WO2021249162A1 - 显示器件及其制备方法 - Google Patents

显示器件及其制备方法 Download PDF

Info

Publication number
WO2021249162A1
WO2021249162A1 PCT/CN2021/095238 CN2021095238W WO2021249162A1 WO 2021249162 A1 WO2021249162 A1 WO 2021249162A1 CN 2021095238 W CN2021095238 W CN 2021095238W WO 2021249162 A1 WO2021249162 A1 WO 2021249162A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electron transport
transport layer
pixel
light
Prior art date
Application number
PCT/CN2021/095238
Other languages
English (en)
French (fr)
Inventor
陈亚文
史文
庄锦勇
付东
Original Assignee
广东聚华印刷显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东聚华印刷显示技术有限公司 filed Critical 广东聚华印刷显示技术有限公司
Publication of WO2021249162A1 publication Critical patent/WO2021249162A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material

Definitions

  • the present invention relates to the field of display technology, in particular to a display device and a preparation method thereof.
  • Quantum dots have excellent characteristics such as high light color purity, high luminous quantum efficiency, adjustable luminous color, and long service life. These characteristics make quantum dot light-emitting diodes (QLEDs) with quantum dot materials as the light-emitting layer have a wide range of application prospects in solid-state lighting, flat-panel displays and other fields, and have received extensive attention from academia and industry.
  • QLEDs quantum dot light-emitting diodes
  • a method for manufacturing a display device includes the following steps:
  • An anode layer is formed on the light-emitting layer to obtain the display device.
  • the step of sequentially forming a stacked cathode layer and a first electron transport layer on the substrate includes:
  • the cathode material layer and the first electron transport material layer are patterned to form a stacked cathode layer and a first electron transport layer.
  • the cathode layer includes a metal film layer, and the metal film layer is in direct contact with the first electron transport layer.
  • the material of the metal film layer is selected from one or more of Mg, Ba, Yb, Ag, Al, Pt and Cu.
  • the number of the pixel pits is multiple, the light-emitting layer in each pixel pit is composed of luminescent materials of different colors, and the thickness of the second electron transport layer in each pixel pit is equal to The length of the optical cavity corresponding to the color of the light-emitting material constituting the light-emitting layer in the pixel pit is matched.
  • the pixel pit includes a first pixel pit, a second pixel pit, and a third pixel pit
  • the light-emitting layer in the first pixel pit is made of red light-emitting material
  • the The light-emitting layer is a green light-emitting material
  • the light-emitting layer in the third pixel pit is a blue light-emitting material
  • the sum of the thicknesses of the first electron transport layer and the second electron transport layer in the second pixel pit is smaller than the first electron transport layer and the second electron transport layer in the first pixel pit
  • the sum of the thicknesses of the layers is greater than the sum of the thicknesses of the first electron transport layer and the second electron transport layer in the third pixel pit.
  • the total thickness of the first electron transport layer and the second electron transport layer in the first pixel pit is 10nm-50nm
  • the first electron transport layer and the second electron transport layer The total thickness of the electron transport layer in the second pixel pit is 10 nm to 30 nm
  • the total thickness of the first electron transport layer and the second electron transport layer in the third pixel pit is 10 nm to 20 nm.
  • the total thickness of the first electron transport layer and the second electron transport layer in the first pixel pit is N ⁇ (130-150) nm, and the first electron transport layer And the total thickness of the second electron transport layer in the second pixel pit is N ⁇ (110 ⁇ 130) nm, and the first electron transport layer and the second electron transport layer are in the third pixel
  • the total thickness in the pit is N ⁇ (60-100) nm; where N is a positive integer.
  • the cathode material layer and the first electron transport material layer are formed by a vapor deposition method in a vacuum environment, the vapor deposition method uses a sputtering process, and the solution method uses an inkjet printing process .
  • the material of the first electron transport layer is selected from one or more of ZnO, TiOx, ZnMgO and ZnAlO.
  • the present invention also provides a display device including a substrate, a cathode layer, a first electron transport layer, a pixel defining layer, a second electron transport layer, a light emitting layer, and an anode layer.
  • the cathode layer is provided on the substrate, and
  • the first electron transport layer is provided on the cathode layer, the pixel defining layer is provided on the substrate to form pixel pits with the pixel defining layer as the sidewall and the first electron transport layer as the bottom, and the second electron
  • the transport layer is provided on the first electron transport layer in the pixel pit, the light-emitting layer is provided on the second electron transport layer in the pixel pit, and the anode layer is provided on the light-emitting layer.
  • the performance of the device is significantly better than using conductive metal oxides such as ITO/Ag/ITO as the reflective electrode to directly contact the electron transport layer get in touch with.
  • metals such as Ag are directly used as the reflective electrode, in the subsequent patterning and the process of forming the pixel defining layer, metals such as Ag are easier to oxidize, which in turn will greatly reduce the performance of the device. This problem hinders the further improvement of device performance.
  • the method for manufacturing the display device of the present invention first forms a cathode material layer on the substrate, and continues to form a first electron transport material layer on the cathode material layer. Then, the cathode material layer and the first electron transport material layer are patterned to form the cathode layer and the first electron transport layer. In this way, it can be ensured that Ag and other metals can directly contact the electron transport layer when used as the cathode layer to achieve better device performance.
  • the dense first electron transport material layer can be used as a protective layer to form a pixel defining layer during patterning and subsequent formation. The process can prevent the cathode material from being oxidized and affect the performance of the device.
  • a second electron transport layer is formed in the pixel pit by a solution method.
  • the thickness of the second electron transport layer can be adjusted as needed, so as to realize the control of the optical cavity length of different light-emitting sub-pixels. Optimize the carrier balance of the light-emitting sub-pixels and improve the performance of the display device.
  • FIG. 1 is a schematic flowchart of a manufacturing method of a display device according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a state in the manufacturing process of a display device according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of another state in the manufacturing process of the display device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another state in the manufacturing process of the display device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another state in the manufacturing process of the display device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another state in the manufacturing process of the display device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a display device according to an embodiment of the present invention.
  • Fig. 8 is a JV curve diagram of the display device of the embodiment and the comparative example.
  • a component when referred to as being "disposed on” another component, it can be directly disposed on the other component or a centered component may also exist.
  • an element When an element is considered to be “connected” to another element, it can be directly connected to the other element or an intermediate element may be present at the same time.
  • the manufacturing method of the display device of an embodiment includes the following steps S1 to S6:
  • a substrate 10 is provided, on which a cathode material layer 21 and a first electron transport material layer 31 are sequentially formed on the substrate 10.
  • a pixel defining layer 40 is formed on the substrate 10, and a pixel pit is formed with the pixel defining layer 40 as the sidewall and the first electron transport layer 30 as the bottom.
  • the pixel defining layer 40 is formed on the substrate 10 between the patterned cathode layer 20 and the first electron transport layer 30, and the pixel defining layer 40 covers the edges of the cathode layer 20 and the first electron transport layer 30, and at least partially exposes the first electron transport layer 30.
  • An electron transport layer 30 prevents the subsequent short circuit problem.
  • a second electron transport layer 50 covering the first electron transport layer 30 is formed in the pixel pit by a solution method.
  • a light-emitting layer 60 covering the second electron transport layer 50 is formed in the pixel pit.
  • an anode layer 80 is formed on the light-emitting layer 60 to obtain a display device 100.
  • the performance of the device is significantly better than using conductive metal oxides such as ITO/Ag/ITO as the reflective electrode to directly contact the electron transport layer get in touch with.
  • metals such as Ag are directly used as the reflective electrode, in the subsequent patterning and the process of forming the pixel defining layer, metals such as Ag are easier to oxidize, which in turn will greatly reduce the performance of the device. This problem hinders the further improvement of device performance.
  • the method for manufacturing the display device of the present invention first forms the cathode material layer 21 on the substrate 10, and then continues to form the first electron transport material layer 31 on the cathode material layer 21. Then, the cathode material layer 21 and the first electron transport material layer 31 are patterned to form the cathode layer 20 and the first electron transport layer 30. In this way, it can be ensured that when metals such as Ag are used as the cathode layer, they can directly contact the electron transport layer to achieve better device performance. At the same time, the dense first electron transport material layer 31 can be used as a protective layer to define the pixels during patterning and subsequent formation.
  • the cathode material can be prevented from being oxidized to affect the performance of the device.
  • the second electron transport layer 50 is formed in the pixel pit by the solution method. At this time, the thickness of the second electron transport layer 50 can be adjusted as needed, so as to realize the optical cavity of different light-emitting sub-pixels. Long control, optimize the carrier balance of the light-emitting sub-pixels, and improve the performance of the display device.
  • the cathode layer 20 is a reflective cathode, which includes at least a metal film layer, and the metal film layer is in direct contact with the first electron transport layer 30, which is more suitable for the above-mentioned preparation method to improve device performance.
  • the cathode layer 20 may also be a composite layer of an ITO layer and a metal film layer, etc., but the metal film layer is in direct contact with the first electron transport layer 30.
  • the material of the metal film layer includes one or more of Mg, Ba, Yb, Ag, Al, Pt, and Cu, which can be an alloy or a laminated structure of various metal materials. The thickness is 40nm ⁇ 200nm.
  • the color of the light-emitting layer 60 in the multiple pixel pits is different, and the thickness of the second electron transport layer 50 in the multiple pixel pits is adjusted according to the optical cavity length of different light-emitting layer colors. Therefore, the carrier balance of the light-emitting sub-pixels can be optimized, and the performance of the display device can be improved.
  • the pixel pit includes a first pixel pit, a second pixel pit, and a third pixel pit.
  • the light-emitting layer 60 in the first pixel pit is a red light-emitting layer
  • the light-emitting layer 60 in the second pixel pit is a green light-emitting layer.
  • the light-emitting layer 60 in the third pixel pit is a blue light-emitting layer.
  • the total thickness of the first electron transport layer 30 and the second electron transport layer 50 corresponding to the red light-emitting layer is greater than the total thickness of the first electron transport layer 30 and the second electron transport layer 50 corresponding to the green light-emitting layer
  • the total thickness of the first electron transport layer 30 and the second electron transport layer 50 corresponding to the green light-emitting layer is greater than the total thickness of the first electron transport layer 30 and the second electron transport layer 50 corresponding to the blue light-emitting layer. That is, the total thickness of the first electron transport layer 30 and the second electron transport layer 50 satisfies: the thickness of the red light region>the thickness of the green light region>the thickness of the blue light region, which is beneficial to improve the performance of the display device.
  • the total thickness of the first electron transport layer 30 and the second electron transport layer 50 corresponding to the red light-emitting layer is 10nm-50nm
  • the first electron transport layer 30 and the second electron transport layer corresponding to the green light-emitting layer The total thickness of the layer 50 is 10 nm to 30 nm
  • the total thickness of the first electron transport layer 30 and the second electron transport layer 50 corresponding to the blue light-emitting layer is 10 nm to 20 nm. In this way, it has a better optical cavity length structure and can improve the performance of the display device.
  • the total thickness of the first electron transport layer 30 and the second electron transport layer 50 corresponding to the red light-emitting layer is N ⁇ (130 ⁇ 150) nm
  • the first electron transport layer 30 corresponding to the green light-emitting layer The total thickness of the second electron transport layer 50 and the second electron transport layer 50 is N ⁇ (110 ⁇ 130) nm
  • the total thickness of the first electron transport layer 30 and the second electron transport layer 50 corresponding to the blue light-emitting layer is N ⁇ (60 ⁇ 100 ) nm; where N is a positive integer.
  • N is 1 or 2.
  • the cathode material layer 21 and the first electron transport material layer 31 are formed by vapor deposition in a vacuum environment.
  • the material layer deposited in the vacuum environment is denser and can better prevent metals such as Ag from being oxidized.
  • the vapor deposition method uses a sputtering process, and the solution method uses an inkjet printing process. It can be understood that it is not limited to this.
  • the vapor deposition method may also select processes such as vacuum evaporation or ion plating, and the solution method may also select processes such as spin coating and screen printing.
  • the substrate 10 includes a substrate and an array driving unit.
  • the substrate can be a rigid substrate such as glass or a flexible substrate such as PI.
  • the array driving unit is used to drive the upper electroluminescent pixel unit.
  • the material of the first electron transport layer 30 includes but is not limited to ZnO, TiOx, ZnMgO, ZnAlO, etc., and the thickness is 10 nm-100 nm.
  • the pixel defining layer 40 is made of a conventional photoresist material, preferably a photoresist material with a lyophobic surface, with a thickness of about 1 ⁇ m, and is prepared by a yellow light process.
  • the pixel pits of the pixel defining layer 40 correspond to the pixel light-emitting area and form an electrical connection hole with the array driving unit to define the light-emitting area and position of each sub-pixel unit.
  • the material of the second electron transport layer 50 includes, but is not limited to, nanoparticles such as ZnO, TiOx, ZnMgO, and ZnAlO.
  • the light-emitting layer 60 is a quantum dot light-emitting layer
  • the material can be a II-VI group compound semiconductor and its core-shell structure, such as CdS, CdSe, CdS/ZnS, CdSe/ZnS or CdSe/CdS/ZnS, etc. It can also be III-V or IV-VI group compound semiconductors and their core-shell structures, such as GaAs, InP, PbS/ZnS or PbSe/ZnS.
  • the following step is further included: forming a hole transport layer 70 on the light-emitting layer 60.
  • the material of the hole transport layer 70 is a polymer suitable for solution processing, including but not limited to TFB, PVK, etc.; it can also be a small molecule suitable for deposition by an evaporation process to avoid damage to the light-emitting layer 60 destroy.
  • the hole transport layer 70 is a P-type doped hole transport layer, which can effectively improve the hole transport performance of the hole transport layer.
  • the doped hole transport layer is preferably a stacked structure of HTL/P-doped HTL, and the HTL layer is in direct contact with the light-emitting layer to prevent the P-type doped HTL from quenching the light-emitting layer 60 excitons.
  • the hole injection layer is made of polymer material, which has the characteristic of being insoluble after heat treatment, such as PEDT/PSS (containing silane coupling agent), Nissan SHI-2520 and Nissan SHI-X04, etc.; the hole injection layer can also be used Evaporated small molecule materials that are insoluble in polar solvents, including but not limited to DNTPD, MeO-TPD, m-MTDATA, NATA and NNPPB.
  • PEDT/PSS containing silane coupling agent
  • Nissan SHI-2520 and Nissan SHI-X04 etc.
  • the hole injection layer can also be used Evaporated small molecule materials that are insoluble in polar solvents, including but not limited to DNTPD, MeO-TPD, m-MTDATA, NATA and NNPPB.
  • the anode layer 80 is a transparent anode, and the transparent anode is an IZO layer or a composite layer of a metal layer and an IZO layer.
  • the metal layer includes, but is not limited to, Ag, Al, Cu and their alloys or laminated structures, and has a thickness of 5 nm to 18 nm. The metal layer can effectively reduce the damage to the underlying organic hole transport layer when IZO is deposited.
  • the display device 100 of an embodiment is prepared by the above-mentioned preparation method, and includes a substrate 10, a cathode layer 20, a first electron transport layer 30, a pixel defining layer 40, a second electron transport layer 50, and a light emitting layer.
  • the layer 60 and the anode layer 80, the cathode layer 20 is provided on the substrate 10
  • the first electron transport layer 30 is provided on the cathode layer 20
  • the pixel defining layer 40 is provided on the first electron transport layer 30 and corresponds to the first electron transport layer 30
  • the pixel pit is formed and the first electron transport layer 30 is at least partially exposed.
  • the second electron transport layer 50 is provided on the first electron transport layer 30 in the pixel pit.
  • the light emitting layer 60 is provided on the second electron transport layer 50 in the pixel pit.
  • the layer 80 is provided on the light-emitting layer 60.
  • S1 Provide a substrate with a TFT array drive circuit on the substrate, and continuous sputtering deposition on the substrate in a vacuum environment to form a laminated reflective cathode material layer and a first electron transport material layer, the material of the reflective cathode material layer is Ag , The material of the first electron transport material layer is ZnO.
  • the pixel defining layer is prepared by the yellow light process, and the pixel defining layer covers the edge of the reflective cathode layer and the first electron transport layer to prevent subsequent short circuit problems. Since the first electron transport layer is a dense thin film, the surface of the reflective cathode layer can be effectively prevented from being oxidized during the manufacturing process.
  • a second electron transport layer with different film thicknesses is formed through an inkjet printing process to optimize the optical cavity length of the RGB light-emitting sub-pixels.
  • the material of the electron transport layer is ZnO.
  • the total thickness of the first electron transport layer and the second electron transport layer in the red light zone is 50 nm
  • the total thickness of the first electron transport layer and the second electron transport layer in the green light zone is 30 nm
  • the first electron transport layer and the blue light zone have a total thickness of 30 nm.
  • the total thickness of the second electron transport layer is 20 nm, and the device performance is better.
  • the hole transport layer is a common layer, which can avoid the use of high-precision metal masks (FMM). It is conducive to reducing production costs and is conducive to large-area production.
  • FMM high-precision metal masks
  • a mask is used to deposit an anode layer on the entire surface of the hole transport layer, and a light extraction layer (CPL) is further deposited to improve light extraction efficiency.
  • CPL light extraction layer
  • S1 Provide a substrate with a TFT array driving circuit on the substrate, sputtering and depositing a reflective cathode material layer on the substrate in a vacuum environment, and patterning to form a reflective cathode layer.
  • the material of the reflective cathode layer is Ag.
  • the pixel defining layer is prepared by the yellow light process, and the pixel defining layer covers the edge of the reflective cathode layer to prevent subsequent short circuit problems.
  • an electron transport layer with different film thicknesses is formed through an inkjet printing process, and the material of the electron transport layer is ZnO.
  • the thickness of the electron transport layer in the red light area is 50 nm
  • the thickness of the electron transport layer in the green light area is 30 nm
  • the thickness of the electron transport layer in the blue light area is 20 nm.
  • a mask is used to deposit an anode layer on the entire surface of the hole transport layer, and a light extraction layer (CPL) is further deposited.
  • CPL light extraction layer
  • Figure 8 shows the JV curve of the embodiment and the comparative example.
  • Test conditions test the power supply Keithley2400, the embodiment starts from 0V to 5V, and the step is 0.3V; the comparative example starts from 5V to 9V due to the small current. Step 0.3V.
  • the current density of the device in the embodiment is significantly greater than that of the device in the comparative example. This is because after the Ag electrode is formed in the embodiment, a layer of ZnO electron transport is formed on the surface of the Ag electrode. In the comparative example, during the process of patterning the Ag electrode and forming the pixel defining layer, the Ag electrode is oxidized, so that a layer of insulating AgO is formed on the Ag surface, which hinders the current transmission and causes the device The current density has dropped significantly.
  • the above test proves that the reflective cathode layer in the display device prepared by the comparative example has the problem of being oxidized, and the performance of the device is lower than that of the display device prepared in the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示器件及其制备方法,包括:提供基板(10),并在基板(10)上依次形成阴极材料层(21)和第一电子传输材料层(31);对阴极材料层(21)和第一电子传输材料层(31)进行图案化,形成阴极层(20)和第一电子传输层(30);在基板(10)上形成像素限定层(40),形成以像素限定层(40)为侧壁、第一电子传输层(30)为底的像素坑;通过溶液法在像素坑内形成覆盖第一电子传输层(30)的第二电子传输层(50);在像素坑内形成发光层(60)、阳极层(80),得到显示器件。

Description

显示器件及其制备方法
相关申请的交叉引用
本申请要求于2020年6月12日提交中国专利局、申请号为2020105343592、发明名称为“显示器件及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及显示技术领域,特别是涉及一种显示器件及其制备方法。
技术背景
半导体量子点具有光色纯度高、发光量子效率高、发光颜色可调、使用寿命长等优良特性。这些特点使得以量子点材料作为发光层的量子点发光二极管(QLED)在固态照明、平板显示等领域具有广泛的应用前景,受到了学术界以及产业界的广泛关注。
近年来,通过量子点材料合成工艺的改善以及器件结构的优化,QLED的性能有了大幅提升,但由于量子点材料的能级较深,电离势较大,使得现有的空穴传输层与量子点发光层之间的界面存在一个较大的空穴注入势垒,导致空穴注入较为困难,而相对的电子注入较为容易,从而引起QLED发光层中载流子不平衡,严重限制了QLED器件的性能。而倒置结构QLED,由于可以采用蒸镀型HTL材料,可选择材料类型更为广泛,同时通过P掺杂有效提升其空穴迁移率,进而大幅提升器件性能。但是,如何进一步提高器件性能仍然是本行业人员需要解决的问题和努力研究的方向。
发明内容
基于此,有必要提供一种可提高器件性能的显示器件的制备方法。
一种显示器件的制备方法,包括以下步骤:
提供基板,在所述基板上依次形成层叠设置的阴极层和第一电子传输层;
在所述基板上形成像素限定层,形成以像素限定层为侧壁、第一电子传输层为底的像素坑;
在所述像素坑内形成覆盖所述第一电子传输层的第二电子传输层;
在所述像素坑内形成覆盖所述第二电子传输层的发光层;及
在所述发光层上形成阳极层,得到所述显示器件。
在其中一个实施例中,所述在所述基板上依次形成层叠设置的阴极层和第一电子传输层包括:
在所述基板上依次形成层叠设置的阴极材料层和第一电子传输材料层;及
对所述阴极材料层和所述第一电子传输材料层进行图案化以形成层叠设置的阴极层和第一电子传输层。
在其中一个实施例中,所述阴极层包括金属膜层,所述金属膜层与所述第一电子传输层直接接触。
在其中一个实施例中,所述金属膜层的材料选自Mg、Ba、Yb、Ag、Al、Pt和Cu中的一种或多种。
在其中一个实施例,所述像素坑的数量为多个,每一像素坑中的所述发光层由不同颜色的发光材料构成,每一像素坑中的所述第二电子传输层的厚度与对应像素坑中的构成所述发光层的发光材料的颜色的光学腔长相匹配。
在其中一个实施例中,所述像素坑包括第一像素坑、第二像素坑和第三像素坑,所述第一像素坑中的发光层为红色发光材料,所述第二像素坑中的发光层为绿色发光材料,所述第三像素坑中的发光层为蓝色发光材料;
所述第二像素坑中的所述第一电子传输层和所述第二电子传输层的厚度之和小于所述第一像素坑中的所述第一电子传输层和所述第二电子传输层的厚度之和,且大于所述第三像素坑中的所述第一电子传输层和所述第二电子传输层的厚度之和。
在其中一个实施例中,所述第一电子传输层和所述第二电子传输层在所 述第一像素坑中的总厚度为10nm~50nm,所述第一电子传输层和所述第二电子传输层在所述第二像素坑中的总厚度为10nm~30nm,所述第一电子传输层和所述第二电子传输层在所述第三像素坑中的总厚度为10nm~20nm。
在其中一个实施例中,所述第一电子传输层和所述第二电子传输层在所述第一像素坑中的总厚度为N×(130~150)nm,所述第一电子传输层和所述第二电子传输层在所述第二像素坑中的总厚度为N×(110~130)nm,所述第一电子传输层和所述第二电子传输层在所述第三像素坑中的总厚度为N×(60~100)nm;其中,N为正整数。
在其中一个实施例中,所述阴极材料层和所述第一电子传输材料层于真空环境下通过气相沉积法形成,所述气相沉积法采用溅射工艺,所述溶液法采用喷墨打印工艺。
在其中一个实施例中,所述第一电子传输层的材料选自ZnO、TiOx、ZnMgO和ZnAlO中的一种或多种。
本发明还提供了一种显示器件,包括基板、阴极层、第一电子传输层、像素限定层、第二电子传输层、发光层和阳极层,所述阴极层设于所述基板上,所述第一电子传输层设于所述阴极层上,所述像素限定层设于所述基板上形成以像素限定层为侧壁、第一电子传输层为底的像素坑,所述第二电子传输层设于所述像素坑内的所述第一电子传输层上,所述发光层设于所述像素坑内的所述第二电子传输层上,所述阳极层设于所述发光层上。
通过研究发现,倒置QLED显示器件结构中,采用如Ag等金属作为反射电极直接与电子传输层接触,器件性能明显优于以ITO/Ag/ITO等导电金属氧化物作为反射电极直接与电子传输层接触。然而,直接采用Ag等金属作为反射电极,在后续的图案化以及形成像素限定层的制程中,Ag等金属较易氧化,这又会大幅降低器件性能。这一问题,阻碍了器件性能的进一步提高。
针对该问题,本发明显示器件的制备方法首先在基板上形成阴极材料层,并继续在阴极材料层上形成第一电子传输材料层。然后,再对阴极材料层和第一电子传输材料层进行图案化,形成阴极层和第一电子传输层。如此,既 可以保证Ag等金属作为阴极层时可以直接与电子传输层接触,实现较好的器件性能,同时致密的第一电子传输材料层可作为保护层,在图案化以及后续形成像素限定层的制程中能防止阴极材料被氧化而影响器件性能。进一步地,在形成像素限定层后,通过溶液法在像素坑内形成第二电子传输层,此时可根据需要调整第二电子传输层的厚度,从而能实现不同发光子像素的光学腔长调控,优化发光子像素的载流子平衡,提高显示器件的性能。
附图说明
图1为本发明一实施例的显示器件的制备方法的流程示意图;
图2为本发明一实施例的显示器件的制备过程中一状态的结构示意图;
图3为本发明一实施例的显示器件的制备过程中又一状态的结构示意图;
图4为本发明一实施例的显示器件的制备过程中又一状态的结构示意图;
图5为本发明一实施例的显示器件的制备过程中又一状态的结构示意图;
图6为本发明一实施例的显示器件的制备过程中又一状态的结构示意图;
图7为本发明一实施例的显示器件的结构示意图;
图8为实施例和对比例的显示器件的JV曲线图。
具体实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述,并给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“设于”另一个元件上,它可以直接设于 另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1所示,一实施例的显示器件的制备方法,包括以下步骤S1~S6:
S1、如图2所示,提供基板10,在基板10上依次形成层叠设置的阴极材料层21和第一电子传输材料层31。
S2、如图3所示,对阴极材料层21和第一电子传输材料层31进行图案化,形成层叠设置的阴极层20和第一电子传输层30。
S3、如图4所示,在基板10上形成像素限定层40,形成以像素限定层40为侧壁、第一电子传输层30为底的像素坑。
像素限定层40形成于图案化的阴极层20和第一电子传输层30之间的基板10上,并且像素限定层40覆盖阴极层20以及第一电子传输层30的边缘,并至少部分暴露第一电子传输层30,防止后续出现短路问题。
S4、如图5所示,通过溶液法在像素坑内形成覆盖第一电子传输层30的第二电子传输层50。
S5、如图6所示,在像素坑内形成覆盖第二电子传输层50的发光层60。
S6、如图7所示,在发光层60上形成阳极层80,得到显示器件100。
通过研究发现,倒置QLED显示器件结构中,采用如Ag等金属作为反射电极直接与电子传输层接触,器件性能明显优于以ITO/Ag/ITO等导电金属氧化物作为反射电极直接与电子传输层接触。然而,直接采用Ag等金属作为反射电极,在后续的图案化以及形成像素限定层的制程中,Ag等金属较易氧化,这又会大幅降低器件性能。这一问题,阻碍了器件性能的进一步提高。
针对该问题,本发明显示器件的制备方法首先在基板10上形成阴极材料 层21,并继续在阴极材料层21上形成第一电子传输材料层31。然后,再对阴极材料层21和第一电子传输材料层31进行图案化,形成阴极层20和第一电子传输层30。如此,既可以保证Ag等金属作为阴极层时可以直接与电子传输层接触,实现较好的器件性能,同时致密的第一电子传输材料层31可作为保护层,在图案化以及后续形成像素限定层40的制程中能防止阴极材料被氧化而影响器件性能。进一步地,在形成像素限定层40后,通过溶液法在像素坑内形成第二电子传输层50,此时可根据需要调整第二电子传输层50的厚度,从而能实现不同发光子像素的光学腔长调控,优化发光子像素的载流子平衡,提高显示器件的性能。
在一个具体示例中,阴极层20为反射阴极,其至少包括金属膜层,金属膜层与第一电子传输层30直接接触,如此更适用于上述制备方法以提高器件性能。可以理解,阴极层20还可以是ITO层与金属膜层的复合层等,但金属膜层与第一电子传输层30直接接触。可选地,金属膜层的材料包括Mg、Ba、Yb、Ag、Al、Pt和Cu中的一种或多种,可以是合金,也可以是各金属材料的叠层结构,金属膜层的厚度为40nm~200nm。
在一个具体示例中,像素坑为多种,多种像素坑中的发光层60颜色各不相同,根据不同发光层颜色的光学腔长调控多种像素坑中第二电子传输层50的厚度,从而可优化发光子像素的载流子平衡,提高显示器件的性能。
在一个具体示例中,像素坑包括第一像素坑、第二像素坑和第三像素坑,第一像素坑中的发光层60为红色发光层,第二像素坑中的发光层60为绿色发光层,第三像素坑中的发光层60为蓝色发光层。进一步地,与红色发光层对应的第一电子传输层30和第二电子传输层50的总厚度大于与绿色发光层对应的第一电子传输层30和第二电子传输层50的总厚度,与绿色发光层对应的第一电子传输层30和第二电子传输层50的总厚度大于与蓝色发光层对应的第一电子传输层30和第二电子传输层50的总厚度。即第一电子传输层30和第二电子传输层50的总厚度满足:红光区厚度>绿光区厚度>蓝光区厚度,有利于提高显示器件的性能。
在一个具体示例中,与红色发光层对应的第一电子传输层30和第二电子传输层50的总厚度为10nm~50nm,与绿色发光层对应的第一电子传输层30和第二电子传输层50的总厚度为10nm~30nm,与蓝色发光层对应的第一电子传输层30和第二电子传输层50的总厚度为10nm~20nm。如此,具有较好的光学腔长结构,可提高显示器件的性能。
在一个具体示例中,与红色发光层对应的第一电子传输层30和第二电子传输层50的总厚度为N×(130~150)nm,与绿色发光层对应的第一电子传输层30和第二电子传输层50的总厚度为N×(110~130)nm,与蓝色发光层对应的第一电子传输层30和第二电子传输层50的总厚度为N×(60~100)nm;其中,N为正整数。优选地,N为1或2。
在一个具体示例中,阴极材料层21和第一电子传输材料层31于真空环境下通过气相沉积法形成,在真空环境下沉积的材料层更为致密,能够更好地防止Ag等金属被氧化。进一步地,气相沉积法采用溅射(sputter)工艺,溶液法采用喷墨打印工艺。可以理解,并不限于此,气相沉积法还可以选择真空蒸镀或离子镀等工艺,溶液法还可以选择旋凃、丝网印刷等工艺。
在一个具体示例中,基板10包括衬底及阵列驱动单元。衬底可以是刚性衬底如玻璃等,也可以是柔性衬底如PI等,阵列驱动单元用于驱动上层电致发光像素单元。
在一个具体示例中,第一电子传输层30的材料包括但不限于ZnO、TiOx、ZnMgO和ZnAlO等,厚度为10nm~100nm。
在一个具体示例中,像素限定层40采用常规光阻材料制备,优选为表面呈疏液性的光阻材料,厚度为1μm左右,通过黄光工艺制备。像素限定层40的像素坑对应像素发光区以及与阵列驱动单元形成电学连接孔,定义各子像素单元的发光面积以及位置。
在一个具体示例中,第二电子传输层50的材料包括但不限于ZnO、TiOx、ZnMgO和ZnAlO等纳米颗粒。
在一个具体示例中,发光层60为量子点发光层,材料可以是Ⅱ-Ⅵ族化 合物半导体及其核壳结构,如CdS、CdSe、CdS/ZnS、CdSe/ZnS或CdSe/CdS/ZnS等,还可以是Ⅲ-Ⅴ或Ⅳ-Ⅵ族化合物半导体及其核壳结构,如GaAs、InP、PbS/ZnS或PbSe/ZnS等。
在一个具体示例中,如图7所示,在形成阳极层80的步骤之前还包括以下步骤:在发光层60上形成空穴传输层70。可选地,空穴传输层70的材料为适于溶液法加工的聚合物,包括但不限于TFB、PVK等;还可以为适用于蒸镀工艺沉积的小分子,以避免对发光层60的破坏。优选地,空穴传输层70为P型掺杂的空穴传输层,可以有效提升空穴传输层的空穴传输性能。掺杂型的空穴传输层优选为HTL/P型掺杂的HTL的叠层结构,HTL层与发光层直接接触,以防止P型掺杂的HTL对发光层60的激子淬灭。
在一个具体示例中,在形成阳极层80的步骤之前还包括以下步骤:在发光层60上依次形成层叠的电子阻挡层和空穴注入层,以进一步提升器件性能。可选地,空穴注入层采用聚合物材料,具有热处理后不溶的特性,如PEDT/PSS(含硅烷偶联剂)、Nissan SHI-2520和Nissan SHI-X04等;空穴注入层还可采用蒸镀型且不溶于极性溶剂的的小分子材料,包括但不限于DNTPD、MeO-TPD、m-MTDATA、NATA和NPNPB等。
在一个具体示例中,阳极层80为透明阳极,该透明阳极为IZO层或金属层与IZO层的复合层。金属层包括但不限于Ag、Al、Cu及其合金或叠层结构,厚度为5nm~18nm,金属层可以有效降低沉积IZO时对下层有机空穴传输层的破坏。
如图7所示,一实施例的显示器件100,其采用上述制备方法制备得到,包括基板10、阴极层20、第一电子传输层30、像素限定层40、第二电子传输层50、发光层60和阳极层80,阴极层20设于基板10上,第一电子传输层30设于阴极层20上,像素限定层40设于第一电子传输层30上且对应第一电子传输层30形成像素坑并至少部分暴露第一电子传输层30,第二电子传输层50设于像素坑内的第一电子传输层30上,发光层60设于像素坑内的第二电子传输层50上,阳极层80设于发光层60上。
以下为具体实施例。
实施例
S1、提供一基板,基板上具有TFT阵列驱动电路,并在基板上于真空环境下连续溅射沉积形成层叠设置的反射阴极材料层以及第一电子传输材料层,反射阴极材料层的材料为Ag,第一电子传输材料层的材料为ZnO。
S2、采用黄光制程对反射阴极材料层以及第一电子传输材料层进行图案化,形成层叠设置的反射阴极层以及第一电子传输层。由于第一电子传输层的保护,反射阴极层表面不会在该制程中被氧化,防止器件性能的降低。
S3、采用黄光制程制备像素限定层,像素限定层覆盖反射阴极层以及第一电子传输层的边缘,防止后续出现短路问题。由于第一电子传输层为致密薄膜,可以有效防止反射阴极层表面在该制程中被氧化。
S4、在第一电子传输层上根据倒置结构RGB QLED不同发光子像素的不同需求,通过喷墨打印工艺形成不同膜厚的第二电子传输层,优化RGB发光子像素的光学腔长,第二电子传输层的材质为ZnO。其中,红光区第一电子传输层和第二电子传输层的总厚度为50nm,绿光区第一电子传输层和第二电子传输层的总厚度为30nm,蓝光区第一电子传输层和第二电子传输层的总厚度为20nm,器件性能较佳。
S5、在第二电子传输层上形成量子点发光层。
S6、采用掩膜版(open mask)在量子点发光层上整面沉积空穴传输层,空穴传输层为公共层(common layer),可以避免使用高精度金属掩膜板(FMM),从而有利于降低制作成本且利于大面积生产。
S7、在空穴传输层上采用掩膜版整面沉积阳极层,并进一步沉积光取出层(CPL),以提高出光效率。
S8、最后对整个面板进行封装。
对比例
S1、提供一基板,基板上具有TFT阵列驱动电路,并在基板上于真空环境下溅射沉积形成反射阴极材料层,并进行图案化形成反射阴极层,反射阴 极层的材料为Ag。
S2、采用黄光制程制备像素限定层,像素限定层覆盖反射阴极层的边缘,防止后续出现短路问题。
S3、在像素限定层的像素坑内根据倒置结构RGB QLED不同发光子像素的不同需求,通过喷墨打印工艺形成不同膜厚的电子传输层,电子传输层的材质为ZnO。其中,红光区电子传输层的厚度为50nm,绿光区电子传输层的厚度为30nm,蓝光区电子传输层的厚度为20nm。
S5、在电子传输层上形成量子点发光层。
S6、采用掩膜版(open mask)在量子点发光层上整面沉积空穴传输层,空穴传输层为公共层(common layer)。
S7、在空穴传输层上采用掩膜版整面沉积阳极层,并进一步沉积光取出层(CPL)。
S8、最后对整个面板进行封装。
如图8所示为实施例和对比例的JV曲线,测试条件:测试电源Keithley2400,实施例从0V开始测试到5V,步进0.3V;对比例由于电流较小,从5V开始测试到9V,步进0.3V。
从图8可以看到,在相同电压下,实施例中器件的电流密度明显大于对比例中器件的电流密度,这是因为实施例中形成Ag电极之后,在其表面形成了一层ZnO电子传输层,避免Ag电极被氧化,而对比例中,在图案化Ag电极和形成像素限定层的制程中,Ag电极被氧化,使得Ag表面形成一层绝缘的AgO,阻碍了电流的传输,导致器件电流密度明显下降。
通过以上测试证明,对比例制备的显示器件中的反射阴极层存在被氧化的问题,器件性能低于实施例制备的显示器件。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详 细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (19)

  1. 一种显示器件的制备方法,包括:
    提供基板,在所述基板上依次形成层叠设置的阴极层和第一电子传输层;
    在所述基板上形成像素限定层,形成以像素限定层为侧壁、第一电子传输层为底的像素坑;
    在所述像素坑内形成覆盖所述第一电子传输层的第二电子传输层;
    在所述像素坑内形成覆盖所述第二电子传输层的发光层;及
    在所述发光层上形成阳极层,得到所述显示器件。
  2. 根据权利要求1所述的方法,其中,所述在所述基板上依次形成层叠设置的阴极层和第一电子传输层包括:
    在所述基板上依次形成层叠设置的阴极材料层和第一电子传输材料层;及
    对所述阴极材料层和所述第一电子传输材料层进行图案化以形成层叠设置的阴极层和第一电子传输层。
  3. 根据权利要求1所述的方法,其中,所述阴极层包括金属膜层,所述金属膜层与所述第一电子传输层直接接触。
  4. 根据权利要求3所述的方法,其中,所述金属膜层的材料选自Mg、Ba、Yb、Ag、Al、Pt和Cu中的至少一种。
  5. 根据权利要求1所述的方法,其中,所述像素坑的数量为多个,每一像素坑中的所述发光层由不同颜色的发光材料构成,每一像素坑中的所述第二电子传输层的厚度与对应像素坑中的构成所述发光层的发光材料的颜色的光学腔长相匹配。
  6. 根据权利要求1所述的方法,其中,所述像素坑包括第一像素坑、第二像素坑和第三像素坑,所述第一像素坑中的发光层为红色发光材料,所述第二像素坑中的发光层为绿色发光材料,所述第三像素坑中的发光层为蓝色发光材料;
    所述第二像素坑中的所述第一电子传输层和所述第二电子传输层的厚度 之和小于所述第一像素坑中的所述第一电子传输层和所述第二电子传输层的厚度之和,且大于所述第三像素坑中的所述第一电子传输层和所述第二电子传输层的厚度之和。
  7. 根据权利要求6所述的方法,其中,所述第一电子传输层和所述第二电子传输层在所述第一像素坑中的总厚度为10nm~50nm,所述第一电子传输层和所述第二电子传输层在所述第二像素坑中的总厚度为10nm~30nm,所述第一电子传输层和所述第二电子传输层在所述第三像素坑中的总厚度为10nm~20nm。
  8. 根据权利要求6所述的方法,其中,所述第一电子传输层和所述第二电子传输层在所述第一像素坑中的总厚度为N×(130~150)nm,所述第一电子传输层和所述第二电子传输层在所述第二像素坑中的总厚度为N×(110~130)nm,所述第一电子传输层和所述第二电子传输层在所述第三像素坑中的总厚度为N×(60~100)nm;其中,N为正整数。
  9. 根据权利要求1~6任一项所述的方法,其中,所述阴极材料层和所述第一电子传输材料层于真空环境下通过气相沉积法形成,所述气相沉积法采用溅射工艺,所述溶液法采用喷墨打印工艺。
  10. 根据权利要求1~6任一项所述的方法,其中,所述第一电子传输层的材料选自ZnO、TiO x、ZnMgO和ZnAlO中的至少一种。
  11. 一种显示器件,包括基板、阴极层、第一电子传输层、像素限定层、第二电子传输层、发光层和阳极层,所述阴极层设于所述基板上,所述第一电子传输层设于所述阴极层上,所述像素限定层设于所述基板上形成以像素限定层为侧壁、第一电子传输层为底的像素坑,所述第二电子传输层设于所述像素坑内的所述第一电子传输层上,所述发光层设于所述像素坑内的所述第二电子传输层上,所述阳极层设于所述发光层上。
  12. 根据权利要求11所述的显示器件,其中,所述阴极层包括金属膜层,所述金属膜层与所述第一电子传输层直接接触。
  13. 根据权利要求12所述的显示器件,其中,所述金属膜层的材料选自 Mg、Ba、Yb、Ag、Al、Pt和Cu中的至少一种。
  14. 根据权利要求11所述的显示器件,其中,所述像素坑的数量为多个,每一像素坑中的所述发光层由不同颜色的发光材料构成,每一像素坑中的所述第二电子传输层的厚度与对应像素坑中的构成所述发光层的发光材料的颜色的光学腔长相匹配。
  15. 根据权利要求11所述的显示器件,其中,所述像素坑包括第一像素坑、第二像素坑和第三像素坑,所述第一像素坑中的发光层为红色发光材料,所述第二像素坑中的发光层为绿色发光材料,所述第三像素坑中的发光层为蓝色发光材料;
    所述第二像素坑中的所述第一电子传输层和所述第二电子传输层的厚度之和小于所述第一像素坑中的所述第一电子传输层和所述第二电子传输层的厚度之和,且大于所述第三像素坑中的所述第一电子传输层和所述第二电子传输层的厚度之和。
  16. 根据权利要求15所述的显示器件,其中,所述第一电子传输层和所述第二电子传输层在所述第一像素坑中的总厚度为10nm~50nm,所述第一电子传输层和所述第二电子传输层在所述第二像素坑中的总厚度为10nm~30nm,所述第一电子传输层和所述第二电子传输层在所述第三像素坑中的总厚度为10nm~20nm。
  17. 根据权利要求15所述的显示器件,其中,所述第一电子传输层和所述第二电子传输层在所述第一像素坑中的总厚度为N×(130~150)nm,所述第一电子传输层和所述第二电子传输层在所述第二像素坑中的总厚度为N×(110~130)nm,所述第一电子传输层和所述第二电子传输层在所述第三像素坑中的总厚度为N×(60~100)nm;其中,N为正整数。
  18. 根据权利要求11~15任一项所述的显示器件,其中,所述阴极层和所述第一电子传输材料层于真空环境下通过气相沉积法形成,所述气相沉积法采用溅射工艺,所述溶液法采用喷墨打印工艺。
  19. 根据权利要求11~15任一项所述的显示器件,其中,所述第一电子 传输层的材料选自ZnO、TiO x、ZnMgO和ZnAlO中的至少一种。
PCT/CN2021/095238 2020-06-12 2021-05-21 显示器件及其制备方法 WO2021249162A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010534359.2A CN113224253B (zh) 2020-06-12 2020-06-12 显示器件及其制备方法
CN202010534359.2 2020-06-12

Publications (1)

Publication Number Publication Date
WO2021249162A1 true WO2021249162A1 (zh) 2021-12-16

Family

ID=77085705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095238 WO2021249162A1 (zh) 2020-06-12 2021-05-21 显示器件及其制备方法

Country Status (2)

Country Link
CN (1) CN113224253B (zh)
WO (1) WO2021249162A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010053560A1 (en) * 2000-01-11 2001-12-20 Sanyo Electric Co., Ltd Transparent electrode, patterning method for same, and manufacturing method for semiconductor element using same
US20160329388A1 (en) * 2015-05-08 2016-11-10 Joled Inc. Blue organic el element, organic el display panel, and manufacturing method of blue organic el element
CN110571343A (zh) * 2019-09-09 2019-12-13 合肥鑫晟光电科技有限公司 发光二极管器件及其制备方法、显示基板
CN111029476A (zh) * 2019-11-25 2020-04-17 深圳市华星光电半导体显示技术有限公司 显示器及其制备方法
CN111129358A (zh) * 2018-10-30 2020-05-08 Agc株式会社 制造光电转换元件的方法
CN112349854A (zh) * 2019-12-25 2021-02-09 广东聚华印刷显示技术有限公司 显示器件及其制备方法和显示面板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4251331B2 (ja) * 2005-12-27 2009-04-08 カシオ計算機株式会社 表示装置の製造装置及び表示装置の製造方法
CN101379885B (zh) * 2006-02-03 2011-01-26 Lg化学株式会社 有机发光器件的制备方法及由该方法制备的有机发光器件
US8962382B2 (en) * 2006-02-03 2015-02-24 Lg Chem, Ltd. Fabrication method for organic light emitting device and organic light emitting device fabricated by the same method
KR101352237B1 (ko) * 2008-08-13 2014-01-16 엘지디스플레이 주식회사 유기전계발광표시장치의 제조방법
JP6493920B2 (ja) * 2013-12-26 2019-04-03 国立研究開発法人科学技術振興機構 金属酸化物の薄膜、該薄膜を備えた有機エレクトロルミネッセンス素子、太陽電池、および有機太陽電池
CN108023022B (zh) * 2016-11-03 2020-07-14 上海和辉光电有限公司 一种有机电致发光器件及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010053560A1 (en) * 2000-01-11 2001-12-20 Sanyo Electric Co., Ltd Transparent electrode, patterning method for same, and manufacturing method for semiconductor element using same
US20160329388A1 (en) * 2015-05-08 2016-11-10 Joled Inc. Blue organic el element, organic el display panel, and manufacturing method of blue organic el element
CN111129358A (zh) * 2018-10-30 2020-05-08 Agc株式会社 制造光电转换元件的方法
CN110571343A (zh) * 2019-09-09 2019-12-13 合肥鑫晟光电科技有限公司 发光二极管器件及其制备方法、显示基板
CN111029476A (zh) * 2019-11-25 2020-04-17 深圳市华星光电半导体显示技术有限公司 显示器及其制备方法
CN112349854A (zh) * 2019-12-25 2021-02-09 广东聚华印刷显示技术有限公司 显示器件及其制备方法和显示面板

Also Published As

Publication number Publication date
CN113224253A (zh) 2021-08-06
CN113224253B (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
CN104576957B (zh) 有机电致发光显示设备及其制造方法
CN106449722B (zh) 印刷型顶发射电致发光显示器及其制备方法
WO2022042059A1 (zh) Oled显示面板及其制备方法、显示装置
US20060181204A1 (en) Flexible organic light emitting devices
TWI248322B (en) Organic electro luminescence device and fabrication method thereof
US8227816B2 (en) Organic light emitting display device
KR100994116B1 (ko) 유기 발광 소자
EP2270866B1 (en) Organic light emitting diode display device and method of fabricating the same
US7710024B2 (en) Organic light emitting display device and method of fabricating the same
US7902087B2 (en) Organic electroluminescent display device and method of preparing the same
CN107104129A (zh) Oled器件制造方法、oled器件及显示面板
Wang et al. High-efficiency and high-resolution patterned quantum dot light emitting diodes by electrohydrodynamic printing
JP2006156267A (ja) 表示装置の製造方法および表示装置
CN106409862A (zh) 有机发光显示装置
JP2005044799A (ja) 有機電界発光素子
CN112349854A (zh) 显示器件及其制备方法和显示面板
WO2021244121A1 (zh) 显示面板及其制备方法、显示装置
WO2021249162A1 (zh) 显示器件及其制备方法
WO2020041993A1 (zh) 一种采用混合型发光二极管的显示屏幕及其制备方法
KR101908512B1 (ko) 유기 전계 발광 표시 패널 및 그의 제조 방법
US20230021056A1 (en) Method of patterning light emitting layer, and method of manufacturing light-emitting diode device
KR100787452B1 (ko) 유기 발광 표시소자
KR100825384B1 (ko) 백색 유기 전계 발광 표시 장치 및 그 제조 방법
KR100768230B1 (ko) 유기 발광 표시소자
CN114079027B (zh) 发光器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21822847

Country of ref document: EP

Kind code of ref document: A1