WO2018040686A1 - 一种有机电致发光器件及显示装置 - Google Patents

一种有机电致发光器件及显示装置 Download PDF

Info

Publication number
WO2018040686A1
WO2018040686A1 PCT/CN2017/089719 CN2017089719W WO2018040686A1 WO 2018040686 A1 WO2018040686 A1 WO 2018040686A1 CN 2017089719 W CN2017089719 W CN 2017089719W WO 2018040686 A1 WO2018040686 A1 WO 2018040686A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting layer
layer
blue light
light
blue
Prior art date
Application number
PCT/CN2017/089719
Other languages
English (en)
French (fr)
Inventor
尤娟娟
廖金龙
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/737,217 priority Critical patent/US10490764B2/en
Publication of WO2018040686A1 publication Critical patent/WO2018040686A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to the field of organic electroluminescence technology, and in particular, to an organic electroluminescence device and a display device.
  • AMOLED Active-matrix organic light emitting diode
  • an organic electroluminescent device including a hybrid process of a light-emitting unit in the prior art generally has a problem that when a red light-emitting layer and/or a green light-emitting layer are required to emit light, Next, a portion of the blue light-emitting layer covering the red light-emitting layer and the green light-emitting layer also emits light.
  • An object of the present invention is to provide an organic electroluminescence device and a display device including the same, in order to solve the problem that in a case where a red light-emitting layer and/or a green light-emitting layer are required to emit light in a light-emitting unit of a hybrid process,
  • the blue light-emitting layer covers a problem that a part of the red light-emitting layer and the green light-emitting layer also emit light.
  • an organic electroluminescent device comprising an oppositely disposed anode and cathode, and a light-emitting unit formed by a hybrid process disposed between the anode and the cathode.
  • the light emitting unit includes a red light emitting layer, a green light emitting layer, and a blue light emitting layer.
  • the blue light emitting layer includes a first portion and a second portion, a first portion of the blue light emitting layer is overlaid on a red light emitting layer and a green light emitting layer disposed side by side, and a second portion of the blue light emitting layer
  • the red luminescent layer and the green luminescent layer are arranged side by side.
  • the material of the blue light-emitting layer includes an electron transport material and a hole transport material capable of forming a blue light exciplex.
  • the ratio of the electron-transporting material and the hole-transporting material in the blue light-emitting layer to the total material of the blue light-emitting layer is matched with the ability of the red light-emitting layer and the green light-emitting layer to transmit electrons, so that a red light-emitting layer is required and When the green light-emitting layer emits light, electrons and holes do not recombine inside and at the edges of the blue light-emitting layer.
  • the material of the blue light-emitting layer includes a shape capable of forming An electron transporting material and a hole transporting material which form a blue light exciplex, and the electron transporting material and the hole transporting material in the blue light emitting layer each occupy a ratio of all materials of the blue light emitting layer and the red light emitting layer and the green light emitting layer
  • a display device comprising an organic electroluminescent device according to the present invention.
  • FIG. 1 is a schematic structural view of an organic electroluminescent device according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the principle of light emission of a blue light-emitting layer in an organic electroluminescent device according to an embodiment of the invention
  • FIG. 3 is a first energy level diagram of a blue light emitting layer in an organic electroluminescent device according to an embodiment of the invention
  • FIG. 4 is a second energy level diagram of a blue light emitting layer in an organic electroluminescent device according to an embodiment of the invention.
  • FIG. 5 is a first energy level diagram of a light emitting unit in an organic electroluminescent device according to an embodiment of the invention including only a blue light emitting layer;
  • FIG. 6 is a schematic diagram of a second energy level of a light-emitting unit in an organic electroluminescent device including only a blue light-emitting layer, in accordance with an embodiment of the present invention.
  • AMOLED display devices mostly use a full evaporation process to achieve mass production.
  • the full-color display by the full-evaporation process usually adopts the RGB arrangement method, which uses a fine metal shadow mask (FMM) to define pixels of different colors, but this way Large size display cannot be achieved due to the size of the FMM.
  • FMM fine metal shadow mask
  • a solution process is introduced in the production of an AMOLED display device, which has an advantage in RGB patterning, and the red phosphorescent material and the green phosphorescent material of the solution have reached a small evaporation.
  • the level of the molecular material, that is, the red light-emitting layer and the green light-emitting layer can be formed by inkjet, printing, etc., thereby avoiding the problem of size limitation of the red light-emitting layer and the green light-emitting layer using the FMM.
  • the blue light emitting layer is formed by a vacuum evaporation process and a structure covered with a whole layer in the prior art, thereby realizing a large-sized AMOLED display device.
  • each of the light-emitting layers included in the AMOLED display device manufactured by the above-described hybrid process including the solution process and the vapor deposition process can achieve individual light emission and has a good light-emitting effect, it is necessary to introduce a hybrid connection in the AMOLED display device.
  • the structure of each of the organic electroluminescent devices in the AMOLED display device generally includes an oppositely disposed anode and cathode, and a red light-emitting layer, a green light-emitting layer, an HCL, and a blue light-emitting layer disposed between the anode and the cathode.
  • the red luminescent layer and the green luminescent layer are arranged side by side, the first portion of the HCL is overlaid on the red luminescent layer and the green luminescent layer, and the second portion of the HCL is disposed side by side with the red luminescent layer and the green luminescent layer.
  • the red luminescent layer and the green luminescent layer are closer to the anode relative to the first portion of the HCL.
  • the blue luminescent layer correspondingly includes a first portion and a second portion, a first portion of the blue luminescent layer overlying the first portion of the HCL, and a second portion of the blue luminescent layer overlying the second portion of the HCL.
  • the blue luminescent layer is closer to the cathode relative to the HCL.
  • the HCL in the above structure is a hole transport layer for the blue light-emitting layer and an electron transport layer for the red light-emitting layer and the green light-emitting layer.
  • the HCL can also limit the triplet excitons corresponding to the respective light-emitting layers to the respective light-emitting layers, thereby improving the light-emitting efficiency of each of the light-emitting layers.
  • the organic electroluminescent device of the above structure generally has such a problem that in the case where only the red light-emitting layer and/or the green light-emitting layer are required to emit light, the blue light-emitting layer is Some will glow at the same time.
  • the inventors of the present invention have found through research that the reason for this problem is that the material selection of the HCL in the organic electroluminescent device in the AMOLED display device is not appropriate.
  • the red light-emitting layer and/or the green light-emitting layer are required to emit light, electrons from the cathode cannot be quickly and quickly transferred into the red light-emitting layer and/or the green light-emitting layer, so that electrons and holes from the anode are in the blue light-emitting layer.
  • the inner and/or edge of the first portion described above meets in combination such that the first portion of the blue luminescent layer illuminates.
  • FIG. 1 is a schematic structural view of an organic electroluminescent device according to an embodiment of the present invention.
  • an organic electroluminescent device includes an anode 1 and a cathode 2 disposed opposite to each other, and a light-emitting unit 30 formed by a hybrid process disposed between the anode 1 and the cathode 2.
  • the light emitting unit 30 includes a blue light emitting layer 33, and a red light emitting layer 31 and a green light emitting layer 32 which are disposed side by side.
  • the blue light emitting layer 33 includes a first portion and a second portion.
  • a first portion of the blue light-emitting layer 33 covers the red light-emitting layer 31 and the green light-emitting layer 32, and a first portion of the blue light-emitting layer 33 is closer to the cathode 2 with respect to the red light-emitting layer 31 and the green light-emitting layer 32.
  • the second portion of the blue light-emitting layer 33 is disposed side by side with the red light-emitting layer 31.
  • the material of the blue light-emitting layer 33 includes an electron transport material and a hole transport material capable of forming the blue light exciplex 4.
  • the ratio of the electron-transporting material and the hole-transporting material in the blue light-emitting layer 33 to the total material of the blue light-emitting layer 33 is matched with the ability of the red light-emitting layer 31 and the green light-emitting layer 32 to transmit electrons, so that a red light-emitting layer is required and When the green light-emitting layer emits light, electrons and holes do not recombine inside and on the first portion of the blue light-emitting layer 33.
  • the operation of the organic electroluminescent device according to the embodiment of the present invention is: a positive voltage is applied to the anode 1, a negative voltage is applied to the cathode 2, electrons are transmitted from the cathode 2 to the blue light-emitting layer 33, and the blue light-emitting layer 33 is passed.
  • a portion is transferred to the red light-emitting layer 31 and the green light-emitting layer 32, and holes are transferred from the anode 1 to the red light-emitting layer 31, the green light-emitting layer 32, and the blue light-emitting layer 33 (ie, the second portion of the blue light-emitting layer 33 can be
  • the holes from the anode 1 are received by the red light-emitting layer 31 and the green light-emitting layer 32.
  • the electrons and holes recombine in the red light-emitting layer 31, causing the red light-emitting layer 31 to emit red light, and the electrons and holes are restored in the green light-emitting layer 32.
  • the green light-emitting layer 32 emits green light.
  • the principle of light emission of the blue light-emitting layer will be described below with reference to FIG.
  • FIG. 2 is a schematic diagram showing the principle of light emission of a blue light-emitting layer in an organic electroluminescent device according to an embodiment of the invention.
  • the black dots in the first molecule 34 in Fig. 2 represent electrons
  • the black dots in the second molecule 35 represent holes. Electrons and holes are transported into the blue light-emitting layer 33, and electrons in the blue light-emitting layer 33 are transitioned from the lowest unoccupied molecular orbital of the first molecule 34 (the molecule corresponding to the electron transporting material) to the second molecule 35 (hole The highest occupied molecular orbital of the molecule corresponding to the transport material, and recombined with the holes to form excitons, causes the blue exciplex 4 formed between the first molecule 34 and the second molecule 35 to emit blue light.
  • the material of the blue light-emitting layer 33 includes an electron transporting material and a hole transporting material capable of forming the blue-ray exciplex 4, and the electron-transporting material and the empty in the blue light-emitting layer 33
  • the ratio of the hole transporting material to the total material of the blue light-emitting layer 33 is matched with the ability of the red light-emitting layer 31 and the green light-emitting layer 32 to transmit electrons, so that when the red light-emitting layer 31 and/or the green light-emitting layer 32 are required to emit light, the electrons can Rapid transfer from the cathode 2 to the red luminescent layer 31 and/or the green luminescent layer 32 ensures that electrons and holes can only meet and recombine within the red luminescent layer 31 and/or within the green luminescent layer 32, without being in the blue
  • the inner portion and the edge of the first portion of the color luminescent layer 33 are recombined, avoiding the
  • the organic electroluminescent device according to the embodiment of the present invention does not require the HCL used in the prior art, thereby simplifying the structure of the organic electroluminescent device and making the organic electroluminescent device more light and thin.
  • the blue light-emitting layer 33 emits blue light through the blue light-based composite 4 formed therein , it is required that the single-state energy level S 1exciplex of the blue light-based composite 4 formed is larger than 2.5 eV to ensure the blue light-emitting layer. 33 can emit blue light that meets the requirements.
  • the ratio of the electron transporting material and the hole transporting material in the blue light-emitting layer 33 can be determined according to the kind of material actually selected for the red light-emitting layer 31 and the green light-emitting layer 32. This can include, but is not limited to, the following:
  • the electron-emitting material in the blue light-emitting layer 33 accounts for blue.
  • the proportion of the entire material of the light-emitting layer 33 is smaller than that of the cavity
  • the ratio of the transport material to the total material of the blue light-emitting layer 33 is shown.
  • the red light-emitting layer 31 and the green light-emitting layer 32 have electron transporting capabilities greater than those of the holes, so that The ratio of the electron transporting material in the blue light-emitting layer 33 is reduced, that is, the electron-emitting ability of the blue light-emitting layer 33 to the electrons is made small, thereby ensuring that the red light-emitting layer 31 and/or the green light-emitting layer 32 are required to emit light.
  • the electrons and holes can only recombine in the red light-emitting layer 31 and/or the green light-emitting layer 32 without being inside the first portion of the blue light-emitting layer 33, or in the first portion of the blue light-emitting layer 33 and red.
  • the intersection of the light-emitting layer 31 and the green light-emitting layer 32 meets, and the problem that the first portion of the blue light-emitting layer 33 also emits light is avoided in the case where the red light-emitting layer 31 and/or the green light-emitting layer 32 are required to emit light. It should be noted that while the red light-emitting layer 31 and/or the green light-emitting layer 32 emit light, electrons and holes may recombine in the second portion of the blue light-emitting layer 33 and emit blue light.
  • the electron-emitting material in the blue light-emitting layer 33 accounts for blue.
  • the ratio of the total material of the light-emitting layer 33 is larger than the ratio of the hole transport material to the total material of the blue light-emitting layer 33.
  • the electron-emitting ability of the red light-emitting layer 31 and the green light-emitting layer 32 is smaller than that of the hole, so that It is possible to increase the ratio of the electron transporting material in the blue light-emitting layer 33, that is, to make the blue light-emitting layer 33 have a large electron-transporting ability, thereby ensuring that the red light-emitting layer 31 and/or the green light-emitting layer 32 are required to emit light.
  • the electrons and holes can only recombine in the red light-emitting layer 31 and/or the green light-emitting layer 32 without being inside the first portion of the blue light-emitting layer 33 or in the first portion of the blue light-emitting layer 33.
  • the intersection of the red luminescent layer 31 and the green luminescent layer 32 meets. Further, while the red light-emitting layer 31 and/or the green light-emitting layer 32 emit light, electrons and holes may recombine in the second portion of the blue light-emitting layer 33 and emit blue light.
  • the electron-transporting material and the hole-transporting material of the blue light-emitting layer 33 are selected, it is necessary to ensure that the blue-ray exciplex 4 formed by the electron-transporting material and the hole-transporting material is relatively close.
  • the triplet level and the singlet level such that excitons composed of electrons and holes can be transitioned from the triplet level T 1exciplex of the blue exciplex 4 to the singlet of the blue exciplex 4
  • the state level S 1exciplex which emits blue heat-activated delayed fluorescence, ensures high utilization of excitons.
  • the difference between the triplet energy level T 1exciplex of the blue exciplex 4 and the singlet energy level S 1exciplex of the blue exciplex 4 is less than 0.3 eV, so that the composite is formed. It is easier to transition from the triplet level T 1exciplex of the blue exciplex 4 to the singlet level S 1exciplex of the blue exciplex 4, so that the exciton achieves 100% utilization, thus ensuring blue The luminous efficiency of the color luminescent layer 33.
  • 3 is a schematic diagram of a first energy level of a blue light-emitting layer in an organic electroluminescent device according to an embodiment of the invention.
  • 4 is a schematic diagram of a second energy level of a blue light-emitting layer in an organic electroluminescent device according to an embodiment of the invention.
  • S 1ETL represents a singlet energy level of an electron transporting material in the blue light emitting layer 33
  • S 1HTL represents a singlet energy level of a hole transporting material in the blue light emitting layer 33
  • S 0 represents a ground state.
  • Energy level Since the blue light exciplex 4 is formed of the electron transporting material and the hole transporting material in the blue light emitting layer 33, it is easy to occur that energy is transferred from the triplet energy level T 1exciplex of the blue light exciplex 4 to the blue color.
  • triplet level T 1ETL electron transport material in the blue light emitting layer 33 is greater than the blue exciplex triplet energy level T 1exciplex 4, and / or blue T 1HTL triplet energy level of the hole transporting light emission material layer 33 is larger than the blue exciplex triplet energy level T 1exciplex 4, as shown in FIG.
  • the triplet energy level T 1ETL electron transport material in the blue light emitting layer 33 is greater than the triplet level T 1exciplex 4 exciplex blue light when the exciton is not easy from the blue exciplex 4 triplet energy level T 1exciplex transition to the electron transport material triplet level T 1ETL, i.e., so that the excitons can be limited to the blue exciplex 4.
  • the triplet energy level T 1HTL hole transporting material in the blue light emitting layer 33 is greater than the triplet level T 1exciplex 4 exciplex blue light when the exciton is not easy from the blue exciplex 4 the triplet level T 1exciplex transition to a hole transport material triplet level T 1HTL, i.e., so that the excitons can be limited to the blue exciplex 4.
  • the triplet energy level T 1HTL T 1ETL triplet level of the hole transporting material and electron transporting material in the blue light emitting layer 33 is greater than the exciplex blue triplet energy level T 1exciplex 4, so that the excitons It can be confined in the blue exciplex 4, energy transfer does not occur, energy loss is avoided, and the blue light-emitting layer 33 is ensured to have high luminous efficiency.
  • the two-way dotted arrow between the triplet energy level T 1exciplex and the singlet energy level S 1exciplex of the blue exciplex 4 in FIGS. 3 and 4 represents that the excitons can be in the triplet energy level T 1exciplex and A two-way transition occurs between the single-state energy levels S 1exciplex .
  • the triplet energy level T 1ETL of the electron-transporting material in the blue light-emitting layer 33 may be made larger than the triplet energy level of the light-emitting material in the green light-emitting layer 32, and Or, the triplet energy level T 1HTL of the hole transporting material in the blue light emitting layer 33 is greater than the triplet energy level of the light emitting material in the green light emitting layer 32.
  • the triplet energy level T 1ETL of the electron transporting material in the blue light emitting layer 33 is greater than the triplet energy level of the light emitting material in the green light emitting layer 32, so that excitons in the green light emitting layer 32 are not easily transitioned into the blue light emitting layer 33.
  • the transfer of energy in the green light-emitting layer 32 is limited, thereby ensuring the luminous efficiency of the green light-emitting layer 32.
  • the triplet energy level T 1HTL of the hole transporting material in the blue light emitting layer 33 is greater than the triplet energy level of the light emitting material in the green light emitting layer 32, and the excitons in the green light emitting layer 32 may not be easily transitioned to In the blue light-emitting layer 33, the light-emitting efficiency of the green light-emitting layer 32 is ensured.
  • the energy level of the luminescent material in the green luminescent layer 32 is generally higher than the grading level of the luminescent material in the red luminescent layer 31, when the triplet state of the electron transporting material in the blue luminescent layer 33 is defined, When the triplet energy level T 1HTL of the energy level T 1ETL and the hole transporting material is greater than the triplet energy level of the light emitting material in the green light emitting layer 32, the triplet energy of the electron transporting material in the blue light emitting layer 33 is simultaneously defined.
  • the triplet energy level T 1HTL of the level T 1ETL and the hole transporting material is greater than the triplet energy level of the luminescent material in the red light emitting layer 31, that is, the energy in the red light emitting layer 31 is all limited to the red light emitting layer 31, and The transfer of energy causes the luminous efficiency of the red light-emitting layer 31 to be maximized.
  • the blue light-emitting layer 33 is further used to transport electrons from the cathode 2 to the red light-emitting layer 31 and the green light-emitting layer 32, so that electrons and holes can be combined in the red light-emitting layer 31 and the green light-emitting layer 32 to realize a red light-emitting layer. 31 and the luminescence of the green luminescent layer.
  • the thickness of the blue light-emitting layer 33 can be set to 20 nm to 40 nm, thereby ensuring both the electron transport speed and the optical characteristics.
  • an electroluminescent device may further include electricity.
  • the sub-injection layer 5, the electron transport layer 6, the hole injection layer 7, and the hole transport layer 8 are used to ensure the transmission of electrons from the cathode 2 to the light-emitting unit 30 and the transport of holes from the anode 1 to the light-emitting unit 30 to the utmost extent.
  • the hole injection layer 7 is disposed between the anode 1 and the light emitting unit 30
  • the hole transport layer 8 is disposed between the hole injection layer 7 and the light emitting unit 30
  • the electron transport layer 6 is disposed at the light emitting unit 30 and the cathode 2
  • the electron injection layer 5 is disposed between the electron transport layer 6 and the cathode 2.
  • the electron injection layer 5 and the electron transport layer 6 are capable of better transporting electrons from the cathode 2 to the light-emitting unit 30, and on the other hand, can prevent holes from being transported to the cathode 2.
  • the hole injection layer 7 and the hole transport layer 8 can transport holes more preferably from the anode 1 to the light-emitting unit 30, and on the other hand can prevent electrons from being transported to the anode 1. Therefore, the electron injecting layer 5, the electron transporting layer 6, the hole injecting layer 7, and the hole transporting layer 8 can cause electrons and holes to be confined in the light emitting unit 30 of the organic electroluminescent device, so that the organic electroluminescent device Can achieve the maximum luminous efficiency.
  • 5 is a first energy level diagram of a light emitting unit in an organic electroluminescent device according to an embodiment of the invention including only a blue light emitting layer.
  • 6 is a schematic diagram of a second energy level of a light-emitting unit in an organic electroluminescent device including only a blue light-emitting layer, in accordance with an embodiment of the present invention.
  • the electron transport layer 6 can employ a variety of electron transport materials as long as it facilitates the transmission of electrons.
  • the dotted line frame at the higher position in the blue light-emitting layer 33 represents the energy level corresponding to the hole transport material
  • the dotted line frame at the lower position represents the energy level corresponding to the electron transport material.
  • the electron transporting material used in the electron transport layer 6 is different from the electron transporting material in the blue light emitting layer 33. In this case, there is a barrier between the electron transport layer 6 and the blue light-emitting layer 33, and when electrons are transferred from the electron transport layer 6 to the blue light-emitting layer 33, it is necessary to consume a part of the energy.
  • the electron transport layer 6 and the blue light-emitting layer 33 may include the same electron transport material such that the electron transport layer There is no barrier between 6 and the blue light-emitting layer 33.
  • the electron transport layer 6 and the dashed frame representing the energy level of the electron transporting material in the blue light-emitting layer 33 are at the same height, so that electrons are not injected into the blue light-emitting layer 33 by the electron transport layer 6. It is necessary to consume energy, thereby reducing the driving voltage for driving the organic electroluminescent device, thereby reducing the energy loss of the organic electroluminescent device.
  • the blue light-emitting layer 33 may be selected from a plurality of electron transport materials and hole transport materials as long as they can form the blue light-based complex 4. Blue illumination according to an embodiment of the invention
  • the electron transporting material in layer 33 may be 4,6-bis(3,5-bis(3-pyridyl)phenyl)-2-methylpyrimidine (B3PYMPM), and the hole transporting material may be 4,4'.
  • TCTA 4"-tris(carbazol-9-yl)triphenylamine
  • 4,6-bis(3,5-bis(3-pyridyl)phenyl)-2-methylpyrimidine and 4,4' 4′′-tris(carbazol-9-yl)triphenylamine constitutes the blue light-emitting layer 33, which not only makes the blue light-emitting layer 33 have better electron transporting ability and hole transporting ability, but also in the blue light-emitting layer 33.
  • the formed blue light exciplex 4 has a high luminous efficiency.
  • the material of the anode 1 may be selected from indium tin oxide (ITO), the material of the electron injecting layer 5 may be lithium fluoride (LiF), and the material of the cathode 2 may be aluminum (Al).
  • ITO indium tin oxide
  • the material of the electron injecting layer 5 may be lithium fluoride (LiF)
  • the material of the cathode 2 may be aluminum (Al).
  • Embodiments of the present invention also provide a display device including an organic electroluminescent device according to an embodiment of the present invention, such that a blue light emitting layer covers a red light emitting layer in a case where a red light emitting layer and/or a green light emitting layer is required to emit light. And a part of the green luminescent layer does not emit light. Further, the display device according to the embodiment of the present invention has higher display efficiency and display picture quality, and the display device is more light and thin.

Abstract

一种有机电致发光器件及显示装置,有机电致发光器件中的蓝色发光层(33)的材料包括能够形成蓝光激基复合物的电子传输材料和空穴传输材料。蓝色发光层(33)中电子传输材料及空穴传输材料各自占蓝色发光层(33)全部材料的比例与红色发光层(31)及绿色发光层(32)传输电子的能力相匹配,以使在需要红色发光层(31)和/或绿色发光层(32)发光时,电子和空穴不会在蓝色发光层(33)的覆盖红色发光层(31)和绿色发光层(32)的部分的内部及边缘复合。

Description

一种有机电致发光器件及显示装置 技术领域
本发明涉及有机电致发光技术领域,尤其涉及一种有机电致发光器件及显示装置。
背景技术
有源矩阵有机发光二极体(Active-matrix organic light emitting diode,以下简称AMOLED)显示装置由于具有宽视角、高色域、响应速度快等诸多优点,已被广泛的应用于电视和移动设备产品中。
在实际测试和应用过程中发现,现有技术中的包括混合式制程的发光单元的有机电致发光器件通常会存在这样的问题,即,在需要红色发光层和/或绿色发光层发光的情况下,蓝色发光层覆盖红色发光层和绿色发光层的一部分也会发光。
发明内容
本发明的目的在于提供一种有机电致发光器件及包括有机电致发光器件的显示装置,以解决混合式制程的发光单元中,在需要红色发光层和/或绿色发光层发光的情况下,蓝色发光层覆盖红色发光层和绿色发光层的一部分也会发光的问题。
根据本发明的一个方面,提供一种有机电致发光器件,包括相对设置的阳极和阴极,以及设置在所述阳极和所述阴极之间的采用混合式制程形成的发光单元。所述发光单元包括红色发光层、绿色发光层和蓝色发光层。所述蓝色发光层包括第一部分和第二部分,所述蓝色发光层的第一部分覆盖在并排设置的红色发光层和绿色发光层上,并且所述蓝色发光层的第二部分与所述红色发光层和绿色发光层并排设置。所述蓝色发光层的材料包括能够形成蓝光激基复合物的电子传输材料和空穴传输材料。蓝色发光层中电子传输材料及空穴传输材料各自占蓝色发光层全部材料的比例与所述红色发光层及所述绿色发光层传输电子的能力相匹配,以使在需要红色发光层和/或绿色发光层发光时,电子和空穴不会在所述蓝色发光层的内部及边缘复合。
根据本发明的有机电致发光器件,蓝色发光层的材料包括能够形 成蓝光激基复合物的电子传输材料和空穴传输材料,并且蓝色发光层中电子传输材料及空穴传输材料各自占蓝色发光层全部材料的比例与红色发光层及绿色发光层传输电子的能力相匹配,使得在需要红色发光层和/或绿色发光层发光时,电子能够快速从阴极传输到红色发光层和/或绿色发光层,保证了电子仅能够在红色发光层内部和/或绿色发光层内部与空穴相遇并复合,而不会在蓝色发光层覆盖红色发光层和绿色发光层的一部分的内部和边缘复合,避免了在需要红色发光层和/或绿色发光层发光的情况下,蓝色发光层覆盖红色发光层和绿色发光层的一部分也会发光的问题。
根据本发明的另一个方面,提供一种显示装置,包括根据本发明的有机电致发光器件。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为根据本发明实施例的有机电致发光器件的结构示意图;
图2为根据本发明实施例的有机电致发光器件中的蓝色发光层的发光原理示意图;
图3为根据本发明实施例的有机电致发光器件中的蓝色发光层的第一能级示意图;
图4为根据本发明实施例的有机电致发光器件中的蓝色发光层的第二能级示意图;
图5为根据本发明实施例的有机电致发光器件中的发光单元仅包含蓝色发光层的第一能级示意图;以及
图6为根据本发明实施例的有机电致发光器件中的发光单元仅包含蓝色发光层的第二能级示意图。
具体实施方式
为了进一步说明本发明实施例提供的有机电致发光器件及显示装置,下面结合说明书附图进行详细描述。
目前,AMOLED显示装置大都采用全蒸镀制程来实现大规模生产, 而且通过全蒸镀制程实现全彩化显示通常采用RGB排列的方式,这种RGB排列的方式使用精细金属阴影掩模(fine metal shadow mask,FMM)来定义出不同颜色的像素,但这种方式受FMM尺寸的限制无法实现大尺寸的显示。
为了实现大尺寸的显示,现有技术中在制作AMOLED显示装置时,引入了溶液制程,这种溶液制程在RGB图案化方面具有优势,而且溶液的红色磷光材料和绿色磷光材料已经达到蒸镀小分子材料的水平,即可以通过喷墨、打印等方式制作红色发光层和绿色发光层,从而避免了使用FMM制作红色发光层和绿色发光层的尺寸受限问题。但由于溶液的蓝光材料选择比较少,并且不使用FMM,因此,现有技术中通过真空蒸镀制程并采用整层覆盖的结构来制作蓝色发光层,从而能够实现大尺寸的AMOLED显示装置。
为了保证通过上述既包括溶液制程又包括蒸镀制程的混合式制程制作的AMOLED显示装置所包括的各发光层均能够实现单独发光,且具有良好的发光效果,需要在AMOLED显示装置中引入混合连接层(Hybrid Connecting Layer,HCL)。这样AMOLED显示装置中各有机电致发光器件的结构一般包括:相对设置的阳极和阴极,以及设置在阳极和阴极之间的红色发光层、绿色发光层、HCL和蓝色发光层。红色发光层和绿色发光层并排设置,HCL的第一部分覆盖在红色发光层和绿色发光层上,并且HCL的第二部分与红色发光层和绿色发光层并排设置。红色发光层和绿色发光层相对于HCL的第一部分更靠近阳极。蓝色发光层相应地包括第一部分和第二部分,蓝色发光层的第一部分覆盖在HCL的第一部分上,并且蓝色发光层的第二部分覆盖在HCL的第二部分上。蓝色发光层相对于HCL更靠近阴极。
上述结构中的HCL对蓝色发光层来说是空穴传输层,而对红色发光层和绿色发光层来说是电子传输层。此外,HCL还能够将各发光层对应的三重态激子限制在各自的发光层中,提升了各发光层的发光效率。但是在实际测试和应用过程中发现,上述结构的有机电致发光器件通常会存在这样的问题,即,在仅需要红色发光层和/或绿色发光层发光的情况下,蓝色发光层的第一部分会同时发光。
本发明的发明人经研究发现,产生这种问题的原因为:由于AMOLED显示装置中有机电致发光器件中的HCL的材料选择不恰当, 导致在需要红色发光层和/或绿色发光层发光时,来自阴极的电子不能及时快速的传输到红色发光层和/或绿色发光层中,从而电子和来自阳极的空穴在蓝色发光层的上述第一部分的内部和/或边缘相遇复合,以致蓝色发光层的第一部分发光。
经进一步研究发现,可以通过调节AMOLED显示装置中每一个有机电致发光器件内用于传输电子的电子传输材料,和用于传输空穴的空穴传输材料的比例,来控制电子和空穴在有机电致发光器件中的传输速度,以保证在需要红色发光层和/或绿色发光层发光的情况下,电子能够更快的传输到红色发光层和/或绿色发光层中,使得电子和空穴的复合发生在红色发光层和/或绿色发光层内部,以避免蓝色发光层的上述第一部分发光。
图1为根据本发明实施例的有机电致发光器件的结构示意图。
参照图1,根据本发明实施例的有机电致发光器件包括相对设置的阳极1和阴极2,以及设置在阳极1和阴极2之间的采用混合式制程形成的发光单元30。发光单元30包括蓝色发光层33,以及并排设置的红色发光层31和绿色发光层32。蓝色发光层33包括第一部分和第二部分。蓝色发光层33的第一部分覆盖在红色发光层31和绿色发光层32上,并且蓝色发光层33的第一部分相对于红色发光层31和绿色发光层32更靠近阴极2。蓝色发光层33的第二部分与红色发光层31并排设置。蓝色发光层33的材料包括能够形成蓝光激基复合物4的电子传输材料和空穴传输材料。
蓝色发光层33中电子传输材料及空穴传输材料各自占蓝色发光层33全部材料的比例与红色发光层31及绿色发光层32传输电子的能力相匹配,以使在需要红色发光层和/或绿色发光层发光时,电子和空穴不会在蓝色发光层33的第一部分的内部及边缘复合。
根据本发明实施例的有机电致发光器件的工作过程为:在阳极1加正电压,在阴极2加负电压,电子从阴极2传输到蓝色发光层33,经蓝色发光层33的第一部分传输到红色发光层31和绿色发光层32,空穴从阳极1传输到红色发光层31、绿色发光层32和蓝色发光层33(即,蓝色发光层33中的第二部分能够不通过红色发光层31和绿色发光层32接收来自阳极1的空穴)。电子和空穴在红色发光层31中复合,使红色发光层31发出红光,电子和空穴在绿色发光层32中复 合,使绿色发光层32发出绿光。下面将参照图2对蓝色发光层的发光原理进行说明。
图2为根据本发明实施例的有机电致发光器件中的蓝色发光层的发光原理示意图。
参照图2,图2中第一分子34中的黑色圆点代表电子,第二分子35中的黑色圆点代表空穴。电子和空穴传输到蓝色发光层33中,电子在蓝色发光层33中由第一分子34(电子传输材料对应的分子)的最低未占分子轨道,跃迁到第二分子35(空穴传输材料对应的分子)的最高占据分子轨道,并与空穴复合形成激子,使第一分子34和第二分子35间形成的蓝光激基复合物4发出蓝光。
根据本发明实施例的有机电致发光器件,蓝色发光层33的材料包括能够形成蓝光激基复合物4的电子传输材料和空穴传输材料,并且蓝色发光层33中电子传输材料及空穴传输材料各自占蓝色发光层33全部材料的比例与红色发光层31及绿色发光层32传输电子的能力相匹配,使得在需要红色发光层31和/或绿色发光层32发光时,电子能够快速的从阴极2传输到红色发光层31和/或绿色发光层32,保证了电子和空穴仅能够在红色发光层31内部和/或绿色发光层32内部相遇并复合,而不会在蓝色发光层33的第一部分的内部和边缘复合,避免了在需要红色发光层31和/或绿色发光层32发光的情况下,蓝色发光层33的第一部分会同时发光的问题。
根据本发明实施例的有机电致发光器件不需要现有技术中所使用的HCL,从而简化了有机电致发光器件的结构,并使得有机电致发光器件更加轻薄化。
由于上述蓝色发光层33通过其内部形成的蓝光激基复合物4发出蓝光,因此,要求形成的蓝光激基复合物4的单重态能级S1exciplex大于2.5eV,以保证蓝色发光层33能够发出满足要求的蓝光。
蓝色发光层33中电子传输材料和空穴传输材料的比例,可以根据红色发光层31和绿色发光层32实际选用的材料种类来确定。可包括以(但不限于)下几种情况:
第一种情况,当红色发光层31传输电子的能力大于传输空穴的能力,并且绿色发光层32传输电子的能力大于传输空穴的能力时,蓝色发光层33中电子传输材料占蓝色发光层33全部材料的比例小于空穴 传输材料占蓝色发光层33全部材料的比例。具体的,当红色发光层31和绿色发光层32中选用的材料均偏向电子传输材料时,红色发光层31和绿色发光层32对电子的传输能力均大于对空穴的传输能力,这样就可以减小蓝色发光层33中电子传输材料的比例,即,使蓝色发光层33对电子的传输能力较小,从而保证了在需要红色发光层31和/或绿色发光层32发光的情况下,电子和空穴仅能够在红色发光层31和/或绿色发光层32内相遇复合,而不会在蓝色发光层33的第一部分的内部,或者在蓝色发光层33的第一部分与红色发光层31、绿色发光层32的交界处相遇,避免了在需要红色发光层31和/或绿色发光层32发光的情况下,蓝色发光层33的第一部分也会发光的问题。需要说明的是,在红色发光层31和/或绿色发光层32发光的同时,电子和空穴可以在蓝色发光层33的第二部分复合并发出蓝光。
第二种情况,当红色发光层31传输电子的能力小于传输空穴的能力,并且绿色发光层32传输电子的能力小于传输空穴的能力时,蓝色发光层33中电子传输材料占蓝色发光层33全部材料的比例大于空穴传输材料占蓝色发光层33全部材料的比例。更详细的说,当红色发光层31和绿色发光层32中选用的材料偏向空穴传输材料时,红色发光层31和绿色发光层32对电子的传输能力均小于对空穴的传输能力,这样就可以增加蓝色发光层33中电子传输材料的比例,即,使蓝色发光层33对电子的传输能力较大,从而保证了在需要红色发光层31和/或绿色发光层32发光的情况下,电子和空穴仅能够在红色发光层31和/或绿色发光层32内相遇复合,而不会在蓝色发光层33的第一部分的内部,或者在蓝色发光层33的第一部分与红色发光层31、绿色发光层32的交界处相遇。此外,在红色发光层31和/或绿色发光层32发光的同时,电子和空穴可以在蓝色发光层33的第二部分复合并发出蓝光。
为了提高蓝色发光层33的发光效率,在选择蓝色发光层33的电子传输材料和空穴传输材料时,要保证电子传输材料和空穴传输材料形成的蓝光激基复合物4具有较接近的三重态能级和单重态能级,这样由电子和空穴复合成的激子就能够由蓝光激基复合物4的三重态能级T1exciplex跃迁到蓝光激基复合物4的单重态能级S1exciplex,从而发出蓝色的热活化延迟荧光,保证了激子较高的利用率。根据本发明的实施例,蓝光激基复合物4的三重态能级T1exciplex,与蓝光激基复合物4 的单重态能级S1exciplex之间的能级差小于0.3eV,这样复合形成的激子能够较容易的从蓝光激基复合物4的三重态能级T1exciplex跃迁到蓝光激基复合物4的单重态能级S1exciplex,使激子实现100%的利用率,从而保证了蓝色发光层33的发光效率。
图3为根据本发明实施例的有机电致发光器件中的蓝色发光层的第一能级示意图。图4为根据本发明实施例的有机电致发光器件中的蓝色发光层的第二能级示意图。
参照图3,S1ETL代表蓝色发光层33中的电子传输材料的单重态能级,S1HTL代表蓝色发光层33中的空穴传输材料的单重态能级,并且S0代表基态的能级。由于蓝光激基复合物4是由蓝色发光层33中的电子传输材料和空穴传输材料形成的,因此,容易出现能量从蓝光激基复合物4的三重态能级T1exciplex转移到蓝色发光层33中的电子传输材料的三重态能级T1ETL,或转移到蓝色发光层33中的空穴传输材料的三重态能级T1HTL的情况,这样会造成能量的损失,影响蓝色发光层33的发光效率。
为了避免由于能量转移导致的发光效率低的问题,蓝色发光层33中的电子传输材料的三重态能级T1ETL大于蓝光激基复合物4的三重态能级T1exciplex,以及/或者,蓝色发光层33中的空穴传输材料的三重态能级T1HTL大于蓝光激基复合物4的三重态能级T1exciplex,如图4所示。
更详细的说,当蓝色发光层33中的电子传输材料的三重态能级T1ETL大于蓝光激基复合物4的三重态能级T1exciplex时,激子就不容易从蓝光激基复合物4的三重态能级T1exciplex跃迁到电子传输材料的三重态能级T1ETL,即,使得激子能够被限制在蓝光激基复合物4中。同理,当蓝色发光层33中的空穴传输材料的三重态能级T1HTL大于蓝光激基复合物4的三重态能级T1exciplex时,激子就不容易从蓝光激基复合物4的三重态能级T1exciplex跃迁到空穴传输材料的三重态能级T1HTL,即,使得激子能够被限制在蓝光激基复合物4中。因此,蓝色发光层33中的电子传输材料的三重态能级T1ETL和空穴传输材料的三重态能级T1HTL均大于蓝光激基复合物4的三重态能级T1exciplex,这样激子就能够被限制在蓝光激基复合物4中,不会出现能量的转移,避免了能量的损失,保证了蓝色发光层33具有较高的发光效率。
需要说明的是,图3和图4中蓝光激基复合物4的三重态能级 T1exciplex和单重态能级S1exciplex之间的双向虚线箭头代表激子能够在三重态能级T1exciplex和单重态能级S1exciplex之间发生双向的跃迁。
为了保证红色发光层31和绿色发光层32的发光效率,可以使蓝色发光层33中的电子传输材料的三重态能级T1ETL大于绿色发光层32中的发光材料的三重态能级,以及/或者,蓝色发光层33中的空穴传输材料的三重态能级T1HTL大于绿色发光层32中的发光材料的三重态能级。蓝色发光层33中的电子传输材料的三重态能级T1ETL大于绿色发光层32中发光材料的三重态能级,可以使得绿色发光层32中的激子不易跃迁到蓝色发光层33中,限制了绿色发光层32中能量的转移,从而保证了绿色发光层32的发光效率。同样地,蓝色发光层33中的空穴传输材料的三重态能级T1HTL大于绿色发光层32中的发光材料的三重态能级,也可以使得绿色发光层32中的激子不易跃迁到蓝色发光层33中,从而保证了绿色发光层32的发光效率。
蓝色发光层33中的电子传输材料的三重态能级T1ETL和空穴传输材料的三重态能级T1HTL均大于绿色发光层32中发光材料的三重态能级,这样就最大程度的限定了绿色发光层32中激子的跃迁,将绿色发光层32中的能量全部限制在绿色发光层32中,不会造成能量的转移,最大程度的提高了绿色发光层32的发光效率。
需要说明的是,由于绿色发光层32中的发光材料的能级一般高于红色发光层31中的发光材料的能级,因此,当限定了蓝色发光层33中的电子传输材料的三重态能级T1ETL和空穴传输材料的三重态能级T1HTL均大于绿色发光层32中发光材料的三重态能级时,就同时限定了蓝色发光层33中的电子传输材料的三重态能级T1ETL和空穴传输材料的三重态能级T1HTL均大于红色发光层31中发光材料的三重态能级,即使得红色发光层31中的能量全部限制在红色发光层31中,不会造成能量的转移,最大程度的提高了红色发光层31的发光效率。
上述蓝色发光层33还用于将电子由阴极2传输至红色发光层31和绿色发光层32,以使得电子和空穴能够在红色发光层31和绿色发光层32中复合,实现红色发光层31和绿色发光层的发光。为了更好的电子传输能力,可以将蓝色发光层33的厚度设为20nm-40nm,从而既保证了电子的传输速度,又兼顾了光学特征的需要。
再次参照图1,根据本发明实施例的机电致发光器件还可以包括电 子注入层5、电子传输层6、空穴注入层7和空穴传输层8,以最大程度地保证电子从阴极2到发光单元30的传输以及空穴从阳极1到发光单元30的传输。具体的,空穴注入层7设置在阳极1与发光单元30之间,空穴传输层8设置在空穴注入层7与发光单元30之间,电子传输层6设置于发光单元30与阴极2之间,电子注入层5设置于电子传输层6与阴极2之间。
电子注入层5和电子传输层6一方面能够将电子更好的由阴极2传输到发光单元30,另一方面能够阻止空穴向阴极2传输。空穴注入层7和空穴传输层8一方面能够将空穴更好的由阳极1传输到发光单元30,另一方面能够阻止电子向阳极1传输。因此,电子注入层5、电子传输层6、空穴注入层7和空穴传输层8能够使得电子和空穴均被限制在有机电致发光器件的发光单元30中,使有机电致发光器件能够最大限度的实现发光效率。
图5为根据本发明实施例的有机电致发光器件中的发光单元仅包含蓝色发光层的第一能级示意图。图6为根据本发明实施例的有机电致发光器件中的发光单元仅包含蓝色发光层的第二能级示意图。
电子传输层6可以采用多种电子传输材料,只要有利于电子的传输即可。如图5所示,蓝色发光层33中较高位置处的虚线框代表空穴传输材料对应的能级,而较低位置处的虚线框代表电子传输材料对应的能级。电子传输层6采用的电子传输材料与蓝色发光层33中的电子传输材料不同。在这种情况下,电子传输层6和蓝色发光层33之间存在势垒,电子在由电子传输层6传输至蓝色发光层33中时,需要消耗部分能量。
由于电子传输层6叠加设置在蓝色发光层33上,并且蓝色发光层33包括了电子传输材料,因此电子传输层6和蓝色发光层33可以包括相同的电子传输材料,使得电子传输层6和蓝色发光层33之间不存在势垒。如图6所示,电子传输层6与蓝色发光层33中的代表电子传输材料能级的虚线框处于相同的高度,从而电子在由电子传输层6注入到蓝色发光层33中时不需要消耗能量,因此降低了驱动有机电致发光器件工作的驱动电压,进而降低了有机电致发光器件的能量损耗。
蓝色发光层33可选用多种电子传输材料和空穴传输材料,只要它们能够形成蓝光激基复合物4即可。根据本发明的实施例,蓝色发光 层33中的电子传输材料可以为4,6-双(3,5-二(3-吡啶)基苯基)-2-甲基嘧啶(B3PYMPM),空穴传输材料可以为4,4′,4″-三(咔唑-9-基)三苯胺(TCTA)。采用4,6-双(3,5-二(3-吡啶)基苯基)-2-甲基嘧啶和4,4′,4″-三(咔唑-9-基)三苯胺构成蓝色发光层33,不仅使得蓝色发光层33具有较好的电子传输能力和空穴传输能力,而且在蓝色发光层33中形成的蓝光激基复合物4具有较高的发光效率。根据本发明的实施例,阳极1的材料可选为氧化铟锡(ITO),电子注入层5的材料可选为氟化锂(LiF),阴极2的材料可选为铝(Al)。
本发明实施例还提供了一种显示装置,包括根据本发明实施例的有机电致发光器件,从而在需要红色发光层和/或绿色发光层发光的情况下,蓝色发光层覆盖红色发光层和绿色发光层的一部分不会发光。此外,根据本发明实施例的显示装置具有较高的显示效率和显示画面质量,而且这种显示装置更加轻薄。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种有机电致发光器件,包括相对设置的阳极和阴极,以及设置在所述阳极和所述阴极之间的采用混合式制程形成的发光单元,所述发光单元包括红色发光层、绿色发光层和蓝色发光层,
    其中,所述蓝色发光层包括第一部分和第二部分,所述蓝色发光层的第一部分覆盖在并排设置的红色发光层和绿色发光层上,并且所述蓝色发光层的第二部分与所述红色发光层和绿色发光层并排设置,
    其中,所述蓝色发光层的材料包括能够形成蓝光激基复合物的电子传输材料和空穴传输材料,蓝色发光层中电子传输材料及空穴传输材料各自占蓝色发光层全部材料的比例与所述红色发光层及所述绿色发光层传输电子的能力相匹配,以使在需要红色发光层和/或绿色发光层发光时,电子和空穴不会在所述蓝色发光层的第一部分的内部及边缘复合。
  2. 根据权利要求1所述的有机电致发光器件,其中,
    所述红色发光层传输电子的能力大于传输空穴的能力,所述绿色发光层传输电子的能力大于传输空穴的能力,并且所述蓝色发光层中电子传输材料占蓝色发光层全部材料的比例小于所述蓝色发光层中空穴传输材料占蓝色发光层全部材料的比例;或者,
    所述红色发光层传输电子的能力小于传输空穴的能力,所述绿色发光层传输电子的能力小于传输空穴的能力,并且所述蓝色发光层中电子传输材料占蓝色发光层全部材料的比例大于所述蓝色发光层中空穴传输材料占蓝色发光层全部材料的比例。
  3. 根据权利要求1所述的有机电致发光器件,其中,所述蓝光激基复合物的三重态能级,与所述蓝光激基复合物的单重态能级之间的能级差小于0.3eV。
  4. 根据权利要求1所述的有机电致发光器件,其中,
    所述蓝色发光层中的电子传输材料的三重态能级大于所述蓝光激基复合物的三重态能级,和/或,
    所述蓝色发光层中的空穴传输材料的三重态能级大于所述蓝光激基复合物的三重态能级。
  5. 根据权利要求1~4中任一项所述的有机电致发光器件,其中,
    所述蓝色发光层中的电子传输材料的三重态能级大于所述绿色发光层中发光材料的三重态能级,和/或,
    所述蓝色发光层中的空穴传输材料的三重态能级大于所述绿色发光层中发光材料的三重态能级。
  6. 根据权利要求1~4中任一项所述的有机电致发光器件,其中,所述蓝色发光层的厚度为20nm-40nm。
  7. 根据权利要求1~4中任一项所述的有机电致发光器件,还包括:空穴注入层、空穴传输层、电子传输层和电子注入层,其中,
    所述空穴注入层设置在所述阳极与所述发光单元之间;
    所述空穴传输层设置在所述空穴注入层与所述发光单元之间;
    所述电子传输层设置在所述发光单元与所述阴极之间;并且
    所述电子注入层设置在所述电子传输层与所述阴极之间。
  8. 根据权利要求7所述的有机电致发光器件,其中,所述电子传输层中的电子传输材料与所述蓝色发光层中的电子传输材料相同。
  9. 根据权利要求1~4中任一项所述的有机电致发光器件,其中,
    所述蓝色发光层中的电子传输材料为4,6-双(3,5-二(3-吡啶)基苯基)-2-甲基嘧啶,并且
    所述蓝色发光层中的空穴传输材料为4,4′,4″-三(咔唑-9-基)三苯胺。
  10. 一种显示装置,包括根据权利要求1~9中任一项所述的有机电致发光器件。
PCT/CN2017/089719 2016-08-31 2017-06-23 一种有机电致发光器件及显示装置 WO2018040686A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/737,217 US10490764B2 (en) 2016-08-31 2017-06-23 Organic electroluminescent device and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610793761.6A CN106159101B (zh) 2016-08-31 2016-08-31 一种有机电致发光器件及显示装置
CN201610793761.6 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018040686A1 true WO2018040686A1 (zh) 2018-03-08

Family

ID=57345369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089719 WO2018040686A1 (zh) 2016-08-31 2017-06-23 一种有机电致发光器件及显示装置

Country Status (3)

Country Link
US (1) US10490764B2 (zh)
CN (1) CN106159101B (zh)
WO (1) WO2018040686A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111785858A (zh) * 2020-08-10 2020-10-16 京东方科技集团股份有限公司 发光显示器件及其制备方法、显示装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106159101B (zh) * 2016-08-31 2018-03-16 京东方科技集团股份有限公司 一种有机电致发光器件及显示装置
CN107154463B (zh) * 2017-05-27 2019-03-15 京东方科技集团股份有限公司 有机电致发光器件、oled基板和显示装置
CN107611276B (zh) * 2017-09-22 2019-03-12 京东方科技集团股份有限公司 有机发光二极管和显示面板
CN110148677A (zh) * 2019-06-05 2019-08-20 京东方科技集团股份有限公司 一种有机电致发光器件、显示面板及显示装置
CN111755614A (zh) * 2020-06-17 2020-10-09 武汉华星光电半导体显示技术有限公司 有机发光二极管显示器件及显示面板
CN111682125A (zh) * 2020-07-06 2020-09-18 武汉华星光电半导体显示技术有限公司 有机发光二极管显示器件、其制造方法以及显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101447555A (zh) * 2008-12-29 2009-06-03 中国科学院长春应用化学研究所 基于有机半导体异质结电荷产生层作为连接层的叠层有机电致发光器件及制法
CN102148334A (zh) * 2010-02-05 2011-08-10 索尼公司 有机电致发光显示器及其制造方法
CN102969332A (zh) * 2011-08-31 2013-03-13 佳能株式会社 显示装置和摄像装置
JP5194700B2 (ja) * 2007-10-11 2013-05-08 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置及び電子機器
CN106159101A (zh) * 2016-08-31 2016-11-23 京东方科技集团股份有限公司 一种有机电致发光器件及显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8138505B2 (en) * 2008-06-02 2012-03-20 Seiko Epson Corporation Light-emitting device, display apparatus, and electronic system
JP2011119212A (ja) 2009-11-03 2011-06-16 Seiko Epson Corp 有機el装置の製造方法、有機el装置、及び電子機器
KR101866393B1 (ko) * 2011-12-30 2018-06-12 엘지디스플레이 주식회사 유기 발광 소자 및 이의 제조 방법
CN103325952A (zh) 2013-07-04 2013-09-25 京东方科技集团股份有限公司 一种oled器件及其制造方法、显示装置
CN103682116A (zh) * 2013-12-02 2014-03-26 京东方科技集团股份有限公司 一种oled器件及显示装置
CN105185917B (zh) * 2015-08-07 2017-12-08 京东方科技集团股份有限公司 一种有机电致发光显示器件及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5194700B2 (ja) * 2007-10-11 2013-05-08 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置及び電子機器
CN101447555A (zh) * 2008-12-29 2009-06-03 中国科学院长春应用化学研究所 基于有机半导体异质结电荷产生层作为连接层的叠层有机电致发光器件及制法
CN102148334A (zh) * 2010-02-05 2011-08-10 索尼公司 有机电致发光显示器及其制造方法
CN102969332A (zh) * 2011-08-31 2013-03-13 佳能株式会社 显示装置和摄像装置
CN106159101A (zh) * 2016-08-31 2016-11-23 京东方科技集团股份有限公司 一种有机电致发光器件及显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111785858A (zh) * 2020-08-10 2020-10-16 京东方科技集团股份有限公司 发光显示器件及其制备方法、显示装置
CN111785858B (zh) * 2020-08-10 2023-12-01 京东方科技集团股份有限公司 发光显示器件及其制备方法、显示装置

Also Published As

Publication number Publication date
CN106159101A (zh) 2016-11-23
US20180375047A1 (en) 2018-12-27
CN106159101B (zh) 2018-03-16
US10490764B2 (en) 2019-11-26

Similar Documents

Publication Publication Date Title
WO2018040686A1 (zh) 一种有机电致发光器件及显示装置
CN102097456B (zh) 有机发光二极管装置
KR101475118B1 (ko) 유기전계발광소자 및 그 제조방법
KR101584990B1 (ko) 백색 유기 발광 소자 및 이의 제조 방법
WO2019184413A1 (zh) 量子点发光二极管、其制备方法及显示器件
KR101451586B1 (ko) 백색 유기 발광 소자
WO2016015422A1 (zh) 有机发光二极管阵列基板及显示装置
US9209422B2 (en) Organic light emitting display device with micro-cavity structure
US10249838B2 (en) White organic light emitting device having emission area control layer separating emission areas of at least two emission layers
US7906900B2 (en) White organic light emitting device
CN102214794A (zh) 有机发光二极管装置
KR102141918B1 (ko) 유기전계발광표시장치
CN105720201A (zh) 色彩稳定的有机发光二极管堆叠
US20070013297A1 (en) Organic light emitting display device
WO2020224334A1 (zh) 量子点电致发光器件、显示面板及显示装置
KR20100073417A (ko) 유기전계발광소자
WO2017206213A1 (zh) Oled器件与oled显示器
WO2020232911A1 (zh) 电致发光显示装置
KR101941084B1 (ko) 유기전계발광소자
CN104752613B (zh) 有机发光二极管和包括其的有机发光二极管显示装置
WO2021129183A1 (zh) 发光器件及其制作方法
CN108963097A (zh) 电致发光器件及其制备方法、阵列基板、显示面板及装置
WO2023226796A1 (zh) 发光器件、显示面板及显示装置
CN109346500B (zh) 一种有机电致发光装置
JP2004152700A (ja) 有機発光素子およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17844992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17844992

Country of ref document: EP

Kind code of ref document: A1