WO2021129183A1 - 发光器件及其制作方法 - Google Patents

发光器件及其制作方法 Download PDF

Info

Publication number
WO2021129183A1
WO2021129183A1 PCT/CN2020/126748 CN2020126748W WO2021129183A1 WO 2021129183 A1 WO2021129183 A1 WO 2021129183A1 CN 2020126748 W CN2020126748 W CN 2020126748W WO 2021129183 A1 WO2021129183 A1 WO 2021129183A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
emitting
electron transport
blue
Prior art date
Application number
PCT/CN2020/126748
Other languages
English (en)
French (fr)
Inventor
李正吉
Original Assignee
广东聚华印刷显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东聚华印刷显示技术有限公司 filed Critical 广东聚华印刷显示技术有限公司
Publication of WO2021129183A1 publication Critical patent/WO2021129183A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • This application relates to the field of display technology, in particular to a light-emitting device and a manufacturing method thereof.
  • Quantum dot display has become one of the important technologies for next-generation panel display due to its advantages of high color purity, high brightness, and better viewing angle.
  • the blue quantum dot (QD) pixel life is extremely short, which is far lower than the performance of the vapor-deposited blue organic light-emitting device (OLED).
  • One of the solutions to improve the life of blue pixels is to replace blue quantum dots with blue organic light-emitting materials.
  • a light-emitting device includes a substrate, a cathode layer, a mixed light-emitting layer, and an anode layer that are stacked; the cathode layer is divided into a red light-emitting area, a green light-emitting area, and a blue light-emitting area, and the mixed light-emitting layer includes red quantum dots.
  • the red quantum dot light-emitting layer is arranged on the red light-emitting area
  • the green quantum dot light-emitting layer is arranged on the green light-emitting area
  • the blue The light-emitting composite layer is arranged on the red quantum dot light-emitting layer, the green quantum dot light-emitting layer and the blue light-emitting region
  • the blue light-emitting composite layer includes a connection layer and a blue organic light-emitting layer arranged in a stack, so In the blue light-emitting composite layer, the connection layer is arranged on a side close to the substrate.
  • the material of the connection layer is a charge transport material that has the ability to transport both electrons and holes.
  • connection layer includes an N-type semiconductor material layer and a P-type semiconductor material layer arranged in a stack, and the N-type semiconductor material layer is arranged on the P-type semiconductor material layer and the blue organic light emitting layer. Between layers.
  • the blue light-emitting composite layer has multiple layers, and multiple layers of the blue light-emitting composite layer are arranged in a layered manner.
  • the blue light-emitting composite layer has 2 to 5 layers.
  • At least one of an electron transport layer and an electron injection layer is provided between the cathode layer and the mixed light-emitting layer, and/or, between the anode layer and the mixed light-emitting layer At least one of a hole transport layer and a hole injection layer is provided.
  • a first electron transport layer and a second electron transport layer are provided between the cathode layer and the mixed light-emitting layer, and the first electron transport layer is provided in the red light-emitting region, the On the green light-emitting area and the blue light-emitting area, the second electron transport layer is provided on the blue light-emitting area, and the second electron transport layer is provided on the connecting layer and the first electron transport Between the layers, the material of the first electron transport layer is zinc oxide or doped zinc oxide, and the material of the second electron transport layer is an organic material.
  • a method for manufacturing a light-emitting device includes:
  • a blue light-emitting composite layer is fabricated on the red quantum dot light-emitting layer, the green quantum dot light-emitting layer and the blue light-emitting region, the blue light-emitting composite layer includes a layered connection layer and a blue organic light-emitting layer The connection layer is arranged on a side close to the substrate;
  • An anode layer is formed on the blue light-emitting composite layer.
  • multiple layers of the blue light-emitting composite layer are fabricated on the red quantum dot light-emitting layer, the green quantum dot light-emitting layer and the blue light-emitting region, Multiple layers of the blue light-emitting composite layer are stacked and arranged.
  • the red quantum dot light-emitting layer and the green quantum dot light-emitting layer are fabricated, the red light-emitting region, the green light-emitting region, and the blue light-emitting region on the cathode layer
  • a first electron transport layer is fabricated on the region, and a second electron transport layer is fabricated on the position of the first electron transport layer corresponding to the blue light-emitting region.
  • the material of the first electron transport layer is zinc oxide or doped oxide.
  • Zinc the material of the second electron transport layer is an organic material.
  • the first electron transport layer is produced by a pulsed light annealing process.
  • connection layer and the blue organic light-emitting layer are produced by an evaporation process or an inkjet printing process.
  • the above-mentioned light-emitting device and the manufacturing method thereof have the following beneficial effects:
  • a connecting layer is provided in the mixed light-emitting layer, and the blue organic light-emitting layer is separated from the red quantum dot light-emitting layer and the green quantum dot light-emitting layer by the connecting layer.
  • the quantum dot light-emitting layer and the organic light-emitting layer transport electrons and holes.
  • the quantum dot light-emitting layer, the connecting layer and the organic light-emitting layer are manufactured sequentially, which avoids the organic light-emitting layer and the quantum dot light-emitting layer solvent cross-contamination during the device manufacturing process. Improve the luminous efficiency and lifespan of the light-emitting device.
  • FIG. 1 is a schematic diagram of the structure of a light emitting device according to an embodiment
  • FIG. 2 is a schematic structural diagram of a light emitting device including a first electron transport layer and a second electron transport layer according to an embodiment
  • FIG. 3 is a schematic structural diagram of a light emitting device in which the connection layer includes an N-type semiconductor material layer and a P-type semiconductor material layer according to an embodiment
  • FIG. 4 is a schematic structural diagram of a light-emitting device including two blue light-emitting composite layers according to an embodiment
  • FIG. 5 is a schematic structural diagram of a light-emitting device including three blue light-emitting composite layers according to an embodiment
  • Fig. 6 is a flowchart of a method of manufacturing a light emitting device according to an embodiment.
  • the present application provides a light-emitting device 100, which includes a substrate 110, a cathode layer 120, a mixed light-emitting layer, and an anode layer 160 that are stacked.
  • the cathode layer 120 is divided into a red light-emitting area, a green light-emitting area, and a blue light-emitting area.
  • the hybrid light-emitting layer includes a red quantum dot light-emitting layer 130, a green quantum dot light-emitting layer 140, and a blue light-emitting composite layer 150.
  • the red quantum dot light-emitting layer 130 is arranged on the red light-emitting area
  • the green quantum dot light-emitting layer 140 is arranged on the green light-emitting area
  • the blue light-emitting composite layer 150 is arranged on the red quantum dot light-emitting layer 130, the green quantum dot light-emitting layer 140, and the blue light-emitting area.
  • the blue light-emitting composite layer 150 includes a connection layer 151 and a blue organic light-emitting layer 152 that are stacked.
  • the connection layer 151 is disposed on a side close to the substrate 110.
  • the material of the connection layer 151 is a charge transport material that has the ability to transport both electrons and holes.
  • the connection layer 151 can transport electrons to the blue organic light emitting layer 152 and holes to the red quantum dot light emitting layer 130 and the green quantum dot light emitting layer 140 at the same time, thereby improving the luminous efficiency and lifetime of the device.
  • the material of the connection layer 151 can be selected from the IK LGD HCL series of Idemitsu-Kosan company.
  • the connection layer 151 may be a single layer.
  • the device shown in FIG. 2 is a top-emitting device, the cathode layer 120 is a reflective electrode, and an electron injection layer 171 and an electron transport layer 172 are provided between the cathode layer 120 and the mixed light-emitting layer.
  • the anode layer 160 is a transparent electrode, and a hole transport layer 173 and a hole injection layer 174 are provided between the anode layer 160 and the mixed light-emitting layer.
  • a light extraction layer 180 is also provided on the side of the anode layer 160 away from the substrate 110 to improve light extraction efficiency.
  • connection layer 151 is arranged on the red quantum dot light-emitting layer 130, the green quantum dot light-emitting layer 140 and the position of the electron transport layer 172 corresponding to the blue light-emitting area, and the blue organic light-emitting layer 152 is arranged on the connection layer 151, which is equivalent to the connection layer Both the 151 and the blue organic light-emitting layer 152 are deposited on the entire surface.
  • the red quantum dot light-emitting layer 130 and the green quantum dot light-emitting layer 140 are separated from the blue organic light-emitting layer 152 by the connecting layer 151.
  • the quantum dot light-emitting layer, the connecting layer 151 and the blue organic light-emitting layer 152 are fabricated one after another to avoid the production process.
  • the problem of cross-contamination occurs between the solvent of the quantum dot light-emitting layer and the solvent of the organic light-emitting layer.
  • the top emission structure is beneficial to increase the aperture ratio, improve display brightness and life. It can be understood that, in other examples, the light-emitting device may also be a bottom-emitting device, and accordingly, the cathode layer may be a transparent electrode, and the anode layer may be a reflective electrode.
  • the electron transport layer 172 includes a first electron transport layer 1721 and a second electron transport layer 1722.
  • the first electron transport layer 1721 is provided on the red light emitting area, the green light emitting area and the blue light emitting area
  • the second electron transport layer 1722 is provided on the blue light emitting area
  • the second electron transport layer 1722 is provided on the connection layer 151 and the first Between an electron transport layer 1721.
  • the material of the first electron transport layer 1721 is zinc oxide or doped zinc oxide, and the doped zinc oxide can be, but is not limited to, magnesium-doped zinc oxide, magnesium-doped lithium-doped zinc oxide, and the like.
  • the material of the second electron transport layer 1722 is an organic material, and the organic material can be a conventional organic electron transport layer 172 material.
  • the quantum dot light-emitting layer and the organic light-emitting layer are suitable for different types of the electron transport layer 172.
  • the quantum dot light-emitting layer requires an electron injection/transport structure composed entirely of zinc oxide and cathode to have good efficiency and lifespan, while the organic light-emitting layer requires an organic electron transport layer 172/injection layer/cathode structure. Ensure efficiency and longevity.
  • the example shown in FIG. 3 uses the first electron transport layer 1721 of zinc oxide or doped zinc oxide and the second electron transport layer 1722 of organic material, which overcomes the above-mentioned problems.
  • the connection layer 151 includes an N-type semiconductor material layer 1511 and a P-type semiconductor material layer 1512 that are stacked.
  • the N-type semiconductor material layer 1511 is disposed between the P-type semiconductor material layer 1512 and the blue organic light emitting layer 152.
  • the N-type semiconductor material layer 1511 and the P-type semiconductor material layer 1512 constitute a charge generation layer (CGL, Charge Generation Layer).
  • the N-type semiconductor material layer 1511 can be selected as Toray ET314 products doped with lithium (doping weight ratio 0.5%-10%), or Novaled NET products doped with Novaled NDN products (doping weight ratio 0.5%-10%) production.
  • the P-type semiconductor material layer 1512 can be made of Novaled NHT products doped with Novaled NDP products (doping weight ratio 0.5%-10%).
  • the blue light-emitting composite layer 150 has multiple layers, and the multiple blue light-emitting composite layers 150 are stacked.
  • This example adopts a multilayer blue light-emitting composite layer 150 laminated structure, which can further improve the luminous efficiency and lifetime of the blue light-emitting layer.
  • the blue light-emitting composite layer 150 has 2 to 5 layers. In the specific example shown in FIG. 4, the blue light-emitting composite layer 150 has two layers. In the specific example shown in FIG. 5, the blue light-emitting composite layer 150 has three layers.
  • the present application also provides a method for manufacturing the light emitting device 100 of any one of the above examples, including:
  • a substrate 110 provided with a cathode layer 120 is provided or manufactured.
  • the cathode layer 120 is divided into a red light-emitting area, a green light-emitting area, and a blue light-emitting area.
  • the material of the cathode layer 120 may be, but is not limited to, ITO, IZO, IZO/ITO, and the like.
  • step S200 a red quantum dot light-emitting layer 130 is formed on the red light-emitting area, and a green quantum dot light-emitting layer 140 is formed on the green light-emitting area.
  • a blue light-emitting composite layer 150 including a layered connection layer 151 and a blue organic light-emitting layer 152 is fabricated on the red quantum dot light-emitting layer 130, the green quantum dot light-emitting layer 140 and the blue light-emitting region, and the connection layer 151 is provided On the side close to the substrate 110.
  • step S400 an anode layer 160 is formed on the blue light-emitting composite layer 150.
  • the anode layer 160 can be, but is not limited to, a silver/ITO laminate, a silver alloy (such as APC)/ITO laminate, an aluminum/ITO laminate, an aluminum/ITO laminate, an aluminum alloy/ITO laminate, or the like.
  • a multi-layer blue light-emitting composite layer 150 is fabricated on the red quantum dot light-emitting layer 130, the green quantum dot light-emitting layer 140, and the blue light-emitting region, and the multiple blue light-emitting composite layers 150 stacked settings.
  • an electron injection layer 171 or electron transport is formed on the red light-emitting area, the green light-emitting area, and the blue light-emitting area on the cathode layer 120. At least one of the layers 172.
  • the material of the electron injection layer 171 can be, but is not limited to:
  • Lithium fluoride/magnesium-silver alloy laminate lithium fluoride/ytterbium/magnesium-silver alloy laminate, lithium fluoride/ytterbium/silver laminate, lithium fluoride/ytterbium/magnesium laminate.
  • magnesium-silver alloy different ratios of magnesium and silver can be selected.
  • the material of the electron transport layer 172 may be, but is not limited to, ZnO, magnesium doped ZnO, magnesium/lithium doped ZnO, and the like.
  • At least one of the hole transport layer 173 and the hole injection layer 174 is formed on the mixed light-emitting layer.
  • the hole transport layer 173 can be selected from high light transmittance (such as 90% or more), deep HOMO energy level (such as HOMO energy level below 6eV), and high hole conductivity (such as 10 -2 cm 2 /vs or more) material.
  • the hole injection layer 174 can be made of materials with high light transmittance (for example, above 90%) and deep HOMO energy level (for example, the HOMO energy level is below 6 eV).
  • the anode layer 160 after the anode layer 160 is fabricated, it further includes fabricating the light extraction layer 180 on the anode layer 160.
  • the first electron transport layer 1721 is fabricated on the red, green, and blue light-emitting regions on the cathode layer 120
  • a second electron transport layer 1722 is fabricated on the position of the first electron transport layer 1721 corresponding to the blue light-emitting area.
  • the material of the first electron transport layer 1721 is zinc oxide or doped zinc oxide, and the material of the second electron transport layer 1722 is organic material.
  • the first electron transport layer 1721 is fabricated by a pulsed light annealing process.
  • the first electron transport layer 1721 made of zinc oxide or doped zinc oxide is fabricated by the pulsed light annealing process. Compared with the traditional high temperature annealing, it has higher conductivity. Because the electron transport layer in the inverted structure is fabricated first, the related process is not It will cause damage to the subsequent layers, and its advantages are still retained.
  • connection layer 151 and the blue organic light-emitting layer 152 are produced by an evaporation process or an inkjet printing process.
  • connection layer 151 is provided in the mixed light-emitting layer, and the blue organic light-emitting layer 152 is separated from the red quantum dot light-emitting layer 130 and the green quantum dot light-emitting layer 140 by the connection layer 151.
  • the connection layer 151 plays the role of transporting electrons and holes to the quantum dot light-emitting layer and the organic light-emitting layer on both sides.
  • the quantum dot light-emitting layer, the connecting layer 151 and the organic light-emitting layer are fabricated one after another, which avoids the organic light-emitting layer and quantum
  • the solvent cross-contamination of the point light-emitting layer can improve the light-emitting efficiency and lifetime of the light-emitting device 100.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种发光器件(100)及其制作方法,混合发光层中设置了连接层(151),蓝色有机发光层(152)与红色量子点发光层(130)、绿色量子点发光层(140)之间通过连接层(151)隔开,连接层(151)起到向两侧的量子点发光层和有机发光层传输电子和空穴的作用,量子点发光层、连接层(151)和有机发光层先后进行制作,避免了器件制作过程中有机发光层和量子点发光层溶剂交叉污染,能够提高发光器件(100)的发光效率和寿命。

Description

发光器件及其制作方法
相关申请的交叉引用
本申请要求于2019年12月27日提交中国专利局、申请号为2019113749158、发明名称为“发光器件及其制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,特别是涉及一种发光器件及其制作方法。
技术背景
量子点显示(QLED)由于其色彩高纯度、高亮度以及更好的可视角等优势,成为下一代面板显示的重要技术之一。在传统的全量子点显示方案中,蓝色量子点(QD)像素寿命极短,远低于蒸镀蓝色有机发光器件(OLED)的性能。提高蓝色像素寿命的方案之一是用蓝色有机发光材料替代蓝色量子点,然而,在该种器件结构的制造过程中,难以避免红绿量子点发光层、氧化锌层与蓝色OLED之间的溶剂相互污染问题,而这又会影响器件的性能和寿命。当先后打印蓝色OLED像素和QD像素时,先打印好的蓝色OLED膜被QD溶剂气氛破坏,在像素坑内形成环状不均匀。相比无溶剂污染问题的像素,被污染破坏的像素发光区会明显缩小,严重降低了性能。并且,无论QLED像素和OLED像素的先后打印顺序如何,均会出现溶剂交叉污染问题。
发明内容
基于此,有必要提供一种发光器件及其制作方法,以解决器件制作过程中有机发光层和量子点发光层溶剂交叉污染的问题。
一种发光器件,包括层叠设置的基板、阴极层、混合发光层以及阳极层;所述阴极层划分为红色发光区域、绿色发光区域以及蓝色发光区域,所述混 合发光层包括红色量子点发光层、绿色量子点发光层以及蓝色发光复合层,所述红色量子点发光层设置在所述红色发光区域上,所述绿色量子点发光层设置在所述绿色发光区域上,所述蓝色发光复合层设置在所述红色量子点发光层、所述绿色量子点发光层以及所述蓝色发光区域上,所述蓝色发光复合层包括层叠设置的连接层以及蓝色有机发光层,所述蓝色发光复合层中,所述连接层设置在靠近所述基板的一侧。
在其中一个实施例中,所述连接层的材料为同时具有传输电子和空穴能力的电荷传输材料。
在其中一个实施例中,所述连接层包括层叠设置的N型半导体材料层和P型半导体材料层,所述N型半导体材料层设置在所述P型半导体材料层与所述蓝色有机发光层之间。
在其中一个实施例中,所述蓝色发光复合层有多层,多层所述蓝色发光复合层层叠设置。
在其中一个实施例中,所述蓝色发光复合层有2~5层。
在其中一个实施例中,所述阴极层与所述混合发光层之间设置有电子传输层和电子注入层中的至少一层,和/或,所述阳极层与所述混合发光层之间设置有空穴传输层和空穴注入层中的至少一层。
在其中一个实施例中,所述阴极层与所述混合发光层之间设置有第一电子传输层和第二电子传输层,所述第一电子传输层设置在所述红色发光区域、所述绿色发光区域以及所述蓝色发光区域上,所述第二电子传输层设置在所述蓝色发光区域上,且所述第二电子传输层设置在所述连接层与所述第一电子传输层之间,所述第一电子传输层的材料为氧化锌或掺杂氧化锌,所述第二电子传输层的材料为有机材料。
一种发光器件的制作方法,包括:
提供或制作设置有阴极层的基板,所述阴极层划分为红色发光区域、绿色发光区域以及蓝色发光区域;
在所述红色发光区域上制作红色量子点发光层,在所述绿色发光区域上 制作绿色量子点发光层;
在所述红色量子点发光层、所述绿色量子点发光层以及所述蓝色发光区域上制作蓝色发光复合层,所述蓝色发光复合层包括层叠设置的连接层以及蓝色有机发光层的所述连接层设置在靠近所述基板的一侧;
在所述蓝色发光复合层上制作阳极层。
在其中一个实施例中,在制作所述阳极层之前,在所述红色量子点发光层、所述绿色量子点发光层以及所述蓝色发光区域上制作多层所述蓝色发光复合层,多层所述蓝色发光复合层层叠设置。
在其中一个实施例中,在制作所述红色量子点发光层和所述绿色量子点发光层之前,在所述阴极层上的所述红色发光区域、所述绿色发光区域以及所述蓝色发光区域上制作第一电子传输层,在所述第一电子传输层对应所述蓝色发光区域的位置上制作第二电子传输层,所述第一电子传输层的材料为氧化锌或掺杂氧化锌,所述第二电子传输层的材料为有机材料。
在其中一个实施例中,所述第一电子传输层通过脉冲光照退火工艺制作。
在其中一个实施例中,所述连接层以及所述蓝色有机发光层通过蒸镀工艺或喷墨打印工艺制作。
与现有方案相比,上述发光器件及其制作方法具有以下有益效果:
上述发光器件及其制作方法,混合发光层中设置了连接层,蓝色有机发光层与红色量子点发光层、绿色量子点发光层之间通过连接层隔开,连接层起到向两侧的量子点发光层和有机发光层传输电子和空穴的作用,量子点发光层、连接层和有机发光层先后进行制作,避免了器件制作过程中有机发光层和量子点发光层溶剂交叉污染,能够提高发光器件的发光效率和寿命。
附图说明
图1为一实施例的发光器件的结构示意图;
图2为一实施例的包含第一电子传输层和第二电子传输层的发光器件的结构示意图;
图3为一实施例的连接层包括N型半导体材料层和P型半导体材料层的发光器件的结构示意图;
图4为一实施例的包含两层蓝色发光复合层的发光器件的结构示意图;
图5为一实施例的包含三层蓝色发光复合层的发光器件的结构示意图;
图6为一实施例的发光器件的制作方法的流程图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1所示,本申请提供一种发光器件100,包括层叠设置的基板110、阴极层120、混合发光层以及阳极层160。
阴极层120划分为红色发光区域、绿色发光区域以及蓝色发光区域。混合发光层包括红色量子点发光层130、绿色量子点发光层140以及蓝色发光复合层150。红色量子点发光层130设置在红色发光区域上,绿色量子点发光层140设置在绿色发光区域上,蓝色发光复合层150设置在红色量子点发光层130、绿色量子点发光层140以及蓝色发光区域上。蓝色发光复合层150包括层叠设置的连接层151以及蓝色有机发光层152,蓝色发光复合层150中,连接层151设置在靠近基板110的一侧。
在其中一个示例中,连接层151的材料为同时具有传输电子和空穴能力的电荷传输材料。连接层151能够同时为蓝色有机发光层152传输电子以及 为红色量子点发光层130、绿色量子点发光层140传输空穴,提高器件发光效率和寿命。例如,连接层151的材料可以选用Idemitsu-Kosan公司的IK LGD HCL系列产品。在本示例中,连接层151可以是单层。
图2所示器件为顶发射型器件,阴极层120为反射电极,阴极层120和混合发光层之间设置有电子注入层171和电子传输层172。阳极层160为透明电极,阳极层160与混合发光层之间设置有空穴传输层173和空穴注入层174。在阳极层160远离基板110的一侧还设置有光取出层180,用于提高出光效率。连接层151设置在红色量子点发光层130、绿色量子点发光层140上以及电子传输层172对应蓝色发光区域的位置上,蓝色有机发光层152设置在连接层151上,相当于连接层151和蓝色有机发光层152均为整面沉积。红色量子点发光层130、绿色量子点发光层140均与蓝色有机发光层152通过连接层151隔开,量子点发光层、连接层151和蓝色有机发光层152先后制作,避免制作过程中量子点发光层的溶剂与有机发光层的溶剂出现交叉污染的问题。该顶发射结构有利于提高开口率,提高显示亮度和寿命。可以理解,在其他示例中,发光器件也可以是底发射器件,相应地可设置阴极层为透明电极,阳极层为反射电极。
如图2所示,在其中一个示例中,电子传输层172包括第一电子传输层1721和第二电子传输层1722。第一电子传输层1721设置在红色发光区域、绿色发光区域以及蓝色发光区域上,第二电子传输层1722设置在蓝色发光区域上,且第二电子传输层1722设置在连接层151与第一电子传输层1721之间。其中,第一电子传输层1721的材料为氧化锌或掺杂氧化锌,掺杂氧化锌可以是但不限于掺镁氧化锌、掺镁掺锂氧化锌等。第二电子传输层1722的材料选用有机材料,该有机材料可以是常规的有机电子传输层172材料。
从提高发光层的效率和寿命的角度,量子点发光层和有机发光层适合电子传输层172的种类不同。如表1所示,量子点发光层需要完全由氧化锌和阴极组成的电子注入/传输结构配合才能具有良好效率和寿命,而有机发光层需要有机电子传输层172/注入层/阴极的结构才能保证效率和寿命。图3所示 的示例采用氧化锌或掺杂氧化锌的第一电子传输层1721以及有机材料的第二电子传输层1722,克服了上述问题。
表1 QLED和OLED在使用有机电子传输层和氧化锌电子传输层时的性能
Figure PCTCN2020126748-appb-000001
如图3所示,在其中一个示例中,连接层151包括层叠设置的N型半导体材料层1511和P型半导体材料层1512。N型半导体材料层1511设置在P型半导体材料层1512与蓝色有机发光层152之间。在本示例中,N型半导体材料层1511和P型半导体材料层1512构成电荷产生层(CGL,Charge Generation Layer)。
其中,N型半导体材料层1511可选用Toray ET314产品中掺杂锂(掺杂重量比例0.5%-10%),或Novaled NET产品中掺杂Novaled NDN产品(掺杂重量比例0.5%-10%)制成。P型半导体材料层1512可选用Novaled NHT产品中掺杂Novaled NDP产品(掺杂重量比例0.5%-10%)制成。
如图4和图5所示,在其中一个示例中,蓝色发光复合层150有多层,多层蓝色发光复合层150层叠设置。本示例采用多层蓝色发光复合层150层叠结构,可进一步提高蓝色发光层的发光效率与寿命。
在其中一个示例中,蓝色发光复合层150有2~5层。在图4所示的具体示例中,蓝色发光复合层150有两层。在图5所示的具体示例中,蓝色发光复合层150有三层。
进一步地,参考图6,本申请还提供一种上述任一示例的发光器件100的制作方法,包括:
步骤S100,提供或制作设置有阴极层120的基板110,阴极层120划分 为红色发光区域、绿色发光区域以及蓝色发光区域。
阴极层120的材料可以是但不限于ITO、IZO、IZO/ITO等。
步骤S200,在红色发光区域上制作红色量子点发光层130,在绿色发光区域上制作绿色量子点发光层140。
步骤S300,在红色量子点发光层130、绿色量子点发光层140以及蓝色发光区域上制作包括层叠设置的连接层151以及蓝色有机发光层152的蓝色发光复合层150,连接层151设置在靠近基板110的一侧。
步骤S400,在蓝色发光复合层150上制作阳极层160。
阳极层160可以是但不限于银/ITO叠层、银合金(如APC)/ITO叠层、铝/ITO叠层、铝/ITO叠层、铝合金/ITO叠层等。
在其中一个示例中,在制作阳极层160之前,在红色量子点发光层130、绿色量子点发光层140以及蓝色发光区域上制作多层蓝色发光复合层150,多层蓝色发光复合层150层叠设置。
在其中一个示例中,在制作红色量子点发光层130和绿色量子点发光层140之前,在阴极层120上的红色发光区域、绿色发光区域以及蓝色发光区域上制作电子注入层171或电子传输层172中的至少一层。
电子注入层171的材料可以是但不限于:
(1)银,镁银合金,银/镱叠层,镁银合金/镱叠层;
(2)氟化钠/镁银合金/银叠层,氟化钠/镁银合金叠层,氟化钠/银叠层,氟化钠/镁叠层;
(3)氟化钠/钡/镁银合金/银叠层,氟化钠/钡/银叠层,氟化钠/钡/镁叠层;
(4)氟化钠/镱/镁银合金/银叠层,氟化钠/镱/镁银合金叠层,氟化钠/镱/银叠层,氟化钠/镱/镁叠层;
(5)氟化锂/镁银合金叠层,氟化锂/镱/镁银合金叠层,氟化锂/镱/银叠层,氟化锂/镱/镁叠层。
其中,镁银合金中,镁和银可以选择不同的比例。
电子传输层172的材料可以是但不限于ZnO、镁掺杂ZnO、镁/锂掺杂 ZnO等。
在其中一个示例中,在制作阳极层160之前,在混合发光层上制作空穴传输层173和空穴注入层174中的至少一层。
空穴传输层173可选用高透光率(如90%以上)、深HOMO能级(如HOMO能级在6eV以下)、且具有高空穴电导率(如10 -2cm 2/v.s以上)的材料。
空穴注入层174可选用高透光率(如90%以上)、深HOMO能级(如HOMO能级在6eV以下)的材料。
在其中一个示例中,在制作阳极层160之后,还包括在阳极层160上制作光取出层180。
在其中一个示例中,在制作红色量子点发光层130和绿色量子点发光层140之前,在阴极层120上的红色发光区域、绿色发光区域以及蓝色发光区域上制作第一电子传输层1721,在第一电子传输层1721对应蓝色发光区域的位置上制作第二电子传输层1722,第一电子传输层1721的材料为氧化锌或掺杂氧化锌,第二电子传输层1722的材料为有机材料。
在其中一个示例中,第一电子传输层1721通过脉冲光照退火工艺制作。本示例通过脉冲光照退火工艺制作氧化锌或掺杂氧化锌材质的第一电子传输层1721,相比传统高温退火有更高的电导能力,因为倒置结构中电子传输层先制作,所以相关工艺不会对后续各层带来损伤,而其优点仍得以保留。
在其中一个示例中,连接层151和蓝色有机发光层152通过蒸镀工艺或喷墨打印工艺制作。
上述发光器件100及其制作方法,混合发光层中设置了连接层151,蓝色有机发光层152与红色量子点发光层130、绿色量子点发光层140之间通过连接层151隔开,连接层151起到向两侧的量子点发光层和有机发光层传输电子和空穴的作用,量子点发光层、连接层151和有机发光层先后进行制作,避免了器件制作过程中有机发光层和量子点发光层溶剂交叉污染,能够提高发光器件100的发光效率和寿命。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未 对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种发光器件,包括层叠设置的基板、阴极层、混合发光层以及阳极层;所述阴极层划分为红色发光区域、绿色发光区域以及蓝色发光区域,所述混合发光层包括红色量子点发光层、绿色量子点发光层以及蓝色发光复合层,所述红色量子点发光层设置在所述红色发光区域上,所述绿色量子点发光层设置在所述绿色发光区域上,所述蓝色发光复合层设置在所述红色量子点发光层、所述绿色量子点发光层以及所述蓝色发光区域上,所述蓝色发光复合层包括层叠设置的连接层以及蓝色有机发光层,所述蓝色发光复合层中,所述连接层设置在靠近所述基板的一侧。
  2. 如权利要求1所述的发光器件,其中,所述连接层的材料为同时具有传输电子和空穴能力的电荷传输材料。
  3. 如权利要求1所述的发光器件,其中,所述连接层包括层叠设置的N型半导体材料层和P型半导体材料层,所述N型半导体材料层设置在所述P型半导体材料层与所述蓝色有机发光层之间。
  4. 如权利要求1所述的发光器件,其中,所述蓝色发光复合层有多层,多层所述蓝色发光复合层层叠设置。
  5. 如权利要求2所述的发光器件,其中,所述蓝色发光复合层有多层,多层所述蓝色发光复合层层叠设置。
  6. 如权利要求3所述的发光器件,其中,所述蓝色发光复合层有多层,多层所述蓝色发光复合层层叠设置。
  7. 如权利要求4所述的发光器件,其中,所述蓝色发光复合层有2~5层。
  8. 如权利要求1所述的发光器件,其中,所述阴极层与所述混合发光层之间设置有电子传输层和电子注入层中的至少一层。
  9. 如权利要求1所述的发光器件,其中,所述阳极层与所述混合发光层之间设置有空穴传输层和空穴注入层中的至少一层。
  10. 如权利要求1所述的发光器件,其中,所述阴极层与所述混合发光层之间设置有电子传输层和电子注入层中的至少一层,且所述阳极层与所述 混合发光层之间设置有空穴传输层和空穴注入层中的至少一层。
  11. 如权利要求2所述的发光器件,其中,所述阴极层与所述混合发光层之间设置有电子传输层和电子注入层中的至少一层。
  12. 如权利要求2所述的发光器件,其中,所述阳极层与所述混合发光层之间设置有空穴传输层和空穴注入层中的至少一层。
  13. 如权利要求3所述的发光器件,其中,所述阴极层与所述混合发光层之间设置有电子传输层和电子注入层中的至少一层。
  14. 如权利要求3所述的发光器件,其中,所述阳极层与所述混合发光层之间设置有空穴传输层和空穴注入层中的至少一层。
  15. 如权利要求1所述的发光器件,其中,所述阴极层与所述混合发光层之间设置有第一电子传输层和第二电子传输层,所述第一电子传输层设置在所述红色发光区域、所述绿色发光区域以及所述蓝色发光区域上,所述第二电子传输层设置在所述蓝色发光区域上,且所述第二电子传输层设置在所述连接层与所述第一电子传输层之间,所述第一电子传输层的材料为氧化锌或掺杂氧化锌,所述第二电子传输层的材料为有机材料。
  16. 如权利要求2所述的发光器件,其中,所述阴极层与所述混合发光层之间设置有第一电子传输层和第二电子传输层,所述第一电子传输层设置在所述红色发光区域、所述绿色发光区域以及所述蓝色发光区域上,所述第二电子传输层设置在所述蓝色发光区域上,且所述第二电子传输层设置在所述连接层与所述第一电子传输层之间,所述第一电子传输层的材料为氧化锌或掺杂氧化锌,所述第二电子传输层的材料为有机材料。
  17. 一种发光器件的制作方法,包括:
    提供或制作设置有阴极层的基板,所述阴极层划分为红色发光区域、绿色发光区域以及蓝色发光区域;
    在所述红色发光区域上制作红色量子点发光层,在所述绿色发光区域上制作绿色量子点发光层;
    在所述红色量子点发光层、所述绿色量子点发光层以及所述蓝色发光区 域上制作蓝色发光复合层,所述蓝色发光复合层包括层叠设置的连接层以及蓝色有机发光层,所述蓝色发光复合层中的所述连接层设置在靠近所述基板的一侧;
    在所述蓝色发光复合层上制作阳极层。
  18. 如权利要求17所述的方法,其中,在制作所述阳极层之前,在所述红色量子点发光层、所述绿色量子点发光层以及所述蓝色发光区域上制作多层所述蓝色发光复合层,多层所述蓝色发光复合层层叠设置。
  19. 如权利要求17所述的方法,其中,在制作所述红色量子点发光层和所述绿色量子点发光层之前,在所述阴极层上的所述红色发光区域、所述绿色发光区域以及所述蓝色发光区域上制作第一电子传输层,在所述第一电子传输层对应所述蓝色发光区域的位置上制作第二电子传输层,所述第一电子传输层的材料为氧化锌或掺杂氧化锌,所述第二电子传输层的材料为有机材料。
  20. 如权利要求19所述的方法,其中,所述第一电子传输层通过脉冲光照退火工艺制作。
PCT/CN2020/126748 2019-12-27 2020-11-05 发光器件及其制作方法 WO2021129183A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911374915.8A CN112331785B (zh) 2019-12-27 2019-12-27 发光器件及其制作方法
CN201911374915.8 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021129183A1 true WO2021129183A1 (zh) 2021-07-01

Family

ID=74319797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126748 WO2021129183A1 (zh) 2019-12-27 2020-11-05 发光器件及其制作方法

Country Status (2)

Country Link
CN (1) CN112331785B (zh)
WO (1) WO2021129183A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114695816A (zh) * 2020-12-30 2022-07-01 Tcl科技集团股份有限公司 一种量子点发光二极管器件及其制备方法
CN116193939A (zh) * 2021-11-26 2023-05-30 Tcl科技集团股份有限公司 一种薄膜处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105185919A (zh) * 2015-09-02 2015-12-23 Tcl集团股份有限公司 混合型qled及其制备方法
CN106684112A (zh) * 2016-11-23 2017-05-17 信利(惠州)智能显示有限公司 有机发光显示装置及其制造方法
CN110277499A (zh) * 2018-03-14 2019-09-24 Tcl集团股份有限公司 发光显示器件及其制备方法
CN110600623A (zh) * 2018-06-13 2019-12-20 Tcl集团股份有限公司 电致发光器件及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090039764A1 (en) * 2005-03-17 2009-02-12 Cho Kyung Sang Quantum Dot Light-Emitting Diode Comprising Inorganic Electron Transport Layer
JP6567078B2 (ja) * 2015-01-12 2019-08-28 ドルビー ラボラトリーズ ライセンシング コーポレイション 画素タイル構造およびレイアウト
CN105304681B (zh) * 2015-10-19 2019-09-17 广东聚华印刷显示技术有限公司 含有机/无机混合发光层的电致发光显示器及制备方法
CN106058062B (zh) * 2016-05-31 2018-12-11 京东方科技集团股份有限公司 一种混合发光器件、显示面板和显示装置
KR20180014334A (ko) * 2016-07-29 2018-02-08 한국생산기술연구원 유기발광 디스플레이 소자 및 그 제조방법
CN106601919A (zh) * 2016-12-09 2017-04-26 Tcl集团股份有限公司 一种混合型发光器件、显示面板及显示装置
CN106601923A (zh) * 2016-12-19 2017-04-26 华南理工大学 一种有机、无机量子点杂化的全彩显示器件及其制备方法
KR20180090421A (ko) * 2017-02-02 2018-08-13 삼성디스플레이 주식회사 유기 발광 표시 장치
CN108039416A (zh) * 2017-12-06 2018-05-15 华南理工大学 基于量子点电致发光的叠层白光发光二极管及其制备方法
CN110556483A (zh) * 2018-06-04 2019-12-10 Tcl集团股份有限公司 电致发光器件及其制备方法和应用
CN110534652B (zh) * 2019-09-10 2021-04-02 西北工业大学 一种钙钛矿太阳能电池及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105185919A (zh) * 2015-09-02 2015-12-23 Tcl集团股份有限公司 混合型qled及其制备方法
CN106684112A (zh) * 2016-11-23 2017-05-17 信利(惠州)智能显示有限公司 有机发光显示装置及其制造方法
CN110277499A (zh) * 2018-03-14 2019-09-24 Tcl集团股份有限公司 发光显示器件及其制备方法
CN110600623A (zh) * 2018-06-13 2019-12-20 Tcl集团股份有限公司 电致发光器件及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIGO, TOMOYUKI ET AL.: "A High-Performance Hybrid OLED Device Assisted by Evaporated Common Organic Layers,", 17TH INTERNATIONAL DISPLAY WORKSHOPS 2010 (IDW 2010); FUKUOKA, JAPAN; 1-3 DECEMBER 2010, 31 December 2010 (2010-12-31), pages 311 - 314, XP009528661, ISSN: 1883-2490, ISBN: 978-1-61782-701-3 *

Also Published As

Publication number Publication date
CN112331785B (zh) 2022-08-30
CN112331785A (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
US10461131B2 (en) Quantum dot LED and OLED integration for high efficiency displays
US8735876B2 (en) Organic light emitting diode display
US20060181199A1 (en) Organic light emitting device comprising multilayer cathode
WO2019095565A1 (zh) 串联量子点发光器件、面板即显示器
US9099416B2 (en) Organic light-emitting device
CN102214794A (zh) 有机发光二极管装置
CN110600623B (zh) 电致发光器件及其制备方法
JP2006157022A (ja) 有機elダイオード及び有機elダイオードの効率改善方法
WO2016123916A1 (zh) 一种显示基板及其制备方法和一种显示设备
WO2018040686A1 (zh) 一种有机电致发光器件及显示装置
WO2021129183A1 (zh) 发光器件及其制作方法
WO2021135637A1 (zh) 量子点薄膜及其制备方法和应用
WO2022179152A1 (zh) 有机发光二极管及其制作方法、显示基板和显示装置
TWI575725B (zh) 包含金屬氧化物的陽極及具有該陽極之有機發光裝置
US10050088B2 (en) Organic light-emitting diode display panel having the hole transport units corresponding to the light emitting devices of two different colors have different mobility
JP4782550B2 (ja) 有機電界発光素子の製造方法
WO2016188095A1 (zh) 有机发光显示器件及其制作方法和显示装置
WO2023206674A1 (zh) 有机发光显示面板和有机发光显示装置
CN100428489C (zh) 一种有机发光二极管及其制作方法
WO2021244121A1 (zh) 显示面板及其制备方法、显示装置
US20240016018A1 (en) Display device and preparation method therefor
CN111146347A (zh) 电致发光器件及其制备方法
WO2021103103A1 (zh) 显示面板及其制备方法与显示装置
WO2024040561A1 (zh) 发光器件及其制备方法、显示面板、显示装置
WO2021249162A1 (zh) 显示器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906884

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.01.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20906884

Country of ref document: EP

Kind code of ref document: A1