WO2022179152A1 - 有机发光二极管及其制作方法、显示基板和显示装置 - Google Patents

有机发光二极管及其制作方法、显示基板和显示装置 Download PDF

Info

Publication number
WO2022179152A1
WO2022179152A1 PCT/CN2021/126892 CN2021126892W WO2022179152A1 WO 2022179152 A1 WO2022179152 A1 WO 2022179152A1 CN 2021126892 W CN2021126892 W CN 2021126892W WO 2022179152 A1 WO2022179152 A1 WO 2022179152A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
light emitting
organic light
blocking layer
Prior art date
Application number
PCT/CN2021/126892
Other languages
English (en)
French (fr)
Inventor
郝艳军
屈财玉
文官印
吴淞全
左鹏飞
杜小波
李彦松
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/801,623 priority Critical patent/US20230354636A1/en
Publication of WO2022179152A1 publication Critical patent/WO2022179152A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to an organic light emitting diode and a manufacturing method thereof, a display substrate and a display device.
  • each pixel includes a red light-emitting diode, a blue light-emitting diode, and a green light-emitting diode.
  • the current display device is prone to color cast when displaying a low grayscale image.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art, and proposes an organic light emitting diode and a manufacturing method thereof, a display substrate and a display device.
  • an organic light emitting diode which includes:
  • a first hole transport layer Located between the first electrode and the second electrode and arranged in sequence along the direction close to the second electrode: a first hole transport layer, a first electron blocking layer, a blue light-emitting layer, at least one layer For the first hole blocking layer and the first electron transport layer, the total thickness of all the first hole blocking layers is greater than the thickness of the first electron blocking layer.
  • the number of layers of the first hole blocking layer is multiple layers, and the materials of the multiple layers of the first hole blocking layer are the same.
  • the number of layers of the first hole blocking layer is multiple layers, and the materials of the first hole blocking layer are different;
  • the electron mobility of each layer of the first hole blocking layer gradually increases along a direction close to the first electron transport layer.
  • the number of the first hole blocking layers is two, wherein the electron mobility of one of the first hole blocking layers is 1.5*10 ⁇ 6 cm 2 /Vs ⁇ 2.5*10 ⁇ 6 cm 2 /Vs, the electron mobility of the other first hole blocking layer is between 7.0*10 -6 cm 2 /Vs ⁇ 8.0*10 -6 cm 2 /Vs.
  • the material of the first hole blocking layer includes: a planar aromatic compound having a large conjugated structure.
  • the total thickness of all the first hole blocking layers is more than 1.5 times the thickness of the first electron blocking layers.
  • the thickness of each layer of the first hole blocking layer is between 2 nm and 10 nm.
  • Embodiments of the present disclosure also provide a display substrate, including:
  • the plurality of organic light emitting diodes further includes a red organic light emitting diode and a green organic light emitting diode,
  • the red organic light emitting diode includes:
  • a second hole transport layer Located between the third electrode and the fourth electrode and arranged in sequence along the direction close to the fourth electrode: a second hole transport layer, a second electron blocking layer, a red light-emitting layer, and a second hole blocking layer and a second electron transport layer;
  • the green organic light emitting diode includes:
  • a third hole transport layer Located at the fifth electrode and the sixth electrode, and arranged in sequence along the direction close to the sixth electrode: a third hole transport layer, a third electron blocking layer, a green light-emitting layer, a third hole blocking layer, and a third hole blocking layer.
  • the third electrode, the fifth electrode and the first electrode are arranged in the same layer; the fourth electrode and the sixth electrode are arranged in the same layer as the second electrode; the second hole The transport layer and the third hole transport layer are arranged at the same layer as the first hole transport layer; the second electron transport layer and the third electron transport layer are arranged at the same layer as the first electron transport layer; the first electron transport layer is arranged at the same layer as the first electron transport layer; The two hole blocking layers and the third hole blocking layer are provided in the same layer in a one-to-one correspondence with the first hole blocking layer.
  • the thickness of the green light-emitting layer is greater than the thickness of the blue light-emitting layer and less than the thickness of the red light-emitting layer.
  • the thickness of the third electron blocking layer is greater than the thickness of the first electron blocking layer and less than the thickness of the second electron blocking layer.
  • the first electrode is located between the blue light emitting layer and the substrate, and the second electrode is located on a side of the blue light emitting layer away from the substrate.
  • Embodiments of the present disclosure further provide a display device including the above-mentioned display substrate.
  • Embodiments of the present disclosure also provide a method for fabricating an organic light-emitting diode, including:
  • a first hole transport layer, a first electron blocking layer, a blue light-emitting layer, at least one first hole blocking layer and a first electron transport layer are respectively formed, wherein the first hole transport layer, the first An electron blocking layer, the first light emitting layer, the first hole blocking layer and the first electron transport layer are arranged in a direction away from the first electrode; the total thickness of all the first hole blocking layers is greater than the the thickness of the first electron blocking layer;
  • the second electrode is formed, and the second electrode is arranged opposite to the first electrode.
  • each layer of the first hole blocking layer is formed by an evaporation process.
  • FIG. 1 is a schematic structural diagram of a light emitting diode in one example.
  • FIG. 2 is a graph showing the variation of photometric efficiency with luminance of different organic light emitting diodes.
  • FIG. 3A is a graph showing the variation of chromaticity efficiency with luminance of organic light emitting diodes of various colors under ideal conditions.
  • FIG. 3B is a graph showing the variation of chromaticity efficiency with luminance of organic light emitting diodes of various colors under actual conditions.
  • FIG. 4A is a schematic structural diagram of a light emitting diode provided in some embodiments of the present disclosure.
  • FIG. 4B is a schematic structural diagram of light emitting diodes provided in other embodiments of the present disclosure.
  • FIG. 5 is a schematic diagram of energy levels of an organic light emitting diode provided in some embodiments of the present disclosure.
  • FIG. 6 is a graph of the luminous efficiency of the organic light emitting diodes in the two examples of the present disclosure and the organic light emitting diodes in the comparative example.
  • FIG. 7 is a graph comparing lifetime and chromatic efficiency of organic light emitting diodes in two examples of the present disclosure and light emitting diodes in comparative examples.
  • FIG. 8 is a graph showing the luminous efficiency of the organic light emitting diode in Example 3 of the present disclosure and the organic light emitting diode in the comparative example.
  • FIG. 9 is a schematic diagram of a display substrate provided in some embodiments of the present disclosure.
  • FIG. 10 is a flowchart of a method for fabricating an organic light emitting diode provided in some embodiments of the present disclosure.
  • Words like “include” or “include” mean that the elements or items appearing before “including” or “including” cover the elements or items listed after “including” or “including” and their equivalents, and do not exclude other component or object.
  • Words like “connected” or “connected” are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect. “Up”, “Down”, “Left”, “Right”, etc. are only used to indicate the relative positional relationship, and when the absolute position of the described object changes, the relative positional relationship may also change accordingly.
  • each pixel unit includes a red light emitting diode, a green light emitting diode and a blue light emitting diode.
  • FIG. 1 is a schematic structural diagram of a light emitting diode in an example.
  • the light emitting diode includes: a first electrode 11 , a hole injection layer HIL, and a hole transport layer HTL, which are arranged in sequence along the direction away from the substrate 10 . , the electron blocking layer EBL, the light emitting layer EML, the hole blocking layer HBL, the electron transport layer ETL, the electron injection layer EIL and the second electrode 12 . After a voltage is applied to the first electrode 11 and the second electrode 12, holes (shown as open circles in FIG.
  • the two electrodes 12 are injected into and respectively enter the HOMO (highest occupied molecular orbital) energy level of the hole transport layer HTL and the LUMO (lowest vacant molecular orbital) energy level of the electron transport layer ETL, and then transition to the light emitting layer EML to meet to form electron-empty Acupoint pairs, that is, excitons. Excitons in the excited state of the molecule are released in the form of photons, emitting visible light.
  • HOMO highest occupied molecular orbital
  • LUMO lowest vacant molecular orbital
  • the thickness of the electron blocking layer EBL is larger; in an organic light emitting diode with a shorter emission wavelength, the thickness of the electron blocking layer EBL is smaller.
  • the thickness of the hole blocking layer HBL is less than or equal to the thickness of the electron blocking layer EBL.
  • the thickness of the hole blocking layer HBL is the same as the thickness of the electron blocking layer EBL. In the diode, the thickness of the hole blocking layer HBL is smaller than the thickness of the electron blocking layer EBL.
  • FIG. 2 is a graph showing the variation of photometric efficiency with brightness of different organic light-emitting diodes. As shown in Figure 2, when the red organic light-emitting diode and the green organic light-emitting diode are displayed at low brightness, the luminous efficiency quickly reaches the maximum; as the brightness increases , the efficiency of the red organic light emitting diode and the green organic light emitting diode have obvious Roll-off phenomenon.
  • FIG. 3A is the relationship curve between the efficiency and brightness of the organic light emitting diodes of each color under ideal conditions
  • FIG. 3B is the relationship curve between the efficiency and brightness of the organic light emitting diodes of each color under the actual situation, wherein the blue organic light emitting diodes in FIG. 3A and FIG.
  • the relationship curve between the efficiency and brightness of the light-emitting diode is: the change curve of chromaticity efficiency with brightness, and the chromaticity efficiency is the ratio of the luminous efficiency (unit: cd/A) to the luminous color (that is, the y value in the CIE color coordinate); Fig.
  • the relationship curves between the efficiency and the brightness of the red organic light emitting diodes and the green organic light emitting diodes in FIG. 3A and FIG. 3B are: the change curve of the photometric efficiency with the brightness. It can be seen from FIGS. 2 to 3B that since the photometric efficiency of the blue organic light emitting diode is low when the brightness is low, when the display device displays a low grayscale image, the white light ratio is likely to be unbalanced, resulting in color shift.
  • the reason for the obvious "climbing" of the photometric efficiency of blue organic light-emitting diodes is that at low current density, a large number of holes will accumulate at the interface between the electron blocking layer EBL and the light-emitting layer EML. During injection, a large number of excitons will be generated at the interface between the electron blocking layer EBL and the light emitting layer EML, resulting in quenching of exciton concentration and weakening of exciton transition emission, resulting in low photometric efficiency of the organic light emitting diode.
  • the current density increases, holes are injected into the light-emitting layer EML, excitons are more uniformly dispersed in the entire light-emitting layer EML, the quenching decreases, and the exciton transition emission increases.
  • the organic light emitting diode includes: a first electrode 11 and a second electrode 12 arranged oppositely.
  • the first electrode 11 is an anode, which can be made of transparent conductive materials such as indium tin oxide (ITO); or, the first electrode 11 can also be a composite film layer of multiple conductive materials.
  • a composite layer of ITO/Ag/ITO wherein the thickness of the ITO layer is, for example, 8 nm, and the thickness of the Ag layer is, for example, 10 nm.
  • the second electrode 12 is a cathode, which can be made of a metal material with high reflectivity, such as Al, Ag.
  • the thickness of the second electrode 12 is, for example, between 10 nm and 20 nm, for example, 16 nm.
  • the organic light emitting diode further includes a first hole transport layer HTL1, a first electron blocking layer EBL1, a blue light emitting layer, which are located between the first electrode 11 and the second electrode 12 and are arranged in sequence along the direction close to the second electrode 12.
  • EML1 at least one layer of a first hole blocking layer HBL1 and a first electron transport layer ETL1, and the blue light emitting layer EML1 are made of fluorescent materials.
  • the number of layers of the first hole blocking layer HBL1 in FIG. 4A and FIG. 4B is only an example, and may also be set to other numbers, for example, 1 layer, 4 layers, and the like.
  • the organic light emitting diode further includes a first hole injection layer HIL1 located between the first hole transport layer HTL1 and the first electrode 11 .
  • the total thickness of all the first hole blocking layers HBL1 is greater than the thickness of the first electron blocking layers EBL1 .
  • the thickness of the first hole blocking layer HBL1 is greater than the thickness of the first electron blocking layer EBL1 .
  • the total thickness of the multiple first hole blocking layers HBL1 is greater than the thickness of the first electron blocking layer EBL1 .
  • the total thickness of all the first hole blocking layers HBL1 is greater than 5 nm.
  • FIG. 5 is a schematic diagram of the energy levels of the organic light emitting diode provided in some embodiments of the present disclosure.
  • a voltage is applied to the first electrode 11 and the second electrode 12 , holes and electrons are respectively discharged from the first electrode 11 and the second electrode 12 .
  • 11 and the second electrode 12 are injected into the HOMO energy level of the first hole transport layer HTL1 and the LUMO energy level of the first electron transport layer ETL1 respectively, and then transition to the blue light emitting layer EML1.
  • the current density is low, a large number of holes are accumulated at the interface of the electron blocking layer EBL and the light emitting layer EML.
  • the total thickness of the first hole blocking layer HBL1 between the blue light emitting layer EML1 and the first electron transport layer ETL1 is larger, so that the electrons from the first electron transport layer ETL1 to the blue can be increased.
  • the problem of low luminous efficiency caused by the quenching of the excitons between the light-emitting layers EML1 can prevent the display device from appearing in color shift during low-gray display, and improve the display quality.
  • the material of the first hole blocking layer HBL1 includes: a planar aromatic compound having a large conjugated structure.
  • the material of the first hole blocking layer HBL1 may be a polyaryl-substituted pyridine derivative, a 1,10-phenanthroline derivative, etc., and may be a mixture of one or more materials.
  • the total thickness of the first hole blocking layer HBL1 is more than 1.5 times the thickness of the first electron blocking layer EBL1 , for example, 2 ⁇ 5 times the thickness of the first electron blocking layer EBL1 .
  • the number of layers of the first hole blocking layer HBL1 is multiple layers, and the thicknesses of different first hole blocking layers HBL1 may be the same or different.
  • the thickness of each first hole blocking layer HBL1 is between 2 nm and 10 nm.
  • the thickness of each first hole blocking layer HBL1 is 5 nm.
  • the number of layers of the first hole blocking layer HBL1 is multiple layers, and the materials of the multiple layers of the first hole blocking layer HBL1 are the same.
  • the first hole blocking layer HBL1 is a multi-layer, and different first hole blocking layers HBL1 have different materials. Among them, along the direction close to the first electron transport layer ETL1, the electron mobility of the first hole blocking layer HBL1 gradually increases, which is conducive to the injection of electrons into the blue light-emitting layer EML1, so that when performing high-brightness display, It is prevented that the electronic transition distance is too long and the luminous efficiency is reduced, thereby ensuring the display effect of the display device at high brightness.
  • the number of layers of the first hole blocking layer HBL1 is two, and the electron mobility of the first hole blocking layer HBL1 far from the first electron transport layer ETL1 is 1.5*10 ⁇ 6 cm 2 /Vs ⁇ 2.5*10 ⁇ Between 6 cm 2 /Vs, the electron mobility of the first hole blocking layer HBL1 close to the first electron transport layer ETL1 ranges from 7.0*10 -6 cm 2 /Vs to 8.0*10 -6 cm 2 /Vs.
  • the electron mobility of the first hole blocking layer HBL1 far from the first electron transport layer ETL1 is 2.1*10 -6 cm 2 /Vs; the electron mobility of the first hole blocking layer HBL1 close to the first electron transport layer ETL1 The rate is 7.64*10 -6 cm 2 /Vs.
  • FIG. 6 is a graph showing the luminous efficiency of the organic light emitting diode in the two examples of the present disclosure and the organic light emitting diode in the comparative example, and each curve is a curve of the luminous efficiency of the organic light emitting diode as a function of current density.
  • the organic light emitting diode in Example 1 of the present disclosure adopts the structure shown in FIG.
  • each first hole blocking layer HBL1 of the organic light emitting diode is the same as that of the hole blocking layer HBL in the organic light emitting diode in FIG. It is consistent with the corresponding film layer of the organic light emitting diode in FIG. 1 .
  • Table 1 is the "climbing" ratio of the organic light emitting diodes in the two examples of the present disclosure to the organic light emitting diodes in the comparative example. Among them, the ratio of "climbing" is expressed as the ratio of the photometric efficiency of the light-emitting diode under the current density of 0.01 mA/cm 2 and 1 mA/cm 2 .
  • the photometric efficiency of the organic light-emitting diode in the comparative example is low at low current density (less than 0.01 mA/cm 2 ), and with the increase of current density, the photometric efficiency will appear obvious.
  • "climbing" Specifically, the "climbing" ratio of the organic light-emitting diode in the comparative example is about 0.5. It can be predicted that the display device using this structure will have low blue efficiency at low gray scales, and is prone to color shift and image quality loss. .
  • Example 1 and Example 2 of the present disclosure have higher photometric efficiencies at low current densities, and as the current density increases, the “climbing” of photometric efficiencies is relatively insignificant.
  • the “climbing" ratio of light-emitting diodes is above 0.8. It can be predicted that the display device using Example 1 or Example 2 is less likely to produce color shift and image quality defects at low gray scales.
  • FIG. 7 is a comparison diagram of the lifetime and chromatic efficiency of the organic light emitting diode in the two examples of the present disclosure and the light emitting diode in the comparative example, wherein the lifetime and chromatic efficiency of the light emitting diode in FIG. 7 are respectively for the current density of Lifetime and chromatic efficiency at 15mA/ cm2 . It can be seen from FIG. 7 that the lifespan of the organic light emitting diodes in Example 1 and Example 2 of the present disclosure is improved, and the chromaticity efficiency is not affected.
  • the organic light emitting diode in Example 3 of the present disclosure is the organic light emitting diode in FIG. 1
  • the thickness of the hole blocking layer HBL is 5 nm
  • the electron mobility is 2.1*10 -6 cm 2 /Vs
  • HOMO 6.22 eV
  • LUMO 2.65eV.
  • the organic light emitting diode in Example 3 of the present disclosure adopts the structure shown in FIG.
  • the materials and thicknesses of the remaining film layers in Example 3 are the same as those of the corresponding film layers in Comparative Example.
  • Table 2 is the "climbing" ratio of the organic light emitting diode in Example 3 of the present disclosure and the organic light emitting diode in the comparative example.
  • the photometric efficiency of the organic light emitting diode in Example 3 of the present disclosure is higher at low current density.
  • the photometric efficiency “climbs” relative to It is not obvious, and the "climbing" ratio is 0.96. It can be seen that the display device using the organic light emitting diode in Example 3 of the present disclosure is less likely to produce color shift and image quality loss at low gray scales.
  • FIG. 9 is a schematic diagram of a display substrate provided in some embodiments of the present disclosure.
  • the display substrate includes: a substrate 10 and a plurality of organic light emitting diodes disposed on the substrate 10 , wherein a plurality of organic light emitting diodes At least one of the light emitting diodes is a blue organic light emitting diode B_OLED, and the blue organic light emitting diode B_OLED adopts the organic light emitting diode in the above-mentioned embodiment.
  • the first electrode 11 is located between the blue light emitting layer EML1 and the substrate 10
  • the second electrode 12 is located on the side of the blue light emitting layer EML1 away from the substrate 10 .
  • the plurality of organic light emitting diodes further includes at least one red organic light emitting diode R_OLED and at least one green organic light emitting diode G_OLED.
  • the red organic light emitting diode R_OLED includes: a third electrode 13 and a fourth electrode 14 disposed opposite to each other, and further includes a direction between the third electrode 13 and the fourth electrode 14 and in a direction close to the fourth electrode 14 Arranged in sequence: a second hole injection layer HIL2, a second hole transport layer HTL2, a second electron blocking layer EBL2, a red light emitting layer EML2, at least one second hole blocking layer HBL2 and a second electron transport layer ETL2.
  • the green organic light emitting diode G_OLED includes: a fifth electrode 15 and a sixth electrode 16 arranged opposite to each other, located between the fifth electrode 15 and the sixth electrode 16 and arranged in sequence along a direction close to the sixth electrode 16: a third hole
  • the third electrode 13 and the fifth electrode 15 are provided in the same layer as the first electrode 11 .
  • “Same layer arrangement” means that, in order to simplify the manufacturing process, multiple structures are formed from the same material layer through a patterning process, so these structures are in the same layer in terms of stacking relationship; this does not mean that The distances between these structures and the substrate 10 must be the same.
  • the fourth electrode 14 , the sixth electrode 16 and the second electrode 12 are disposed in the same layer, for example, the fourth electrode 14 , the sixth electrode 16 and the second electrode 12 form an integrated structure.
  • the second hole transport layer HTL2, the third hole transport layer HTL3 and the first hole transport layer HTL1 are disposed in the same layer, for example, the second hole transport layer HTL2, the third hole transport layer HTL3 and the first hole transport layer HTL1
  • the layer HTL1 forms an integral structure.
  • the second electron transport layer ETL2, the third electron transport layer ETL3 and the first electron transport layer ETL1 are disposed in the same layer, for example, the second electron transport layer ETL2, the third electron transport layer ETL3 and the first electron transport layer ETL1 form an integrated structure .
  • the second hole blocking layer HBL2 and the third hole blocking layer HBL3 are provided in the same layer in a one-to-one correspondence with the first hole blocking layer HBL1.
  • each layer of the second hole blocking layer HBL2 and each layer of the third hole blocking layer HBL2 Each of the blocking layers HBL3 and the corresponding first hole blocking layers HBL1 form an integral structure.
  • the thickness of the red light-emitting layer EML2 is greater than that of the green light-emitting layer EML3
  • the thickness of the green light-emitting layer EML3 is greater than that of the blue light-emitting layer EML1 .
  • the thickness of the red light-emitting layer EML2 is between 40 and 50 nm, for example, 45 nm
  • the thickness of the green light-emitting layer EML3 is between 30 and 40 nm, for example, 35 nm
  • the thickness of the blue light-emitting layer EML1 is between 15 and 25 nm. For example, it is 25 nm.
  • the thickness of the third electron blocking layer EBL3 is greater than the thickness of the first electron blocking layer EBL1 and is less than the thickness of the second electron blocking layer EBL2.
  • the thickness of the first electron blocking layer EBL1 is between 2 nm and 10 nm, such as 5 nm; the thickness of the second electron blocking layer EBL2 is between 70 nm and 80 nm, such as 76 nm; the thickness of the third electron blocking layer EBL3 is 40 nm. Between ⁇ 50nm, for example, 47nm.
  • FIG. 10 is a flowchart of a manufacturing method of an organic light emitting diode provided in some embodiments of the present disclosure. As shown in FIG. 10 , the manufacturing method includes:
  • the first hole transport layer, the first electron blocking layer, the blue light emitting layer, the at least one first hole blocking layer and the first electron transport layer can all be formed by an evaporation process.
  • the second electrode is arranged opposite to the first electrode.
  • the first electrode may be formed first, and then the first hole transport layer, the first electron blocking layer, the blue light-emitting layer, and at least one layer of the first electrode may be formed in sequence.
  • the second electrode can also be formed first, and then the first electron transport layer, at least one first hole blocking layer, the blue light-emitting layer, the first electron blocking layer, and the first hole transport layer can be formed in sequence; then, The first electrode is then formed.
  • the step of forming a first hole injection layer between the first electrode and the first hole transport layer may also be included.
  • Embodiments of the present disclosure further provide a display device, which includes the above-mentioned display substrate, and further includes an encapsulation layer for encapsulating each organic light emitting diode.
  • the display device can be any product or component with display function, such as electronic paper, OLED panel, mobile phone, tablet computer, TV, monitor, notebook computer, digital photo frame, navigator, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

公开一种有机发光二极管及其制作方法、显示基板和显示装置,其中,有机发光二极管包括:相对设置的第一电极和第二电极;位于所述第一电极与所述第二电极之间、且沿靠近所述第二电极的方向依次设置的:第一空穴传输层、第一电子阻挡层、蓝色发光层、至少一层第一空穴阻挡层以及第一电子传输层,所有第一空穴阻挡层的总厚度大于所述第一电子阻挡层的厚度。

Description

有机发光二极管及其制作方法、显示基板和显示装置 技术领域
本公开涉及显示技术领域,具体涉及一种有机发光二极管及其制作方法、显示基板和显示装置。
背景技术
随着有机发光二极管(Organic Light Emitting Display,OLED)显示技术的发展,OLED显示装置得到广泛应用。在OLED显示装置中,每个像素包括红色发光二极管、蓝色发光二极管和绿色发光二极管。
目前的显示装置在显示低灰阶画面时,容易出现色偏。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一,提出了一种有机发光二极管及其制作方法、显示基板和显示装置。
为了实现上述目的,本公开提供一种有机发光二极管,其中,包括:
相对设置的第一电极和第二电极;
位于所述第一电极与所述第二电极之间、且沿靠近所述第二电极的方向依次设置的:第一空穴传输层、第一电子阻挡层、蓝色发光层、至少一层第一空穴阻挡层以及第一电子传输层,所有第一空穴阻挡层的总厚度大于所述第一电子阻挡层的厚度。
在一些实施例中,所述第一空穴阻挡层的层数为多层,多层所述第一空穴阻挡层的材料相同。
在一些实施例中,所述第一空穴阻挡层的层数为多层,不同所述第一空穴阻挡层的材料不同;
沿靠近所述第一电子传输层的方向,各层所述第一空穴阻挡层的电子迁移率逐渐增大。
在一些实施例中,所述第一空穴阻挡层的数量为两层,其中一层所述第一空穴阻挡层的电子迁移率在1.5*10 -6cm 2/Vs~2.5*10 -6cm 2/Vs之间,另一层所述第一空穴阻挡层的电子迁移率在7.0*10 -6cm 2/Vs~8.0*10 -6cm 2/Vs之间。
在一些实施例中,所述第一空穴阻挡层的材料包括:具有大共轭结构的平面芳香族化合物。
在一些实施例中,所有的第一空穴阻挡层的总厚度为所述第一电子阻挡层厚度的1.5倍以上。
在一些实施例中,每层所述第一空穴阻挡层的厚度在2nm~10nm之间。
本公开实施例还提供一种显示基板,包括:
衬底;
设置在所述衬底上的多个有机发光二极管,其中,多个有机发光二极管包括至少一个蓝色有机发光二极管,所述蓝色有机发光二级管采用权利要求1至7中任意一项所述的有机发光二极管。
在一些实施例中,多个有机发光二极管还包括红色有机发光二极管和绿色有机发光二极管,
所述红色有机发光二极管包括:
相对设置的第三电极和第四电极;
位于所述第三电极和第四电极之间、且沿靠近所述第四电极的方向依次设置的:第二空穴传输层、第二电子阻挡层、红色发光层、第二空穴阻挡层以及第二电子传输层;
所述绿色有机发光二极管包括:
相对设置的第五电极和第六电极;
位于所述第五电极和第六电极,且沿靠近所述第六电极的方向依次设置的:第三空穴传输层、第三电子阻挡层、绿色发光层、第三空 穴阻挡层以及第三电子传输层;
其中,所述第三电极、所述第五电极与所述第一电极同层设置;所述第四电极、所述第六电极与所述第二电极同层设置;所述第二空穴传输层、第三空穴传输层与所述第一空穴传输层同层设置;所述第二电子传输层、第三电子传输层与所述第一电子传输层同层设置;所述第二空穴阻挡层、所述第三空穴阻挡层均与所述第一空穴阻挡层一一对应地同层设置。
在一些实施例中,所述绿色发光层的厚度大于所述蓝色发光层的厚度,且小于所述红色发光层的厚度。
在一些实施例中,所述第三电子阻挡层的厚度大于所述第一电子阻挡层的厚度,且小于所述第二电子阻挡层的厚度。
在一些实施例中,所述第一电极位于所述蓝色发光层与所述衬底之间,所述第二电极位于所述蓝色发光层远离所述衬底的一侧。
本公开实施例还提供一种显示装置,包括上述的显示基板。
本公开实施例还提供一种有机发光二极管的制作方法,包括:
形成第一电极;
分别形成第一空穴传输层、第一电子阻挡层、蓝色发光层、至少一层第一空穴阻挡层以及第一电子传输层,其中,所述第一空穴传输层、所述第一电子阻挡层、所述第一发光层、所述第一空穴阻挡层以及所述第一电子传输层沿远离第一电极的方向排列;所有第一空穴阻挡层的总厚度大于所述第一电子阻挡层的厚度;
形成所述第二电极,所述第二电极与所述第一电极相对设置。
在一些实施例中,每层所述第一空穴阻挡层采用蒸镀工艺形成。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公 开的限制。在附图中:
图1为一对比例中的发光二极管的结构示意图。
图2为不同有机发光二极管的光度效率随亮度的变化曲线图。
图3A为理想情况下各颜色有机发光二极管的色度效率随亮度的变化曲线图。
图3B为实际情况下各颜色有机发光二极管的色度效率随亮度的变化曲线图。
图4A为本公开的一些实施例中提供的发光二极管的结构示意图。
图4B为本公开的另一些实施例中提供的发光二极管的结构示意图。
图5为本公开的一些实施例中提供的有机发光二极管的能级示意图。
图6为本公开的两个示例中的有机发光二极管与对比例中的有机发光二极管的发光效率曲线图。
图7本公开的两个示例中的有机发光二极管与对比例中的发光二极管的寿命和色度效率的对比图。
图8为本公开的示例三中的有机发光二极管与对比例中的有机发光二极管的发光效率曲线图。
图9为本公开的一些实施例中提供的显示基板的示意图。
图10为本公开的一些实施例中提供的有机发光二极管的制作方法流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全 部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
这里用于描述本公开的实施例的术语并非旨在限制和/或限定本公开的范围。例如,除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。应该理解的是,本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。除非上下文另外清楚地指出,否则单数形式“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则所述相对位置关系也可能相应地改变。
在下面的描述中,当元件或层被称作“在”另一元件或层“上”或“连接到”另一元件或层时,该元件或层可以直接在所述另一元件或层上、直接连接到所述另一元件或层,或者可以存在中间元件或中间层。然而,当元件或层被称作“直接在”另一元件或层“上”、“直接连接到”另一元件或层时,不存在中间元件或中间层。术语“和/或”包括一个或更多个相关列出项的任意和全部组合。
在OLED显示装置中,每个像素单元包括红色发光二极管、绿色发光二极管和蓝色发光二极管。图1为一对比例中的发光二极管的结构示意图,如图1所示,发光二极管包括:沿远离衬底10的方向依次 设置的第一电极11、空穴注入层HIL、空穴传输层HTL、电子阻挡层EBL、发光层EML、空穴阻挡层HBL、电子传输层ETL、电子注入层EIL和第二电极12。在第一电极11和第二电极12上加载电压后,空穴(如图5中的空心圆圈所示)与电子(如图5中的实心圆点所示)分别从第一电极11和第二电极12注入,并分别进入空穴传输层HTL的HOMO(分子最高占据轨道)能级和电子传输层ETL的LUMO(分子最低空置轨道)能级,然后跃迁到发光层EML相遇形成电子-空穴对,也就是激子。处于分子激发态的激子以光子形式释放出来,发出可见光。其中,在发光波长较长的有机发光二极管中,电子阻挡层EBL的厚度较大;在发光波长较短的有机发光二极管中,电子阻挡层EBL的厚度较小。空穴阻挡层HBL的厚度小于或等于电子阻挡层EBL的厚度,例如,在蓝色有机发光二极管中,空穴阻挡层HBL的厚度与电子阻挡层EBL的厚度相同,在红色和绿色的有机发光二极管中,空穴阻挡层HBL的厚度小于电子阻挡层EBL的厚度。
通常,在红色有机发光二极管和绿色有机发光二极管中,发光层EML采用磷光材料;而在蓝色有机发光二极管中,发光层EML采用荧光材料,而荧光材料和磷光材料的效率与亮度的关系并不一致。图2为不同有机发光二极管的光度效率随亮度的变化曲线图,如图2所示,红色有机发光二极管和绿色有机发光二极管在低亮度显示时,发光效率快速达到最大;随着亮度的增大,红色有机发光二极管和绿色有机发光二极管的效率出现明显的Roll-off(滚降)现象。而蓝色有机发光二极管的光度效率在达到最大之前,会存在明显的“爬坡”现象,也就是说,当蓝色有机发光二极管在实现较低亮度的显示时,光度效率较低。图3A为理想情况下各颜色有机发光二极管的效率与亮度的关系曲线,图3B为实际情况下各颜色有机发光二极管的效率与亮度的关系曲线,其中,图3A中和图3B中蓝色有机发光二极管的效率与亮度 的关系曲线为:色度效率随亮度的变化曲线,色度效率为光度效率(单位为cd/A)与发光颜色(即CIE色坐标中的y值)之比;图3A和图3B中红色有机发光二极管和绿色有机发光二极管的效率与亮度的关系曲线为:光度效率随亮度的变化曲线。通过图2至图3B可知,由于蓝色有机发光二极管在亮度较低时的光度效率较低,因此,显示装置在显示低灰阶画面时,容易发生白光配比失衡,从而发生色偏。
发明人发现,蓝色有机发光二极管的光度效率存在明显“爬坡”的原因在于:低电流密度时,空穴会大量堆积在电子阻挡层EBL与发光层EML的界面,当电子向发光层EML注入时,会在电子阻挡层EBL与发光层EML的界面产生大量激子,产生激子浓度淬灭,激子跃迁发光减弱,从而导致有机发光二极管的光度效率较低。而当电流密度增加时,空穴注入到发光层EML内部,此时激子较均匀地分散在整个发光层EML中,淬灭减小,激子跃迁发光增加。
图4A为本公开的一些实施例中提供的发光二极管的结构示意图,图4B为本公开的另一些实施例中提供的发光二极管的结构示意图,该发光二极管为蓝色发光二极管。如图4A和图4B所示,该有机发光二极管包括:相对设置的第一电极11和第二电极12。其中,第一电极11为阳极,其可以采用氧化铟锡(ITO)等透明导电材料制成;或者,第一电极11也可以采用多层导电材料的复合膜层,例如,第一电极11包括ITO/Ag/ITO的复合层,其中,ITO层的厚度例如为8nm,Ag层的厚度例如为10nm。第二电极12为阴极,其可以采用反射率较高的金属材料制成,例如,Al、Ag。第二电极12的厚度例如在10nm~20nm之间,例如为16nm。
有机发光二极管还包括位于第一电极11与第二电极12之间、且沿靠近第二电极12的方向依次设置的:第一空穴传输层HTL1、第一电子阻挡层EBL1、蓝色发光层EML1、至少一层第一空穴阻挡层HBL1 以及第一电子传输层ETL1,蓝色发光层EML1采用荧光材料制成。其中,图4A和图4B中第一空穴阻挡层HBL1的层数仅为示例,还可以设置为其他数量,例如,1层、4层等。应当理解的是,第一空穴阻挡层HBL1的层数为多层时,多层第一空穴阻挡层HBL1均位于蓝色发光层EML1与第一电子传输层ETL1之间。在一些实施例中,有机发光二极管还包括第一空穴注入层HIL1,该第一空穴注入层HIL1位于第一空穴传输层HTL1与第一电极11之间。
在一些实施例中,所有第一空穴阻挡层HBL1的总厚度大于第一电子阻挡层EBL1的厚度。例如,第一空穴阻挡层HBL1的层数为一层,则该层第一空穴阻挡层HBL1的厚度大于第一电子阻挡层EBL1的厚度。或者,第一空穴阻挡层HBL1的层数为多层,则多层第一空穴阻挡层HBL1的总厚度大于第一电子阻挡层EBL1的厚度。
在一些实施例中,所有第一空穴阻挡层HBL1的总厚度大于5nm。
图5为本公开的一些实施例中提供的有机发光二极管的能级示意图,如图5所示,在第一电极11和第二电极12上加载电压后,空穴与电子分别从第一电极11和第二电极12注入,并分别进入第一空穴传输层HTL1的HOMO能级和第一电子传输层ETL1的LUMO能级,然后向蓝色发光层EML1跃迁。当电流密度较低时,空穴会大量堆积在电子阻挡层EBL与发光层EML的界面处。而在本公开中,蓝色发光层EML1与第一电子传输层ETL1之间的第一空穴阻挡层HBL1的总厚度较大,这样,可以增大电子由第一电子传输层ETL1到蓝色发光层EML1的迁移路程,从而降低低灰阶下注入到第一电子阻挡层EBL1和蓝色发光层EML1界面处的电子的浓度,进而改善低灰阶下因第一电子阻挡层EBL1与蓝色发光层EML1之间的激子淬灭而引起的发光效率低的问题,从而防止显示装置在低灰阶显示时出现色偏,提 高显示品质。
在一些实施例中,第一空穴阻挡层HBL1的材料包括:具有大共轭结构的平面芳香族化合物。例如,第一空穴阻挡层HBL1的材料可以是多芳基取代吡啶衍生物、1,10-菲罗啉衍生物等,可以是一种或多种材料的混合。
在一些实施例中,第一空穴阻挡层HBL1的总厚度为第一电子阻挡层EBL1厚度的1.5倍以上,例如为第一电子阻挡层EBL1厚度的2~5倍。
在一些实施例中,第一空穴阻挡层HBL1的层数为多层,不同第一空穴阻挡层HBL1的厚度可以相同,也可以不同。可选地,每层第一空穴阻挡层HBL1的厚度在2nm~10nm之间。例如,每层第一空穴阻挡层HBL1的厚度均为5nm。
在一些示例中,第一空穴阻挡层HBL1的层数为多层,多层第一空穴阻挡层HBL1的材料相同。
例如,第一空穴阻挡层HBL1的层数为两层,该两层第一空穴阻挡层HBL1的材料相同,其电子迁移率为2.1*10 -6cm 2/Vs,HOMO=6.22eV,LUMO=2.65eV。
在另一些示例中,第一空穴阻挡层HBL1为多层,不同的第一空穴阻挡层HBL1的材料不同。其中,沿靠近第一电子传输层ETL1的方向,第一空穴阻挡层HBL1的电子迁移率逐渐增大,这样有利于电子向蓝色发光层EML1中进行注入,从而在进行高亮度显示时,防止电子跃迁路程过长而导致发光效率降低,进而保证了显示装置在高亮度时的显示效果。
例如,第一空穴阻挡层HBL1的层数为两层,远离第一电子传输 层ETL1的第一空穴阻挡层HBL1的电子迁移率在1.5*10 -6cm 2/Vs~2.5*10 -6cm 2/Vs之间,靠近第一电子传输层ETL1的第一空穴阻挡层HBL1的电子迁移率在7.0*10 -6cm 2/Vs~8.0*10 -6cm 2/Vs之间。例如,远离第一电子传输层ETL1的第一空穴阻挡层HBL1的电子迁移率为2.1*10 -6cm 2/Vs;靠近第一电子传输层ETL1的第一空穴阻挡层HBL1的电子迁移率为7.64*10 -6cm 2/Vs。
图6为本公开的两个示例中的有机发光二极管与对比例中的有机发光二极管的发光效率曲线图,每条曲线为有机发光二极管的发光效率随电流密度的变化曲线。其中,对比例中的有机发光二极管为图1中的有机发光二极管,其中的空穴阻挡层的厚度为5nm,穴阻挡层的迁移率μ e=2.1*10 -6cm 2/Vs,HOMO=6.22eV,LUMO=2.65eV。本公开的示例一中的有机发光二极管采用图4A中的结构,其中,第一空穴阻挡层HBL1的层数为两层,每层空穴阻挡层HBL1的厚度均为5nm。本公开的示例二中的有机发光二极管采用图4B中的结构,其中,第一空穴阻挡层HBL1的层数为三层,每层第一空穴阻挡层HBL1的厚度均为5nm。另外,本公开的两个示例中,有机发光二极管的每层第一空穴阻挡层HBL1的材料均与图1中有机发光二极管中的空穴阻挡层HBL相同,其他膜层的材料和厚度均与图1中有机发光二极管的相应膜层一致。表1为本公开的两个示例中的有机发光二极管与对比例中的有机发光二极管的“爬坡”比例。其中,以发光二极管在0.01mA/cm 2与1mA/cm 2电流密度下的光度效率之比来表示“爬坡”比例。
表1
结构 对比例 本公开示例一 本公开示例二
“爬坡”比例 0.54 0.87 0.84
从图6和表1可以看出,对比例中的有机发光二极管在低电流密 度(小于0.01mA/cm 2)下的光度效率较低,随着电流密度的增大,光度效率会出现明显的“爬坡”。具体地,对比例中的有机发光二极管的“爬坡”比例在0.5左右,可以预测采用此结构的显示装置在在低灰阶下蓝色效率较低,容易产生色偏和画质缺失的不良。而本公开的示例一和示例二中的有机发光二极管,在低电流密度下的光度效率较大,随着电流密度的增大,光度效率“爬坡”相对不明显,两个示例中的有机发光二极管的“爬坡”比例均在0.8以上。可以预测采用示例一或示例二的显示装置在低灰阶下更不容易产生色偏和画质缺失的不良。
图7本公开的两个示例中的有机发光二极管与对比例中的发光二极管的寿命和色度效率的对比图,其中,图7中的发光二极管的寿命和色度效率分别是针对电流密度为15mA/cm 2下的寿命和色度效率。从图7可以看出,本公开的示例一和示例二中的有机发光二极管的寿命有所提高,色度效率并不受影响。
图8为本公开的示例三中的有机发光二极管与对比例中的有机发光二极管的发光效率曲线图,每条曲线为有机发光二极管的发光效率随电流密度的变化曲线。其中,对比例中的有机发光二极管为图1中的有机发光二极管,其中的空穴阻挡层HBL的厚度为5nm,电子迁移率为2.1*10 -6cm 2/Vs,HOMO=6.22eV,LUMO=2.65eV。本公开的示例三中的有机发光二极管采用图4A中的结构,其中,第一空穴阻挡层HBL1的层数为两层,每层第一空穴阻挡层HBL1的厚度均为5nm,远离第一电子传输层ETL1的第一空穴传输层HTL1的电子迁移率为2.1*10 -6cm 2/Vs,HOMO=6.22eV,LUMO=2.65eV;靠近第一电子传输层ETL1的第一空穴传输层HTL1的电子迁移率为7.64*10 -6cm 2/Vs,HOMO=6.13eV,LUMO=2.78eV。示例三中其余膜层的材料和厚度均与对比例中相应膜层一致。
表2为本公开的示例三中的有机发光二极管与对比例中的有机发光二极管的“爬坡”比例。
表2
结构 对比例 本公开示例三
“爬坡”比例 0.55 0.96
通过图8和表2可以看出,和对比例相比,本公开示例三中的有机发光二极管在低电流密度下的光度效率较大,随着电流密度的增大,光度效率“爬升”相对不明显,“爬升”比例为0.96,可见,采用本公开示例三中有机发光二极管的显示装置在低灰阶下更不易产生色偏和画质缺失。
图9为本公开的一些实施例中提供的显示基板的示意图,如图9所示,该显示基板包括:衬底10和设置在衬底10上的多个有机发光二极管,其中,多个有机发光二极管中的至少一者为蓝色有机发光二极管B_OLED,该蓝色有机发光二极管B_OLED采用上述实施例中的有机发光二极管。在一些实施例中,第一电极11位于蓝色发光层EML1与衬底10之间,第二电极12位于蓝色发光层EML1远离衬底10的一侧。
如图9所示,多个有机发光二极管还包括至少一个红色有机发光二极管R_OLED和至少一个绿色有机发光二极管G_OLED。
在一些实施例中,红色有机发光二极管R_OLED包括:相对设置的第三电极13和第四电极14,还包括位于第三电极13和第四电极14之间、且沿靠近第四电极14的方向依次设置的:第二空穴注入层HIL2、第二空穴传输层HTL2、第二电子阻挡层EBL2、红色发光层EML2、至少一层第二空穴阻挡层HBL2以及第二电子传输层ETL2。
绿色有机发光二极管G_OLED包括:相对设置的第五电极15和 第六电极16,位于第五电极15和第六电极16之间、且沿靠近第六电极16的方向依次设置的:第三空穴注入层HIL3、第三空穴传输层HTL3、第三电子阻挡层EBL3、绿色发光层EML3、至少一层第三空穴阻挡层HBL3以及第三电子传输层ETL3。
其中,第三电极13、第五电极15与第一电极11同层设置。“同层设置”是指,为了简化制作工艺,使多个结构是由同一个材料层经过构图工艺而形成,故这些结构在层叠关系上是处于同一个层之中的;但这并不表示这些结构与衬底10间的距离必定相同。
另外,第四电极14、第六电极16与第二电极12同层设置,例如,第四电极14、第六电极16与第二电极12形成为一体结构。第二空穴传输层HTL2、第三空穴传输层HTL3与第一空穴传输层HTL1同层设置,例如,第二空穴传输层HTL2、第三空穴传输层HTL3与第一空穴传输层HTL1形成为一体结构。第二电子传输层ETL2、第三电子传输层ETL3与第一电子传输层ETL1同层设置,例如,第二电子传输层ETL2、第三电子传输层ETL3与第一电子传输层ETL1形成为一体结构。第二空穴阻挡层HBL2、第三空穴阻挡层HBL3均与第一空穴阻挡层HBL1一一对应地同层设置,例如,每层第二空穴阻挡层HBL2、每层第三空穴阻挡层HBL3均与相应的第一空穴阻挡层HBL1形成为一体结构。
如图9所示,红色发光层EML2的厚度大于绿色发光层EML3的厚度,绿色发光层EML3的厚度大于蓝色发光层EML1的厚度。例如,红色发光层EML2的厚度在40~50nm之间,例如为45nm;绿色发光层EML3的厚度在30~40nm之间,例如为35nm;蓝色发光层EML1的厚度在15~25nm之间,例如为25nm。
在一些实施例中,第三电子阻挡层EBL3的厚度大于所述第一电子阻挡层EBL1的厚度,且小于第二电子阻挡层EBL2的厚度。例如, 第一电子阻挡层EBL1的厚度在2nm~10nm之间,例如为5nm;第二电子阻挡层EBL2的厚度在70nm~80nm之间,例如为76nm;第三电子阻挡层EBL3的厚度在40nm~50nm之间,例如为47nm。
图10为本公开的一些实施例中提供的有机发光二极管的制作方法流程图,如图10所示,该制作方法包括:
S1、形成第一电极。
S2、分别形成第一空穴传输层、第一电子阻挡层、蓝色发光层、至少一层第一空穴阻挡层以及第一电子传输层,其中,所述第一空穴传输层、所述第一电子阻挡层、所述第一发光层、所述第一空穴阻挡层以及所述第一电子传输层沿远离第一电极的方向排列;所有第一空穴阻挡层的总厚度大于所述第一电子阻挡层的厚度。
在一些实施例中,第一空穴传输层、第一电子阻挡层、蓝色发光层、至少一层第一空穴阻挡层以及第一电子传输层均可以采用蒸镀工艺形成。
S3、形成第二电极,该第二电极与第一电极相对设置。
需要说明的是,步骤S1~S3的顺序不作具体限定,例如,可以先形成第一电极,之后,依次形成第一空穴传输层、第一电子阻挡层、蓝色发光层、至少一层第一空穴阻挡层以及第一电子传输层;之后,再形成第二电极。当然,也可以先形成第二电极,之后,依次形成第一电子传输层、至少一层第一空穴阻挡层、蓝色发光层、第一电子阻挡层、第一空穴传输层;之后,再形成第一电极。
在一些实施例中,还可以包括形成第一空穴注入层的步骤,该第一空穴注入层位于第一电极与第一空穴传输层之间。
本公开实施例还提供一种显示装置,该显示装置包括上述显示基板,另外还包括用于对各个有机发光二极管进行封装的封装层。
该显示装置可以为:电子纸、OLED面板、手机、平板电脑、电 视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (15)

  1. 一种有机发光二极管,其中,包括:
    相对设置的第一电极和第二电极;
    位于所述第一电极与所述第二电极之间、且沿靠近所述第二电极的方向依次设置的:第一空穴传输层、第一电子阻挡层、蓝色发光层、至少一层第一空穴阻挡层以及第一电子传输层,所有第一空穴阻挡层的总厚度大于所述第一电子阻挡层的厚度。
  2. 根据权利要求1所述的有机发光二极管,其中,所述第一空穴阻挡层的层数为多层,多层所述第一空穴阻挡层的材料相同。
  3. 根据权利要求1所述的有机发光二极管,其中,所述第一空穴阻挡层的层数为多层,不同所述第一空穴阻挡层的材料不同;
    沿靠近所述第一电子传输层的方向,各层所述第一空穴阻挡层的电子迁移率逐渐增大。
  4. 根据权利要求3所述的有机发光二极管,其中,所述第一空穴阻挡层的数量为两层,其中一层所述第一空穴阻挡层的电子迁移率在1.5*10 -6cm 2/Vs~2.5*10 -6cm 2/Vs之间,另一层所述第一空穴阻挡层的电子迁移率在7.0*10 -6cm 2/Vs~8.0*10 -6cm 2/Vs之间。
  5. 根据权利要求1至4中任一所述的有机发光二极管,其中,所述第一空穴阻挡层的材料包括:具有大共轭结构的平面芳香族化合物。
  6. 根据权利要求1至4中任一所述的有机发光二极管,其中,所有的第一空穴阻挡层的总厚度为所述第一电子阻挡层厚度的1.5倍以上。
  7. 根据权利要求1至4中任一所述的有机发光二极管,其中,每层所述第一空穴阻挡层的厚度在2nm~10nm之间。
  8. 一种显示基板,包括:
    衬底;
    设置在所述衬底上的多个有机发光二极管,其中,多个有机发光二极管包括至少一个蓝色有机发光二极管,所述蓝色有机发光二级管采用权利要求1至7中任意一项所述的有机发光二极管。
  9. 根据权利要求8所述的显示基板,其中,多个有机发光二极管还包括红色有机发光二极管和绿色有机发光二极管,
    所述红色有机发光二极管包括:
    相对设置的第三电极和第四电极;
    位于所述第三电极和第四电极之间、且沿靠近所述第四电极的方向依次设置的:第二空穴传输层、第二电子阻挡层、红色发光层、第二空穴阻挡层以及第二电子传输层;
    所述绿色有机发光二极管包括:
    相对设置的第五电极和第六电极;
    位于所述第五电极和第六电极,且沿靠近所述第六电极的方向依次设置的:第三空穴传输层、第三电子阻挡层、绿色发光层、第三空穴阻挡层以及第三电子传输层;
    其中,所述第三电极、所述第五电极与所述第一电极同层设置;所述第四电极、所述第六电极与所述第二电极同层设置;所述第二空穴传输层、第三空穴传输层与所述第一空穴传输层同层设置;所述第二电子传输层、第三电子传输层与所述第一电子传输层同层设置;所述第二空穴阻挡层、所述第三空穴阻挡层均与所述第一空穴阻挡层一 一对应地同层设置。
  10. 根据权利要求9所述的显示基板,其中,所述绿色发光层的厚度大于所述蓝色发光层的厚度,且小于所述红色发光层的厚度。
  11. 根据权利要求9所述的显示基板,其中,所述第三电子阻挡层的厚度大于所述第一电子阻挡层的厚度,且小于所述第二电子阻挡层的厚度。
  12. 根据权利要求8至11中任意一项所述的显示基板,其中,所述第一电极位于所述蓝色发光层与所述衬底之间,所述第二电极位于所述蓝色发光层远离所述衬底的一侧。
  13. 一种显示装置,包括权利要求8至12中任一项所述的显示基板。
  14. 一种有机发光二极管的制作方法,包括:
    形成第一电极;
    分别形成第一空穴传输层、第一电子阻挡层、蓝色发光层、至少一层第一空穴阻挡层以及第一电子传输层,其中,所述第一空穴传输层、所述第一电子阻挡层、所述第一发光层、所述第一空穴阻挡层以及所述第一电子传输层沿远离第一电极的方向排列;所有第一空穴阻挡层的总厚度大于所述第一电子阻挡层的厚度;
    形成所述第二电极,所述第二电极与所述第一电极相对设置。
  15. 根据权利要求14所述的制作方法,其中,每层所述第一空穴阻挡层采用蒸镀工艺形成。
PCT/CN2021/126892 2021-02-26 2021-10-28 有机发光二极管及其制作方法、显示基板和显示装置 WO2022179152A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/801,623 US20230354636A1 (en) 2021-02-26 2021-10-28 Organic light emitting diode, manufacturing method thereof, display substrate and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110222496.7A CN112952013A (zh) 2021-02-26 2021-02-26 有机发光二极管及其制作方法、显示基板和显示装置
CN202110222496.7 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022179152A1 true WO2022179152A1 (zh) 2022-09-01

Family

ID=76246778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126892 WO2022179152A1 (zh) 2021-02-26 2021-10-28 有机发光二极管及其制作方法、显示基板和显示装置

Country Status (3)

Country Link
US (1) US20230354636A1 (zh)
CN (1) CN112952013A (zh)
WO (1) WO2022179152A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952013A (zh) * 2021-02-26 2021-06-11 京东方科技集团股份有限公司 有机发光二极管及其制作方法、显示基板和显示装置
CN113555509B (zh) * 2021-07-20 2023-08-15 京东方科技集团股份有限公司 显示装置及显示面板
CN114284435B (zh) * 2021-12-14 2023-05-12 电子科技大学 一种低暗电流有机倍增型光电探测器及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150041360A (ko) * 2013-10-08 2015-04-16 엘지디스플레이 주식회사 유기전계발광표시장치 및 그 제조방법
CN104934542A (zh) * 2014-03-21 2015-09-23 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN105576146A (zh) * 2016-03-23 2016-05-11 京东方科技集团股份有限公司 发光器件及其制造方法和显示装置
CN107017346A (zh) * 2016-01-27 2017-08-04 上海和辉光电有限公司 一种有机发光二极管器件及其显示装置
CN209104191U (zh) * 2018-09-18 2019-07-12 云谷(固安)科技有限公司 一种有机发光二极管和显示面板
CN110459688A (zh) * 2019-07-29 2019-11-15 云谷(固安)科技有限公司 蓝光发光器件和显示装置
CN111969119A (zh) * 2020-08-28 2020-11-20 京东方科技集团股份有限公司 有机电致发光器件、显示面板及显示装置
CN112136363A (zh) * 2018-05-28 2020-12-25 出光兴产株式会社 有机电致发光元件、显示装置及电子设备
CN112952013A (zh) * 2021-02-26 2021-06-11 京东方科技集团股份有限公司 有机发光二极管及其制作方法、显示基板和显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210015258A (ko) * 2019-08-01 2021-02-10 엘지디스플레이 주식회사 전계발광 표시장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150041360A (ko) * 2013-10-08 2015-04-16 엘지디스플레이 주식회사 유기전계발광표시장치 및 그 제조방법
CN104934542A (zh) * 2014-03-21 2015-09-23 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN107017346A (zh) * 2016-01-27 2017-08-04 上海和辉光电有限公司 一种有机发光二极管器件及其显示装置
CN105576146A (zh) * 2016-03-23 2016-05-11 京东方科技集团股份有限公司 发光器件及其制造方法和显示装置
CN112136363A (zh) * 2018-05-28 2020-12-25 出光兴产株式会社 有机电致发光元件、显示装置及电子设备
CN209104191U (zh) * 2018-09-18 2019-07-12 云谷(固安)科技有限公司 一种有机发光二极管和显示面板
CN110459688A (zh) * 2019-07-29 2019-11-15 云谷(固安)科技有限公司 蓝光发光器件和显示装置
CN111969119A (zh) * 2020-08-28 2020-11-20 京东方科技集团股份有限公司 有机电致发光器件、显示面板及显示装置
CN112952013A (zh) * 2021-02-26 2021-06-11 京东方科技集团股份有限公司 有机发光二极管及其制作方法、显示基板和显示装置

Also Published As

Publication number Publication date
CN112952013A (zh) 2021-06-11
US20230354636A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
WO2022179152A1 (zh) 有机发光二极管及其制作方法、显示基板和显示装置
US10418577B2 (en) White organic light emitting device
US6876144B2 (en) Organic electroluminescent device having host material layer intermixed with luminescent material
KR101351410B1 (ko) 백색 유기 발광 소자
EP2372805B1 (en) Organic light emitting diode device
KR101451586B1 (ko) 백색 유기 발광 소자
TWI667785B (zh) 有機電致發光器件及顯示裝置
CN1578568A (zh) 高效率的有机发光装置及其制造方法
TWI706560B (zh) 有機發光二極體顯示裝置
TW201901953A (zh) 有機電致發光器件和有機電致發光裝置
WO2021135637A1 (zh) 量子点薄膜及其制备方法和应用
WO2021129183A1 (zh) 发光器件及其制作方法
KR101715857B1 (ko) 백색 유기 발광 소자
KR102101202B1 (ko) 유기발광다이오드 및 이를 포함하는 유기발광다이오드 표시장치
KR101777124B1 (ko) 백색 유기 발광 소자
KR20040054829A (ko) 유기전계발광소자 및 그 제조방법
CN109346500B (zh) 一种有机电致发光装置
CN100473247C (zh) 电激发光元件
WO2021233130A1 (zh) 显示基板及其制造方法和显示面板
CN112909191B (zh) 发光器件结构及其制备方法、显示基板和显示装置
TWI508621B (zh) 影像顯示系統
WO2015190550A1 (ja) 有機素子
WO2024098643A1 (zh) 一种有机电致发光器件及显示装置
KR102473029B1 (ko) 유기 발광 소자
CN111490070A (zh) 显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.01.2024)