WO2020168601A1 - 一种硅的损伤层透射电镜原位纳米压痕方法 - Google Patents

一种硅的损伤层透射电镜原位纳米压痕方法 Download PDF

Info

Publication number
WO2020168601A1
WO2020168601A1 PCT/CN2019/077962 CN2019077962W WO2020168601A1 WO 2020168601 A1 WO2020168601 A1 WO 2020168601A1 CN 2019077962 W CN2019077962 W CN 2019077962W WO 2020168601 A1 WO2020168601 A1 WO 2020168601A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
transmission electron
electron microscope
silicon
wedge
Prior art date
Application number
PCT/CN2019/077962
Other languages
English (en)
French (fr)
Inventor
张振宇
崔俊峰
刘冬冬
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/761,345 priority Critical patent/US11099110B2/en
Publication of WO2020168601A1 publication Critical patent/WO2020168601A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/20Sample handling devices or methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2873Cutting or cleaving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0053Cutting or drilling tools
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0076Hardness, compressibility or resistance to crushing
    • G01N2203/0078Hardness, compressibility or resistance to crushing using indentation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0286Miniature specimen; Testing on microregions of a specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • G01N2203/0647Image analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/418Imaging electron microscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/61Specific applications or type of materials thin films, coatings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/611Specific applications or type of materials patterned objects; electronic devices
    • G01N2223/6116Specific applications or type of materials patterned objects; electronic devices semiconductor wafer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/646Specific applications or type of materials flaws, defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material

Definitions

  • the invention belongs to the technical field of transmission electron microscopy in-situ nano-mechanical testing, and relates to a nano-indentation method, in particular to a transmission electron microscopy in-situ nano-indentation method of silicon damage layer and a research method of silicon wafer abrasive grain processing mechanism.
  • Silicon is widely used in semiconductor, microelectronics and optoelectronic industries due to its abundant reserves and excellent photoelectric properties. Traditional machining often results in a thicker damage layer on the surface of the silicon wafer, and the surface damage layer will seriously affect the performance of the device.
  • the ultra-precision grinding method has the comprehensive advantages of high grinding efficiency and good surface accuracy. It is widely used in the ultra-precision processing field of silicon wafers.
  • the diamond grinding wheel is mainly used for ultra-precision grinding of silicon wafers.
  • the thickness of the surface damage layer is generally greater than 160 nm. Therefore, chemical mechanical polishing is usually required to remove the surface damage layer produced in the ultra-precision grinding process, but chemical mechanical polishing is the most time and cost method in the ultra-precision machining process.
  • the surface damage layer produced in the ultra-precision grinding process The thinner, the shorter the chemical mechanical polishing time, and the lower the cost. Therefore, reducing the thickness of the surface damage layer produced during the ultra-precision grinding process has important practical significance for semiconductor, microelectronics, optoelectronics and other fields.
  • Ultra-precision grinding is the process of using diamond abrasive grains to continuously remove the damage layer. The damage layer is removed while continuously Create a new layer of damage.
  • the process of the damage layer in the ultra-precision grinding process is not clear.
  • researchers have performed in-situ compression experiments on nano-scale crystalline silicon to explore the transformation process of crystalline silicon to amorphous silicon.
  • the sample is only affected by this experimental method.
  • the experimental conditions are quite different from the ultra-precision grinding process, so the experimental results are different from the ultra-precision grinding results.
  • the sample is subjected to complex forces.
  • the sample is also subjected to shear stress, which is similar to the force of the sample in the ultra-precision grinding process. Therefore, it is very important to develop an in-situ nanoindentation experiment method for TEM on the damaged layer of silicon to study the mechanism of ultra-precision grinding of silicon wafers.
  • An in-situ nanoindentation method for the damage layer of silicon in a transmission electron microscope Wet etching and ion beam etching are used to prepare a wedge-shaped silicon sample. In the transmission electron microscope, a diamond indenter is used to press the damage layer of silicon. The thickness of the damage layer For 2-200nm, the in-situ nanoindentation experiment was performed on the damaged layer of silicon, and the in-situ nanoindentation experiment of the damaged layer of silicon was realized by transmission electron microscopy, and it can be characterized on the atomic scale.
  • wet etching and ion beam etching are used to prepare wedge-shaped silicon samples.
  • the width of the top of the wedge-shaped silicon is 80-100nm.
  • the indenter in the indentation experiment is a cube-corner diamond indenter, and the radius of curvature of the indenter is 50-70nm;
  • the focused ion beam thins and trims the etched wedge-shaped silicon.
  • the thinning uses an ion beam current of 30kV: 50-80nA
  • the trimming uses an ion beam current of 5kV: 1-6pA, so that the top width of the wedge-shaped silicon is 80 -100nm.
  • the sample is indented with pressure to make the thickness of the sample damage layer 2-200nm; damage to the sample in the transmission electron microscope
  • the layer was subjected to in-situ nanoindentation experiments.
  • the invention realizes the in-situ nanoindentation experiment of the silicon damage layer transmission electron microscope, and can perform atomic scale characterization.
  • the sample is a single crystal silicon wafer
  • the diamond indenter is a cube-corner indenter
  • the radius of curvature of the indenter is 50-70nm.
  • Monocrystalline silicon has excellent photoelectric properties and is widely used in semiconductor, microelectronics and optoelectronics industries.
  • the tool for ultra-precision grinding of monocrystalline silicon is often a diamond grinding wheel. Choose a cube-corner diamond indenter with a radius of curvature of 50-70nm In the process of indentation experiment, the sample can be subjected to greater stress, and the force of the sample is complicated, which is closer to the actual ultra-precision grinding process.
  • a layer of electron beam photoresist with a thickness of 100-300 nm is cast on the surface of the silicon wafer, and a rectangular pattern with a width of 400-800 nm and a length of 10-60 ⁇ m is etched by the electron beam.
  • Electron beam lithography technology is currently known with the highest resolution lithography technology, and the electron beam wavelength is small, and the diffraction effect can be ignored. Therefore, electron beam etching is selected. Because the electron beam etching rate is slow, electron beam lithography The thickness of the glue is 100-300nm.
  • the surface of the sample is coated with a SiO 2 protective layer with a thickness of 1-3 ⁇ m.
  • SiO 2 is selected for the protective layer because the SiO 2 film has good etching resistance to alkaline solution. In the FH solution, the etching rate of SiO 2 is higher than that of Si, so the SiO 2 film is easy to remove in the end.
  • the sample is cleaned with deionized water, and the sample is blown dry with compressed gas.
  • the entire sample is immersed in NaOH solution for etching, and the etching time is 15-30 minutes.
  • the NaOH solution can etch Si and protect the Si under the SiO 2 film from being etched.
  • the sample is cleaned with deionized water, and the sample is blown dry with compressed gas, and the entire sample is immersed in HF solution for etching.
  • the etching time is 5-10 minutes.
  • the etching rate of HF solution to SiO 2 is relatively fast. Soak the whole sample in the HF solution for 5-10 minutes to remove the SiO 2 film.
  • the ion beam current is 30kV: 50-80nA, and the trimming is adopted
  • the ion beam current is 5kV:1-6pA, so that the width of the top of the wedge-shaped silicon is 80-100nm.
  • the sample thickness should be less than 100nm, so the wedge-shaped silicon sample after etching should be thinned. Since the radius of curvature of the indenter is 50-70nm, the width of the wedge-shaped silicon top is finally 80-100nm. Because the larger ion beam current will cause damage to the sample, the ion beam current is 30kV: 50-120pA when thinning, and the beam current is 5kV: 10-30pA for trimming to remove the damaged layer.
  • the sample is fixed on the sample holder of the in-situ nanomechanical system of the transmission electron microscope with conductive silver glue.
  • the sample holder is fixed on the sample rod with screws, and the sample is indented in the transmission electron microscope with a diamond indenter, so that the thickness of the sample damage layer is 2-200nm. Indentation of the sample in the transmission electron microscope can accurately control the thickness of the damaged layer, so that in-situ nanoindentation experiments can be performed on damaged layers of different thicknesses.
  • a wedge-shaped silicon sample is prepared by using wet etching and ion beam etching methods, realizes the in-situ nanoindentation experiment of the silicon damage layer by transmission electron microscope, and can perform atomic scale characterization.
  • Figure 1a is a low-power transmission electron microscope topography of a wedge-shaped silicon sample with no damage layer
  • Figure 1b is a high-resolution transmission electron microscope image of the boxed part of Figure 1a.
  • Fig. 2a is a low-power transmission electron microscope image of a wedge-shaped silicon sample with a damage layer thickness of 67 nm
  • Fig. 2b is a high-resolution transmission electron microscope image of the box part of Fig. 2a.
  • Fig. 3a is a low-power transmission electron microscope topography after the in-situ nanoindentation of the wedge-shaped silicon sample damage layer
  • Fig. 3b is a high-resolution transmission electron microscope image of the box part of Fig. 3a.
  • a diamond pen to cut the silicon wafer into blocks with a length of 4mm and a width of 3mm, and cast a layer of electron beam photoresist with a thickness of 200nm on the surface of the silicon wafer, and use the electron beam to etch the wafer with a width of 600nm and a length of 30 ⁇ m. Rectangular pattern; the surface of the sample is plated with a SiO 2 protective layer with a thickness of 1.5 ⁇ m, and the entire sample is immersed in acetone for ultrasonic cleaning for 20 minutes to remove the electron beam photoresist and the SiO 2 protective layer on the photoresist.
  • the ion beam current used for thinning is 30kV: 50pA, and the ion beam current used for trimming is 5kV: 20pA.
  • the prepared TEM of the wedge-shaped silicon sample The figure is shown in Figure 1a, and Figure 1b is the high-resolution image of the transmission electron microscope in the box of Figure 1a.
  • the sample is crystalline silicon without lattice defects; a cube-corner diamond needle with a radius of curvature of 66nm is used in the transmission electron microscope
  • the sample is indented in the TEM, so that the thickness of the sample damage layer is 67nm, as shown in Figure 2a, Figure 2b is the high-resolution image of the transmission electron microscope in the box of Figure 2a; the damage layer of the sample is in situ indentation in the transmission electron microscope
  • Fig. 3a is a low-power transmission electron microscope topography image after in-situ nanoindentation of the wedge-shaped silicon sample damage layer
  • Fig. 3b is a high-resolution transmission electron microscope image of the box part of Fig. 3a.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种硅的损伤层透射电镜原位纳米压痕方法,属于透射电镜原位纳米力学测试领域。采用湿法刻蚀与离子束刻蚀方法制备出楔形硅样品;利用聚焦离子束对刻蚀出的楔形硅进行减薄和修整,减薄采用离子束束流为30kV:50-80nA,修整采用离子束束流为5kV:1-6pA,使楔形硅顶部宽度为80-100nm。用导电银胶将样品固定在透射电镜原位纳米力学系统的样品座上,在透射电镜中用压针对样品进行压痕,使样品损伤层厚度为2-200nm;在透射电镜中对样品的损伤层进行原位纳米压痕实验。该方法实现了硅的损伤层透射电镜原位纳米压痕实验,并且能够进行原子尺度表征。

Description

一种硅的损伤层透射电镜原位纳米压痕方法 技术领域
本发明属于透射电镜原位纳米力学测试技术领域,涉及纳米压痕方法,特别涉及一种硅的损伤层透射电镜原位纳米压痕方法以及硅片磨粒加工机理研究方法。
背景技术
硅由于储量丰富、具有优异的光电性能,广泛应用于半导体、微电子和光电子产业。传统的机械加工往往会导致硅片表面产生一层较厚的损伤层,而表面损伤层会严重影响器件的性能。超精密磨削方法具有磨削效率高,面型精度好等综合优点,广泛应用于硅片的超精密加工领域,主要用金刚石砂轮对硅片进行超精密磨削,但磨削后硅片的表面损伤层厚度一般大于160nm。因此,通常需要化学机械抛光去除超精密磨削过程中产生的表面损伤层,但化学机械抛光是超精密加工过程中时间和成本最高的一种方法,超精密磨削过程中产生的表面损伤层越薄,化学机械抛光用时越短,成本越低,因此,减小超精密磨削过程中产生的表面损伤层厚度对半导体、微电子、光电子等领域具有重要的现实意义。
减小超精密磨削过程中产生的表面损伤层厚度,就需要知道超精密磨削加工机理,超精密磨削是利用金刚石磨粒不断去除损伤层的过程,在损伤层被去除的同时又不断产生新的损伤层。但是,由于研究技术条件的限制,超精密磨削过程中损伤层的产生过程并不清楚。近年来随着透射电镜原位纳米力学测试技术的发展,研究人员对纳米尺度的晶体硅进行原位压缩实验,用于探索晶体硅到非晶硅的转变过程,但该实验方法中样品只受到单轴压缩应力,且样品为没有损伤层的晶体硅,实验条件与超精密磨削过程相差较大,因此实验结果与超精密磨削结果不同。压痕实验中,样品受力复杂,除了受到轴向压缩应力,还受到剪切应力,与超精密磨削过程中样品受力类似。因此,开发一种硅的损伤层透射电镜原位纳米压痕实验方法,对研究硅片超精密磨削机理是十分重要的。
发明概述
技术问题
一种硅的损伤层透射电镜原位纳米压痕方法,采用湿法刻蚀与离子束刻蚀方法制备出楔形硅样品,在透射电镜中用金刚石压针压制出硅的损伤层,损伤层厚度为2-200nm,对硅的损伤层进行原位纳米压痕实验,实现了硅的损伤层透射电镜原位纳米压痕实验,并且能够进行原子尺度表征。
问题的解决方案
技术解决方案
本发明的技术方案:
采用湿法刻蚀与离子束刻蚀方法制备出楔形硅样品,楔形硅顶部宽度为80-100nm,压痕实验的压针为cube-corner金刚石压针,压针曲率半径为50-70nm;利用聚焦离子束对刻蚀出的楔形硅进行减薄和修整,减薄采用离子束束流为30kV:50-80nA,修整采用离子束束流为5kV:1-6pA,使楔形硅顶部宽度为80-100nm。用导电银胶将样品固定在透射电镜原位纳米力学系统的样品座上,在透射电镜中用压针对样品进行压痕,使样品损伤层厚度为2-200nm;在透射电镜中对样品的损伤层进行原位纳米压痕实验。本发明实现了硅的损伤层透射电镜原位纳米压痕实验,并且能够进行原子尺度表征。
样品为单晶硅片,金刚石压针为cube-corner压针,压针曲率半径为50-70nm。单晶硅具有优异的光电性能,广泛应用于半导体、微电子和光电子产业,对单晶硅进行超精密磨削的工具往往是金刚石砂轮,选择曲率半径为50-70nm的cube-corner金刚石压针,在进行压痕实验过程中样品可以受到较大的应力,同时样品受力复杂,更接近实际的超精密磨削过程。
利用金刚石笔将硅片切成长度为3-5mm,宽度为2-3mm的块体。为了能使样品固定在透射电镜原位纳米力学测试样品杆上,利用金刚石笔将硅片切成长度为3-5mm,宽度为2-3mm的块体,样品过大会触碰透射电镜极靴,样品过小会增加样品制备的难度。
将硅片表面甩一层厚度为100-300nm的电子束光刻胶,利用电子束刻蚀出宽度为400-800nm,长度为10-60μm的矩形图案。电子束光刻技术是目前已知分辨率 最高的光刻技术,并且电子射线波长小,衍射效应可以忽略,所以选择用电子束刻蚀,由于电子束刻蚀速率较慢,所以电子束光刻胶厚度选择100-300nm。
将样品表面镀一层厚度为1-3μm的SiO 2保护层。保护层选用SiO 2,是因为SiO 2膜对碱液具有良好的抗刻蚀性能,在FH溶液中,SiO 2的刻蚀速率比Si的刻蚀速率高,所以SiO 2膜最终很容易去掉。
将整个样品浸泡在丙酮中超声清洗10-30分钟。丙酮可以有效溶解光刻胶,将整个样品浸泡在丙酮中超声清洗10-30分钟,用于去除样品表面的光刻胶以及光刻胶上面的SiO 2保护层,只留下矩形图案的保护层。
用去离子水对样品进行清洗,并用压缩气体将样品吹干,将整个样品浸泡在NaOH溶液中进行刻蚀,刻蚀时间为15-30分钟。NaOH溶液可以刻蚀Si而保护SiO 2膜下面的Si不被刻蚀。
用去离子水对样品进行清洗,并用压缩气体将样品吹干,将整个样品浸泡在HF溶液中进行刻蚀,刻蚀时间5-10分钟。HF溶液对SiO 2的刻蚀速率较快,将整个样品浸泡在HF溶液中刻蚀5-10分钟,将SiO 2膜除去。
用去离子水对样品进行清洗,并用压缩气体将样品吹干,利用聚焦离子束对刻蚀出的楔形硅进行减薄和修整,减薄采用离子束束流为30kV:50-80nA,修整采用离子束束流为5kV:1-6pA,使楔形硅顶部宽度为80-100nm。要对样品进行原子尺度的观察,样品厚度要小于100nm,所以要对刻蚀之后的楔形硅样品进行减薄,由于压针曲率半径为50-70nm,所以楔形硅顶部宽度最终为80-100nm,由于较大的离子束束流会对样品造成损伤,所以减薄时离子束束流选择30kV:50-120pA,并用5kV:10-30pA束流进行修整,用于去除损伤层。
用导电银胶将样品固定在透射电镜原位纳米力学系统的样品座上。在透射电镜中,导电性越好,成像越清晰,并且越稳定,所以利用导电银胶将样品固定在样品座上。
将样品座利用螺钉固定在样品杆上,用金刚石压针在透射电镜中对样品进行压痕,使样品损伤层厚度为2-200nm。在透射电镜中对样品进行压痕,可以精准控制损伤层厚度,从而可以对不同厚度的损伤层进行原位纳米压痕实验。
在透射电镜中对样品的损伤层进行原位纳米压痕实验,从而实现对损伤层的应 力诱导损伤起源和演变的实时观测。透射电镜原位纳米力学测试可以实现原子及纳米尺度的加载变形,是研究磨粒加工导致的损伤层的纳米尺寸材料去除机理和损伤起源及演变的有效方法。
发明的有益效果
有益效果
本发明的效果和益处是采用湿法刻蚀与离子束刻蚀方法制备出楔形硅样品,实现了硅的损伤层透射电镜原位纳米压痕实验,并且能够进行原子尺度表征。
对附图的简要说明
附图说明
图1a是无损伤层的楔形硅样品的透射电镜低倍形貌图,图1b为图1a方框部分的透射电镜高分辨图。
图2a是损伤层厚度为67nm的楔形硅样品的透射电镜低倍形貌图,图2b为图2a方框部分的透射电镜高分辨图。
图3a是对楔形硅样品损伤层进行透射电镜原位纳米压痕之后的透射电镜低倍形貌图,图3b为图3a方框部分的透射电镜高分辨图。
发明实施例
本发明的实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
实施例
利用金刚石笔将硅片切成长度为4mm,宽度为3mm的块体,将硅片表面甩一层厚度为200nm的电子束光刻胶,利用电子束刻蚀出宽度为600nm,长度为30μm的矩形图案;将样品表面镀一层厚度为1.5μm的SiO 2保护层,将整个样品浸泡在丙酮中超声清洗20分钟,用于去除电子束光刻胶以及光刻胶上面的SiO 2保护层,只留下矩形图案的SiO 2保护层;用去离子水对样品进行清洗,并用压缩气体将样品吹干,将整个样品浸泡在NaOH溶液中进行刻蚀,刻蚀时间为25分钟;用去离子水对样品进行清洗,并用压缩气体将样品吹干,将整个样品浸泡在HF溶液中进行刻蚀,刻蚀时间为8分钟,用于去除SiO 2保护层;用去离子水对样 品进行清洗,并用压缩气体将样品吹干,利用聚焦离子束对刻蚀出的楔形硅进行减薄和修整,减薄采用的离子束束流为30kV:50pA,修整采用的离子束束流为5kV:20pA,使楔形硅顶部宽度为80nm;利用导电银胶将样品固定在透射电镜原位纳米力学系统样品杆的样品座上,将样品座利用螺钉固定在样品杆上,制备好的楔形硅样品的透射电镜图如图1a所示,图1b为图1a方框部分的透射电镜高分辨图,可看出样品为无晶格缺陷的晶体硅;用曲率半径为66nm的cube-corner金刚石压针在透射电镜中对样品进行压痕,使样品损伤层厚度为67nm,如图2a所示,图2b为图2a方框部分的透射电镜高分辨图;在透射电镜中对样品的损伤层进行原位压痕实验,图3a是对楔形硅样品损伤层进行透射电镜原位纳米压痕之后的透射电镜低倍形貌图,图3b为图3a方框部分的透射电镜高分辨图。

Claims (1)

  1. 一种硅的损伤层透射电镜原位纳米压痕方法,采用湿法刻蚀与离子束刻蚀方法制备出楔形硅样品,在透射电镜中用金刚石压针压制出硅的损伤层,对硅的损伤层进行原位纳米压痕实验,其特征在于:
    (1)样品为单晶硅片,金刚石压针为cube-corner压针,压针曲率半径为50-70nm;
    (2)利用金刚石笔将单晶硅片切成长度为3-5mm,宽度为2-3mm的块体;
    (3)将单晶硅片表面甩一层厚度为100-300nm的电子束光刻胶,利用电子束刻蚀出宽度为400-800nm,长度为10-60μm的矩形图案;
    (4)将样品表面镀一层厚度为1-3μm的SiO 2保护层;
    (5)将整个样品浸泡在丙酮中超声清洗10-30分钟;
    (6)用去离子水对样品进行清洗,并用压缩气体将样品吹干,将整个样品浸泡在NaOH溶液中进行刻蚀,刻蚀时间为15-30分钟,形成楔形硅;
    (7)用去离子水对楔形硅进行清洗,并用压缩气体将楔形硅吹干,楔形硅浸泡在HF溶液中进行刻蚀,刻蚀时间5-10分钟;
    (8)用去离子水对样品进行清洗,并用压缩气体将样品吹干,利用聚焦离子束对刻蚀出的楔形硅进行减薄和修整,减薄采用离子束束流为30kV:50-80nA,修整采用离子束束流为5kV:1-6pA,使楔形硅顶部的宽度为80-100nm;
    (9)用导电银胶将样品固定在透射电镜原位纳米力学系统的样品座上;
    (10)将样品座利用螺钉固定在样品杆上,用金刚石压针在透射电镜中对样品进行压痕,使样品损伤层厚度为2-200nm;
    (11)在透射电镜中对样品的损伤层进行原位纳米压痕实验,从 而实现对损伤层的应力诱导损伤起源和演变的实时观测。
PCT/CN2019/077962 2019-02-19 2019-03-13 一种硅的损伤层透射电镜原位纳米压痕方法 WO2020168601A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/761,345 US11099110B2 (en) 2019-02-19 2019-03-13 Method of in-situ TEM nanoindentation for damaged layer of silicon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910120919.7A CN109708944B (zh) 2019-02-19 2019-02-19 一种硅的损伤层透射电镜原位纳米压痕方法
CN201910120919.7 2019-02-19

Publications (1)

Publication Number Publication Date
WO2020168601A1 true WO2020168601A1 (zh) 2020-08-27

Family

ID=66264449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077962 WO2020168601A1 (zh) 2019-02-19 2019-03-13 一种硅的损伤层透射电镜原位纳米压痕方法

Country Status (3)

Country Link
US (1) US11099110B2 (zh)
CN (1) CN109708944B (zh)
WO (1) WO2020168601A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110940683A (zh) * 2019-11-18 2020-03-31 中国科学院金属研究所 通过维氏硬度计结合透射电镜实现原位压缩观察的方法
CN114965002A (zh) * 2021-02-25 2022-08-30 胜科纳米(苏州)有限公司 用于器件级纳米膜层的压痕测试方法
CN116046825B (zh) * 2023-04-03 2023-06-27 中国核动力研究设计院 辐照后弥散燃料纳米压痕试样及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621169A (zh) * 2012-04-11 2012-08-01 大连理工大学 一种ii-vi族软脆晶体超精密加工样品的定点原子成像方法
US20130277573A1 (en) * 2011-01-07 2013-10-24 Dune Sciences, Inc. Functionalized carbon membranes
CN106033040A (zh) * 2016-01-26 2016-10-19 江苏省(丹阳)高性能合金材料研究院 一种金属基复合材料剪切强度的测试方法及试样制备方法
CN107621471A (zh) * 2017-08-28 2018-01-23 大连理工大学 微米合金含有等长单个纳米孪晶的透射电镜原位纳米压痕方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494829A (en) * 1992-07-31 1996-02-27 Biostar, Inc. Devices and methods for detection of an analyte based upon light interference
JPH1160735A (ja) * 1996-12-09 1999-03-05 Toshiba Corp ポリシランおよびパターン形成方法
US7107694B2 (en) * 2004-06-29 2006-09-19 Hysitron, Incorporated Method for observation of microstructural surface features in heterogeneous materials
JP2006039260A (ja) * 2004-07-28 2006-02-09 Sii Nanotechnology Inc 原子間力顕微鏡を用いたフォトマスクのパーティクル除去方法
US7878071B2 (en) * 2006-12-22 2011-02-01 California Institute Of Technology Nanoindenter tip for uniaxial tension and compression testing
US8288737B1 (en) * 2007-04-23 2012-10-16 South Bay Technology, Inc. Ion sputter removal from thin microscopy samples with ions extracted from an RF generated plasma
US9343379B2 (en) * 2011-10-14 2016-05-17 Sunedison Semiconductor Limited Method to delineate crystal related defects
CN102816911A (zh) * 2012-08-26 2012-12-12 大连理工大学 一种机械变形制备超高硬度单向连续无晶界纳米孪晶方法
CN108749176B (zh) * 2013-02-18 2020-08-07 大日本印刷株式会社 电池用包装材料
EP3286350A1 (en) * 2015-04-20 2018-02-28 Seco Tools Ab A coated cutting tool and a method for coating the cutting tool
CN105223213B (zh) * 2015-09-28 2017-12-15 北京工业大学 一种透射电镜双倾原位纳米压痕平台
WO2018000350A1 (zh) * 2016-06-30 2018-01-04 周肇梅 一种柔性膜脆断方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130277573A1 (en) * 2011-01-07 2013-10-24 Dune Sciences, Inc. Functionalized carbon membranes
CN102621169A (zh) * 2012-04-11 2012-08-01 大连理工大学 一种ii-vi族软脆晶体超精密加工样品的定点原子成像方法
CN106033040A (zh) * 2016-01-26 2016-10-19 江苏省(丹阳)高性能合金材料研究院 一种金属基复合材料剪切强度的测试方法及试样制备方法
CN107621471A (zh) * 2017-08-28 2018-01-23 大连理工大学 微米合金含有等长单个纳米孪晶的透射电镜原位纳米压痕方法

Also Published As

Publication number Publication date
CN109708944A (zh) 2019-05-03
US20210080361A1 (en) 2021-03-18
CN109708944B (zh) 2021-03-26
US11099110B2 (en) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2020168601A1 (zh) 一种硅的损伤层透射电镜原位纳米压痕方法
CN102023108B (zh) 透射电子显微镜样品的制备方法
WO2019200760A1 (zh) 一维材料透射电镜力 - 电耦合原位测试方法
Liu et al. Experimental study on size effect of tool edge and subsurface damage of single crystal silicon in nano-cutting
CN102539213B (zh) 碲锌镉与金属界面的透射电子显微镜样品制备方法
Zhang et al. Nanoscale machinability and subsurface damage machined by CMP of soft-brittle CdZnTe crystals
Sopori et al. Characterizing damage on Si wafer surfaces cut by slurry and diamond wire sawing
CN108760438B (zh) 一种透射电镜原位力学拉伸样品制备方法
CN110877255B (zh) 一种熔石英光学表面超光滑加工的组合加工工艺
CN113810018A (zh) 一种激光剥离方式制备单晶薄膜体声波谐振器的方法
TWI510682B (zh) 晶棒表面奈米化製程、晶圓製造方法及其晶圓
CN109972204A (zh) 超薄超平晶片和制备该超薄超平晶片的方法
CN1675758A (zh) Soi晶片的制造方法
CN110530691A (zh) 一种超细晶钢ebsd样品的制备方法
Atiqah et al. Application of focused ion beam micromachining: a review
CN110702717B (zh) 一种用于透射电镜切片样品和切片转移装置的制备方法
Ding et al. Damage-Free Cleaning of 2D van der Waals Heterostructures with Nano-Spherical AFM Probes
CN113125481A (zh) 一种AlSc溅射靶材EBSD样品的制样方法
KR20150034985A (ko) 철강 소재의 극표층부 산화물 분석방법
CN115372090B (zh) 一种石英玻璃亚表面损伤深度样件制作及检测方法
CN104451824B (zh) 一种采用纳米管化处理法剥离钛表面涂层的方法及应用
CN112802769B (zh) 一种图形化复合衬底的检测及其修复方法
Cui et al. A study of femtosecond laser polishing of CVD nanopolycrystalline diamond films
Qiu et al. EXPERIMENTAL STUDY ON THE RESIDUAL STRESS IN STRAINED SILICON MULTILAYER STRUCTURE BY MICRO-RAMAN SPECTROSCOPY
Oswald et al. On the correlation of surface roughness to mechanical strength and reflectivity of silicon wafers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916074

Country of ref document: EP

Kind code of ref document: A1