WO2023140633A1 - 양자점 조성물, 이를 이용한 발광 소자 및 상기 발광 소자를 포함한 전자 장치 - Google Patents

양자점 조성물, 이를 이용한 발광 소자 및 상기 발광 소자를 포함한 전자 장치 Download PDF

Info

Publication number
WO2023140633A1
WO2023140633A1 PCT/KR2023/000912 KR2023000912W WO2023140633A1 WO 2023140633 A1 WO2023140633 A1 WO 2023140633A1 KR 2023000912 W KR2023000912 W KR 2023000912W WO 2023140633 A1 WO2023140633 A1 WO 2023140633A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
quantum dot
layer
light emitting
electrode
Prior art date
Application number
PCT/KR2023/000912
Other languages
English (en)
French (fr)
Inventor
정연구
고윤혁
서요한
한창열
Original Assignee
삼성디스플레이주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성디스플레이주식회사 filed Critical 삼성디스플레이주식회사
Publication of WO2023140633A1 publication Critical patent/WO2023140633A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/865Intermediate layers comprising a mixture of materials of the adjoining active layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • It relates to a quantum dot composition, a light emitting device using the same, and an electronic device including the light emitting device.
  • Quantum dots can be used as materials that perform various optical functions (eg, light conversion function, light emitting function, etc.) among optical members and various electronic devices.
  • Quantum dots are nano-sized semiconductor nanocrystals that exhibit a quantum confinement effect, and may have different energy band gaps by controlling the size and composition of the nanocrystals, and thus emit light of various emission wavelengths.
  • Such an optical member including quantum dots may have a thin film form, for example, a thin film patterned for each sub-pixel.
  • Such an optical member may also be used as a color conversion member of a device including various light sources.
  • the quantum dots may be used for various purposes in various electronic devices.
  • the quantum dots may also be used as emitters.
  • the quantum dots may function as an emitter by being included in a light emitting layer of a light emitting device including a pair of electrodes and a light emitting layer.
  • quantum dots are required to be developed.
  • the first quantum dot's VBM (Valence Band Maximum) energy level and the second quantum dot's VBM energy level are different,
  • a quantum dot composition in which an energy band gap of the first quantum dot and an energy band gap of the second quantum dot are the same is provided.
  • a first electrode a second electrode facing the first electrode;
  • an intermediate layer including a light emitting layer disposed between the first electrode and the second electrode; includes,
  • the light emitting layer is provided with a light emitting device including the quantum dot composition.
  • an electronic device including the light emitting device is provided.
  • the light emitting device may have improved luminous efficiency and lifetime by using a quantum dot composition including two or more types of quantum dots having different energy band positions and the same energy band gap.
  • FIG. 1 is a diagram schematically showing the structure of a light emitting device according to an embodiment.
  • FIG. 2 is a diagram schematically illustrating charge injection of a light emitting device according to an embodiment.
  • FIG. 3 is a diagram schematically showing the structure of an electronic device according to an embodiment.
  • FIG. 4 is a diagram schematically showing the structure of an electronic device according to another embodiment.
  • CBM conduction band minimum
  • VBM valence band maximum
  • 5B is a diagram showing CBM energy and VBM energy of quantum dots according to Synthesis Examples 2-1 to 2-3.
  • 5C is a diagram showing CBM energy and VBM energy of quantum dots according to Synthesis Examples 3-1 to 3-5.
  • 6A is a diagram showing luminous efficiency according to luminance of light emitting devices according to Example 1 and Comparative Example 1;
  • 6B is a view showing the lifespan of light emitting devices according to Example 1 and Comparative Example 1;
  • 7A is a diagram showing luminous efficiency according to luminance of light emitting devices according to Example 2 and Comparative Example 2;
  • Example 7B is a view showing the lifespan of light emitting devices according to Example 2 and Comparative Example 2.
  • group II may include group IIA elements and group IIB elements on the IUPAC periodic table, and group II elements may include, for example, magnesium (Mg), calcium (Ca), zinc (Zn), cadmium (Cd), mercury (Hg), and the like.
  • group II elements may include, for example, magnesium (Mg), calcium (Ca), zinc (Zn), cadmium (Cd), mercury (Hg), and the like.
  • group III may include group IIIA and group IIIB elements on the IUPAC periodic table, and group III elements may include, for example, aluminum (Al), gallium (Ga), indium (In), thallium (Tl), and the like.
  • group V may include group VA elements and group VB elements on the IUPAC periodic table, and group V elements may include, for example, nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb), and the like.
  • group VI may include a group VIA element and a group VIB element on the IUPAC periodic table, and the group VI element may include, for example, sulfur (S), selenium (Se), tellurium (Te), and the like.
  • the quantum dot composition according to the present invention includes a first quantum dot and a second quantum dot, a valence band maximum (VBM) energy level of the first quantum dot and a VBM energy level of the second quantum dot are different, and the energy band gap of the first quantum dot and the energy band gap of the second quantum dot may be the same.
  • VBM valence band maximum
  • the VBM energy level of the first quantum dots may be -6 to -5 eV, -5.9 to -5.1 eV, -5.85 to -5.2 eV, -5.8 to -5.3 eV, or -5.75 to -5.4 eV.
  • the VBM energy level of the second quantum dots may be -6 to -5 eV, -5.95 to -5.1 eV, -5.9 to -5.2 eV, -5.9 to -5.3 eV, or -5.9 to -5.5 eV.
  • the difference between the VBM energy level of the first quantum dot and the VBM energy level of the second quantum dot may be 0.01 to 1 eV, 0.01 to 0.7 eV, 0.05 to 0.5 eV, or 0.1 to 0.3 eV.
  • the energy band gap of the first quantum dot and the energy band gap of the second quantum dot may be 1 to 5 eV, 1.5 to 4 eV, or 2 to 3 eV.
  • the first quantum dots and the second quantum dots independently include a core and a shell covering a portion of the core, and the size of the core among the first quantum dots and the size of the core among the second quantum dots may be different.
  • the cores of the first quantum dots and the second quantum dots may each include In or Zn.
  • the cores of the first quantum dots and the second quantum dots include InGaP
  • the Ga content in the core of the first quantum dot is greater than the Ga content in the core of the second quantum dot
  • the size of the core of the first quantum dot may be larger than the size of the core of the second quantum dot.
  • the cores of the first quantum dots and the second quantum dots include ZnSeTe
  • the Te content in the core of the first quantum dot is greater than the Te content in the core of the second quantum dot
  • the size of the core of the first quantum dot may be smaller than the size of the core of the second quantum dot.
  • the shell of the first quantum dots and the second quantum dots may include two or more layers independently of each other.
  • the first quantum dots and the second quantum dots may include two layers.
  • the shells of the first quantum dots and the second quantum dots are CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, ZnSeS, ZnTeS, GaAs, GaP, GaN, GaO, GaSb, HgS, HgSe, HgTe, InAs, InP, InS, InZnP, InZnS, InGaP, InGaN, InSb, AlAs, AlP, AlSb, PbS, TiO, SrSe or any combination thereof.
  • the shell may include ZnS, ZnSe, ZnSeS or any combination thereof.
  • the first quantum dots include a first nanomaterial and a first ligand disposed on a surface of the first nanomaterial
  • the second quantum dots include a second nanomaterial and a second ligand disposed on a surface of the second nanomaterial
  • the first ligand and the second ligand independently include a halide, a thiol-based compound, a carboxylic acid-containing compound, or any combination thereof.
  • the first nanomaterial and the second nanomaterial may be the same.
  • the first nanomaterial and the second nanomaterial may be independently selected from a group II-VI semiconductor compound, a group III-V semiconductor compound, a group III-VI semiconductor compound, a group I-III-VI semiconductor compound, or a group IV-VI semiconductor compound; Group IV elements or compounds or any combination thereof.
  • the first nanomaterial and the second nanomaterial may independently include a core and a shell covering a portion of the core.
  • the shell may include two or more layers.
  • the core of the first nanomaterial and the core of the second nanomaterial are independent of each other CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, MgS, MgS, GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb; CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, MgZnS, GaNP, GaNA
  • the shell of the first nanomaterial and the shell of the second nanomaterial are independently of each other ZnS, ZnSe, ZnTe, ZnO, ZnSeS, ZnTeS, GaAs, GaP, GaN, GaO, GaSb, HgS, HgSe, HgTe, InAs, InP, InS, InGaP, InSb, InZnP, InZnS, InGaP, InGaN, AlAs, Al P, AlSb, PbS, TiO, SrSe or any combination thereof.
  • the first ligand and the second ligand may be the same, and the content of the first ligand in the first quantum dots and the content of the second ligand in the second quantum dots may be different.
  • the content of the first ligand in the first quantum dots may be greater than the content of the second ligand in the second quantum dots by 1% or more based on the element ratio.
  • the first ligand and the second ligand may be different from each other.
  • the thiol-based compound may include a C 1 -C 60 alkyl group unsubstituted or substituted with at least one R 10a , a C 6 -C 60 aryl group unsubstituted or substituted with at least one R 10a , -N(Q 1 )(Q 2 ) or any combination thereof.
  • R 10a , Q 1 and Q 2 refers to what is described herein.
  • the thiol-based compound may include a methyl group, an ethyl group, a C 3 -C 12 alkyl group, a phenyl group, a naphthyl group, -NH 2 , or any combination thereof.
  • the carboxylic acid-containing compound is -F, a C 1 -C 60 alkyl group optionally substituted with at least one R 10a , a C 1 -C 60 alkenyl group optionally substituted with at least one R 10a , a C 1 -C 60 alkoxy group optionally substituted with at least one R 10a , a C 6 -C 6 optionally substituted with at least one R 10a 0 aryl group, -N(Q 1 )(Q 2 ), or any combination thereof.
  • the description of R 10a , Q 1 and Q 2 refers to what is described herein.
  • the carboxylic acid-containing compound may include -F, methyl group, ethyl group, ethylene, acrylic acid, -OCH 3 , phenyl group, naphthyl group, -N(CH 3 ) 2 or any combination thereof.
  • the first ligand and the second ligand are each independently F, Cl, I, oleic acid, 1-dodecanethiol, 2-ethylhexylthiol, cinnamic acid, 4-methoxycinnamic acid, 4-(dimethylamino)cinamic acid), benzoic acid, 4-methylbenzoic acid, Benzenethiol, 4-methylbenzenethiol, 2,6-difluorocinnamic acid, 3 ,5-difluorocinnamic acid, 4-(trifluoromethyl)cinnamic acid, 4-aminobenzenethiol, or any combination thereof.
  • the content ratio of the first quantum dots and the second quantum dots may be 1:10 to 10:1, 2:8 to 8:2, or 3:7 to 7:3.
  • the light emitting device 10 includes a first electrode 110 , an intermediate layer 130 and a second electrode 150 .
  • a substrate may be additionally disposed below the first electrode 110 or above the second electrode 150 in FIG. 1 .
  • a glass substrate or a plastic substrate can be used.
  • the substrate may be a flexible substrate, and may include, for example, a plastic having excellent heat resistance and durability, such as polyimide, polyethylene terephthalate (PET), polycarbonate, polyethylene naphtalate, polyarylate (PAR), polyetherimide, or any combination thereof.
  • the first electrode 110 may be formed, for example, by providing a material for the first electrode on the substrate using a deposition method or a sputtering method.
  • a material having a high work function that facilitates hole injection may be used as a material for the first electrode.
  • the first electrode 110 may be a reflective electrode, a transflective electrode, or a transmissive electrode.
  • indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO 2 ), zinc oxide (ZnO), or any combination thereof may be used.
  • magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al-Li), calcium (Ca), magnesium-indium (Mg-In), magnesium-silver (Mg-Ag), or any combination thereof may be used as a material for the first electrode.
  • the first electrode 110 may have a single-layer structure consisting of a single layer or a multi-layer structure including a plurality of layers.
  • the first electrode 110 may have a three-layer structure of ITO/Ag/ITO.
  • An intermediate layer 130 is disposed above the first electrode 110 .
  • the intermediate layer 130 includes a light emitting layer.
  • the intermediate layer 130 may further include a hole transport region disposed between the first electrode 110 and the light emitting layer and an electron transport region disposed between the light emitting layer and the second electrode 150.
  • the intermediate layer 130 may further include metal-containing compounds such as organometallic compounds and inorganic materials such as quantum dots.
  • the intermediate layer 130 may include i) two or more light emitting units sequentially stacked between the first electrode 110 and the second electrode 150, and ii) a charge generation layer disposed between the two light emitting units.
  • the light emitting device 10 may be a tandem light emitting device.
  • the hole transport region may have i) a single layer structure consisting of a single material (consist of), ii) a single layer structure consisting of a single layer including a plurality of different materials, or iii) a multilayer structure including a plurality of layers including a plurality of different materials.
  • the hole transport region may include a hole injection layer, a hole transport layer, a light emitting auxiliary layer, an electron blocking layer, or any combination thereof.
  • the hole transport region may have a multilayer structure of a hole injection layer/hole transport layer, a hole injection layer/hole transport layer/auxiliary light emitting layer, a hole injection layer/auxiliary light emitting layer, a hole transport layer/auxiliary light emitting layer, or a hole injection layer/hole transport layer/electron blocking layer sequentially stacked from the first electrode 110.
  • the hole transport region may include a compound represented by Chemical Formula 201, a compound represented by Chemical Formula 202, or any combination thereof:
  • L 201 to L 204 are each independently a C 3 -C 60 carbocyclic group optionally substituted with at least one R 10a , or a C 1 -C 60 heterocyclic group optionally substituted with at least one R 10a ;
  • L 205 is *-O-*', *-S-*', *-N(Q 201 )-*', a C 1 -C 20 alkylene group optionally substituted with at least one R 10a, a C 2 -C 20 alkenylene group optionally substituted with at least one R 10a , a C 3 -C 60 carbocyclic group optionally substituted with at least one R 10a , or a C 1 -C 60 heterocyclic group unsubstituted or substituted with at least one R 10a;
  • xa1 to xa4 are each independently one of integers from 0 to 5;
  • xa5 is an integer from 1 to 10;
  • R 201 to R 204 and Q 201 are each independently a C 3 -C 60 carbocyclic group optionally substituted with at least one R 10a , or a C 1 -C 60 heterocyclic group optionally substituted with at least one R 10a;
  • R 201 and R 202 are optionally linked to each other via a single bond, a C 1 -C 5 alkylene group substituted or unsubstituted with at least one R 10a or a C 2 -C 5 alkenylene group substituted or unsubstituted with at least one R 10a , and form a C 8 -C 60 polycyclic group (eg, a carbazole group, etc.) which is optionally substituted with at least one R 10a. can be formed (see, for example, compound HT16, etc. below);
  • R 203 and R 204 may optionally be linked to each other via a single bond, a C 1 -C 5 alkylene group optionally substituted with at least one R 10a , or a C 2 -C 5 alkenylene group substituted or unsubstituted with at least one R 10a to form a C 8 -C 60 polycyclic group substituted or unsubstituted with at least one R 10a;
  • na1 may be one of integers from 1 to 4.
  • each of Chemical Formulas 201 and 202 may include at least one of the groups represented by Chemical Formulas CY201 to CY217:
  • ring CY 201 to ring CY 204 are each independently a C 3 -C 20 carbocyclic group or a C 1 -C 20 heterocyclic group, and at least one hydrogen in the formulas CY201 to CY217 is as described herein It may be substituted or unsubstituted with the same R 10a .
  • ring CY 201 to ring CY 204 in Chemical Formulas CY201 to CY217 may be each independently a benzene group, a naphthalene group, a phenanthrene group, or an anthracene group.
  • each of Chemical Formulas 201 and 202 may include at least one of the groups represented by Chemical Formulas CY201 to CY203.
  • Chemical Formula 201 may include at least one of the groups represented by Chemical Formulas CY201 to CY203 and at least one of the groups represented by Chemical Formulas CY204 to CY217, respectively.
  • xa1 is 1
  • R 201 is a group represented by one of Chemical Formulas CY201 to CY203
  • xa2 is 0, and
  • R 202 may be a group represented by one of Chemical Formulas CY204 to CY207.
  • each of Chemical Formulas 201 and 202 may not include groups represented by Chemical Formulas CY201 to CY203.
  • each of Chemical Formulas 201 and 202 may not include the groups represented by Chemical Formulas CY201 to CY203 and may include at least one of the groups represented by Chemical Formulas CY204 to CY217.
  • each of Chemical Formulas 201 and 202 may not include groups represented by Chemical Formulas CY201 to CY217.
  • the hole transport region is one of the following compounds HT1 to HT46, m-MTDATA, TDATA, 2-TNATA, NPB (NPD), ⁇ -NPB, TPD, Spiro-TPD, Spiro-NPB, methylated-NPB, TAPC, HMTPD, TCTA (4,4', 4"-tris (N-carbazolyl) triphenylamine (4,4', 4"-tris (N-carbazole 1) Triphenylamine)), Pani/DBSA (Polyaniline/Dodecylbenzenesulfonic acid), PEDOT/PSS (Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate) (Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate))), Pani/CSA (Polyaniline/Camphor sulfonic acid) niline/camphorsulfonic
  • the hole transport region may have a thickness of about 50 ⁇ to about 10000 ⁇ , for example, about 100 ⁇ to about 4000 ⁇ .
  • the hole injection layer may have a thickness of about 100 ⁇ to about 9000 ⁇ , for example, about 100 ⁇ to about 1000 ⁇
  • the hole transport layer may have a thickness of about 50 ⁇ to about 2000 ⁇ , for example, about 100 ⁇ to about 1500 ⁇ .
  • the light emitting auxiliary layer is a layer that serves to increase light emission efficiency by compensating for the optical resonance distance according to the wavelength of light emitted from the light emitting layer
  • the electron blocking layer is a layer that serves to prevent electron leakage from the light emitting layer to the hole transport region.
  • a material that may be included in the aforementioned hole transport region may be included in the emission auxiliary layer and the electron blocking layer.
  • the hole transport region may include a charge-generating material to improve conductivity.
  • the charge-generating material may be uniformly or non-uniformly dispersed (eg, in the form of a single layer consisting of the charge-generating material) in the hole transport region.
  • the charge-generating material may be, for example, a p-dopant.
  • the LUMO energy level of the p-dopant may be -3.5 eV or less.
  • the p-dopant may include a quinone derivative, a cyano group-containing compound, an element EL1 and an element EL2-containing compound, or any combination thereof.
  • Examples of the quinone derivative may include TCNQ, F4-TCNQ, and the like.
  • Examples of the cyano group-containing compound may include HAT-CN, a compound represented by Chemical Formula 221, and the like.
  • R 221 to R 223 are each independently a C 3 -C 60 carbocyclic group unsubstituted or substituted with at least one R 10a , or a C 1 -C 60 heterocyclic group optionally substituted with at least one R 10a ;
  • At least one of R 221 to R 223 may be, independently of one another, a cyano group; -F; -Cl; -Br; -I; a C 1 -C 20 alkyl group substituted with a cyano group, -F, -Cl, -Br, -I, or any combination thereof; or any combination thereof; may be a C 3 -C 60 carbocyclic group or a C 1 -C 60 heterocyclic group.
  • element EL1 may be a metal, metalloid, or combination thereof
  • element EL2 may be a nonmetal, metalloid, or combination thereof.
  • the metal examples include alkali metals (eg, lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), etc.); alkaline earth metals (eg, beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), etc.); Transition metals (e.g.
  • Examples of the metalloid may include silicon (Si), antimony (Sb), tellurium (Te), and the like.
  • non-metal examples include oxygen (O), halogen (eg, F, Cl, Br, I, etc.).
  • O oxygen
  • halogen eg, F, Cl, Br, I, etc.
  • the element EL1 and element EL2-containing compounds may include metal oxides, metal halides (e.g., metal fluorides, metal chlorides, metal bromides, metal iodides, etc.), metalloid halides (e.g., metalloid fluorides, metalloid chlorides, metalloid bromides, metalloid iodides, etc.), metal tellurides, or any combination thereof.
  • metal halides e.g., metal fluorides, metal chlorides, metal bromides, metal iodides, etc.
  • metalloid halides e.g., metalloid fluorides, metalloid chlorides, metalloid bromides, metalloid iodides, etc.
  • metal tellurides or any combination thereof.
  • metal oxide examples include tungsten oxide (eg, WO, W 2 O 3 , WO 2 , WO 3 , W 2 O 5 , etc.), vanadium oxide (eg, VO, V 2 O 3 , VO 2 , V 2 O 5 , etc.), molybdenum oxide (MoO, Mo 2 O 3 , MoO 2 , MoO 3 , Mo 2 O 5 , etc.), le nium oxide (eg, ReO 3 , etc.) and the like.
  • tungsten oxide eg, WO, W 2 O 3 , WO 2 , WO 3 , W 2 O 5 , etc.
  • vanadium oxide eg, VO, V 2 O 3 , VO 2 , V 2 O 5 , etc.
  • molybdenum oxide MoO, Mo 2 O 3 , MoO 2 , MoO 3 , Mo 2 O 5 , etc.
  • le nium oxide eg, ReO 3 , etc.
  • metal halide may include alkali metal halides, alkaline earth metal halides, transition metal halides, post-transition metal halides, lanthanide metal halides, and the like.
  • alkali metal halide examples include LiF, NaF, KF, RbF, CsF, LiCl, NaCl, KCl, RbCl, CsCl, LiBr, NaBr, KBr, RbBr, CsBr, LiI, NaI, KI, RbI, CsI and the like.
  • alkaline earth metal halide examples include BeF 2 , MgF 2 , CaF 2 , SrF 2 , BaF 2 , BeCl 2 , MgCl 2 , CaCl 2 , SrCl 2 , BaCl 2 , BeBr 2 , MgBr 2 , CaBr 2 , SrBr 2 , BaBr 2 , BeI 2 , MgI 2 , CaI 2 , SrI 2 , BaI 2 , and the like.
  • transition metal halide examples include titanium halides (eg, TiF 4 , TiCl 4 , TiBr 4 , TiI 4 etc.), zirconium halides (eg ZrF 4 , ZrCl 4 , ZrBr 4 , ZrI 4 etc.), hafnium halides (e.g. HfF 4 , HfCl 4 , HfBr 4 , HfI 4 etc.), vanadium halides (e.g. VF 3 , VCl 3 , VBr 3 , VI 3 etc.), niobium halides (e.g.
  • MnF 2 , MnCl 2 , MnBr 2 , MnI 2 etc. technetium halides
  • technetium halides e.g. TcF 2 , TcCl 2 , TcBr 2 , TcI 2 etc.
  • rhenium halides e.g. ReF 2 , ReCl 2 , ReBr 2 , ReI 2 etc.
  • iron halides e.g. FeF 2 , FeCl 2 , FeBr 2 , FeI 2 etc.
  • ruthenium halides e.g. RuF 2 , RuCl 2 , RuBr 2 , RuI 2 etc.
  • osmium halides e.g.
  • OsF 2 , OsCl 2 , OsBr 2 , OsI 2 etc. cobalt halides (e.g. CoF 2 , CoCl 2 , CoBr 2 , CoI 2 etc.), rhodium halides (e.g. RhF 2 , RhCl 2 , RhBr 2 , RhI 2 etc.), iridium halides (eg IrF 2 , IrCl 2 , IrBr 2 , IrI 2 etc.), nickel halides (e.g. NiF 2 , NiCl 2 , NiBr 2 , NiI 2 etc.), palladium halides (e.g.
  • cobalt halides e.g. CoF 2 , CoCl 2 , CoBr 2 , CoI 2 etc.
  • rhodium halides e.g. RhF 2 , RhCl 2 , RhBr 2 , RhI 2 etc.
  • PdF 2 , PdCl 2 , PdBr 2 , PdI 2 etc. platinum halides (e.g. PtF 2 , PtCl 2 , PtBr 2 , PtI 2 etc.), copper halides (eg, CuF, CuCl, CuBr, CuI, etc.), silver halides (eg, AgF, AgCl, AgBr, AgI, etc.), gold halides (eg, AuF, AuCl, AuBr, AuI, etc.) and the like.
  • platinum halides e.g. PtF 2 , PtCl 2 , PtBr 2 , PtI 2 etc.
  • copper halides eg, CuF, CuCl, CuBr, CuI, etc.
  • silver halides eg, AgF, AgCl, AgBr, AgI, etc.
  • gold halides eg, AuF, AuCl, AuBr, AuI,
  • Examples of the post-transition metal halide may include zinc halides (eg, ZnF 2 , ZnCl 2 , ZnBr 2 , ZnI 2 , etc.), indium halides (eg, InI 3 , etc.), tin halides (eg, SnI 2 , etc.), and the like.
  • zinc halides eg, ZnF 2 , ZnCl 2 , ZnBr 2 , ZnI 2 , etc.
  • indium halides eg, InI 3 , etc.
  • tin halides eg, SnI 2 , etc.
  • Examples of the lanthanide metal halide may include YbF, YbF 2 , YbF 3 , SmF 3 , YbCl, YbCl 2 , YbCl 3 SmCl 3 , YbBr, YbBr 2 , YbBr 3 SmBr 3 , YbI, YbI 2 , YbI 3 , and SmI 3 .
  • metalloid halide examples include antimony halide (eg, SbCl 5 , etc.).
  • antimony halide eg, SbCl 5 , etc.
  • the metal telluride examples include alkali metal tellurides (eg, Li 2 Te, Na 2 Te, K 2 Te, Rb 2 Te, Cs 2 Te etc.), alkaline earth metal tellurides (eg BeTe, MgTe, CaTe, SrTe, BaTe etc.), transition metal tellurides (eg TiTe 2 , ZrTe 2 , HfTe 2 , V 2 Te 3 , Nb 2 Te 3 , Ta 2 Te 3 , Cr 2 Te 3 , Mo 2 Te 3 , W 2 Te 3 , MnTe, TcTe, ReTe, FeTe, RuTe, OsTe, CoTe, RhTe, IrTe, NiTe, PdTe, PtTe, Cu 2 Te, CuTe, Ag 2 Te, AgTe, Au 2 Te, etc.), post-transition metal tellurides (eg, ZnTe, etc.), lanthanide metal tellurides (eg, LaTe
  • the light emitting layer may include quantum dots.
  • a quantum dot means a crystal of a semiconductor compound, and may include any material capable of emitting light of various emission wavelengths depending on the size of the crystal.
  • the diameter of the quantum dots may be, for example, about 1 nm to about 10 nm.
  • the quantum dots may be synthesized by a wet chemical process, an organometallic chemical vapor deposition process, a molecular beam epitaxy process, or a process similar thereto.
  • the wet chemical process is a method of growing quantum dot particle crystals after mixing an organic solvent and a precursor material.
  • the crystal grows, since the organic solvent naturally acts as a dispersant coordinated to the surface of the quantum dot crystal and controls the growth of the crystal, the growth of quantum dot particles can be controlled through a process that is easier and cheaper than vapor deposition methods such as metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE).
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • the quantum dot may include a II-VI group semiconductor compound; Group III-V semiconductor compounds; Group III-VI semiconductor compounds; Group I-III-VI semiconductor compounds; Group IV-VI semiconductor compounds; Group IV elements or compounds; or any combination thereof; may include.
  • Examples of the II-VI group semiconductor compound include binary element compounds such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, MgS; Ternary compounds such as CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, MgZnS, etc.
  • binary element compounds such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, H
  • quaternary compounds such as CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe and the like; or any combination thereof; may include.
  • Examples of the group III-V semiconductor compound include binary element compounds such as GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb and the like; ternary compounds such as GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InGaP, InNP, InAlP, InNAs, InNSb, InPAs, InPSb and the like; quaternary compounds such as GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb and the like; or any combination thereof; may include. Meanwhile, the group III-V semiconductor compound may further include a group II element.
  • III-VI group semiconductor compound examples include binary element compounds such as GaS, GaSe, Ga 2 Se 3 , GaTe, InS, InSe, In 2 S 3 , In 2 Se 3 , InTe, and the like; ternary compounds such as InGaS 3 and InGaSe 3 ; or any combination thereof.
  • I-III-VI group semiconductor compound examples include three-element compounds such as AgInS, AgInS 2 , CuInS, CuInS 2 , CuGaO 2 , AgGaO 2 , AgAlO 2 ; or any combination thereof.
  • IV-VI group semiconductor compound examples include binary element compounds such as SnS, SnSe, SnTe, PbS, PbSe, PbTe and the like; ternary compounds such as SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe and the like; quaternary compounds such as SnPbSSe, SnPbSeTe, and SnPbSTe; or any combination thereof; may include.
  • the group IV element or compound may be a single element compound such as Si, Ge or the like; binary element compounds such as SiC, SiGe, and the like; or any combination thereof.
  • Each element included in the multi-element compound such as the binary element compound, the ternary element compound, and the quaternary element compound may be present in the particle at a uniform concentration or a non-uniform concentration.
  • the quantum dot may have a single structure in which the concentration of each element included in the quantum dot is uniform or a dual core-shell structure.
  • a material included in the core and a material included in the shell may be different from each other.
  • the shell of the quantum dots may serve as a protective layer for maintaining semiconductor properties by preventing chemical deterioration of the core and/or as a charging layer for imparting electrophoretic properties to the quantum dots.
  • the shell may be monolayer or multilayer.
  • the interface between the core and the shell may have a concentration gradient in which the concentration of elements present in the shell decreases toward the center.
  • Examples of the quantum dot shell include oxides of metals, metalloids or nonmetals, semiconductor compounds, or combinations thereof.
  • oxides of the metal, metalloid or nonmetal include SiO 2 , Al 2 O 3 , TiO 2 , ZnO, MnO, Mn 2 O 3 , Mn 3 O 4 , CuO, FeO, Fe 2 O 3 , Fe 3 O 4 , CoO, Co 3 O 4 , NiO and the like; ternary compounds such as MgAl 2 O 4 , CoFe 2 O 4 , NiFe 2 O 4 , CoMn 2 O 4 and the like; or any combination thereof.
  • semiconductor compounds examples include II-VI semiconductor compounds, as described herein; Group III-V semiconductor compounds; Group III-VI semiconductor compounds; Group I-III-VI semiconductor compounds; Group IV-VI semiconductor compounds; or any combination thereof.
  • the semiconductor compound may include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnSeS, ZnTeS, GaAs, GaP, GaSb, HgS, HgSe, HgTe, InAs, InP, InGaP, InSb, AlAs, AlP, AlSb, or any combination thereof.
  • Quantum dots may have a full width of half maximum (FWHM) of an emission wavelength spectrum of about 45 nm or less, specifically about 40 nm or less, more specifically about 30 nm or less, and color purity or color reproducibility can be improved within this range.
  • FWHM full width of half maximum
  • Quantum dots may have a full width of half maximum (FWHM) of an emission wavelength spectrum of about 45 nm or less, specifically about 40 nm or less, more specifically about 30 nm or less, and color purity or color reproducibility can be improved within this range.
  • FWHM full width of half maximum
  • the shape of the quantum dots may be specifically spherical, pyramidal, multi-arm, or cubic nanoparticles, nanotubes, nanowires, nanofibers, nanoplatelet particles, and the like.
  • the energy band gap can be adjusted by adjusting the size of the quantum dots, light of various wavelengths can be obtained from the quantum dot light emitting layer. Therefore, by using quantum dots of different sizes, it is possible to implement a light emitting device that emits light of various wavelengths.
  • the size of the quantum dots may be selected to emit red, green and/or blue light.
  • the size of the quantum dots may be configured such that light of various colors is combined to emit white light.
  • the light emitting layer may include the above-described quantum dot composition.
  • the quantum dot composition includes first quantum dots and second quantum dots having the same energy band gap but different energy band positions (eg, VBM energy levels). Since each quantum dot has an energy band position that is good for injecting electrons or holes, when the light emitting layer is formed using the quantum dot composition including the first quantum dots and the second quantum dots, charge (electrons or holes) into the light emitting layer Injection can be improved. Accordingly, it is possible to provide a light emitting device with improved light emitting efficiency and lifespan.
  • first quantum dots and second quantum dots having the same energy band gap but different energy band positions (eg, VBM energy levels). Since each quantum dot has an energy band position that is good for injecting electrons or holes, when the light emitting layer is formed using the quantum dot composition including the first quantum dots and the second quantum dots, charge (electrons or holes) into the light emitting layer Injection can be improved. Accordingly, it is possible to provide a light emitting device with improved light emitting efficiency and lifespan.
  • the first quantum dots and the second quantum dots function as a step between the hole transport layer (HTL) and the electron transport layer (ETL) and the light emitting layer, so that charge injection from the hole transport layer (HTL) and the electron transport layer (ETL) into the light emitting layer is improved.
  • the light emitting layer may have a structure in which a single layer of quantum dots or two or more quantum dot layers are stacked.
  • the light emitting layer may have a structure in which a single layer of quantum dots or 2 to 5 quantum dot layers are stacked.
  • the light emitting layer may further include different quantum dots.
  • the light emitting layer may further include, in addition to the quantum dots as described herein, a dispersion medium in which the quantum dots are dispersed in a naturally coordinated form.
  • the dispersion medium may include an organic solvent, a polymeric resin, or any combination thereof.
  • the dispersion medium any transparent medium that does not affect the optical performance of the quantum dots, does not change or reflect light, and does not cause light absorption may be used.
  • the organic solvent may include toluene, chloroform, ethanol, octane, or any combination thereof
  • the polymer resin may include an epoxy resin, a silicone resin, a polysthylene resin, an acrylate resin, or any combination thereof.
  • the light emitting layer may be formed by applying a composition for forming a light emitting layer including quantum dots onto a hole transport region and volatilizing at least a portion of a solvent included in the composition for forming a light emitting layer.
  • water, hexane, chloroform, toluene, octane, etc. may be used as the solvent.
  • the coating of the composition for forming the light emitting layer is a spin coat method, a casting method, a micro gravure coat method, a gravure coat method, a bar coat method, a roll coat method, a wire bar coat method, a dip coat method, a spray coat method, a screen printing method, a flexographic method, an offset printing method, an inkjet ( It can be applied using an ink jet) printing method or the like.
  • the light emitting layer 150 may include light emitting layers emitting different colors for each subpixel.
  • the light emitting layer 150 may be patterned into a first color light emitting layer, a second color light emitting layer, and a third color light emitting layer for each subpixel.
  • at least one light-emitting layer among the light-emitting layers described above may necessarily include quantum dots.
  • the first color light emitting layer may be a quantum dot light emitting layer including quantum dots
  • the second color light emitting layer and the third color light emitting layer may be organic light emitting layers each including an organic compound.
  • the first to third colors are different colors, and specifically, the first to third colors may have different maximum emission wavelengths. The first to third colors may be combined with each other to become white.
  • the light emitting layer may further include a fourth color light emitting layer, and at least one light emitting layer of the first to fourth color light emitting layers may be a quantum dot light emitting layer including quantum dots, and the other light emitting layers may be organic light emitting layers each containing an organic compound.
  • the first to fourth colors are different colors, and specifically, the first to fourth colors may have different maximum emission wavelengths. The first to fourth colors may be combined with each other to become white.
  • the light emitting device 10 may have a structure in which two or more light emitting layers emitting the same or different colors are stacked in contact with or spaced apart from each other.
  • at least one light emitting layer of the two or more light emitting layers may be a quantum dot light emitting layer including quantum dots
  • the other light emitting layers may be organic light emitting layers containing organic compounds.
  • the light emitting device 10 includes a first color light emitting layer and a second color light emitting layer, wherein the first color and the second color may be the same color or different colors. More specifically, both the first color and the second color may be blue.
  • the light emitting layer may further include at least one selected from organic compounds and semiconductor compounds in addition to quantum dots.
  • the organic compound may include a host and a dopant.
  • the host and the dopant may include a host and dopant commonly used in an organic light emitting device.
  • the semiconductor compound may be an organic and/or inorganic perovskite.
  • the electron transport region may have i) a single-layer structure consisting of a single layer consisting of a single material, ii) a single-layer structure consisting of a single layer including a plurality of different materials, or iii) a multi-layer structure including a plurality of layers including a plurality of different materials.
  • the electron transport region may include a buffer layer, a hole blocking layer, an electron control layer, an electron transport layer, an electron injection layer, or any combination thereof.
  • the electron transport region may have a structure such as an electron transport layer/electron injection layer, a hole blocking layer/electron transport layer/electron injection layer, an electron control layer/electron transport layer/electron injection layer, or a buffer layer/electron transport layer/electron injection layer sequentially stacked from the light emitting layer.
  • the electron transport region includes a metal oxide
  • the metal of the metal oxide may include Zn, Ti, Zr, Sn, W, Ta, Ni, Mo, Cu, Mg, Co, Mn, Y, Al, or any combination thereof.
  • it may include a metal sulfide, for example, CuSCN and the like.
  • the electron transport region (eg, an electron injection layer or an electron transport layer in the electron transport region) may include a metal oxide represented by Chemical Formula 3:
  • M is Zn, Ti, Zr, Sn, W, Ta, Ni, Mo, Cu or V;
  • p and q are independently of one another an integer of 1 or 5.
  • the third compound may be represented by Formula 3-1 below.
  • M' is Mg, Co, Ni, Zr, Mn, Sn, Y, Al or any combination thereof;
  • r is a number greater than 0 and equal to or less than 0.5.
  • the electron transport region may include ZnO or ZnMgO.
  • the electron transport region is ZnO, TiO 2 , WO 3 , SnO 2 , In 2 O 3 , Nb 2 O 5 , Fe 2 O 3 , CeO 2 , SrTiO 3 , Zn 2 SnO 4 , BaSnO 3 , In 2 S 3 , ZnSiO, PC60BM, PC70BM, Mg doped ZnO (ZnMgO), Al doped ZnO (AZO), Ga doped ZnO (GZO), In doped ZnO (IZO), Al doped TiO 2 , Ga-doped TiO 2 , In-doped TiO 2 , Al-doped WO 3 , Ga-doped WO 3 , In-doped WO 3 , Al-doped SnO 2 , Ga-doped SnO 2 , In-doped SnO 2 , Mg doped In 2 O 3 , Al-doped In 2 O 3 , Ga doped In
  • the electron transport region (eg, a buffer layer, a hole blocking layer, an electron control layer, or an electron transport layer among the electron transport regions) may include a metal-free compound including at least one ⁇ electron-deficient nitrogen-containing C 1 -C 60 cyclic group.
  • the electron transport region (eg, a buffer layer, a hole blocking layer, an electron control layer, or an electron transport layer among the electron transport regions) may include a metal-free compound including at least one ⁇ electron-deficient nitrogen-containing C 1 -C 60 cyclic group.
  • the electron transport region may include a compound represented by Formula 601 below.
  • Ar 601 and L 601 are each independently a C 3 -C 60 carbocyclic group optionally substituted with at least one R 10a , or a C 1 -C 60 heterocyclic group optionally substituted with at least one R 10a ;
  • xe11 is 1, 2 or 3;
  • xe1 is 0, 1, 2, 3, 4, or 5;
  • Q 601 to Q 603 refers to the description of Q 1 in this specification, respectively.
  • xe21 is 1, 2, 3, 4, or 5;
  • At least one of Ar 601 , L 601 , and R 601 may be a ⁇ electron-deficient nitrogen-containing C 1 -C 60 cyclic group unsubstituted or substituted with at least one R 10a independently of each other.
  • xe11 in Formula 601 is two or more
  • two or more Ar 601s may be connected to each other through a single bond.
  • Ar 601 in Formula 601 may be a substituted or unsubstituted anthracene group.
  • the electron transport region may include a compound represented by Chemical Formula 601-1:
  • X 614 is N or C (R 614 ), X 615 is N or C (R 615 ), X 616 is N or C (R 616 ), and at least one of X 614 to X 616 is N;
  • L 611 to L 613 refers to the description of L 601 above, respectively.
  • xe611 to xe613 refers to the description of xe1, respectively.
  • R 611 to R 613 refers to the description of R 601 above, respectively.
  • R 614 to R 616 are each independently hydrogen, deuterium, -F, -Cl, -Br, -I, a hydroxyl group, a cyano group, a nitro group, a C 1 -C 20 alkyl group, a C 1 -C 20 alkoxy group, a C 3 -C 60 carbocyclic group unsubstituted or substituted with at least one R 10a , or a C 1 -unsubstituted or substituted with at least one R 10a group. It may be a C 60 heterocyclic group.
  • xe1 and xe611 to xe613 may be independently 0, 1, or 2.
  • the electron transport region may include one of the following compounds ET1 to ET45 , BCP (2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline) , Bphen (4,7-Diphenyl-1,10-phenanthroline) , Alq 3 , BAlq, TAZ, NTAZ, or any combination thereof:
  • the electron transport region may have a thickness of about 100 ⁇ to about 5000 ⁇ , for example, about 160 ⁇ to about 4000 ⁇ .
  • the thickness of the buffer layer, the hole blocking layer, or the electron control layer may be independently from about 20 ⁇ to about 1000 ⁇ , for example, from about 30 ⁇ to about 300 ⁇ , and the thickness of the electron transport layer may be from about 100 ⁇ to about 1000 ⁇ , for example, from about 150 ⁇ to about 500 ⁇ . .
  • the thickness of the buffer layer, the hole blocking layer, the electron control layer, the electron transport layer and/or the electron transport region satisfies the aforementioned range, satisfactory electron transport characteristics may be obtained without a substantial increase in driving voltage.
  • the electron transport region (eg, the electron transport layer of the electron transport region) may further include a metal-containing material in addition to the materials described above.
  • the metal-containing material may include an alkali metal complex, an alkaline earth metal complex, or any combination thereof.
  • the metal ion of the alkali metal complex may be Li ion, Na ion, K ion, Rb ion or Cs ion, and the metal ion of the alkaline earth metal complex may be Be ion, Mg ion, Ca ion, Sr ion or Ba ion.
  • the ligands coordinated to the metal ions of the alkali metal complex and the alkaline earth metal complex are, independently of each other, hydroxyquinoline, hydroxyisoquinoline, hydroxybenzoquinoline, hydroxyacridine, hydroxyphenanthridine, hydroxyphenyloxazole, hydroxyphenylthiazole, hydroxyphenyloxadiazole, hydroxyphenylthiadiazole, hydroxyphenylpyridine, hydroxyphenylbenzoimidazole, hydroxyphenylbenzothiazole, bipyridine, phenanthroline, cyclopentadiene, or any combination thereof.
  • the metal-containing material may include a Li complex.
  • the Li complex may include, for example, the following compounds ET-D1 (LiQ) or ET-D2:
  • the electron transport region may include an electron injection layer that facilitates electron injection from the second electrode 150 .
  • the electron injection layer may directly contact the second electrode 150 .
  • the electron injection layer may have i) a single layer structure consisting of a single layer consisting of a single material, ii) a single layer structure consisting of a single layer including a plurality of different materials, or iii) a multilayer structure having a plurality of layers including a plurality of different materials.
  • the electron injection layer may include an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal-containing compound, an alkaline earth metal-containing compound, a rare earth metal-containing compound, an alkali metal complex, an alkaline earth metal complex, a rare earth metal complex, or any combination thereof.
  • the alkali metal may include Li, Na, K, Rb, Cs, or any combination thereof.
  • the alkaline earth metal may include Mg, Ca, Sr, Ba, or any combination thereof.
  • the rare earth metal may include Sc, Y, Ce, Tb, Yb, Gd, or any combination thereof.
  • the alkali metal-containing compound, the alkaline earth metal-containing compound, and the rare earth metal-containing compound may include an oxide, a halide (e.g., fluoride, chloride, bromide, iodide, etc.), telluride, or any combination thereof, of each of the alkali metal, the alkaline earth metal, and the rare earth metal.
  • a halide e.g., fluoride, chloride, bromide, iodide, etc.
  • the alkali metal-containing compound may include alkali metal oxides such as Li 2 O, Cs 2 O, K 2 O, etc., alkali metal halides such as LiF, NaF, CsF, KF, LiI, NaI, CsI, KI, etc., or any combination thereof.
  • the alkaline earth metal-containing compound may include an alkaline earth metal compound such as BaO, SrO, CaO, Ba x Sr 1-x O (x is a real number satisfying 0 ⁇ x ⁇ 1), Ba x Ca 1-x O (x is a real number satisfying 0 ⁇ x ⁇ 1), and the like.
  • the rare earth metal-containing compound may include YbF 3 , ScF 3 , Sc 2 O 3 , Y 2 O 3 , Ce 2 O 3 , GdF 3 , TbF 3 , YbI 3 , ScI 3 , TbI 3 , or any combination thereof.
  • the rare earth metal-containing compound may include lanthanide metal telluride.
  • Examples of the lanthanide metal telluride include LaTe, CeTe, PrTe, NdTe, PmTe, SmTe, EuTe, GdTe, TbTe, DyTe, HoTe , ErTe, TmTe, YbTe, LuTe, La 2 Te 3 , Ce 2 Te 3 , Pr 2 Te 3 , Nd 2 Te 3 , Pm 2 Te 3 , Sm 2 Te 3 , Eu 2 Te 3 , Gd 2 Te 3 , Tb 2 Te 3 , Dy 2 Te 3 , Ho 2 Te 3 , Er 2 Te 3 , Tm 2 Te 3 , Yb 2 Te 3 , Lu 2 Te 3 , and the like.
  • the alkali metal complex, the alkaline earth metal complex and the rare earth metal complex contain i) one of the ions of alkali metal, alkaline earth metal and rare earth metal as described above, and ii) a ligand bound to the metal ion, for example, hydroxyquinoline, hydroxyisoquinoline, hydroxybenzoquinoline, hydroxyacridine, hydroxyphenanthridine, hydroxyphenyloxazole, hydroxyphenylthiazole, and hydroxyphenyloxadiazole.
  • hydroxyphenylthiadiazole hydroxyphenylpyridine
  • hydroxyphenylbenzoimidazole hydroxyphenylbenzothiazole
  • bipyridine phenanthroline
  • cyclopentadiene or any combination thereof.
  • the electron injection layer may consist of alkali metal, alkaline earth metal, rare earth metal, alkali metal-containing compound, alkaline earth metal-containing compound, rare earth metal-containing compound, alkali metal complex, alkaline earth metal complex, rare earth metal complex, or any combination thereof, or may further include an organic material (for example, the compound represented by Chemical Formula 601).
  • the electron injection layer consists of i) an alkali metal-containing compound (eg, an alkali metal halide) or ii) a) an alkali metal-containing compound (eg, an alkali metal halide); and b) alkali metals, alkaline earth metals, rare earth metals, or any combination thereof.
  • the electron injection layer may be a KI:Yb co-deposited layer, an RbI:Yb co-deposited layer, or a LiF:Yb co-deposited layer.
  • the alkali metal, alkaline earth metal, rare earth metal, alkali metal-containing compound, alkaline earth metal-containing compound, rare earth metal-containing compound, alkali metal complex, alkaline earth metal complex, rare earth metal complex, or any combination thereof may be uniformly or non-uniformly dispersed in the matrix including the organic material.
  • the electron injection layer may have a thickness of about 1 ⁇ to about 100 ⁇ or about 3 ⁇ to about 90 ⁇ . When the thickness of the electron injection layer satisfies the aforementioned range, satisfactory electron injection characteristics may be obtained without a substantial increase in driving voltage.
  • the second electrode 150 is disposed above the intermediate layer 130 as described above.
  • the second electrode 150 may be a cathode, which is an electron injection electrode.
  • a metal having a low work function, an alloy, an electrically conductive compound, or any combination thereof may be used as a material for the second electrode 150.
  • the second electrode 150 may include lithium (Li), silver (Ag), magnesium (Mg), aluminum (Al), aluminum-lithium (Al-Li), calcium (Ca), magnesium-indium (Mg-In), magnesium-silver (Mg-Ag), ytterbium (Yb), silver-ytterbium (Ag-Yb), ITO, IZO, or any combination thereof.
  • the second electrode 150 may be a transmissive electrode, a transflective electrode, or a reflective electrode.
  • the second electrode 150 may have a single-layer structure of a single layer or a multi-layer structure of a plurality of layers.
  • a first capping layer may be disposed outside the first electrode 110
  • a second capping layer may be disposed outside the second electrode 150 .
  • the light emitting device 10 has a structure in which a first capping layer, a first electrode 110, an intermediate layer 130, and a second electrode 150 are sequentially stacked, a structure in which a first electrode 110, an intermediate layer 130, a second electrode 150, and a second capping layer are sequentially stacked, or a structure in which a first capping layer, a first electrode 110, an intermediate layer 130, and a second electrode 150 are sequentially stacked.
  • the second capping layer may have a stacked structure in order.
  • Light generated in the light emitting layer of the middle layer 130 of the light emitting device 10 may pass through the first electrode 110, which is a semi-transmissive or transmissive electrode, and the first capping layer, and may be extracted to the outside, and the light generated in the light emitting layer of the middle layer 130 of the light emitting device 10 may pass through the second electrode 150, which is a transflective electrode or a transmissive electrode, and the second capping layer.
  • the first capping layer and the second capping layer may serve to improve external luminous efficiency by the principle of constructive interference. As a result, the light extraction efficiency of the light emitting device 10 is increased, and thus the luminous efficiency of the light emitting device 10 may be improved.
  • Each of the first capping layer and the second capping layer may include a material having a refractive index of 1.6 or more (at 589 nm).
  • the first capping layer and the second capping layer may be independently of each other an organic capping layer containing an organic material, an inorganic capping layer containing an inorganic material, or an organic-inorganic composite capping layer containing an organic material and an inorganic material.
  • At least one of the first capping layer and the second capping layer may independently include a carbocyclic compound, a heterocyclic compound, an amine group-containing compound, porphine derivatives, phthalocyanine derivatives, naphthalocyanine derivatives, alkali metal complexes, alkaline earth metal complexes, or any combination thereof.
  • the carbocyclic compounds, heterocyclic compounds and amine group-containing compounds may be optionally substituted with substituents including O, N, S, Se, Si, F, Cl, Br, I, or any combination thereof.
  • at least one of the first capping layer and the second capping layer may independently include an amine group-containing compound.
  • At least one of the first capping layer and the second capping layer may independently include the compound represented by Chemical Formula 201, the compound represented by Chemical Formula 202, or any combination thereof.
  • At least one of the first capping layer and the second capping layer may independently include one of the compounds HT28 to HT33, one of the following compounds CP1 to CP6, ⁇ -NPB, or any compound thereof:
  • the light emitting device may be included in various electronic devices.
  • the electronic device including the light emitting device may be a light emitting device or an authentication device.
  • the electronic device may further include i) a color filter, ii) a color conversion layer, or iii) a color filter and a color conversion layer, in addition to the light emitting element.
  • the color filter and/or the color conversion layer may be disposed on at least one traveling direction of light emitted from the light emitting device.
  • light emitted from the light emitting device may be blue light or white light.
  • the color conversion layer may include quantum dots.
  • the quantum dots may be, for example, quantum dots as described herein.
  • the electronic device may include a first substrate.
  • the first substrate may include a plurality of subpixel areas
  • the color filter may include a plurality of color filter areas corresponding to each of the plurality of subpixel areas
  • the color conversion layer may include a plurality of color conversion areas corresponding to each of the plurality of subpixel areas.
  • a pixel defining layer is disposed between the plurality of sub-pixel areas to define each sub-pixel area.
  • the color filter may further include a plurality of color filter areas and a light blocking pattern disposed between the plurality of color filter areas
  • the color conversion layer may further include a plurality of color conversion areas and a light blocking pattern disposed between the plurality of color conversion areas.
  • the plurality of color filter regions may include a first region emitting a first color light; a second region emitting second color light; and/or a third region emitting third color light, and the first color light, the second color light, and/or the third color light may have different maximum emission wavelengths.
  • the first color light may be red light
  • the second color light may be green light
  • the third color light may be blue light.
  • the plurality of color filter regions (or the plurality of color conversion regions) may include quantum dots.
  • the first region may include red quantum dots
  • the second region may include green quantum dots
  • the third region may not include quantum dots.
  • quantum dots refer to what has been described herein.
  • Each of the first region, the second region, and/or the third region may further include a scattering body.
  • the light emitting device may emit a first light
  • the first region may absorb the first light and emit 1-1 color light
  • the second region may absorb the 1 light and emit 2-1 color light
  • the third region may absorb the 1 light and emit 3-1 color light.
  • the 1-1st color light, the 2-1st color light, and the 3-1st color light may have different maximum emission wavelengths.
  • the first light may be blue light
  • the 1-1 color light may be red light
  • the 2-1 color light may be green light
  • the 3-1 color light may be blue light.
  • the electronic device may further include a thin film transistor in addition to the light emitting element described above.
  • the thin film transistor may include a source electrode, a drain electrode, and an active layer, and either one of the source electrode and the drain electrode may be electrically connected to one of the first electrode and the second electrode of the light emitting device.
  • the thin film transistor may further include a gate electrode and a gate insulating layer.
  • the active layer may include crystalline silicon, amorphous silicon, an organic semiconductor, an oxide semiconductor, or the like.
  • the electronic device may further include a sealing unit for sealing the light emitting element.
  • the encapsulation unit may be disposed between the color filter and/or color conversion layer and the light emitting element.
  • the sealing portion allows light from the light emitting element to be taken out to the outside, and at the same time blocks external air and moisture from permeating into the light emitting element.
  • the sealing unit may be a sealing substrate including a transparent glass substrate or a plastic substrate.
  • the encapsulation unit may be a thin film encapsulation layer including at least one organic layer and/or an inorganic layer. When the sealing part is a thin film encapsulation layer, the electronic device may be flexible.
  • the functional layer may include a touch screen layer, a polarization layer, and the like.
  • the touch screen layer may be a resistive touch screen layer, a capacitive touch screen layer, or an infrared touch screen layer.
  • the authentication device may further include a biometric information collection unit in addition to the light emitting device as described above.
  • the authentication device may be, for example, a biometric authentication device that authenticates an individual using biometric information of a body (eg, fingertip, pupil, etc.).
  • the electronic device may be applied to various displays, light sources, lighting, personal computers (e.g., mobile personal computers), mobile phones, digital cameras, electronic notebooks, electronic dictionaries, electronic game machines, medical devices (e.g., electronic thermometers, blood pressure monitors, blood glucose meters, pulse measuring devices, pulse wave measuring devices, electrocardiogram displays, ultrasound diagnostic devices, display devices for endoscopes), fish finders, various measuring devices, instrumentation (e.g., instruments for vehicles, aircraft, and ships), projectors, and the like.
  • medical devices e.g., electronic thermometers, blood pressure monitors, blood glucose meters, pulse measuring devices, pulse wave measuring devices, electrocardiogram displays, ultrasound diagnostic devices, display devices for endoscopes), fish finders, various measuring devices, instrumentation (e.g., instruments for vehicles, aircraft, and ships), projectors, and the like.
  • FIG 3 is a cross-sectional view of a light emitting device according to an embodiment of the present invention.
  • the light emitting device of FIG. 3 includes a substrate 100, a thin film transistor (TFT), a light emitting element, and an encapsulation part 300 sealing the light emitting element.
  • TFT thin film transistor
  • the substrate 100 may be a flexible substrate, a glass substrate, or a metal substrate.
  • a buffer layer 210 may be disposed on the substrate 100 .
  • the buffer layer 210 may serve to prevent penetration of impurities through the substrate 100 and provide a flat surface on the upper portion of the substrate 100 .
  • a thin film transistor may be disposed on the buffer layer 210 .
  • the thin film transistor TFT may include an active layer 220 , a gate electrode 240 , a source electrode 260 and a drain electrode 270 .
  • the active layer 220 may include an inorganic semiconductor such as silicon or polysilicon, an organic semiconductor, or an oxide semiconductor, and includes a source region, a drain region, and a channel region.
  • a gate insulating layer 230 may be disposed on the active layer 220 to insulate the active layer 220 and the gate electrode 240, and the gate electrode 240 may be disposed on the upper portion of the gate insulating layer 230.
  • An interlayer insulating layer 250 may be disposed on the gate electrode 240 .
  • the interlayer insulating film 250 is disposed between the gate electrode 240 and the source electrode 260 and between the gate electrode 240 and the drain electrode 270 to insulate them.
  • a source electrode 260 and a drain electrode 270 may be disposed on the interlayer insulating layer 250 .
  • the interlayer insulating film 250 and the gate insulating film 230 may be formed to expose the source region and the drain region of the active layer 220, and the source electrode 260 and the drain electrode 270 may be disposed to contact the exposed source region and drain region of the active layer 220.
  • the thin film transistor TFT may be electrically connected to the light emitting element to drive the light emitting element, and is covered and protected by the passivation layer 280 .
  • the passivation layer 280 may include an inorganic insulating layer, an organic insulating layer, or a combination thereof.
  • a light emitting device is provided on the passivation layer 280 .
  • the light emitting device includes a first electrode 110, an intermediate layer 130 and a second electrode 150.
  • the first electrode 110 may be disposed on the passivation layer 280 .
  • the passivation layer 280 may be disposed to expose a predetermined area without covering the entire drain electrode 270, and the first electrode 110 may be disposed to be connected to the exposed drain electrode 270.
  • a pixel defining layer 290 including an insulating material may be disposed on the first electrode 110 .
  • the pixel defining layer 290 exposes a predetermined area of the first electrode 110 , and an intermediate layer 130 may be formed in the exposed area.
  • the pixel defining layer 290 may be a polyimide or polyacrylic organic layer.
  • at least a portion of the intermediate layer 130 may extend to the top of the pixel defining layer 290 and be disposed in the form of a common layer.
  • a second electrode 150 may be disposed on the intermediate layer 130 , and a capping layer 170 may be additionally formed on the second electrode 150 .
  • the capping layer 170 may be formed to cover the second electrode 150 .
  • An encapsulation part 300 may be disposed on the capping layer 170 .
  • the encapsulation unit 300 may be disposed on the light emitting device to protect the light emitting device from moisture or oxygen.
  • the encapsulant 300 may include an inorganic film including silicon nitride (SiNx), silicon oxide (SiOx), indium tin oxide, indium zinc oxide, or any combination thereof, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyethylene sulfonate, polyoxymethylene, polyarylate, hexamethyldisiloxane, acrylic resin (eg, polymethyl methacrylate, polyacrylic acid, etc.), epoxy resin (eg, polymethyl methacrylate, polyacrylic acid, etc.)
  • an organic layer including an aliphatic glycidyl ether (AGE) or any combination thereof, or a combination of an inorganic layer and an organic layer may be included.
  • AGE aliphatic
  • FIG. 4 is a cross-sectional view of a light emitting device according to another embodiment of the present invention.
  • the light emitting device of FIG. 4 is the same as the light emitting device of FIG. 2 except that the light blocking pattern 500 and the functional region 400 are additionally disposed on the encapsulation 300 .
  • the functional area 400 may be i) a color filter area, ii) a color conversion area, or iii) a combination of a color filter area and a color conversion area.
  • the light emitting device included in the light emitting device of FIG. 3 may be a tandem light emitting device.
  • Each layer included in the hole transport region, the light emitting layer, and each layer included in the electron transport region may be formed in a predetermined region using various methods such as a vacuum deposition method, a spin coating method, a cast method, a Langmuir-Blodgett (LB) method, an inkjet printing method, a laser printing method, a laser induced thermal imaging (LITI) method, and the like.
  • the light emitting layer may be formed by an inkjet printing method.
  • the deposition conditions may be selected, for example, within the range of a deposition temperature of about 100 to about 500 ° C, a vacuum of about 10 ⁇ 8 to about 10 ⁇ 3 torr, and a deposition rate of about 0.01 to about 100 ⁇ /sec in consideration of the material to be included in the layer to be formed and the structure of the layer to be formed.
  • a C 3 -C 60 carbocyclic group refers to a cyclic group having 3 to 60 carbon atoms consisting only of carbon as a ring-forming atom
  • a C 1 -C 60 heterocyclic group refers to a cyclic group having 1 to 60 carbon atoms in addition to carbon as well as a hetero atom as a ring-forming atom.
  • Each of the C 3 -C 60 carbocyclic group and C 1 -C 60 heterocyclic group may be a monocyclic group consisting of one ring or a polycyclic group in which two or more rings are condensed with each other.
  • the number of ring-forming atoms of the C 1 -C 60 heterocyclic group may be 3 to 61.
  • the cyclic group includes both the C 3 -C 60 carbocyclic group and the C 1 -C 60 heterocyclic group.
  • a carbocyclic group is i) a group T1 or ii) a condensed ring group in which two or more groups T1 are condensed with each other (e.g., cyclopentadiene group, adamantane group, norbornane group, benzene group, pentalene group, naphthalene group, azulene group, indacene group, acenaphthylene group, phenalene group, phenanthrene group, anthracene group, fluoranthene group, triphenylene group, pyrene group, chlorine group, a sen group, a perylene group, a pentapene group, a heptalene group, a naphthacene group, a picene group, a hexacene group, a pentacene group, a rubicene group, a coronene group, an ovalene group, an cyclopentad
  • the heterocyclic group is i) a group T2, ii) a condensed ring group in which two or more groups T2 are condensed with each other, or iii) a condensed ring group in which one or more groups T2 and one or more groups T1 are condensed with each other (eg, pyrrole group, thiophene group, furan group, indole group, benzoindole group, naphthoindole group, isoindole group, benzoisoindole group, naphthoisoindole group, benzosilol group, benzothione Ofene group, benzofuran group, carbazole group, dibenzosilol group, dibenzothiophene group, dibenzofuran group, indenocarbazole group, indolocarbazole group, benzofurocarbazole group, benzothienocarbazole group, benzosyl
  • the cyclic group is i) a group T1, ii) a condensed cyclic group in which two or more groups T1 are condensed with each other, iii) a group T3, iv) a condensed cyclic group in which two or more groups T3 are condensed with each other, or v) a condensed cyclic group in which one or more groups T3 and one or more groups T1 are condensed with each other (for example, C 3 -C 60 Carbocyclic group, 1H-pyrrole group, silole group, borole group, 2H-pyrrole group, 3H-pyrrole group, thiophene group, furan group, indole group, benzoindole group, naphthoindole group, isoindole group, benzoisoindole group, naphthoisoindole group, benzosylol
  • the cyclic group is i) a group T4, ii) a condensed ring group in which two or more groups T4 are condensed with each other, iii) a condensed ring group in which one or more groups T4 and one or more groups T1 are condensed with each other, iv) a condensed ring group in which one or more groups T4 and one or more groups T3 are condensed with each other, or v) a condensed ring group in which one or more groups T4, one or more groups T1, and one or more groups T3 are condensed with each other (for example, a pyrazole group).
  • the group T1 is a cyclopropane group, a cyclobutane group, a cyclopentane group, a cyclohexane group, a cycloheptane group, a cyclooctane group, a cyclobutene group, a cyclopentene group, a cyclopentadiene group, a cyclohexene group, a cyclohexadiene group, a cycloheptene group, adamantane group, norbornane (or bicyclo[2.2.1]heptane (bicyclo[2 .2.1] heptane) group, norbornene group, bicyclo [1.1.1] pentane group, bicyclo [2.1.1] hexane group, bicyclo [2.2.2] octane group, or benzene group,
  • the group T2 is a furan group, a thiophene group, a 1H-pyrrole group, a silole group, a borole group, a 2H-pyrrole group, a 3H-pyrrole group, an imidazole group, a pyrazole group, a triazole group, a tetrazole group, an oxazole group, an isoxazole group, an oxadiazole group, a thiazole group, an isothiazole group, a thiadiazole group, an azasilol group, an azaborol group, Pyridine group, pyrimidine group, pyrazine group, pyridazine group, triazine group, tetrazine group, pyrrolidine group, imidazolidine group, dihydropyrrole group, piperidine group, tetrahydropyridine group, dihydropyridine group, hexahydropyr
  • the group T3 is a furan group, a thiophene group, a 1H-pyrrole group, a silole group, or a borole group,
  • the group T4 is 2H-pyrrole group, 3H-pyrrole group, imidazole group, pyrazole group, triazole group, tetrazole group, oxazole group, isoxazole group, oxadiazole group, thiazole group, isothiazole group, thiadiazole group, azasilol group, azaborol group, pyridine group, pyrimidine group, pyrazine group, pyridazine group, triazine group or tetrazine can be a group.
  • cyclic group C 3 -C 60 carbocyclic group, C 1 -C 60 heterocyclic group, ⁇ electron-excessive C 3 -C 60 cyclic group, or ⁇ electron-deficient nitrogen-containing C 1 -C 60 cyclic group refer to a group condensed to any cyclic group, a monovalent group, or a multivalent group (eg, a divalent group, a trivalent group, 4 groups, etc.).
  • the “benzene group” may be a benzo group, a phenyl group, a phenylene group, and the like, which can be easily understood by those skilled in the art according to the structure of the chemical formula in which the “benzene group” is included.
  • monovalent C 3 -C 60 Carbocyclic groups and monovalent C One -C 60 An example of a heterocyclic group is C 3 -C 10 Cycloalkyl group, C One -C 10 Heterocycloalkyl group, C 3 -C 10 Cycloalkenyl group, C One -C 10 Heterocycloalkenyl group, C 6 -C 60 Aryl group, C One -C 60 It may include a heteroaryl group, a monovalent non-aromatic condensed polycyclic group, and a monovalent non-aromatic condensed polycyclic group, and a divalent C 3 -C 60 Carbocyclic groups and monovalent C One -C 60
  • An example of a heterocyclic group is C 3 -C 10 Cycloalkylene group, C One -C 10 Heterocycloalkylene group, C 3 -C 10 Cycloalkenylene group, C One -C 10 Heterocycloalkenylene group, C 6
  • a C 1 -C 60 alkylene group means a divalent group having the same structure as the
  • a C 2 -C 60 alkenyl group refers to a monovalent hydrocarbon group including one or more carbon-carbon double bonds in the middle or at the end of a C 2 -C 60 alkyl group, and specific examples thereof include an ethenyl group, a propenyl group, and a butenyl group.
  • a C 2 -C 60 alkenylene group refers to a divalent group having the same structure as the C 2 -C 60 alkenyl group.
  • a C 2 -C 60 alkynyl group refers to a monovalent hydrocarbon group including one or more carbon-carbon triple bonds in the middle or at the end of a C 2 -C 60 alkyl group, and specific examples thereof include an ethynyl group, a propynyl group, and the like.
  • a C 2 -C 60 alkynylene group means a divalent group having the same structure as the C 2 -C 60 alkynyl group.
  • the C 1 -C 60 alkoxy group refers to a monovalent group having a chemical formula of -OA 101 (where A 101 is the C 1 -C 60 alkyl group), and specific examples thereof include a methoxy group, an ethoxy group, an isopropyloxy group, and the like.
  • the C 3 -C 10 cycloalkyl group refers to a monovalent saturated hydrocarbon cyclic group having 3 to 10 carbon atoms, and specific examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, an adamantanyl group, a norbornanyl group (or a bicyclo[2.2.1]heptyl group (bicyclo[2.
  • a C 3 -C 10 cycloalkylene group refers to a divalent group having the same structure as the C 3 -C 10 cycloalkyl group.
  • the C 1 -C 10 heterocycloalkyl group refers to a monovalent cyclic group having 1 to 10 carbon atoms and further including at least one heteroatom as a ring-forming atom in addition to carbon atoms, and specific examples thereof include a 1,2,3,4-oxatriazolidinyl group, a tetrahydrofuranyl group, and a tetrahydrothiophenyl group.
  • a C 1 -C 10 heterocycloalkylene group refers to a divalent group having the same structure as the C 1 -C 10 heterocycloalkyl group.
  • the C 3 -C 10 cycloalkenyl group is a monovalent cyclic group having 3 to 10 carbon atoms and has at least one carbon-carbon double bond in the ring, but does not have aromaticity. Specific examples thereof include a cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, and the like.
  • a C 3 -C 10 cycloalkenylene group refers to a divalent group having the same structure as the C 3 -C 10 cycloalkenyl group.
  • the C 1 -C 10 heterocycloalkenyl group is a monovalent cyclic group having 1 to 10 carbon atoms and further including at least one hetero atom as a ring-forming atom in addition to carbon atoms, and has at least one double bond in the ring.
  • Specific examples of the C 1 -C 10 heterocycloalkenyl group include a 4,5-dihydro-1,2,3,4-oxatriazolyl group, a 2,3-dihydrofuranyl group, and a 2,3-dihydrothiophenyl group.
  • the C 1 -C 10 heterocycloalkenylene group refers to a divalent group having the same structure as the C 1 -C 10 heterocycloalkenyl group.
  • a C 6 -C 60 aryl group refers to a monovalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms
  • a C 6 -C 60 arylene group refers to a divalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms.
  • the C 6 -C 60 aryl group include a phenyl group, pentalenyl group, naphthyl group, azulenyl group, indacenyl group, acenaphthyl group, phenalenyl group, phenanthrenyl group, anthracenyl group, fluoranthenyl group, triphenylenyl group, pyrenyl group, chrysenyl group, perylenyl group, pentaphenyl group, Heptalenyl group, naphthacenyl group, picenyl group, hexacenyl group, pentacenyl group, rubicenyl group, coronenyl group, ovalenyl group and the like are included.
  • the C 6 -C 60 aryl group and the C 6 -C 60 arylene group include two or more rings, the two or more rings may be condensed with each other.
  • a C 1 -C 60 heteroaryl group refers to a monovalent group that further includes at least one hetero atom as a ring-forming atom in addition to carbon atoms and has a heterocyclic aromatic system having 1 to 60 carbon atoms
  • a C 1 -C 60 heteroarylene group refers to a divalent group that further includes at least one hetero atom as a ring-forming atom in addition to carbon atoms and has a heterocyclic aromatic system having 1 to 60 carbon atoms.
  • the C 1 -C 60 heteroaryl group examples include a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, a benzoquinolinyl group, an isoquinolinyl group, a benzoisoquinolinyl group, a quinoxalinyl group, a benzoquinoxalinyl group, a quinazolinyl group, a benzoquinazolinyl group, a cinolinyl group, and a phenyl group.
  • Nanthrolinyl group, phthalazinyl group, naphthyridinyl group and the like are included.
  • the C 1 -C 60 heteroaryl group and the C 1 -C 60 heteroarylene group include two or more rings, the two or more rings may be condensed with each other.
  • a monovalent non-aromatic condensed polycyclic group is a monovalent group (e.g., having 8 to 60 carbon atoms) in which two or more rings are condensed with each other, contain only carbon as a ring-forming atom, and have non-aromaticity.
  • Specific examples of the monovalent non-aromatic condensed polycyclic group include an indenyl group, a fluorenyl group, a spiro-bifluorenyl group, a benzofluorenyl group, an indenophhenanthrenyl group, an indenoanthracenyl group, and the like.
  • a divalent non-aromatic condensed polycyclic group in the present specification means a divalent group having the same structure as the monovalent non-aromatic condensed polycyclic group.
  • a monovalent non-aromatic condensed heteropolycyclic group is a monovalent group in which two or more rings are condensed with each other, at least one heteroatom in addition to a carbon atom as a ring-forming atom, and the entire molecule is non-aromatic (for example, having 1 to 60 carbon atoms).
  • the monovalent non-aromatic heterocondensed polycyclic group include a pyrroyl group, a thiophenyl group, a furanyl group, an indolyl group, a benzoindolyl group, a naphthoindolyl group, an isoindoleyl group, a benzoisoindolyl group, a naphthoisoindolyl group, a benzosilolyl group, a benzothiophenyl group, a benzofuranyl group, a carbazolyl group, a dibenzosilolyl group, a dibenzothiophenyl group, a di Benzofuranyl group, azacarbazolyl group, azafluorenyl group, azadibenzosilolyl group, azadibenzothiophenyl group, azadibenzofuranyl group, pyrazolyl group, imidazolyl group
  • the C 6 -C 60 aryloxy group refers to -OA 102 (where A 102 is the C 6 -C 60 aryl group), and the C 6 -C 60 arylthio group refers to -SA 103 (where A 103 is the C 6 -C 60 aryl group).
  • the C 7 -C 60 arylalkyl group refers to -A 104 A 105 (where A 104 is a C 1 -C 54 alkylene group and A 105 is a C 6 -C 59 aryl group), and the C 2 -C 60 heteroarylalkyl group in the present specification refers to -A 106 A 107 (where A 106 is a C 1 -C 59 alkylene group). And, A 107 is a C 1 -C 59 heteroaryl group).
  • Q 1 to Q 3 , Q 11 to Q 13 , Q 21 to Q 23 , and Q 31 to Q 33 are each independently hydrogen; heavy hydrogen; -F; -Cl; -Br; -I; hydroxyl group; cyano group; nitro group; C 1 -C 60 alkyl group; C 2 -C 60 alkenyl group; C 2 -C 60 alkynyl group; C 1 -C 60 alkoxy group; or a C 3 -C 60 carbocyclic group, a C 1 -C 60 heterocyclic group; a C 7 -C 60 arylalkyl group, which is unsubstituted or substituted with a deuterium, -F, a cyano group, a C 1 -C 60 alkyl group, a C 1 -C 60 alkoxy group, a phenyl group, a biphenyl group, or any combination thereof; or a C 2 -C 60 heteroarylalkyl group
  • a heteroatom means any atom other than a carbon atom.
  • examples of the hetero atom include O, S, N, P, Si, B, Ge, Se, or any combination thereof.
  • Ph means a phenyl group
  • Me means a methyl group
  • Et means an ethyl group
  • tert-Bu or “Bu t ” means a tert-butyl group
  • OMe means a methoxy group
  • biphenyl group means "a phenyl group substituted with a phenyl group”.
  • the above "biphenyl group” belongs to a “substituted phenyl group” whose substituent is a "C 6 -C 60 aryl group”.
  • terphenyl group means "a phenyl group substituted with a biphenyl group”.
  • the “terphenyl group” belongs to a "substituted phenyl group” whose substituent is a "C 6 -C 60 aryl group substituted with a C 6 -C 60 aryl group”.
  • * and *' mean a binding site with a neighboring atom in the corresponding formula or moiety, unless otherwise defined.
  • the synthesized InP core undergoes surface treatment. After mixing 1.6mmol zinc acetate, 3.2mmol oleic acid, and 80mL trioctylamine, mix them in a vacuum at 120 °C for 1 hour. After switching to an argon atmosphere, hold at 280 °C for 1 hour, then lower the temperature to 180 °C, and then quickly inject 12mL of the InP core solution dispersed in toluene using a syringe. After 5 minutes, 0.2mL of HF solution (10wt% in acetone) is injected and maintained for 10 minutes to prepare a surface-treated InP core solution. Raise the reactor temperature to 320 °C.
  • the synthesized InP core undergoes surface treatment. After mixing 1.6mmol zinc acetate, 3.2mmol oleic acid, and 80mL trioctylamine, mix them in a vacuum at 120 °C for 1 hour. After switching to an argon atmosphere, maintain the temperature at 280 °C for 1 hour, then lower the temperature to 180 °C, and then quickly inject 12mL of the InP core solution dispersed in toluene using a syringe.
  • HF solution (10wt% in acetone) was injected and maintained for 10 minutes to prepare a surface-treated InP core solution. Raise the reactor temperature to 320 °C. After injecting 15 mmol of 0.4M Zn(OA) 2 and then injecting 4.0 mmol Se/trioctylphosphine, the ZnSe shell is grown for 1 hour. Then, after injecting 3.0 mmol of S/trioctylphosphine, ZnS is grown for 1 hour.
  • Quantum dots (core/first shell/second shell) luminescent color ligand Synthesis
  • Example 1-1 InP/ZnSe/Zns Red Oleic acid Synthesis
  • Example 1-2 halide (Cl) Synthesis Example 1-3 4-Methoxycinnamic acid Synthesis Example 2-1 InP/ZnSe/Zns green Oleic acid Synthesis
  • Example 2-2 halide (Cl) Synthesis Example 2-3 4-Methoxycinnamic acid Synthesis Example 3-1 ZnTeSe/ZnSe/Zns blue Oleic acid Synthesis
  • Example 3-2 halide (Cl) 1.0 Synthesis Example 3-3 Halides (Cl) 2.0 Synthesis
  • Example 3-4 4-Methoxycinnamic acid Synthesis
  • Example 3-5 4-(dimethylamino)cinamic acid
  • the VBM energy level was measured through ambient photoelectron spectroscopy (APS) measurement, and the energy band gap was measured through UV-Vis measurement.
  • the CBM energy level was calculated from the measured energy bandgap and VBM energy level. The measurement was measured after forming a film through spin coating (2500 rpm, 30 seconds) of a solution having a concentration of 50 mg/ml on an Au substrate under a nitrogen stream.
  • the light emitting device was fabricated by stacking HIL (PEDOT:PSS, Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)), HTL (TFB, poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl)diphenylamine)]), QD light emitting layer, ETL (ZnMgO), and cathode (Al) on a patterned ITO substrate in this order.
  • HIL PEDOT:PSS, Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)
  • HTL TFB, poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl)diphenylamine)]
  • the HIL, HTL, QD light emitting layer, and ETL were respectively spin-coated, and the cathode was fabricated by evaporation.
  • the HIL thickness was 1400 ⁇
  • the HTL thickness was 400 ⁇
  • the QD emission layer was 200 ⁇
  • the ETL was 500 ⁇ .
  • the VCD process was performed at 10 -3 Torr, and then the bake process was performed at 230 degrees for 30 minutes.
  • Luminance and efficiency were measured by supplying power from a current-voltmeter (Kethley SMU 236) and using a luminance meter PR650.
  • the light emitting device according to Example 1 has superior light emitting efficiency and lifetime compared to the light emitting device according to Comparative Example 1.
  • the light emitting device according to Example 2 has superior light emitting efficiency and lifetime compared to the light emitting device according to Comparative Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Luminescent Compositions (AREA)

Abstract

제1양자점 및 제2양자점을 포함하고, 상기 제1양자점의 VBM(Valence Band Maximum) 에너지 준위와 상기 제2양자점의 VBM(Valence Band Maximum) 에너지 준위는 상이하고, 상기 제1양자점의 에너지 밴드갭(Energy band gap)과 상기 제2양자점의 에너지 밴드갭은 동일한, 양자점 조성물, 상기 양자점 조성물을 이용한 발광 소자 및 상기 발광 소자를 포함한 전자 장치가 제공된다.

Description

양자점 조성물, 이를 이용한 발광 소자 및 상기 발광 소자를 포함한 전자 장치
양자점 조성물, 이를 이용한 발광 소자 및 상기 발광 소자를 포함한 전자 장치에 관한 것이다.
광학 부재 및 각종 전자 장치 중 다양한 광학 기능(예를 들면, 광변환 기능, 발광 기능 등)을 수행하는 물질로서 양자점을 활용할 수 있다. 양자점은, 양자 구속 효과(quantum confinement effect)를 나타내는 나노 크기의 반도체 나노 결정으로서, 나노 결정의 크기 및 조성 등을 제어함으로써, 상이한 에너지 밴드갭을 가질 수 있고, 이에 따라 다양한 발광 파장의 광을 방출할 수 있다.
이와 같은 양자점을 포함한 광학 부재는 박막 형태, 예를 들면, 부화소별로 패터닝된 박막 형태를 가질 수 있다. 이와 같은 광학 부재는 다양한 광원을 포함한 장치의 색변환부재로도 활용될 수 있다.
한편, 상기 양자점은 각종 전자 장치에서 다양한 용도로 사용될 수 있다. 예를 들어, 상기 양자점은 에미터로도 사용될 수 있다. 일예로서, 상기 양자점은, 한 쌍의 전극 및 발광층을 포함한 발광 소자 중 발광층에 포함되어 에미터의 역할을 할 수 있다.
현재, 고품위 광학 부재 및 전자 장치를 구현하기 위하여, 490nm 이하의 최대 발광 파장을 갖는 청색광을 방출하면서, 우수한 발광 양자 효율(PLQY)을 갖고, 독성 원소인 카드뮴을 비포함한, 양자점 개발이 요구된다.
양자점 조성물, 상기 양자점 조성물을 이용하여 발광 효율 및 수명이 개선된 발광 소자 및 상기 발광 소자를 포함한 전자 장치를 제공하는 것이다.
일 측면에 따르면,
제1양자점 및 제2양자점을 포함하고,
상기 제1양자점의 VBM (Valence Band Maximum) 에너지 준위와 상기 제2양자점의 VBM 에너지 준위는 상이하고,
상기 제1양자점의 에너지 밴드갭(Energy band gap)과 상기 제2양자점의 에너지 밴드갭은 동일한, 양자점 조성물이 제공된다.
다른 측면에 따르면,
제1전극; 상기 제1전극에 대향된 제2전극; 및 상기 제1전극과 상기 제2전극 사이에 배치된 발광층을 포함한 중간층;을 포함하고,
상기 발광층은 상기 양자점 조성물을 포함한, 발광 소자가 제공된다.
또 다른 측면에 따르면, 상기 발광 소자를 포함한, 전자 장치가 제공된다.
본 발명에 따른 발광 소자는 서로 상이한 에너지 밴드 포지션(energy band position)을 가지면서 동일한 에너지 밴드갭을 가지는 2종 이상의 양자점을 포함한 양자점 조성물을 이용함으로써, 발광 효율 및 수명이 개선될 수 있다.
도 1은 일 구현예를 따르는 발광 소자의 구조를 개략적으로 나타낸 도면이다.
도 2는 일 구현예를 따르는 발광 소자의 전하 주입을 개략적으로 나타낸 도면이다.
도 3은 일 구현예를 따르는 전자 장치의 구조를 개략적으로 나타낸 도면이다.
도 4는 다른 구현예를 따르는 전자 장치의 구조를 개략적으로 나타낸 도면이다.
도 5a는 합성예 1-1 내지 1-3에 따른 양자점의 CBM(Conduction Band Minimum) 에너지 및 VBM(Valence Band Maximum) 에너지를 나타낸 도면이다.
도 5b는 합성예 2-1 내지 2-3에 따른 양자점의 CBM 에너지 및 VBM 에너지를 나타낸 도면이다.
도 5c는 합성예 3-1 내지 3-5에 따른 양자점의 CBM 에너지 및 VBM 에너지를 나타낸 도면이다.
도 6a는 실시예 1 및 비교예 1에 따른 발광 소자의 휘도에 따른 발광 효율을 나타낸 도면이다.
도 6b는 실시예 1 및 비교예 1에 따른 발광 소자의 수명을 나타낸 도면이다.
도 7a는 실시예 2 및 비교예 2에 따른 발광 소자의 휘도에 따른 발광 효율을 나타낸 도면이다.
도 7b는 실시예 2 및 비교예 2에 따른 발광 소자의 수명을 나타낸 도면이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다.
본 명세서 중 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용되었다.
본 명세서 중 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서 중 포함하다 또는 가지다 등의 용어는 명세서 상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다. 예를 들어, 포함하다 또는 가지다 등의 용어는 달리 한정되지 않는 한 명세서 상에 기재된 특징 또는 구성요소만으로 이루어지는(consist of) 경우 및 다른 구성요소를 더 포함하는 경우를 모두 의미할 수 있다.
본 명세서에서, "II족"은 IUPAC 주기율표상 IIA족 원소 및 IIB족 원소를 포함할 수 있으며, II족 원소는 예를 들어, 마그네슘(Mg), 칼슘(Ca), 아연(Zn), 카드뮴(Cd), 수은(Hg) 등을 포함할 수 있다.
본 명세서에서, "III족"은 IUPAC 주기율표상 IIIA족 원소 및 IIIB족 원소를 포함할 수 있으며, III족 원소는 예를 들어, 알루미늄(Al), 갈륨(Ga), 인듐(In), 탈륨(Tl) 등을 포함할 수 있다.
본 명세서에서, "V족"은 IUPAC 주기율표상 VA족 원소 및 VB족 원소를 포함할 수 있으며, V족 원소는 예를 들어, 질소(N), 인(P), 비소(As), 안티모니(Sb) 등을 포함할 수 있다.
본 명세서에서, "VI족"은 IUPAC 주기율표상 VIA족 원소 및 VIB족 원소를 포함할 수 있으며, VI족 원소는 예를 들어, 황(S), 셀레늄(Se), 텔루륨(Te) 등을 포함할 수 있다.
[양자점 조성물]
본 발명에 따른 양자점 조성물은 제1양자점 및 제2양자점을 포함하고, 상기 제1양자점의 VBM(Valence Band Maximum) 에너지 준위와 상기 제2양자점의 VBM 에너지 준위는 상이하고, 상기 제1양자점의 에너지 밴드갭(Energy band gap)과 상기 제2양자점의 에너지 밴드갭은 동일할 수 있다.
일 구현예에 따르면, 상기 제1양자점의 VBM 에너지 준위는 -6 내지 -5 eV, -5.9 내지 -5.1 eV, -5.85 내지 -5.2 eV일, -5.8 내지 -5.3 eV, 또는 -5.75 내지 -5.4 eV일 수 있다.
일 구현예에 따르면, 상기 제2양자점의 VBM 에너지 준위는 -6 내지 -5 eV, -5.95 내지 -5.1 eV, -5.9 내지 -5.2 eV, -5.9 내지 -5.3 eV 또는 -5.9 내지 -5.5 eV일 수 있다.
일 구현예에 따르면, 상기 제1양자점의 VBM 에너지 준위와 상기 제2양자점의 VBM 에너지 준위의 차이는 0.01 내지 1 eV, 0.01 내지 0.7 eV, 0.05 내지 0.5 eV 또는 0.1 내지 0.3 eV일 수 있다.
일 구현예에 따르면, 상기 제1양자점의 에너지 밴드갭(Energy band gap)과 상기 제2양자점의 에너지 밴드갭은 1 내지 5 eV, 1.5 내지 4 eV 또는 2 내지 3 eV일 수 있다.
일 구현예에 따르면, 상기 제1양자점 및 제2양자점은 서로 독립적으로 코어 및 상기 코어의 일부를 덮는 쉘을 포함하고, 상기 제1양자점 중 코어의 크기와 상기 제2양자점 중 코어의 크기는 상이할 수 있다.
일 구현예에 따르면, 상기 제1양자점 및 제2양자점의 코어는 각각 In 또는 Zn을 포함할 수 있다.
일 구현예에 따르면, 상기 제1양자점 및 제2양자점의 코어는 InGaP를 포함하고, 상기 제1양자점의 코어 중 Ga 함량은 상기 제2양자점의 코어 중 Ga 함량보다 크고, 상기 제1양자점의 코어의 크기는 상기 제2양자점의 코어의 크기보다 클 수 있다.
일 구현예에 따르면, 상기 제1양자점 및 제2양자점의 코어는 ZnSeTe를 포함하고, 상기 제1양자점의 코어 중 Te 함량은 상기 제2양자점의 코어 중 Te 함량보다 크고, 상기 제1양자점의 코어의 크기는 상기 제2양자점의 코어의 크기보다 작을 수 있다.
일 구현예에 따르면, 상기 제1양자점 및 제2양자점 중 쉘은 서로 독립적으로 두 개 이상의 층을 포함할 수 있다. 예를 들어, 상기 제1양자점 및 제2양자점은 두 개의 층을 포함할 수 있다.
일 구현예에 따르면, 상기 제1양자점 및 제2양자점 중 쉘은 CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, ZnSeS, ZnTeS, GaAs, GaP, GaN, GaO, GaSb, HgS, HgSe, HgTe, InAs, InP, InS, InZnP, InZnS, InGaP, InGaN, InSb, AlAs, AlP, AlSb, PbS, TiO, SrSe 또는 이의 임의의 조합을 포함할 수 있다. 예를 들어, 상기 쉘은 ZnS, ZnSe, ZnSeS 또는 이의 임의의 조합을 포함할 수 있다.
다른 구현예에 따르면, 상기 제1양자점은 제1나노물질(nanomaterial) 및 상기 제1나노물질 표면에 배치된 제1리간드를 포함하고, 제2양자점은 제2나노물질(nanomaterial) 및 상기 제2나노물질 표면에 배치된 제2리간드를 포함하고, 상기 제1리간드 및 제2리간드는 서로 독립적으로 할라이드(Halide), 티올계 화합물, 카르복실산-함유 화합물 또는 이의 임의의 조합을 포함할 수 있다.
다른 구현예에 따르면, 상기 제1나노물질 및 제2나노물질은 동일할 수 있다.
다른 구현예에 따르면, 상기 제1나노물질 및 제2나노물질은 서로 독립적으로 II-VI족 반도체 화합물, III-V족 반도체 화합물, III-VI족 반도체 화합물, I-III-VI족 반도체 화합물, IV-VI족 반도체 화합물; IV족 원소 또는 화합물 또는 이의 임의의 조합을 포함할 수 있다.
다른 구현예에 따르면, 상기 제1나노물질 및 제2나노물질은 서로 독립적으로 코어 및 상기 코어의 일부를 덮는 쉘을 포함할 수 있다. 예를 들어, 상기 쉘은 두 개 이상의 층을 포함할 수 있다.
다른 구현예에 따르면, 상기 제1나노물질 중 코어 및 제2나노물질 중 코어는 서로 독립적으로 CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, MgS, GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb; CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, MgZnS, GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InGaP, InNP, InAlP, InNAs, InNSb, InPAs, InPSb; CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb 또는 이의 임의의 조합을 포함할 수 있다.
다른 구현예에 따르면, 상기 제1나노물질 중 쉘 및 제2나노물질 중 쉘은 서로 독립적으로 ZnS, ZnSe, ZnTe, ZnO, ZnSeS, ZnTeS, GaAs, GaP, GaN, GaO, GaSb, HgS, HgSe, HgTe, InAs, InP, InS, InGaP, InSb, InZnP, InZnS, InGaP, InGaN, AlAs, AlP, AlSb, PbS, TiO, SrSe 또는 이의 임의의 조합을 포함할 수 잇다.
다른 구현예에 따르면, 상기 제1리간드 및 제2리간드는 동일하고, 상기 제1양자점 중 제1리간드의 함량과 상기 제2양자점 중 제2리간드의 함량은 상이할 수 있다. 예를 들어, 상기 제1양자점 중 제1리간드의 함량은 상기 제2양자점 중 제2리간드의 함량보다 원소 비율을 기준으로 1% 이상 클 수 있다.
또 다른 구현예에 따르면, 상기 제1리간드 및 제2리간드는 서로 상이할 수 있다.
다른 구현예에 따르면, 상기 티올계 화합물은 적어도 하나의 R10a로 치환 또는 비치환된 C1-C60알킬기, 적어도 하나의 R10a로 치환 또는 비치환된 C6-C60아릴기, -N(Q1)(Q2) 또는 이의 임의의 조합을 포함할 수 있다. 상기 R10a, Q1 및 Q2에 대한 설명은 본 명세서에 기재된 바를 참조한다.
예를 들어, 상기 티올계 화합물은 메틸기, 에틸기, C3-C12알킬기, 페닐기, 나프틸기, -NH2 또는 이의 임의의 조합을 포함할 수 있다.
다른 구현예에 따르면, 상기 카르복실산-함유 화합물은 -F, 적어도 하나의 R10a로 치환 또는 비치환된 C1-C60알킬기, 적어도 하나의 R10a로 치환 또는 비치환된 C1-C60알케닐기, 적어도 하나의 R10a로 치환 또는 비치환된 C1-C60알콕시기, 적어도 하나의 R10a로 치환 또는 비치환된 C6-C60아릴기, -N(Q1)(Q2) 또는 이의 임의의 조합을 포함할 수 있다. 상기 R10a, Q1 및 Q2에 대한 설명은 본 명세서에 기재된 바를 참조한다.
예를 들어, 상기 카르복실산-함유 화합물은 -F, 메틸기, 에틸기, 에틸렌, 아크릴산(acrylic acid), -OCH3, 페닐기, 나프틸기, -N(CH3)2 또는 이의 임의의 조합을 포함할 수 있다.
다른 구현예에 따르면, 상기 제1리간드 및 제2리간드는 서로 독립적으로 F, Cl, I, oleic acid, 1-dodecanethiol, 2-ethylhexylthiol, cinnamic acid, 4-methoxycinnamic acid, 4-(dimethylamino)cinamic acid), Benzoic acid, 4-methylbenzoic acid, Benzenethiol, 4-methylbenzenethiol, 2,6-difluorocinnamic acid, 3,5-difluorocinnamic acid, 4-(trifluoromethyl)cinnamic acid, 4-aminobenzenethiol 또는 이의 임의의 조합을 포함할 수 있다.
일 구현예에 따르면, 상기 제1양자점 및 제2양자점의 함량비는 1 : 10 내지 10 : 1, 2 : 8 내지 8 : 2 또는 3 :7 내지 7 : 3 일 수 있다.
[발광 소자(10)]
이하, 도 1을 참조하여 본 발명의 일 구현예를 따르는 발광 소자(10)의 구조 및 제조 방법을 설명하면 다음과 같다.
도 1은 본 발명의 일 구현예를 따르는 발광 소자(10)의 단면도를 개략적으로 도시한 것이다. 상기 발광 소자(10)는 제1전극(110), 중간층(130) 및 제2전극(150)을 포함한다.
[제1전극(110)]
도 1의 제1전극(110)의 하부 또는 제2전극(150)의 상부에는 기판이 추가로 배치될 수 있다. 상기 기판으로는, 유리 기판 또는 플라스틱 기판을 사용할 수 있다. 또는, 상기 기판은 가요성 기판일 수 있으며, 예를 들어, 폴리이미드(polyimide), 폴리에틸렌 테레프탈레이트(PET; polyethylene terephthalate), 폴리카보네이트(polycarbonate), 폴리에틸렌 나프탈레이트(polyethylene naphtalate), 폴리아릴레이트(PAR; polyarylate), 폴리에테르이미드(polyetherimide), 또는 이의 임의의 조합과 같이, 내열성 및 내구성이 우수한 플라스틱을 포함할 수 있다.
상기 제1전극(110)은, 예를 들면, 상기 기판 상부에, 제1전극용 물질을 증착법 또는 스퍼터링법 등을 이용하여 제공함으로써 형성될 수 있다. 상기 제1전극(110)이 애노드일 경우, 제1전극용 물질로서, 정공 주입이 용이한 고일함수 물질을 이용할 수 있다.
상기 제1전극(110)은 반사형 전극, 반투과형 전극 또는 투과형 전극일 수 있다. 투과형 전극인 제1전극(110)을 형성하기 위하여, 제1전극용 물질로서, 산화인듐주석(ITO), 산화인듐아연(IZO), 산화주석(SnO2), 산화아연(ZnO), 또는 이의 임의의 조합을 이용할 수 있다. 또는, 반투과형 전극 또는 반사형 전극인 제1전극(110)을 형성하기 위하여, 제1전극용 물질로서, 마그네슘(Mg), 은(Ag), 알루미늄(Al), 알루미늄-리튬(Al-Li), 칼슘(Ca), 마그네슘-인듐(Mg-In), 마그네슘-은(Mg-Ag), 또는 이의 임의의 조합을 이용할 수 있다.
상기 제1전극(110)은 단일층으로 이루어진(consist of) 단층 구조 또는 복수의 층을 포함한 다층 구조를 가질 수 있다. 예를 들어, 상기 제1전극(110)은 ITO/Ag/ITO의 3층 구조를 가질 수 있다.
[중간층(130)]
상기 제1전극(110) 상부에는 중간층(130)이 배치되어 있다. 상기 중간층(130)은 발광층을 포함한다.
상기 중간층(130)은, 상기 제1전극(110)과 상기 발광층 사이에 배치된 정공 수송 영역(hole transport region) 및 상기 발광층과 상기 제2전극(150) 사이에 배치된 전자 수송 영역(electron transport region)을 더 포함할 수 있다.
상기 중간층(130)은 각종 유기물 외에, 유기금속 화합물과 같은 금속-함유 화합물, 양자점과 같은 무기물 등도 더 포함할 수 있다.
한편, 상기 중간층(130)은, i) 상기 제1전극(110)과 상기 제2전극(150) 사이에 순차적으로 적층되어 있는 2 이상의 발광 단위(emitting unit) 및 ii) 상기 2개의 발광 단위 사이에 배치된 전하 생성층(chrge generation layer)을 포함할 수 있다. 상기 중간층(130)이 상술한 바와 같은 발광 단위 및 전하 생성층을 포함할 경우, 상기 발광 소자(10)는 탠덤(tandem) 발광 소자일 수 있다.
[중간층(130) 중 정공 수송 영역]
상기 정공 수송 영역은, i) 단일 물질로 이루어진(consist of) 단일층으로 이루어진(consist of) 단층 구조, ii) 복수의 서로 상이한 물질을 포함한 단일층으로 이루어진(consist of) 단층 구조 또는 iii) 복수의 서로 상이한 물질을 포함한 복수의 층을 포함한 다층 구조를 가질 수 있다.
상기 정공 수송 영역은, 정공 주입층, 정공 수송층, 발광 보조층, 전자 저지층, 또는 이의 임의의 조합을 포함할 수 있다.
예를 들어, 상기 정공 수송 영역은, 제1전극(110)으로부터 차례로 적층된 정공 주입층/정공 수송층, 정공 주입층/정공 수송층/발광 보조층, 정공 주입층/발광 보조층, 정공 수송층/발광 보조층 또는 정공 주입층/정공 수송층/전자 저지층의 다층 구조를 가질 수 있다.
상기 정공 수송 영역은, 하기 화학식 201로 표시되는 화합물, 하기 화학식 202로 표시되는 화합물, 또는 이의 임의의 조합(any combination thereof)을 포함할 수 있다:
<화학식 201>
Figure PCTKR2023000912-appb-img-000001
<화학식 202>
Figure PCTKR2023000912-appb-img-000002
상기 화학식 201 및 202 중,
L201 내지 L204는 서로 독립적으로, 적어도 하나의 R10a로 치환 또는 비치환된 C3-C60카보시클릭 그룹, 또는 적어도 하나의 R10a로 치환 또는 비치환된 C1-C60헤테로시클릭 그룹이고,
L205은, *-O-*', *-S-*', *-N(Q201)-*', 적어도 하나의 R10a로 치환 또는 비치환된 C1-C20알킬렌기, 적어도 하나의 R10a로 치환 또는 비치환된 C2-C20알케닐렌기, 적어도 하나의 R10a로 치환 또는 비치환된 C3-C60카보시클릭 그룹, 또는 적어도 하나의 R10a로 치환 또는 비치환된 C1-C60헤테로시클릭 그룹이고,
xa1 내지 xa4는 서로 독립적으로, 0 내지 5의 정수 중 하나이고,
xa5는 1 내지 10의 정수 중 하나이고,
R201 내지 R204 및 Q201은 서로 독립적으로, 적어도 하나의 R10a로 치환 또는 비치환된 C3-C60카보시클릭 그룹, 또는 적어도 하나의 R10a로 치환 또는 비치환된 C1-C60헤테로시클릭 그룹이고,
R201과 R202는, 선택적으로(optionally) 단일 결합, 적어도 하나의 R10a로 치환 또는 비치환된 C1-C5알킬렌기 또는 적어도 하나의 R10a로 치환 또는 비치환된 C2-C5알케닐렌기를 통하여 서로 연결되어, 적어도 하나의 R10a로 치환 또는 비치환된 C8-C60 폴리시클릭 그룹(예를 들면, 카바졸 그룹 등)을 형성할 수 있고(예를 들면, 하기 화합물 HT16 등을 참조함),
R203과 R204는, 선택적으로(optionally) 단일 결합, 적어도 하나의 R10a로 치환 또는 비치환된 C1-C5알킬렌기, 또는 적어도 하나의 R10a로 치환 또는 비치환된 C2-C5알케닐렌기를 통하여 서로 연결되어, 적어도 하나의 R10a로 치환 또는 비치환된 C8-C60 폴리시클릭 그룹을 형성할 수 있고,
na1은 1 내지 4의 정수 중 하나일 수 있다.
예를 들어, 상기 화학식 201 및 202 각각은, 하기 화학식 CY201 내지 CY217로 표시된 그룹 중 적어도 하나를 포함할 수 있다:
Figure PCTKR2023000912-appb-img-000003
상기 화학식 CY201 내지 CY217 중, R10b 및 R10c에 대한 설명은 각각 본 명세서 중 R10a에 대한 설명을 참조하고, 고리 CY201 내지 고리 CY204는 서로 독립적으로, C3-C20카보시클릭 그룹, 또는 C1-C20헤테로시클릭 그룹이고, 상기 화학식 CY201 내지 CY217 중 적어도 하나의 수소는 본 명세서에 기재된 바와 같은 R10a로 치환 또는 비치환될 수 있다.
일 구현예에 따르면, 상기 화학식 CY201 내지 CY217 중 고리 CY201 내지 고리 CY204는 서로 독립적으로, 벤젠 그룹, 나프탈렌 그룹, 페난트렌 그룹, 또는 안트라센 그룹일 수 있다.
다른 구현예에 따르면, 상기 화학식 201 및 202 각각은, 상기 화학식 CY201 내지 CY203으로 표시된 그룹 중 적어도 하나를 포함할 수 있다.
또 다른 다른 구현예에 따르면, 상기 화학식 201은, 상기 화학식 CY201 내지 CY203으로 표시된 그룹 중 적어도 하나 및 상기 화학식 CY204 내지 CY217로 표시된 그룹 중 적어도 하나를 각각 포함할 수 있다.
또 다른 구현예에 따르면, 상기 화학식 201 중 xa1은 1이고, R201은 상기 화학식 CY201 내지 CY203 중 하나로 표시된 그룹이고, xa2는 0이고, R202는 상기 화학식 CY204 내지 CY207 중 하나로 표시된 그룹일 수 있다.
또 다른 구현예에 따르면, 상기 화학식 201 및 202 각각은, 상기 화학식 CY201 내지 CY203으로 표시된 그룹을 비포함할 수 있다.
또 다른 다른 구현예에 따르면, 상기 화학식 201 및 202 각각은, 상기 화학식 CY201 내지 CY203으로 표시된 그룹을 비포함하고, 상기 화학식 CY204 내지 CY217로 표시된 그룹 중 적어도 하나를 포함할 수 있다.
또 다른 예로서, 상기 화학식 201 및 202 각각은, 상기 화학식 CY201 내지 CY217로 표시된 그룹을 비포함할 수 있다.
예를 들어, 상기 정공 수송 영역은 하기 화합물 HT1 내지 HT46 중 하나, m-MTDATA, TDATA, 2-TNATA, NPB(NPD), β-NPB, TPD, Spiro-TPD, Spiro-NPB, 메틸화된-NPB, TAPC, HMTPD, TCTA(4,4',4"-tris(N-carbazolyl)triphenylamine (4,4',4"-트리스(N-카바졸일)트리페닐아민)), Pani/DBSA (Polyaniline/Dodecylbenzenesulfonic acid (폴리아닐린/도데실벤젠술폰산)), PEDOT/PSS(Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate) (폴리(3,4-에틸렌디옥시티오펜)/폴리(4-스티렌술포네이트))), Pani/CSA (Polyaniline/Camphor sulfonic acid (폴리아닐린/캠퍼술폰산)), PANI/PSS (Polyaniline/Poly(4-styrenesulfonate) (폴리아닐린/폴리(4-스티렌술포네이트)), 또는 이의 임의의 조합을 포함할 수 있다:
Figure PCTKR2023000912-appb-img-000004
Figure PCTKR2023000912-appb-img-000005
Figure PCTKR2023000912-appb-img-000006
Figure PCTKR2023000912-appb-img-000007
Figure PCTKR2023000912-appb-img-000008
Figure PCTKR2023000912-appb-img-000009
Figure PCTKR2023000912-appb-img-000010
Figure PCTKR2023000912-appb-img-000011
Figure PCTKR2023000912-appb-img-000012
Figure PCTKR2023000912-appb-img-000013
상기 정공 수송 영역의 두께는 약 50Å 내지 약 10000Å, 예를 들면, 약 100Å 내지 약 4000Å일 수 있다. 상기 정공 수송 영역이 정공 주입층, 정공 수송층, 또는 이의 임의의 조합을 포함할 경우, 상기 정공 주입층의 두께는 약 100Å 내지 약 9000Å, 예를 들면, 약 100Å 내지 약 1000Å이고, 상기 정공 수송층의 두께는 약 50Å 내지 약 2000Å, 예를 들면 약 100Å 내지 약 1500Å일 수 있다. 상기 정공 수송 영역, 정공 주입층 및 정공 수송층의 두께가 전술한 바와 같은 범위를 만족할 경우, 실질적인 구동 전압 상승 없이 만족스러운 정도의 정공 수송 특성을 얻을 수 있다.
상기 발광 보조층은 발광층에서 방출되는 광의 파장에 따른 광학적 공진 거리를 보상하여 광 방출 효율을 증가시키는 역할을 하는 층이고, 상기 전자 저지층은 발광층으로부터 정공 수송 영역으로의 전자 유출(leakage)을 방지하는 역할을 하는 층이다. 상술한 정공 수송 영역에 포함될 수 있는 물질이 발광 보조층 및 전자 저지층에 포함될 수 있다.
[p-도펀트]
상기 정공 수송 영역은 상술한 바와 같은 물질 외에, 도전성 향상을 위하여 전하-생성 물질을 포함할 수 있다. 상기 전하-생성 물질은 상기 정공 수송 영역 내에 균일하게 또는 불균일하게 분산(예를 들면, 전하-생성 물질로 이루어진(consist of) 단일층 형태)되어 있을 수 있다.
상기 전하-생성 물질은 예를 들면, p-도펀트일 수 있다.
예를 들어, 상기 p-도펀트의 LUMO 에너지 레벨은 -3.5eV 이하일 수 있다.
일 구현예에 따르면, 상기 p-도펀트는, 퀴논 유도체, 시아노기-함유 화합물, 원소 EL1 및 원소 EL2-함유 화합물, 또는 이의 임의의 조합을 포함할 수 있다.
상기 퀴논 유도체의 예는, TCNQ, F4-TCNQ 등을 포함할 수 있다.
상기 시아노기-함유 화합물의 예는 HAT-CN, 하기 화학식 221로 표시된 화합물 등을 포함할 수 있다.
Figure PCTKR2023000912-appb-img-000014
<화학식 221>
Figure PCTKR2023000912-appb-img-000015
상기 화학식 221 중,
R221 내지 R223은 서로 독립적으로, 적어도 하나의 R10a로 치환 또는 비치환된 C3-C60카보시클릭 그룹, 또는 적어도 하나의 R10a로 치환 또는 비치환된 C1-C60헤테로시클릭 그룹이고,
상기 R221 내지 R223 중 적어도 하나는 서로 독립적으로, 시아노기; -F; -Cl; -Br; -I; 시아노기, -F, -Cl, -Br, -I, 또는 이의 임의의 조합으로 치환된 C1-C20알킬기; 또는 이의 임의의 조합;으로 치환된, C3-C60카보시클릭 그룹 또는 C1-C60헤테로시클릭 그룹일 수 있다.
상기 원소 EL1 및 원소 EL2-함유 화합물 중, 원소 EL1은 금속, 준금속, 또는 이의 조합이고, 원소 EL2는 비금속, 준금속, 또는 이의 조합일 수 있다.
상기 금속의 예는, 알칼리 금속(예를 들면, 리튬(Li), 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs) 등); 알칼리 토금속(예를 들면, 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba) 등); 전이 금속(예를 들면, 티타늄(Ti), 지르코늄(Zr), 하프늄(Hf), 바나듐(V), 니오브(Nb), 탄탈(Ta), 크롬(Cr), 몰리브덴(Mo), 텅스텐(W), 망간(Mn), 테크네튬(Tc), 레늄(Re), 철(Fe), 루테늄(Ru), 오스뮴(Os), 코발트(Co), 로듐(Rh), 이리듐(Ir), 니켈(Ni), 팔라듐(Pd), 백금(Pt), 구리(Cu), 은(Ag), 금(Au) 등); 전이후 금속(예를 들면, 아연(Zn), 인듐(In), 주석(Sn) 등); 란타나이드 금속(예를 들면, 란타넘(La), 세륨(Ce), 프라세오디뮴(Pr), 네오디뮴(Nd), 프로메튬(Pm), 사마륨(Sm), 유로퓸(Eu), 가돌리늄(Gd), 터븀(Tb), 디스프로슘(Dy), 홀뮴(Ho), 어븀(Er), 툴륨(Tm), 이터븀(Yb), 루테튬(Lu) 등); 등을 포함할 수 있다.
상기 준금속의 예는, 실리콘(Si), 안티모니(Sb), 텔루륨(Te) 등을 포함할 수 있다.
상기 비금속의 예는, 산소(O), 할로겐(예를 들면, F, Cl, Br, I 등) 등을 포함할 수 있다.
예를 들어, 상기 원소 EL1 및 원소 EL2-함유 화합물은, 금속 산화물, 금속 할로겐화물(예를 들면, 금속 불화물, 금속 염화물, 금속 브롬화물, 금속 요오드화물 등), 준금속 할로겐화물(예를 들면, 준금속 불화물, 준금속 염화물, 준금속 브롬화물, 준금속 요오드화물 등), 금속 텔루라이드, 또는 이의 임의의 조합을 포함할 수 있다.
상기 금속 산화물의 예는, 텅스텐 옥사이드(예를 들면, WO, W2O3, WO2, WO3, W2O5 등), 바나듐 옥사이드(예를 들면, VO, V2O3, VO2, V2O5 등), 몰리브덴 옥사이드(MoO, Mo2O3, MoO2, MoO3, Mo2O5 등), 레늄 옥사이드(예를 들면, ReO3 등) 등을 포함할 수 있다.
상기 금속 할로겐화물의 예는, 알칼리 금속 할로겐화물, 알칼리 토금속 할로겐화물, 전이 금속 할로겐화물, 전이후 금속 할로겐화물, 란타나이드 금속 할로겐화물 등을 포함할 수 있다.
상기 알칼리 금속 할로겐화물의 예는, LiF, NaF, KF, RbF, CsF, LiCl, NaCl, KCl, RbCl, CsCl, LiBr, NaBr, KBr, RbBr, CsBr, LiI, NaI, KI, RbI, CsI 등을 포함할 수 있다.
상기 알칼리 토금속 할로겐화물의 예는, BeF2, MgF2, CaF2, SrF2, BaF2, BeCl2, MgCl2, CaCl2, SrCl2, BaCl2, BeBr2, MgBr2, CaBr2, SrBr2, BaBr2, BeI2, MgI2, CaI2, SrI2, BaI2 등을 포함할 수 있다.
상기 전이 금속 할로겐화물의 예는, 티타늄 할로겐화물(예를 들면, TiF4, TiCl4, TiBr4, TiI4 등), 지르코늄 할로겐화물(예를 들면, ZrF4, ZrCl4, ZrBr4, ZrI4 등), 하프늄 할로겐화물(예를 들면, HfF4, HfCl4, HfBr4, HfI4 등), 바나듐 할로겐화물(예를 들면, VF3, VCl3, VBr3, VI3 등), 니오브 할로겐화물(예를 들면, NbF3, NbCl3, NbBr3, NbI3 등), 탄탈 할로겐화물(예를 들면, TaF3, TaCl3, TaBr3, TaI3 등), 크롬 할로겐화물(예를 들면, CrF3, CrCl3, CrBr3, CrI3 등), 몰리브덴 할로겐화물(예를 들면, MoF3, MoCl3, MoBr3, MoI3 등), 텅스텐 할로겐화물(예를 들면, WF3, WCl3, WBr3, WI3 등), 망간 할로겐화물(예를 들면, MnF2, MnCl2, MnBr2, MnI2 등), 테크네튬 할로겐화물(예를 들면, TcF2, TcCl2, TcBr2, TcI2 등), 레늄 할로겐화물(예를 들면, ReF2, ReCl2, ReBr2, ReI2 등), 철 할로겐화물(예를 들면, FeF2, FeCl2, FeBr2, FeI2 등), 루테늄 할로겐화물(예를 들면, RuF2, RuCl2, RuBr2, RuI2 등), 오스뮴 할로겐화물(예를 들면, OsF2, OsCl2, OsBr2, OsI2 등), 코발트 할로겐화물(예를 들면, CoF2, CoCl2, CoBr2, CoI2 등), 로듐 할로겐화물(예를 들면, RhF2, RhCl2, RhBr2, RhI2 등), 이리듐 할로겐화물(예를 들면, IrF2, IrCl2, IrBr2, IrI2 등), 니켈 할로겐화물(예를 들면, NiF2, NiCl2, NiBr2, NiI2 등), 팔라듐 할로겐화물(예를 들면, PdF2, PdCl2, PdBr2, PdI2 등), 백금 할로겐화물(예를 들면, PtF2, PtCl2, PtBr2, PtI2 등), 구리 할로겐화물(예를 들면, CuF, CuCl, CuBr, CuI 등), 은 할로겐화물(예를 들면, AgF, AgCl, AgBr, AgI 등), 금 할로겐화물(예를 들면, AuF, AuCl, AuBr, AuI 등) 등을 포함할 수 있다.
상기 전이후 금속 할로겐화물의 예는, 아연 할로겐화물(예를 들면, ZnF2, ZnCl2, ZnBr2, ZnI2 등), 인듐 할로겐화물(예를 들면, InI3 등), 주석 할로겐화물(예를 들면, SnI2 등), 등을 포함할 수 있다.
상기 란타나이드 금속 할로겐화물의 예는, YbF, YbF2, YbF3, SmF3, YbCl, YbCl2, YbCl3 SmCl3, YbBr, YbBr2, YbBr3 SmBr3, YbI, YbI2, YbI3, SmI3 등을 포함할 수 있다.
상기 준금속 할로겐화물의 예는, 안티모니 할로겐화물(예를 들면, SbCl5 등) 등을 포함할 수 있다.
상기 금속 텔루라이드의 예는, 알칼리 금속 텔루라이드(예를 들면, Li2Te, Na2Te, K2Te, Rb2Te, Cs2Te 등), 알칼리 토금속 텔루라이드(예를 들면, BeTe, MgTe, CaTe, SrTe, BaTe 등), 전이 금속 텔루라이드(예를 들면, TiTe2, ZrTe2, HfTe2, V2Te3, Nb2Te3, Ta2Te3, Cr2Te3, Mo2Te3, W2Te3, MnTe, TcTe, ReTe, FeTe, RuTe, OsTe, CoTe, RhTe, IrTe, NiTe, PdTe, PtTe, Cu2Te, CuTe, Ag2Te, AgTe, Au2Te 등), 전이후 금속 텔루라이드(예를 들면, ZnTe 등), 란타나이드 금속 텔루라이드 (예를 들면, LaTe, CeTe, PrTe, NdTe, PmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe 등) 등을 포함할 수 있다.
[중간층(130) 중 발광층]
상기 발광층은 양자점을 포함할 수 있다.
본 명세서 중, 양자점은 반도체 화합물의 결정을 의미하며, 결정의 크기에 따라 다양한 발광 파장의 광을 방출할 수 있는 임의의 물질을 포함할 수 있다.
상기 양자점의 직경은, 예를 들어 약 1 nm 내지 10 nm일 수 있다.
상기 양자점은 습식 화학 공정, 유기 금속 화학 증착 공정, 분자선 에피택시 공정 또는 이와 유사한 공정 등에 의해 합성될 수 있다.
상기 습식 화학 공정은 유기 용매와 전구체 물질을 혼합한 후 양자점 입자 결정을 성장시키는 방법이다. 상기 결정이 성장할 때, 유기 용매가 자연스럽게 양자점 결정 표면에 배위된 분산제 역할을 하고, 상기 결정의 성장을 조절하기 때문에, 유기 금속 화학 증착(MOCVD, Metal Organic Chemical Vapor Deposition)이나 분자선 에피택시(MBE, Molecular Beam Epitaxy) 등의 기상 증착법보다 더 용이하고, 저비용의 공정을 통해, 양자점 입자의 성장을 제어할 수 있다.
상기 양자점은, II-VI족 반도체 화합물; III-V족 반도체 화합물; III-VI족 반도체 화합물; I-III-VI족 반도체 화합물; IV-VI족 반도체 화합물; IV족 원소 또는 화합물; 또는 이의 임의의 조합;을 포함할 수 있다.
상기 II-VI족 반도체 화합물의 예는 CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, MgS 등과 같은 이원소 화합물; CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, MgZnS 등과 같은 삼원소 화합물; CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, HgZnSTe 등과 같은 사원소 화합물; 또는 이의 임의의 조합;을 포함할 수 있다.
상기 III-V족 반도체 화합물의 예는 GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb 등과 같은 이원소 화합물; GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InGaP, InNP, InAlP, InNAs, InNSb, InPAs, InPSb 등과 같은 삼원소 화합물; GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb 등과 같은 사원소 화합물; 또는 이의 임의의 조합;을 포함할 수 있다. 한편, 상기 III-V족 반도체 화합물은 II족 원소를 더 포함할 수 있다. II족 원소를 더 포함한 III-V족 반도체 화합물의 예는, InZnP, InGaZnP, InAlZnP 등을 포함할 수 있다.
상기 III-VI족 반도체 화합물의 예는, GaS, GaSe, Ga2Se3, GaTe, InS, InSe, In2S3, In2Se3, InTe 등과 같은 이원소 화합물; InGaS3, InGaSe3 등과 같은 삼원소 화합물; 또는 이의 임의의 조합;을 포함할 수 있다.
상기 I-III-VI족 반도체 화합물의 예는, AgInS, AgInS2, CuInS, CuInS2, CuGaO2, AgGaO2, AgAlO2 등과 같은 삼원소 화합물; 또는 이의 임의의 조합;을 포함할 수 있다.
상기 IV-VI족 반도체 화합물의 예는 SnS, SnSe, SnTe, PbS, PbSe, PbTe 등과 같은 이원소 화합물; SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe 등과 같은 삼원소 화합물; SnPbSSe, SnPbSeTe, SnPbSTe 등과 같은 사원소 화합물; 또는 이의 임의의 조합;을 포함할 수 있다.
상기 IV족 원소 또는 화합물은 Si, Ge 등과 같은 단일원소 화합물; SiC, SiGe 등과 같은 이원소 화합물; 또는 이의 임의의 조합을 포함할 수 있다.
상기 이원소 화합물, 삼원소 화합물 및 사원소 화합물과 같은 다원소 화합물에 포함된 각각의 원소는 균일한 농도 또는 불균일한 농도로 입자 내에 존재할 수 있다.
한편, 상기 양자점은 해당 양자점에 포함된 각각의 원소의 농도가 균일한 단일 구조 또는 코어-쉘의 이중 구조를 가질 수 있다. 예를 들어, 상기 코어에 포함된 물질과 상기 쉘에 포함된 물질은 서로 상이할 수 있다.
상기 양자점의 쉘은 상기 코어의 화학적 변성을 방지하여 반도체 특성을 유지하기 위한 보호층 역할 및/또는 양자점에 전기 영동 특성을 부여하기 위한 차징층(charging layer)의 역할을 수행할 수 있다. 상기 쉘은 단층 또는 다중층일 수 있다. 코어와 쉘의 계면은 쉘에 존재하는 원소의 농도가 중심으로 갈수록 낮아지는 농도 구배(gradient)를 가질 수 있다.
상기 양자점의 쉘의 예로는 금속, 준금속 또는 비금속의 산화물, 반도체 화합물 또는 이들의 조합 등을 들 수 있다. 상기 금속, 준금속 또는 비금속의 산화물의 예는 SiO2, Al2O3, TiO2, ZnO, MnO, Mn2O3, Mn3O4, CuO, FeO, Fe2O3, Fe3O4, CoO, Co3O4, NiO 등과 같은 이원소 화합물; MgAl2O4, CoFe2O4, NiFe2O4, CoMn2O4 등과 같은 삼원소 화합물; 또는 이의 임의의 조합;을 포함할 수 있다. 상기 반도체 화합물의 예는, 본 명세서에 기재된 바와 같은, II-VI족 반도체 화합물; III-V족 반도체 화합물; III-VI족 반도체 화합물; I-III-VI족 반도체 화합물; IV-VI족 반도체 화합물; 또는 이의 임의의 조합;을 포함할 수 있다. 예를 들어, 상기 반도체 화합물은 CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnSeS, ZnTeS, GaAs, GaP, GaSb, HgS, HgSe, HgTe, InAs, InP, InGaP, InSb, AlAs, AlP, AlSb, 또는 이의 임의의 조합을 포함할 수 있다.
양자점은 약 45nm 이하, 구체적으로 약 40nm 이하, 더욱 구체적으로 약 30nm 이하의 발광 파장 스펙트럼의 반치폭(full width of half maximum, FWHM)을 가질 수 있으며, 이 범위에서 색순도나 색재현성을 향상시킬 수 있다. 또한 이러한 양자점을 통해 발광되는 광은 전 방향으로 방출되는바, 광 시야각이 향상될 수 있다.
또한, 양자점의 형태는 구체적으로 구형, 피라미드형, 다중 가지형(multi-arm), 또는 입방체(cubic)의 나노 입자, 나노 튜브, 나노와이어, 나노 섬유, 나노 판상 입자 등의 형태일 수 있다.
상기 양자점의 크기를 조절함으로써, 에너지 밴드 갭의 조절이 가능하므로, 양자점 발광층에서 다양한 파장대의 빛을 얻을 수 있다. 따라서 서로 다른 크기의 양자점을 사용함으로써, 여러 파장의 빛을 방출하는 발광 소자를 구현할 수 있다. 구체적으로, 상기 양자점의 크기는 적색, 녹색 및/또는 청색광이 방출되도록 선택될 수 있다. 또한, 상기 양자점의 크기는 다양한 색의 빛이 결합되어, 백색광을 방출하도록 구성될 수 있다.
일 구현예에 따르면, 상기 발광층은 전술한 양자점 조성물을 포함할 수 있다.
상기 양자점 조성물은 에너지 밴드갭(Energy band gap)은 동일하나, 에너지 밴드 포지션(Energy band position, 예를 들어, VBM 에너지 준위)이 상이한 제1양자점 및 제2양자점을 포함한다. 각각의 양자점은 전자 또는 정공을 주입하기 좋은 위치의 에너지 밴드 포지션을 가지고 있으므로, 제1양자점 및 제2양자점을 포함한 양자점 조성물을 이용하여 발광층을 형성하는 경우, 발광층 내로의 전하(전자 또는 정공) 주입이 개선될 수 있다. 따라서, 발광 효율 및 수명이 개선된 발광 소자를 제공할 수 있다.
도 2를 참조하면, 에너지 밴드 포지션이 상이한 제1양자점 및 제2양자점을 발광층에 함께 사용하면 제1양자점 및 제2양자점이 정공수송층(HTL) 및 전자수송층(ETL)와 발광층 사이의 계단 역할을 하여 정공수송층(HTL) 및 전자수송층(ETL)에서 발광층으로의 전하 주입이 개선됨을 알 수 있다.
상기 발광층은 양자점 단일층 또는 2 이상의 양자점 층이 적층된 구조일 수 있다. 예를 들어, 상기 발광층은 양자점 단일층 또는 2 내지 5개의 양자점 층이 적층된 구조일 수 있다.
상기 발광층은 본 명세서에 기재된 양자점에 더하여, 이와 상이한 양자점을 더 포함할 수 있다.
상기 발광층은, 본 명세서에 기재된 바와 같은 양자점 외에, 상기 양자점이 자연스럽게 배위된 형태로 분산되어 있는 분산 매질을 더 포함할 수 있다. 상기 분산 매질은 유기 용매, 고분자 수지, 또는 이의 임의의 조합을 포함할 수 있다. 상기 분산 매질은 상기 양자점의 광학 성능에 영향을 미치지 않으면서 광에 의해 변질되거나 광을 반사시키지 않으며, 광흡수를 일으키지 않도록 하는 투명한 매질이라면 어느 것이든 사용할 수 있다. 예를 들어, 유기 용매는 톨루엔(toluene), 클로로포름(chloroform), 에탄올(ethanol), 옥테인, 또는 이의 임의의 조합을 포함할 수 있으며, 고분자 수지는 에폭시(epoxy) 수지, 실리콘(silicone) 수지, 폴리스틸렌(polysthylene) 수지, 아크릴레이트(acrylate) 수지, 또는 이의 임의의 조합을 포함할 수 있다.
상기 발광층은 양자점을 포함한 발광층 형성용 조성물을 정공 수송 영역 상에 도포하고, 상기 발광층 형성용 조성물에 포함된 용매 중 일부 이상을 휘발시켜 형성할 수 있다.
예를 들어, 상기 용매로는 물, 헥세인(Hexane), 클로로포름(Chloroform), 톨루엔(Toluene), 옥테인 등을 사용할 수 있다.
상기 발광층 형성용 조성물의 도포는 스핀 코팅(spin coat)법, 캐스팅(casting)법, 마이크로 그라비아 코트(micro gravure coat)법, 그라비아 코트(gravure coat)법, 바 코트(bar coat)법, 롤 코트(roll coat)법, 와이어 바 코트(wire bar coat)법, 딥 코트(dip coat)법, 스프레이 코트(spry coat)법, 스크린(screen) 인쇄법, 플렉소인쇄(flexographic)법, 오프셋(offset) 인쇄법, 잉크젯(ink jet) 인쇄법 등을 사용하여 도포할 수 있다.
상기 발광 소자(10A)가 풀 컬러 발광 소자일 경우, 발광층(150)은, 개별 부화소별로, 서로 다른 색을 방출하는 발광층을 포함할 수 있다.
예를 들어, 상기 발광층(150)은 개별 부화소별로, 제1색 발광층, 제2색 발광층 및 제3색 발광층으로 패터닝될 수 있다. 이 때, 상술한 발광층 중 적어도 하나의 발광층은 양자점을 반드시 포함할 수 있다. 구체적으로, 상기 제1색 발광층은 양자점을 포함하는 양자점 발광층이고, 상기 제2색 발광층 및 상기 제3색 발광층은 각각 유기 화합물을 포함하는 유기 발광층일 수 있다. 여기서, 제1색 내지 제3색은 서로 다른 색이며, 구체적으로, 제1색 내지 제3색은 서로 상이한 최대 발광 파장을 가질 수 있다. 제1색 내지 제3색은 서로 조합되어 백색이 될 수 있다.
다른 예로서, 상기 발광층은 제4색 발광층을 더 포함할 수 있고, 상기 제1색 내지 제4색 발광층 중 적어도 하나의 발광층은 양자점을 포함하는 양자점 발광층이고, 나머지 발광층은 각각 유기 화합물을 포함하는 유기 발광층일 수 있는 등, 다양한 변형이 가능하다. 여기서, 제1색 내지 제4색은 서로 다른 색이며, 구체적으로, 제1색 내지 제4색은 서로 상이한 최대 발광 파장을 가질 수 있다. 제1색 내지 제4색은 서로 조합되어 백색이 될 수 있다.
또는, 상기 발광 소자(10)는 2 이상의 서로 같거나 다른 색을 방출하는 발광층이 서로 접촉 또는 이격되어 적층된 구조를 가질 수 있다. 상기 2 이상의 발광층 중 적어도 하나의 발광층은 양자점을 포함하는 양자점 발광층이고, 나머지 발광층은 유기 화합물을 포함하는 유기 발광층일 수 있는 등, 다양한 변형이 가능하다. 구체적으로, 상기 발광 소자(10)는 제1색 발광층 및 제2색 발광층을 포함하고, 여기서 제1색 및 제2색은 서로 같은 색일 수도 있고, 서로 다른 색일 수도 있다. 더욱 구체적으로, 상기 제1색 및 상기 제2색은 모두 청색일 수 있다.
상기 발광층은 양자점 외에, 유기 화합물 및 반도체 화합물 중에서 선택되는 1종 이상을 더 포함할 수 있다.
구체적으로, 상기 유기 화합물은 호스트 및 도펀트를 포함할 수 있다. 상기 호스트 및 상기 도펀트는 유기 발광 소자에서 통상적으로 사용되는 호스트 및 도펀트를 포함할 수 있다.
구체적으로, 상기 반도체 화합물은 유기 및/또는 무기 페로브스카이트일 수 있다.
[중간층(130) 중 전자 수송 영역]
상기 전자 수송 영역은 i) 단일 물질로 이루어진(consist of) 단일층으로 이루어진(consist of) 단층 구조, ii) 복수의 서로 상이한 물질을 포함한 단일층으로 이루어진(consist of) 단층 구조 또는 iii) 복수의 서로 상이한 물질을 포함한 복수의 층을 포함한 다층 구조를 가질 수 있다.
상기 전자 수송 영역은, 버퍼층, 정공 저지층, 전자 조절층, 전자 수송층, 전자 주입층, 또는 이의 임의의 조합을 포함할 수 있다.
예를 들어, 상기 전자 수송 영역은, 발광층으로부터 차례로 적층된 전자 수송층/전자 주입층, 정공 저지층/전자 수송층/전자 주입층, 전자 조절층/전자 수송층/전자 주입층, 또는 버퍼층/전자 수송층/전자 주입층 등의 구조를 가질 수 있다.
상기 전자 수송 영역은 금속 산화물을 포함하며, 상기 금속 산화물의 상기 금속은, Zn, Ti, Zr, Sn, W, Ta, Ni, Mo, Cu, Mg, Co, Mn, Y, Al 또는 이의 임의의 조합을 포함할 수 있다. 또한, 금속 황화물을 포함할 수 있으며, 예를 들어, CuSCN 등을 포함할 수 있다.
상기 전자 수송 영역(예를 들면, 상기 전자 수송 영역 중 전자 주입층 또는 전자 수송층)은 하기 화학식 3으로 표시된 금속 산화물을 포함할 수 있다:
<화학식 3>
MpOq
상기 화학식 3 중
M은 Zn, Ti, Zr, Sn, W, Ta, Ni, Mo, Cu 또는 V이고,
p 및 q는 서로 독립적으로 1 또는 5의 정수 중 하나이다.
상기 제3화합물은 하기 화학식 3-1로 표시될 수 있다.
<화학식 3-1>
Zn(1-r)M'rO
상기 화학식 3-1 중
M'은 Mg, Co, Ni, Zr, Mn, Sn, Y, Al 또는 이의 임의의 조합이고,
r는 0보다 크고 0.5와 같거나 그보다 작은 수이다.
일 구현예에 따르면, 상기 전자 수송 영역은 ZnO 또는 ZnMgO 등을 포함할 수 있다.
예를 들어, 상기 전자 수송 영역은 ZnO, TiO2, WO3, SnO2, In2O3, Nb2O5, Fe2O3, CeO2, SrTiO3, Zn2SnO4, BaSnO3, In2S3, ZnSiO, PC60BM, PC70BM, Mg 도핑된 ZnO(ZnMgO), Al 도핑된 ZnO(AZO), Ga 도핑된 ZnO(GZO), In 도핑된 ZnO(IZO), Al 도핑된 TiO2, Ga 도핑된 TiO2, In 도핑된 TiO2, Al 도핑된 WO3, Ga 도핑된 WO3, In 도핑된 WO3, Al 도핑된 SnO2, Ga 도핑된 SnO2, In 도핑된 SnO2, Mg 도핑된 In2O3, Al 도핑된 In2O3, Ga 도핑된 In2O3, Mg 도핑된 Nb2O5, Al 도핑된 Nb2O5, Ga 도핑된 Nb2O5, Mg 도핑된 Fe2O3, Al 도핑된 Fe2O3, Ga 도핑된 Fe2O3, In 도핑된 Fe2O3, Mg 도핑된 CeO2, Al 도핑된 CeO2, Ga 도핑된 CeO2, In 도핑된 CeO2, Mg 도핑된 SrTiO3, Al 도핑된 SrTiO3, Ga 도핑된 SrTiO3, In 도핑된 SrTiO3, Mg 도핑된 Zn2SnO4, Al 도핑된 Zn2SnO4, Ga 도핑된 Zn2SnO4, In 도핑된 Zn2SnO4, Mg 도핑된 BaSnO3, Al 도핑된 BaSnO3, Ga 도핑된 BaSnO3, In 도핑된 BaSnO3, Mg 도핑된 In2S3, Al 도핑된 In2S3, Ga 도핑된 In2S3, In 도핑된 In2S3, Mg 도핑된 ZnSiO, Al 도핑된 ZnSiO, Ga 도핑된 ZnSiO, In 도핑된 ZnSiO 또는 이의 임의의 조합을 포함할 수 있다.
상기 전자 수송 영역(예를 들면, 상기 전자 수송 영역 중 버퍼층, 정공 저지층, 전자 조절층 또는 전자 수송층)은, 적어도 하나의 π 전자-결핍성 함질소 C1-C60 시클릭 그룹(π electron-deficient nitrogen-containing C1-C60 cyclic group)을 포함한 금속-비함유 (metal-free) 화합물을 포함할 수 있다.
상기 전자 수송 영역(예를 들면, 상기 전자 수송 영역 중 버퍼층, 정공 저지층, 전자 조절층 또는 전자 수송층)은, 적어도 하나의 π 전자-결핍성 함질소 C1-C60 시클릭 그룹(π electron-deficient nitrogen-containing C1-C60 cyclic group)을 포함한 금속-비함유 (metal-free) 화합물을 포함할 수 있다.
예를 들어, 상기 전자 수송 영역은, 하기 화학식 601로 표시된 화합물을 포함할 수 있다.
<화학식 601>
[Ar601]xe11-[(L601)xe1-R601]xe21
상기 화학식 601 중,
Ar601, 및 L601은 서로 독립적으로, 적어도 하나의 R10a로 치환 또는 비치환된 C3-C60카보시클릭 그룹, 또는 적어도 하나의 R10a로 치환 또는 비치환된 C1-C60헤테로시클릭 그룹이고,
xe11은 1, 2 또는 3이고,
xe1는 0, 1, 2, 3, 4, 또는 5이고,
R601은, 적어도 하나의 R10a로 치환 또는 비치환된 C3-C60카보시클릭 그룹, 적어도 하나의 R10a로 치환 또는 비치환된 C1-C60헤테로시클릭 그룹, -Si(Q601)(Q602)(Q603), -C(=O)(Q601), -S(=O)2(Q601), 또는 -P(=O)(Q601)(Q602)이고,
상기 Q601 내지 Q603에 대한 설명은 각각 본 명세서 중 Q1에 대한 설명을 참조하고,
xe21는 1, 2, 3, 4, 또는 5이고,
상기 Ar601, L601 및 R601 중 적어도 하나는 서로 독립적으로, 적어도 하나의 R10a로 치환 또는 비치환된 π 전자-결핍성 함질소 C1-C60 시클릭 그룹일 수 있다.
예를 들어, 상기 화학식 601 중 xe11이 2 이상일 경우 2 이상의 Ar601은 단일 결합을 통하여 서로 연결될 수 있다.
다른 예로서, 상기 화학식 601 중 Ar601은 치환 또는 비치환된 안트라센 그룹일 수 있다.
또 다른 예로서, 상기 전자 수송 영역은 하기 화학식 601-1로 표시된 화합물을 포함할 수 있다:
<화학식 601-1>
Figure PCTKR2023000912-appb-img-000016
상기 화학식 601-1 중,
X614는 N 또는 C(R614)이고, X615는 N 또는 C(R615)이고, X616은 N 또는 C(R616)이고, X614 내지 X616 중 적어도 하나는 N이고,
L611 내지 L613에 대한 설명은 각각 상기 L601에 대한 설명을 참조하고,
xe611 내지 xe613에 대한 설명은 각각 상기 xe1에 대한 설명을 참조하고,
R611 내지 R613에 대한 설명은 각각 상기 R601에 대한 설명을 참조하고,
R614 내지 R616은 서로 독립적으로, 수소, 중수소, -F, -Cl, -Br, -I, 히드록실기, 시아노기, 니트로기, C1-C20알킬기, C1-C20알콕시기, 적어도 하나의 R10a로 치환 또는 비치환된 C3-C60카보시클릭 그룹, 또는 적어도 하나의 R10a로 치환 또는 비치환된 C1-C60헤테로시클릭 그룹일 수 있다.
예를 들어, 상기 화학식 601 및 601-1 중 xe1 및 xe611 내지 xe613은 서로 독립적으로, 0, 1 또는 2일 수 있다.
상기 전자 수송 영역은 하기 화합물 ET1 내지 ET45 중 하나, BCP(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline), Bphen(4,7-Diphenyl-1,10-phenanthroline), Alq3, BAlq, TAZ, NTAZ, 또는 이의 임의의 조합을 포함할 수 있다:
Figure PCTKR2023000912-appb-img-000017
Figure PCTKR2023000912-appb-img-000018
Figure PCTKR2023000912-appb-img-000019
Figure PCTKR2023000912-appb-img-000020
Figure PCTKR2023000912-appb-img-000021
Figure PCTKR2023000912-appb-img-000022
Figure PCTKR2023000912-appb-img-000023
상기 전자 수송 영역의 두께는 약 100Å 내지 약 5000Å, 예를 들면, 약 160Å 내지 약 4000Å일 수 있다. 상기 전자 수송 영역이 버퍼층, 정공 저지층, 전자 조절층, 전자 수송층 또는 이의 임의의 조합을 포함할 경우, 상기 버퍼층, 정공 저지층 또는 전자 조절층의 두께는 서로 독립적으로, 약 20Å 내지 약 1000Å, 예를 들면 약 30Å 내지 약 300Å이고, 상기 전자 수송층의 두께는 약 100Å 내지 약 1000Å, 예를 들면 약 150Å 내지 약 500Å일 수 있다. 상기 버퍼층, 정공 저지층, 전자 조절층, 전자 수송층 및/또는 전자 수송 영역의 두께가 전술한 바와 같은 범위를 만족할 경우, 실질적인 구동 전압 상승없이 만족스러운 정도의 전자 수송 특성을 얻을 수 있다.
상기 전자 수송 영역(예를 들면, 상기 전자 수송 영역 중 전자 수송층)은 상술한 바와 같은 물질 외에, 금속-함유 물질을 더 포함할 수 있다.
상기 금속-함유 물질은 알칼리 금속 착체, 알칼리 토금속 착체, 또는 이의 임의의 조합을 포함할 수 있다. 상기 알칼리 금속 착체의 금속 이온은, Li 이온, Na 이온, K 이온, Rb 이온 또는 Cs 이온일 수 있고, 상기 알칼리 토금속 착체의 금속 이온은 Be 이온, Mg 이온, Ca 이온, Sr 이온 또는 Ba 이온일 수 있다. 상기 알칼리 금속 착체 및 알칼리 토금속 착체의 금속 이온에 배위된 리간드는, 서로 독립적으로, 히드록시퀴놀린, 히드록시이소퀴놀린, 히드록시벤조퀴놀린, 히드록시아크리딘, 히드록시페난트리딘, 히드록시페닐옥사졸, 히드록시페닐티아졸, 히드록시페닐옥사디아졸, 히드록시페닐티아디아졸, 히드록시페닐피리딘, 히드록시페닐벤조이미다졸, 히드록시페닐벤조티아졸, 비피리딘, 페난트롤린, 시클로펜타다이엔, 또는 이의 임의의 조합을 포함할 수 있다.
예를 들어, 상기 금속-함유 물질은 Li 착체를 포함할 수 있다. 상기 Li 착체는, 예를 들면, 하기 화합물 ET-D1(LiQ) 또는 ET-D2을 포함할 수 있다:
Figure PCTKR2023000912-appb-img-000024
상기 전자 수송 영역은, 제2전극(150)으로부터의 전자 주입을 용이하게 하는 전자 주입층을 포함할 수 있다. 상기 전자 주입층은 상기 제2전극(150)과 직접(directly) 접촉할 수 있다.
상기 전자 주입층은 i) 단일 물질로 이루어진(consist of) 단일층으로 이루어진(consist of) 단층 구조, ii) 복수의 서로 상이한 물질을 포함한 단일층으로 이루어진(consist of) 단층 구조 또는 iii) 복수의 서로 상이한 물질을 포함한 복수의 층을 갖는 다층 구조를 가질 수 있다.
상기 전자 주입층은 알칼리 금속, 알칼리 토금속, 희토류 금속, 알칼리 금속-함유 화합물, 알칼리 토금속-함유 화합물, 희토류 금속-함유 화합물, 알칼리 금속 착체, 알칼리 토금속 착체, 희토류 금속 착체, 또는 이의 임의의 조합을 포함할 수 있다.
상기 알칼리 금속은, Li, Na, K, Rb, Cs, 또는 이의 임의의 조합을 포함할 수 있다. 상기 알칼리 토금속은, Mg, Ca, Sr, Ba, 또는 이의 임의의 조합을 포함할 수 있다. 상기 희토류 금속은 Sc, Y, Ce, Tb, Yb, Gd, 또는 이의 임의의 조합을 포함할 수 있다.
상기 알칼리 금속-함유 화합물, 알칼리 토금속-함유 화합물 및 상기 희토류 금속-함유 화합물은, 상기 알칼리 금속, 상기 알칼리 토금속 및 희토류 금속 각각의, 산화물, 할로겐화물(예를 들면, 불화물, 염화물, 브롬화물, 요오드화물 등), 텔루라이드, 또는 이의 임의의 조합을 포함할 수 있다.
상기 알칼리 금속-함유 화합물은, Li2O, Cs2O, K2O 등과 같은 알칼리 금속 산화물, LiF, NaF, CsF, KF, LiI, NaI, CsI, KI 등과 같은 알칼리 금속 할로겐화물, 또는 이의 임의의 조합을 포함할 수 있다. 상기 알칼리 토금속-함유 화합물은, BaO, SrO, CaO, BaxSr1-xO(x는 0<x<1를 만족하는 실수임), BaxCa1-xO(x는 0<x<1를 만족하는 실수임) 등과 같은 알칼리 토금속 화합물을 포함할 수 있다. 상기 희토류 금속-함유 화합물은, YbF3, ScF3, Sc2O3, Y2O3, Ce2O3, GdF3, TbF3, YbI3, ScI3, TbI3, 또는 이의 임의의 조함을 포함할 수 있다. 또는, 상기 희토류 금속-함유 화합물은, 란타나이드 금속 텔루라이드를 포함할 수 있다. 상기 란타나이드 금속 텔루라이드의 예는, LaTe, CeTe, PrTe, NdTe, PmTe, SmTe, EuTe, GdTe, TbTe, DyTe, HoTe, ErTe, TmTe, YbTe, LuTe, La2Te3, Ce2Te3, Pr2Te3, Nd2Te3, Pm2Te3, Sm2Te3, Eu2Te3, Gd2Te3, Tb2Te3, Dy2Te3, Ho2Te3, Er2Te3, Tm2Te3, Yb2Te3, Lu2Te3 등을 포함할 수 있다.
상기 알칼리 금속 착체, 알칼리 토금속 착체 및 희토류 금속 착체는, i) 상술한 바와 같은 알칼리 금속, 알칼리 토금속 및 희토류 금속의 이온 중 하나 및 ii) 상기 금속 이온과 결합한 리간드로서, 예를 들면, 히드록시퀴놀린, 히드록시이소퀴놀린, 히드록시벤조퀴놀린, 히드록시아크리딘, 히드록시페난트리딘, 히드록시페닐옥사졸, 히드록시페닐티아졸, 히드록시페닐옥사디아졸, 히드록시페닐티아디아졸, 히드록시페닐피리딘, 히드록시페닐벤조이미다졸, 히드록시페닐벤조티아졸, 비피리딘, 페난트롤린, 시클로펜타다이엔, 또는 이의 임의의 조합을 포함할 수 있다.
상기 전자 주입층은 상술한 바와 같은 알칼리 금속, 알칼리 토금속, 희토류 금속, 알칼리 금속-함유 화합물, 알칼리 토금속-함유 화합물, 희토류 금속-함유 화합물, 알칼리 금속 착체, 알칼리 토금속 착체, 희토류 금속 착체, 또는 이의 임의의 조합만으로 이루어져 있거나, 유기물(예를 들면, 상기 화학식 601로 표시된 화합물)을 더 포함할 수 있다.
일 구현예에 따르면, 상기 전자 주입층은 i) 알칼리 금속-함유 화합물(예를 들면, 알칼리 금속 할로겐화물)로 이루어지거나(consist of), ii) a) 알칼리 금속-함유 화합물(예를 들면, 알칼리 금속 할로겐화물); 및 b) 알칼리 금속, 알칼리 토금속, 희토류 금속, 또는 이의 임의의 조합;으로 이루어질 수 있다. 예를 들어, 상기 전자 주입층은, KI:Yb 공증착층, RbI:Yb 공증착층, LiF:Yb 공증착층 등일 수 있다.
상기 전자 주입층이 유기물을 더 포함할 경우, 상기 알칼리 금속, 알칼리 토금속, 희토류 금속, 알칼리 금속-함유 화합물, 알칼리 토금속-함유 화합물, 희토류 금속-함유 화합물, 알칼리 금속 착체, 알칼리 토금속 착체, 희토류 금속 착체, 또는 이의 임의의 조합은 상기 유기물을 포함한 매트릭스에 균일 또는 불균일하게 분산되어 있을 수 있다.
상기 전자 주입층의 두께는 약 1Å 내지 약 100Å, 약 3Å 내지 약 90Å일 수 있다. 상기 전자 주입층의 두께가 전술한 바와 같은 범위를 만족할 경우, 실질적인 구동 전압 상승없이 만족스러운 정도의 전자 주입 특성을 얻을 수 있다.
[제2전극(150)]
상술한 바와 같은 중간층(130) 상부에는 제2전극(150)이 배치되어 있다. 상기 제2전극(150)은 전자 주입 전극인 캐소드(cathode)일 수 있는데, 이 때, 상기 제2전극(150)용 물질로는 낮은 일함수를 가지는 금속, 합금, 전기전도성 화합물, 또는 이의 임의의 조합을 사용할 수 있다.
상기 제2전극(150)은, 리튬(Li), 은(Ag), 마그네슘(Mg), 알루미늄(Al), 알루미늄-리튬(Al-Li), 칼슘(Ca), 마그네슘-인듐(Mg-In), 마그네슘-은(Mg-Ag), 이터븀(Yb), 은-이터븀(Ag-Yb), ITO, IZO, 또는 이의 임의의 조합을 포함할 수 있다. 상기 제2전극(150)은 투과형 전극, 반투과형 전극 또는 반사형 전극일 수 있다.
상기 제2전극(150)은 단일층인 단층 구조 또는 복수의 층을 갖는 다층 구조를 가질 수 있다.
[캡핑층]
제1전극(110)의 외측에는 제1캡핑층이 배치되거나, 및/또는 제2전극(150)의 외측에는 제2캡핑층이 배치될 수 있다. 구체적으로, 상기 발광 소자(10)는 제1캡핑층, 제1전극(110), 중간층(130) 및 제2전극(150)이 차례로 적층된 구조, 제1전극(110), 중간층(130), 제2전극(150) 및 제2캡핑층이 차례로 적층된 구조 또는 제1캡핑층, 제1전극(110), 중간층(130), 제2전극(150) 및 제2캡핑층이 차례로 적층된 구조를 가질 수 있다.
발광 소자(10)의 중간층(130) 중 발광층에서 생성된 광은 반투과형 전극 또는 투과형 전극인 제1전극(110) 및 제1캡핑층을 지나 외부로 취출될 수 있고, 발광 소자(10)의 중간층(130) 중 발광층에서 생성된 광은 반투과형 전극 또는 투과형 전극인 제2전극(150) 및 제2캡핑층을 지나 외부로 취출될 수 있다.
상기 제1캡핑층 및 제2캡핑층은 보강 간섭의 원리에 의하여 외부 발광 효율을 향상시키는 역할을 할 수 있다. 이로써, 상기 발광 소자(10)의 광추출 효율이 증가되어, 상기 발광 소자(10)의 발광 효율이 향상될 수 있다.
상기 제1캡핑층 및 제2캡핑층 각각은, 1.6 이상의 굴절율(at 589nm)을 갖는 물질을 포함할 수 있다.
상기 제1캡핑층 및 제2캡핑층은 서로 독립적으로, 유기물을 포함한 유기 캡핑층, 무기물을 포함한 무기 캡핑층, 또는 유기물 및 무기물을 포함한 유-무기 복합 캡핑층일 수 있다.
상기 제1캡핑층 및 제2캡핑층 중 적어도 하나는, 서로 독립적으로, 카보시클릭 화합물, 헤테로시클릭 화합물, 아민 그룹-함유 화합물, 포르핀 유도체 (porphine derivatives), 프탈로시아닌 유도체 (phthalocyanine derivatives), 나프탈로시아닌 유도체 (naphthalocyanine derivatives), 알칼리 금속 착체, 알칼리 토금속 착체, 또는 이의 임의의 조합을 포함할 수 있다. 상기 카보시클릭 화합물, 헤테로시클릭 화합물 및 아민 그룹-함유 화합물은, 선택적으로, O, N, S, Se, Si, F, Cl, Br, I, 또는 이의 임의의 조합을 포함한 치환기로 치환될 수 있다. 일 구현예에 따르면, 상기 제1캡핑층 및 제2캡핑층 중 적어도 하나는, 서로 독립적으로, 아민 그룹-함유 화합물을 포함할 수 있다.
예를 들어, 상기 제1캡핑층 및 제2캡핑층 중 적어도 하나는, 서로 독립적으로, 상기 화학식 201로 표시된 화합물, 상기 화학식 202로 표시된 화합물, 또는 이의 임의의 조합을 포함할 수 있다.
또 다른 구현예에 따르면, 상기 제1캡핑층 및 제2캡핑층 중 적어도 하나는, 서로 독립적으로, 상기 화합물 HT28 내지 HT33 중 하나, 하기 화합물 CP1 내지 CP6 중 하나, β-NPB 또는 이의 임의의 화합물을 포함할 수 있다:
Figure PCTKR2023000912-appb-img-000025
Figure PCTKR2023000912-appb-img-000026
[전자 장치]
상기 발광 소자는 각종 전자 장치에 포함될 수 있다. 예를 들어, 상기 발광 소자를 포함한 전자 장치는, 발광 장치, 인증 장치 등일 수 있다.
상기 전자 장치(예를 들면, 발광 장치)는, 상기 발광 소자 외에, i) 컬러 필터, ii) 색변환층, 또는 iii) 컬러 필터 및 색변환층을 더 포함할 수 있다. 상기 컬러 필터 및/또는 색변환층은 발광 소자로부터 방출되는 광의 적어도 하나의 진행 방향 상에 배치될 수 있다. 예를 들어, 상기 발광 소자로부터 방출되는 광은 청색광 또는 백색광일 수 있다. 상기 발광 소자에 대한 설명은 상술한 바를 참조한다. 일 구현예에 따르면, 상기 색변환층은 양자점을 포함할 수 있다. 상기 양자점은 예를 들어, 본 명세서에 기재된 바와 같은 양자점일 수 있다.
상기 전자 장치는 제1기판을 포함할 수 있다. 상기 제1기판은 복수의 부화소 영역을 포함하고, 상기 컬러 필터는 상기 복수의 부화소 영역 각각에 대응하는 복수의 컬러 필터 영역을 포함하고, 상기 색변환층은 상기 복수의 부화소 영역 각각에 대응하는 복수의 색변환 영역을 포함할 수 있다.
상기 복수의 부화소 영역 사이에 화소 정의막이 배치되어 각각의 부화소 영역이 정의된다.
상기 컬러 필터는 복수의 컬러 필터 영역 및 복수의 컬러 필터 영역 사이에 배치된 차광 패턴을 더 포함할 수 있고, 상기 색변환층은 복수의 색변환 영역 및 복수의 색변환 영역 사이에 배치된 차광 패턴을 더 포함할 수 있다.
상기 복수의 컬러 필터 영역(또는, 복수의 색변환 영역)은, 제1색광을 방출하는 제1영역; 제2색광을 방출하는 제2영역; 및/또는 제3색광을 방출하는 제3영역을 포함하고, 상기 제1색광, 상기 제2색광 및/또는 상기 제3색광은 서로 상이한 최대 발광 파장을 가질 수 있다. 예를 들어, 상기 제1색광은 적색광이고, 상기 제2색광은 녹색광이고, 상기 제3색광은 청색광일 수 있다. 예를 들어, 상기 복수의 컬러 필터 영역(또는, 복수의 색변환 영역)은 양자점을 포함할 수 있다. 구체적으로, 상기 제1영역은 적색 양자점을 포함하고, 상기 제2영역은 녹색 양자점을 포함하고, 상기 제3영역은 양자점을 포함하지 않을 수 있다. 양자점에 대한 설명은 본 명세서에 기재된 바를 참조한다. 상기 제1영역, 상기 제2영역 및/또는 상기 제3영역은 각각 산란체를 더 포함할 수 있다.
예를 들어, 상기 발광 소자는 제1광을 방출하고, 상기 제1영역은 상기 제1광을 흡수하여, 제1-1색광을 방출하고, 상기 제2영역은 상기 제1광을 흡수하여, 제2-1색광을 방출하고, 상기 제3영역은 상기 제1광을 흡수하여, 제3-1색광을 방출할 수 있다. 이 때, 상기 제1-1색광, 상기 제2-1색광 및 상기 제3-1색광은 서로 상이한 최대 발광 파장을 가질 수 있다. 구체적으로, 상기 제1광은 청색광일 수 있고, 상기 제1-1색광은 적색광일 수 있고, 상기 제2-1색광은 녹색광일 수 있고, 상기 제3-1색광은 청색광일 수 있다.
상기 전자 장치는, 상술한 바와 같은 발광 소자 외에 박막 트랜지스터를 더 포함할 수 있다. 상기 박막 트랜지스터는 소스 전극, 드레인 전극 및 활성층을 포함할 수 있고, 상기 소스 전극 및 드레인 전극 중 어느 하나와 상기 발광 소자의 제1전극 및 제2전극 중 어느 하나는 전기적으로 연결될 수 있다.
상기 박막 트랜지스터는 게이트 전극, 게이트 절연막 등을 더 포함할 수 있다.
상기 활성층은 결정질 실리콘, 비정질 실리콘, 유기 반도체, 산화물 반도체 등을 포함할 수 있다.
상기 전자 장치는 발광 소자를 밀봉하는 밀봉부를 더 포함할 수 있다. 상기 밀봉부는 상기 컬러 필터 및/또는 색변환층과 상기 발광 소자 사이에 배치될 수 있다. 상기 밀봉부는 상기 발광 소자로부터의 광이 외부로 취출될 수 있도록 하면서, 동시에 상기 발광 소자로 외기 및 수분이 침투하는 것을 차단한다. 상기 밀봉부는 투명한 유리 기판 또는 플라스틱 기판을 포함하는 밀봉 기판일 수 있다. 상기 밀봉부는 유기층 및/또는 무기층을 1층 이상 포함하는 박막 봉지층일 수 있다. 상기 밀봉부가 박막 봉지층일 경우, 상기 전자 장치는 플렉시블할 수 있다.
상기 밀봉부 상에는, 상기 컬러 필터 및/또는 색변환층 외에, 상기 전자 장치의 용도에 따라 다양한 기능층이 추가로 배치될 수 있다. 상기 기능층은 터치스크린층, 편광층 등을 포함할 수 있다. 상기 터치스크린층은, 감압식 터치스크린층, 정전식 터치스크린층 또는 적외선식 터치스크린층일 수 있다.
상기 인증 장치는 상술한 바와 같은 발광 소자 외에 생체 정보 수집 수단을 더 포함할 수 있다. 상기 인증 장치는, 예를 들면, 생체(예를 들어, 손가락 끝, 눈동자 등)의 생체 정보를 이용하여 개인을 인증하는 생체 인증 장치일 수 있다.
상기 전자 장치는 각종 디스플레이, 광원, 조명, 퍼스널 컴퓨터(예를 들면, 모바일형 퍼스널 컴퓨터), 휴대 전화, 디지털 사진기, 전자 수첩, 전자 사전, 전자 게임기, 의료 기기(예를 들면, 전자 체온계, 혈압계, 혈당계, 맥박 계측 장치, 맥파 계측 장치, 심전표시 장치, 초음파 진단 장치, 내시경용 표시 장치), 어군 탐지기, 각종 측정 기기, 계기류(예를 들면, 차량, 항공기, 선박의 계기류), 프로젝터 등으로 응용될 수 있다.
[도 3 및 4에 대한 설명]
도 3는 본 발명의 일 구현예를 따르는 발광 장치의 단면도이다.
도 3의 발광 장치는 기판(100), 박막 트랜지스터(TFT), 발광 소자 및 발광 소자를 밀봉하는 봉지부(300)를 포함한다.
상기 기판(100)은 가요성 기판, 유리 기판, 또는 금속 기판일 수 있다. 상기 기판(100) 상에는 버퍼층(210)이 배치될 수 있다. 상기 버퍼층(210)은 기판(100)을 통한 불순물의 침투를 방지하며 기판(100) 상부에 평탄한 면을 제공하는 역할을 할 수 있다.
상기 버퍼층(210) 상에는 박막 트랜지스터(TFT)가 배치될 수 있다. 상기 박막 트랜지스터(TFT)는 활성층(220), 게이트 전극(240), 소스 전극(260) 및 드레인 전극(270)을 포함할 수 있다.
상기 활성층(220)은 실리콘 또는 폴리 실리콘과 같은 무기 반도체, 유기 반도체 또는 산화물 반도체를 포함할 수 있으며, 소스 영역, 드레인 영역 및 채널 영역을 포함한다.
상기 활성층(220)의 상부에는 활성층(220)과 게이트 전극(240)을 절연하기 위한 게이트 절연막(230)이 배치될 수 있고, 게이트 절연막(230) 상부에는 게이트 전극(240)이 배치될 수 있다.
상기 게이트 전극(240)의 상부에는 층간 절연막(250)이 배치될 수 있다. 상기 층간 절연막(250)은 게이트 전극(240)과 소스 전극(260) 사이 및 게이트 전극(240)과 드레인 전극(270) 사이에 배치되어 이들을 절연하는 역할을 한다.
상기 층간 절연막(250) 상에는 소스 전극(260) 및 드레인 전극(270)이 배치될 수 있다. 층간 절연막(250) 및 게이트 절연막(230)은 활성층(220)의 소스 영역 및 드레인 영역이 노출하도록 형성될 수 있고, 이러한 활성층(220)의 노출된 소스 영역 및 드레인 영역과 접하도록 소스 전극(260) 및 드레인 전극(270)이 배치될 수 있다.
이와 같은 박막 트랜지스터(TFT)는 발광 소자에 전기적으로 연결되어 발광 소자를 구동시킬 수 있으며, 패시베이션층(280)으로 덮여 보호된다. 패시베이션층(280)은 무기 절연막, 유기 절연막, 또는 이의 조합을 포함할 수 있다. 패시베이션층(280) 상에는 발광 소자가 구비된다. 상기 발광 소자는 제1전극(110), 중간층(130) 및 제2전극(150)을 포함한다.
상기 제1전극(110)은 패시베이션층(280) 상에 배치될 수 있다. 패시베이션층(280)은 드레인 전극(270)의 전체를 덮지 않고 소정의 영역을 노출하도록 배치될 수 있고, 노출된 드레인 전극(270)과 연결되도록 제1전극(110)이 배치될 수 있다.
상기 제1전극(110) 상에 절연물을 포함한 화소 정의막(290)이 배치될 수 있다. 화소 정의막(290)은 제1전극(110)의 소정 영역을 노출하며, 노출된 영역에 중간층(130)이 형성될 수 있다. 화소 정의막(290)은 폴리이미드 또는 폴리아크릴 계열의 유기막일 수 있다. 도 2에 미도시되어 있으나, 중간층(130) 중 일부 이상의 층은 화소 정의막(290) 상부에까지 연장되어 공통층의 형태로 배치될 수 있다.
상기 중간층(130) 상에는 제2전극(150)이 배치되고, 제2전극(150) 상에는 캡핑층(170)이 추가로 형성될 수 있다. 캡핑층(170)은 제2전극(150)을 덮도록 형성될 수 있다.
상기 캡핑층(170) 상에는 봉지부(300)가 배치될 수 있다. 봉지부(300)는 발광 소자 상에 배치되어 수분이나 산소로부터 발광 소자를 보호하는 역할을 할 수 있다. 봉지부(300)는 실리콘 질화물(SiNx), 실리콘 산화물(SiOx), 인듐주석산화물, 인듐아연산화물, 또는 이의 임의의 조합을 포함한 무기막, 폴리에틸렌테레프탈레이트, 폴리에틸렌나프탈레이트, 폴리카보네이트, 폴리이미드, 폴리에틸렌설포네이트, 폴리옥시메틸렌, 폴리아릴레이트, 헥사메틸디실록산, 아크릴계 수지(예를 들면, 폴리메틸메타크릴레이트, 폴리아크릴산 등), 에폭시계 수지(예를 들면, AGE(aliphatic glycidyl ether) 등) 또는 이의 임의의 조합을 포함한 유기막, 또는 무기막과 유기막의 조합을 포함할 수 있다.
도 4은 본 발명의 다른 구현예를 따르는 발광 장치의 단면도이다.
도 4의 발광 장치는, 봉지부(300) 상부에 차광 패턴(500) 및 기능성 영역(400)이 추가로 배치되어 있다는 점을 제외하고는, 도 2의 발광 장치와 동일한 발광 장치이다. 상기 기능성 영역(400)은, i) 컬러 필터 영역, ii) 색변환 영역, 또는 iii) 컬러 필터 영역와 색변환 영역의 조합일 수 있다. 일 구현예에 따르면, 도 3의 발광 장치에 포함된 발광 소자는 탠덤 발광 소자일 수 있다.
[제조 방법]
상기 정공 수송 영역에 포함된 각 층, 발광층 및 전자 수송 영역에 포함된 각 층은 각각, 진공 증착법, 스핀 코팅법, 캐스트법, LB법(Langmuir-Blodgett), 잉크젯 프린팅법, 레이저 프린팅법, 레이저 열전사법(Laser Induced Thermal Imaging, LITI) 등과 같은 다양한 방법을 이용하여, 소정 영역에 형성될 수 있다. 예를 들어, 상기 발광층은 잉크젯 프린팅법으로 형성될 수 있다.
진공 증착법에 의하여 상기 정공 수송 영역에 포함된 각 층, 발광층 및 전자 수송 영역에 포함된 각 층을 각각 형성할 경우, 증착 조건은, 예를 들면, 약 100 내지 약 500℃의 증착 온도, 약 10-8 내지 약 10-3 torr의 진공도 및 약 0.01 내지 약 100Å/sec의 증착 속도 범위 내에서, 형성하고자 하는 층에 포함될 재료 및 형성하고자 하는 층의 구조를 고려하여 선택될 수 있다.
[용어의 정의]
본 명세서 중 C3-C60카보시클릭 그룹은 고리-형성 원자로서 탄소로만 이루어진 탄소수 3 내지 60의 시클릭 그룹을 의미하고, C1-C60헤테로시클릭 그룹은, 탄소 외에, 고리-형성 원자로서 헤테로 원자를 더 포함한 탄소수 1 내지 60의 시클릭 그룹을 의미한다. 상기 C3-C60카보시클릭 그룹 및 C1-C60헤테로시클릭 그룹 각각은, 1개의 고리로 이루어진 모노시클릭 그룹 또는 2 이상의 고리가 서로 축합되어 있는 폴리시클릭 그룹일 수 있다. 예를 들어, 상기 C1-C60헤테로시클릭 그룹의 고리-형성 원자수는 3 내지 61개일 수 있다.
본 명세서 중 시클릭 그룹은 상기 C3-C60카보시클릭 그룹 및 C1-C60헤테로시클릭 그룹 모두를 포함한다.
본 명세서 중 π 전자-과잉 C3-C60 시클릭 그룹(π electron-rich C3-C60 cyclic group)은 고리 형성 모이어티로서 *-N=*'를 비포함한 탄소수 3 내지 60의 시클릭 그룹을 의미하고, π 전자-결핍성 함질소 C1-C60 시클릭 그룹(π electron-deficient nitrogen-containing C1-C60 cyclic group)은 고리 형성 모이어티로서 *-N=*'를 포함한 탄소수 1 내지 60의 헤테로시클릭 그룹을 의미한다.
예를 들어,
상기 C3-C60카보시클릭 그룹은, i) 그룹 T1 또는 ii) 2 이상의 그룹 T1이 서로 축합된 축합환 그룹 (예를 들면, 시클로펜타디엔 그룹, 아다만탄 그룹, 노르보르난 그룹, 벤젠 그룹, 펜탈렌 그룹, 나프탈렌 그룹, 아줄렌 그룹, 인다센 그룹, 아세나프틸렌 그룹, 페날렌 그룹, 페난트렌 그룹, 안트라센 그룹, 플루오란텐 그룹, 트리페닐렌 그룹, 파이렌 그룹, 크라이센 그룹, 페릴렌 그룹, 펜타펜 그룹, 헵탈렌 그룹, 나프타센 그룹, 피센 그룹, 헥사센 그룹, 펜타센 그룹, 루비센 그룹, 코로넨 그룹, 오발렌 그룹, 인덴 그룹, 플루오렌 그룹, 스파이로-비플루오렌 그룹, 벤조플루오렌 그룹, 인데노페난트렌 그룹, 또는 인데노안트라센 그룹)일 수 있고,
상기 C1-C60헤테로시클릭 그룹은 i) 그룹 T2, ii) 2 이상의 그룹 T2가 서로 축합된 축합환 그룹 또는 iii) 1 이상의 그룹 T2와 1 이상의 그룹 T1이 서로 축합된 축합환 그룹 (예를 들면, 피롤 그룹, 티오펜 그룹, 퓨란 그룹, 인돌 그룹, 벤조인돌 그룹, 나프토인돌 그룹, 이소인돌 그룹, 벤조이소인돌 그룹, 나프토이소인돌 그룹, 벤조실롤 그룹, 벤조티오펜 그룹, 벤조퓨란 그룹, 카바졸 그룹, 디벤조실롤 그룹, 디벤조티오펜 그룹, 디벤조퓨란 그룹, 인데노카바졸 그룹, 인돌로카바졸 그룹, 벤조퓨로카바졸 그룹, 벤조티에노카바졸 그룹, 벤조실롤로카바졸 그룹, 벤조인돌로카바졸 그룹, 벤조카바졸 그룹, 벤조나프토퓨란 그룹, 벤조나프토티오펜 그룹, 벤조나프토실롤 그룹, 벤조퓨로디벤조퓨란 그룹, 벤조퓨로디벤조티오펜 그룹, 벤조티에노디벤조티오펜 그룹, 피라졸 그룹, 이미다졸 그룹, 트리아졸 그룹, 옥사졸 그룹, 이속사졸 그룹, 옥사디아졸 그룹, 티아졸 그룹, 이소티아졸 그룹, 티아디아졸 그룹, 벤조피라졸 그룹, 벤즈이미다졸 그룹, 벤조옥사졸 그룹, 벤조이속사졸 그룹, 벤조티아졸 그룹, 벤조이소티아졸 그룹, 피리딘 그룹, 피리미딘 그룹, 피라진 그룹, 피리다진 그룹, 트리아진 그룹, 퀴놀린 그룹, 이소퀴놀린 그룹, 벤조퀴놀린 그룹, 벤조이소퀴놀린 그룹, 퀴녹살린 그룹, 벤조퀴녹살린 그룹, 퀴나졸린 그룹, 벤조퀴나졸린 그룹, 페난트롤린 그룹, 시놀린 그룹, 프탈라진 그룹, 나프티리딘 그룹, 이미다조피리딘 그룹, 이미다조피리미딘 그룹, 이미다조트리아진 그룹, 이미다조피라진 그룹, 이미다조피리다진 그룹, 아자카바졸 그룹, 아자플루오렌 그룹, 아자디벤조실롤 그룹, 아자디벤조티오펜 그룹, 아자디벤조퓨란 그룹 등)일 수 있고,
상기 π 전자-과잉 C3-C60 시클릭 그룹은 i) 그룹 T1, ii) 2 이상의 그룹 T1이 서로 축합된 축합환 그룹, iii) 그룹 T3, iv) 2 이상의 그룹 T3가 서로 축합된 축합환 그룹 또는 v) 1 이상의 그룹 T3와 1 이상의 그룹 T1이 서로 축합된 축합환 그룹 (예를 들면, 상기 C3-C60카보시클릭 그룹, 1H-피롤 그룹, 실롤 그룹, 보롤(borole) 그룹, 2H-피롤 그룹, 3H-피롤 그룹, 티오펜 그룹, 퓨란 그룹, 인돌 그룹, 벤조인돌 그룹, 나프토인돌 그룹, 이소인돌 그룹, 벤조이소인돌 그룹, 나프토이소인돌 그룹, 벤조실롤 그룹, 벤조티오펜 그룹, 벤조퓨란 그룹, 카바졸 그룹, 디벤조실롤 그룹, 디벤조티오펜 그룹, 디벤조퓨란 그룹, 인데노카바졸 그룹, 인돌로카바졸 그룹, 벤조퓨로카바졸 그룹, 벤조티에노카바졸 그룹, 벤조실롤로카바졸 그룹, 벤조인돌로카바졸 그룹, 벤조카바졸 그룹, 벤조나프토퓨란 그룹, 벤조나프토티오펜 그룹, 벤조나프토실롤 그룹, 벤조퓨로디벤조퓨란 그룹, 벤조퓨로디벤조티오펜 그룹, 벤조티에노디벤조티오펜 그룹 등)일 수 있고,
상기 π 전자-결핍성 함질소 C1-C60 시클릭 그룹은 i) 그룹 T4, ii) 2 이상의 그룹 T4가 서로 축합된 축합환 그룹, iii) 1 이상의 그룹 T4와 1 이상의 그룹 T1이 서로 축합된 축합환 그룹, iv) 1 이상의 그룹 T4와 1 이상의 그룹 T3가 서로 축합된 축합환 그룹 또는 v) 1 이상의 그룹 T4, 1 이상의 그룹 T1 및 1 이상의 그룹 T3가이 서로 축합된 축합환 그룹 (예를 들면, 피라졸 그룹, 이미다졸 그룹, 트리아졸 그룹, 옥사졸 그룹, 이속사졸 그룹, 옥사디아졸 그룹, 티아졸 그룹, 이소티아졸 그룹, 티아디아졸 그룹, 벤조피라졸 그룹, 벤즈이미다졸 그룹, 벤조옥사졸 그룹, 벤조이속사졸 그룹, 벤조티아졸 그룹, 벤조이소티아졸 그룹, 피리딘 그룹, 피리미딘 그룹, 피라진 그룹, 피리다진 그룹, 트리아진 그룹, 퀴놀린 그룹, 이소퀴놀린 그룹, 벤조퀴놀린 그룹, 벤조이소퀴놀린 그룹, 퀴녹살린 그룹, 벤조퀴녹살린 그룹, 퀴나졸린 그룹, 벤조퀴나졸린 그룹, 페난트롤린 그룹, 시놀린 그룹, 프탈라진 그룹, 나프티리딘 그룹, 이미다조피리딘 그룹, 이미다조피리미딘 그룹, 이미다조트리아진 그룹, 이미다조피라진 그룹, 이미다조피리다진 그룹, 아자카바졸 그룹, 아자플루오렌 그룹, 아자디벤조실롤 그룹, 아자디벤조티오펜 그룹, 아자디벤조퓨란 그룹 등)일 수 있고,
상기 그룹 T1은, 시클로프로판 그룹, 시클로부탄 그룹, 시클로펜탄 그룹, 시클로헥산 그룹, 시클로헵탄 그룹, 시클로옥탄 그룹, 시클로부텐 그룹, 시클로펜텐 그룹, 시클로펜타디엔 그룹, 시클로헥센 그룹, 시클로헥사디엔 그룹, 시클로헵텐 그룹, 아다만탄(adamantane) 그룹, 노르보르난(norbornane) (또는, 비시클로[2.2.1]헵탄 (bicyclo[2.2.1]heptane)) 그룹, 노르보르넨(norbornene) 그룹, 비시클로[1.1.1]펜탄 (bicyclo[1.1.1]pentane) 그룹, 비시클로[2.1.1]헥산 (bicyclo[2.1.1]hexane) 그룹, 비시클로[2.2.2]옥탄 그룹, 또는 벤젠 그룹이고,
상기 그룹 T2는, 퓨란 그룹, 티오펜 그룹, 1H-피롤 그룹, 실롤 그룹, 보롤(borole) 그룹, 2H-피롤 그룹, 3H-피롤 그룹, 이미다졸 그룹, 피라졸 그룹, 트리아졸 그룹, 테트라졸 그룹, 옥사졸 그룹, 이속사졸(isoxazole) 그룹, 옥사디아졸 그룹, 티아졸 그룹, 이소티아졸 그룹, 티아디아졸 그룹, 아자실롤 그룹, 아자보롤 그룹, 피리딘 그룹, 피리미딘 그룹, 피라진 그룹, 피리다진 그룹, 트리아진 그룹, 테트라진 그룹, 피롤리딘 그룹, 이미다졸리딘 그룹, 디히드로피롤 그룹, 피페리딘 그룹, 테트라히드로피리딘 그룹, 디히드로피리딘 그룹, 헥사히드로피리미딘 그룹, 테트라히드로피리미딘 그룹, 디히드로피리미딘 그룹, 피페라진 그룹, 테트라히드로피라진 그룹, 디히드로피라진 그룹, 테트라히드로피리다진 그룹, 또는 디히드로피리다진 그룹이고,
상기 그룹 T3는, 퓨란 그룹, 티오펜 그룹, 1H-피롤 그룹, 실롤 그룹, 또는 보롤(borole) 그룹이고,
상기 그룹 T4는, 2H-피롤 그룹, 3H-피롤 그룹, 이미다졸 그룹, 피라졸 그룹, 트리아졸 그룹, 테트라졸 그룹, 옥사졸 그룹, 이속사졸(isoxazole) 그룹, 옥사디아졸 그룹, 티아졸 그룹, 이소티아졸 그룹, 티아디아졸 그룹, 아자실롤 그룹, 아자보롤 그룹, 피리딘 그룹, 피리미딘 그룹, 피라진 그룹, 피리다진 그룹, 트리아진 그룹 또는 테트라진 그룹일 수 있다.
본 명세서 중 시클릭 그룹, C3-C60카보시클릭 그룹, C1-C60헤테로시클릭 그룹, π 전자-과잉 C3-C60 시클릭 그룹 또는 π 전자-결핍성 함질소 C1-C60 시클릭 그룹이란 용어는, 당해 용어가 사용된 화학식의 구조에 따라, 임의의 시클릭 그룹에 축합되어 있는 그룹, 1가 그룹 또는 다가 그룹(예를 들면, 2가 그룹, 3가 그룹, 4가 그룹 등)일 수 있다. 예를 들어, "벤젠 그룹"은 벤조 그룹, 페닐기, 페닐렌기 등일 수 있는데, 이는 "벤젠 그룹"이 포함된 화학식의 구조에 따라, 당업자가 용이하게 이해할 수 있는 것이다.
예를 들어, 1가 C3-C60카보시클릭 그룹 및 1가 C1-C60헤테로시클릭 그룹의 예는, C3-C10시클로알킬기, C1-C10헤테로시클로알킬기, C3-C10시클로알케닐기, C1-C10헤테로시클로알케닐기, C6-C60아릴기, C1-C60헤테로아릴기, 1가 비-방향족 축합다환 그룹, 및 1가 비-방향족 헤테로축합다환 그룹을 포함할 수 있고, 2가 C3-C60카보시클릭 그룹 및 1가 C1-C60헤테로시클릭 그룹의 예는, C3-C10시클로알킬렌기, C1-C10헤테로시클로알킬렌기, C3-C10시클로알케닐렌기, C1-C10헤테로시클로알케닐렌기, C6-C60아릴렌기, C1-C60헤테로아릴렌기, 2가 비-방향족 축합다환 그룹, 및 치환 또는 비치환된 2가 비-방향족 헤테로축합다환 그룹을 포함할 수 있다.
본 명세서 중 C1-C60알킬기는, 탄소수 1 내지 60의 선형 또는 분지형 지방족 탄화수소 1가(monovalent) 그룹을 의미하며, 이의 구체예에는, 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, sec-부틸기, 이소부틸기, tert-부틸기, n-펜틸기, tert-펜틸기, 네오펜틸기, 이소펜틸기, sec-펜틸기, 3-펜틸기, sec-이소펜틸기, n-헥실기, 이소헥실기, sec-헥실기, tert-헥실기, n-헵틸기, 이소헵틸기, sec-헵틸기, tert-헵틸기, n-옥틸기, 이소옥틸기, sec-옥틸기, tert-옥틸기, n-노닐기, 이소노닐기, sec-노닐기, tert-노닐기, n-데실기, 이소데실기, sec-데실기, tert-데실기 등이 포함된다. 본 명세서 중 C1-C60알킬렌기는 상기 C1-C60알킬기와 동일한 구조를 갖는 2가(divalent) 그룹을 의미한다.
본 명세서 중 C2-C60알케닐기는, C2-C60알킬기의 중간 또는 말단에 하나 이상의 탄소-탄소 이중 결합을 포함한 1가 탄화수소 그룹을 의미하며, 이의 구체예에는, 에테닐기, 프로페닐기, 부테닐기 등이 포함된다. 본 명세서 중 C2-C60알케닐렌기는 상기 C2-C60알케닐기와 동일한 구조를 갖는 2가 그룹을 의미한다.
본 명세서 중 C2-C60알키닐기는, C2-C60알킬기의 중간 또는 말단에 하나 이상의 탄소-탄소 삼중 결합을 포함한 1가 탄화수소 그룹을 의미하며, 이의 구체예에는, 에티닐기, 프로피닐기 등이 포함된다. 본 명세서 중 C2-C60알키닐렌기는 상기 C2-C60알키닐기와 동일한 구조를 갖는 2가 그룹을 의미한다.
본 명세서 중 C1-C60알콕시기는, -OA101(여기서, A101은 상기 C1-C60알킬기임)의 화학식을 갖는 1가 그룹을 의미하며, 이의 구체예에는, 메톡시기, 에톡시기, 이소프로필옥시기 등이 포함된다.
본 명세서 중 C3-C10시클로알킬기는, 탄소수 3 내지 10의 1가 포화 탄화수소 시클릭 그룹을 의미하며, 이의 구체예에는 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로헥실기, 시클로헵틸기, 시클로옥틸기, 아다만타닐기(adamantanyl), 노르보나닐기(norbornanyl)(또는, 비시클로[2.2.1]헵틸기(bicyclo[2.2.1]heptyl)), 비시클로[1.1.1]펜틸기(bicyclo[1.1.1]pentyl), 비시클로[2.1.1]헥실기(bicyclo[2.1.1]hexyl), 비시클로[2.2.2]옥틸기 등이 포함된다. 본 명세서 중 C3-C10시클로알킬렌기는 상기 C3-C10시클로알킬기와 동일한 구조를 갖는 2가 그룹을 의미한다.
본 명세서 중 C1-C10헤테로시클로알킬기는, 탄소 원자 외에, 적어도 하나의 헤테로 원자를 고리-형성 원자로서 더 포함한 탄소수 1 내지 10의 1가 시클릭 그룹을 의미하며, 이의 구체예에는 1,2,3,4-옥사트리아졸리디닐기(1,2,3,4-oxatriazolidinyl), 테트라히드로퓨라닐기(tetrahydrofuranyl), 테트라히드로티오페닐기 등이 포함된다. 본 명세서 중 C1-C10헤테로시클로알킬렌기는 상기 C1-C10헤테로시클로알킬기와 동일한 구조를 갖는 2가 그룹을 의미한다.
본 명세서 중 C3-C10시클로알케닐기는 탄소수 3 내지 10의 1가 시클릭 그룹으로서, 고리 내에 적어도 하나의 탄소-탄소 이중 결합을 가지나, 방향족성(aromaticity)을 갖지 않는 그룹을 의미하며, 이의 구체예에는 시클로펜테닐기, 시클로헥세닐기, 시클로헵테닐기 등이 포함된다. 본 명세서 중 C3-C10시클로알케닐렌기는 상기 C3-C10시클로알케닐기와 동일한 구조를 갖는 2가 그룹을 의미한다.
본 명세서 중 C1-C10헤테로시클로알케닐기는 탄소 원자 외에, 적어도 하나의 헤테로 원자를 고리-형성 원자로서 더 포함한 탄소수 1 내지 10의 1가 시클릭 그룹으로서, 고리 내에 적어도 하나의 이중 결합을 갖는다. 상기 C1-C10헤테로시클로알케닐기의 구체예에는, 4,5-디히드로-1,2,3,4-옥사트리아졸일기, 2,3-디히드로퓨라닐기, 2,3-디히드로티오페닐기 등이 포함된다. 본 명세서 중 C1-C10헤테로시클로알케닐렌기는 상기 C1-C10헤테로시클로알케닐기와 동일한 구조를 갖는 2가 그룹을 의미한다.
본 명세서 중 C6-C60아릴기는 탄소수 6 내지 60개의 카보시클릭 방향족 시스템을 갖는 1가(monovalent) 그룹을 의미하며, C6-C60아릴렌기는 탄소수 6 내지 60개의 카보시클릭 방향족 시스템을 갖는 2가(divalent) 그룹을 의미한다. 상기 C6-C60아릴기의 구체예에는, 페닐기, 펜탈레닐기, 나프틸기, 아줄레닐기, 인다세닐기, 아세나프틸기, 페날레닐기, 페난트레닐기, 안트라세닐기, 플루오란테닐기, 트리페닐레닐기, 파이레닐기, 크라이세닐기, 페릴레닐기, 펜타페닐기, 헵탈레닐기, 나프타세닐기, 피세닐기, 헥사세닐기, 펜타세닐기, 루비세닐기, 코로네닐기, 오발레닐기 등을 포함된다. 상기 C6-C60아릴기 및 C6-C60아릴렌기가 2 이상의 고리를 포함할 경우, 상기 2 이상의 고리들은 서로 축합될 수 있다.
본 명세서 중 C1-C60헤테로아릴기는 탄소 원자 외에, 적어도 하나의 헤테로 원자를 고리-형성 원자로서 더 포함하고 탄소수 1 내지 60개의 헤테로시클릭 방향족 시스템을 갖는 1가 그룹을 의미하고, C1-C60헤테로아릴렌기는 탄소 원자 외에, 적어도 하나의 헤테로 원자를 고리-형성 원자로서 더 포함하고 탄소수 1 내지 60개의 헤테로시클릭 방향족 시스템을 갖는 2가 그룹을 의미한다. 상기 C1-C60헤테로아릴기의 구체예에는, 피리디닐기, 피리미디닐기, 피라지닐기, 피리다지닐기, 트리아지닐기, 퀴놀리닐기, 벤조퀴놀리닐기, 이소퀴놀리닐기, 벤조이소퀴놀리닐기, 퀴녹살리닐기, 벤조퀴녹살리닐기, 퀴나졸리닐기, 벤조퀴나졸리닐기, 시놀리닐기, 페난트롤리닐기, 프탈라지닐기, 나프티리디닐기 등이 포함된다. 상기 C1-C60헤테로아릴기 및 C1-C60헤테로아릴렌기가 2 이상의 고리를 포함할 경우, 2 이상의 고리들은 서로 축합될 수 있다.
본 명세서 중 1가 비-방향족 축합다환 그룹(non-aromatic condensed polycyclic group)은 2 이상의 고리가 서로 축합되어 있고, 고리 형성 원자로서 탄소만을 포함하고, 분자 전체가 비-방향족성(non-aromaticity)을 갖는 1가 그룹(예를 들면, 탄소수 8 내지 60을 가짐)을 의미한다. 상기 1가 비-방향족 축합다환 그룹의 구체예에는, 인데닐기, 플루오레닐기, 스파이로-비플루오레닐기, 벤조플루오레닐기, 인데노페난트레닐기, 인데노안트라세닐기 등이 포함된다. 본 명세서 중 2가 비-방향족 축합다환 그룹은 상기 1가 비-방향족 축합다환 그룹과 동일한 구조를 갖는 2가 그룹을 의미한다.
본 명세서 중 1가 비-방향족 헤테로축합다환 그룹(non-aromatic condensed heteropolycyclic group)은 2 이상의 고리가 서로 축합되어 있고, 고리 형성 원자로서 탄소 원자 외에 적어도 하나의 헤테로 원자를 더 포함하고, 분자 전체가 비-방향족성을 갖는 1가 그룹(예를 들면, 탄소수 1 내지 60을 가짐)을 의미한다. 상기 1가 비-방향족 헤테로축합다환 그룹의 구체예에는, 피롤일기, 티오페닐기, 퓨라닐기, 인돌일기, 벤조인돌일기, 나프토인돌일기, 이소인돌일기, 벤조이소인돌일기, 나프토이소인돌일기, 벤조실롤일기, 벤조티오페닐기, 벤조퓨라닐기, 카바졸일기, 디벤조실롤일기, 디벤조티오페닐기, 디벤조퓨라닐기, 아자카바졸일기, 아자플루오레닐기, 아자디벤조실롤일기, 아자디벤조티오페닐기, 아자디벤조퓨라닐기, 피라졸일기, 이미다졸일기, 트리아졸일기, 테트라졸일기, 옥사졸일기, 이소옥사졸일기, 티아졸일기, 이소티아졸일기, 옥사디아졸일기, 티아디아졸일기, 벤조피라졸일기, 벤조이미다졸일기, 벤조옥사졸일기, 벤조티아졸일기, 벤조옥사디아졸일기, 벤조티아디아졸일기, 이미다조피리디닐기, 이미다조피리미디닐기, 이미다조트리아지닐기, 이미다조피라지닐기, 이미다조피리다지닐기, 인데노카바졸일기, 인돌로카바졸일기, 벤조퓨로카바졸일기, 벤조티에노카바졸일기, 벤조실롤로카바졸일기, 벤조인돌로카바졸일기, 벤조카바졸일기, 벤조나프토퓨라닐기, 벤조나프토티오페닐기, 벤조나프토실롤일기, 벤조퓨로디벤조퓨라닐기, 벤조퓨로디벤조티오페닐기, 벤조티에노디벤조티오페닐기, 등이 포함된다. 본 명세서 중 2가 비-방향족 헤테로축합다환 그룹은 상기 1가 비-방향족 헤테로축합다환 그룹과 동일한 구조를 갖는 2가 그룹을 의미한다.
본 명세서 중 C6-C60아릴옥시기는 -OA102(여기서, A102는 상기 C6-C60아릴기임)를 가리키고, 상기 C6-C60아릴티오기(arylthio)는 -SA103(여기서, A103은 상기 C6-C60아릴기임)를 가리킨다.
본 명세서 중 C7-C60아릴알킬기는 -A104A105(여기서, A104는 C1-C54알킬렌기이고, A105는 C6-C59아릴기임)를 가리키고, 본 명세서 중 C2-C60헤테로아릴알킬기는 -A106A107(여기서, A106은 C1-C59알킬렌기이고, A107은 C1-C59헤테로아릴기임)를 가리킨다.
본 명세서 중 "R10a"는,
중수소(-D), -F, -Cl, -Br, -I, 히드록실기, 시아노기, 또는 니트로기;
중수소, -F, -Cl, -Br, -I, 히드록실기, 시아노기, 니트로기, C3-C60카보시클릭 그룹, C1-C60헤테로시클릭 그룹, C6-C60아릴옥시기, C6-C60아릴티오기, C7-C60아릴알킬기, C2-C60헤테로아릴알킬기, -Si(Q11)(Q12)(Q13), -N(Q11)(Q12), -B(Q11)(Q12), -C(=O)(Q11), -S(=O)2(Q11), -P(=O)(Q11)(Q12), 또는 이의 임의의 조합으로 치환 또는 비치환된, C1-C60알킬기, C2-C60알케닐기, C2-C60알키닐기, 또는 C1-C60알콕시기;
중수소, -F, -Cl, -Br, -I, 히드록실기, 시아노기, 니트로기, C1-C60알킬기, C2-C60알케닐기, C2-C60알키닐기, C1-C60알콕시기, C3-C60카보시클릭 그룹, C1-C60헤테로시클릭 그룹, C6-C60아릴옥시기, C6-C60아릴티오기, C7-C60아릴알킬기, C2-C60헤테로아릴알킬기, -Si(Q21)(Q22)(Q23), -N(Q21)(Q22), -B(Q21)(Q22), -C(=O)(Q21), -S(=O)2(Q21), -P(=O)(Q21)(Q22), 또는 이의 임의의 조합으로 치환 또는 비치환된, C3-C60카보시클릭 그룹, C1-C60헤테로시클릭 그룹, C6-C60아릴옥시기, C6-C60아릴티오기, C7-C60아릴알킬기, 또는 C2-C60헤테로아릴알킬기,; 또는
-Si(Q31)(Q32)(Q33), -N(Q31)(Q32), -B(Q31)(Q32), -C(=O)(Q31), -S(=O)2(Q31), 또는 -P(=O)(Q31)(Q32);
일 수 있다.
본 명세서 중 Q1 내지 Q3, Q11 내지 Q13, Q21 내지 Q23 및 Q31 내지 Q33은 서로 독립적으로, 수소; 중수소; -F; -Cl; -Br; -I; 히드록실기; 시아노기; 니트로기; C1-C60알킬기; C2-C60알케닐기; C2-C60알키닐기; C1-C60알콕시기; 또는 중수소, -F, 시아노기, C1-C60알킬기, C1-C60알콕시기, 페닐기, 비페닐기, 또는 이의 임의의 조합으로 치환 또는 비치환된, C3-C60카보시클릭 그룹, C1-C60헤테로시클릭 그룹;C7-C60아릴알킬기; 또는 C2-C60헤테로아릴알킬기;일 수 있다.
본 명세서 중 헤테로 원자는, 탄소 원자를 제외한 임의의 원자를 의미한다. 상기 헤테로 원자의 예는, O, S, N, P, Si, B, Ge, Se, 또는 이의 임의의 조합을 포함한다.
본 명세서 중 "Ph"은 페닐기를 의미하고, "Me"은 메틸기를 의미하고, "Et"은 에틸기를 의미하고, "tert-Bu" 또는 "But"은 tert-부틸기를 의미하고, "OMe"는 메톡시기를 의미한다.
본 명세서 중 "비페닐기"는 "페닐기로 치환된 페닐기"를 의미한다. 상기 "비페닐기"는, 치환기가 "C6-C60아릴기"인 "치환된 페닐기"에 속한다.
본 명세서 중 "터페닐기"는 "비페닐기로 치환된 페닐기"를 의미한다. 상기 "터페닐기"는, 치환기가 "C6-C60아릴기로 치환된 C6-C60아릴기"인 "치환된 페닐기"에 속한다.
본 명세서 중 * 및 *'은, 다른 정의가 없는 한, 해당 화학식 또는 모이어티 중 이웃한 원자와의 결합 사이트를 의미한다.
이하에서, 합성예 및 실시예를 들어, 본 발명의 일 구현예를 따르는 화합물 및 발광 소자에 대하여 보다 구체적으로 설명한다. 하기 합성예 중 "A 대신 B를 사용하였다"란 표현 중 A의 몰당량과 B의 몰당량은 서로 동일하다.
[실시예]
합성예 1-1
250mL 3구 플라스크에 4 mmol indium acetate와 12 mmol of palmitic acid를 100mL octadecene과 함께 주입 후 진공 분위기에서 120 °C로 1시간 동안 가열 후 아르곤 분위기로 바꿔 In(PA)3 용액을 제조한다. In(PA)3 용액의 온도를 280 °C로 높인 후 1시간 유지 후 10mL 0.2M tris(trimethylsilyl)phospine/trioctylphosphine을 주사기를 이용하여 신속히 주입 후 260 °C 온도에서 30분간 결정을 성장시킨다. 이후, 52mL 0.2M In(PA)3 용액과 26mL 0.2M tris(trimethylsilyl)phospine/trioctylphosphine을 각각 1.5 and 0.75 ml/min의 속도로 35분간 주입한다. 이후 10분간 안정화 시간을 거친 후 열원 제거를 통해 반응기의 온도를 상온으로 온도를 식혀 InP core를 합성한다. 합성된 InP core는 정제과정을 거치는데 InP core 용액 10mL당 acetone 40mL와 ethanol 10mL를 섞은 후 9,000rpm에서 원심분리 후 상층액을 제거하고 침전물을 toluene에 분산한다. shell형성을 위해 상기 합성된 InP core는 표면처리를 진행한다. 1.6mmol zinc acetate, 3.2mmol oleic acid, 80mL trioctylamine을 혼합 후 이를 진공, 120 °C 온도에서 1시간 동안 혼합한다. 아르곤 분위기로 전환 후 280 °C온도에서 1시간 유지, 이후 180°C로 온도를 바 낮춘 후 toluene에 분산된 InP core 용액 12mL를 주사기를 이용하여 신속히 주입한다. 5분 후 HF용액 (10wt% in acetone) 0.2mL를 주입 후 10분 유지를 통해 표면처리된 InP core 용액을 제조한다. 반응기 온도를 320°C로 상승시킨다. 15 mmol의 0.4M Zn(OA)2 주입 후 4.0mmol Se/trioctylphosphine을 주입 후 1시간동안 ZnSe shell을 성장시킨다. 이후 3.0mmol의 S/trioctylphosphine을 주입 후 1시간동안 ZnS를 성장시킨다.
합성예 1-2
상기 합성예 1-1과 동일한 방법으로 InP/ZnSe/ZnS를 합성한 후, ethanol에 녹인 ZnCl2 1mmol을 추가하여 혼합한 후 정제한다.
합성예 1-3
상기 합성예 1-1과 동일한 방법으로 InP/ZnSe/ZnS를 합성한 후, isopropanol에 녹인 4-Methoxycinnammic acid 1mmol을 추가하여 혼합한 후 정제한다.
합성예 2-1
250mL 3구 플라스크에 4 mmol indium acetate와 12 mmol of palmitic acid를 100mL octadecene과 함께 주입 후 진공 분위기에서 120 °C로 1시간 동안 가열 후 아르곤 분위기로 바꿔 In(PA)3 용액을 제조한다. In(PA)3 용액의 온도를 240 °C로 높인 후 10mL 0.4M tris(trimethylsilyl)phospine/trioctylphosphine을 주사기를 이용하여 신속히 주입한다. 이후 열원 제거를 통해 반응기의 온도를 상온으로 온도를 식혀 InP core를 합성한다. 합성된 InP core는 정제과정을 거치는데 InP core 용액 10mL당 acetone 40mL와 ethanol 10mL를 섞은 후 9,000rpm에서 원심분리 후 상층액을 제거하고 침전물을 toluene에 분산한다. shell형성을 위해 상기 합성된 InP core는 표면처리를 진행한다. 1.6mmol zinc acetate, 3.2mmol oleic acid, 80mL trioctylamine을 혼합 후 이를 진공, 120 °C 온도에서 1시간 동안 혼합한다. 아르곤 분위기로 전환 후 280 °C온도에서 1시간 유지, 이후 180°C로 온도를 낮춘 후 toluene에 분산된 InP core 용액 12mL를 주사기를 이용하여 신속히 주입한다. 5분 후 HF용액 (10wt% in acetone) 0.2mL를 주입 후 10분 유지를 통해 표면처리된 InP core 용액을 제조한다. 반응기 온도를 320°C로 상승시킨다. 15 mmol의 0.4M Zn(OA)2 주입 후 4.0mmol Se/trioctylphosphine을 주입 후 1시간동안 ZnSe shell을 성장시킨다. 이후 3.0mmol의 S/trioctylphosphine을 주입 후 1시간동안 ZnS를 성장시킨다.
합성예 2-2
상기 합성예 2-1과 동일한 방법으로 InP/ZnSe/ZnS를 합성한 후, ethanol에 녹인 ZnCl2 1mmol을 추가하여 혼합한 후 정제한다.
합성예 2-3
상기 합성예 2-1과 동일한 방법으로 InP/ZnSe/ZnS를 합성한 후, isopropanol에 녹인 4-Methoxycinnammic acid 1mmol을 추가하여 혼합한 후 정제한다.
합성예 3-1
Zn acetate 2 mmol, Oleic acid (OA) 2 ml, 1-octadecene (ODE) 15 ml를 3-neck flask에 넣고 120℃에서 진공을 잡으면서 투명하게 녹을 때까지 기다린다. 이후, 미리 준비한 Se-DPP (Se 1mmol in 0.5ml DPP(diphenylphosphine))와 Te-TOP (Te 0.349 mmol in 0.8 ml TOP(trioctylphosphine))를 220℃에서 순서대로 주입한 후 30분 반응을 유지하고 300℃에서 1시간 추가 반응한다. 이후 온도를 낮추고 EtOH를 과량 넣어 침전 후 hexane에 분산한다.
Zn acetate 3 mmol, OA 2 ml, Trioctylamine (TOA) 10 ml를 3-neck flask에 넣고 120℃에서 진공을 잡으면서 투명하게 녹을 때까지 기다린다. 이후, 앞서 합성된 ZnSeTe core를 주입한 후 5분 동안 진공을 잡아주고, HF를 주입한 후 10분 진공을 잡는다. 용액 온도를 240℃까지 승온시키고 0.5M Zn-oleate 4 ml와 2M Se-TOP 0.6 ml를 주입한 후 340℃까지 승온시켜 30분 동안 ZnSe Shell을 성장시킨다.
ZnSeTe/ZnSe을 합성한 후 추가적으로 340℃에서 0.5M Zn-oleate 3 ml와 2M S-TOP 1.2 ml를 주입한 후 30분 간 반응하여 ZnS Shell을 성장시킨다.
합성예 3-2
상기 합성예 3-1과 동일한 방법으로 ZnTeSe/ZnSe/ZnS를 합성한 후, ethanol에 녹인 ZnCl2 1mmol을 추가하여 혼합한 후 정제한다.
합성예 3-3
상기 합성예 3-1과 동일한 방법으로 ZnTeSe/ZnSe/ZnS를 합성한 후, ethanol에 녹인 ZnCl2 2mmol을 추가하여 혼합한 후 정제한다.
합성예 3-4
상기 합성예 3-1과 동일한 방법으로 ZnTeSe/ZnSe/ZnS를 합성한 후, isopropanol에 녹인 4-Methoxycinnammic acid 1mmol을 추가하여 혼합한 후 정제한다.
합성예 3-5
상기 합성예 3-1과 동일한 방법으로 ZnTeSe/ZnSe/ZnS를 합성한 후, isopropanol에 녹인 4-(dimethylamino)cinamic acid 1mmol을 추가하여 혼합한 후 정제한다.
양자점(코어/제1쉘/제2쉘) 발광색 리간드
합성예 1-1 InP/ZnSe/Zns 적색 Oleic acid
합성예 1-2 Halide (Cl)
합성예 1-3 4-Methoxycinnamic acid
합성예 2-1 InP/ZnSe/Zns 녹색 Oleic acid
합성예 2-2 Halide (Cl)
합성예 2-3 4-Methoxycinnamic acid
합성예 3-1 ZnTeSe/ZnSe/Zns 청색 Oleic acid
합성예 3-2 Halide (Cl) 1.0
합성예 3-3 Halide (Cl) 2.0
합성예 3-4 4-Methoxycinnamic acid
합성예 3-5 4-(dimethylamino)cinamic acid
평가예 1
합성예 1-1 내지 1-3, 2-1 내지 2-3 및 3-1 내지 3-5에 따른 양자점의 CBM 에너지 준위 및 VBM 에너지 준위를 측정하여, 도 5a 내지 도 5c에 나타내었다.
VBM 에너지 준위는 APS (Ambient Photoelectron Spectroscopy) 측정을 통해 측정하고, UV-Vis 측정을 통해 에너지 밴드갭을 측정하였다. CBM 에너지 준위는 측정된 에너지 밴드갭 및 VBM 에너지 준위로부터 계산하였다. 측정은 질소 기류 하에서 농도 50mg/ml 용액을 Au 기판에 spin coating (2500rpm, 30초)을 통해 필름 형성 후 측정하였다.
실시예 1
발광 소자는 Pattern이 형성된 ITO 기판위에 HIL (PEDOT:PSS, Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)), HTL (TFB, poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl)diphenylamine)]), QD 발광층, ETL (ZnMgO), cathode (Al) 순서대로 적층하여, 제작하였다. 상기 QD 발광층 형성 시 합성예 3-1에 따른 양자점 및 합성예 3-4에 따른 양자점을 사용하였다.
HIL, HTL, QD 발광층, ETL은 각각 스핀 코팅 방법을 사용하였고, cathode는 증착 방법으로 제작하였다. HIL의 두께는 1400 Å, HTL 두께는 400 Å, QD 발광층은 200 Å, ETL은 500 Å 두께로 제작하였다.
HIL과 HTL은 박막 형성 후 10-3 Torr에서 VCD 공정 진행 후 bake 공정을 230도에서 30min 동안 진행하였고, QD 발광층과 ETL은 박막 형성 후 10-3 Torr에서 VCD 공정 진행 후 bake 공정을 100도에서 10min 동안 진행하였다.
실시예 2, 비교예 1 및 2
발광층 형성시 합성예 3-1에 따른 양자점 및 합성예 3-4에 따른 양자점을 사용하는 대신, 하기 표 2에 기재된 바와 같은 양자점을 사용한 것을 제외하고는 실시예 1과 동일한 방법을 이용하여 발광 소자를 제작하였다.
발광층 형성시 사용된 양자점
실시예 1 합성예 3-1 합성예 3-4
실시예 2 합성예 2-1 합성예 2-2
비교예 1 합성예 3-1 -
비교예 2 합성예 2-1 -
평가예 2
상기 실시예 1, 2, 비교예 1 및 2에 따른 양자점 발광 소자의 발광 효율 및 수명을 측정하여, 그 결과를 도 6a, 6b, 7a 및 7b에 나타내었다. 휘도 및 효율은 전류-전압계 (Kethley SMU 236)에서 전원을 공급하고, 휘도계 PR650을 이용하여 측정하였다.
도 6a 및 6b를 참조하면, 실시예 1에 따른 발광 소자가 비교예 1에 따른 발광 소자에 비해 발광 효율 및 수명이 우수함을 확인할 수 있다.
도 7a 및 7b를 참조하면, 실시예 2에 따른 발광 소자가 비교예 2에 따른 발광 소자에 비해 발광 효율 및 수명이 우수함을 확인할 수 있다.

Claims (20)

  1. 제1양자점 및 제2양자점을 포함하고,
    상기 제1양자점의 VBM(Valence Band Maximum) 에너지 준위와 상기 제2양자점의 VBM 에너지 준위는 상이하고,
    상기 제1양자점의 에너지 밴드갭(Energy band gap)과 상기 제2양자점의 에너지 밴드갭은 동일한, 양자점 조성물.
  2. 제1항에 있어서,
    상기 제1양자점의 VBM 에너지 준위는 -6.5 내지 -5 eV인, 양자점 조성물.
  3. 제1항에 있어서,
    상기 제2양자점의 VBM 에너지 준위는 -6.6 내지 -5.2 eV인, 양자점 조성물.
  4. 제1항에 있어서,
    상기 제1양자점의 VBM 에너지 준위와 상기 제2양자점의 VBM 에너지 준위의 차이는 0.01 내지 1 eV인, 양자점 조성물.
  5. 제1항에 있어서,
    제1양자점 및 제2양자점은 서로 독립적으로 코어 및 상기 코어의 일부를 덮는 쉘을 포함하고,
    상기 제1양자점 중 코어의 크기와 상기 제2양자점 중 코어의 크기는 상이한, 양자점 조성물.
  6. 제5항에 있어서,
    제1양자점 및 제2양자점의 코어는 InGaP를 포함하고,
    상기 제1양자점의 코어 중 Ga 함량은 상기 제2양자점의 코어 중 Ga 함량보다 크고,
    상기 제1양자점의 코어의 크기는 상기 제2양자점의 코어의 크기보다 큰, 양자점 조성물.
  7. 제5항에 있어서,
    제1양자점 및 제2양자점의 코어는 ZnSeTe를 포함하고,
    상기 제1양자점의 코어 중 Te 함량은 상기 제2양자점의 코어 중 Te 함량보다 크고,
    상기 제1양자점의 코어의 크기는 상기 제2양자점의 코어의 크기보다 작은, 양자점 조성물.
  8. 제5항에 있어서,
    상기 쉘은 두 개 이상의 층을 포함한, 양자점 조성물.
  9. 제1항에 있어서,
    제1양자점은 제1나노물질(nanomaterial) 및 상기 제1나노물질 표면에 배치된 제1리간드를 포함하고,
    제2양자점은 제2나노물질(nanomaterial) 및 상기 제2나노물질 표면에 배치된 제2리간드를 포함하고,
    상기 제1리간드 및 제2리간드는 서로 독립적으로 할라이드(Halide), 티올계 화합물, 카르복실산-함유 화합물 또는 이의 임의의 조합을 포함한, 양자점 조성물.
  10. 제9항에 있어서,
    제1나노물질 및 제2나노물질은 동일한, 양자점 조성물.
  11. 제9항에 있어서,
    제1리간드 및 제2리간드는 동일하고,
    상기 제1양자점 중 제1리간드의 함량과 상기 제2양자점 중 제2리간드의 함량은 상이한, 양자점 조성물.
  12. 제9항에 있어서,
    제1리간드 및 제2리간드는 서로 상이한, 양자점 조성물.
  13. 제9항에 있어서,
    티올계 화합물은 적어도 하나의 R10a로 치환 또는 비치환된 C1-C60알킬기, 적어도 하나의 R10a로 치환 또는 비치환된 C6-C60아릴기 또는 이의 임의의 조합을 포함하고,
    카르복실산-함유 화합물은 적어도 하나의 R10a로 치환 또는 비치환된 C1-C60알킬기, 적어도 하나의 R10a로 치환 또는 비치환된 C1-C60알킬기, 적어도 하나의 R10a로 치환 또는 비치환된 C6-C60아릴기, -N(Q1)(Q2) 또는 이의 임의의 조합을 포함하고,
    상기 R10a는,
    중수소(-D), -F, -Cl, -Br, -I, 히드록실기, 시아노기, 또는 니트로기;
    중수소, -F, -Cl, -Br, -I, 히드록실기, 시아노기, 니트로기, C3-C30카보시클릭 그룹, C1-C30헤테로시클릭 그룹, C6-C30아릴옥시기, C6-C30아릴티오기, -Si(Q11)(Q12)(Q13), -N(Q11)(Q12), -B(Q11)(Q12), -C(=O)(Q11), -S(=O)2(Q11), -P(=O)(Q11)(Q12), 또는 이의 임의의 조합으로 치환 또는 비치환된, C1-C20알킬기, C2-C20알케닐기, C2-C20알키닐기, 또는 C1-C20알콕시기;
    중수소, -F, -Cl, -Br, -I, 히드록실기, 시아노기, 니트로기, C1-C20알킬기, C2-C20알케닐기, C2-C20알키닐기, C1-C20알콕시기, C3-C30카보시클릭 그룹, C1-C30헤테로시클릭 그룹, C6-C30아릴옥시기, C6-C30아릴티오기, -Si(Q21)(Q22)(Q23), -N(Q21)(Q22), -B(Q21)(Q22), -C(=O)(Q21), -S(=O)2(Q21), -P(=O)(Q21)(Q22), 또는 이의 임의의 조합으로 치환 또는 비치환된, C3-C30카보시클릭 그룹, C1-C30헤테로시클릭 그룹, C6-C30아릴옥시기, 또는 C6-C30아릴티오기; 또는
    -Si(Q31)(Q32)(Q33), -N(Q31)(Q32), -B(Q31)(Q32), -C(=O)(Q31), -S(=O)2(Q31), 또는 -P(=O)(Q31)(Q32);
    이고,
    상기 Q1 내지 Q3, Q11 내지 Q13, Q21 내지 Q23 및 Q31 내지 Q33은 서로 독립적으로, 수소; 중수소; -F; -Cl; -Br; -I; 히드록실기; 시아노기; 니트로기; C1-C20알킬기; C2-C20알케닐기; C2-C20알키닐기; C1-C20알콕시기; 또는 중수소, -F, 시아노기, C1-C20알킬기, C1-C20알콕시기, 페닐기, 비페닐기, 또는 이의 임의의 조합으로 치환 또는 비치환된, C3-C30카보시클릭 그룹 또는 C1-C30헤테로시클릭 그룹;
    인, 양자점 조성물.
  14. 제1항에 있어서,
    제1양자점 및 제2양자점의 함량비는 1 : 10 내지 10 : 1인, 양자점 조성물.
  15. 제1전극;
    상기 제1전극에 대향된 제2전극; 및
    상기 제1전극과 상기 제2전극 사이에 배치된 발광층을 포함한 중간층;을 포함하고,
    상기 발광층은 제1항 내지 제14항 중 어느 한 항의 양자점 조성물을 포함한, 발광 소자.
  16. 제15항에 있어서,
    상기 제1전극이 애노드이고,
    상기 제2전극이 캐소드이고,
    상기 중간층은 상기 제1전극과 상기 발광층 사이에 개재된 정공 수송 영역 및 상기 발광층과 상기 제2전극 사이에 개재된 전자 수송 영역을 더 포함하고,
    상기 정공 수송 영역은, 정공 주입층, 정공 수송층, 발광 보조층, 전자 저지층 또는 이의 임의의 조합을 포함하고,
    상기 전자 수송 영역은, 정공 저지층, 전자 수송층, 전자 주입층 또는 이의 임의의 조합을 포함한, 발광 소자.
  17. 제16항에 있어서,
    상기 전자 수송 영역은 전자 수송층을 포함하고,
    상기 전자 수송층은 하기 화학식 1로 표시된 금속산화물을 포함한, 발광 소자.
    <화학식 1>
    MpOq
    상기 화학식 1 중
    M은 Zn, Ti, Zr, Sn, W, Ta, Ni, Mo, Cu 또는 V이고,
    p 및 q는 서로 독립적으로 1 또는 5의 정수 중 하나이다.
  18. 제1항 내지 제17항 중 어느 한 항의 발광 소자를 포함한, 전자 장치.
  19. 제18항에 있어서,
    박막 트랜지스터를 더 포함하고,
    상기 박막 트랜지스터는 소스 전극 및 드레인 전극을 포함하고,
    상기 발광 소자의 제1전극이 상기 박막 트랜지스터의 소스 전극 및 드레인 전극 중 적어도 하나와 전기적으로 연결된, 전자 장치.
  20. 제18항에 있어서,
    컬러 필터, 색변환층, 터치스크린층, 편광층 또는 이의 임의의 조합을 더 포함한, 전자 장치.
PCT/KR2023/000912 2022-01-19 2023-01-19 양자점 조성물, 이를 이용한 발광 소자 및 상기 발광 소자를 포함한 전자 장치 WO2023140633A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220007980A KR20230112196A (ko) 2022-01-19 2022-01-19 양자점 조성물, 이를 이용한 발광 소자 및 상기 발광 소자를 포함한 전자 장치
KR10-2022-0007980 2022-01-19

Publications (1)

Publication Number Publication Date
WO2023140633A1 true WO2023140633A1 (ko) 2023-07-27

Family

ID=87162608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/000912 WO2023140633A1 (ko) 2022-01-19 2023-01-19 양자점 조성물, 이를 이용한 발광 소자 및 상기 발광 소자를 포함한 전자 장치

Country Status (3)

Country Link
US (1) US20230227722A1 (ko)
KR (1) KR20230112196A (ko)
WO (1) WO2023140633A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118272071A (zh) * 2022-12-30 2024-07-02 广东聚华新型显示研究院 量子点组合物和量子点发光器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180190625A1 (en) * 2015-07-07 2018-07-05 Apple Inc. Quantum dot integration schemes
KR20190058043A (ko) * 2017-11-21 2019-05-29 삼성전자주식회사 양자점 소자 및 전자 장치
KR20200114862A (ko) * 2019-03-29 2020-10-07 삼성전자주식회사 발광 소자와 이를 포함한 표시 장치
KR102200111B1 (ko) * 2019-07-26 2021-01-08 한양대학교 산학협력단 양자점을 포함하는 유기 발광 표시 장치
WO2021226818A1 (zh) * 2020-05-12 2021-11-18 京东方科技集团股份有限公司 量子点发光结构及其制作方法、阵列基板和显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180190625A1 (en) * 2015-07-07 2018-07-05 Apple Inc. Quantum dot integration schemes
KR20190058043A (ko) * 2017-11-21 2019-05-29 삼성전자주식회사 양자점 소자 및 전자 장치
KR20200114862A (ko) * 2019-03-29 2020-10-07 삼성전자주식회사 발광 소자와 이를 포함한 표시 장치
KR102200111B1 (ko) * 2019-07-26 2021-01-08 한양대학교 산학협력단 양자점을 포함하는 유기 발광 표시 장치
WO2021226818A1 (zh) * 2020-05-12 2021-11-18 京东方科技集团股份有限公司 量子点发光结构及其制作方法、阵列基板和显示装置

Also Published As

Publication number Publication date
KR20230112196A (ko) 2023-07-27
US20230227722A1 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
WO2020130592A1 (ko) 금속 할라이드 페로브스카이트 발광소자 및 이의 제조방법
WO2021201572A1 (ko) 양자점, 상기 양자점의 제조 방법, 상기 양자점을 포함한 광학 부재 및 상기 양자점을 포함한 전자 장치
WO2023140633A1 (ko) 양자점 조성물, 이를 이용한 발광 소자 및 상기 발광 소자를 포함한 전자 장치
WO2022025365A1 (ko) 표시 장치
KR20220150499A (ko) 발광 소자 및 이의 제조 방법
WO2023140632A1 (ko) 양자점을 포함한 발광 소자 및 상기 발광 소자를 포함한 전자 장치
WO2023101477A1 (ko) 발광 소자 및 이를 포함한 전자 장치
WO2023243968A1 (ko) 양자점의 제조 방법, 이를 통하여 제조된 양자점, 상기 양자점을 포함한 광학 부재 및 전자 장치
WO2023204627A1 (ko) 화합물, 이로 배위된 양자점, 이를 포함하는 조성물 및 이를 사용하여 제조된 전자 장치
WO2024123008A1 (ko) 혼합 조성물을 포함한 전자 수송층, 이를 포함한 발광 소자 제조 방법, 발광 소자 및 전자 장치
WO2023128675A1 (ko) 발광 소자 및 이를 포함하는 전자 장치
WO2022004958A1 (ko) 표시 장치
CN114497402A (zh) 发光装置、包括其的电子设备和平板显示器设备
WO2023243970A1 (ko) 발광 소자 및 이를 포함하는 전자 장치
KR20230016121A (ko) 축합환 화합물, 이를 포함한 발광 소자 및 상기 발광 소자를 포함한 전자 장치
WO2023172038A1 (ko) 디스플레이 장치
KR20210153774A (ko) 축합환 화합물을 포함한 발광 소자 및 상기 발광 소자를 포함한 전자 장치
KR20210156385A (ko) 유기금속 화합물, 이를 포함한 발광 소자 및 상기 발광 소자를 포함한 전자 장치
KR20220001047A (ko) 발광 소자 및 상기 발광 소자를 포함한 전자 장치
WO2023149762A1 (en) Organic electroluminescent device
KR20220130300A (ko) 헤테로시클릭 화합물을 포함한 발광 소자 및 상기 발광 소자를 포함한 전자 장치
KR20220141933A (ko) 축합환 화합물, 이를 포함한 발광 소자 및 상기 발광 소자를 포함한 전자 장치
KR20220109549A (ko) 발광 소자 및 이를 포함한 전자 장치
KR20220092733A (ko) 나노 복합체, 이를 포함한 나노 입자 잉크 조성물 및 이를 포함한 발광 소자
KR20210149963A (ko) 발광 소자, 이를 포함한 전자 장치 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743478

Country of ref document: EP

Kind code of ref document: A1