WO2023206674A1 - 有机发光显示面板和有机发光显示装置 - Google Patents

有机发光显示面板和有机发光显示装置 Download PDF

Info

Publication number
WO2023206674A1
WO2023206674A1 PCT/CN2022/094417 CN2022094417W WO2023206674A1 WO 2023206674 A1 WO2023206674 A1 WO 2023206674A1 CN 2022094417 W CN2022094417 W CN 2022094417W WO 2023206674 A1 WO2023206674 A1 WO 2023206674A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
emitting
sub
adjacent
Prior art date
Application number
PCT/CN2022/094417
Other languages
English (en)
French (fr)
Inventor
相烨鹏
金武谦
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US17/780,301 priority Critical patent/US20230354628A1/en
Publication of WO2023206674A1 publication Critical patent/WO2023206674A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants

Definitions

  • the present application relates to the field of display technology, and in particular, to an organic light-emitting display panel and an organic light-emitting display device.
  • organic light-emitting diode (OLED) displays Compared with liquid crystal displays, organic light-emitting diode (OLED) displays have the advantages of being thin and light, having good display effects, high resolution, wide color gamut, being more energy-saving and flexible. In recent years, organic light-emitting display technology has developed rapidly and has become the first choice for screens in terminal products such as mobile phones.
  • the light-emitting layer in organic light-emitting diode light-emitting devices is almost always doped with a guest light-emitting material in the host material, and the host material with higher energy transfers energy to the guest light-emitting material to emit light.
  • long service life is one of the important indicators of excellent performance.
  • the purpose of this application is to provide an organic light-emitting display panel and an organic light-emitting display device that can extend the service life.
  • This application provides an organic light-emitting display panel, which includes:
  • a first electrode arranged on the substrate
  • a second electrode is disposed on a side of the first electrode away from the substrate and opposite to the first electrode;
  • a light-emitting layer disposed between the first electrode and the second electrode, the light-emitting layer including at least two light-emitting units stacked in a stack, the light-emitting unit including a first light-emitting sub-layer, a second light-emitting sub-layer and A third light-emitting sub-layer, the third light-emitting sub-layer is provided between the first light-emitting sub-layer and the second light-emitting sub-layer;
  • the first light-emitting sub-layer and the second light-emitting sub-layer are both a host material layer and a guest material layer
  • the third light-emitting sub-layer is the other of a host material layer and a guest material layer.
  • the first light-emitting sub-layer and the second light-emitting sub-layer are made of the same material, and the thickness difference does not exceed
  • the adjacent first light-emitting sub-layer and the second light-emitting sub-layer are both body material layers, and the adjacent The sum of the thicknesses of the first light-emitting sub-layer and the second light-emitting sub-layer is greater than or equal to or
  • the adjacent first light-emitting sub-layer and the second light-emitting sub-layer are both guest material layers, and the adjacent first light-emitting sub-layer and the second light-emitting sub-layer are both guest material layers.
  • the sum of the thicknesses of the sublayers is greater than or equal to
  • the adjacent first light-emitting sub-layer and the thickness of the adjacent second light-emitting sub-layer are the same.
  • the thicknesses of the adjacent first light-emitting sub-layer and the adjacent second light-emitting sub-layer are different.
  • the thickness of the light-emitting unit is greater than or equal to 2 nm, and the thickness ratio of the guest material layer to the host material layer is less than or equal to 0.25.
  • the thickness of the light-emitting unit is greater than or equal to 2 nm, and the light-emitting layer includes 2 to 10 of the light-emitting units.
  • the thickness of the luminescent layer ranges from to
  • the energy level difference between the lowest unoccupied molecular orbital energy level of the host material in the host material layer and the lowest unoccupied molecular orbital energy level of the guest material in the guest material layer is greater than 0 and less than or equal to 0.3eV; and/or
  • the energy level difference between the highest occupied molecular orbital energy level of the guest material of the guest material layer and the highest occupied molecular orbital energy level of the host material of the host material layer is greater than 0 and less than or equal to 0.3 eV.
  • the guest material layers are both phosphorescent material layers or fluorescent material layers.
  • the wavelength of the luminescence peak of the guest material layer is between 450 nanometers and 475 nanometers, the half-peak width of the guest material layer is less than or equal to 35 nm, and the guest material layer
  • the film state luminescence quantum yield is greater than or equal to 60%.
  • the present application provides an organic light-emitting display device, which includes a processor and an organic light-emitting display panel as described in any one of the above, and the organic light-emitting display panel is electrically connected to the processor.
  • the first light-emitting sub-layer and the second light-emitting sub-layer are made of the same material, and the thickness difference does not exceed
  • the adjacent first light-emitting sub-layer and the second light-emitting sub-layer are both body material layers, and the adjacent The sum of the thicknesses of the first light-emitting sub-layer and the second light-emitting sub-layer is greater than or equal to or
  • the adjacent first light-emitting sub-layer and the second light-emitting sub-layer are both guest material layers, and the adjacent first light-emitting sub-layer and the second light-emitting sub-layer are both guest material layers.
  • the sum of the thicknesses of the sublayers is greater than or equal to
  • the adjacent first light-emitting sub-layer and the thickness of the adjacent second light-emitting sub-layer are the same.
  • the thicknesses of the adjacent first light-emitting sub-layer and the adjacent second light-emitting sub-layer are different.
  • the thickness ratio of the guest material layer to the host material layer is less than or equal to 0.25.
  • the thickness of the light-emitting unit is greater than or equal to 2 nm, and the light-emitting layer includes 2 to 10 of the light-emitting units.
  • the thickness of the luminescent layer ranges from to
  • the energy level difference between the lowest unoccupied molecular orbital energy level of the host material in the host material layer and the lowest unoccupied molecular orbital energy level of the guest material in the guest material layer is greater than 0 and less than or equal to 0.3eV; and/or,
  • the energy level difference between the highest occupied molecular orbital energy level of the guest material of the guest material layer and the highest occupied molecular orbital energy level of the host material of the host material layer is greater than 0 and less than or equal to 0.3 eV.
  • the organic light-emitting display panel of the present application uses multiple stacked light-emitting units to form the light-emitting layer in the device.
  • the structure of each light-emitting unit is a guest material layer sandwiched between two host material layers or a guest material layer sandwiched between two guest material layers. A layer of host material.
  • an exciton recombination region is formed only at the interface between the host material layer and the guest material layer. Multiple dispersed exciton recombination regions are formed in the light-emitting layer, which reduces the concentration of excitons in the recombination region and can reduce exciton recombination. Sub-quenching and thermal radiation effectively extend the service life.
  • Figure 1 is a schematic structural diagram of an organic light-emitting display panel of the present application.
  • FIG. 2 is a schematic diagram of a first structure of the light-emitting layer in the organic light-emitting display panel of FIG. 1 .
  • FIG. 3 is a schematic diagram of a second structure of the light-emitting layer in the organic light-emitting display panel of FIG. 1 .
  • 4(a) to 4(e) are schematic diagrams of some manufacturing steps of the light-emitting layer in the organic light-emitting display panel of the present application.
  • FIG. 5 is a schematic diagram of the energy level difference between the host material layer and the guest material layer in the light-emitting layer of FIG. 2 .
  • FIG. 6 is a schematic diagram of the energy level difference between the host material layer and the guest material layer in the light-emitting layer of FIG. 3 .
  • FIG. 7 is a schematic structural diagram of the organic light-emitting display device of the present application.
  • the term “above” or “below” a first feature to a second feature may include the first and second features being directly connected, or may include the first and second features being directly connected. Not directly connected but through additional characteristic contact between them.
  • the terms “above”, “above” and “above” a first feature on a second feature include the first feature being directly above and diagonally above the second feature, or simply mean that the first feature is higher in level than the second feature.
  • “Below”, “under” and “under” the first feature is the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more features.
  • the organic light-emitting display panel includes a substrate and a light-emitting layer disposed on the substrate.
  • the light-emitting layer includes at least two light-emitting units stacked on top of each other.
  • the light-emitting unit includes a first light-emitting sub-layer, a second light-emitting sub-layer and a third light-emitting sub-layer.
  • the third light-emitting sub-layer is provided between the first light-emitting sub-layer and the second light-emitting sub-layer.
  • the first light-emitting sub-layer and the second light-emitting sub-layer are both a host material layer and a guest material layer
  • the third light-emitting sub-layer is one of a host material layer and a guest material layer. of another.
  • the host material and the guest material are uniformly mixed together.
  • the exciton concentration is too high and the exciton recombination area is concentrated, causing severe exciton quenching, thereby reducing the service life of the device.
  • a plurality of stacked light-emitting units are used to form the light-emitting layer in the device.
  • the structure of each light-emitting unit is that a guest material layer or two guests are sandwiched between two host material layers. A main body material layer is sandwiched between the material layers.
  • an exciton recombination region is formed only at the interface between the host material layer and the guest material layer. Multiple dispersed exciton recombination regions are formed in the light-emitting layer, which reduces the concentration of excitons in the recombination region and can reduce exciton recombination. Sub-quenching and thermal radiation effectively extend the service life. On the other hand, due to the reduction of exciton quenching, the luminous efficiency of the device is also improved accordingly.
  • an organic light-emitting display panel 100 includes a substrate S and an organic light-emitting display device D disposed on the substrate S.
  • the organic light-emitting display panel 100 can be an active matrix organic light-emitting diode (Active Matrix Organic Light-emitting Diode, AMOLED) display panel or a passive matrix organic light-emitting diode (Passive Matrix Organic Light-emitting Diode, PMOLED) display panel.
  • AMOLED Active Matrix Organic Light-emitting Diode
  • PMOLED Passive Matrix Organic Light-emitting Diode
  • a driving circuit layer for driving the organic light-emitting display device D to emit light is also provided between the substrate S of the organic light-emitting display panel 100 and the organic light-emitting display device D.
  • the driving circuit layer includes an active matrix driver. circuit or passive matrix driver circuit.
  • the organic light-emitting display panel 100 also includes other functional structures not shown in the figure, such as a pixel definition layer and an encapsulation layer.
  • the organic light-emitting display panel 100 may be a rigid display panel or a flexible display panel.
  • the substrate S of the organic light-emitting display panel 100 may be glass, plastic, or a flexible substrate.
  • the flexible substrate may include two flexible substrates and a barrier layer disposed between the two flexible substrates.
  • the materials of the two flexible substrates are independently selected from polyimide (PI), polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polyarylate (PAR) ), polycarbonate (PC), polyetherimide (PEI) and polyethersulfone (PES).
  • the material of the barrier layer can be selected from inorganic materials such as silicon oxide (SiOx), silicon nitride (SiNx), silicon oxynitride (SiON) and their stacks, and is used to prevent water vapor from diffusing from the flexible substrate to the driving circuit layer.
  • the substrate S in this embodiment is made of glass.
  • the organic light-emitting display device D includes a first electrode 10 , a second electrode 20 and a light-emitting layer 30 .
  • the first electrode 10 is provided on the substrate S.
  • the second electrode 20 is disposed on a side of the first electrode 10 away from the substrate S, and is disposed opposite to the first electrode 10 .
  • the first electrode 10 is an anode, and the anode can be a transparent or non-transparent electrode.
  • the anode may include metal and/or metal oxide.
  • the metal can be aluminum, gold or silver, etc.
  • the metal oxide can be indium tin oxide or tin oxide.
  • the second electrode 20 is a cathode, and the cathode can be a transparent or non-transparent electrode.
  • the cathode may include metal and/or metal oxide.
  • the metal may be a lower work function metal such as lithium, magnesium, calcium, strontium, aluminum or indium or their alloys with copper, gold or silver.
  • the metal oxide can be indium tin oxide or tin oxide.
  • the organic light-emitting display device D can be a top-emitting OLED (Top-emitting OLED, TEOLED) device or a bottom-emitting OLED (Bottom-emitting OLED, BEOLED).
  • the organic light-emitting display device D is a top-emission device.
  • the anode is a metal electrode and the cathode is a transparent electrode.
  • the organic light-emitting display device D can be an inverted OLED device, that is, the first electrode 10 is a cathode and the second electrode 20 is an anode.
  • the light-emitting layer 30 is disposed between the first electrode 10 and the second electrode 20 .
  • the light-emitting layer 30 includes at least two light-emitting units 31 arranged in a stack.
  • the light-emitting unit 31 includes a first light-emitting sub-layer 311, a second light-emitting sub-layer 312 and a third light-emitting sub-layer 313.
  • the third light-emitting sub-layer 313 is disposed between the first light-emitting sub-layer 311 and the second light-emitting sub-layer 312.
  • the first light-emitting sub-layer 311 and the second light-emitting sub-layer 312 are both a host material layer and a guest material layer, and the third light-emitting sub-layer 313 is the other of a host material layer and a guest material layer. Specifically, please refer to FIG. 2 .
  • the first light-emitting sub-layer 311 and the second light-emitting sub-layer 312 are both host material layers, and the third light-emitting sub-layer 313 is a guest material layer.
  • the structure of the luminescent layer 30 in the direction from the first electrode 10 to the second electrode 20 is: host material layer - guest material layer - host material layer - host material layer -Guest material layer-Host material layer-(middle omitted)-Host material layer-Guest material layer.
  • the light-emitting material layers in contact between two adjacent light-emitting units 31 are both body material layers.
  • the number of host material layers in the light-emitting layer 30 is twice the number of guest material layers.
  • the first light-emitting sub-layer 311 and the second light-emitting sub-layer 312 are both guest material layers
  • the third light-emitting sub-layer 313 is a host material layer.
  • the structure of the light-emitting layer 30 in the direction from the first electrode 10 to the second electrode 20 is: guest material layer-host material layer-guest material layer-guest material layer -Host material layer-Guest material layer-(middle omitted)-Guest material layer-Host material layer-Guest material layer.
  • the light-emitting material layers in contact between two adjacent light-emitting units 31 are both guest material layers.
  • the number of guest material layers in the light-emitting layer 30 is twice the number of host material layers.
  • the exciton recombination region is formed only at the interface between the host material layer and the guest material layer. Since the adjacent first light-emitting sublayer 311 and the second light-emitting sublayer 311 of two adjacent light-emitting units 31 , The light-emitting sub-layers 312 are both host material layers or guest material layers, and no exciton recombination region is formed between them. Therefore, a first light-emitting sub-layer 311 and a second light-emitting sub-layer 312 are spaced between adjacent exciton recombination regions (or interfaces) in two adjacent light-emitting units 31, and the two light-emitting sub-layers separate each other. The adjacent exciton recombination regions in two adjacent light-emitting units 31 are spaced apart, thereby further reducing exciton quenching and improving service life.
  • the first light-emitting sub-layer 311 and the second light-emitting sub-layer 312 are made of the same material, and the thicknesses of the first light-emitting sub-layer 311 and the second light-emitting sub-layer 312 are approximately equal. Approximately equal means that the first light-emitting sub-layer 311 and the second light-emitting sub-layer 312 can be formed with exactly the same process conditions, parameters and designed thickness, but due to process errors, the thicknesses may be slightly different.
  • the thickness difference between the first light-emitting sub-layer 311 and the second light-emitting sub-layer 312 does not exceed In actual products, the delamination of the light-emitting layer 30 in contact between two adjacent light-emitting units 31 is not obvious. Therefore, the first light-emitting sub-layer 311 in contact between two adjacent light-emitting units 31 can also be and the second light-emitting sub-layer 312 are regarded as a common light-emitting layer CL.
  • the thickness of the common light-emitting layer CL between two adjacent light-emitting units 31 is approximately the thickness of the light-emitting layer 30 closest to the first electrode 10
  • the first light-emitting sub-layer 311 or the second light-emitting sub-layer 312 of the light-emitting layer 30 closest to the second electrode 20 ie, the first light-emitting sub-layer 311 and the second light-emitting sub-layer 311 respectively located at both ends of the light-emitting layer 30 twice the thickness of layer 312).
  • FIG. 4(a) when the light-emitting unit 31 is evaporated on the intermediate substrate S1, the intermediate substrate S1 is placed in the evaporation chamber and remains motionless.
  • the guest material vapor deposition source SD and the host material vapor deposition source SH are fixedly arranged in the direction from left to right in the figure, located on the left side of the intermediate substrate S1, and begin to pass under the intermediate substrate S1 in the direction from left to right to evacuate the host.
  • the material HM and the guest material DM are evaporated on the intermediate substrate S1.
  • a layer of host material HM is first evaporated, and then the guest material DM is evaporated on the evaporated host material HM.
  • the host material evaporation source SH and the guest material evaporation source SD move to the right side of the intermediate substrate S1, a layer of host material HM and a layer of guest material DM are formed on the intermediate substrate S1.
  • Figure 4(d) when the host material evaporation source SH and the guest material evaporation source SD move to the right side of the intermediate substrate S1, a layer of host material HM and a layer of guest material DM are formed on the intermediate substrate S1.
  • the host material evaporation source SH and the guest material evaporation source SD begin to return to the starting point in the direction from right to left, passing under the intermediate substrate S1 to evaporate the guest material DM and the host material HM. on the intermediate substrate S1.
  • a layer of guest material DM is first evaporated on the guest material DM formed by evaporation in the first time, and then a layer of host material HM is evaporated on the evaporated guest material DM.
  • Figure 4(e) Please refer to Figure 4(e).
  • the following structure is formed on the intermediate substrate S1: host material layer-guest material layer-guest Material layer - host material layer, that is, the structure in the light-emitting layer 30 of FIG. 3 except for the guest material layers at both ends.
  • the above structure can be obtained by running the host material evaporation source SH and the guest material evaporation source SD in one round trip. By running the host material evaporation source SH and the guest material evaporation source SD multiple times continuously without interruption, the structure shown in Figure 3 can be obtained. Multiple light-emitting units 31 in the light-emitting layer 30: guest material layer-host material layer-guest material layer.
  • the evaporation of the light emitting unit 31 can be completed, which can save the time required for evaporation and greatly improve the efficiency of evaporation. production capacity. It can be understood that the light-emitting unit 31 of FIG. 2 can be obtained by exchanging the positions of the host material evaporation source SH and the guest material evaporation source SD.
  • the materials of the first light-emitting sub-layer 311 and the second light-emitting sub-layer 312 of each light-emitting unit 31 may also be different, and the thickness may also be unequal, for example, according to actual needs. into gradient changes, etc.
  • a first light-emitting sub-layer 311 and a second light-emitting sub-layer 312 are provided between two adjacent light-emitting units 31, the distance between the two adjacent light-emitting units 31 can be adjusted.
  • the thickness of the first light-emitting sub-layer 311 and the second light-emitting sub-layer 312 is used to accurately adjust the optical path difference of the light emitted in the exciton recombination region below. When the optical path difference of the two light beams reaches an integral multiple of the wavelength, interference occurs. Strengthened, the light extraction efficiency is improved and the brightness is increased.
  • the thickness adjustment of the two adjacent light-emitting layers 30 can be completed in one round-trip operation of the host material evaporation source SH and the guest material evaporation source SD, which facilitates precise control.
  • the adjacent first light-emitting sub-layer 311 and the second light-emitting sub-layer 312 have the same thickness.
  • the adjacent first light-emitting sub-layer 311 and the second light-emitting sub-layer 312 have different thicknesses, thereby finely adjusting the optical path of the light by forming two film layers with different thicknesses. Difference.
  • the adjacent first light-emitting sub-layer 311 and the second light-emitting sub-layer 312 are both host material layers, and the adjacent first light-emitting sub-layer 312 is the same as the host material layer.
  • the sum of the thicknesses of the light-emitting sub-layer 311 and the second light-emitting sub-layer 312 is greater than or equal to
  • the thickness of the common light-emitting layer CL is greater than or equal to
  • the adjacent first light-emitting sub-layer 311 and the second light-emitting sub-layer 312 are both guest material layers, and the adjacent first light-emitting sub-layer 311 and the second light-emitting sub-layer
  • the sum of the thicknesses of 312 is greater than or equal to
  • the thickness of the common light-emitting layer CL is greater than or equal to
  • the guest material layer is a phosphorescent material layer or a fluorescent material layer. That is to say, the structure of the luminescent layer 30 of the present application can be used for both phosphorescent luminescent materials and fluorescent luminescent materials, both of which can improve the service life and luminous efficiency of the device.
  • the guest material layer is a blue phosphorescent material layer.
  • the structure of the luminescent layer 30 of the present application is particularly suitable for blue phosphorescent luminescent materials.
  • the reason is: Current OLED displays are composed of red, green, and blue (RGB) pixels. Among them, the luminous efficiency of blue pixels has the greatest impact on the power consumption of OLED displays.
  • the luminescent guests in the red and green luminescent layers are phosphorescent materials, with a theoretical internal quantum efficiency (IQE) of 100%, while the luminescent guests in the blue luminescent layer are fluorescent materials, with a theoretical internal quantum efficiency of only 25%. . Based on the principle of luminescence and internal quantum efficiency, the luminous efficiency of fluorescent materials is theoretically lower than that of phosphorescent materials.
  • blue phosphorescent materials cannot be used in mass production due to their short lifespan.
  • the blue phosphorescent host material and guest material into the light-emitting unit 31 in this application, and stacking multiple light-emitting units 31 to form the light-emitting layer 30, multiple dispersed exciton recombination regions are formed in the light-emitting layer 30, reducing the The concentration of excitons in the recombination region reduces exciton quenching and thermal radiation, effectively extending the life of blue phosphorescent materials.
  • the increased lifetime of blue phosphorescent materials can promote the replacement of blue phosphorescent materials with blue phosphorescent materials for mass production of organic light-emitting display devices D.
  • the host material layer and the guest material layer can also be in other colors, such as red, green, yellow, or white phosphorescent light-emitting layers or fluorescent light-emitting layers. This application does not limit this.
  • each light-emitting unit 31 is greater than or equal to 2 nm.
  • the thickness ratio of the guest material layer to the host material layer is less than or equal to 0.25.
  • the thickness of the guest material layer is m and the thickness of the host material layer is L, then 0 ⁇ m/L ⁇ 0.25. If m/L is greater than 0.25, the thickness of the guest material layer is too thick, and the luminescent layer 30 can almost be regarded as a pure luminescent material layer. Exciton quenching is severe and the luminous efficiency is low. By making the thickness ratio of the guest material layer to the host material layer less than or equal to 0.25, higher luminous efficiency can be ensured.
  • the light-emitting layer 30 includes 2 to 10 light-emitting units 31 . Since the total thickness of the luminescent layer 30 ranges from to If the number of light-emitting units 31 is too large and the thickness of the single-layer light-emitting layer 30 is too thin, the life of the light-emitting layer 30 will be shortened. Therefore, the number of light-emitting units 31 cannot be too many.
  • the thickness of the luminescent layer 30 ranges from to The greater the thickness of the light-emitting layer 30, the greater the driving voltage, and the thinner the light-emitting layer 30, the shorter the lifespan.
  • the thickness of the luminescent layer 30 ranges from to When, a more appropriate driving voltage and service life can be obtained.
  • n represents the number of light emitting units 31.
  • the energy level difference ⁇ E 1 between the LUMO (Lowest Unoccupied Molecular Orbital) energy level of the host material of the host material layer and the LUMO energy level of the guest material of the guest material layer is greater than 0 and less than or equal to 0.3eV; and/or , the energy level difference ⁇ E 2 between the HOMO (Highest Occupied Molecular Orbital) energy level of the guest material in the guest material layer and the HOMO energy level of the host material in the host material layer is greater than 0 and less than or equal to 0.3 eV.
  • the HOMO energy level of the guest material is greater than the HOMO energy level of the host material layer
  • the LUMO energy level of the host material is greater than the LUMO energy level of the guest material layer.
  • the HOMO energy level difference and LUMO energy level difference between the host material and the guest material are set to less than or equal to 0.3eV. The smaller the energy level difference, the easier it is for holes and electrons to transition between the light-emitting units 31. It can pass between adjacent light-emitting units 31 and recombine, thereby improving the luminous efficiency.
  • the host material layer may include one or more host materials
  • the guest material layer may also include one or more guest materials. The energy level between each host material and each guest material The relationships all meet the above energy level difference requirements.
  • the host material layer includes at least one blue fluorescent light-emitting material or a blue phosphorescent host material, and the mass percentage of each host material is greater than or equal to 10% to balance the load. Current concentration. Further, the hole mobility of each host material is greater than 10 -3 cm 2 *V -1 *S -1 , and the electron mobility is greater than 10 -5 cm 2 *V -1 *S -1 .
  • the guest material layer is composed of a guest material.
  • the guest material is a blue fluorescent luminescent material or a blue phosphorescent luminescent material.
  • the wavelength of the luminescence peak of the guest material is between 450 nanometers and 475 nanometers.
  • the half-peak width of the guest material is less than or equal to 35nm, the film-state luminescence quantum yield of the guest material is greater than or equal to 60%.
  • the organic light-emitting display panel 100 also includes a hole injection layer 40 and a hole transport layer 50 stacked in sequence between the first electrode 10 and the light-emitting layer 30 and a second electrode 20 in sequence.
  • the hole injection layer 40 may include p-type dopants.
  • the hole injection layer 40 may include HATCN.
  • the hole transport layer 50 may include NPB.
  • Electron injection layer 60 may be LiQ.
  • Electron transport layer 70 may include TPBI and LiQ.
  • the organic light-emitting display panel 100 further includes an electron blocking layer 80 disposed between the hole transport layer 50 and the luminescent layer 30 and a hole blocking layer 90 disposed between the electron transport layer 70 and the luminescent layer 30 .
  • Electron blocking layer 80 may include electron blocking material or exciton blocking material.
  • the hole blocking layer 90 includes a hole blocking material or an exciton blocking material.
  • this application also provides an organic light-emitting display device 1.
  • the organic light-emitting display device 1 in the embodiment of the present application can be a mobile phone, a tablet computer, an e-reader, an electronic display screen, a notebook computer, a mobile phone, an augmented reality (AR) ⁇ virtual reality (VR) device, Media players, wearable devices, digital cameras, car navigation systems, etc.
  • the organic light-emitting display device 1 includes a processor 200 and the organic light-emitting display panel 100 provided by this application.
  • the processor 200 may include a driver chip that drives the organic light-emitting display panel 100 to emit light, or the like.
  • An organic light-emitting display device is produced according to the method disclosed in the reference Xiang et al., Acceptor plane expansion enhances horizontal orientation of thermally activated delayed fluorescence emitters, Sci.Adv.2020; Vol 6, Issue 41, DOI: 10.1126/sciadv.aba7855.
  • the specific method is: use glass as the substrate and ITO as the anode. Under high vacuum conditions, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, an electron injection layer and a cathode are sequentially evaporated on a cleaned conductive glass (ITO) substrate.
  • ITO conductive glass
  • the hole injection layer is 10nm HATCN
  • the hole transport layer is 100nm NPB
  • the light-emitting layer adopts a light-emitting unit structure of host material layer-guest material layer-host material layer.
  • the total thickness of the light-emitting layer is 20nm
  • the thickness L of the host material layer in contact with the hole transport layer is 2.25nm
  • the thickness m of the guest material layer is 0.5nm
  • the number of light-emitting units is 4.
  • the electron transport layer is evaporated from TPBI and LiQ in a 1:1 ratio with a thickness of 30 nm.
  • the electron injection layer is 1nm LiQ.
  • the cathode was 100 nm Al.
  • the device structure can be expressed as: glass/ITO/HATCN (10nm)/NPB (100nm)/light-emitting layer (2.25nm)/TPBI+LiQ (30nm)/LiQ (1nm)/Al (100nm).
  • the structure of the materials in each layer can be referred to the following chemical formulas.
  • the luminescence characteristics of the fabricated device were recorded under the condition of current density 10mA/ cm2 .
  • the materials and parameters of other structures are the same as those in Example 1, except that the guest material and the host material are co-evaporated at a thickness ratio of 20:180 to form a light-emitting layer with a total thickness of 20 nm.
  • the luminescence characteristics of the prepared device were recorded under the condition of current density 10mA/ cm2 .
  • Example 1 The experimental results of Example 1 and Comparative Example 1 are as follows:
  • the life test of organic light-emitting materials usually requires measuring the curve of its brightness changing with time after applying a certain constant current to the OLED device, and then we differentiate its life according to the brightness reduction target value.
  • the time it takes to decrease from initial brightness (100%) to 95% is called LT95.
  • the maximum external quantum efficiency of Example 1 using the device structure of the present application is increased by 35.7% compared with Comparative Example 1, and based on LT95 as the standard, the service life of the device is more than doubled.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供一种有机发光显示面板和有机发光显示装置。有机发光显示面板包括发光层,发光层包括层叠设置的至少两个发光单元,发光单元包括同为主体材料层和客体材料层中的一种的第一发光子层和第二发光子层,以及主体材料层和客体材料层中的另一种的第三发光子层,第三发光子层设置于第一发光子层与第二发光子层之间。

Description

有机发光显示面板和有机发光显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种有机发光显示面板和有机发光显示装置。
背景技术
相比于液晶显示屏,有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏具有轻薄、显示效果好、分辨率高、色域广、更节能以及柔性等优势。近几年,有机发光显示技术急速发展,已经成为手机等终端产品的屏幕首选。
目前,有机发光二极管发光器件中的发光层几乎都是在主体材料中掺杂客体发光材料,由能量较大的主体材料传递能量给客体发光材料来发光。在具有这种主客体掺杂的发光层的有机发光显示器件中,长使用寿命是优良性能的重要指标之一。
技术问题
有鉴于此,本申请目的在于提供一种能够延长使用寿命的有机发光显示面板和有机发光显示装置。
技术解决方案
本申请提供一种有机发光显示面板,其包括:
基板;
第一电极,设置于所述基板上;
第二电极,设置于所述第一电极远离所述基板的一侧,且与所述第一电极相对设置;以及
发光层,设置于所述第一电极与所述第二电极之间,所述发光层包括层叠设置的至少两个发光单元,所述发光单元包括第一发光子层、第二发光子层和第三发光子层,所述第三发光子层设置于所述第一发光子层与所述第二发光子层之间;
其中,所述第一发光子层和所述第二发光子层同为主体材料层和客体材料层中的一种,且所述第三发光子层为主体材料层和客体材料层中的另一种。
可选的,在一种实施方式中,每一所述发光单元中,所述第一发光子层与所述第二发光子层的材料相同,且厚度差不超过
Figure PCTCN2022094417-appb-000001
可选的,在一种实施方式中,相邻两个所述发光单元中,相邻的所述第一发光子层与所述第二发光子层同为主体材料层,所述相邻的第一发光子层与所述第二发光子层的厚度之和大于或者等于
Figure PCTCN2022094417-appb-000002
或者
相邻两个所述发光单元中,相邻的所述第一发光子层与所述第二发光子层同为客体材料层,所述相邻的第一发光子层与所述第二发光子层的厚度之和大于或者等于
Figure PCTCN2022094417-appb-000003
可选的,在一种实施方式中,相邻两个所述发光单元中,相邻的所述第一发光子层与所述第二发光子层的厚度相同。
可选的,在一种实施方式中,相邻两个所述发光单元中,相邻的所述第一发光子层与所述第二发光子层的厚度不同。
可选的,在一种实施方式中,所述发光单元的厚度大于或者等于2nm,所述客体材料层与所述主体材料层的厚度比小于或者等于0.25。
可选的,在一种实施方式中,所述发光单元的厚度大于或者等于2nm,所述发光层包括2至10个所述发光单元。
可选的,在一种实施方式中,所述发光层的厚度范围为
Figure PCTCN2022094417-appb-000004
Figure PCTCN2022094417-appb-000005
可选的,在一种实施方式中,所述主体材料层中的主体材料的最低未占分子轨道能级与所述客体材料层的客体材料的最低未占分子轨道能级的能级差大于0且小于或者等于0.3eV;和/或
所述客体材料层的客体材料的最高占据分子轨道能级与所述主体材料层的主体材料的最高占据分子轨道能级的能级差大于0且小于或者等于0.3eV。
可选的,在一种实施方式中,所述客体材料层同为磷光材料层或者同为荧光材料层。
可选的,在一种实施方式中,所述客体材料层的发光峰的波长位于450纳米至475纳米之间,所述客体材料层的半峰宽小于或者等于35nm,所述客体材料层的膜态发光量子产率大于或者等于60%。
本申请提供一种有机发光显示装置,其包括处理器和如上任一项所述的有机发光显示面板,所述有机发光显示面板与所述处理器电连接。
可选的,在一种实施方式中,每一所述发光单元中,所述第一发光子层与所述第二发光子层的材料相同,且厚度差不超过
Figure PCTCN2022094417-appb-000006
可选的,在一种实施方式中,相邻两个所述发光单元中,相邻的所述第一发光子层与所述第二发光子层同为主体材料层,所述相邻的第一发光子层与所述第二发光子层的厚度之和大于或者等于
Figure PCTCN2022094417-appb-000007
或者
相邻两个所述发光单元中,相邻的所述第一发光子层与所述第二发光子层同为客体材料层,所述相邻的第一发光子层与所述第二发光子层的厚度之和大于或者等于
Figure PCTCN2022094417-appb-000008
可选的,在一种实施方式中,相邻两个所述发光单元中,相邻的所述第一发光子层与所述第二发光子层的厚度相同。
可选的,在一种实施方式中,相邻两个所述发光单元中,相邻的所述第一发光子层与所述第二发光子层的厚度不同。
可选的,在一种实施方式中,所述客体材料层与所述主体材料层的厚度比小于或者等于0.25。
可选的,在一种实施方式中,所述发光单元的厚度大于或者等于2nm,所述发光层包括2至10个所述发光单元。
可选的,在一种实施方式中,所述发光层的厚度范围为
Figure PCTCN2022094417-appb-000009
Figure PCTCN2022094417-appb-000010
可选的,在一种实施方式中,所述主体材料层中的主体材料的最低未占分子轨道能级与所述客体材料层的客体材料的最低未占分子轨道能级的能级差大于0且小于或者等于0.3eV;和/或,
所述客体材料层的客体材料的最高占据分子轨道能级与所述主体材料层的主体材料的最高占据分子轨道能级的能级差大于0且小于或者等于0.3eV。
有益效果
本申请的有机发光显示面板采用多个层叠设置的发光单元形成器件中的发光层,每一发光单元的结构为两个主体材料层中夹设一个客体材料层或者两个客体材料层中夹设一个主体材料层。每一发光单元中,仅在主体材料层与客体材料层的界面形成激子复合区域,在发光层中形成多个分散的激子复合区域,降低激子在复合区域中的浓度,能够减少激子淬灭与热辐射,有效延长了使用寿命。
附图说明
为了更清楚地说明本申请中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请的有机发光显示面板的结构示意图。
图2是图1的有机发光显示面板中的发光层的第一种结构的示意图。
图3是图1的有机发光显示面板中的发光层的第二种结构的示意图。
图4(a)至图4(e)是本申请的有机发光显示面板中的发光层的部分制造步骤的示意图。
图5为图2的发光层中的主体材料层与客体材料层的能级差示意图。
图6为图3的发光层中的主体材料层与客体材料层的能级差示意图。
图7为本申请的有机发光显示装置的结构示意图。
本发明的实施方式
下面将结合本申请实施方式中的附图,对本申请中的技术方案进行清楚、完整地描述。显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接连接,也可以包括第一和第二特征不是直接连接而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个特征。
本申请提供一种有机发光显示面板和有机发光显示装置。有机发光显示面板包括基板和设置于基板上的发光层。发光层包括层叠设置的至少两个发光单 元,发光单元包括第一发光子层、第二发光子层和第三发光子层,第三发光子层设置于第一发光子层与第二发光子层之间,所述第一发光子层和所述第二发光子层同为主体材料层和客体材料层中的一种,且所述第三发光子层为主体材料层和客体材料层中的另一种。
现有技术的单层掺杂发光层中,主体材料和客体材料均匀混合在一起。在掺杂发光层工作过程中,激子浓度过高,激子复合区域集中,造成严重的激子淬灭,从而导致器件的使用寿命降低。而在本申请的有机发光显示器件中,通过采用多个层叠设置的发光单元形成器件中的发光层,每一发光单元的结构为两个主体材料层中夹设一个客体材料层或者两个客体材料层中夹设一个主体材料层。每一发光单元中,仅在主体材料层与客体材料层的界面形成激子复合区域,在发光层中形成多个分散的激子复合区域,降低激子在复合区域中的浓度,能够减少激子淬灭与热辐射,有效延长了使用寿命。另一方面,由于激子淬灭的减少,器件的发光效率也相应得到提升。
以下,参考说明书附图对本申请的各实施方式进行说明。
请参考图1,有机发光显示面板100包括基板S和设置于基板S上的有机发光显示器件D。
根据驱动类型,有机发光显示面板100可以为主动矩阵有机发光二极管(Active Matrix Organic Light-emitting Diode,AMOLED)显示面板或者被动矩阵有机发光二极管(Passive Matrix Organic Light-emitting Diode,PMOLED)显示面板。需要说明的是,虽然未图示,有机发光显示面板100的基板S与有机发光显示器件D之间还设置有用于驱动有机发光显示器件D发光的驱动电路层,驱动电路层中包括主动矩阵驱动电路或者被动矩阵驱动电路。另外,有机发光显示面板100还包括像素定义层和封装层等未图示的其他功能结构。
有机发光显示面板100可以为刚性显示面板,也可以为柔性显示面板。根据其类型,有机发光显示面板100的基板S可以为玻璃、塑料,或者柔性基板。柔性基板可以包括两个柔性衬底和设置于两个柔性衬底之间的阻隔层。两个柔性衬底的材料分别独立地选自聚酰亚胺(PI)、聚萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸乙二醇酯(PET)、聚芳酯(PAR)、聚碳酸酯(PC)、聚醚酰亚胺(PEI)和聚醚砜(PES)中的一种。阻隔层的材料可以选自氧化硅(SiOx)、 氮化硅(SiNx)、氮氧化硅(SiON)等无机材料及其叠层,用于防止水汽从柔性衬底扩散至驱动电路层。可选的,本实施方式的基板S为玻璃。
有机发光显示器件D包括第一电极10、第二电极20以及发光层30。第一电极10设置于基板S上。第二电极20设置于第一电极10远离基板S的一侧,且与第一电极10相对设置。
可选的,第一电极10为阳极,阳极可以为透明或非透明电极。阳极可以包括金属和/或金属氧化物。金属可以是铝、金或者银等。金属氧化物可以是氧化铟锡或者氧化锡等。第二电极20为阴极,阴极可以为透明或非透明电极。阴极可以包括金属和/或金属氧化物。金属可以是锂、镁、钙、锶、铝或铟等功函数较低的金属或它们与铜、金或银的合金。金属氧化物可以是氧化铟锡或者氧化锡等。有机发光显示器件D可以为顶发射型OLED(Top-emitting OLED,TEOLED)器件或者底发射型OLED(Bottom-emitting OLED,BEOLED)。在本实施方式中,有机发光显示器件D为顶发射型器件。阳极为金属电极,阴极为透明电极。
可以理解,在其他实施方式中,有机发光显示器件D可以倒置型OLED器件,即第一电极10为阴极,第二电极20为阳极。
发光层30设置于第一电极10与第二电极20之间。发光层30包括层叠设置的至少两个发光单元31。发光单元31包括第一发光子层311、第二发光子层312和第三发光子层313。第三发光子层313设置于第一发光子层311与第二发光子层312之间。
第一发光子层311和所述第二发光子层312同为主体材料层和客体材料层中的一种,且第三发光子层313为主体材料层和客体材料层中的另一种。具体地,请参考图2,在一种实施方式中,第一发光子层311与第二发光子层312均为主体材料层且第三发光子层313为客体材料层。以发光层30包括至少三个发光单元31为例,从第一电极10至第二电极20的方向上,发光层30的结构为:主体材料层-客体材料层-主体材料层-主体材料层-客体材料层-主体材料层-(中间省略)-主体材料层-客体材料层。在这种实施方式中,相邻两个发光单元31之间相接触的发光材料层同为主体材料层。并且,发光层30中主体材料层的数量为客体材料层数量的两倍。
请参考图3,在另一种实施方式中,第一发光子层311与第二发光子层312均为客体材料层且第三发光子层313为主体材料层。以发光层30包括至少三个发光单元31为例,从第一电极10至第二电极20的方向上,发光层30的结构为:客体材料层-主体材料层-客体材料层-客体材料层-主体材料层-客体材料层-(中间省略)-客体材料层-主体材料层-客体材料层。在这种实施方式中,相邻两个发光单元31之间相接触的发光材料层同为客体材料层。并且,发光层30中客体材料层的数量为主体材料层的数量的两倍。
在图2和图3的实施方式中,仅在主体材料层与客体材料层的界面形成激子复合区域,而由于相邻两个发光单元31的相邻的第一发光子层311与第二发光子层312同为主体材料层或者同为客体材料层,二者之间没有形成激子复合区域。因此,相邻两个发光单元31中相邻的激子复合区域(或者说界面)之间间隔有一个第一发光子层311和一个第二发光子层312,通过两个发光子层将相邻两个发光单元31中相邻的激子复合区域拉开间距,从而进一步降低激子淬灭,提升使用寿命。
可选的,每一发光单元31中,第一发光子层311与第二发光子层312的材料相同,且第一发光子层311与第二发光子层312的厚度大致相等。大致相等是指第一发光子层311与第二发光子层312可以以完全相同的工艺条件、参数和设计的厚度形成,但由于工艺制程上的误差,厚度上可以略有不同。定量而言,第一发光子层311与第二发光子层312的厚度差不超过
Figure PCTCN2022094417-appb-000011
在实际产品中,相邻两个发光单元31之间相接触的发光层30的分层并不明显,因而,也可以将相邻两个发光单元31之间相接触的第一发光子层311与第二发光子层312视为一个共同发光层CL。在第一发光子层311与第二发光子层312的厚度大致相等的情况下,相邻两个发光单元31之间的共同发光层CL的厚度大约为发光层30中最接近第一电极10的第一发光子层311或发光层30中最接近第二电极20的第二发光子层312(即,分别位于发光层30的两个端部的第一发光子层311和第二发光子层312)厚度的两倍。
请参考图4(a)至4(e),做出这种设计的理由是发明人在蒸镀量产设计的过程中发现,具有本申请的多个发光单元31结构的显示器件的生产效率最高。请参考图4(a),当在中间基板S1上蒸镀发光单元31时,中间基板S1 设置在蒸镀腔中并保持不动。客体材料蒸镀源SD和主体材料蒸镀源SH沿图中从左到右的方向固定排列,位于中间基板S1的左侧,并开始沿从左到右的方向经过中间基板S1下方而将主体材料HM和客体材料DM蒸镀在中间基板S1上。请参考图4(b),在第一次经过中间基板S1下方时,先蒸镀一层主体材料HM,随后在蒸镀好的主体材料HM上蒸镀上客体材料DM。请参考图4(c),当主体材料蒸镀源SH和客体材料蒸镀源SD移动至中间基板S1的右侧时,中间基板S1上形成有一层主体材料HM和一层客体材料DM。接着,请参考图4(d),主体材料蒸镀源SH和客体材料蒸镀源SD开始沿从右到左的方向返回起点,经过中间基板S1下方而将客体材料DM和主体材料HM蒸镀在中间基板S1上。在第二次经过中间基板S1下方时,在第一次蒸镀形成的客体材料DM上先蒸镀一层客体材料DM,随后在蒸镀好的客体材料DM上蒸镀上一层主体材料HM。请参考图4(e),当主体材料蒸镀源SH和客体材料蒸镀源SD回到中间基板S1的左侧时,中间基板S1上形成有以下结构:主体材料层-客体材料层-客体材料层-主体材料层,即,图3的发光层30中除了两个端部的客体材料层之外的结构。主体材料蒸镀源SH和客体材料蒸镀源SD运行一个来回即可获得上述结构,通过主体材料蒸镀源SH和客体材料蒸镀源SD连续不间断地多次运行,就可以获得图3的发光层30中的多个发光单元31:客体材料层-主体材料层-客体材料层。而在此过程中,在不调整任何执行参数的情况下,既不需要停止主体材料蒸镀源SH和客体材料蒸镀源SD的运动,也不需要在每次主体材料蒸镀源SH和客体材料蒸镀源SD移动至右侧后使主体材料蒸镀源SH和客体材料蒸镀源SD复位至左侧,就可以完成发光单元31的蒸镀,能够节约蒸镀所需的时间,大大提升产能。可以理解的是,将主体材料蒸镀源SH和客体材料蒸镀源SD的位置调换,即可获得图2的发光单元31。
需要说明的是,在本申请的其他实施例中,每个发光单元31的第一发光子层311与第二发光子层312的材料也可以不同,厚度也可以不相等,例如根据实际需求设置成梯度变化等。
另一方面,由于本申请中,相邻的两个发光单元31之间设置有一个第一发光子层311和一个第二发光子层312,可以通过调节相邻的两个发光单元31 之间的第一发光子层311和第二发光子层312的厚度来精确调节下方的激子复合区域中发出的光线的光程差,当两束光线的光程差达到波长的整数倍时,干涉加强,光取出效率提升,亮度增加。并且,两个相邻发光层30的厚度调节在主体材料蒸镀源SH和客体材料蒸镀源SD的一个来回的运行中即可完成,便于精确控制。可选的,相邻两个发光单元31中,相邻的第一发光子层311与第二发光子层312的厚度相同。可选的,相邻两个发光单元31中,相邻的第一发光子层311与第二发光子层312的厚度不同,从而通过形成两个厚度差异的膜层,精细调节光线的光程差。
可选的,为了保证微腔效应和主客体比例,相邻两个发光单元31中,相邻的第一发光子层311与第二发光子层312同为主体材料层,相邻的第一发光子层311与第二发光子层312的厚度之和大于或者等于
Figure PCTCN2022094417-appb-000012
例如,在图2的实施例中,共同发光层CL的厚度大于或者等于
Figure PCTCN2022094417-appb-000013
可选的,相邻两个发光单元31中,相邻的第一发光子层311与第二发光子层312同为客体材料层,相邻的第一发光子层311与第二发光子层312的厚度之和大于或者等于
Figure PCTCN2022094417-appb-000014
例如,在图3的实施例中,共同发光层CL的厚度大于或者等于
Figure PCTCN2022094417-appb-000015
可选的,客体材料层为磷光材料层或者为荧光材料层。也就是说,本申请的发光层30的结构既可以用于磷光发光材料,也可以用于荧光发光材料,均能够提高器件的使用寿命以及发光效率。
可选的,客体材料层为蓝色磷光材料层。本申请的发光层30的结构特别适用于蓝色磷光发光材料。原因在于:当前的OLED显示屏由红绿蓝(RGB)各色像素组成。其中,蓝色像素的发光效率对OLED显示屏的功耗影响最大。红绿发光层中的发光客体为磷光材料,理论上内量子效率(Internal Quantum Efficiency,IQE)为100%,而蓝色发光层中的发光客体为荧光材料,理论上内量子效率仅有25%。基于发光原理与内量子效率,理论上荧光材料的发光效率不及磷光材料的发光效率,但蓝色磷光材料由于寿命短,无法应用于量产中。而通过将蓝色磷光主体材料和客体材料制成本申请中的发光单元31,并使多个发光单元31层叠形成发光层30,在发光层30中形成多个分散的激子复合区域,降低激子在复合区域中的浓度,减少激子淬灭与热辐射,有效延长蓝色 磷光发光材料的寿命。蓝色磷光发光材料的寿命提升,能够促进蓝色磷光材料代替蓝色荧光材料,用于有机发光显示器件D的量产中。
需要说明的是,主体材料层和客体材料层也可以为其他颜色,例如红、绿、黄、白色磷光发光层或者荧光发光层。本申请对此不作限制。
可选的,每一发光单元31的厚度大于或者等于2nm。每一发光单元31中,客体材料层与主体材料层的厚度比小于或者等于0.25。具体地,客体材料层的厚度为m,主体材料层的厚度为L,则0<m/L≤0.25。m/L大于0.25的话,客体材料层的厚度太厚,发光层30几乎可以视为纯发光材料层,激子淬灭严重,发光效率低。通过使客体材料层与主体材料层的厚度比小于或者等于0.25,能够保证较高的发光效率。
可选的,发光层30包括2至10个发光单元31。由于发光层30的总厚度范围为
Figure PCTCN2022094417-appb-000016
Figure PCTCN2022094417-appb-000017
如果发光单元31数量太多,单层发光层30的厚度太薄,反而会缩短发光层30寿命,因此,发光单元31的数量不能太多。
可选的,发光层30的厚度范围为
Figure PCTCN2022094417-appb-000018
Figure PCTCN2022094417-appb-000019
发光层30厚度越大,则驱动电压越大,发光层30越薄,寿命越短。当发光层30的厚度范围为
Figure PCTCN2022094417-appb-000020
Figure PCTCN2022094417-appb-000021
时,能够获得较为合适的驱动电压和使用寿命。可选的,请参考图5和图6,图5和图6中,n代表发光单元31的个数。主体材料层的主体材料的LUMO(最低未占分子轨道,Lowest Unoccupied Molecular Orbital)能级与客体材料层的客体材料的LUMO能级的能级差ΔE 1大于0且小于或者等于0.3eV;和/或,客体材料层的客体材料的HOMO(最高占据分子轨道,Highest Occupied Molecular Orbital)能级与主体材料层的主体材料的HOMO能级的能级差ΔE 2大于0且小于或者等于0.3eV。具体地,客体材料的HOMO能级大于主体材料层的HOMO能级,且主体材料的LUMO能级大于客体材料层的LUMO能级的能级。但,主体材料和客体材料的HOMO能级差和LUMO能级差设置为小于或者等于0.3eV,能级差值越小,空穴和电子在各个发光单元31之间的跃迁相对容易,空穴和电子可以在相邻的发光单元31之间穿过,并发生复合,从而提升发光效率。需要说明的是,主体材料层可以包括一种以及一种以上主体材料,客体材料层也可以包括一种以及一种以上客体材料,每一种主体材料和每一种客体材料之间的能级关系均满足上述能级差要求。
可选的,在一种具体地实施方式中,主体材料层包括至少一种蓝色荧光发光材料或者蓝色磷光主体材料,每一种主体材料的质量百分数均大于或者等于10%,以平衡载流子浓度。进一步,每一种主体材料的空穴迁移率大于10 -3cm 2*V -1*S -1,且电子迁移率大于10 -5cm 2*V -1*S -1。客体材料层由一种客体材料组成,客体材料为蓝色荧光发光材料或者蓝色磷光发光材料,客体材料的发光峰的波长位于450纳米至475纳米之间,客体材料的半峰宽小于或者等于35nm,客体材料的膜态发光量子产率大于或者等于60%。
可选的,请再次参考图1,有机发光显示面板100还包括依次层叠于第一电极10与发光层30之间的空穴注入层40和空穴传输层50以及依次层叠于第二电极20与发光层30与之间的电子注入层60和电子传输层70。空穴注入层40可以包含p型掺杂剂。空穴注入层40可以包括HATCN。空穴传输层50可以包括NPB。电子注入层60可为LiQ。电子传输层70可以包括TPBI和LiQ。进一步,有机发光显示面板100还包括设置于空穴传输层50与发光层30之间的电子阻挡层80和设置于电子传输层70与发光层30之间的空穴阻挡层90。电子阻挡层80可以包括电子阻挡材料或者激子阻挡材料。空穴阻挡层90包括空穴阻挡材料或者激子阻挡材料。
请参考图7,本申请还提供一种有机发光显示装置1。本申请实施例中的有机发光显示装置1可以为手机、平板电脑、电子阅读器、电子展示屏、笔记本电脑、手机、增强现实(augmented reality,AR)\虚拟现实(virtual reality,VR)设备、媒体播放器、可穿戴设备、数码相机、车载导航仪等。有机发光显示装置1包括处理器200和本申请提供的有机发光显示面板100。处理器200可以包括驱动有机发光显示面板100发光的驱动芯片等。
以下,结合具体实施例对本申请的有机发光器件进行说明。
实施例1
根据参考文献Xiang et al.,Acceptor plane expansion enhances horizontal orientation of thermally activated delayed fluorescence emitters,Sci.Adv.2020;Vol 6,Issue 41,DOI:10.1126/sciadv.aba7855中公开的方法制作有机发光显示器件。具体方法为:以玻璃为基板,ITO为阳极。在高真空条件下,在经过清洗的导电玻璃(ITO)衬底上依次蒸镀形成空穴注入层、空穴传输层、发光层、 电子传输层、电子注入层以及阴极。空穴注入层为10nm的HATCN,空穴传输层为100nm的NPB,发光层采用主体材料层-客体材料层-主体材料层的发光单元结构。发光层的总厚度为20nm,发光层与空穴传输层接触的主体材料层的厚度L为2.25nm,客体材料层的厚度m为0.5nm,发光单元数量为4。电子传输层由TPBI与LiQ以1:1比例蒸镀,厚度为30nm。电子注入层为1nm的LiQ。阴极为100nm的Al。器件结构可以表示为:玻璃/ITO/HATCN(10nm)/NPB(100nm)/发光层(2.25nm)/TPBI+LiQ(30nm)/LiQ(1nm)/Al(100nm)。各层中材料的结构可以参考以下化学式。对于制成的器件在电流密度10mA/cm 2条件下记录所制备器件的发光特性。
Figure PCTCN2022094417-appb-000022
对比例1
除了由客体材料与主体材料以20:180的厚度比例共同蒸镀形成总厚度为20nm的发光层之外,其他结构的材料和参数与实施例1相同。在电流密度10mA/cm 2条件下记录所制备器件的发光特性。
实施例1与对比例1的实验结果如下:
表1 实施例1与对比例1的性能参数对比
Figure PCTCN2022094417-appb-000023
Figure PCTCN2022094417-appb-000024
其中,有机发光材料的寿命测试通常需要在向OLED器件施加某个恒定电流后,测量出其亮度随时间变化的曲线,然后我们根据亮度降低目标值对其寿命进行区分。从初始亮度(100%)降低到95%的时间被称为LT95。与对比例1进行对比,采用本申请的器件结构的实施例1的最大外量子效率相较于对比例1提升了35.7%,且以LT95为标准进行判定,器件使用寿命延长了1倍以上。
以上对本申请实施方式提供了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施方式的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种有机发光显示面板,其包括:
    基板;
    第一电极,设置于所述基板上;
    第二电极,设置于所述第一电极远离所述基板的一侧,且与所述第一电极相对设置;以及
    发光层,设置于所述第一电极与所述第二电极之间,所述发光层包括层叠设置的至少两个发光单元,所述发光单元包括第一发光子层、第二发光子层和第三发光子层,所述第三发光子层设置于所述第一发光子层与所述第二发光子层之间;
    其中,所述第一发光子层和所述第二发光子层同为主体材料层和客体材料层中的一种,且所述第三发光子层为主体材料层和客体材料层中的另一种。
  2. 如权利要求1所述的有机发光显示面板,其中,每一所述发光单元中,所述第一发光子层与所述第二发光子层的材料相同,且厚度差不超过
    Figure PCTCN2022094417-appb-100001
  3. 如权利要求1所述的有机发光显示面板,其中,相邻两个所述发光单元中,相邻的所述第一发光子层与所述第二发光子层同为主体材料层,所述相邻的第一发光子层与所述第二发光子层的厚度之和大于或者等于
    Figure PCTCN2022094417-appb-100002
    或者
    相邻两个所述发光单元中,相邻的所述第一发光子层与所述第二发光子层同为客体材料层,所述相邻的第一发光子层与所述第二发光子层的厚度之和大于或者等于
    Figure PCTCN2022094417-appb-100003
  4. 如权利要求3所述的有机发光显示面板,其中,相邻两个所述发光单元中,相邻的所述第一发光子层与所述第二发光子层的厚度相同。
  5. 如权利要求3所述的有机发光显示面板,其中,相邻两个所述发光单元中,相邻的所述第一发光子层与所述第二发光子层的厚度不同。
  6. 如权利要求1所述的有机发光显示面板,其中,所述客体材料层与所述主体材料层的厚度比小于或者等于0.25。
  7. 如权利要求6所述的有机发光显示面板,其中,所述发光单元的厚度大于或者等于2nm,所述发光层包括2至10个所述发光单元。
  8. 如权利要求6所述的有机发光显示面板,其中,所述发光层的厚度范围为
    Figure PCTCN2022094417-appb-100004
    Figure PCTCN2022094417-appb-100005
  9. 如权利要求1所述的有机发光显示面板,其中,所述主体材料层中的主体材料的最低未占分子轨道能级与所述客体材料层的客体材料的最低未占分子轨道能级的能级差大于0且小于或者等于0.3eV;和/或,
    所述客体材料层的客体材料的最高占据分子轨道能级与所述主体材料层的主体材料的最高占据分子轨道能级的能级差大于0且小于或者等于0.3eV。
  10. 如权利要求1所述的有机发光显示面板,其中,所述客体材料层同为磷光材料层或者同为荧光材料层。
  11. 如权利要求10所述的有机发光显示面板,其中,所述客体材料层的发光峰的波长位于450纳米至475纳米之间,所述客体材料层的半峰宽小于或者等于35nm,所述客体材料层的膜态发光量子产率大于或者等于60%。
  12. 一种有机发光显示装置,其包括处理器和如权利要求1所述的有机发光显示面板,所述有机发光显示面板与所述处理器电连接。
  13. 如权利要求12所述的有机发光显示装置,其中,每一所述发光单元中,所述第一发光子层与所述第二发光子层的材料相同,且厚度差不超过
    Figure PCTCN2022094417-appb-100006
  14. 如权利要求12所述的有机发光显示装置,其中,相邻两个所述发光单元中,相邻的所述第一发光子层与所述第二发光子层同为主体材料层,所述相邻的第一发光子层与所述第二发光子层的厚度之和大于或者等于
    Figure PCTCN2022094417-appb-100007
    或者
    相邻两个所述发光单元中,相邻的所述第一发光子层与所述第二发光子层同为客体材料层,所述相邻的第一发光子层与所述第二发光子层的厚度之和大于或者等于
    Figure PCTCN2022094417-appb-100008
  15. 如权利要求14所述的有机发光显示装置,其中,相邻两个所述发光单元中,相邻的所述第一发光子层与所述第二发光子层的厚度相同。
  16. 如权利要求14所述的有机发光显示装置,其中,相邻两个所述发光单元中,相邻的所述第一发光子层与所述第二发光子层的厚度不同。
  17. 如权利要求12所述的有机发光显示装置,其中,所述客体材料层与所述主体材料层的厚度比小于或者等于0.25。
  18. 如权利要求17所述的有机发光显示装置,其中,所述发光单元的厚度大于或者等于2nm,所述发光层包括2至10个所述发光单元。
  19. 如权利要求17所述的有机发光显示装置,其中,所述发光层的厚度范围为
    Figure PCTCN2022094417-appb-100009
    Figure PCTCN2022094417-appb-100010
  20. 如权利要求12所述的有机发光显示装置,其中,所述主体材料层中的主体材料的最低未占分子轨道能级与所述客体材料层的客体材料的最低未占分子轨道能级的能级差大于0且小于或者等于0.3eV;和/或,
    所述客体材料层的客体材料的最高占据分子轨道能级与所述主体材料层的主体材料的最高占据分子轨道能级的能级差大于0且小于或者等于0.3eV。
PCT/CN2022/094417 2022-04-28 2022-05-23 有机发光显示面板和有机发光显示装置 WO2023206674A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/780,301 US20230354628A1 (en) 2022-04-28 2022-05-23 Organic light-emitting display panel and organic light-emitting display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210470568.4A CN114843415A (zh) 2022-04-28 2022-04-28 有机发光显示面板和显示装置
CN202210470568.4 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023206674A1 true WO2023206674A1 (zh) 2023-11-02

Family

ID=82568146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094417 WO2023206674A1 (zh) 2022-04-28 2022-05-23 有机发光显示面板和有机发光显示装置

Country Status (2)

Country Link
CN (1) CN114843415A (zh)
WO (1) WO2023206674A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024108492A1 (zh) * 2022-11-24 2024-05-30 京东方科技集团股份有限公司 发光器件、显示基板及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163696A (zh) * 2011-01-27 2011-08-24 电子科技大学 一种以量子阱结构作发光层的有机电致发光器件
CN106803543A (zh) * 2017-01-20 2017-06-06 瑞声科技(南京)有限公司 有机发光显示器件
CN108987592A (zh) * 2018-06-26 2018-12-11 云谷(固安)科技有限公司 有机电致发光器件和显示装置
CN109473561A (zh) * 2018-11-21 2019-03-15 云谷(固安)科技有限公司 有机发光二极管和显示面板
CN112349857A (zh) * 2020-12-01 2021-02-09 南京邮电大学 一种低滚降荧光有机电致发光器件及其制备方法
CN113299844A (zh) * 2021-05-31 2021-08-24 昆山国显光电有限公司 一种有机电致发光器件和显示装置
CN114220928A (zh) * 2021-12-14 2022-03-22 北京维信诺科技有限公司 有机发光器件和显示屏

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163696A (zh) * 2011-01-27 2011-08-24 电子科技大学 一种以量子阱结构作发光层的有机电致发光器件
CN106803543A (zh) * 2017-01-20 2017-06-06 瑞声科技(南京)有限公司 有机发光显示器件
CN108987592A (zh) * 2018-06-26 2018-12-11 云谷(固安)科技有限公司 有机电致发光器件和显示装置
CN109473561A (zh) * 2018-11-21 2019-03-15 云谷(固安)科技有限公司 有机发光二极管和显示面板
CN112349857A (zh) * 2020-12-01 2021-02-09 南京邮电大学 一种低滚降荧光有机电致发光器件及其制备方法
CN113299844A (zh) * 2021-05-31 2021-08-24 昆山国显光电有限公司 一种有机电致发光器件和显示装置
CN114220928A (zh) * 2021-12-14 2022-03-22 北京维信诺科技有限公司 有机发光器件和显示屏

Also Published As

Publication number Publication date
CN114843415A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
US10741781B2 (en) White organic light emitting device
KR20200083422A (ko) 백색 유기 발광 소자
US9118033B2 (en) Organic light-emitting diode and display device employing the same
US10355235B2 (en) Organic light emitting display device and apparatus
WO2017190373A1 (zh) 自发光型显示装置及其制作方法
US10164207B2 (en) Organic light-emitting device and method for manufacturing same
WO2016123916A1 (zh) 一种显示基板及其制备方法和一种显示设备
WO2021035419A1 (zh) 显示基板及其制作方法
US20070285001A1 (en) System for displaying images
CN110265558A (zh) Oled显示面板及其制备方法
US20210336177A1 (en) Oled display panel and oled display device
WO2023206674A1 (zh) 有机发光显示面板和有机发光显示装置
WO2021226818A1 (zh) 量子点发光结构及其制作方法、阵列基板和显示装置
US8193694B2 (en) Electroluminescent device with improved light decoupling
US20230092444A1 (en) Organic electroluminescent device, display panel, and display apparatus
US20240016018A1 (en) Display device and preparation method therefor
US8384073B2 (en) System for displaying images
WO2021073154A1 (zh) 一种有机发光器件和显示面板
CN115064646A (zh) 一种发光器件及显示面板
US20230354628A1 (en) Organic light-emitting display panel and organic light-emitting display device
US11910627B2 (en) Organic light emitting device and organic light emitting display device using the same
WO2024040464A1 (zh) 一种显示基板、其制作方法及显示装置
CN111430562B (zh) 发光器件和显示装置
JP2007329054A (ja) 画像表示装置
TW202422588A (zh) 可撓式透明電極以及應用可撓式透明電極之可撓式有機發光二極體結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939507

Country of ref document: EP

Kind code of ref document: A1