CN109708944B - 一种硅的损伤层透射电镜原位纳米压痕方法 - Google Patents

一种硅的损伤层透射电镜原位纳米压痕方法 Download PDF

Info

Publication number
CN109708944B
CN109708944B CN201910120919.7A CN201910120919A CN109708944B CN 109708944 B CN109708944 B CN 109708944B CN 201910120919 A CN201910120919 A CN 201910120919A CN 109708944 B CN109708944 B CN 109708944B
Authority
CN
China
Prior art keywords
sample
electron microscope
silicon
transmission electron
wedge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910120919.7A
Other languages
English (en)
Other versions
CN109708944A (zh
Inventor
张振宇
崔俊峰
刘冬冬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201910120919.7A priority Critical patent/CN109708944B/zh
Priority to PCT/CN2019/077962 priority patent/WO2020168601A1/zh
Priority to US16/761,345 priority patent/US11099110B2/en
Publication of CN109708944A publication Critical patent/CN109708944A/zh
Application granted granted Critical
Publication of CN109708944B publication Critical patent/CN109708944B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/20Sample handling devices or methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2873Cutting or cleaving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0053Cutting or drilling tools
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0076Hardness, compressibility or resistance to crushing
    • G01N2203/0078Hardness, compressibility or resistance to crushing using indentation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0286Miniature specimen; Testing on microregions of a specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • G01N2203/0647Image analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/418Imaging electron microscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/61Specific applications or type of materials thin films, coatings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/611Specific applications or type of materials patterned objects; electronic devices
    • G01N2223/6116Specific applications or type of materials patterned objects; electronic devices semiconductor wafer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/646Specific applications or type of materials flaws, defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明公开了一种硅的损伤层透射电镜原位纳米压痕方法,属于透射电镜原位纳米力学测试领域。采用湿法刻蚀与离子束刻蚀方法制备出楔形硅样品;利用聚焦离子束对刻蚀出的楔形硅进行减薄和修整,减薄采用离子束束流为30kV:50‑80nA,修整采用离子束束流为5kV:1‑6pA,使楔形硅顶部宽度为80‑100nm。用导电银胶将样品固定在透射电镜原位纳米力学系统的样品座上,在透射电镜中用压针对样品进行压痕,使样品损伤层厚度为2‑200nm;在透射电镜中对样品的损伤层进行原位纳米压痕实验。本发明实现了硅的损伤层透射电镜原位纳米压痕实验,并且能够进行原子尺度表征。

Description

一种硅的损伤层透射电镜原位纳米压痕方法
技术领域
本发明属于透射电镜原位纳米力学测试技术领域,涉及纳米压痕方法,特别涉及一种硅的损伤层透射电镜原位纳米压痕方法以及硅片磨粒加工机理研究方法。
背景技术
硅由于储量丰富、具有优异的光电性能,广泛应用于半导体、微电子和光电子产业。传统的机械加工往往会导致硅片表面产生一层较厚的损伤层,而表面损伤层会严重影响器件的性能。超精密磨削方法具有磨削效率高,面型精度好等综合优点,广泛应用于硅片的超精密加工领域,主要用金刚石砂轮对硅片进行超精密磨削,但磨削后硅片的表面损伤层厚度一般大于160nm。因此,通常需要化学机械抛光去除超精密磨削过程中产生的表面损伤层,但化学机械抛光是超精密加工过程中时间和成本最高的一种方法,超精密磨削过程中产生的表面损伤层越薄,化学机械抛光用时越短,成本越低,因此,减小超精密磨削过程中产生的表面损伤层厚度对半导体、微电子、光电子等领域具有重要的现实意义。
减小超精密磨削过程中产生的表面损伤层厚度,就需要知道超精密磨削加工机理,超精密磨削是利用金刚石磨粒不断去除损伤层的过程,在损伤层被去除的同时又不断产生新的损伤层。但是,由于研究技术条件的限制,超精密磨削过程中损伤层的产生过程并不清楚。近年来随着透射电镜原位纳米力学测试技术的发展,研究人员对纳米尺度的晶体硅进行原位压缩实验,用于探索晶体硅到非晶硅的转变过程,但该实验方法中样品只受到单轴压缩应力,且样品为没有损伤层的晶体硅,实验条件与超精密磨削过程相差较大,因此实验结果与超精密磨削结果不同。压痕实验中,样品受力复杂,除了受到轴向压缩应力,还受到剪切应力,与超精密磨削过程中样品受力类似。因此,开发一种硅的损伤层透射电镜原位纳米压痕实验方法,对研究硅片超精密磨削机理是十分重要的。
发明内容
一种硅的损伤层透射电镜原位纳米压痕方法,采用湿法刻蚀与离子束刻蚀方法制备出楔形硅样品,在透射电镜中用金刚石压针压制出硅的损伤层,损伤层厚度为2-200nm,对硅的损伤层进行原位纳米压痕实验,实现了硅的损伤层透射电镜原位纳米压痕实验,并且能够进行原子尺度表征。
本发明的技术方案:
采用湿法刻蚀与离子束刻蚀方法制备出楔形硅样品,楔形硅顶部宽度为80-100nm,压痕实验的压针为cube-corner金刚石压针,压针曲率半径为50-70nm;利用聚焦离子束对刻蚀出的楔形硅进行减薄和修整,减薄采用离子束束流为30kV:50-80nA,修整采用离子束束流为5kV:1-6pA,使楔形硅顶部宽度为80-100nm。用导电银胶将样品固定在透射电镜原位纳米力学系统的样品座上,在透射电镜中用压针对样品进行压痕,使样品损伤层厚度为2-200nm;在透射电镜中对样品的损伤层进行原位纳米压痕实验。本发明实现了硅的损伤层透射电镜原位纳米压痕实验,并且能够进行原子尺度表征。
样品为单晶硅片,金刚石压针为cube-corner压针,压针曲率半径为50-70nm。单晶硅具有优异的光电性能,广泛应用于半导体、微电子和光电子产业,对单晶硅进行超精密磨削的工具往往是金刚石砂轮,选择曲率半径为50-70nm的cube-corner金刚石压针,在进行压痕实验过程中样品可以受到较大的应力,同时样品受力复杂,更接近实际的超精密磨削过程。
利用金刚石笔将硅片切成长度为3-5mm,宽度为2-3mm的块体。为了能使样品固定在透射电镜原位纳米力学测试样品杆上,利用金刚石笔将硅片切成长度为3-5mm,宽度为2-3mm的块体,样品过大会触碰透射电镜极靴,样品过小会增加样品制备的难度。
将硅片表面甩一层厚度为100-300nm的电子束光刻胶,利用电子束刻蚀出宽度为400-800nm,长度为10-60μm的矩形图案。电子束光刻技术是目前已知分辨率最高的光刻技术,并且电子射线波长小,衍射效应可以忽略,所以选择用电子束刻蚀,由于电子束刻蚀速率较慢,所以电子束光刻胶厚度选择100-300nm。
将样品表面镀一层厚度为1-3μm的SiO2保护层。保护层选用SiO2,是因为SiO2膜对碱液具有良好的抗刻蚀性能,在FH溶液中,SiO2的刻蚀速率比Si的刻蚀速率高,所以SiO2膜最终很容易去掉。
将整个样品浸泡在丙酮中超声清洗10-30分钟。丙酮可以有效溶解光刻胶,将整个样品浸泡在丙酮中超声清洗10-30分钟,用于去除样品表面的光刻胶以及光刻胶上面的SiO2保护层,只留下矩形图案的保护层。
用去离子水对样品进行清洗,并用压缩气体将样品吹干,将整个样品浸泡在NaOH溶液中进行刻蚀,刻蚀时间为15-30分钟。NaOH溶液可以刻蚀Si而保护SiO2膜下面的Si不被刻蚀。
用去离子水对样品进行清洗,并用压缩气体将样品吹干,将整个样品浸泡在HF溶液中进行刻蚀,刻蚀时间5-10分钟。HF溶液对SiO2的刻蚀速率较快,将整个样品浸泡在HF溶液中刻蚀5-10分钟,将SiO2膜除去。
用去离子水对样品进行清洗,并用压缩气体将样品吹干,利用聚焦离子束对刻蚀出的楔形硅进行减薄和修整,减薄采用离子束束流为30kV:50-80nA,修整采用离子束束流为5kV:1-6pA,使楔形硅顶部宽度为80-100nm。要对样品进行原子尺度的观察,样品厚度要小于100nm,所以要对刻蚀之后的楔形硅样品进行减薄,由于压针曲率半径为50-70nm,所以楔形硅顶部宽度最终为80-100nm,由于较大的离子束束流会对样品造成损伤,所以减薄时离子束束流选择30kV:50-120pA,并用5kV:10-30pA束流进行修整,用于去除损伤层。
用导电银胶将样品固定在透射电镜原位纳米力学系统的样品座上。在透射电镜中,导电性越好,成像越清晰,并且越稳定,所以利用导电银胶将样品固定在样品座上。
将样品座利用螺钉固定在样品杆上,用金刚石压针在透射电镜中对样品进行压痕,使样品损伤层厚度为2-200nm。在透射电镜中对样品进行压痕,可以精准控制损伤层厚度,从而可以对不同厚度的损伤层进行原位纳米压痕实验。
在透射电镜中对样品的损伤层进行原位纳米压痕实验,从而实现对损伤层的应力诱导损伤起源和演变的实时观测。透射电镜原位纳米力学测试可以实现原子及纳米尺度的加载变形,是研究磨粒加工导致的损伤层的纳米尺寸材料去除机理和损伤起源及演变的有效方法。
本发明的效果和益处是采用湿法刻蚀与离子束刻蚀方法制备出楔形硅样品,实现了硅的损伤层透射电镜原位纳米压痕实验,并且能够进行原子尺度表征。
附图说明
图1a是无损伤层的楔形硅样品的透射电镜低倍形貌图,图1b为图1a方框部分的透射电镜高分辨图。
图2a是损伤层厚度为67nm的楔形硅样品的透射电镜低倍形貌图,图2b为图2a方框部分的透射电镜高分辨图。
图3a是对楔形硅样品损伤层进行透射电镜原位纳米压痕之后的透射电镜低倍形貌图,图3b为图3a方框部分的透射电镜高分辨图。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
实施例
利用金刚石笔将硅片切成长度为4mm,宽度为3mm的块体,将硅片表面甩一层厚度为200nm的电子束光刻胶,利用电子束刻蚀出宽度为600nm,长度为30μm的矩形图案;将样品表面镀一层厚度为1.5μm的SiO2保护层,将整个样品浸泡在丙酮中超声清洗20分钟,用于去除电子束光刻胶以及光刻胶上面的SiO2保护层,只留下矩形图案的SiO2保护层;用去离子水对样品进行清洗,并用压缩气体将样品吹干,将整个样品浸泡在NaOH溶液中进行刻蚀,刻蚀时间为25分钟;用去离子水对样品进行清洗,并用压缩气体将样品吹干,将整个样品浸泡在HF溶液中进行刻蚀,刻蚀时间为8分钟,用于去除SiO2保护层;用去离子水对样品进行清洗,并用压缩气体将样品吹干,利用聚焦离子束对刻蚀出的楔形硅进行减薄和修整,减薄采用的离子束束流为30kV:50pA,修整采用的离子束束流为5kV:20pA,使楔形硅顶部宽度为80nm;利用导电银胶将样品固定在透射电镜原位纳米力学系统样品杆的样品座上,将样品座利用螺钉固定在样品杆上,制备好的楔形硅样品的透射电镜图如图1a所示,图1b为图1a方框部分的透射电镜高分辨图,可看出样品为无晶格缺陷的晶体硅;用曲率半径为66nm的cube-corner金刚石压针在透射电镜中对样品进行压痕,使样品损伤层厚度为67nm,如图2a所示,图2b为图2a方框部分的透射电镜高分辨图;在透射电镜中对样品的损伤层进行原位压痕实验,图3a是对楔形硅样品损伤层进行透射电镜原位纳米压痕之后的透射电镜低倍形貌图,图3b为图3a方框部分的透射电镜高分辨图。

Claims (1)

1.一种硅的损伤层透射电镜原位纳米压痕方法,采用湿法刻蚀与离子束刻蚀方法制备出楔形硅样品,在透射电镜中用金刚石压针压制出硅的损伤层,对硅的损伤层进行原位纳米压痕实验,其特征在于:
(1)样品为单晶硅片,金刚石压针为cube-corner压针,压针曲率半径为50-70nm;
(2)利用金刚石笔将单晶硅片切成长度为3-5mm,宽度为2-3mm的块体;
(3)将单晶硅片表面甩一层厚度为100-300nm的电子束光刻胶,利用电子束刻蚀出宽度为400-800nm,长度为10-60μm的矩形图案;
(4)将样品表面镀一层厚度为1-3μm的SiO2保护层;
(5)将整个样品浸泡在丙酮中超声清洗10-30分钟;
(6)用去离子水对样品进行清洗,并用压缩气体将样品吹干,将整个样品浸泡在NaOH溶液中进行刻蚀,刻蚀时间为15-30分钟,形成楔形硅;
(7)用去离子水对楔形硅进行清洗,并用压缩气体将楔形硅吹干,楔形硅浸泡在HF溶液中进行刻蚀,刻蚀时间5-10分钟,以去除SiO2保护层;
(8)用去离子水对样品进行清洗,并用压缩气体将样品吹干,利用聚焦离子束对刻蚀出的楔形硅进行减薄和修整,减薄采用离子束束流为30kV:50-80nA,修整采用离子束束流为5kV:1-6pA,使楔形硅顶部的宽度为80-100nm;
(9)用导电银胶将样品固定在透射电镜原位纳米力学系统的样品座上;
(10)将样品座利用螺钉固定在样品杆上,用金刚石压针在透射电镜中对样品进行压痕,使样品损伤层厚度为2-200nm;
(11)在透射电镜中对样品的损伤层进行原位纳米压痕实验,从而实现对损伤层的应力诱导损伤起源和演变的实时观测。
CN201910120919.7A 2019-02-19 2019-02-19 一种硅的损伤层透射电镜原位纳米压痕方法 Expired - Fee Related CN109708944B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910120919.7A CN109708944B (zh) 2019-02-19 2019-02-19 一种硅的损伤层透射电镜原位纳米压痕方法
PCT/CN2019/077962 WO2020168601A1 (zh) 2019-02-19 2019-03-13 一种硅的损伤层透射电镜原位纳米压痕方法
US16/761,345 US11099110B2 (en) 2019-02-19 2019-03-13 Method of in-situ TEM nanoindentation for damaged layer of silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910120919.7A CN109708944B (zh) 2019-02-19 2019-02-19 一种硅的损伤层透射电镜原位纳米压痕方法

Publications (2)

Publication Number Publication Date
CN109708944A CN109708944A (zh) 2019-05-03
CN109708944B true CN109708944B (zh) 2021-03-26

Family

ID=66264449

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910120919.7A Expired - Fee Related CN109708944B (zh) 2019-02-19 2019-02-19 一种硅的损伤层透射电镜原位纳米压痕方法

Country Status (3)

Country Link
US (1) US11099110B2 (zh)
CN (1) CN109708944B (zh)
WO (1) WO2020168601A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110940683A (zh) * 2019-11-18 2020-03-31 中国科学院金属研究所 通过维氏硬度计结合透射电镜实现原位压缩观察的方法
CN114965002A (zh) * 2021-02-25 2022-08-30 胜科纳米(苏州)有限公司 用于器件级纳米膜层的压痕测试方法
CN116046825B (zh) * 2023-04-03 2023-06-27 中国核动力研究设计院 辐照后弥散燃料纳米压痕试样及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102816911A (zh) * 2012-08-26 2012-12-12 大连理工大学 一种机械变形制备超高硬度单向连续无晶界纳米孪晶方法
WO2013055368A1 (en) * 2011-10-14 2013-04-18 Memc Electronic Materials, Inc. Method to delineate crystal related defects
CN105223213A (zh) * 2015-09-28 2016-01-06 北京工业大学 一种透射电镜双倾原位纳米压痕平台
WO2018000350A1 (zh) * 2016-06-30 2018-01-04 周肇梅 一种柔性膜脆断方法
CN107621471A (zh) * 2017-08-28 2018-01-23 大连理工大学 微米合金含有等长单个纳米孪晶的透射电镜原位纳米压痕方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494829A (en) * 1992-07-31 1996-02-27 Biostar, Inc. Devices and methods for detection of an analyte based upon light interference
JPH1160735A (ja) * 1996-12-09 1999-03-05 Toshiba Corp ポリシランおよびパターン形成方法
US7107694B2 (en) * 2004-06-29 2006-09-19 Hysitron, Incorporated Method for observation of microstructural surface features in heterogeneous materials
JP2006039260A (ja) * 2004-07-28 2006-02-09 Sii Nanotechnology Inc 原子間力顕微鏡を用いたフォトマスクのパーティクル除去方法
US7878071B2 (en) * 2006-12-22 2011-02-01 California Institute Of Technology Nanoindenter tip for uniaxial tension and compression testing
US8288737B1 (en) * 2007-04-23 2012-10-16 South Bay Technology, Inc. Ion sputter removal from thin microscopy samples with ions extracted from an RF generated plasma
US20130277573A1 (en) 2011-01-07 2013-10-24 Dune Sciences, Inc. Functionalized carbon membranes
CN102621169B (zh) 2012-04-11 2013-11-06 大连理工大学 一种ii-vi族软脆晶体超精密加工样品的定点原子成像方法
KR102207486B1 (ko) * 2013-02-18 2021-01-26 다이니폰 인사츠 가부시키가이샤 전지용 포장 재료
KR20170138444A (ko) * 2015-04-20 2017-12-15 쎄코 툴스 에이비 코팅된 절삭 공구 및 절삭 공구를 코팅하는 방법
CN106033040A (zh) 2016-01-26 2016-10-19 江苏省(丹阳)高性能合金材料研究院 一种金属基复合材料剪切强度的测试方法及试样制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013055368A1 (en) * 2011-10-14 2013-04-18 Memc Electronic Materials, Inc. Method to delineate crystal related defects
CN102816911A (zh) * 2012-08-26 2012-12-12 大连理工大学 一种机械变形制备超高硬度单向连续无晶界纳米孪晶方法
CN105223213A (zh) * 2015-09-28 2016-01-06 北京工业大学 一种透射电镜双倾原位纳米压痕平台
WO2018000350A1 (zh) * 2016-06-30 2018-01-04 周肇梅 一种柔性膜脆断方法
CN107621471A (zh) * 2017-08-28 2018-01-23 大连理工大学 微米合金含有等长单个纳米孪晶的透射电镜原位纳米压痕方法

Also Published As

Publication number Publication date
US11099110B2 (en) 2021-08-24
WO2020168601A1 (zh) 2020-08-27
US20210080361A1 (en) 2021-03-18
CN109708944A (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
CN109708944B (zh) 一种硅的损伤层透射电镜原位纳米压痕方法
Li et al. Molecular dynamics simulation of laser assisted grinding of GaN crystals
TW201036059A (en) Methods for damage etch and texturing of silicon single crystal substrates
CN104819876B (zh) 一种用于透射电镜原位加电场和应力的薄膜样品制备方法
Inoue et al. Influence of Si wafer thinning processes on (sub) surface defects
US9934995B2 (en) Method for manufacturing a handle substrate for the temporary bonding of a substrate
WO2019200760A1 (zh) 一维材料透射电镜力 - 电耦合原位测试方法
EP2246882A1 (en) Method for transferring a layer from a donor substrate onto a handle substrate
Tsai et al. Polishing single-crystal silicon carbide with porous structure diamond and graphene-TiO 2 slurries
Sopori et al. Characterizing damage on Si wafer surfaces cut by slurry and diamond wire sawing
Wu et al. Surface damage and metal-catalyzed chemical etching investigation of multicrystalline silicon by diamond wire sawing
CN107287597A (zh) 单晶硅表面处理用的制绒剂及其制作方法和使用方法
CN110877255B (zh) 一种熔石英光学表面超光滑加工的组合加工工艺
Iqbal et al. Highly efficient and less time consuming additive free anisotropic etching of silicon wafers for photovoltaics
Wu et al. Effects of crystal planes on topography evolution of silicon surface during nanoscratch-induced selective etching
CN109972204A (zh) 超薄超平晶片和制备该超薄超平晶片的方法
CN108723897B (zh) 单晶SiC的离子注入表面改性与纳米尺度抛光方法
Pandey et al. Silicon wafers; Its manufacturing processes and finishing techniques: An Overview
CN106316468B (zh) 采用afm金刚石探针对陶瓷材料进行纳米条纹阵列加工的方法
Luo et al. Tribochemical mechanisms of abrasives for SiC and sapphire substrates in nanoscale polishing
CN116652700A (zh) 一种锑化镓单晶片的手工抛光方法
CN106744671A (zh) 一种基于紫外臭氧的单晶硅表面纳米加工方法
Burger et al. Aspects of the surface roughness of ceramic bonding tools on a nanometer scale investigated with atomic force microscopy
CN103072938B (zh) 一种平面碳膜电极的制备方法
CN106567131A (zh) 基于压痕诱导选择性刻蚀的单晶硅表面针尖的加工方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210326

Termination date: 20220219

CF01 Termination of patent right due to non-payment of annual fee