositing IZO. The destruction of organic HTL.
  • the anode can be transparent, that is, a top-emission display panel, which is beneficial to increase the aperture ratio.
  • the above-mentioned display panel can meet the different needs of red sub-pixels, green sub-pixels, and blue sub-pixels by adjusting the doping concentration of Mg in the electron transport layer of the red sub-pixel and the doping concentration of Mg in the electron transport layer of the green sub-pixel.
  • concentration and the doping concentration of Mg in the electron transport layer of the blue sub-pixel are successively decreased to adjust the carrier balance respectively, and finally the red sub-pixel, the green sub-pixel and the blue sub-pixel can achieve the optimal carrier balance at the same time. Thereby improving the performance of the display panel.
  • the doping concentration of Mg in the electron transport layer 120 of the red sub-pixel is 5wt%-20wt%
  • the doping concentration of Mg in the electron transport layer 120 of the green sub-pixel is 2wt%-10wt%
  • the doping concentration of Mg in the electron transport layer 120 of the blue sub-pixel is 0 wt% to 5 wt%.
  • the doping concentration of Mg in the electron transport layer 120 of the red sub-pixel is 5 wt% to 10 wt%
  • the doping concentration of Mg in the electron transport layer 120 of the green sub-pixel is 2.5 wt% to 7.5 wt% %.
  • the thickness of the electron transport layer 120 of the red sub-pixel, the thickness of the electron transport layer 120 of the green sub-pixel, and the thickness of the electron transport layer 120 of the blue sub-pixel decrease in order. This is conducive to achieving a better optical cavity length structure.
  • the thickness of the electron transport layer 120 of the red sub-pixel is 40 nm to 100 nm
  • the thickness of the electron transport layer 120 of the green sub-pixel is 30 nm to 80 nm
  • the thickness of the electron transport layer 120 of the blue sub-pixel is 20nm ⁇ 60nm.
  • the thickness of the electron transport layer 120 of the red sub-pixel is 40 nm to 70 nm
  • the thickness of the electron transport layer 120 of the green sub-pixel is 30 nm to 50 nm
  • the thickness of the electron transport layer 120 of the blue sub-pixel is 20nm ⁇ 40nm.
  • the carrier balance of the light-emitting sub-pixels of the inverted structure RGB display panel and the optimal optical cavity length can be achieved at the same time, and finally the optimal The performance of the panel.
  • the hole functional layer 140 is selected from at least one of a hole transport layer and a hole injection layer.
  • the hole function layer 140 in this embodiment is a hole transport layer.
  • the hole function layer can also be a hole injection layer, or a hole transport layer and a hole injection layer are stacked.
  • the display device of an embodiment includes the above-mentioned display panel or the display panel prepared by the above-mentioned manufacturing method.
  • the display device to which the technical solution of the present application is applied includes the above-mentioned display panel, and can meet the different requirements of the red sub-pixel, the green sub-pixel and the blue sub-pixel, by adjusting the doping concentration of Mg and the green sub-pixel in the electron transport layer of the red sub-pixel.
  • the doping concentration of Mg in the electron transport layer of the sub-pixel and the doping concentration of Mg in the electron transport layer of the blue sub-pixel are successively decreased to adjust the carrier balance respectively, and finally make the red sub-pixel, green sub-pixel and blue sub-pixel
  • the pixels simultaneously achieve optimal carrier balance, thereby improving the performance of the display panel and the display device.
  • a substrate is provided, a cathode is formed on the substrate, and the cathode material is ITO.
  • a solution method is used to deposit ZnO nanoparticles with different Mg doping concentrations on the cathode to form the electron transport layer of the red sub-pixel, the electron transport layer of the green sub-pixel, and the electron transport layer of the blue sub-pixel, respectively.
  • the doping concentration of Mg in the electron transport layer of the red sub-pixel, the doping concentration of Mg in the electron transport layer of the green sub-pixel, and the doping concentration of Mg in the electron transport layer of the blue sub-pixel are 20% and 10%, respectively. %, 5%.
  • the thickness of the electron transport layer of the red sub-pixel, the electron transport layer of the green sub-pixel, and the electron transport layer of the blue sub-pixel are 30 nm, 30 nm, and 30 nm, respectively.
  • a quantum dot light-emitting layer is formed on the electron transport layer, wherein the materials of the red quantum dots, green quantum dots, and blue quantum dots are CdS/ZnS, CdSe/ZnS, and CdS/ZnS, respectively.
  • a hole transport layer is formed on the quantum dot light-emitting layer, and the material of the hole transport layer is NPB.
  • An anode is vapor-deposited on the hole transport layer, and the anode is Ag to obtain a display panel.
  • a substrate is provided, a cathode is formed on the substrate, and the cathode material is ITO.
  • a solution method is used to deposit ZnO nanoparticles with different Mg doping concentrations on the cathode to form the electron transport layer of the red sub-pixel, the electron transport layer of the green sub-pixel, and the electron transport layer of the blue sub-pixel, respectively.
  • the doping concentration of Mg in the electron transport layer of the red sub-pixel, the doping concentration of Mg in the electron transport layer of the green sub-pixel, and the doping concentration of Mg in the electron transport layer of the blue sub-pixel are 20% and 10%, respectively. %, 5%.
  • the thickness of the electron transport layer of the red sub-pixel, the electron transport layer of the green sub-pixel, and the electron transport layer of the blue sub-pixel are 40 nm, 30 nm, and 20 nm, respectively.
  • a quantum dot light-emitting layer is formed on the electron transport layer, wherein the materials of the red quantum dot light-emitting, green quantum dot light-emitting, and blue quantum dot light-emitting layer are CdS/ZnS, CdSe/ZnS, CdS/ZnS, respectively.
  • a hole transport layer is formed on the quantum dot light-emitting layer, and the material of the hole transport layer is NPB.
  • An anode is vapor-deposited on the hole transport layer, and the anode is Ag to obtain a display panel.
  • a substrate is provided, a cathode is formed on the substrate, and the cathode material is ITO.
  • a solution method is used to deposit ZnO nanoparticles with different Mg doping concentrations on the cathode to form the electron transport layer of the red sub-pixel, the electron transport layer of the green sub-pixel, and the electron transport layer of the blue sub-pixel, respectively.
  • the doping concentration of Mg in the electron transport layer of the red sub-pixel, the doping concentration of Mg in the electron transport layer of the green sub-pixel, and the doping concentration of Mg in the electron transport layer of the blue sub-pixel are 10% and 5, respectively. %,2%.
  • the thickness of the electron transport layer of the red sub-pixel, the electron transport layer of the green sub-pixel, and the electron transport layer of the blue sub-pixel are 60 nm, 40 nm, and 30 nm, respectively.
  • a quantum dot light-emitting layer is formed on the electron transport layer, wherein the materials of the red quantum dot light-emitting, green quantum dot light-emitting, and blue quantum dot light-emitting layer are CdS/ZnS, CdSe/ZnS, CdS/ZnS, respectively.
  • a hole transport layer is formed on the quantum dot light-emitting layer, and the material of the hole transport layer is NPB.
  • An anode is vapor-deposited on the hole transport layer, and the anode is Ag.
  • a polarizer layer (CPL) is deposited on the anode to obtain a display panel.
  • a substrate is provided, a cathode is formed on the substrate, and the cathode material is ITO.
  • a solution method is used to deposit ZnO nanoparticles with different Mg doping concentrations on the cathode to form the electron transport layer of the red sub-pixel, the electron transport layer of the green sub-pixel, and the electron transport layer of the blue sub-pixel, respectively.
  • the doping concentration of Mg in the electron transport layer of the red sub-pixel, the doping concentration of Mg in the electron transport layer of the green sub-pixel, and the doping concentration of Mg in the electron transport layer of the color sub-pixel are 5% and 2.5%, respectively , 0%.
  • the thickness of the electron transport layer of the red sub-pixel, the electron transport layer of the green sub-pixel, and the electron transport layer of the blue sub-pixel are 50 nm, 40 nm, and 30 nm, respectively.
  • a quantum dot light-emitting layer is formed on the electron transport layer, wherein the materials of the red quantum dot light-emitting, green quantum dot light-emitting, and blue quantum dot light-emitting layer are CdS/ZnS, CdSe/ZnS, CdS/ZnS, respectively.
  • a hole transport layer is formed on the quantum dot light-emitting layer, and the material of the hole transport layer is NPB.
  • a hole injection layer is formed on the quantum dot light-emitting layer, and the material of the hole injection layer is MoOx.
  • An anode is vapor-deposited on the hole transport layer, and the anode is Ag.
  • a polarizer layer (CPL) is deposited on the anode to obtain a display panel.
  • a substrate is provided, an anode is formed on the substrate, and the anode material is ITO.
  • a hole transport layer is formed on the anode, and the material of the hole transport layer is NPB.
  • a quantum dot light-emitting layer is formed on the hole transport layer, wherein the materials of the red quantum dot light-emitting, green quantum dot light-emitting, and blue quantum dot light-emitting layer are CdS/ZnS, CdSe/ZnS, CdS/ZnS, respectively.
  • the solution method is used to deposit ZnO nanoparticles with different Mg doping concentrations on the quantum dot light-emitting layer to form the electron transport layer of the red sub-pixel, the electron transport layer of the green sub-pixel, and the electron transport layer of the blue sub-pixel, respectively.
  • the doping concentration of Mg in the electron transport layer of the red sub-pixel, the doping concentration of Mg in the electron transport layer of the green sub-pixel, and the doping concentration of Mg in the electron transport layer of the blue sub-pixel are 20% and 10%, respectively. %, 5%.
  • the thickness of the electron transport layer of the red sub-pixel, the electron transport layer of the green sub-pixel, and the electron transport layer of the blue sub-pixel are 30 nm, 30 nm, and 30 nm, respectively.
  • a cathode is vapor-deposited on the electron transport layer, and the cathode is Ag to obtain a display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

提供一种显示面板及其制备方法、显示装置。显示面板包括若干个像素单元,像素单元包括红色子像素、绿色子像素与蓝色子像素,红色子像素、绿色子像素与蓝色子像素均包括层叠设置的阴极、电子传输层、量子点发光层、空穴功能层与阳极;电子传输层的材质为Mg掺杂的ZnO纳米颗粒,红色子像素的电子传输层中Mg的掺杂浓度、绿色子像素的电子传输层中Mg的掺杂浓度、蓝色子像素的电子传输层中Mg的掺杂浓度依次递减。显示面板能够针对红色子像素、绿色子像素与蓝色子像素的不同需求,分别调节载流子平衡,最终使红色子像素、绿色子像素与蓝色子像素同时实现最优的载流子平衡,从而提高显示面板的性能。

Description

显示面板及其制备方法、显示装置
相关申请
本申请要求于2020年6月2日提交中国专利局、申请号为202010487396.2、申请名称为“显示面板及其制备方法、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,特别是涉及一种显示面板及其制备方法、显示装置。
背景技术
半导体量子点具有光色纯度高、发光量子效率高、发光颜色可调、使用寿命长等优良特性。这些特点使得以量子点材料作为发光层的量子点发光二极管(QLED)在固态照明、平板显示等领域具有广泛的应用前景,受到了学术界以及产业界的广泛关注。
近年来,通过量子点材料合成工艺的改善以及器件结构的优化,QLED的性能有了大幅提升,但由于量子点材料的能级较深,电离势较大,使得现有的空穴传输层与量子点发光层之间的界面存在一个较大的空穴注入势垒,导致空穴注入较为困难,而相对的电子注入较为容易,从而引起QLED发光层中载流子不平衡,严重限制了QLED器件的性能。而倒置结构QLED,由于可以采用蒸镀型空穴传输层(HTL)材料,可选择材料类型更为广泛,同 时通过P掺杂有效提升其空穴迁移率,进而大幅提升器件性能。然而,在制作倒置结构显示面板时,为了节约成本以及实现大面积生产,HTL不能采用FMM沉积,只能采用open mask沉积,即HTL只能作为RGB的common layer(共用层)使用,无法针对RGB不同的需求采用不同的厚度或者不同的p掺杂浓度,从而无法有效根据RGB的不同需求独立优化各颜色器件的性能。
发明内容
本申请的各示例性实施例旨在根据RGB的不同需求独立优化各颜色器件的性能。
一种显示面板,所述显示面板包括若干个像素单元,所述像素单元包括红色子像素、绿色子像素与蓝色子像素,所述红色子像素、所述绿色子像素与所述蓝色子像素均包括层叠设置的阴极、电子传输层、量子点发光层、空穴功能层与阳极;
其中,所述电子传输层的材质为Mg掺杂的ZnO纳米颗粒,所述红色子像素的电子传输层中Mg的掺杂浓度、所述绿色子像素的电子传输层中Mg的掺杂浓度与所述蓝色子像素的电子传输层中Mg的掺杂浓度依次递减。
上述显示面板,能够针对红色子像素、绿色子像素与蓝色子像素的不同需求,通过使红色子像素的电子传输层中Mg的掺杂浓度、绿色子像素的电子传输层中Mg的掺杂浓度与蓝色子像素的电子传输层中Mg的掺杂浓度依次递减,分别调节载流子平衡,最终使红色子像素、绿色子像素与蓝色子像素同时实现最优的载流子平衡,从而提高显示面板的性能。
在其中一个实施例中,所述红色子像素的电子传输层中Mg的掺杂浓度为5wt%~20wt%,所述绿色子像素的电子传输层中Mg的掺杂浓度为 2wt%~10wt%,所述蓝色子像素的电子传输层中Mg的掺杂浓度为0wt%~5wt%。
在其中一个实施例中,所述红色子像素的电子传输层中Mg的掺杂浓度为5wt%~10wt%,所述绿色子像素的电子传输层中Mg的掺杂浓度为2.5wt%~7.5wt%。
在其中一个实施例中,所述红色子像素的电子传输层的厚度、所述绿色子像素的电子传输层的厚度与所述蓝色子像素的电子传输层的厚度依次递减。
在其中一个实施例中,所述红色子像素的电子传输层的厚度为40nm~100nm,所述绿色子像素的电子传输层的厚度为30nm~80nm,所述蓝色子像素的电子传输层的厚度为20nm~60nm。
在其中一个实施例中,所述红色子像素的电子传输层的厚度为40nm~70nm,所述绿色子像素的电子传输层的厚度为30nm~50nm,所述蓝色子像素的电子传输层的厚度为20nm~40nm。
一种显示面板的制备方法,包括如下步骤:
提供基板,在所述基板上层叠设置的阴极、电子传输层、量子点发光层、空穴功能层与阳极,其中,形成所述电子传输层的步骤包括:
采用溶液法在所述阴极上或者在所述量子点发光层上沉积不同Mg掺杂浓度的ZnO纳米颗粒,分别形成红色子像素的电子传输层、绿色子像素的电子传输层与蓝色子像素的电子传输层;其中,所述红色子像素的电子传输层中Mg的掺杂浓度、所述绿色子像素的电子传输层中Mg的掺杂浓度与所述蓝色子像素的电子传输层中Mg的掺杂浓度依次递减。
上述显示面板的制备方法简便,且能够针对红色子像素、绿色子像素与 蓝色子像素的不同需求,通过使红色子像素的电子传输层中Mg的掺杂浓度、绿色子像素的电子传输层中Mg的掺杂浓度与蓝色子像素的电子传输层中Mg的掺杂浓度依次递减,分别调节载流子平衡,最终使红色子像素、绿色子像素与蓝色子像素同时实现最优的载流子平衡,从而提高显示面板的性能。
在其中一个实施例中,所述溶液法为喷墨打印工艺。
在其中一个实施例中,所述红色子像素的电子传输层的厚度、所述绿色子像素的电子传输层的厚度与所述蓝色子像素的电子传输层的厚度依次递减。
一种显示装置,包括上述的显示面板。
一种显示装置,包括由上述的制备方法制备的显示面板。
应用本申请各示例性实施例的显示装置,由于包括上述显示面板,能够针对红色子像素、绿色子像素与蓝色子像素的不同需求,通过使红色子像素的电子传输层中Mg的掺杂浓度、绿色子像素的电子传输层中Mg的掺杂浓度与蓝色子像素的电子传输层中Mg的掺杂浓度依次递减,分别调节载流子平衡,最终使红色子像素、绿色子像素与蓝色子像素同时实现最优的载流子平衡,从而提高显示面板及显示装置的性能。
附图说明
图1为本申请一实施方式的显示面板的制备方法的流程图;
图2为本申请一实施方式的显示面板的制备方法中在基板形成阴极与像素定义层的示意图;
图3为本申请一实施方式的显示面板的制备方法中在阴极上形成电子传输层的示意图;
图4为本申请一实施方式的显示面板的制备方法中在电子传输层上形成量子点发光层的示意图;
图5为本申请一实施方式的显示面板的结构示意图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请一实施方式的显示面板的制备方法,包括如下步骤:
提供基板,在基板上形成层叠设置的阴极、电子传输层、量子点发光层、空穴功能层与阳极,其中,形成电子传输层的步骤包括:
采用溶液法在阴极上或者在量子点发光层上沉积不同Mg掺杂浓度的ZnO纳米颗粒,分别形成红色子像素的电子传输层、绿色子像素的电子传输层与蓝色子像素的电子传输层;其中,红色子像素的电子传输层中Mg的掺杂浓度、绿色子像素的电子传输层中Mg的掺杂浓度与蓝色子像素的电子传输层中Mg的掺杂浓度依次递减。
采用本申请的显示面板的制备方法制备得到的显示面板可以为正置结构显示面板或者倒置结构显示面板。
其中,正置结构显示面板的制备方法中,形成电子传输层的步骤包括:采用溶液法在量子点发光层上沉积不同Mg掺杂浓度的ZnO纳米颗粒,分别形成红色子像素的电子传输层、绿色子像素的电子传输层与蓝色子像素的电子传输层;其中,红色子像素的电子传输层中Mg的掺杂浓度、绿色子像素的电子传输层中Mg的掺杂浓度与蓝色子像素的电子传输层中Mg的掺杂浓度依次递减。
其中,倒置结构显示面板的制备方法中,形成电子传输层的步骤包括:采用溶液法在阴极上沉积不同Mg掺杂浓度的ZnO纳米颗粒,分别形成红色子像素的电子传输层、绿色子像素的电子传输层与蓝色子像素的电子传输层;其中,红色子像素的电子传输层中Mg的掺杂浓度、绿色子像素的电子传输层中Mg的掺杂浓度与蓝色子像素的电子传输层中Mg的掺杂浓度依次递减。
采用本申请上述实施方式的显示面板的制备方法得到的显示面板包括若干个像素单元,像素单元包括红色子像素、绿色子像素与蓝色子像素,红色子像素、绿色子像素与蓝色子像素均包括层叠设置的阴极、电子传输层、量子点发光层、空穴功能层与阳极。其中,量子点发光层包括红色子像素的量子点发光层、绿色子像素的量子点发光层与蓝色子像素的量子点发光层。
其中,在基板上形成层叠设置的阴极、电子传输层、量子点发光层、空穴功能层与阳极的步骤中,分别形成红色子像素的阴极、绿色子像素的阴极与蓝色子像素的阴极;分别形成红色子像素的电子传输层、绿色子像素的电子传输层与蓝色子像素的电子传输层;分别形成红色子像素的量子点发光层、绿色子像素的量子点发光层与蓝色子像素的量子点发光层;分别形成红色子像素的空穴功能层、绿色子像素的空穴功能层与蓝色子像素的空穴功能层;分别形成红色子像素的阳极、绿色子像素的阳极与蓝色子像素的阳极。
请参见图1,本申请一实施方式的显示面板的制备方法,包括如下步骤:
S10、提供基板,在基板上形成阴极。
基板160上制作TFT阵列驱动电路、图案化的阴极110以及相应的像素定义层170,如图2所示。
其中,基板160包括衬底及阵列驱动单元,其中衬底可以为刚性衬底或者柔性衬底。刚性衬底可以为玻璃,柔性衬底可以为PI等。阵列驱动单元用于驱动上层电致发光像素单元。
其中,阴极110为透明阴极或反射阴极。透明阴极为ITO或ITO/薄层金属。薄层金属包括Mg、Ba、Yb、Ag、Al或它们的合金或叠层结构,厚度为5nm~20nm。反射阴极为ITO/厚金属层或单独的厚金属层,厚层金属包括Mg、Ba、Yb、Ag、Al或它们的合金或叠层结构,厚度为40nm~200nm。阴极可以为反射阴极,即顶发射型显示面板,有利于开口率提升。
其中,像素定义层170的材质表面可以呈疏液性的光阻材料,厚度一般为1μm左右,通过黄光工艺制备。像素定义层170的像素开口对应面板的像素发光区以及与阵列驱动单元形成电学连接孔,定义各子像素的发光面积以及位置。
S20、采用溶液法在阴极上沉积不同Mg掺杂浓度的ZnO纳米颗粒,分别形成红色子像素的电子传输层、绿色子像素的电子传输层与蓝色子像素的电子传输层;其中,红色子像素的电子传输层中Mg的掺杂浓度、绿色子像素的电子传输层中Mg的掺杂浓度与蓝色子像素的电子传输层中Mg的掺杂浓度依次递减。
在一实施例中,溶液法为喷墨打印工艺。即,通过喷墨打印工艺在阴极上沉积不同Mg掺杂浓度的ZnO纳米颗粒,分别形成红色子像素的电子传输层120、绿色子像素的电子传输层120与蓝色子像素的电子传输层120,如图3所示。
在一实施例中,红色子像素的电子传输层120中Mg的掺杂浓度为5wt%~20wt%,绿色子像素的电子传输层120中Mg的掺杂浓度为2wt%~10wt%,蓝色子像素的电子传输层120中Mg的掺杂浓度为0wt%~5wt%。
在另一实施例中,红色子像素的电子传输层120中Mg的掺杂浓度为5wt%~10wt%,绿色子像素的电子传输层120中Mg的掺杂浓度为2.5wt%~7.5wt%。
在一实施例中,红色子像素的电子传输层120的厚度、绿色子像素的电子传输层120的厚度与蓝色子像素的电子传输层120的厚度依次递减。这样有利于实现较优的光学腔长结构。
在一实施例中,红色子像素的电子传输层120的厚度为40nm~100nm,绿色子像素的电子传输层120的厚度为30nm~80nm,蓝色子像素的电子传输层120的厚度为20nm~60nm。
在另一实施例中,红色子像素的电子传输层120的厚度为40nm~70nm, 绿色子像素的电子传输层120的厚度为30nm~50nm,蓝色子像素的电子传输层120的厚度为20nm~40nm。
通过结合采用不同Mg掺杂浓度的ZnO纳米颗粒作为电子传输材料以及不同的ETL厚度,能够同时实现倒置结构RGB显示面板发光子像素的载流子平衡以及最优的光学腔长,最终提高面板性能。
S30、在电子传输层上形成层叠的量子点发光层、空穴功能层与阳极,得到显示面板。
在不同厚度且不同Mg掺杂浓度的ZnO纳米颗粒电子传输层120上分别沉积量子点发光层130,如图4所示。
采用open mask在量子点发光层130上整面沉积空穴功能层140,如图5所示,其中空穴功能层140为common layer,避免使用FMM,能够降低制作成本且有利于大面积生产。
在空穴功能层140上采用open mask整面沉积阳极150,得到如图5所示的显示面板。在一实施例中,沉积阳极150之后还可以进一步沉积偏光片层(CPL),有利于提高出光效率。最后对整个显示面板进行封装。
上述显示面板的制备方法简便,且能够针对红色子像素、绿色子像素与蓝色子像素的不同需求,通过使红色子像素的电子传输层中Mg的掺杂浓度、绿色子像素的电子传输层中Mg的掺杂浓度与蓝色子像素的电子传输层中Mg的掺杂浓度依次递减,分别调节载流子平衡,最终使红色子像素、绿色子像素与蓝色子像素同时实现最优的载流子平衡,从而提高显示面板的性能。
请参见图5,本申请一实施方式的显示面板100包括若干个像素单元,像素单元包括红色子像素、绿色子像素与蓝色子像素,红色子像素、绿色子像素与蓝色子像素均包括层叠设置的阴极110、电子传输层120、量子点发光 层130、空穴功能层140与阳极150。
本申请中,像素单元的排布规则、子像素的排布规则不限。子像素可以为“一”字型并排设置的结构,也可以为“品”字型设置的结构。本实施方式中,如图5所示的显示面板100中,红色子像素、绿色子像素与蓝色子像素自左向右依次并排设置。
红色子像素、绿色子像素与蓝色子像素可以为倒置结构,也可以为正置结构。在一实施方式中,红色子像素、绿色子像素与蓝色子像素均为倒置结构,即从下至上,红色子像素、绿色子像素与蓝色子像素均包括层叠设置的阴极110、电子传输层120、量子点发光层130、空穴功能层140与阳极150。
电子传输层120的材质为Mg掺杂的ZnO纳米颗粒,红色子像素的电子传输层120中Mg的掺杂浓度、绿色子像素的电子传输层120中Mg的掺杂浓度与蓝色子像素的电子传输层120中Mg的掺杂浓度依次递减。即根据RGB器件中红光多电子、蓝光少电子的特性,减小红光器件的电子电流,提高蓝光器件的电子电流,同时实现RGB的载流子平衡。
其中,显示面板100还可以包括基板160。基板160包括衬底及阵列驱动单元,其中衬底可以为刚性衬底或者柔性衬底。刚性衬底可以为玻璃,柔性衬底可以为PI等。阵列驱动单元用于驱动上层电致发光像素单元。
其中,阴极110为透明阴极或反射阴极。透明阴极为ITO或ITO/薄层金属。薄层金属包括Mg、Ba、Yb、Ag、Al或它们的合金或叠层结构,厚度为5nm~20nm。反射阴极为ITO/厚金属层或单独的厚金属层,厚层金属包括Mg、Ba、Yb、Ag、Al或它们的合金或叠层结构,厚度为40nm~200nm。阴极可以为反射阴极,即顶发射型显示面板,有利于开口率提升。在本实施方式中,阴极110层叠设于基板160的表面。
其中,显示面板100还可以包括像素定义层170,像素定义层170在与阴极110相对的位置具有像素开口。像素定义层170的材质表面可以呈疏液性的光阻材料,厚度一般为1μm左右,通过黄光工艺制备。像素定义层170的像素开口对应面板的像素发光区以及与阵列驱动单元形成电学连接孔,定义各子像素的发光面积以及位置。
其中,量子点发光层130为Ⅱ-Ⅵ族化合物半导体及其核壳结构,如CdS、CdSe、CdS/ZnS、CdSe/ZnS或CdSe/CdS/ZnS等;还可以是Ⅲ-Ⅴ或Ⅳ-Ⅵ族化合物半导体及其核壳结构,如GaAs、InP、PbS/ZnS或PbSe/ZnS等。
其中,空穴功能层140可以为溶液法加工的聚合物制作,包括但不限于TFB、PVK等。当空穴功能层140为空穴传输层(HTL)时,可以为蒸镀工艺沉积的小分子制作,避免对下层量子点发光层130的破坏,蒸镀法沉积的小分子空穴传输材料包括本领域所有的常见蒸镀型小分子空穴传输材料。在一实施例中,HTL层为P型掺杂的HTL层,可以有效提升HTL层的空穴传输性能。掺杂型的HTL层可以为HTL/P型掺杂的HTL的叠层结构,防止P型掺杂对量子点发光层130的激子淬灭;在一实施例中,HTL和量子点发光层130之间可以进一步引入电子阻挡层(EBL),HTL和阳极150之间可以引入空穴注入层(HIL),进一步提升器件性能。
其中,阳极150为反射阳极或透明阳极。反射阳极为厚金属层,厚层金属包括但不限于Ag、Al、Cu或它们的合金或叠层结构,厚度为80nm~200nm。透明阳极为IZO或薄层金属/IZO,薄层金属包括但不限于Ag、Al、Cu或它们的合金或叠层结构,厚度为5nm~18nm;薄金属的阴极可以有效降低沉积IZO时对下层有机HTL的破坏。阳极可以为透明,即顶发射型显示面板,有利于提升开口率。
上述显示面板,能够针对红色子像素、绿色子像素与蓝色子像素的不同需求,通过使红色子像素的电子传输层中Mg的掺杂浓度、绿色子像素的电子传输层中Mg的掺杂浓度与蓝色子像素的电子传输层中Mg的掺杂浓度依次递减,分别调节载流子平衡,最终使红色子像素、绿色子像素与蓝色子像素同时实现最优的载流子平衡,从而提高显示面板的性能。
在前述实施方式的基础上,红色子像素的电子传输层120中Mg的掺杂浓度为5wt%~20wt%,绿色子像素的电子传输层120中Mg的掺杂浓度为2wt%~10wt%,蓝色子像素的电子传输层120中Mg的掺杂浓度为0wt%~5wt%。
在前述实施方式的基础上,红色子像素的电子传输层120中Mg的掺杂浓度为5wt%~10wt%,绿色子像素的电子传输层120中Mg的掺杂浓度为2.5wt%~7.5wt%。
在前述实施方式的基础上,红色子像素的电子传输层120的厚度、绿色子像素的电子传输层120的厚度与蓝色子像素的电子传输层120的厚度依次递减。这样有利于实现较优的光学腔长结构。
在前述实施方式的基础上,红色子像素的电子传输层120的厚度为40nm~100nm,绿色子像素的电子传输层120的厚度为30nm~80nm,蓝色子像素的电子传输层120的厚度为20nm~60nm。
在前述实施方式的基础上,红色子像素的电子传输层120的厚度为40nm~70nm,绿色子像素的电子传输层120的厚度为30nm~50nm,蓝色子像素的电子传输层120的厚度为20nm~40nm。
通过结合采用不同Mg掺杂浓度的ZnO纳米颗粒作为电子传输材料以及不同的ETL厚度,能够同时实现倒置结构RGB显示面板发光子像素的载流 子平衡以及最优的光学腔长,最终实现最优的面板性能。
在前述实施方式的基础上,空穴功能层140选自空穴传输层与空穴注入层中的至少一种。本实施方式中的空穴功能层140为空穴传输层,当然,在其他实施方式中,空穴功能层还可以为空穴注入层,或者空穴传输层与空穴注入层层叠设置。
一实施方式的显示装置,包括上述的显示面板或包括上述的制备方法制备的显示面板。
应用本申请技术方案的显示装置,由于包括上述显示面板,能够针对红色子像素、绿色子像素与蓝色子像素的不同需求,通过使红色子像素的电子传输层中Mg的掺杂浓度、绿色子像素的电子传输层中Mg的掺杂浓度与蓝色子像素的电子传输层中Mg的掺杂浓度依次递减,分别调节载流子平衡,最终使红色子像素、绿色子像素与蓝色子像素同时实现最优的载流子平衡,从而提高显示面板及显示装置的性能。
以下为具体实施例。
实施例1
提供基板,在基板上形成阴极,阴极材料为ITO。
采用溶液法在阴极上沉积不同Mg掺杂浓度的ZnO纳米颗粒,分别形成红色子像素的电子传输层、绿色子像素的电子传输层与蓝色子像素的电子传输层。其中,红色子像素的电子传输层中Mg的掺杂浓度、绿色子像素的电子传输层中Mg的掺杂浓度与蓝色子像素的电子传输层中Mg的掺杂浓度分别为20%、10%、5%。红色子像素的电子传输层、绿色子像素的电子传输层、蓝色子像素的电子传输层的厚度分别为30nm、30nm、30nm。
在电子传输层上形成量子点发光层,其中红色量子点发光、绿色量子点 发光、蓝色量子点发光层的材料分别为CdS/ZnS、CdSe/ZnS、CdS/ZnS。
在量子点发光层上形成空穴传输层,空穴传输层的材料为NPB。
在空穴传输层上蒸镀阳极,阳极为Ag,得到显示面板。
实施例2
提供基板,在基板上形成阴极,阴极材料为ITO。
采用溶液法在阴极上沉积不同Mg掺杂浓度的ZnO纳米颗粒,分别形成红色子像素的电子传输层、绿色子像素的电子传输层与蓝色子像素的电子传输层。其中,红色子像素的电子传输层中Mg的掺杂浓度、绿色子像素的电子传输层中Mg的掺杂浓度与蓝色子像素的电子传输层中Mg的掺杂浓度分别为20%、10%、5%。红色子像素的电子传输层、绿色子像素的电子传输层、蓝色子像素的电子传输层的厚度分别为40nm、30nm、20nm。
在电子传输层上形成量子点发光层,其中红色量子点发光、绿色量子点发光、蓝色量子点发光层的材料分别为CdS/ZnS、CdSe/ZnS、CdS/ZnS。
在量子点发光层上形成空穴传输层,空穴传输层的材料为NPB。
在空穴传输层上蒸镀阳极,阳极为Ag,得到显示面板。
实施例3
提供基板,在基板上形成阴极,阴极材料为ITO。
采用溶液法在阴极上沉积不同Mg掺杂浓度的ZnO纳米颗粒,分别形成红色子像素的电子传输层、绿色子像素的电子传输层与蓝色子像素的电子传输层。其中,红色子像素的电子传输层中Mg的掺杂浓度、绿色子像素的电子传输层中Mg的掺杂浓度与蓝色子像素的电子传输层中Mg的掺杂浓度分 别为10%、5%、2%。红色子像素的电子传输层、绿色子像素的电子传输层、蓝色子像素的电子传输层的厚度分别为60nm、40nm、30nm。
在电子传输层上形成量子点发光层,其中红色量子点发光、绿色量子点发光、蓝色量子点发光层的材料分别为CdS/ZnS、CdSe/ZnS、CdS/ZnS。
在量子点发光层上形成空穴传输层,空穴传输层的材料为NPB。
在空穴传输层上蒸镀阳极,阳极为Ag。
在阳极上沉积偏光片层(CPL),得到显示面板。
实施例4
提供基板,在基板上形成阴极,阴极材料为ITO。
采用溶液法在阴极上沉积不同Mg掺杂浓度的ZnO纳米颗粒,分别形成红色子像素的电子传输层、绿色子像素的电子传输层与蓝色子像素的电子传输层。其中,红色子像素的电子传输层中Mg的掺杂浓度、绿色子像素的电子传输层中Mg的掺杂浓度与色子像素的电子传输层中Mg的掺杂浓度分别为5%、2.5%、0%。红色子像素的电子传输层、绿色子像素的电子传输层、蓝色子像素的电子传输层的厚度分别为50nm、40nm、30nm。
在电子传输层上形成量子点发光层,其中红色量子点发光、绿色量子点发光、蓝色量子点发光层的材料分别为CdS/ZnS、CdSe/ZnS、CdS/ZnS。
在量子点发光层上形成空穴传输层,空穴传输层的材料为NPB。
在量子点发光层上形成空穴注入层,空穴注入层的材料为MoOx。
在空穴传输层上蒸镀阳极,阳极为Ag。
在阳极上沉积偏光片层(CPL),得到显示面板。
实施例5
提供基板,在基板上形成阳极,阳极材料为ITO。
在阳极上形成空穴传输层,空穴传输层的材料为NPB。
在空穴传输层上形成量子点发光层,其中红色量子点发光、绿色量子点发光、蓝色量子点发光层的材料分别为CdS/ZnS、CdSe/ZnS、CdS/ZnS。
采用溶液法在量子点发光层上沉积不同Mg掺杂浓度的ZnO纳米颗粒,分别形成红色子像素的电子传输层、绿色子像素的电子传输层与蓝色子像素的电子传输层。其中,红色子像素的电子传输层中Mg的掺杂浓度、绿色子像素的电子传输层中Mg的掺杂浓度与蓝色子像素的电子传输层中Mg的掺杂浓度分别为20%、10%、5%。红色子像素的电子传输层、绿色子像素的电子传输层、蓝色子像素的电子传输层的厚度分别为30nm、30nm、30nm。
在电子传输层上蒸镀阴极,阴极为Ag,得到显示面板。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (17)

  1. 一种显示面板,包括:
    若干个像素单元,所述像素单元包括红色子像素、绿色子像素与蓝色子像素,所述红色子像素、所述绿色子像素与所述蓝色子像素均包括层叠设置的阴极、电子传输层、量子点发光层、空穴功能层与阳极;
    其中,所述电子传输层的材质为Mg掺杂的ZnO纳米颗粒,所述红色子像素的电子传输层中Mg的掺杂浓度、所述绿色子像素的电子传输层中Mg的掺杂浓度与所述蓝色子像素的电子传输层中Mg的掺杂浓度依次递减。
  2. 根据权利要求1所述的显示面板,其中,所述红色子像素的电子传输层中Mg的掺杂浓度为5wt%~20wt%,所述绿色子像素的电子传输层中Mg的掺杂浓度为2wt%~10wt%,所述蓝色子像素的电子传输层中Mg的掺杂浓度为0wt%~5wt%。
  3. 根据权利要求2所述的显示面板,其中,所述红色子像素的电子传输层中Mg的掺杂浓度为5wt%~10wt%,所述绿色子像素的电子传输层中Mg的掺杂浓度为2.5wt%~7.5wt%。
  4. 根据权利要求1所述的显示面板,其中,所述红色子像素的电子传输层中Mg的掺杂浓度为5wt%~10wt%,所述绿色子像素的电子传输层中Mg的掺杂浓度为2.5wt%~7.5wt%。
  5. 根据权利要求1所述的显示面板,其中,所述红色子像素的电子传输层的厚度、所述绿色子像素的电子传输层的厚度与所述蓝色子像素的电子传输层的厚度依次递减。
  6. 根据权利要求1所述的显示面板,其中,所述红色子像素的电子传输层的厚度为40nm~100nm,所述绿色子像素的电子传输层的厚度为 30nm~80nm,所述蓝色子像素的电子传输层的厚度为20nm~60nm。
  7. 根据权利要求6所述的显示面板,其中,所述红色子像素的电子传输层的厚度为40nm~70nm,所述绿色子像素的电子传输层的厚度为30nm~50nm,所述蓝色子像素的电子传输层的厚度为20nm~40nm。
  8. 一种显示面板的制备方法,包括如下步骤:
    提供基板,在所述基板上形成层叠设置的阴极、电子传输层、量子点发光层、空穴功能层与阳极,其中,形成所述电子传输层的步骤包括:
    采用溶液法在所述阴极上或者在所述量子点发光层上沉积不同Mg掺杂浓度的ZnO纳米颗粒,分别形成红色子像素的电子传输层、绿色子像素的电子传输层与蓝色子像素的电子传输层;其中,所述红色子像素的电子传输层中Mg的掺杂浓度、所述绿色子像素的电子传输层中Mg的掺杂浓度与所述蓝色子像素的电子传输层中Mg的掺杂浓度依次递减。
  9. 根据权利要求8所述的显示面板的制备方法,其中,所述溶液法为喷墨打印工艺。
  10. 根据权利要求8所述的显示面板的制备方法,其中,所述红色子像素的电子传输层的厚度、所述绿色子像素的电子传输层的厚度与所述蓝色子像素的电子传输层的厚度依次递减。
  11. 一种显示装置,包括显示面板,所示显示面板包括:若干个像素单元,所述像素单元包括红色子像素、绿色子像素与蓝色子像素,所述红色子像素、所述绿色子像素与所述蓝色子像素均包括层叠设置的阴极、电子传输层、量子点发光层、空穴功能层与阳极;
    其中,所述电子传输层的材质为Mg掺杂的ZnO纳米颗粒,所述红色子像素的电子传输层中Mg的掺杂浓度、所述绿色子像素的电子传输层中Mg 的掺杂浓度与所述蓝色子像素的电子传输层中Mg的掺杂浓度依次递减。
  12. 根据权利要求11所述的显示装置,其中,所述红色子像素的电子传输层中Mg的掺杂浓度为5wt%~20wt%,所述绿色子像素的电子传输层中Mg的掺杂浓度为2wt%~10wt%,所述蓝色子像素的电子传输层中Mg的掺杂浓度为0wt%~5wt%。
  13. 根据权利要求12所述的显示装置,其中,所述红色子像素的电子传输层中Mg的掺杂浓度为5wt%~10wt%,所述绿色子像素的电子传输层中Mg的掺杂浓度为2.5wt%~7.5wt%。
  14. 根据权利要求11所述的显示装置,其中,所述红色子像素的电子传输层中Mg的掺杂浓度为5wt%~10wt%,所述绿色子像素的电子传输层中Mg的掺杂浓度为2.5wt%~7.5wt%。
  15. 根据权利要求11所述的显示装置,其中,所述红色子像素的电子传输层的厚度、所述绿色子像素的电子传输层的厚度与所述蓝色子像素的电子传输层的厚度依次递减。
  16. 根据权利要求11所述的显示装置,其中,所述红色子像素的电子传输层的厚度为40nm~100nm,所述绿色子像素的电子传输层的厚度为30nm~80nm,所述蓝色子像素的电子传输层的厚度为20nm~60nm。
  17. 根据权利要求16所述的显示装置,其中,所述红色子像素的电子传输层的厚度为40nm~70nm,所述绿色子像素的电子传输层的厚度为30nm~50nm,所述蓝色子像素的电子传输层的厚度为20nm~40nm。
PCT/CN2021/084822 2020-06-02 2021-04-01 显示面板及其制备方法、显示装置 WO2021244121A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/781,226 US20220416192A1 (en) 2020-06-02 2021-04-01 Display panel and manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010487396.2 2020-06-02
CN202010487396.2A CN113206126B (zh) 2020-06-02 2020-06-02 显示面板及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2021244121A1 true WO2021244121A1 (zh) 2021-12-09

Family

ID=77024964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084822 WO2021244121A1 (zh) 2020-06-02 2021-04-01 显示面板及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US20220416192A1 (zh)
CN (1) CN113206126B (zh)
WO (1) WO2021244121A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117222288B (zh) * 2023-11-07 2024-03-19 惠科股份有限公司 发光单元、显示面板的制作方法和显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106960862A (zh) * 2017-03-15 2017-07-18 合肥鑫晟光电科技有限公司 一种显示基板及显示装置
CN107359254A (zh) * 2016-12-12 2017-11-17 广东聚华印刷显示技术有限公司 印刷显示器件及其制备方法和应用
CN107768541A (zh) * 2016-08-23 2018-03-06 三星电子株式会社 电子器件以及包括该电子器件的显示装置
CN108470840A (zh) * 2018-05-31 2018-08-31 上海天马有机发光显示技术有限公司 有机发光显示面板及显示装置
US20190296264A1 (en) * 2018-03-26 2019-09-26 Apple Inc. Quantum dot based pixel assembly
CN110491923A (zh) * 2019-08-26 2019-11-22 昆山国显光电有限公司 一种显示面板和显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222046A (ja) * 2011-04-05 2012-11-12 Mitsui Mining & Smelting Co Ltd 有機デバイス用電極シート、有機デバイスモジュールおよびその製造方法
CN108539034B (zh) * 2018-05-31 2020-10-30 上海天马有机发光显示技术有限公司 有机发光显示面板和有机发光显示装置
CN108807481B (zh) * 2018-06-13 2020-10-27 上海天马有机发光显示技术有限公司 一种有机发光显示面板及显示装置
US20220013744A1 (en) * 2018-10-30 2022-01-13 Sharp Kabushiki Kaisha Light-emitting element, method for manufacturing light-emitting element
CN111029476A (zh) * 2019-11-25 2020-04-17 深圳市华星光电半导体显示技术有限公司 显示器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107768541A (zh) * 2016-08-23 2018-03-06 三星电子株式会社 电子器件以及包括该电子器件的显示装置
CN107359254A (zh) * 2016-12-12 2017-11-17 广东聚华印刷显示技术有限公司 印刷显示器件及其制备方法和应用
CN106960862A (zh) * 2017-03-15 2017-07-18 合肥鑫晟光电科技有限公司 一种显示基板及显示装置
US20190296264A1 (en) * 2018-03-26 2019-09-26 Apple Inc. Quantum dot based pixel assembly
CN108470840A (zh) * 2018-05-31 2018-08-31 上海天马有机发光显示技术有限公司 有机发光显示面板及显示装置
CN110491923A (zh) * 2019-08-26 2019-11-22 昆山国显光电有限公司 一种显示面板和显示装置

Also Published As

Publication number Publication date
CN113206126A (zh) 2021-08-03
CN113206126B (zh) 2022-12-06
US20220416192A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
US10461131B2 (en) Quantum dot LED and OLED integration for high efficiency displays
US8344619B2 (en) Organic light-emitting display apparatus and method of manufacturing the same
US20190296264A1 (en) Quantum dot based pixel assembly
US20180108871A1 (en) Manufacturing method for led display panel and led display panel
US7710024B2 (en) Organic light emitting display device and method of fabricating the same
CN111816683B (zh) 显示装置及其制备方法
WO2019095565A1 (zh) 串联量子点发光器件、面板即显示器
US20110001139A1 (en) Organic light emitting diode display device and method of fabricating the same
WO2015000242A1 (zh) Oled器件及其制造方法、显示装置
Wang et al. High-efficiency and high-resolution patterned quantum dot light emitting diodes by electrohydrodynamic printing
US20220093899A1 (en) Organic Light Emitting Diode Employing Multi-Refractive Capping Layer For Improving Light Efficiency
CN110265558A (zh) Oled显示面板及其制备方法
WO2021244121A1 (zh) 显示面板及其制备方法、显示装置
WO2021129183A1 (zh) 发光器件及其制作方法
CN110896096A (zh) 一种显示面板及其制备方法
KR101908512B1 (ko) 유기 전계 발광 표시 패널 및 그의 제조 방법
US20220173351A1 (en) Electroluminescent display device
US11716863B2 (en) Hybrid display architecture
US20230021056A1 (en) Method of patterning light emitting layer, and method of manufacturing light-emitting diode device
WO2021249162A1 (zh) 显示器件及其制备方法
US8395145B2 (en) Top-emitting organic light-emitting device
CN113130778A (zh) 量子点发光二极管及其制备方法
CN114079027B (zh) 发光器件及其制备方法
WO2020220492A1 (zh) 像素电极结构及像素电极结构制作方法
WO2024040464A1 (zh) 一种显示基板、其制作方法及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21817484

Country of ref document: EP

Kind code of ref document: A1