WO2021226818A1 - 量子点发光结构及其制作方法、阵列基板和显示装置 - Google Patents

量子点发光结构及其制作方法、阵列基板和显示装置 Download PDF

Info

Publication number
WO2021226818A1
WO2021226818A1 PCT/CN2020/089739 CN2020089739W WO2021226818A1 WO 2021226818 A1 WO2021226818 A1 WO 2021226818A1 CN 2020089739 W CN2020089739 W CN 2020089739W WO 2021226818 A1 WO2021226818 A1 WO 2021226818A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron transport
transport layer
sub
quantum dot
layer
Prior art date
Application number
PCT/CN2020/089739
Other languages
English (en)
French (fr)
Inventor
李东
陈卓
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP20904232.4A priority Critical patent/EP4152418A4/en
Priority to PCT/CN2020/089739 priority patent/WO2021226818A1/zh
Priority to CN202080000717.XA priority patent/CN114026703B/zh
Priority to JP2022502984A priority patent/JP2023534085A/ja
Priority to KR1020227003917A priority patent/KR20230009866A/ko
Priority to US17/270,984 priority patent/US20220123168A1/en
Publication of WO2021226818A1 publication Critical patent/WO2021226818A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/157Hole transporting layers between the light-emitting layer and the cathode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants

Definitions

  • the embodiments of the present disclosure relate to a quantum dot light-emitting structure and a manufacturing method thereof, an array substrate, and a display device.
  • LED Light Emitting Diode
  • the light-emitting diode display device does not need to be additionally provided with a backlight module, it has a lighter weight, thereby facilitating the thinning of the display device, and therefore has a better market prospect.
  • Quantum Dot is a new type of luminescent material, which has the advantages of high light color purity, high luminous quantum efficiency, adjustable luminous color, and long service life. It has become the current research hotspot of new LED luminescent materials. Therefore, Quantum Dot Light Emitting Diode (QLED), which uses quantum dot materials as the light-emitting layer, has become the main direction of current research on new display devices.
  • QLED Quantum Dot Light Emitting Diode
  • the embodiments of the present disclosure provide a quantum dot light-emitting structure and a manufacturing method thereof, an array substrate, and a display device.
  • the quantum dot light-emitting structure includes a quantum dot light-emitting layer, an electrode, and an electron transport layer between the quantum dot light-emitting layer and the electrode; the quantum dot light-emitting structure also includes an electron blocking layer, which is located in the electron transport layer. Therefore, by adding an electron blocking layer in the electron transport layer, the electrons injected into the electron transport layer from the electrode can be reduced, and the carrier concentration in the quantum dot light-emitting layer can be balanced, and the luminous efficiency of the quantum dot light-emitting structure can be improved .
  • At least one embodiment of the present disclosure provides a quantum dot light emitting structure, which includes: a quantum dot light emitting layer; an electrode; and an electron transport layer, located between the quantum dot light emitting layer and the electrode, the quantum dot light emitting structure further An electron blocking layer is included, and the electron blocking layer is located in the electron transport layer.
  • the electron transport layer includes two sub-electron transport layers, and the electron blocking layer is located between the two sub-electron transport layers.
  • the electron transport layer includes N+1 sub-electron transport layers
  • the electron blocking layer includes N sub-electron blocking layers
  • the N sub-electron blocking layers are respectively It is sandwiched between the N+1 sub-electron transport layers, and N is a positive integer greater than or equal to 2.
  • the electron transport layer includes a zinc oxide film.
  • each of the electron sub-transport layers is a zinc oxide film.
  • the bottom energy level of the conduction band of the electron blocking layer is greater than the bottom energy level of the conduction band of the quantum dot light emitting layer.
  • the material of the electron blocking layer includes at least one of aluminum oxide, tantalum oxide, and hafnium oxide.
  • the light-emitting brightness of the quantum dot light-emitting structure is greater than 500 cd/m 2 under a voltage of 7V.
  • the root-mean-square surface roughness of the electron transport layer close to the quantum dot light-emitting layer ranges from about 5 to 10 nanometers.
  • the thickness of the electron blocking layer in a direction perpendicular to the base substrate is about 1-2 nanometers.
  • the electron transport layer includes a first sub-electron transport layer and a second sub-electron transport layer, and the second sub-electron transport layer is located in the first sub-electron transport layer.
  • the electron transport layer is close to the side of the quantum dot light-emitting layer, and the bottom energy level of the conduction band of the second sub-electron transport layer is greater than the bottom energy level of the conduction band of the first sub-electron transport layer and smaller than the quantum dot The bottom energy level of the conduction band of the light-emitting layer.
  • the electron blocking layer is disposed between the first sub-electron transport layer and the second sub-electron transport layer.
  • the electron blocking layer is disposed in the second electron sub-transport layer.
  • the first sub-electron transport layer is a zinc oxide film formed by sputtering
  • the second sub-electron transport layer is a doped zinc oxide formed by sputtering. film.
  • the doping material of the second electron sub-transport layer may include at least one of Mg, Al, Zr, Hf, and Y.
  • the doping material of the second electron sub-transport layer is Mg
  • the mole percentage of Mg in the second sub-electron transport layer is 1%-20% .
  • the doping concentration of the second sub-electron transport layer ranges from the side of the second sub-electron transport layer close to the first sub-electron transport layer to The side of the second electron sub-transport layer close to the quantum dot light-emitting layer gradually increases.
  • the second sub-electron transport layer includes a plurality of sub-doped electron transport layers, and the doping concentration of the plurality of sub-doped electron transport layers is from the first A sub-electron transport layer gradually increases in the direction from the quantum dot light-emitting layer.
  • At least one embodiment of the present disclosure further provides an array substrate including a plurality of light-emitting elements, at least one of the light-emitting elements adopts any one of the aforementioned quantum dot light-emitting structures.
  • the electron transport layer includes a first sub-electron transport layer and a second sub-electron transport layer, and the second sub-electron transport layer is located on the first sub-electron transport layer.
  • the bottom energy level of the conduction band of the second sub-electron transport layer is greater than the conduction band bottom energy level of the first sub-electron transport layer and is smaller than that of the quantum dot light-emitting layer
  • the bottom energy level of the conduction band, the first sub-electron transport layer is a zinc oxide film, the second sub-electron transport layer is a doped zinc oxide film, and the plurality of light-emitting elements include the light-emitting elements of different colors, The doping concentration of the second sub-electron transport layer in the light-emitting elements of different colors is different.
  • the dopant of the doped zinc oxide thin film is Mg
  • the plurality of light-emitting elements include red light-emitting elements, green light-emitting elements, and blue light-emitting elements.
  • the doping concentration of Mg in the second sub-electron transport layer in the red light-emitting element is 1-5%
  • the doping concentration of Mg in the second sub-electron transport layer in the red light-emitting element is 5-10 %
  • the doping concentration of Mg in the second sub-electron transport layer in the blue light-emitting element is 10-20%.
  • the array substrate provided by an embodiment of the present disclosure further includes: a pixel defining layer disposed around each of the electron transport layers, and the pixel defining layer wraps the edge portion of each of the electron transport layers, and has a pixel defining layer that exposes each of the electrons.
  • At least one embodiment of the present disclosure further provides a display device, which includes any of the above-mentioned array substrates.
  • At least one embodiment of the present disclosure also provides a method for manufacturing a quantum dot light-emitting structure, which includes: forming a first electrode; forming an electron transport layer on the first electrode; and placing the electron transport layer away from the first electrode.
  • a quantum dot light-emitting layer is formed on one side of the electrode, and the manufacturing method further includes forming an electron blocking layer in the electron transport layer.
  • forming the electron transport layer on the first electrode includes: forming the electron transport layer on the first electrode by a sputtering process. Floor.
  • the electron transport layer includes two sub-electron transport layers, and forming an electron blocking layer in the electron transport layer includes: The electron blocking layer is formed between the transport layers.
  • the electron transport layer includes N+1 sub-electron transport layers
  • forming an electron blocking layer in the electron transport layer includes: N sub-electron blocking layers are formed between +1 sub-electron transport layers, and N is a positive integer greater than or equal to 2.
  • forming the electron transport layer on the electrode includes: forming a first sub-electron transport layer and a second sub-electron transport layer by using a sputtering process ,
  • the second sub-electron transport layer is located on the side of the first sub-electron transport layer close to the quantum dot light-emitting layer, and the bottom energy level of the conduction band of the second sub-electron transport layer is greater than that of the first sub-electron
  • the bottom energy level of the conduction band of the transport layer is smaller than the bottom energy level of the conduction band of the quantum dot light-emitting layer.
  • forming the electron blocking layer in the electron transport layer includes: forming the electron blocking layer in the electron transport layer by using a sputtering process Floor.
  • forming the quantum dot light-emitting layer on the side of the electron transport layer away from the electrode includes: using an inkjet printing process on the electron The quantum dot light-emitting layer is formed on the side of the transmission layer away from the electrode.
  • the manufacturing method further includes: forming a pixel defining layer on the side of the electron transport layer away from the first electrode, and the pixel defining layer includes exposing the electron transport layer. Opening, forming the quantum dot light-emitting layer on the side of the electron transport layer away from the electrode includes: forming the quantum dot light-emitting layer in the opening by using an inkjet printing process.
  • the method for manufacturing a quantum dot light-emitting structure further includes: forming a hole transport layer in the opening and on the side of the quantum dot light-emitting layer away from the first electrode by using an evaporation process , Hole injection layer and second electrode.
  • the manufacturing method of the quantum dot light-emitting structure provided by an embodiment of the present disclosure further includes: roughening the surface of the electron transport layer close to the quantum dot light-emitting layer by plasma etching or sandblasting.
  • the range of the root mean square surface roughness of the latter electron transport layer close to the quantum dot light-emitting layer is about 5-10 nanometers.
  • At least one embodiment of the present disclosure further provides a method for manufacturing a quantum dot light-emitting structure, which includes: forming an electrode; forming an electron transport layer on the electrode by using a sputtering process; A quantum dot light-emitting layer is formed on one side, and the electron transport layer includes a doped zinc oxide film formed by sputtering.
  • forming the electron transport layer on the electrode by a sputtering process includes: the flow rate of argon gas is in the range of about 30-50 sccm, Under the condition of a sputtering power of about 90-110 W, a zinc oxide target is used to form a zinc oxide film on the electrode.
  • forming the electron transport layer on the electrode by using a sputtering process includes: forming a first sub-electron transport layer and a second sub-electron transport layer by using a sputtering process.
  • a sub-electron transport layer, the second sub-electron transport layer is located on the side of the first sub-electron transport layer close to the quantum dot light-emitting layer, and the conduction band bottom energy level of the second sub-electron transport layer is greater than the The bottom energy level of the conduction band of the first electron transport layer is smaller than the bottom energy level of the conduction band of the quantum dot light-emitting layer.
  • the first electron transport sublayer includes a zinc oxide film
  • the second electron transport sublayer includes a doped zinc oxide film
  • the doping concentration of the second sub-electron transport layer is from the second sub-electron transport layer close to the first sub-electron transport layer.
  • One side gradually increases to the side of the second sub-electron transport layer close to the quantum dot light-emitting layer.
  • forming the second sub-electron transport layer by a sputtering process includes: placing the first sub-electron transport layer close to the quantum dot light-emitting layer A plurality of sub-doped electron transport layers are formed by using different doping concentrations on one side, the second sub-electron transport layer is formed by a plurality of sub-doped electron transport layers, and the doping concentration of the plurality of sub-doped electron transport layers varies from The first sub-electron transport layer gradually increases in the direction from the quantum dot light-emitting layer.
  • Fig. 1 is a schematic diagram of a quantum dot light emitting structure according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of another quantum dot light-emitting structure according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of another quantum dot light-emitting structure according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of another quantum dot light-emitting structure according to an embodiment of the present disclosure.
  • FIG. 5 is a comparison diagram of the light-emitting brightness of different quantum dot light-emitting structures provided by the present disclosure as a function of the current density curve;
  • FIG. 6 is a comparison diagram of the light-emitting brightness of different quantum dot light-emitting structures provided by the present disclosure as a function of voltage;
  • FIG. 7 is a schematic diagram of another quantum dot light-emitting structure provided by an embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of another quantum dot light-emitting structure provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of another quantum dot light-emitting structure provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of another quantum dot light-emitting structure provided by an embodiment of the present disclosure.
  • FIG. 11 is a comparison diagram of the current efficiency versus voltage curve of different quantum dot light-emitting structures provided by the present disclosure
  • FIG. 12 is a schematic diagram of another quantum dot light-emitting structure provided by an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of an array substrate according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of another array substrate according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of a display device according to an embodiment of the present disclosure.
  • AMQLEDs active quantum dot light-emitting diodes
  • AMQLEDs active quantum dot light-emitting diodes
  • the quantum efficiency of AMQLED products has continued to increase, basically reaching the level of industrialization.
  • quantum dot light-emitting diodes are generally manufactured by printing technology or printing methods, which can effectively increase the utilization rate of materials and become an effective way to prepare large areas.
  • the quantum dot light-emitting diode adopts an inverted structure
  • the quantum dot light-emitting diode is prepared by an inkjet printing process
  • the pixel definition layer is prepared in advance before each functional film layer of the light-emitting element is deposited.
  • the ink of each functional film layer of the light-emitting element has the problem of climbing upwards, even climbing to the top platform area of the pixel definition layer, which greatly affects the film morphology and thickness uniformity of each functional film layer, and then It will have a great impact on the performance and uniformity of the device, and affect the mass production of quantum dot light-emitting diodes.
  • the above-mentioned problems are more prominent.
  • the hole injection layer and the hole transport layer before the quantum dot light-emitting layer also have the problem of unevenness.
  • the uneven degree of each functional film layer is accumulated layer by layer, which will further affect the light emission of the quantum dot.
  • the uniformity of the layer and the final formed light-emitting element is not limited to, but not limited to
  • the electron transport layer can be formed by a sputtering process (for example, a zinc oxide film formed by sputtering), the problem of uneven film thickness during mass production can be solved.
  • the zinc oxide (ZnO) electron transport layer is formed by a sputtering process
  • the formed thin-film ZnO has a higher mobility, so more electrons are injected, and the conduction band bottom energy level (or LUMO energy level) is deeper, which is incompatible with the quantum
  • the bottom energy level of the conduction band of the point light-emitting layer is quite different, which makes it difficult for injected electrons to be injected into the quantum dot light-emitting layer from the electron transport layer, thereby affecting the luminous efficiency of the quantum dot light-emitting diode.
  • inventions of the present disclosure provide a quantum dot light-emitting structure and a manufacturing method thereof, an array substrate, and a display device.
  • the quantum dot light-emitting structure includes a quantum dot light-emitting layer, an electrode, and an electron transport layer between the quantum dot light-emitting layer and the electrode; the quantum dot light-emitting structure also includes an electron blocking layer, which is located in the electron transport layer. Therefore, by adding an electron blocking layer in the electron transport layer, the electrons injected into the electron transport layer from the electrode can be reduced, and the carrier concentration in the quantum dot light-emitting layer can be balanced, and the luminous efficiency of the quantum dot light-emitting structure can be improved .
  • FIG. 1 is a schematic diagram of a quantum dot light-emitting structure according to an embodiment of the present disclosure.
  • the quantum dot light emitting structure 100 includes a quantum dot light emitting layer 110, a first electrode 140, and an electron transport layer 120 located between the quantum dot light emitting layer 110 and the first electrode 140; the quantum dot light emitting structure 100 also The electron blocking layer 130 is included in the electron transport layer 120.
  • the electrons injected from the electrode into the electron transport layer can be reduced when the electron transport layer has a higher mobility, and thereby
  • the carrier concentration in the quantum dot light-emitting layer can be balanced, and the luminous efficiency of the quantum dot light-emitting structure can be improved.
  • the electron blocking layer is arranged in the electron transport layer, the turn-on voltage can be effectively reduced.
  • the electron transport layer 120 includes two sub-electron transport layers 1200, and the electron blocking layer 130 is located between the two sub-electron transport layers 1200.
  • the embodiments of the present disclosure include but are not limited thereto, and the electron blocking layer may also be formed in the electron transport layer in other ways.
  • FIG. 2 is a schematic diagram of another quantum dot light-emitting structure according to an embodiment of the present disclosure.
  • the electron transport layer 120 includes N+1 sub-electron transport layers 1200
  • the electron blocking layer 130 includes N sub-electron blocking layers 1300
  • the N sub-electron blocking layers 1300 are respectively sandwiched between the N+1 sub-electron transport layers 1200. between.
  • the N sub-electron blocking layers 1300 included in the electron blocking layer 130 may be electron blocking layers made of different materials.
  • one of the two sub-electron blocking layers 1300 may be a sub-electron blocking layer made of aluminum oxide (Al 2 O 3 ), and the other may be a tantalum oxide (TaO x )
  • the electron blocking layer of the material may be preferably be electron blocking layers made of the same material. In this case, the complexity of the manufacturing process can also be reduced, and the control and implementation are facilitated. .
  • the aforementioned electron transport layer 120 may include a zinc oxide (ZnO) film formed by sputtering.
  • the zinc oxide film produced by the spin coating method usually has impurities (impurities are organic ligands, etc.); however, because the zinc oxide film formed by the sputtering process is an amorphous or polycrystalline film, it is formed by sputtering
  • the zinc oxide film has no impurities, and has high density and flatness. Therefore, the electron transport layer 120 can have high density and flatness, which is beneficial to improve the flatness of the quantum dot light-emitting layer formed later, and further improve the flatness and light-emitting performance of the finally formed quantum dot light-emitting structure. That is to say, the quantum dot light-emitting structure can have higher flatness and light-emitting performance, while having higher light-emitting efficiency.
  • each sub-electron transport layer 1200 is a zinc oxide thin film formed by sputtering.
  • the LUMO energy level of ordinary ZnO nanoparticles is between -4.2 eV and -4.0 eV, while the LUMO energy level of the ZnO film produced by the sputtering process is approximately -4.8 to -4.6 eV. It can be seen that the LUMO energy level of the ZnO film produced by the sputtering process is deeper, which is quite different from the LUMO energy level of the quantum dot light-emitting layer.
  • the bottom energy level of the conduction band of the electron blocking layer 130 is greater than the bottom energy level of the conduction band of the quantum dot light-emitting layer 110, thereby reducing the amount of energy injected from the electrode into the electron transport layer when the electron transport layer has a higher mobility. electronic.
  • the conduction bottom energy level of the electron blocking layer is greater than (or shallower) than the conduction band bottom energy level of the electron transport layer.
  • the material of the electron blocking layer 130 includes at least one of aluminum oxide, tantalum oxide, and hafnium oxide.
  • the embodiments of the present disclosure include but are not limited thereto, and the material of the electron blocking layer may also be other materials.
  • the electron transport layer 120 is in direct contact with the quantum dot light-emitting layer 110.
  • the thickness of the electron blocking layer 130 in a direction perpendicular to the base substrate 110 ranges from 0.5 nanometers to 5 nanometers.
  • the thickness of the electron blocking layer 130 in a direction perpendicular to the base substrate 110 may be about 1-2 nanometers.
  • the quantum light-emitting structure may have better luminous efficiency.
  • the aforementioned thickness refers to the sum of the thicknesses of the plurality of sub-electron blocking layers.
  • the above-mentioned "about 1-2 nanometers" means that the lower limit of the thickness of the electron blocking layer is within 10% of the error range of 5 nanometers, and the upper limit of the thickness of the electron blocking layer is 10 nanometers. Within 10% of the error range.
  • the range of the root mean square surface roughness RMS of the electron transport layer close to the quantum dot light emitting layer is about 5-10 nanometers.
  • the surface roughness of the electron transport layer close to the quantum dot light-emitting layer is relatively high, thereby increasing the contact between the quantum dots in the quantum dot light-emitting layer and the electron transport layer, and avoiding the accumulation of nano-particle quantum dots on the smooth zinc oxide ( ZnO) surface, so as to avoid the small contact area and avoid the leakage phenomenon caused by the direct contact between the inverted electron transport layer and the subsequent hole transport layer.
  • the above-mentioned “approximately 5-10 nanometers” means that the lower limit of the root mean square surface roughness RMS range is within 10% of the error range of 5 nanometers, and the root mean square surface roughness RMS is The upper limit of the range is within a 10% error range of 10 nanometers.
  • plasma etching or sandblasting can be used to roughen the surface of the electron transport layer close to the quantum dot light-emitting layer.
  • FIG. 3 is a schematic diagram of another quantum dot light-emitting structure according to an embodiment of the present disclosure.
  • the quantum dot light emitting structure 100 includes a quantum dot light emitting layer 110, a first electrode 140, and an electron transport layer 120 located between the quantum dot light emitting layer 110 and the first electrode 140; the quantum dot light emitting structure 100 also The electron blocking layer 130 is included between the electron transport layer 120 and the first electrode 140.
  • the electrons injected from the electrode into the electron transport layer can also be reduced when the electron transport layer has a high mobility, thereby balancing the quantum
  • the carrier concentration in the point light-emitting layer improves the luminous efficiency of the quantum dot light-emitting structure.
  • FIG. 4 is a schematic diagram of another quantum dot light-emitting structure according to an embodiment of the present disclosure.
  • the quantum dot light emitting structure 100 includes a quantum dot light emitting layer 110, a first electrode 140, and an electron transport layer 120 located between the quantum dot light emitting layer 110 and the first electrode 140; the quantum dot light emitting structure 100 also It includes an electron blocking layer 130, which is located between the electron transport layer 120 and the quantum dot light-emitting layer 110.
  • the electrons injected from the electrode into the electron transport layer can also be reduced to a certain extent, thereby balancing the quantum dot light-emitting layer
  • the carrier concentration of the quantum dot improves the luminous efficiency of the quantum dot light-emitting structure.
  • FIG. 5 is a comparison diagram of the light-emitting brightness of different quantum dot light-emitting structures provided by the present disclosure as a function of current density curves.
  • the quantum dot light-emitting structure provided by Example 1 includes a silver (Ag) electrode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer (QD), a ZnO electron transport layer, and an ITO electrode stacked in sequence; silver
  • the thickness of the electrode is 150 nanometers; the thickness of the hole injection layer is 5 nanometers, and the material of the hole injection layer is HAT-CN (2,3,6,7,10,11-hexacyano-1,4,5, 8,9,12-hexaazatriphenylene) film;
  • the hole transport layer includes a first sub-hole transport layer and a second sub-hole transport layer, the first sub-hole transport layer is located in the second sub-hole transport layer
  • the layer is close to the side of the quantum dot light-emitting layer, the thickness of the first sub-hole transport layer is 10 nanometers, and the thickness of the second sub-hole transport layer is 30 nanometers; the above-mentioned silver electrode, hole injection layer
  • the argon flow is 40sccm, the power is 100W, and the sputtering time is 25 minutes; the thickness of the ITO electrode is 70 nanometers, and the ITO electrode It can be made by sputtering process, and sputtering can use ITO target, the flow of argon gas is 40sccm, the power is 100W, and the sputtering time is 20 minutes.
  • the quantum dot light-emitting structure provided in Example 2 includes a silver (Ag) electrode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer (QD), an electron blocking layer, a ZnO electron transport layer, and ITO electrode;
  • the thickness of the silver electrode is 150 nanometers;
  • the thickness of the hole injection layer is 5 nanometers, the material of the hole injection layer is HAT-CN (2,3,6,7,10,11-hexacyano-1, 4,5,8,9,12-hexaazatriphenylene) film;
  • the hole transport layer includes a first sub-hole transport layer and a second sub-hole transport layer, the first sub-hole transport layer is located in the second The sub-hole transport layer is close to the side of the quantum dot light-emitting layer, the thickness of the first sub-hole transport layer is 10 nanometers, and the thickness of the second sub-hole transport layer is 30 nanometers;
  • Example 2 the Al 2 O 3 electron blocking layer is disposed between the ZnO electron transport layer and the quantum dot light-emitting layer. It can be seen that the quantum dot light-emitting structure provided in Example 2 is the quantum dot light-emitting structure provided in FIG. 4.
  • the quantum dot light-emitting structure provided by Example 3 includes a silver (Ag) electrode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer (QD), a ZnO electron transport layer, an electron blocking layer and ITO electrode;
  • the thickness of the silver electrode is 150 nanometers;
  • the thickness of the hole injection layer is 5 nanometers, the material of the hole injection layer is HAT-CN (2,3,6,7,10,11-hexacyano-1, 4,5,8,9,12-hexaazatriphenylene) film;
  • the hole transport layer includes a first sub-hole transport layer and a second sub-hole transport layer, the first sub-hole transport layer is located in the second The sub-hole transport layer is close to the side of the quantum dot light-emitting layer, the thickness of the first sub-hole transport layer is 10 nanometers, and the thickness of the second sub-hole transport layer is 30 nanometers;
  • the ZnO electron transmission layer can be made by sputtering process.
  • Sputtering can use ZnO target.
  • the argon flow is 40sccm, the power is 100W, and the sputtering time is 25 minutes;
  • the material of the electron barrier layer can be It is aluminum oxide (Al 2 O 3 ), the thickness of the electron blocking layer is 2 nanometers, the electron blocking layer can be made by sputtering process, and the sputtering can use aluminum oxide target,
  • the argon flow is 40sccm, the power is 100W, and the sputtering
  • the time is 1 minute; the thickness of the ITO electrode is 70 nanometers, the ITO electrode can be made by sputtering process, and the sputtering can be made with ITO target, the argon flow is 40sccm, the power is 100W, and the sputtering time is 20 minutes.
  • the Al 2 O 3 electron blocking layer is disposed between the ZnO electron transport
  • the quantum dot light-emitting structure provided in Example 2 is Luminous brightness has been improved.
  • the current density is 400 mA/cm 2
  • the luminous brightness of the quantum dot light-emitting structure provided in Example 1 is about 500 cd/m 2
  • the luminous brightness of the quantum dot light-emitting structure provided in Example 2 is about 1200 cd/m 2 .
  • the improvement of the light-emitting brightness of the quantum dot light-emitting structure provided in Example 2 is not very high.
  • the quantum dot light-emitting structure provided in Example 1 by adding an electron blocking layer between the electron transport layer and the electrode, the light-emitting brightness of the quantum dot light-emitting structure provided in Example 3 is greatly improved.
  • the current density is 400 mA/cm 2
  • the luminous brightness of the quantum dot light-emitting structure provided in Example 3 is approximately 3000 cd/m 2 , and the luminous brightness is increased by nearly 6 times.
  • each of the above-mentioned quantum dot light-emitting structures also includes other necessary functional film layers, which will not be repeated in the embodiments of the present disclosure.
  • a quantum dot light emitting structure provided in the third example at a current density of 400mA / cm 2 is greater than 3000cd / m 2.
  • FIG. 6 is a comparison diagram of the light-emitting brightness of different quantum dot light-emitting structures provided by the present disclosure as a function of voltage.
  • the quantum dot light-emitting structure provided by Example 4 includes a silver (Ag) electrode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer (QD), a ZnO electron transport layer, an electron blocking layer and ITO electrode;
  • the thickness of the silver electrode is 150 nanometers;
  • the thickness of the hole injection layer is 5 nanometers, the material of the hole injection layer is HAT-CN (2,3,6,7,10,11-hexacyano-1, 4,5,8,9,12-hexaazatriphenylene) film;
  • the hole transport layer includes a first sub-hole transport layer and a second sub-hole transport layer, the first sub-hole transport layer is located in the second The sub-hole transport layer is close to the side of the quantum dot light-emitting layer, the thickness of the first sub-hole transport layer is 10 nanometers, and the thickness of the second sub-hole transport layer is 30 nanometers;
  • the ZnO electron transmission layer can be made by sputtering process.
  • Sputtering can use ZnO target.
  • the argon flow is 40sccm, the power is 100W, and the sputtering time is 25 minutes;
  • the material of the electron barrier layer can be It is aluminum oxide (Al 2 O 3 ), the thickness of the electron blocking layer is 2 nanometers, the electron blocking layer can be made by sputtering process, and the sputtering can use aluminum oxide target,
  • the argon flow is 40sccm, the power is 100W, and the sputtering
  • the time is 1 minute; the thickness of the ITO electrode is 70 nanometers, the ITO electrode can be made by sputtering process, and the sputtering can be made with ITO target, the argon flow is 40sccm, the power is 100W, and the sputtering time is 20 minutes.
  • the Al 2 O 3 electron blocking layer is disposed between the ZnO electron transport
  • the quantum dot light-emitting structure provided by Example 5 includes a silver (Ag) electrode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer (QD), a first sub-ZnO electron transport layer, and electrons arranged in sequence.
  • the above-mentioned silver electrode, hole injection layer and hole transport layer can all be made by evaporation process; the material of the quantum dot light-emitting layer can be cadmium selenide (CdSe), the thickness of the quantum dot light-emitting layer is 30
  • the quantum dot light-emitting structure provided by Example 6 includes a silver (Ag) electrode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer (QD), a first sub-ZnO electron transport layer, and a first sub-ZnO electron transport layer arranged in sequence.
  • the thickness of the silver electrode is 150 nanometers;
  • the thickness of the hole injection layer is 5 nanometers, HAT-CN (2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene) film of the material of the hole injection layer; holes
  • the transport layer includes a first sub-hole transport layer and a second sub-hole transport layer.
  • the first sub-hole transport layer is located on the side of the second sub-hole transport layer close to the quantum dot light-emitting layer.
  • the first sub-hole transport layer The thickness of the second hole transport layer is 10 nanometers, and the thickness of the second hole transport layer is 30 nanometers; the above-mentioned silver electrode, hole injection layer and hole transport layer can all be made by evaporation process; the material of the quantum dot light-emitting layer can be selenium Cadmium (CdSe), the thickness of the quantum dot light-emitting layer is 30 nanometers, and the quantum dot light-emitting layer can be made by spin coating; the thickness of the first sub-ZnO electron transport layer is 50 nanometers, and the thickness of the second sub-ZnO electron transport layer is 50 nanometers, the thickness of the third sub-ZnO electron transport layer is 50 nanometers.
  • CdSe selenium Cadmium
  • the first sub-ZnO electron transport layer and the second sub-ZnO electron transport layer can be made by sputtering process.
  • Sputtering can use ZnO target material, argon
  • the gas flow is 40sccm, the power is 100W, and the sputtering time is 12.5 minutes;
  • the material of the first sub-electron blocking layer and the second sub-electron blocking layer can be aluminum oxide (Al 2 O 3 ), the thickness of the first sub-electron blocking layer
  • the thickness of the second sub-electron blocking layer is 1 nanometer, and the first sub-electron blocking layer and the second sub-electron blocking layer can be made by sputtering process.
  • the sputtering can use aluminum oxide target material, and the argon flow rate is 40 sccm ,
  • the power is 100W, the sputtering time is 0.5 minutes; the thickness of the ITO electrode is 70 nanometers, the ITO electrode can be made by sputtering process, the sputtering can use ITO target, the argon flow is 40sccm, the power is 100W, and the sputtering time For 20 minutes.
  • two Al 2 O 3 electron blocking layers are arranged between three ZnO electron transport layers. It can be seen that the quantum dot light-emitting structure provided in Example 6 is the quantum dot light-emitting structure provided in FIG. 2.
  • the quantum dot light-emitting structure provided in Example 5 and Example 6 is not only the same It has higher luminous brightness under voltage, and also has lower turn-on voltage. And, as shown in Figure 6, compared to the quantum dot light-emitting structure provided in Example 5, by splitting the single-layer electron blocking layer into several thinner electron blocking layers, and placing them in multiple sub-electron transport layers, Thereby, the turn-on voltage can be further reduced.
  • the light-emitting brightness of the quantum dot light-emitting structure provided in Example 4 at a voltage of about 8V is greater than 200cd/m 2
  • the light-emitting brightness of Example 5 at a voltage of about 6.5V may be greater than 200cd/m 2
  • Example 6 is about
  • the luminous brightness under the voltage of 6.2V can be greater than 200cd/m 2
  • the quantum dot light-emitting structure provided in Example 6 has a light-emitting brightness greater than 500 cd/m 2 under a voltage of 7V.
  • FIG. 7 is a schematic diagram of another quantum dot light-emitting structure provided by an embodiment of the disclosure.
  • the electron transport layer 120 may include a first sub-electron transport layer 121 and a second sub-electron transport layer 122.
  • the second sub-electron transport layer 122 is located on the first sub-electron transport layer 121 near the quantum dot light-emitting layer 110.
  • the bottom energy level of the conduction band of the second electron transport sub layer 122 is greater than the bottom energy level of the conduction band of the first electron transport sub layer 121 and is less than the bottom energy level of the conduction band of the quantum dot light-emitting layer 110.
  • the bottom energy level of the conduction band of the second electron sub-transport layer 122 is shallower than the bottom energy level of the conduction band of the first electron sub-transport layer 121 and deeper than that of the quantum dot light-emitting layer 110.
  • the quantum dot light-emitting structure 100 further includes an electron blocking layer 130 located between the first sub-electron transport layer 121 and the second sub-electron transport layer 122. It should be noted that the bottom energy level of the conduction band mentioned above is the LUMO (lowest unoccupied molecular orbital) energy level.
  • the LUMO energy level of the second sub-electron transport layer can be closer to the LUMO energy level of the quantum dot light-emitting layer, so that energy level matching can be better achieved, which is beneficial to improve the luminous efficiency of the quantum dot light-emitting structure.
  • the quantum dot light-emitting structure also includes an electron blocking layer located between the first sub-electron transport layer and the second sub-electron transport layer, the quantum dot light-emitting structure achieves better energy level matching and higher luminous efficiency.
  • the quantum dot light-emitting structure achieves better energy level matching and higher luminous efficiency.
  • the electrons injected into the electron transport layer from the electrode can be reduced when the electron transport layer has a higher mobility.
  • the carrier concentration in the quantum dot light-emitting layer can be balanced, and the luminous efficiency of the quantum dot light-emitting structure can be improved.
  • the first sub-electron transport layer 121 is a zinc oxide film formed by sputtering
  • the second sub-electron transport layer 122 is a doped zinc oxide film formed by sputtering. Therefore, the bottom energy level of the conduction band of the second electron sub-transport layer 122 can be greater than the bottom energy level of the first sub-electron transport layer 121 by forming the second sub-electron transport layer 122 as a doped zinc oxide thin film. It is smaller than the bottom energy level of the conduction band of the quantum dot light-emitting layer 110.
  • the zinc oxide film formed by the sputtering process is an amorphous or polycrystalline film, the zinc oxide film or the doped zinc oxide film formed by the sputtering has high density and flatness.
  • the doping material of the second sub-electron transport layer 122 may include at least one of Mg (magnesium), Al (aluminum), Zr (zirconium), Hf (hafnium), and Y (yttrium).
  • the doping material of the second sub-electron transport layer 122 is Mg, and the mole percentage of Mg in the second sub-electron transport layer 122 is 1%-20%.
  • the doping concentration of Mg in the second electron transport layer can be 1-5%; when the quantum dot light-emitting layer is a green-emitting quantum dot When the light-emitting layer, the doping concentration of Mg in the second sub-electron transport layer is 5-10%; when the quantum dot light-emitting layer is a blue-emitting quantum dot light-emitting layer, the doping concentration of Mg in the second sub-electron transport layer It is 10-20%.
  • the doping concentration of the second sub-electron transport layer 122 close to the first sub-electron transport layer 121 is lower than the doping concentration of the second sub-electron transport layer 122 close to the quantum dot light-emitting layer 110. In other words, the doping concentration of the second sub-electron transport layer may gradually change.
  • the LUMO energy level of the doped ZnO film will increase; by setting the doping concentration of the second sub-electron transport layer close to the first sub-electron transport layer to be less than the second sub-electron transport.
  • the doping concentration of the part of the layer close to the quantum dot light-emitting layer 110 can better achieve energy level matching, which is further conducive to improving the luminous efficiency of the quantum dot light-emitting structure.
  • the doping concentration of the second sub-electron transport layer 122 ranges from the side of the second sub-electron transport layer 122 close to the first sub-electron transport layer 121 to the second sub-electron transport layer 122 close to the quantum dot light-emitting layer 110. Gradually increase on one side.
  • the first sub-electron transport layer 121 and the second sub-electron transport layer 122 may both be doped zinc oxide films formed by sputtering, and the doping concentration of the first sub-electron transport layer 121 is less than that of the second sub-electron transport layer.
  • the doping concentration of the electron transport layer 122 can be made smaller than the doping concentration of the second sub-electron transport layer 122, so that the bottom energy level of the conduction band of the second sub-electron transport layer 122 is greater than that of the first sub-electron transport layer.
  • the bottom energy level of the conduction band of the layer 121 is smaller than the bottom energy level of the conduction band of the quantum dot light-emitting layer 110.
  • the first sub-electron transport layer 121 and the second sub-electron transport layer 122 are both doped zinc oxide films formed by sputtering
  • the first sub-electron transport layer 121 and the second sub-electron transport layer 122 may Different doping materials are used to make the bottom energy level of the conduction band of the second sub-electron transport layer 122 greater than the bottom energy level of the conduction band of the first sub-electron transport layer 121 and less than that of the quantum dot light-emitting layer 110 .
  • the quantum dot light emitting structure 100 may further include a hole transport layer 150, a hole injection layer 160 and a second electrode 170.
  • the first electrode 140 may be a cathode
  • the second electrode 170 may be an anode.
  • FIG. 8 is a schematic diagram of another quantum dot light-emitting structure provided by an embodiment of the disclosure.
  • the electron transport layer 120 may include a first sub-electron transport layer 121 and a second sub-electron transport layer 122.
  • the second sub-electron transport layer 122 is located on the first sub-electron transport layer 121 near the quantum dot light-emitting layer 110.
  • the bottom energy level of the conduction band of the second electron sub-transport layer 122 is greater than the bottom energy level of the conduction band of the first sub-electron transport layer 121 and is less than the bottom energy level of the conduction band of the quantum dot light-emitting layer 110.
  • the second sub-electron transport layer 122 includes a plurality of sub-doped electron transport layers 1220, and the doping concentration of the plurality of sub-doped electron transport layers 1220 gradually increases from the first sub-electron transport layer 121 to the quantum dot light-emitting layer 110.
  • the second sub-electron transport layer 122 includes two sub-doped electron transport layers 1220, and the sub-doped electron transport layer 1220 close to the first sub-electron transport layer 121 has a lower doping concentration than the sub-doped sub-doped layer close to the quantum dot light-emitting layer 110.
  • the doping concentration of the electron transport layer 1220 includes a plurality of sub-doped electron transport layers 1220, and the doping concentration of the plurality of sub-doped electron transport layers 1220 gradually increases from the first sub-electron transport layer 121 to the quantum dot light-emitting layer 110.
  • the second sub-electron transport layer 122 includes two sub-
  • the quantum dot light-emitting structure provided in this example, since the doping concentration of the multiple sub-doped electron transport layers gradually increases from the first sub-electron transport layer to the quantum dot light-emitting layer, as the doping concentration increases, the sub-doped electron transport layers The LUMO energy level of the doped electron transport layer will increase; by gradually increasing the doping concentration of the multiple sub-doped electron transport layers from the first sub-electron transport layer to the quantum dot light-emitting layer, the energy can be better achieved Level matching is further conducive to improving the luminous efficiency of the quantum dot light-emitting structure.
  • the position of the electron blocking layer is not limited to between the first sub-electron transport layer and the second sub-electron transport layer.
  • the electron blocking layer can also be disposed between the second sub-electron transport layer. middle.
  • the electron blocking layer 130 is disposed within the second sub-electron transport layer 122, for example, the electron blocking layer 130 is disposed between two sub-doped electron transport layers 1220.
  • the quantum dot light-emitting structure can also increase the luminous efficiency and current efficiency, and can also reduce the turn-on voltage.
  • the first sub-electron transport layer 121 and the second sub-electron transport layer 122 may both be doped zinc oxide films formed by sputtering, and the doping concentration of the first sub-electron transport layer 121 is less than that of the second sub-electron transport layer.
  • the doping concentration of the electron transport layer 122 can be made smaller than the doping concentration of the second sub-electron transport layer 122, so that the bottom energy level of the conduction band of the second sub-electron transport layer 122 is greater than that of the first sub-electron transport layer.
  • the bottom energy level of the conduction band of the layer 121 is smaller than the bottom energy level of the conduction band of the quantum dot light-emitting layer 110.
  • the first sub-electron transport layer 121 and the second sub-electron transport layer 122 are both doped zinc oxide films formed by sputtering
  • the first sub-electron transport layer 121 and the second sub-electron transport layer 122 may Different doping materials are used to make the bottom energy level of the conduction band of the second sub-electron transport layer 122 greater than the bottom energy level of the conduction band of the first sub-electron transport layer 121 and less than that of the quantum dot light-emitting layer 110 .
  • FIG. 9 is a schematic diagram of another quantum dot light-emitting structure according to an embodiment of the present disclosure.
  • the electron blocking layer 130 includes a first sub-electron blocking layer 131 and a second sub-electron blocking layer 132.
  • the first electron blocking layer 131 is located between the first sub-electron transport layer 121 and the second sub-electron transport layer 122.
  • the second sub-electron blocking layer 132 is located between the two doped electron transport layers 1220 in the second sub-electron transport layer 122.
  • the quantum dot light-emitting structure achieves better energy level matching and higher luminous efficiency, and at the same time passes between the first sub-electron transport layer and the second sub-electron transport layer and in the second sub-electron transport layer.
  • Adding an electron blocking layer between the doped electron transport layer can effectively reduce the electrons injected into the electron transport layer from the electrode when the electron transport layer has a high mobility, thereby balancing the carrier concentration in the quantum dot light-emitting layer , To improve the luminous efficiency of the quantum dot light-emitting structure.
  • the aforementioned first sub-electron blocking layer 131 and the second sub-electron blocking layer 132 may be electron blocking layers made of different materials.
  • the first sub-electron blocking layer 131 may be a sub-electron blocking layer of aluminum oxide (Al 2 O 3 ) material
  • the second sub-electron blocking layer 132 may be a sub-electron blocking layer of tantalum oxide (TaO x ) material.
  • the embodiments of the present disclosure include but are not limited to this.
  • the first sub-electron blocking layer and the second sub-electron blocking layer may be electron blocking layers made of the same material. In this case, the complexity of the manufacturing process can be reduced and the control is convenient. And realization.
  • the electron blocking layer may also include M sub-electron blocking layers; one of the M sub-electron blocking layers It can be arranged between the first sub-electron transport layer and the second sub-electron transport layer, and the other M-1 sub-electron blocking layers can be sandwiched between M sub-electron blocking layers, thereby effectively reducing the injection of electrons into the electron transport layer from the electrode.
  • the electrons can further balance the carrier concentration in the quantum dot light-emitting layer and improve the luminous efficiency of the quantum dot light-emitting structure.
  • FIG. 10 is a schematic diagram of another quantum dot light-emitting structure according to an embodiment of the present disclosure.
  • the quantum dot light emitting structure 100 includes a quantum dot light emitting layer 110, a first electrode 140, and an electron transport layer 120 located between the quantum dot light emitting layer 110 and the first electrode 140.
  • the electron transport layer 120 includes a first sub-electron transport layer 121 and a second sub-electron transport layer 122, and the second sub-electron transport layer 122 is located on the side of the first sub-electron transport layer 121 close to the quantum dot light-emitting layer 110.
  • the bottom energy level of the conduction band of the second electron transport sub layer 122 is greater than the bottom energy level of the conduction band of the first electron transport sub layer 121 and is less than the bottom energy level of the conduction band of the quantum dot light-emitting layer 110. That is, the bottom energy level of the conduction band of the second electron sub-transport layer 122 is shallower than the bottom energy level of the conduction band of the first electron sub-transport layer 121 and deeper than that of the quantum dot light-emitting layer 110. It should be noted that the bottom energy level of the conduction band mentioned above is the LUMO (lowest unoccupied molecular orbital) energy level.
  • FIG. 11 is a comparison diagram of the current efficiency versus voltage curve of different quantum dot light-emitting structures provided by the present disclosure.
  • the quantum dot light-emitting structure provided by Example 7 includes a silver (Ag) electrode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer (QD), a ZnO electron transport layer, and an ITO electrode arranged in sequence; silver
  • the thickness of the electrode is 150 nanometers; the thickness of the hole injection layer is 5 nanometers, and the material of the hole injection layer is HAT-CN (2,3,6,7,10,11-hexacyano-1,4,5, 8,9,12-hexaazatriphenylene) film;
  • the hole transport layer includes a first sub-hole transport layer and a second sub-hole transport layer, the first sub-hole transport layer is located in the second sub-hole transport layer
  • the layer is close to the side of the quantum dot light-emitting layer, the thickness of the first sub-hole transport layer is 10 nanometers, and the thickness of the second sub-hole transport layer is 30 nanometers; the above-mentioned silver electrode, hole injection layer
  • the sputtering can use ZnO target.
  • the argon flow is 40sccm, the power is 100W, and the sputtering time is 25 minutes.
  • the LUMO energy of the produced ZnO electron transport layer The level is -4.8eV; the thickness of the ITO electrode is 70 nanometers.
  • the ITO electrode can be made by sputtering.
  • the sputtering can be made with ITO target.
  • the argon flow is 40sccm, the power is 100W, and the sputtering time is 20 minutes.
  • the quantum dot light-emitting structure provided by Example 8 includes a silver (Ag) electrode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer (QD), a second sub-ZnO electron transport layer, and a second sub-ZnO electron transport layer, which are sequentially arranged.
  • a ZnO electron transport layer and ITO electrode the thickness of the silver electrode is 150 nanometers; the thickness of the hole injection layer is 5 nanometers, the material of the hole injection layer is HAT-CN(2,3,6,7,10,11 -Hexacyano-1,4,5,8,9,12-hexaazatriphenylene) film; the hole transport layer includes a first sub-hole transport layer and a second sub-hole transport layer, the first sub-hole transport layer The hole transport layer is located on the side of the second sub-hole transport layer close to the quantum dot light-emitting layer, the thickness of the first sub-hole transport layer is 10 nanometers, and the thickness of the second sub-hole transport layer is 30 nanometers; the above-mentioned silver Electrodes, hole injection layer and hole transport layer can all be made by evaporation process; the material of the quantum dot light-emitting layer can be cadmium selenide (CdSe), the thickness of the quantum dot light-emitting layer is 30 nanometers, and
  • Sputtering can be co-sputtered with ZnO and MgO targets, and the argon flow rate is 40sccm ,
  • the power is 100W
  • the sputtering time is 5min
  • the LUMO energy level test of the second sub-ZnO electron transport layer is -4.6eV
  • the thickness of the second sub-ZnO electron transport layer is 80 nanometers
  • the second sub-ZnO electron transport layer can be sputtered ZnO target material can be used for sputtering.
  • the argon flow is 40sccm
  • the power is 100W
  • the sputtering time is 20 minutes.
  • the LUMO energy level of the produced ZnO electron transport layer is -4.8eV; the thickness of the ITO electrode is 70 nm, ITO electrode can be made by sputtering process, sputtering can use ITO target, argon flow is 40sccm, power is 100W, and sputtering time is 20 minutes.
  • the LUMO energy level of the second sub-ZnO electron transport layer formed by sputtering in the quantum dot light-emitting structure provided in Example 8 is greater than the LUMO energy level of the first sub-ZnO electron transport layer. It can be seen from FIG. 11
  • the electron transport layer includes a first sub-electron transport layer and a second sub-electron transport layer by setting, and the conduction band bottom energy level of the second sub-electron transport layer Greater than the conduction band bottom energy level of the first sub-electron transport layer and less than the conduction band bottom energy level of the quantum dot light-emitting layer, the quantum dot light-emitting structure provided in Example 8 has higher current efficiency under the same voltage.
  • the current efficiency of the quantum dot light-emitting structure provided in Example 7 is about 1 cd/A, and the current efficiency of the quantum dot light-emitting structure provided in Example 8 is about 2 cd/A;
  • the current efficiency of the quantum dot light-emitting structure provided in Example 7 is about 2 cd/A, and the current efficiency of the quantum dot light-emitting structure provided in Example 8 is about 4 cd/A. It can be seen that the current efficiency of the quantum dot light emitting structure provided in Example 8 is twice that of the quantum dot light emitting structure provided in Example 7.
  • the electron blocking layer 130 is provided between the first sub-electron transport layer 121 and the second sub-electron transport layer 122. Therefore, the quantum dot light-emitting structure can have higher luminous efficiency and current efficiency, and also has a lower turn-on voltage. It should be noted that the LUMO energy level of the electron blocking layer is greater than the LUMO energy levels of the first sub-electron transport layer and the second sub-electron transport layer, which can reduce the injection of electrons from the electrode when the electron transport layer has a higher mobility. The electrons in the layer can then balance the carrier concentration in the quantum dot light-emitting layer.
  • the first sub-electron transport layer 121 is a zinc oxide film formed by sputtering
  • the second sub-electron transport layer 122 is a doped zinc oxide film formed by sputtering. Since the zinc oxide film formed by the sputtering process is an amorphous or polycrystalline film, the zinc oxide film or the doped zinc oxide film formed by the sputtering process has high density and flatness.
  • the doping material of the second sub-electron transport layer 122 may include at least one of Mg (magnesium), Al (aluminum), Zr (zirconium), Hf (hafnium), and Y (yttrium).
  • the doping material of the second sub-electron transport layer 122 is Mg, and the mole percentage of Mg in the second sub-electron transport layer 122 is 1%-20%.
  • the doping concentration of Mg in the second electron transport layer can be 1-5%; when the quantum dot light-emitting layer is a green-emitting quantum dot When the light-emitting layer, the doping concentration of Mg in the second sub-electron transport layer is 5-10%; when the quantum dot light-emitting layer is a blue-emitting quantum dot light-emitting layer, the doping concentration of Mg in the second sub-electron transport layer It is 10-20%.
  • the doping concentration of the second sub-electron transport layer 122 close to the first sub-electron transport layer 121 is lower than the doping concentration of the second sub-electron transport layer 122 close to the quantum dot light-emitting layer 110. In other words, the doping concentration of the second sub-electron transport layer may gradually change.
  • the LUMO energy level of the doped ZnO film will increase; by setting the doping concentration of the second sub-electron transport layer close to the first sub-electron transport layer to be less than the second sub-electron transport.
  • the doping concentration of the part of the layer close to the quantum dot light-emitting layer 110 can better achieve energy level matching, which is further conducive to improving the luminous efficiency of the quantum dot light-emitting structure.
  • the doping concentration of the second sub-electron transport layer 122 ranges from the side of the second sub-electron transport layer 122 close to the first sub-electron transport layer 121 to the second sub-electron transport layer 122 close to the quantum dot light-emitting layer 110. Gradually increase on one side.
  • the LUMO energy level of the second sub-electron transport layer can be closer to the LUMO energy level of the quantum dot light-emitting layer, so that energy level matching can be better achieved, which is beneficial to improve the luminous efficiency of the quantum dot light-emitting structure.
  • the first sub-electron transport layer 121 and the second sub-electron transport layer 122 may both be doped zinc oxide films formed by sputtering, and the doping concentration of the first sub-electron transport layer 121 is less than that of the second sub-electron transport layer.
  • the doping concentration of the electron transport layer 122 can be made smaller than the doping concentration of the second sub-electron transport layer 122, so that the bottom energy level of the conduction band of the second sub-electron transport layer 122 is greater than that of the first sub-electron transport layer.
  • the bottom energy level of the conduction band of the layer 121 is smaller than the bottom energy level of the conduction band of the quantum dot light-emitting layer 110.
  • the first sub-electron transport layer 121 and the second sub-electron transport layer 122 are both doped zinc oxide films formed by sputtering
  • the first sub-electron transport layer 121 and the second sub-electron transport layer 122 may Different doping materials are used to make the bottom energy level of the conduction band of the second sub-electron transport layer 122 greater than the bottom energy level of the conduction band of the first sub-electron transport layer 121 and less than that of the quantum dot light-emitting layer 110 .
  • the quantum dot light emitting structure 100 may further include a hole transport layer 150, a hole injection layer 160 and a second electrode 170.
  • the first electrode 140 may be a cathode
  • the second electrode 170 may be an anode.
  • FIG. 12 is a schematic diagram of another quantum dot light-emitting structure according to an embodiment of the present disclosure.
  • the second sub-electron transport layer 122 includes a plurality of sub-doped electron transport layers 1220, and the doping concentration of the plurality of sub-doped electron transport layers 1220 ranges from the first sub-electron transport layer 121 to the quantum dot light-emitting layer 110. Gradually increase in the direction.
  • the second sub-electron transport layer 122 includes a plurality of doped electron transport layers 1220 with varying doping concentration gradients, and the doping concentration of the plurality of doped electron transport layers 1220 emits light from the first sub-electron transport layer to the quantum dots.
  • FIG. 13 is a schematic diagram of an array substrate according to an embodiment of the present disclosure. As shown in FIG.
  • the array substrate 200 includes a plurality of light-emitting elements 210; at least one light-emitting element 210 adopts the quantum dot light-emitting structure 100 provided in the above-mentioned embodiment. Therefore, since at least one light-emitting element in the array substrate adopts the quantum dot light-emitting structure provided in the above embodiments, the array substrate has higher luminous efficiency and current efficiency, and also has a lower starting voltage.
  • the light-emitting element 210 includes an electron blocking layer 130 located in the electron transport layer 120.
  • the electron transport layer 120 includes two sub-electron transport layers 1200, and the electron blocking layer 130 is located between the two sub-electron transport layers 1200.
  • the light-emitting element can reduce the electrons injected into the electron transport layer from the electrode when the electron transport layer has high mobility, thereby balancing the carriers in the quantum dot light-emitting layer The concentration improves the luminous efficiency of the quantum dot light-emitting structure.
  • the turn-on voltage can be effectively reduced.
  • the array substrate 200 further includes a pixel defining layer 220 disposed around each light-emitting element 210.
  • the pixel defining layer 220 wraps the edge portion of the electron transport layer 120 of each light-emitting element 210 and has exposed The opening in the middle portion of each electron transport layer 120; at this time, the area of the opening on the pixel defining layer is smaller than the area of the electron transport layer in each light-emitting element.
  • the pixel defining layer 220 can not only provide openings for forming functional film layers such as quantum dot light emitting layer, hole transport layer, hole injection layer, quantum dot light emitting layer, etc.
  • the defects (such as burrs) in the edge portion of the electron transport layer are shielded, so that the film layer formed subsequently has better flatness.
  • the width of the overlapping portion of the orthographic projection of the pixel defining layer 220 on the base substrate 110 and the orthographic projection of the electron transport layer 120 of each light-emitting element 210 on the base substrate 110 may be 1 micron. -5 microns range.
  • the embodiments of the present disclosure include but are not limited thereto, and the area of the opening on the pixel defining layer may also be equal to the area of the electron transport layer in each light-emitting element.
  • the array substrate 200 further includes a base substrate 230.
  • the base substrate can be a glass substrate, a quartz substrate, or a flexible PET (polyethylene terephthalate) substrate.
  • FIG. 14 is a schematic diagram of another array substrate according to an embodiment of the present disclosure.
  • the electron transport layer 120 includes a first sub-electron transport layer 121 and a second sub-electron transport layer 122, and the second sub-electron transport layer 122 is located on the first sub-electron transport layer 121 close to the quantum dot light-emitting layer 110.
  • the conduction band bottom energy level of the second sub-electron transport layer 122 is greater than the conduction band bottom energy level of the first sub-electron transport layer 121 and less than the conduction band bottom energy level of the quantum dot light-emitting layer 110, and the first sub-electron transport layer 121 is a sputtered zinc oxide film, and the second sub-electron transport layer 122 is a Mg-doped zinc oxide film.
  • the plurality of light-emitting elements 210 include light-emitting elements of different colors. The impurity concentration is different, so that the energy level matching can be better achieved.
  • the plurality of light-emitting elements 210 include a red light-emitting element 211, a green light-emitting element 212, and a blue light-emitting element 213.
  • the impurity concentration is 1-5%
  • the doping concentration of Mg in the second sub-electron transport layer 122 in the red light-emitting element 212 is 5-10%
  • the doping concentration of Mg in the second sub-electron transport layer 122 in the blue light-emitting element 213 is The doping concentration is 10-20%, so that the energy level matching can be better achieved.
  • FIG. 15 is a schematic diagram of a display device according to an embodiment of the present disclosure.
  • the display device 300 includes the above-mentioned array substrate. Therefore, since the display device includes the above-mentioned array substrate, the display device has higher luminous efficiency and current efficiency, and also has a lower turn-on voltage.
  • the display device may be an electronic device with a display function, such as a TV, a computer, a smart phone, a tablet computer, a navigator, and an electronic picture frame.
  • a display function such as a TV, a computer, a smart phone, a tablet computer, a navigator, and an electronic picture frame.
  • An embodiment of the present disclosure also provides a manufacturing method of the quantum dot light-emitting structure.
  • the manufacturing method of the quantum dot light emitting structure includes: forming a first electrode; forming an electron transport layer on the first electrode; and forming a quantum dot light emitting layer on the side of the electron transport layer away from the first electrode.
  • the manufacturing method further includes forming an electron blocking layer in the electron transport layer.
  • the electron transport layer can have a higher migration rate.
  • the rate is low, the electrons injected from the electrode into the electron transport layer can be reduced, and the carrier concentration in the quantum dot light-emitting layer can be balanced, and the light-emitting efficiency of the quantum dot light-emitting structure produced by the production method can be improved.
  • forming the electron blocking layer in the electron transport layer can also effectively reduce the turn-on voltage.
  • forming an electron transport layer on the first electrode includes: forming an electron transport layer on the first electrode using a sputtering process. Since the electron transport layer (such as zinc oxide film) formed by the sputtering process has fewer or no impurities, and has higher density and flatness. As a result, the electron transport layer formed in this way can have high density and flatness, which is beneficial to improve the flatness of the quantum dot light-emitting layer formed later, thereby improving the flatness and light-emitting performance of the finally formed quantum dot light-emitting structure . That is to say, the quantum dot light-emitting structure can have higher flatness and light-emitting performance, while having higher light-emitting efficiency.
  • the electron transport layer such as zinc oxide film
  • forming an electron blocking layer in the electron transport layer includes: forming an electron blocking layer in the electron transport layer using a sputtering process.
  • the electron blocking layer formed by the sputtering process also has high density and flatness, which is beneficial to improve the flatness of the quantum dot light-emitting layer formed later, thereby improving the flatness of the finally formed quantum dot light-emitting structure And luminous performance.
  • the electron transport layer includes two sub-electron transport layers
  • forming the electron blocking layer in the electron transport layer includes: forming an electron blocking layer between the two sub-electron transport layers. Therefore, the manufacturing method can reduce the turn-on voltage.
  • the embodiments of the present disclosure include but are not limited thereto, and the electron blocking layer may also be formed in the electron transport layer in other ways.
  • the electron transport layer includes N+1 sub-electron transport layers
  • forming the electron blocking layer in the electron transport layer includes: forming N sub-electron blocking layers between the N+1 sub-electron transport layers, where N is 2 or more Is a positive integer.
  • forming the electron blocking layer in the electron transport layer includes forming N sub-electron blocking layers using different materials.
  • aluminum oxide (Al 2 O 3 ) material can be used to make one of the two sub-electron blocking layers
  • tantalum oxide (TaO x ) material can be used to make two sub-electron blocking layers The other one.
  • forming an electron transport layer on the electrode includes: forming a first sub-electron transport layer and a second sub-electron transport layer using a sputtering process, and the second sub-electron transport layer is located on the first sub-electron transport layer and emits light near the quantum dots.
  • the bottom energy level of the conduction band of the second sub-electron transport layer is greater than the bottom energy level of the conduction band of the first sub-electron transport layer and less than the bottom energy level of the conduction band of the quantum dot light-emitting layer.
  • the bottom energy level of the conduction band of the second sub-electron transport layer is greater than the bottom energy level of the conduction band of the first sub-electron transport layer, and is smaller than the conduction band of the quantum dot light-emitting layer
  • the bottom energy level so that the LUMO energy level of the second sub-electron transport layer can be closer to the LUMO energy level of the quantum dot light-emitting layer, so that the energy level matching can be better achieved, which is beneficial to improve the quantum dots produced by the manufacturing method
  • the luminous efficiency of the light-emitting structure since the bottom energy level of the conduction band of the second sub-electron transport layer is greater than the bottom energy level of the conduction band of the first sub-electron transport layer, and is smaller than the conduction band of the quantum dot light-emitting layer
  • the bottom energy level so that the LUMO energy level of the second sub-electron transport layer can be closer to the LUMO energy level of the quantum dot light-emitting layer, so
  • the first sub-electron transport layer and the second sub-electron transport layer are formed by using a sputtering process.
  • the first sub-electron transport layer and the second sub-electron transport layer have high flatness, which is beneficial to improve the flatness of the quantum dot light-emitting layer formed later, thereby improving the flatness of the finally formed quantum dot light-emitting structure And luminous performance. That is to say, the quantum dot light-emitting structure can have higher flatness and light-emitting performance, while having higher light-emitting efficiency.
  • forming the quantum dot light-emitting layer on the side of the electron transport layer away from the electrode includes: forming a quantum dot light-emitting layer on the side of the electron transport layer away from the electrode using an inkjet printing process.
  • the embodiments of the present disclosure include but are not limited thereto, and the quantum dot light-emitting layer can also be formed by other processes, such as a spin coating process or a photolithography process.
  • the manufacturing method further includes: A pixel defining layer is formed on one side of the pixel defining layer, the pixel defining layer includes an opening exposing the electron transport layer, and forming a quantum dot light emitting layer on the side of the electron transport layer away from the electrode includes: forming a quantum dot light emitting layer in the opening by an inkjet printing process. Therefore, in this manufacturing method, the pixel defining layer with openings can be formed first, so as to better limit the range of the quantum dot light-emitting layer manufactured subsequently.
  • the pixel defining layer can also block defects (such as burrs) in the edge portion of the electron transport layer that has been formed, thereby making the subsequently formed film layer flat. Sex is better.
  • the manufacturing method of the quantum dot light emitting structure further includes: forming a hole transport layer, a hole injection layer, and a second electrode in the opening and on the side of the quantum dot light emitting layer away from the base substrate by using an evaporation process , Thereby forming a light-emitting structure.
  • the first electrode may be an anode
  • the second electrode may be a cathode; of course, the embodiments of the present disclosure include but are not limited thereto, the first electrode may also be a cathode, and the second electrode may be an anode.
  • the manufacturing method of the quantum dot light emitting structure further includes: roughening the surface of the electron transport layer close to the quantum dot light emitting layer by plasma etching or sandblasting, and the processed electron transport layer close to the quantum dot
  • the rms surface roughness of the light-emitting layer ranges from 5 to 10 nanometers.
  • the surface roughness of the electron transport layer close to the quantum dot light-emitting layer is relatively high, thereby increasing the contact between the quantum dots in the quantum dot light-emitting layer and the electron transport layer, and avoiding the accumulation of nano-particle quantum dots on the smooth zinc oxide ( ZnO) surface, so as to avoid the small contact area and avoid the leakage phenomenon caused by the direct contact between the inverted electron transport layer and the subsequent hole transport layer.
  • ZnO smooth zinc oxide
  • An embodiment of the present disclosure also provides another method for manufacturing a quantum dot light-emitting structure.
  • the manufacturing method of the quantum dot light-emitting structure includes: forming an electrode; forming an electron transport layer on the electrode using a sputtering process; and forming a quantum dot light-emitting layer on the side of the electron transport layer away from the electrode; the electron transport layer includes a doped layer formed by sputtering Mixed zinc oxide film.
  • the quantum dot light-emitting structure produced by the method for manufacturing the quantum dot light-emitting structure can make the conductive bottom energy level of the electron transport layer closer to the LUMO energy level of the quantum dot light-emitting layer, so that energy level matching can be better achieved. It is beneficial to improve the luminous efficiency of the quantum dot light-emitting structure.
  • the zinc oxide film formed by the sputtering process is an amorphous or polycrystalline film
  • the doped zinc oxide film formed by sputtering has higher density and flatness, which is beneficial to improve the subsequent formation The flatness of the quantum dot light-emitting layer, thereby improving the flatness and light-emitting performance of the finally formed quantum dot light-emitting structure. That is to say, the quantum dot light-emitting structure can have higher flatness and light-emitting performance, while having higher light-emitting efficiency.
  • using a sputtering process to form an electron transport layer on the electrode includes: under the conditions of an argon flow rate of about 30-50 sccm, such as 40 sccm, and a sputtering power of about 90-110W, such as 100W, A zinc oxide target is used to form a zinc oxide film on the electrode.
  • an argon flow rate of about 30-50 sccm, such as 40 sccm
  • a zinc oxide target is used to form a zinc oxide film on the electrode.
  • the embodiments of the present disclosure include but are not limited thereto, and the specific parameters of the sputtering process can be set according to actual conditions.
  • the range of the argon flow rate is about 30-50 sccm
  • the lower limit of the argon flow rate is within 10% of the error range of 30 sccm
  • the upper limit of the argon flow rate is 10 percent of 50 sccm.
  • % Error range the above-mentioned “sputtering power range is about 90-110W” means that the lower limit of the sputtering power is within the 10% error range of 90W, and the upper limit of the sputtering power is 110W Within 10% of the error range.
  • using a sputtering process to form an electron transport layer on the electrode includes: using a sputtering process to form a first sub-electron transport layer and a second sub-electron transport layer, the second sub-electron transport layer being located on the first sub-electron transport layer
  • the conduction band bottom energy level of the second sub-electron transport layer is greater than the conduction band bottom energy level of the first sub-electron transport layer and less than the conduction band bottom energy level of the quantum dot light-emitting layer.
  • the second electron The LUMO energy level of the transport layer is closer to the LUMO energy level of the quantum dot light-emitting layer, so that energy level matching can be better achieved, which is beneficial to improve the luminous efficiency of the quantum dot light-emitting structure.
  • the first sub-electron transport layer may be a ZnO thin film formed by a sputtering process
  • the second sub-electron transport layer may be a doped ZnO thin film formed by a sputtering process.
  • the doping concentration of the second sub-electron transport layer gradually increases from the side of the second sub-electron transport layer close to the first sub-electron transport layer to the side of the second sub-electron transport layer close to the quantum dot light-emitting layer .
  • the LUMO energy level of the doped ZnO film will increase; by changing the doping concentration of the second sub-electron transport layer from the second sub-electron transport layer close to the side of the first sub-electron transport layer The placement of the second sub-electron transport layer close to the quantum dot light-emitting layer gradually increases, so that energy level matching can be better achieved, which is further conducive to improving the luminous efficiency of the quantum dot light-emitting structure.
  • using a sputtering process to form the second sub-electron transport layer includes: forming multiple sub-doped electron transport layers with different doping concentrations on the side of the first sub-electron transport layer close to the quantum dot light-emitting layer, and multiple sub-electron transport layers
  • the doped electron transport layer forms a second sub-electron transport layer, and the doping concentration of the plurality of sub-doped electron transport layers gradually increases from the first sub-electron transport layer to the quantum dot light-emitting layer.
  • the second sub-electron transport layer includes a plurality of doped electron transport layers with varying doping concentration gradients, and the doping concentration of the plurality of doped electron transport layers is from the first sub-electron transport layer to the quantum dot light-emitting layer. gradually increase.
  • the doping concentration increases, the LUMO energy level of the doped ZnO film will increase; by changing the doping concentration of the multiple doped electron transport layers from the first sub-electron transport layer to the quantum dot light-emitting layer The direction is gradually increased, so that energy level matching can be better achieved, which is further conducive to improving the luminous efficiency of the quantum dot light-emitting structure.
  • An embodiment of the present disclosure also provides a manufacturing method of the array substrate.
  • the manufacturing method includes the following steps S301-S306:
  • Step S301 forming a first electrode on the base substrate.
  • the base substrate can be a glass substrate, a quartz substrate, or a flexible PET (polyethylene terephthalate) substrate;
  • the first electrode can be a transparent electrode, such as ITO (indium tin oxide), FTO (fluorine-doped Tin oxide) or conductive polymers can also be opaque electrodes, such as aluminum or silver.
  • Step S302 using a sputtering process to form an electron transport layer on the first electrode.
  • a magnetron sputtering process may be used to form a zinc oxide film on the electrode or a zinc oxide film doped with Mg (magnesium), Al (aluminum), Zr (zirconium), Hf (hafnium), or Y (yttrium).
  • the thickness of the electron transport layer can range from 50 to 300 nanometers.
  • Step S303 forming a pixel defining layer on the base substrate and the electron transport layer.
  • the pixel defining layer covers the edge portion of the electron transport layer and has an opening exposing the middle portion of the electron transport layer.
  • Step S304 In the opening of the pixel defining layer, a quantum dot light-emitting layer is formed on the side of the electron transport layer away from the first electrode.
  • an inkjet printing process is used to form the quantum dot light-emitting layer.
  • Step S305 forming a hole transport layer and a hole injection layer in sequence.
  • Step S306 forming a second electrode on the side of the hole injection layer away from the hole transport layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种量子点发光结构(100)及制作方法、阵列基板(200)和显示装置(300)。量子点发光结构(100)包括量子点发光层(110)、电极(140)和位于量子点发光层(110)和电极(140)之间的电子传输层(120);量子点发光结构(100)还包括电子阻挡层(130),位于电子传输层(120)之中。通过在电子传输层(120)中增加电子阻挡层(130),可减少从电极(140)注入电子传输层(120)中的电子,进而可平衡量子点发光层(110)中的载流子浓度,提高量子点发光结构(100)的发光效率。

Description

量子点发光结构及其制作方法、阵列基板和显示装置 技术领域
本公开实施例涉及一种量子点发光结构及其制作方法、阵列基板和显示装置。
背景技术
随着显示技术的不断发展,显示装置的种类也越来越多。发光二极管(Light Emitting Diode,LED)显示装置由于其具有自发光、亮度高、工作电压低、功耗小、寿命长、耐冲击和性能稳定等优点受到业界广泛的关注。并且,由于发光二极管显示装置不需要额外设置背光模组,具有较轻的重量,从而利于显示装置的轻薄化,因此具有较好的市场前景。
量子点(Quantum Dot,QD)是一种新型的发光材料,具有光色纯度高、发光量子效率高、发光颜色可调、使用寿命长等优点,成为目前新型的LED发光材料的研究热点。因此,以量子点材料作为发光层的量子点发光二极管(Quantum Dot Light Emitting Diode,QLED)成为了目前新型显示器件研究的主要方向。
发明内容
本公开实施例提供一种量子点发光结构及其制作方法、阵列基板和显示装置。该量子点发光结构包括量子点发光层、电极和位于量子点发光层和电极之间的电子传输层;该量子点发光结构还包括电子阻挡层,位于电子传输层之中。由此,通过在电子传输层中增加电子阻挡层,从而可减少从电极注入电子传输层中的电子,进而可平衡量子点发光层中的载流子浓度,提高该量子点发光结构的发光效率。
本公开至少一个实施例提供一种量子点发光结构,其包括:量子点发光层;电极;以及电子传输层,位于所述量子点发光层和所述电极之间,所述量子点发光结构还包括电子阻挡层,所述电子阻挡层位于所述电子传输层中。
例如,在本公开一实施例提供的量子点发光结构中,所述电子传输层包括两个子电子传输层,所述电子阻挡层位于所述两个子电子传输层之间。
例如,在本公开一实施例提供的量子点发光结构中,所述电子传输层包括N+1个子电子传输层,所述电子阻挡层包括N个子电子阻挡层,所述N个子电子阻挡层分别夹设在所述N+1个子电子传输层之间,N为大于等于2的正整数。
例如,在本公开一实施例提供的量子点发光结构中,所述电子传输层包 括氧化锌薄膜。
例如,在本公开一实施例提供的量子点发光结构中,各所述子电子传输层为氧化锌薄膜。
例如,在本公开一实施例提供的量子点发光结构中,所述电子阻挡层的导带底能级大于所述量子点发光层的导带底能级。
例如,在本公开一实施例提供的量子点发光结构中,所述电子阻挡层的材料包括氧化铝、氧化钽和氧化铪中的至少之一。
例如,在本公开一实施例提供的量子点发光结构中,所述量子点发光结构在7V的电压之下发光亮度大于500cd/m 2
例如,在本公开一实施例提供的量子点发光结构中,所述电子传输层靠近所述量子点发光层的均方根表面粗糙度的范围约为5-10纳米。
例如,在本公开一实施例提供的量子点发光结构中,所述电子阻挡层在垂直于所述衬底基板的方向上的厚度约为1-2纳米。
例如,在本公开一实施例提供的量子点发光结构中,所述电子传输层包括第一子电子传输层和第二子电子传输层,所述第二子电子传输层位于所述第一子电子传输层靠近所述量子点发光层的一侧,所述第二子电子传输层的导带底能级大于所述第一子电子传输层的导带底能级,且小于所述量子点发光层的导带底能级。
例如,在本公开一实施例提供的量子点发光结构中,所述电子阻挡层设置在所述第一子电子传输层和所述第二子电子传输层之间。
例如,在本公开一实施例提供的量子点发光结构中,所述电子阻挡层设置在所述第二子电子传输层之内。
例如,在本公开一实施例提供的量子点发光结构中,所述第一子电子传输层为溅射形成的氧化锌薄膜,所述第二子电子传输层为溅射形成的掺杂氧化锌薄膜。
例如,在本公开一实施例提供的量子点发光结构中,所述第二子电子传输层的掺杂材料可包括Mg、Al、Zr、Hf、Y中的至少之一。
例如,在本公开一实施例提供的量子点发光结构中,所述第二子电子传输层的掺杂材料为Mg,所述第二子电子传输层中Mg的摩尔百分比为1%-20%。
例如,在本公开一实施例提供的量子点发光结构中,所述第二子电子传输层的掺杂浓度从所述第二子电子传输层靠近所述第一子电子传输层的一侧到所述第二子电子传输层靠近所述量子点发光层的一侧逐渐增大。
例如,在本公开一实施例提供的量子点发光结构中,所述第二子电子传输层包括多个子掺杂电子传输层,所述多个子掺杂电子传输层的掺杂浓度从所述第一子电子传输层到所述量子点发光层的方向上逐渐增加。
本公开至少一个实施例还提供一种阵列基板,包括多个发光元件,至少一个所述发光元件采用上述任一项的量子点发光结构。
例如,在本公开一实施例提供的阵列基板中,所述电子传输层包括第一子电子传输层和第二子电子传输层,所述第二子电子传输层位于所述第一子电子传输层靠近所述量子点发光层的一侧,所述第二子电子传输层的导带底能级大于所述第一子电子传输层的导带底能级,且小于所述量子点发光层的导带底能级,所述第一子电子传输层为氧化锌薄膜,所述第二子电子传输层为掺杂氧化锌薄膜,所述多个发光元件包括不同颜色的所述发光元件,不同颜色的所述发光元件中所述第二子电子传输层的掺杂浓度不同。
例如,在本公开一实施例提供的阵列基板中,所述掺杂氧化锌薄膜的掺杂剂为Mg,所述多个发光元件包括红色发光元件、绿色发光元件和蓝色发光元件,所述红色发光元件中的所述第二子电子传输层中Mg的掺杂浓度为1-5%,所述红色发光元件中的所述第二子电子传输层中Mg的掺杂浓度为5-10%,所述蓝色发光元件中的所述第二子电子传输层中Mg的掺杂浓度为10-20%。
例如,本公开一实施例提供的阵列基板还包括:像素限定层,围绕各所述电子传输层设置,所述像素限定层包裹各所述电子传输层的边缘部分,并具有暴露各所述电子传输层的中间部分的开口。
本公开至少一个实施例还提供一种显示装置,包括上述任一项所述阵列基板。
本公开至少一个实施例还提供一种量子点发光结构的制作方法,其包括:形成第一电极;在所述第一电极上形成电子传输层;以及在所述电子传输层远离所述第一电极的一侧形成量子点发光层,该制作方法还包括在所述电子传输层中形成电子阻挡层。例如,在本公开一实施例提供的量子点发光结构的制作方法中,在所述第一电极上形成所述电子传输层包括:采用溅射工艺在所述第一电极上形成所述电子传输层。
例如,在本公开一实施例提供的量子点发光结构的制作方法中,所述电子传输层包括两个子电子传输层,在所述电子传输层中形成电子阻挡层包括:在所述两个子电子传输层之间形成所述电子阻挡层。
例如,在本公开一实施例提供的量子点发光结构的制作方法中,所述电子传输层包括N+1个子电子传输层,在所述电子传输层中形成电子阻挡层包括:在所述N+1个子电子传输层之间形成N个子电子阻挡层,N为大于等于2的正整数。
例如,在本公开一实施例提供的量子点发光结构的制作方法中,在所述电极上形成所述电子传输层包括:采用溅射工艺形成第一子电子传输层和第二子电子传输层,所述第二子电子传输层位于所述第一子电子传输层靠近所 述量子点发光层的一侧,所述第二子电子传输层的导带底能级大于所述第一子电子传输层的导带底能级,且小于所述量子点发光层的导带底能级。
例如,在本公开一实施例提供的量子点发光结构的制作方法中,在所述电子传输层中形成所述电子阻挡层包括:采用溅射工艺在所述电子传输层中形成所述电子阻挡层。例如,在本公开一实施例提供的量子点发光结构的制作方法中,在所述电子传输层远离所述电极的一侧形成所述量子点发光层包括:采用喷墨打印工艺在所述电子传输层远离所述电极的一侧形成所述量子点发光层。
例如,在本公开一实施例提供的量子点发光结构的制作方法中,在所述第一电极上形成所述电子传输层和所述电子阻挡层之后,在所述电子传输层远离所述电极的一侧形成量子点发光层之前,所述制作方法还包括:在所述电子传输层远离所述第一电极的一侧形成像素限定层,所述像素限定层包括暴露所述电子传输层的开口,在所述电子传输层远离所述电极的一侧形成所述量子点发光层包括:采用喷墨打印工艺在所述开口中形成所述量子点发光层。
例如,本公开一实施例提供的量子点发光结构的制作方法还包括:采用蒸镀工艺在所述开口中和在所述量子点发光层远离所述第一电极的一侧形成空穴传输层、空穴注入层和第二电极。
例如,本公开一实施例提供的量子点发光结构的制作方法还包括:可采用等离子刻蚀或者喷砂处理工艺对所述电子传输层靠近所述量子点发光层的表面进行粗糙化处理,处理后的所述电子传输层靠近所述量子点发光层的均方根表面粗糙度的范围约为5-10纳米。本公开至少一个实施例还提供一种量子点发光结构的制作方法,其包括:形成电极;采用溅射工艺在所述电极上形成电子传输层;以及在所述电子传输层远离所述电极的一侧形成量子点发光层,所述电子传输层包括溅射形成的掺杂氧化锌薄膜。
例如,在本公开一实施例提供的量子点发光结构的制作方法中,采用溅射工艺在所述电极上形成所述电子传输层包括:在氩气流量的取值范围约为30-50sccm,溅射功率约为90-110W的条件下,采用氧化锌靶材在所述电极上形成氧化锌薄膜。
例如,在本公开一实施例提供的量子点发光结构的制作方法中,采用溅射工艺在所述电极上形成所述电子传输层包括:采用溅射工艺形成第一子电子传输层和第二子电子传输层,所述第二子电子传输层位于所述第一子电子传输层靠近所述量子点发光层的一侧,所述第二子电子传输层的导带底能级大于所述第一子电子传输层的导带底能级,且小于所述量子点发光层的导带底能级。
例如,在本公开一实施例提供的量子点发光结构的制作方法中,所述第 一子电子传输层包括氧化锌薄膜,所述第二子电子传输层包括掺杂氧化锌薄膜。
例如,在本公开一实施例提供的量子点发光结构的制作方法中,所述第二子电子传输层的掺杂浓度从所述第二子电子传输层靠近所述第一子电子传输层的一侧到所述第二子电子传输层靠近所述量子点发光层的一侧逐渐增大。
例如,在本公开一实施例提供的量子点发光结构的制作方法中,采用溅射工艺形成所述第二子电子传输层包括:在所述第一子电子传输层靠近所述量子点发光层的一侧采用不同的掺杂浓度形成多个子掺杂电子传输层,多个子掺杂电子传输层形成所述第二子电子传输层,所述多个子掺杂电子传输层的掺杂浓度从所述第一子电子传输层到所述量子点发光层的方向上逐渐增加。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为根据本公开一实施例的一种量子点发光结构的示意图;
图2为根据本公开一实施例的另一种量子点发光结构的示意图;
图3为根据本公开一实施例的另一种量子点发光结构的示意图;
图4为根据本公开一实施例的另一种量子点发光结构的示意图;
图5为本公开提供的不同的量子点发光结构的发光亮度随电流密度变化的曲线的对比图;
图6为本公开提供的不同的量子点发光结构的发光亮度随电压变化的曲线的对比图;
图7为本公开一实施例提供的另一种量子点发光结构的示意图;
图8为本公开一实施例提供的另一种量子点发光结构的示意图;
图9为本公开一实施例提供的另一种量子点发光结构的示意图;
图10为本公开一实施例提供的另一种量子点发光结构的示意图;
图11为本公开提供的不同量子点发光结构的电流效率随电压变化的曲线的对比图;
图12为本公开一实施例提供的另一种量子点发光结构的示意图;
图13为根据本公开一实施例的一种阵列基板的示意图;
图14为根据本公开一实施例的另一种阵列基板的示意图;以及
图15为根据本公开一实施例的一种显示装置的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
目前,有源量子点发光二极管(AMQLED)因其在宽色域、高寿命等方面的潜在优势也得到了越来越广泛的关注。并且,随着对AMQLED的研究日益深入,AMQLED产品的量子效率不断提升,基本达到产业化的水平。由于量子点材料本身的特性,量子点发光二极管一般采用印刷技术或者打印的方法进行制作,可有效地提高材料的利用率,并可成为大面积制备的有效途径。
当量子点发光二极管采用倒置结构时,在采用喷墨打印工艺制备量子点发光二极管时,在沉积发光元件的各个功能膜层之前,会预先制备像素定义层。然而,发光元件的各个功能膜层的墨水都存在向上攀爬的问题,甚至攀爬至像素定义层的顶部平台区域,从而极大地影响了各个功能膜层的薄膜形貌及厚度均匀性,进而对器件性能和均匀性会造成了极大的影响,并影响量子点发光二极管的量产。尤其是在高分辨率的产品中,上述的问题更加显著。若量子点发光二极管采用正置结构,量子点发光层之前的空穴注入层和空穴传输层也都存在不均匀的问题,各个功能膜层不均匀程度逐层累加,会进一步影响量子点发光层以及最终形成的发光元件的均匀性。
在量子点发光二极管采用倒置结构时,虽然可通过溅射工艺形成电子传输层(例如,溅射形成氧化锌薄膜),从而可解决量产过程中膜层厚度不均匀的问题。但是,在采用溅射工艺形成氧化锌(ZnO)电子传输层时,形成的薄膜型ZnO的迁移率较大,因此电子注入较多,导带底能级(或LUMO能级)更深,与量子点发光层的导带底能级相差较大,从而导致注入的电子很难从电子传输层注入量子点发光层,进而影响量子点发光二极管的发光效率。
对此,本公开实施例提供一种量子点发光结构及其制作方法、阵列基板和显示装置。该量子点发光结构包括量子点发光层、电极和位于量子点发光 层和电极之间的电子传输层;该量子点发光结构还包括电子阻挡层,位于电子传输层之中。由此,通过在电子传输层中增加电子阻挡层,从而可减少从电极注入电子传输层中的电子,进而可平衡量子点发光层中的载流子浓度,提高该量子点发光结构的发光效率。
下面,结合附图对本公开实施例提供的量子点发光结构及其制作方法、阵列基板和显示装置进行详细的说明。
本公开一实施例提供一种量子点发光结构。图1为根据本公开一实施例的一种量子点发光结构的示意图。如图1所示,该量子点发光结构100包括量子点发光层110、第一电极140和位于量子点发光层110和第一电极140之间的电子传输层120;该量子点发光结构100还包括电子阻挡层130,位于电子传输层120之中。
在本公开实施例提供的量子点发光结构中,通过在电子传输层之中增加电子阻挡层,从而可在电子传输层具有较高的迁移率时减少从电极注入电子传输层中的电子,进而可平衡量子点发光层中的载流子浓度,提高该量子点发光结构的发光效率。并且,当将电子阻挡层设置在电子传输层之中还可有效降低启亮电压。
在一些示例中,如图1所示,电子传输层120包括两个子电子传输层1200,电子阻挡层130位于两个子电子传输层1200之间。当然,本公开实施例包括但不限于此,电子阻挡层还可以其他方式形成在电子传输层之中。
图2为根据本公开一实施例的另一种量子点发光结构的示意图。如图2所示,电子传输层120包括N+1个子电子传输层1200,电子阻挡层130包括N个子电子阻挡层1300,N个子电子阻挡层1300分别夹设在N+1个子电子传输层1200之间。需要说明的是,图2示出了两个子电子阻挡层1300,即N=2;然而,本公开实施例包括但不限于此,N可为大于等于2的正整数。
在一些示例中,电子阻挡层130包括的N个子电子阻挡层1300可为采用不同材料制作的电子阻挡层。例如,当电子阻挡层130包括两个子电子阻挡层1300,这两个子电子阻挡层1300中的一个可为氧化铝(Al 2O 3)材料的子电子阻挡层,另一个可为氧化钽(TaO x)材料的子电子阻挡层。当然,本公开实施例包括但不限于此,电子阻挡层包括的N个子电子阻挡层可优选为采用相同材料制作的电子阻挡层,此时还可降低制作工艺的复杂度,并且便于控制和实现。
在一些示例中,上述的电子传输层120可包括溅射形成的氧化锌(ZnO)薄膜。采用旋涂法制作的氧化锌薄膜通常具有杂质(杂质是有机配体等);然而,由于采用溅射工艺形成的氧化锌薄膜是无定型态或者多晶态的薄膜,因此溅射形成的氧化锌薄膜没有杂质,并且具有较高的致密性和平坦度。由此,该电子传输层120可具有较高的致密性和平坦度,从而有利于提高之后 形成的量子点发光层的平坦度,进而提高最终形成的量子点发光结构的平坦度和发光性能。也就是说,该量子点发光结构可在具有较高的平坦度和发光性能的同时,具有较高的发光效率。
例如,当电子传输层120包括至少两个子电子传输层1200时,各子电子传输层1200为溅射形成的氧化锌薄膜。
例如,普通的ZnO纳米颗粒的LUMO能级约为-4.2eV到-4.0eV之间,而采用溅射工艺制作的ZnO薄膜的LUMO能级约为-4.8到-4.6eV。可见,采用溅射工艺制作的ZnO薄膜的LUMO能级更深,与量子点发光层的LUMO能级相差较大。
在一些示例中,电子阻挡层130的导带底能级大于量子点发光层110的导带底能级,从而可在电子传输层具有较高的迁移率时减少从电极注入电子传输层中的电子。当然,电子阻挡层的导电底能级大于(或浅于)电子传输层的导带底能级。
在一些示例中,电子阻挡层130的材料包括氧化铝、氧化钽和氧化铪中的至少之一。当然,本公开实施例包括但不限于此,电子阻挡层的材料还可为其他材料。
在一些示例中,如图1和图2所示,电子传输层120与量子点发光层110直接接触。
在一些示例中,电子阻挡层130在垂直于衬底基板110的方向上的厚度范围为0.5纳米-5纳米。
例如,电子阻挡层130在垂直于衬底基板110的方向上的厚度可约1-2纳米。此时,该量子发光结构可具有较好的发光效率。需要说明的是,当电子阻挡层包括多个子电子阻挡层时,上述的厚度是指多个子电子阻挡层的厚度之和。需要说明的是,上述的“约为1-2纳米”是指电子阻挡层的厚度的下限值在5纳米的10%的误差范围之内,电子阻挡层的厚度的上限值在10纳米的10%的误差范围之内。
在一些示例中,电子传输层靠近量子点发光层的均方根表面粗糙度RMS的范围约为5-10纳米。由此,电子传输层靠近量子点发光层的表面粗糙度较高,从而增加量子点发光层中的量子点和电子传输层的接触,避免由于纳米颗粒状态的量子点堆积在平滑的氧化锌(ZnO)表面,从而避免接触面积小和避免倒置电子传输层部分与后续空穴传送层直接接触造成的漏电现象。需要说明的是,上述的“约为5-10纳米”是指均方根表面粗糙度RMS的范围的下限值在5纳米的10%的误差范围之内,均方根表面粗糙度RMS的范围的上限值在10纳米的10%的误差范围之内。
例如,可采用等离子刻蚀或者喷砂处理等方式对电子传输层靠近量子点发光层的表面进行粗糙化处理。
图3为根据本公开一实施例的另一种量子点发光结构的示意图。如图3所示,该量子点发光结构100包括量子点发光层110、第一电极140和位于量子点发光层110和第一电极140之间的电子传输层120;该量子点发光结构100还包括电子阻挡层130,位于电子传输层120与第一电极140之间。在该量子点发光结构中,通过在电子传输层与电极之间增加电子阻挡层,也可在电子传输层具有较高的迁移率时减少从电极注入电子传输层中的电子,进而可平衡量子点发光层中的载流子浓度,提高该量子点发光结构的发光效率。
图4为根据本公开一实施例的另一种量子点发光结构的示意图。如图4所示,该量子点发光结构100包括量子点发光层110、第一电极140和位于量子点发光层110和第一电极140之间的电子传输层120;该量子点发光结构100还包括电子阻挡层130,位于电子传输层120与量子点发光层110之间。在该量子点发光结构中,通过在电子传输层与量子点发光层之间增加电子阻挡层,也可在一定程度上减少从电极注入电子传输层中的电子,进而可平衡量子点发光层中的载流子浓度,提高该量子点发光结构的发光效率。
图5为本公开提供的不同的量子点发光结构的发光亮度随电流密度变化的曲线的对比图。
在图5中,示例一提供的量子点发光结构包括依次层叠的银(Ag)电极、空穴注入层、空穴传输层、量子点发光层(QD)、ZnO电子传输层和ITO电极;银电极的厚度为150纳米;空穴注入层的厚度为5纳米,空穴注入层的材料的HAT-CN(2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲)薄膜;空穴传输层包括第一子空穴传输层和第二子空穴传输层,第一子空穴传输层位于第二子空穴传输层靠近量子点发光层的一侧,第一子空穴传输层的厚度为10纳米,第二子空穴传输层的厚度为30纳米;上述的银电极、空穴注入层和空穴传输层均可采用蒸镀工艺制作;量子点发光层的材料可为硒化镉(CdSe),量子点发光层的厚度为30纳米,量子点发光层可采用旋涂工艺制作;ZnO电子传输层的厚度为100纳米,ZnO电子传输层可采用溅射工艺制作,溅射可采用ZnO靶材,氩气流量为40sccm,功率为100W,溅射时间为25分钟;ITO电极的厚度为70纳米,ITO电极可采用溅射工艺制作,溅射可采用ITO靶材,氩气流量为40sccm,功率为100W,溅射时间为20分钟。
在图5中,示例二提供的量子点发光结构包括依次层叠的银(Ag)电极、空穴注入层、空穴传输层、量子点发光层(QD)、电子阻挡层、ZnO电子传输层和ITO电极;银电极的厚度为150纳米;空穴注入层的厚度为5纳米,空穴注入层的材料的HAT-CN(2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲)薄膜;空穴传输层包括第一子空穴传输层和第二子空穴传输层,第一子 空穴传输层位于第二子空穴传输层靠近量子点发光层的一侧,第一子空穴传输层的厚度为10纳米,第二子空穴传输层的厚度为30纳米;上述的银电极、空穴注入层和空穴传输层均可采用蒸镀工艺制作;量子点发光层的材料可为硒化镉(CdSe),量子点发光层的厚度为30纳米,量子点发光层可采用旋涂工艺制作;电子阻挡层的材料可为氧化铝(Al 2O 3),电子阻挡层的厚度为2纳米,电子阻挡层可采用溅射工艺制作,溅射可采用氧化铝靶材,氩气流量为40sccm,功率为100W,溅射时间为1分钟;ZnO电子传输层的厚度为100纳米,ZnO电子传输层可采用溅射工艺制作,溅射可采用ZnO靶材,氩气流量为40sccm,功率为100W,溅射时间为25分钟;ITO电极的厚度为70纳米,ITO电极可采用溅射工艺制作,溅射可采用ITO靶材,氩气流量为40sccm,功率为100W,溅射时间为20分钟。在示例二中,Al 2O 3电子阻挡层设置在ZnO电子传输层和量子点发光层之间,可见示例二提供的量子点发光结构为图4提供的量子点发光结构。
在图5中,示例三提供的量子点发光结构包括依次层叠的银(Ag)电极、空穴注入层、空穴传输层、量子点发光层(QD)、ZnO电子传输层、电子阻挡层和ITO电极;银电极的厚度为150纳米;空穴注入层的厚度为5纳米,空穴注入层的材料的HAT-CN(2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲)薄膜;空穴传输层包括第一子空穴传输层和第二子空穴传输层,第一子空穴传输层位于第二子空穴传输层靠近量子点发光层的一侧,第一子空穴传输层的厚度为10纳米,第二子空穴传输层的厚度为30纳米;上述的银电极、空穴注入层和空穴传输层均可采用蒸镀工艺制作;量子点发光层的材料可为硒化镉(CdSe),量子点发光层的厚度为30纳米,量子点发光层可采用旋涂工艺制作;ZnO电子传输层的厚度为100纳米,ZnO电子传输层可采用溅射工艺制作,溅射可采用ZnO靶材,氩气流量为40sccm,功率为100W,溅射时间为25分钟;电子阻挡层的材料可为氧化铝(Al 2O 3),电子阻挡层的厚度为2纳米,电子阻挡层可采用溅射工艺制作,溅射可采用氧化铝靶材,氩气流量为40sccm,功率为100W,溅射时间为1分钟;ITO电极的厚度为70纳米,ITO电极可采用溅射工艺制作,溅射可采用ITO靶材,氩气流量为40sccm,功率为100W,溅射时间为20分钟。在示例三中,Al 2O 3电子阻挡层设置在ZnO电子传输层和ITO电极之间,可见示例三提供的量子点发光结构为图3提供的量子点发光结构。
如图5所示,在同样的电流密度下,相对于示例一提供的量子点发光结构,通过在电子传输层和量子点发光层之间增加电子阻挡层,示例二提供的量子点发光结构的发光亮度有所提高。例如,在电流密度为400mA/cm 2时,示例一提供的量子点发光结构的发光亮度大约为500cd/m 2,示例二提供的量子点发光结构的发光亮度大约为1200cd/m 2。然而,由于量子点发光层和 电子阻挡层的直接接触会导致光致发光量子产率(PLQY)降低,示例二提供的量子点发光结构的发光亮度的提升并不是很高。然而,相对于示例一提供的量子点发光结构,通过在电子传输层与电极之间增加电子阻挡层,示例三提供的量子点发光结构的发光亮度大大提高了。例如,在电流密度为400mA/cm 2时,示例三提供的量子点发光结构的发光亮度大约为3000cd/m 2,发光亮度提高了将近6倍。需要说明的是,上述的各个量子点发光结构还包括其他必须的功能膜层,本公开实施例在此不再赘述。
例如,如图5所示,示例三提供的量子点发光结构在400mA/cm 2的电流密度下的发光亮度大于3000cd/m 2
图6为本公开提供的不同的量子点发光结构的发光亮度随电压变化的曲线的对比图。
在图6中,示例四提供的量子点发光结构包括依次设置的银(Ag)电极、空穴注入层、空穴传输层、量子点发光层(QD)、ZnO电子传输层、电子阻挡层和ITO电极;银电极的厚度为150纳米;空穴注入层的厚度为5纳米,空穴注入层的材料的HAT-CN(2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲)薄膜;空穴传输层包括第一子空穴传输层和第二子空穴传输层,第一子空穴传输层位于第二子空穴传输层靠近量子点发光层的一侧,第一子空穴传输层的厚度为10纳米,第二子空穴传输层的厚度为30纳米;上述的银电极、空穴注入层和空穴传输层均可采用蒸镀工艺制作;量子点发光层的材料可为硒化镉(CdSe),量子点发光层的厚度为30纳米,量子点发光层可采用旋涂工艺制作;ZnO电子传输层的厚度为100纳米,ZnO电子传输层可采用溅射工艺制作,溅射可采用ZnO靶材,氩气流量为40sccm,功率为100W,溅射时间为25分钟;电子阻挡层的材料可为氧化铝(Al 2O 3),电子阻挡层的厚度为2纳米,电子阻挡层可采用溅射工艺制作,溅射可采用氧化铝靶材,氩气流量为40sccm,功率为100W,溅射时间为1分钟;ITO电极的厚度为70纳米,ITO电极可采用溅射工艺制作,溅射可采用ITO靶材,氩气流量为40sccm,功率为100W,溅射时间为20分钟。在示例四中,Al 2O 3电子阻挡层设置在ZnO电子传输层和ITO电极之间,可见示例四提供的量子点发光结构为图3提供的量子点发光结构。
在图6中,示例五提供的量子点发光结构包括依次设置的银(Ag)电极、空穴注入层、空穴传输层、量子点发光层(QD)、第一子ZnO电子传输层、电子阻挡层、第二子ZnO电子传输层和ITO电极;银电极的厚度为150纳米;空穴注入层的厚度为5纳米,空穴注入层的材料的HAT-CN(2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲)薄膜;空穴传输层包括第一子空穴传输层和第二子空穴传输层,第一子空穴传输层位于第二子空穴传输层靠近量子点发光层的一侧,第一子空穴传输层的厚度为10纳米,第二子空穴传输层 的厚度为30纳米;上述的银电极、空穴注入层和空穴传输层均可采用蒸镀工艺制作;量子点发光层的材料可为硒化镉(CdSe),量子点发光层的厚度为30纳米,量子点发光层可采用旋涂工艺制作;第一子ZnO电子传输层的厚度为50纳米,第二子ZnO电子传输层的厚度为50纳米,上述的第一子ZnO电子传输层和第二子ZnO电子传输层均可采用溅射工艺制作,溅射可采用ZnO靶材,氩气流量为40sccm,功率为100W,溅射时间为12.5分钟;电子阻挡层的材料可为氧化铝(Al 2O 3),电子阻挡层的厚度为2纳米,电子阻挡层可采用溅射工艺制作,溅射可采用氧化铝靶材,氩气流量为40sccm,功率为100W,溅射时间为1分钟;ITO电极的厚度为70纳米,ITO电极可采用溅射工艺制作,溅射可采用ITO靶材,氩气流量为40sccm,功率为100W,溅射时间为20分钟。在示例五中,Al 2O 3电子阻挡层设置在两个子ZnO电子传输层之间,可见示例五提供的量子点发光结构为图1提供的量子点发光结构。
在图6中,示例六提供的量子点发光结构包括依次设置的银(Ag)电极、空穴注入层、空穴传输层、量子点发光层(QD)、第一子ZnO电子传输层、第一子电子阻挡层、第二子ZnO电子传输层、第二子电子阻挡层、第三子ZnO电子传输层和ITO电极;银电极的厚度为150纳米;空穴注入层的厚度为5纳米,空穴注入层的材料的HAT-CN(2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲)薄膜;空穴传输层包括第一子空穴传输层和第二子空穴传输层,第一子空穴传输层位于第二子空穴传输层靠近量子点发光层的一侧,第一子空穴传输层的厚度为10纳米,第二子空穴传输层的厚度为30纳米;上述的银电极、空穴注入层和空穴传输层均可采用蒸镀工艺制作;量子点发光层的材料可为硒化镉(CdSe),量子点发光层的厚度为30纳米,量子点发光层可采用旋涂工艺制作;第一子ZnO电子传输层的厚度为50纳米,第二子ZnO电子传输层的厚度为50纳米,第三子ZnO电子传输层的厚度为50纳米,上述的第一子ZnO电子传输层和第二子ZnO电子传输层均可采用溅射工艺制作,溅射可采用ZnO靶材,氩气流量为40sccm,功率为100W,溅射时间为12.5分钟;第一子电子阻挡层和第二子电子阻挡层的材料可为氧化铝(Al 2O 3),第一子电子阻挡层的厚度为1纳米,第二子电子阻挡层的厚度为1纳米,第一子电子阻挡层和第二子电子阻挡层可采用溅射工艺制作,溅射可采用氧化铝靶材,氩气流量为40sccm,功率为100W,溅射时间为0.5分钟;ITO电极的厚度为70纳米,ITO电极可采用溅射工艺制作,溅射可采用ITO靶材,氩气流量为40sccm,功率为100W,溅射时间为20分钟。在示例六中,两个Al 2O 3电子阻挡层设置在三个ZnO电子传输层之间,可见示例六提供的量子点发光结构为图2提供的量子点发光结构。
如图6所示,在同样的电压下,相对于示例四提供的量子点发光结构, 通过在电子传输层之中增加电子阻挡层,示例五和示例六提供的量子点发光结构不仅在相同的电压下具有更高的发光亮度,并且还具有较低的启亮电压。并且,如图6所示,相对于示例五提供的量子点发光结构,通过将单层的电子阻挡层拆分成厚度较薄的几个电子阻挡层,并设置在多个子电子传输层中,从而可进一步降低启亮电压。
例如,示例四提供的量子点发光结构在大约8V的电压下的发光亮度大于200cd/m 2,示例五在大约6.5V的电压下的发光亮度就可大于200cd/m 2,而示例六在大约6.2V的电压下的发光亮度就可大于200cd/m 2。又例如,如图6所示,示例六提供的量子点发光结构在7V的电压之下发光亮度大于500cd/m 2
图7为本公开一实施例提供的另一种量子点发光结构的示意图。如图7所示,电子传输层120可包括第一子电子传输层121和第二子电子传输层122,第二子电子传输层122位于第一子电子传输层121靠近量子点发光层110的一侧。第二子电子传输层122的导带底能级大于第一子电子传输层121的导带底能级,且小于量子点发光层110的导带底能级。也就是说,第二子电子传输层122的导带底能级浅于第一子电子传输层121的导带底能级,且深于量子点发光层110的导带底能级。另外,如图7所示,该量子点发光结构100还包括电子阻挡层130,位于第一子电子传输层121和第二子电子传输层122之间。需要说明的是,上述的导带底能级为LUMO(最低未占分子轨道)能级。在该示例提供的量子点发光结构中,由于第二子电子传输层的导带底能级大于第一子电子传输层的导带底能级,且小于量子点发光层的导带底能级,从而可使得第二子电子传输层的LUMO能级更为接近量子点发光层的LUMO能级,从而可能够更好的达到能级匹配,有利于提高该量子点发光结构的发光效率。另外,由于该量子点发光结构还包括位于第一子电子传输层和第二子电子传输层之间的电子阻挡层,该量子点发光结构在达到较好的能级匹配和较高的发光效率的同时,还可通过在第一子电子传输层和第二子电子传输层之间增加电子阻挡层,从而在电子传输层具有较高的迁移率时减少从电极注入电子传输层中的电子,进而可平衡量子点发光层中的载流子浓度,提高该量子点发光结构的发光效率。
例如,第一子电子传输层121为溅射形成的氧化锌薄膜,第二子电子传输层122为溅射形成的掺杂氧化锌薄膜。由此,可通过将第二子电子传输层122形成为掺杂氧化锌薄膜来使得第二子电子传输层122的导带底能级大于第一子电子传输层121的导带底能级,且小于量子点发光层110的导带底能级。另外,由于采用溅射工艺形成的氧化锌薄膜是无定型态或者多晶态的薄膜,因此溅射形成的氧化锌薄膜或者掺杂氧化锌薄膜具有较高的致密性和平坦度。
例如,第二子电子传输层122的掺杂材料可包括Mg(镁)、Al(铝)、Zr(锆)、Hf(铪)、Y(钇)中的至少之一。
例如,第二子电子传输层122的掺杂材料为Mg,第二子电子传输层122中Mg的摩尔百分比为1%-20%。
例如,当量子点发光层为发红光的量子点发光层时,第二子电子传输层中的Mg的掺杂浓度可为1-5%;当量子点发光层为发绿光的量子点发光层时,第二子电子传输层中的Mg的掺杂浓度为5-10%;当量子点发光层为发蓝光的量子点发光层时,第二子电子传输层中Mg的掺杂浓度为10-20%。
在一些示例中,第二子电子传输层122靠近第一子电子传输层121的部分的掺杂浓度小于第二子电子传输层122靠近量子点发光层110的部分的掺杂浓度。也就是说,第二子电子传输层的掺杂浓度可逐渐变化。由于随着掺杂浓度的上升,掺杂的ZnO薄膜的LUMO能级会提高;通过将第二子电子传输层靠近第一子电子传输层的部分的掺杂浓度设置为小于第二子电子传输层靠近量子点发光层110的部分的掺杂浓度,从而可更好地达到能级匹配,进一步有利于提高该量子点发光结构的发光效率。
在一些示例中,第二子电子传输层122的掺杂浓度从第二子电子传输层122靠近第一子电子传输层121的一侧到第二子电子传输层122靠近量子点发光层110的一侧逐渐增大。
在一些示例中,第一子电子传输层121和第二子电子传输层122可均为溅射形成的掺杂氧化锌薄膜,并且,第一子电子传输层121的掺杂浓度小于第二子电子传输层122的掺杂浓度。由此,可通过将第一子电子传输层121的掺杂浓度小于第二子电子传输层122的掺杂浓度来使得第二子电子传输层122的导带底能级大于第一子电子传输层121的导带底能级,且小于量子点发光层110的导带底能级。
在一些示例中,当第一子电子传输层121和第二子电子传输层122均为溅射形成的掺杂氧化锌薄膜时,第一子电子传输层121和第二子电子传输层122可采用不同的掺杂材料,来使得第二子电子传输层122的导带底能级大于第一子电子传输层121的导带底能级,且小于量子点发光层110的导带底能级。
在一些示例中,如图7所示,量子点发光结构100还可包括空穴传输层150、空穴注入层160和第二电极170。第一电极140可为阴极,第二电极170可为阳极。
图8为本公开一实施例提供的另一种量子点发光结构的示意图。如图8所示,电子传输层120可包括第一子电子传输层121和第二子电子传输层122,第二子电子传输层122位于第一子电子传输层121靠近量子点发光层110的一侧,第二子电子传输层122的导带底能级大于第一子电子传输层121 的导带底能级,且小于量子点发光层110的导带底能级。第二子电子传输层122包括多个子掺杂电子传输层1220,多个子掺杂电子传输层1220的掺杂浓度从第一子电子传输层121到量子点发光层110的方向上逐渐增加。例如,第二子电子传输层122包括两个子掺杂电子传输层1220,靠近第一子电子传输层121的子掺杂电子传输层1220的掺杂浓度小于靠近量子点发光层110的子掺杂电子传输层1220的掺杂浓度。
在该示例提供的量子点发光结构中,由于多个子掺杂电子传输层的掺杂浓度从第一子电子传输层到量子点发光层的方向上逐渐增加,随着掺杂浓度的上升,子掺杂电子传输层的LUMO能级会提高;通过将多个子掺杂电子传输层的掺杂浓度从第一子电子传输层到量子点发光层的方向上逐渐增加,从而可更好地达到能级匹配,进一步有利于提高该量子点发光结构的发光效率。
在本公开实施例提供的量子点发光结构中,电子阻挡层的位置不限于第一子电子传输层和第二子电子传输层之间,电子阻挡层也可设置在第二子电子传输层之中。如图8所示,电子阻挡层130设置在第二子电子传输层122之内,例如,电子阻挡层130设置在两个子掺杂电子传输层1220之间。由此,通过将电子阻挡层设置在第二子电子传输层之内,该量子点发光结构也可提高发光效率和电流效率,并且还可降低启亮电压。
在一些示例中,第一子电子传输层121和第二子电子传输层122可均为溅射形成的掺杂氧化锌薄膜,并且,第一子电子传输层121的掺杂浓度小于第二子电子传输层122的掺杂浓度。由此,可通过将第一子电子传输层121的掺杂浓度小于第二子电子传输层122的掺杂浓度来使得第二子电子传输层122的导带底能级大于第一子电子传输层121的导带底能级,且小于量子点发光层110的导带底能级。
在一些示例中,当第一子电子传输层121和第二子电子传输层122均为溅射形成的掺杂氧化锌薄膜时,第一子电子传输层121和第二子电子传输层122可采用不同的掺杂材料,来使得第二子电子传输层122的导带底能级大于第一子电子传输层121的导带底能级,且小于量子点发光层110的导带底能级。
图9为根据本公开一实施例的另一种量子点发光结构的示意图。如图9所示,电子阻挡层130包括第一子电子阻挡层131和第二子电子阻挡层132,第一电子阻挡层131位于第一子电子传输层121和第二子电子传输层122之间,第二子电子阻挡层132位于第二子电子传输层122中的两个掺杂电子传输层1220之间。由此,该量子点发光结构在达到较好的能级匹配和较高的发光效率的同时,通过在第一子电子传输层和第二子电子传输层之间和第二子电子传输层中掺杂电子传输层之间增加电子阻挡层,可在电子传输层具有 较高的迁移率时有效地减少从电极注入电子传输层中的电子,进而可平衡量子点发光层中的载流子浓度,提高该量子点发光结构的发光效率。
例如,上述的第一子电子阻挡层131和第二子电子阻挡层132可为采用不同材料制作的电子阻挡层。例如,第一子电子阻挡层131可为氧化铝(Al 2O 3)材料的子电子阻挡层,第二子电子阻挡层132可为氧化钽(TaO x)材料的子电子阻挡层。当然,本公开实施例包括但不限于此,第一子电子阻挡层和第二子电子阻挡层可为采用相同材料制作的电子阻挡层,此时还可降低制作工艺的复杂度,并且便于控制和实现。
需要说明的是,当第二子电子传输层包括M(M为大于2的整数)个掺杂电子传输层时,电子阻挡层也可包括M个子电子阻挡层;M个子电子阻挡层中的一个可设置在第一子电子传输层和第二子电子传输层之间,而其他M-1个子电子阻挡层可夹设在M个子电子阻挡层,从而有效地减少从电极注入电子传输层中的电子,进而可平衡量子点发光层中的载流子浓度,提高该量子点发光结构的发光效率。
图10为根据本公开一实施例的另一种量子点发光结构的示意图。如图10所示,该量子点发光结构100包括量子点发光层110、第一电极140和位于量子点发光层110和第一电极140之间的电子传输层120。电子传输层120包括第一子电子传输层121和第二子电子传输层122,第二子电子传输层122位于第一子电子传输层121靠近量子点发光层110的一侧。第二子电子传输层122的导带底能级大于第一子电子传输层121的导带底能级,且小于量子点发光层110的导带底能级。也就是说,第二子电子传输层122的导带底能级浅于第一子电子传输层121的导带底能级,且深于量子点发光层110的导带底能级。需要说明的是,上述的导带底能级为LUMO(最低未占分子轨道)能级。
图11为本公开提供的不同量子点发光结构的电流效率随电压变化的曲线的对比图。
在图11中,示例七提供的量子点发光结构包括依次设置的银(Ag)电极、空穴注入层、空穴传输层、量子点发光层(QD)、ZnO电子传输层和ITO电极;银电极的厚度为150纳米;空穴注入层的厚度为5纳米,空穴注入层的材料的HAT-CN(2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲)薄膜;空穴传输层包括第一子空穴传输层和第二子空穴传输层,第一子空穴传输层位于第二子空穴传输层靠近量子点发光层的一侧,第一子空穴传输层的厚度为10纳米,第二子空穴传输层的厚度为30纳米;上述的银电极、空穴注入层和空穴传输层均可采用蒸镀工艺制作;量子点发光层的材料可为硒化镉(CdSe),量子点发光层的厚度为30纳米,量子点发光层可采用旋涂工艺制作;ZnO电子传输层的厚度为100纳米,ZnO电子传输层可采用溅射工艺制 作,溅射可采用ZnO靶材,氩气流量为40sccm,功率为100W,溅射时间为25分钟,制作出来的ZnO电子传输层的LUMO能级为-4.8eV;ITO电极的厚度为70纳米,ITO电极可采用溅射工艺制作,溅射可采用ITO靶材,氩气流量为40sccm,功率为100W,溅射时间为20分钟。
在图11中,示例八提供的量子点发光结构包括依次设置的银(Ag)电极、空穴注入层、空穴传输层、量子点发光层(QD)、第二子ZnO电子传输层、第一子ZnO电子传输层和ITO电极;银电极的厚度为150纳米;空穴注入层的厚度为5纳米,空穴注入层的材料的HAT-CN(2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲)薄膜;空穴传输层包括第一子空穴传输层和第二子空穴传输层,第一子空穴传输层位于第二子空穴传输层靠近量子点发光层的一侧,第一子空穴传输层的厚度为10纳米,第二子空穴传输层的厚度为30纳米;上述的银电极、空穴注入层和空穴传输层均可采用蒸镀工艺制作;量子点发光层的材料可为硒化镉(CdSe),量子点发光层的厚度为30纳米,量子点发光层可采用旋涂工艺制作;第二子ZnO电子传输层的厚度为20纳米,第二子ZnO电子传输层可采用溅射工艺制作,溅射可采用ZnO和MgO靶材共溅射,氩气流量为40sccm,功率100W,溅射时间为5min,第二子ZnO电子传输层的LUMO能级测试为-4.6eV;第二子ZnO电子传输层的厚度为80纳米,第二子ZnO电子传输层可采用溅射工艺制作,溅射可采用ZnO靶材,氩气流量为40sccm,功率为100W,溅射时间为20分钟,制作出来的ZnO电子传输层的LUMO能级为-4.8eV;ITO电极的厚度为70纳米,ITO电极可采用溅射工艺制作,溅射可采用ITO靶材,氩气流量为40sccm,功率为100W,溅射时间为20分钟。
如图11所示,示例八提供的量子点发光结构中的溅射方式形成的第二子ZnO电子传输层的LUMO能级大于第一子ZnO电子传输层的LUMO能级。从图11可知,相对于示例七提供的量子点发光结构,通过设置将电子传输层包括第一子电子传输层和第二子电子传输层,并且第二子电子传输层的导带底能级大于第一子电子传输层的导带底能级,且小于量子点发光层的导带底能级,示例八提供的量子点发光结构在同样的电压下的电流效率更高。
例如,如图11所示,在电压为3V时,示例七提供的量子点发光结构的电流效率大约为1cd/A,而示例八提供的量子点发光结构的电流效率大约为2cd/A;在电压为5V时,示例七提供的量子点发光结构的电流效率大约为2cd/A,而示例八提供的量子点发光结构的电流效率大约为4cd/A。可见,示例八提供的量子点发光结构的电流效率为示例七提供的量子点发光结构的电流效率的2倍。
在一些示例中,如图11所示,电子阻挡层130设置在第一子电子传输 层121和第二子电子传输层122之间。由此,该量子点发光结构可具有较高的发光效率和电流效率,并还具有较低的启亮电压。需要说明的是,电子阻挡层的LUMO能级大于第一子电子传输层和第二子电子传输层的LUMO能级,从而可在电子传输层具有较高的迁移率时减少从电极注入电子传输层中的电子,进而可平衡量子点发光层中的载流子浓度。
例如,第一子电子传输层121为溅射形成的氧化锌薄膜,第二子电子传输层122为溅射形成的掺杂氧化锌薄膜。由于采用溅射工艺形成的氧化锌薄膜是无定型态或者多晶态的薄膜,因此溅射形成的氧化锌薄膜或者掺杂氧化锌薄膜具有较高的致密性和平坦度。例如,第二子电子传输层122的掺杂材料可包括Mg(镁)、Al(铝)、Zr(锆)、Hf(铪)、Y(钇)中的至少之一。
例如,第二子电子传输层122的掺杂材料为Mg,第二子电子传输层122中Mg的摩尔百分比为1%-20%。
例如,当量子点发光层为发红光的量子点发光层时,第二子电子传输层中的Mg的掺杂浓度可为1-5%;当量子点发光层为发绿光的量子点发光层时,第二子电子传输层中的Mg的掺杂浓度为5-10%;当量子点发光层为发蓝光的量子点发光层时,第二子电子传输层中Mg的掺杂浓度为10-20%。
在一些示例中,第二子电子传输层122靠近第一子电子传输层121的部分的掺杂浓度小于第二子电子传输层122靠近量子点发光层110的部分的掺杂浓度。也就是说,第二子电子传输层的掺杂浓度可逐渐变化。由于随着掺杂浓度的上升,掺杂的ZnO薄膜的LUMO能级会提高;通过将第二子电子传输层靠近第一子电子传输层的部分的掺杂浓度设置为小于第二子电子传输层靠近量子点发光层110的部分的掺杂浓度,从而可更好地达到能级匹配,进一步有利于提高该量子点发光结构的发光效率。
在一些示例中,第二子电子传输层122的掺杂浓度从第二子电子传输层122靠近第一子电子传输层121的一侧到第二子电子传输层122靠近量子点发光层110的一侧逐渐增大。
在该示例提供的量子点发光结构中,由于第二子电子传输层的导带底能级大于第一子电子传输层的导带底能级,且小于量子点发光层的导带底能级,从而可使得第二子电子传输层的LUMO能级更为接近量子点发光层的LUMO能级,从而可能够更好的达到能级匹配,有利于提高该量子点发光结构的发光效率。
在一些示例中,第一子电子传输层121和第二子电子传输层122可均为溅射形成的掺杂氧化锌薄膜,并且,第一子电子传输层121的掺杂浓度小于第二子电子传输层122的掺杂浓度。由此,可通过将第一子电子传输层121的掺杂浓度小于第二子电子传输层122的掺杂浓度来使得第二子电子传输层122的导带底能级大于第一子电子传输层121的导带底能级,且小于量子点 发光层110的导带底能级。
在一些示例中,当第一子电子传输层121和第二子电子传输层122均为溅射形成的掺杂氧化锌薄膜时,第一子电子传输层121和第二子电子传输层122可采用不同的掺杂材料,来使得第二子电子传输层122的导带底能级大于第一子电子传输层121的导带底能级,且小于量子点发光层110的导带底能级。
在一些示例中,如图10所示,量子点发光结构100还可包括空穴传输层150、空穴注入层160和第二电极170。第一电极140可为阴极,第二电极170可为阳极。
图12为根据本公开一实施例的另一种量子点发光结构的示意图。如图12所示,第二子电子传输层122包括多个子掺杂电子传输层1220,多个子掺杂电子传输层1220的掺杂浓度从第一子电子传输层121到量子点发光层110的方向上逐渐增加。也就是说,第二子电子传输层122包括多个掺杂浓度梯度变化的掺杂电子传输层1220,多个掺杂电子传输层1220的掺杂浓度从第一子电子传输层到量子点发光层的方向上逐渐增加。类似地,由于随着掺杂浓度的上升,掺杂的ZnO薄膜的LUMO能级会提高;通过将多个掺杂电子传输层的掺杂浓度从第一子电子传输层到量子点发光层的方向上逐渐增加,从而可更好地达到能级匹配,进一步有利于提高该量子点发光结构的发光效率。图13为根据本公开一实施例的一种阵列基板的示意图。如图13所示,该阵列基板200包括多个发光元件210;至少一个发光元件210采用上述实施例提供的量子点发光结构100。由此,由于该阵列基板中的至少一个发光元件采用上述实施例提供的量子点发光结构,该阵列基板具有较高的发光效率和电流效率,并且还具有较低的启亮电压。
例如,如图13所示,发光元件210包括电子阻挡层130,位于电子传输层120之中。例如,电子传输层120包括两个子电子传输层1200,电子阻挡层130位于两个子电子传输层1200之间。通过在电子传输层之中增加电子阻挡层,该发光元件可在电子传输层具有较高的迁移率时减少从电极注入电子传输层中的电子,进而可平衡量子点发光层中的载流子浓度,提高该量子点发光结构的发光效率。并且,当将电子阻挡层设置在电子传输层之中还可有效降低启亮电压。
在一些示例中,如图13所示,该阵列基板200还包括像素限定层220,围绕各发光元件210设置,像素限定层220包裹各发光元件210的电子传输层120的边缘部分,并具有暴露各电子传输层120的中间部分的开口;此时,像素限定层上的开口的面积小于各发光元件中的电子传输层的面积。在这种情况下,像素限定层220除了可以提供用于形成量子点发光层、空穴传输层、空穴注入层、量子点发光层等功能膜层的开口之外,还可对已经形成的电子 传输层的边缘部分的缺陷(例如毛刺)进行遮挡,从而使得后续形成的膜层的平坦性更好。
例如,如图13所示,像素限定层220在衬底基板110上的正投影与各发光元件210的电子传输层120在衬底基板110上的正投影的交叠部分的宽度可为1微米-5微米的范围。当然,本公开实施例包括但不限于此,像素限定层上的开口的面积也可与各发光元件中的电子传输层的面积相等。
在一些示例中,如图13所示,该阵列基板200还包括衬底基板230。衬底基板可玻璃基板、石英基板、或者柔性PET(聚对苯二甲酸乙二醇酯)基板。
图14为根据本公开一实施例的另一种阵列基板的示意图。如图15所示,电子传输层120包括第一子电子传输层121和第二子电子传输层122,第二子电子传输层122位于第一子电子传输层121靠近量子点发光层110的一侧,第二子电子传输层122的导带底能级大于第一子电子传输层121的导带底能级,且小于量子点发光层110的导带底能级,第一子电子传输层121为溅射氧化锌薄膜,第二子电子传输层122为掺杂Mg的氧化锌薄膜,多个发光元件210包括不同颜色的发光元件,不同颜色的发光元件中第二子电子传输层的掺杂浓度不同,从而可更好地达到能级匹配。
在一些示例中,如图14所示,多个发光元件210包括红色发光元件211、绿色发光元件212和蓝色发光元件213,红色发光元件211中的第二子电子传输层122中Mg的掺杂浓度为1-5%,红色发光元件212中的第二子电子传输层122中Mg的掺杂浓度为5-10%,蓝色发光元件213中的第二子电子传输层122中Mg的掺杂浓度为10-20%,从而可更好地达到能级匹配。
图15为根据本公开一实施例的一种显示装置的示意图。如图15所示,该显示装置300包括上述的阵列基板。由此,由于该显示装置包括上述的阵列基板,该显示装置具有较高的发光效率和电流效率,并且还具有较低的启亮电压。
在一些示例中,该显示装置可为电视、电脑、智能手机、平板电脑、导航仪、电子画框等具有显示功能的电子装置。
本公开一实施例还提供一种量子点发光结构的制作方法。该量子点发光结构的制作方法包括:形成第一电极;在第一电极上形成电子传输层;在电子传输层远离第一电极的一侧形成量子点发光层。该制作方法还包括在电子传输层中形成电子阻挡层。
在本公开实施例提供的量子点发光结构的制作方法中,通过在电子传输层之中,或者电子传输层与第一电极之间形成电子阻挡层,从而可在电子传输层具有较高的迁移率时减少从电极注入电子传输层中的电子,进而可平衡量子点发光层中的载流子浓度,提高该制作方法制作的量子点发光结构的发 光效率。并且,将电子阻挡层形成在电子传输层之中还可有效降低启亮电压。
在一些示例中,在第一电极上形成电子传输层包括:采用溅射工艺在第一电极上形成电子传输层。由于采用溅射工艺形成的电子传输层(例如氧化锌薄膜)杂质较少,甚至没有杂质,并且具有较高的致密性和平坦度。由此,这样形成的电子传输层可具有较高的致密性和平坦度,从而有利于提高之后形成的量子点发光层的平坦度,进而提高最终形成的量子点发光结构的平坦度和发光性能。也就是说,该量子点发光结构可在具有较高的平坦度和发光性能的同时,具有较高的发光效率。
在一些示例中,在电子传输层中形成电子阻挡层包括:采用溅射工艺在电子传输层中形成电子阻挡层。类似地,采用溅射工艺形成的电子阻挡层也具有较高的致密性和平坦度,从而有利于提高之后形成的量子点发光层的平坦度,进而提高最终形成的量子点发光结构的平坦度和发光性能。
在一些示例中,电子传输层包括两个子电子传输层,在电子传输层中形成电子阻挡层包括:在两个子电子传输层之间形成电子阻挡层。由此,该制作方法可降低启亮电压。当然,本公开实施例包括但不限于此,电子阻挡层还可以其他方式形成在电子传输层之中。
在一些示例中,电子传输层包括N+1个子电子传输层,在电子传输层中形成电子阻挡层包括:在N+1个子电子传输层之间形成N个子电子阻挡层,N为大于等于2的正整数。由此,通过将单层的电子阻挡层拆分成厚度较薄的几个子电子阻挡层,并设置在多个子电子传输层中,从而可进一步降低启亮电压。
在一些示例中,在电子传输层中形成电子阻挡层包括:采用不同材料形成N个子电子阻挡层。例如,当电子阻挡层包括两个子电子阻挡层时,可采用氧化铝(Al 2O 3)材料制作这两个子电子阻挡层中的一个,采用氧化钽(TaO x)材料制作两个子电子阻挡层中的另一个。
在一些示例中,在电极上形成电子传输层包括:采用溅射工艺形成第一子电子传输层和第二子电子传输层,第二子电子传输层位于第一子电子传输层靠近量子点发光层的一侧,第二子电子传输层的导带底能级大于第一子电子传输层的导带底能级,且小于量子点发光层的导带底能级。
在该示例提供的量子点发光结构的制作方法中,由于第二子电子传输层的导带底能级大于第一子电子传输层的导带底能级,且小于量子点发光层的导带底能级,从而可使得第二子电子传输层的LUMO能级更为接近量子点发光层的LUMO能级,从而可能够更好的达到能级匹配,有利于提高该制作方法制作的量子点发光结构的发光效率。另外,由于采用溅射工艺形成第一子电子传输层和第二子电子传输层。此时,第一子电子传输层和第二子电子传输层具有较高的平坦度,从而有利于提高之后形成的量子点发光层的平 坦度,进而提高最终形成的量子点发光结构的平坦度和发光性能。也就是说,该量子点发光结构可在具有较高的平坦度和发光性能的同时,具有较高的发光效率。
在一些示例中,在电子传输层远离电极的一侧形成量子点发光层包括:采用喷墨打印工艺在电子传输层远离电极的一侧形成量子点发光层。当然,本公开实施例包括但不限于此,量子点发光层还可采用其他工艺形成,例如旋涂工艺或光刻工艺等。
在一些示例中,在第一电极上形成电子传输层和电子阻挡层之后,在电子传输层远离电极的一侧形成量子点发光层之前,该制作方法还包括:在电子传输层远离衬底基板的一侧形成像素限定层,像素限定层包括暴露电子传输层的开口,在电子传输层远离电极的一侧形成量子点发光层包括:采用喷墨打印工艺在开口中形成量子点发光层。由此,该制作方法可通过先形成具有开口的像素限定层,从而可更好地限定后续制作的量子点发光层的范围。并且,像素限定层除了可以提供用于形成量子点发光层的开口之外,还可对已经形成的电子传输层的边缘部分的缺陷(例如毛刺)进行遮挡,从而使得后续形成的膜层的平坦性更好。
在一些示例中,该量子点发光结构的制作方法还包括:采用蒸镀工艺在开口中和在量子点发光层远离衬底基板的一侧形成空穴传输层、空穴注入层和第二电极,从而形成发光结构。例如,第一电极可为阳极,第二电极可为阴极;当然,本公开实施例包括但不限于此,第一电极也可为阴极,第二电极可为阳极。
在一些示例中,该量子点发光结构的制作方法还包括:采用等离子刻蚀或者喷砂处理工艺对电子传输层靠近量子点发光层的表面进行粗糙化处理,处理后的电子传输层靠近量子点发光层的均方根表面粗糙度的范围为5-10纳米。由此,电子传输层靠近量子点发光层的表面粗糙度较高,从而增加量子点发光层中的量子点和电子传输层的接触,避免由于纳米颗粒状态的量子点堆积在平滑的氧化锌(ZnO)表面,从而避免接触面积小和避免倒置电子传输层部分与后续空穴传送层直接接触造成的漏电现象。
本公开一实施例还提供另一种量子点发光结构的制作方法。该量子点发光结构的制作方法包括:形成电极;采用溅射工艺在电极上形成电子传输层;以及在电子传输层远离电极的一侧形成量子点发光层;电子传输层包括溅射形成的掺杂氧化锌薄膜。如此设置,通过采用溅射工艺形成掺杂氧化锌薄膜,可以使得该电子传输层的导带底能级大于普通的采用溅射工艺形成的氧化锌薄膜的导带底能级。由此,该量子点发光结构的制作方法制作的量子点发光结构可使得电子传输层的导电底能级更为接近量子点发光层的LUMO能级,从而可能够更好的达到能级匹配,有利于提高该量子点发光结构的发光 效率。另外,由于采用溅射工艺形成的氧化锌薄膜是无定型态或者多晶态的薄膜,因此溅射形成的掺杂氧化锌薄膜具有较高的致密性和平坦度,从而有利于提高之后形成的量子点发光层的平坦度,进而提高最终形成的量子点发光结构的平坦度和发光性能。也就是说,该量子点发光结构可在具有较高的平坦度和发光性能的同时,具有较高的发光效率。
在一些示例中,采用溅射工艺在电极上形成电子传输层包括:在氩气流量的范围约为30-50sccm,例如40sccm,溅射功率的范围约为90-110W,例如100W的条件下,采用氧化锌靶材在电极上形成氧化锌薄膜。当然,本公开实施例包括但不限于此,溅射工艺的具体参数可根据实际情况进行设置。需要说明的是,上述的“氩气流量的范围约为30-50sccm”是指氩气流量的下限值在30sccm的10%的误差范围之内,氩气流量的上限值在50sccm的10%的误差范围之内;上述的“溅射功率的范围约为90-110W”是指溅射功率的下限值在90W的10%的误差范围之内,溅射功率的上限值在110W的10%的误差范围之内。
在一些示例中,采用溅射工艺在电极上形成电子传输层包括:采用溅射工艺形成第一子电子传输层和第二子电子传输层,第二子电子传输层位于第一子电子传输层靠近量子点发光层的一侧,第二子电子传输层的导带底能级大于第一子电子传输层的导带底能级,且小于量子点发光层的导带底能级。由此,由于第二子电子传输层的导带底能级大于第一子电子传输层的导带底能级,且小于量子点发光层的导带底能级,从而可使得第二子电子传输层的LUMO能级更为接近量子点发光层的LUMO能级,从而可能够更好的达到能级匹配,有利于提高该量子点发光结构的发光效率。
例如,第一子电子传输层可为采用溅射工艺形成的ZnO薄膜;第二子电子传输层可为采用溅射工艺形成的掺杂ZnO薄膜。
在一些示例中,第二子电子传输层的掺杂浓度从第二子电子传输层靠近第一子电子传输层的一侧到第二子电子传输层靠近量子点发光层的一侧逐渐增大。由于随着掺杂浓度的上升,掺杂的ZnO薄膜的LUMO能级会提高;通过将第二子电子传输层的掺杂浓度从第二子电子传输层靠近第一子电子传输层的一侧到第二子电子传输层靠近量子点发光层的一侧设置地逐渐增大,从而可更好地达到能级匹配,进一步有利于提高该量子点发光结构的发光效率。
在一些示例中,采用溅射工艺形成第二子电子传输层包括:在第一子电子传输层靠近量子点发光层的一侧采用不同的掺杂浓度形成多个子掺杂电子传输层,多个子掺杂电子传输层形成第二子电子传输层,多个子掺杂电子传输层的掺杂浓度从第一子电子传输层到量子点发光层的方向上逐渐增加。由此,第二子电子传输层包括多个掺杂浓度梯度变化的掺杂电子传输层,多 个掺杂电子传输层的掺杂浓度从第一子电子传输层到量子点发光层的方向上逐渐增加。类似地,由于随着掺杂浓度的上升,掺杂的ZnO薄膜的LUMO能级会提高;通过将多个掺杂电子传输层的掺杂浓度从第一子电子传输层到量子点发光层的方向上逐渐增加,从而可更好地达到能级匹配,进一步有利于提高该量子点发光结构的发光效率。
本公开一实施例还提供一种阵列基板的制作方法。该制作方法包括以下步骤S301-S306:
步骤S301:在衬底基板上形成第一电极。
例如,衬底基板可玻璃基板、石英基板、或者柔性PET(聚对苯二甲酸乙二醇酯)基板;第一电极可为透明电极,例如ITO(氧化铟锡)、FTO(氟掺杂的氧化锡)或者导电聚合物,也可为不透明的电极,例如,铝或银。
步骤S302:在第一电极上采用溅射工艺形成电子传输层。
例如,可采用磁控溅射工艺在电极上形成氧化锌薄膜或者经过Mg(镁)、Al(铝)、Zr(锆)、Hf(铪)、或Y(钇)掺杂氧化锌薄膜。另外,电子传输层的厚度范围可在50-300纳米。
步骤S303:在衬底基板和电子传输层上形成像素限定层,像素限定层包电子传输层的边缘部分,并具有暴露电子传输层的中间部分的开口。
步骤S304:在像素限定层的开口中,在电子传输层远离第一电极的一侧形成量子点发光层。
例如,采用喷墨打印工艺形成量子点发光层。
步骤S305:依次形成空穴传输层、空穴注入层。
步骤S306:在空穴注入层远离空穴传输层的一侧形成第二电极。
有以下几点需要说明:
(1)本公开的实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (39)

  1. 一种量子点发光结构,包括:
    量子点发光层;
    电极;以及
    电子传输层,位于所述量子点发光层和所述电极之间,
    其中,所述量子点发光结构还包括电子阻挡层,所述电子阻挡层位于所述电子传输层中。
  2. 根据权利要求1所述的量子点发光结构,其中,所述电子传输层包括两个子电子传输层,所述电子阻挡层位于所述两个子电子传输层之间。
  3. 根据权利要求1所述的量子点发光结构,其中,所述电子传输层包括N+1个子电子传输层,所述电子阻挡层包括N个子电子阻挡层,所述N个子电子阻挡层分别夹设在所述N+1个子电子传输层之间,N为大于等于2的正整数。
  4. 根据权利要求1-3中任一项所述的量子点发光结构,其中,所述电子传输层包括氧化锌薄膜。
  5. 根据权利要求2或3所述的量子点发光结构,其中,各所述子电子传输层为氧化锌薄膜。
  6. 根据权利要求1-5中任一项所述的量子点发光结构,其中,所述电子阻挡层的导带底能级大于所述量子点发光层的导带底能级。
  7. 根据权利要求1-6中任一项所述的量子点发光结构,其中,所述电子阻挡层的材料包括氧化铝、氧化钽和氧化铪中的至少之一。
  8. 根据权利要求1-7中任一项所述的量子点发光结构,其中,所述量子点发光结构在7V的电压之下发光亮度大于500cd/m 2
  9. 根据权利要求1-8中任一项所述的量子点发光结构,其中,所述电子传输层靠近所述量子点发光层的均方根表面粗糙度的范围约为5-10纳米。
  10. 根据权利要求1-3中任一项所述的量子点发光结构,其中,所述电子阻挡层在垂直于所述衬底基板的方向上的厚度约为1-2纳米。
  11. 根据权利要求1所述的量子点发光结构,其中,所述电子传输层包括第一子电子传输层和第二子电子传输层,所述第二子电子传输层位于所述第一子电子传输层靠近所述量子点发光层的一侧,所述第二子电子传输层的导带底能级大于所述第一子电子传输层的导带底能级,且小于所述量子点发光层的导带底能级。
  12. 根据权利要求11所述的量子点发光结构,其中,所述电子阻挡层设置在所述第一子电子传输层和所述第二子电子传输层之间。
  13. 根据权利要求11所述的量子点发光结构,其中,所述电子阻挡层 设置在所述第二子电子传输层之内。
  14. 根据权利要求11-13中任一项所述的量子点发光结构,其中,所述第一子电子传输层为氧化锌薄膜,所述第二子电子传输层为掺杂氧化锌薄膜。
  15. 根据权利要求14所述的量子点发光结构,其中,所述第二子电子传输层的掺杂材料包括Mg、Al、Zr、Hf、Y中的至少之一。
  16. 根据权利要求15所述的量子点发光结构,其中,所述第二子电子传输层的掺杂材料为Mg,所述第二子电子传输层中Mg的摩尔百分比为1%-20%。
  17. 根据权利要求14-16中任一项所述的量子点发光结构,其中,所述第二子电子传输层的掺杂浓度从所述第二子电子传输层靠近所述第一子电子传输层的一侧到所述第二子电子传输层靠近所述量子点发光层的一侧逐渐增大。
  18. 根据权利要求14-16中任一项所述的量子点发光结构,其中,所述第二子电子传输层包括多个子掺杂电子传输层,所述多个子掺杂电子传输层的掺杂浓度从所述第一子电子传输层到所述量子点发光层的方向上逐渐增加。
  19. 一种阵列基板,包括多个发光元件,
    其中,至少一个所述发光元件采用根据权利要求1-18中任一项的量子点发光结构。
  20. 根据权利要求19所述的阵列基板,其中,所述电子传输层包括第一子电子传输层和第二子电子传输层,所述第二子电子传输层位于所述第一子电子传输层靠近所述量子点发光层的一侧,所述第二子电子传输层的导带底能级大于所述第一子电子传输层的导带底能级,且小于所述量子点发光层的导带底能级,所述第一子电子传输层为氧化锌薄膜,所述第二子电子传输层为掺杂氧化锌薄膜,
    所述多个发光元件包括不同颜色的所述发光元件,不同颜色的所述发光元件中所述第二子电子传输层的掺杂浓度不同。
  21. 根据权利要求19所述的阵列基板,其中,所述掺杂氧化锌薄膜的掺杂剂为Mg,所述多个发光元件包括红色发光元件、绿色发光元件和蓝色发光元件,所述红色发光元件中的所述第二子电子传输层中Mg的掺杂浓度为1-5%,所述红色发光元件中的所述第二子电子传输层中Mg的掺杂浓度为5-10%,所述蓝色发光元件中的所述第二子电子传输层中Mg的掺杂浓度为10-20%。
  22. 根据权利要求19-21中任一项所述的阵列基板,还包括:
    像素限定层,围绕各所述发光元件的所述电子传输层设置,
    其中,所述像素限定层包裹各所述发光元件的所述电子传输层的边缘部分,并具有暴露各所述发光元件的所述电子传输层的中间部分的开口。
  23. 一种显示装置,包括根据权利要求19-22中任一项所述阵列基板。
  24. 一种量子点发光结构的制作方法,包括:
    形成第一电极;
    在所述第一电极上形成电子传输层;以及
    在所述电子传输层远离所述第一电极的一侧形成量子点发光层,
    其中,该制作方法还包括在所述电子传输层中形成电子阻挡层。
  25. 根据权利要求24所述的量子点发光结构的制作方法,其中,在所述第一电极上形成所述电子传输层包括:
    采用溅射工艺在所述第一电极上形成所述电子传输层。
  26. 根据权利要求24所述的量子点发光结构的制作方法,其中,所述电子传输层包括两个子电子传输层,在所述电子传输层中形成电子阻挡层包括:
    在所述两个子电子传输层之间形成所述电子阻挡层。
  27. 根据权利要求24所述的量子点发光结构的制作方法,其中,所述电子传输层包括N+1个子电子传输层,在所述电子传输层中形成电子阻挡层包括:
    在所述N+1个子电子传输层之间形成N个子电子阻挡层,N为大于等于2的正整数。
  28. 根据权利要求24所述的量子点发光结构的制作方法,其中,在所述第一电极上形成所述电子传输层包括:采用溅射工艺形成第一子电子传输层和第二子电子传输层,
    所述第二子电子传输层位于所述第一子电子传输层靠近所述量子点发光层的一侧,所述第二子电子传输层的导带底能级大于所述第一子电子传输层的导带底能级,且小于所述量子点发光层的导带底能级。
  29. 根据权利要求24-28中任一项所述的量子点发光结构的制作方法,其中,在所述电子传输层中形成所述电子阻挡层包括:
    采用溅射工艺在所述电子传输层中形成所述电子阻挡层。
  30. 根据权利要求24-28中任一项所述的量子点发光结构的制作方法,其中,在所述电子传输层远离所述第一电极的一侧形成所述量子点发光层包括:采用喷墨打印工艺在所述电子传输层远离所述电极的一侧形成所述量子点发光层。
  31. 根据权利要求30所述的量子点发光结构的制作方法,其中,在所述第一电极上形成所述电子传输层和所述电子阻挡层之后,在所述电子传输层远离所述电极的一侧形成量子点发光层之前,所述制作方法还包括:
    在所述电子传输层远离所述第一电极的一侧形成像素限定层,所述像素限定层包括暴露所述电子传输层的开口,
    其中,在所述电子传输层远离所述电极的一侧形成所述量子点发光层包括:采用喷墨打印工艺在所述开口中形成所述量子点发光层。
  32. 根据权利要求31所述的量子点发光结构的制作方法,还包括:
    采用蒸镀工艺在所述开口中和在所述量子点发光层远离所述第一电极的一侧依次形成空穴传输层、空穴注入层和第二电极。
  33. 根据权利要求24-32中任一项所述的量子点发光结构的制作方法,还包括:
    采用等离子刻蚀或者喷砂处理工艺对所述电子传输层靠近所述量子点发光层的表面进行粗糙化处理,处理后的所述电子传输层靠近所述量子点发光层的均方根表面粗糙度的范围为5-10纳米。
  34. 一种量子点发光结构的制作方法,包括:
    形成电极;
    采用溅射工艺在所述电极上形成电子传输层;以及
    在所述电子传输层远离所述电极的一侧形成量子点发光层,
    其中,所述电子传输层包括溅射形成的掺杂氧化锌薄膜。
  35. 根据权利要求34所述的量子点发光结构的制作方法,其中,采用溅射工艺在所述电极上形成所述电子传输层包括:
    在氩气流量的取值范围约为30-50sccm,溅射功率约为90-110W的条件下,采用氧化锌靶材在所述电极上形成氧化锌薄膜。
  36. 根据权利要求34所述的量子点发光结构的制作方法,其中,采用溅射工艺在所述电极上形成所述电子传输层包括:采用溅射工艺形成第一子电子传输层和第二子电子传输层,
    所述第二子电子传输层位于所述第一子电子传输层靠近所述量子点发光层的一侧,所述第二子电子传输层的导带底能级大于所述第一子电子传输层的导带底能级,且小于所述量子点发光层的导带底能级。
  37. 根据权利要求36所述的量子点发光结构的制作方法,其中,所述第一子电子传输层包括氧化锌薄膜,所述第二子电子传输层包括掺杂氧化锌薄膜。
  38. 根据权利要求36所述的量子点发光结构的制作方法,其中,所述第二子电子传输层的掺杂浓度从所述第二子电子传输层靠近所述第一子电子传输层的一侧到所述第二子电子传输层靠近所述量子点发光层的一侧逐渐增大。
  39. 根据权利要求36所述的量子点发光结构的制作方法,其中,采用溅射工艺形成所述第二子电子传输层包括:
    在所述第一子电子传输层靠近所述量子点发光层的一侧采用不同的掺杂浓度形成多个子掺杂电子传输层,多个子掺杂电子传输层形成所述第二子电子传输层,所述多个子掺杂电子传输层的掺杂浓度从所述第一子电子传输层到所述量子点发光层的方向上逐渐增加。
PCT/CN2020/089739 2020-05-12 2020-05-12 量子点发光结构及其制作方法、阵列基板和显示装置 WO2021226818A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20904232.4A EP4152418A4 (en) 2020-05-12 Quantum dot light emitting structure and manufacturing method therefor, array substrate, and display apparatus
PCT/CN2020/089739 WO2021226818A1 (zh) 2020-05-12 2020-05-12 量子点发光结构及其制作方法、阵列基板和显示装置
CN202080000717.XA CN114026703B (zh) 2020-05-12 2020-05-12 量子点发光结构及其制作方法、阵列基板和显示装置
JP2022502984A JP2023534085A (ja) 2020-05-12 2020-05-12 量子ドット発光構造、量子ドット発光構造の製作方法、アレイ基板及び表示装置
KR1020227003917A KR20230009866A (ko) 2020-05-12 2020-05-12 양자점 발광 구조 및 그 제조 방법, 어레이 기판, 및 디스플레이 장치
US17/270,984 US20220123168A1 (en) 2020-05-12 2020-05-12 Quantum dot light emitting structure, method for manufacturing the same, array substrate, and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089739 WO2021226818A1 (zh) 2020-05-12 2020-05-12 量子点发光结构及其制作方法、阵列基板和显示装置

Publications (1)

Publication Number Publication Date
WO2021226818A1 true WO2021226818A1 (zh) 2021-11-18

Family

ID=78525615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089739 WO2021226818A1 (zh) 2020-05-12 2020-05-12 量子点发光结构及其制作方法、阵列基板和显示装置

Country Status (5)

Country Link
US (1) US20220123168A1 (zh)
JP (1) JP2023534085A (zh)
KR (1) KR20230009866A (zh)
CN (1) CN114026703B (zh)
WO (1) WO2021226818A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140633A1 (ko) * 2022-01-19 2023-07-27 삼성디스플레이주식회사 양자점 조성물, 이를 이용한 발광 소자 및 상기 발광 소자를 포함한 전자 장치
WO2024044873A1 (zh) * 2022-08-29 2024-03-07 北京京东方技术开发有限公司 发光器件及其制备方法、显示面板、显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140158993A1 (en) * 2012-12-12 2014-06-12 Woo-Young So Phosphorescence-sensitizing fluorescence material system
CN103904178A (zh) * 2014-04-11 2014-07-02 浙江大学 量子点发光器件
CN105679958A (zh) * 2016-04-20 2016-06-15 京东方科技集团股份有限公司 电致发光器件及其制作方法、显示装置
CN105810848A (zh) * 2016-03-16 2016-07-27 京东方科技集团股份有限公司 一种量子点层的制备方法及含有量子点层的qled显示装置、制备方法
CN106601922A (zh) * 2016-12-15 2017-04-26 Tcl集团股份有限公司 一种量子点显示面板及其制作方法
CN106654027A (zh) * 2016-11-22 2017-05-10 纳晶科技股份有限公司 量子点电致发光器件、具有其的显示装置与照明装置
CN109346506A (zh) * 2018-10-25 2019-02-15 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示面板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160087433A (ko) * 2015-01-13 2016-07-22 삼성디스플레이 주식회사 유기발광소자 및 이를 갖는 표시장치
CN107342367A (zh) * 2017-06-28 2017-11-10 深圳市华星光电技术有限公司 量子点电致发光器件及其制作方法
CN107910449A (zh) * 2017-11-16 2018-04-13 信利(惠州)智能显示有限公司 一种量子点发光二极管及其制备方法
CN109728179A (zh) * 2019-01-02 2019-05-07 京东方科技集团股份有限公司 量子点发光二极管器件及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140158993A1 (en) * 2012-12-12 2014-06-12 Woo-Young So Phosphorescence-sensitizing fluorescence material system
CN103904178A (zh) * 2014-04-11 2014-07-02 浙江大学 量子点发光器件
CN105810848A (zh) * 2016-03-16 2016-07-27 京东方科技集团股份有限公司 一种量子点层的制备方法及含有量子点层的qled显示装置、制备方法
CN105679958A (zh) * 2016-04-20 2016-06-15 京东方科技集团股份有限公司 电致发光器件及其制作方法、显示装置
CN106654027A (zh) * 2016-11-22 2017-05-10 纳晶科技股份有限公司 量子点电致发光器件、具有其的显示装置与照明装置
CN106601922A (zh) * 2016-12-15 2017-04-26 Tcl集团股份有限公司 一种量子点显示面板及其制作方法
CN109346506A (zh) * 2018-10-25 2019-02-15 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示面板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140633A1 (ko) * 2022-01-19 2023-07-27 삼성디스플레이주식회사 양자점 조성물, 이를 이용한 발광 소자 및 상기 발광 소자를 포함한 전자 장치
WO2024044873A1 (zh) * 2022-08-29 2024-03-07 北京京东方技术开发有限公司 发光器件及其制备方法、显示面板、显示装置

Also Published As

Publication number Publication date
CN114026703A (zh) 2022-02-08
JP2023534085A (ja) 2023-08-08
US20220123168A1 (en) 2022-04-21
EP4152418A1 (en) 2023-03-22
CN114026703B (zh) 2023-06-16
KR20230009866A (ko) 2023-01-17

Similar Documents

Publication Publication Date Title
US10658606B2 (en) Quantum dot light emitting device, method of manufacturing the same, and quantum dot light emitting display device
US20220199927A1 (en) Quantum dot light-emitting device and preparation method thereof
WO2021226818A1 (zh) 量子点发光结构及其制作方法、阵列基板和显示装置
US20230074925A1 (en) Quamtum dot light emitting diode and method for manufacturing the same, display panel, and display device
KR101973207B1 (ko) 금속 산화물이 함유된 양극 및 상기 양극을 포함하는 유기발광소자
US20210336177A1 (en) Oled display panel and oled display device
US11289667B2 (en) Light-emitting device with high electron injection efficiency
US20230078114A1 (en) Light-emitting diode device and manufacturing method thereof, and display panel
WO2021233130A1 (zh) 显示基板及其制造方法和显示面板
WO2023206674A1 (zh) 有机发光显示面板和有机发光显示装置
WO2022252052A1 (zh) 量子点发光二极管及其制备方法、显示装置
US20190044088A1 (en) Organic light emitting panel, manufacturing method thereof, and organic light emitting device
WO2022135405A1 (zh) 发光二极管及其制备方法
WO2024040464A1 (zh) 一种显示基板、其制作方法及显示装置
WO2024000483A1 (zh) 显示面板、显示面板的制备方法和显示装置
WO2023193427A1 (zh) 一种发光器件及其制备方法、显示装置
WO2019227732A1 (zh) Oled发光器件及oled显示装置
US11968853B2 (en) Organic electroluminescent structure and display device
WO2021249162A1 (zh) 显示器件及其制备方法
US20230354628A1 (en) Organic light-emitting display panel and organic light-emitting display device
WO2024040561A1 (zh) 发光器件及其制备方法、显示面板、显示装置
WO2020215882A1 (zh) 发光结构、显示面板和显示装置
US20200411612A1 (en) Electroluminescent device
WO2022011991A9 (zh) 发光器件及其制备方法
TWM618200U (zh) 發光裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904232

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022502984

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020904232

Country of ref document: EP

Effective date: 20221212