CN109708944B - 一种硅的损伤层透射电镜原位纳米压痕方法 - Google Patents
一种硅的损伤层透射电镜原位纳米压痕方法 Download PDFInfo
- Publication number
- CN109708944B CN109708944B CN201910120919.7A CN201910120919A CN109708944B CN 109708944 B CN109708944 B CN 109708944B CN 201910120919 A CN201910120919 A CN 201910120919A CN 109708944 B CN109708944 B CN 109708944B
- Authority
- CN
- China
- Prior art keywords
- sample
- electron microscope
- silicon
- transmission electron
- wedge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 53
- 239000010703 silicon Substances 0.000 title claims abstract description 53
- 230000005540 biological transmission Effects 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 29
- 238000007373 indentation Methods 0.000 title claims abstract description 21
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 52
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 22
- 238000005530 etching Methods 0.000 claims abstract description 19
- 238000002474 experimental method Methods 0.000 claims abstract description 18
- 238000003825 pressing Methods 0.000 claims abstract description 15
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000000853 adhesive Substances 0.000 claims abstract description 5
- 230000001070 adhesive effect Effects 0.000 claims abstract description 5
- 229910052709 silver Inorganic materials 0.000 claims abstract description 5
- 239000004332 silver Substances 0.000 claims abstract description 5
- 238000001039 wet etching Methods 0.000 claims abstract description 5
- 239000010410 layer Substances 0.000 claims description 48
- 229910003460 diamond Inorganic materials 0.000 claims description 16
- 239000010432 diamond Substances 0.000 claims description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 12
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 10
- 239000011241 protective layer Substances 0.000 claims description 10
- 229910052681 coesite Inorganic materials 0.000 claims description 9
- 229910052906 cristobalite Inorganic materials 0.000 claims description 9
- 239000008367 deionised water Substances 0.000 claims description 9
- 229910021641 deionized water Inorganic materials 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 9
- 239000000377 silicon dioxide Substances 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 238000002791 soaking Methods 0.000 claims description 9
- 229910052682 stishovite Inorganic materials 0.000 claims description 9
- 229910052905 tridymite Inorganic materials 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 238000004140 cleaning Methods 0.000 claims description 8
- 238000010894 electron beam technology Methods 0.000 claims description 7
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 6
- 229920002120 photoresistant polymer Polymers 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 238000009963 fulling Methods 0.000 claims 1
- 238000012360 testing method Methods 0.000 abstract description 5
- 238000012512 characterization method Methods 0.000 abstract description 3
- 238000000227 grinding Methods 0.000 description 18
- 235000012431 wafers Nutrition 0.000 description 11
- 229910021419 crystalline silicon Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000000609 electron-beam lithography Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000004377 microelectronic Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 238000009966 trimming Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/286—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/32—Polishing; Etching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/34—Purifying; Cleaning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/40—Investigating hardness or rebound hardness
- G01N3/42—Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q30/00—Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
- G01Q30/20—Sample handling devices or methods
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/286—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
- G01N2001/2873—Cutting or cleaving
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/003—Generation of the force
- G01N2203/0053—Cutting or drilling tools
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/0076—Hardness, compressibility or resistance to crushing
- G01N2203/0078—Hardness, compressibility or resistance to crushing using indentation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/026—Specifications of the specimen
- G01N2203/0286—Miniature specimen; Testing on microregions of a specimen
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/0641—Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
- G01N2203/0647—Image analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/40—Imaging
- G01N2223/418—Imaging electron microscope
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/61—Specific applications or type of materials thin films, coatings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/611—Specific applications or type of materials patterned objects; electronic devices
- G01N2223/6116—Specific applications or type of materials patterned objects; electronic devices semiconductor wafer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/646—Specific applications or type of materials flaws, defects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Sampling And Sample Adjustment (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
本发明公开了一种硅的损伤层透射电镜原位纳米压痕方法,属于透射电镜原位纳米力学测试领域。采用湿法刻蚀与离子束刻蚀方法制备出楔形硅样品;利用聚焦离子束对刻蚀出的楔形硅进行减薄和修整,减薄采用离子束束流为30kV:50‑80nA,修整采用离子束束流为5kV:1‑6pA,使楔形硅顶部宽度为80‑100nm。用导电银胶将样品固定在透射电镜原位纳米力学系统的样品座上,在透射电镜中用压针对样品进行压痕,使样品损伤层厚度为2‑200nm;在透射电镜中对样品的损伤层进行原位纳米压痕实验。本发明实现了硅的损伤层透射电镜原位纳米压痕实验,并且能够进行原子尺度表征。
Description
技术领域
本发明属于透射电镜原位纳米力学测试技术领域,涉及纳米压痕方法,特别涉及一种硅的损伤层透射电镜原位纳米压痕方法以及硅片磨粒加工机理研究方法。
背景技术
硅由于储量丰富、具有优异的光电性能,广泛应用于半导体、微电子和光电子产业。传统的机械加工往往会导致硅片表面产生一层较厚的损伤层,而表面损伤层会严重影响器件的性能。超精密磨削方法具有磨削效率高,面型精度好等综合优点,广泛应用于硅片的超精密加工领域,主要用金刚石砂轮对硅片进行超精密磨削,但磨削后硅片的表面损伤层厚度一般大于160nm。因此,通常需要化学机械抛光去除超精密磨削过程中产生的表面损伤层,但化学机械抛光是超精密加工过程中时间和成本最高的一种方法,超精密磨削过程中产生的表面损伤层越薄,化学机械抛光用时越短,成本越低,因此,减小超精密磨削过程中产生的表面损伤层厚度对半导体、微电子、光电子等领域具有重要的现实意义。
减小超精密磨削过程中产生的表面损伤层厚度,就需要知道超精密磨削加工机理,超精密磨削是利用金刚石磨粒不断去除损伤层的过程,在损伤层被去除的同时又不断产生新的损伤层。但是,由于研究技术条件的限制,超精密磨削过程中损伤层的产生过程并不清楚。近年来随着透射电镜原位纳米力学测试技术的发展,研究人员对纳米尺度的晶体硅进行原位压缩实验,用于探索晶体硅到非晶硅的转变过程,但该实验方法中样品只受到单轴压缩应力,且样品为没有损伤层的晶体硅,实验条件与超精密磨削过程相差较大,因此实验结果与超精密磨削结果不同。压痕实验中,样品受力复杂,除了受到轴向压缩应力,还受到剪切应力,与超精密磨削过程中样品受力类似。因此,开发一种硅的损伤层透射电镜原位纳米压痕实验方法,对研究硅片超精密磨削机理是十分重要的。
发明内容
一种硅的损伤层透射电镜原位纳米压痕方法,采用湿法刻蚀与离子束刻蚀方法制备出楔形硅样品,在透射电镜中用金刚石压针压制出硅的损伤层,损伤层厚度为2-200nm,对硅的损伤层进行原位纳米压痕实验,实现了硅的损伤层透射电镜原位纳米压痕实验,并且能够进行原子尺度表征。
本发明的技术方案:
采用湿法刻蚀与离子束刻蚀方法制备出楔形硅样品,楔形硅顶部宽度为80-100nm,压痕实验的压针为cube-corner金刚石压针,压针曲率半径为50-70nm;利用聚焦离子束对刻蚀出的楔形硅进行减薄和修整,减薄采用离子束束流为30kV:50-80nA,修整采用离子束束流为5kV:1-6pA,使楔形硅顶部宽度为80-100nm。用导电银胶将样品固定在透射电镜原位纳米力学系统的样品座上,在透射电镜中用压针对样品进行压痕,使样品损伤层厚度为2-200nm;在透射电镜中对样品的损伤层进行原位纳米压痕实验。本发明实现了硅的损伤层透射电镜原位纳米压痕实验,并且能够进行原子尺度表征。
样品为单晶硅片,金刚石压针为cube-corner压针,压针曲率半径为50-70nm。单晶硅具有优异的光电性能,广泛应用于半导体、微电子和光电子产业,对单晶硅进行超精密磨削的工具往往是金刚石砂轮,选择曲率半径为50-70nm的cube-corner金刚石压针,在进行压痕实验过程中样品可以受到较大的应力,同时样品受力复杂,更接近实际的超精密磨削过程。
利用金刚石笔将硅片切成长度为3-5mm,宽度为2-3mm的块体。为了能使样品固定在透射电镜原位纳米力学测试样品杆上,利用金刚石笔将硅片切成长度为3-5mm,宽度为2-3mm的块体,样品过大会触碰透射电镜极靴,样品过小会增加样品制备的难度。
将硅片表面甩一层厚度为100-300nm的电子束光刻胶,利用电子束刻蚀出宽度为400-800nm,长度为10-60μm的矩形图案。电子束光刻技术是目前已知分辨率最高的光刻技术,并且电子射线波长小,衍射效应可以忽略,所以选择用电子束刻蚀,由于电子束刻蚀速率较慢,所以电子束光刻胶厚度选择100-300nm。
将样品表面镀一层厚度为1-3μm的SiO2保护层。保护层选用SiO2,是因为SiO2膜对碱液具有良好的抗刻蚀性能,在FH溶液中,SiO2的刻蚀速率比Si的刻蚀速率高,所以SiO2膜最终很容易去掉。
将整个样品浸泡在丙酮中超声清洗10-30分钟。丙酮可以有效溶解光刻胶,将整个样品浸泡在丙酮中超声清洗10-30分钟,用于去除样品表面的光刻胶以及光刻胶上面的SiO2保护层,只留下矩形图案的保护层。
用去离子水对样品进行清洗,并用压缩气体将样品吹干,将整个样品浸泡在NaOH溶液中进行刻蚀,刻蚀时间为15-30分钟。NaOH溶液可以刻蚀Si而保护SiO2膜下面的Si不被刻蚀。
用去离子水对样品进行清洗,并用压缩气体将样品吹干,将整个样品浸泡在HF溶液中进行刻蚀,刻蚀时间5-10分钟。HF溶液对SiO2的刻蚀速率较快,将整个样品浸泡在HF溶液中刻蚀5-10分钟,将SiO2膜除去。
用去离子水对样品进行清洗,并用压缩气体将样品吹干,利用聚焦离子束对刻蚀出的楔形硅进行减薄和修整,减薄采用离子束束流为30kV:50-80nA,修整采用离子束束流为5kV:1-6pA,使楔形硅顶部宽度为80-100nm。要对样品进行原子尺度的观察,样品厚度要小于100nm,所以要对刻蚀之后的楔形硅样品进行减薄,由于压针曲率半径为50-70nm,所以楔形硅顶部宽度最终为80-100nm,由于较大的离子束束流会对样品造成损伤,所以减薄时离子束束流选择30kV:50-120pA,并用5kV:10-30pA束流进行修整,用于去除损伤层。
用导电银胶将样品固定在透射电镜原位纳米力学系统的样品座上。在透射电镜中,导电性越好,成像越清晰,并且越稳定,所以利用导电银胶将样品固定在样品座上。
将样品座利用螺钉固定在样品杆上,用金刚石压针在透射电镜中对样品进行压痕,使样品损伤层厚度为2-200nm。在透射电镜中对样品进行压痕,可以精准控制损伤层厚度,从而可以对不同厚度的损伤层进行原位纳米压痕实验。
在透射电镜中对样品的损伤层进行原位纳米压痕实验,从而实现对损伤层的应力诱导损伤起源和演变的实时观测。透射电镜原位纳米力学测试可以实现原子及纳米尺度的加载变形,是研究磨粒加工导致的损伤层的纳米尺寸材料去除机理和损伤起源及演变的有效方法。
本发明的效果和益处是采用湿法刻蚀与离子束刻蚀方法制备出楔形硅样品,实现了硅的损伤层透射电镜原位纳米压痕实验,并且能够进行原子尺度表征。
附图说明
图1a是无损伤层的楔形硅样品的透射电镜低倍形貌图,图1b为图1a方框部分的透射电镜高分辨图。
图2a是损伤层厚度为67nm的楔形硅样品的透射电镜低倍形貌图,图2b为图2a方框部分的透射电镜高分辨图。
图3a是对楔形硅样品损伤层进行透射电镜原位纳米压痕之后的透射电镜低倍形貌图,图3b为图3a方框部分的透射电镜高分辨图。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
实施例
利用金刚石笔将硅片切成长度为4mm,宽度为3mm的块体,将硅片表面甩一层厚度为200nm的电子束光刻胶,利用电子束刻蚀出宽度为600nm,长度为30μm的矩形图案;将样品表面镀一层厚度为1.5μm的SiO2保护层,将整个样品浸泡在丙酮中超声清洗20分钟,用于去除电子束光刻胶以及光刻胶上面的SiO2保护层,只留下矩形图案的SiO2保护层;用去离子水对样品进行清洗,并用压缩气体将样品吹干,将整个样品浸泡在NaOH溶液中进行刻蚀,刻蚀时间为25分钟;用去离子水对样品进行清洗,并用压缩气体将样品吹干,将整个样品浸泡在HF溶液中进行刻蚀,刻蚀时间为8分钟,用于去除SiO2保护层;用去离子水对样品进行清洗,并用压缩气体将样品吹干,利用聚焦离子束对刻蚀出的楔形硅进行减薄和修整,减薄采用的离子束束流为30kV:50pA,修整采用的离子束束流为5kV:20pA,使楔形硅顶部宽度为80nm;利用导电银胶将样品固定在透射电镜原位纳米力学系统样品杆的样品座上,将样品座利用螺钉固定在样品杆上,制备好的楔形硅样品的透射电镜图如图1a所示,图1b为图1a方框部分的透射电镜高分辨图,可看出样品为无晶格缺陷的晶体硅;用曲率半径为66nm的cube-corner金刚石压针在透射电镜中对样品进行压痕,使样品损伤层厚度为67nm,如图2a所示,图2b为图2a方框部分的透射电镜高分辨图;在透射电镜中对样品的损伤层进行原位压痕实验,图3a是对楔形硅样品损伤层进行透射电镜原位纳米压痕之后的透射电镜低倍形貌图,图3b为图3a方框部分的透射电镜高分辨图。
Claims (1)
1.一种硅的损伤层透射电镜原位纳米压痕方法,采用湿法刻蚀与离子束刻蚀方法制备出楔形硅样品,在透射电镜中用金刚石压针压制出硅的损伤层,对硅的损伤层进行原位纳米压痕实验,其特征在于:
(1)样品为单晶硅片,金刚石压针为cube-corner压针,压针曲率半径为50-70nm;
(2)利用金刚石笔将单晶硅片切成长度为3-5mm,宽度为2-3mm的块体;
(3)将单晶硅片表面甩一层厚度为100-300nm的电子束光刻胶,利用电子束刻蚀出宽度为400-800nm,长度为10-60μm的矩形图案;
(4)将样品表面镀一层厚度为1-3μm的SiO2保护层;
(5)将整个样品浸泡在丙酮中超声清洗10-30分钟;
(6)用去离子水对样品进行清洗,并用压缩气体将样品吹干,将整个样品浸泡在NaOH溶液中进行刻蚀,刻蚀时间为15-30分钟,形成楔形硅;
(7)用去离子水对楔形硅进行清洗,并用压缩气体将楔形硅吹干,楔形硅浸泡在HF溶液中进行刻蚀,刻蚀时间5-10分钟,以去除SiO2保护层;
(8)用去离子水对样品进行清洗,并用压缩气体将样品吹干,利用聚焦离子束对刻蚀出的楔形硅进行减薄和修整,减薄采用离子束束流为30kV:50-80nA,修整采用离子束束流为5kV:1-6pA,使楔形硅顶部的宽度为80-100nm;
(9)用导电银胶将样品固定在透射电镜原位纳米力学系统的样品座上;
(10)将样品座利用螺钉固定在样品杆上,用金刚石压针在透射电镜中对样品进行压痕,使样品损伤层厚度为2-200nm;
(11)在透射电镜中对样品的损伤层进行原位纳米压痕实验,从而实现对损伤层的应力诱导损伤起源和演变的实时观测。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910120919.7A CN109708944B (zh) | 2019-02-19 | 2019-02-19 | 一种硅的损伤层透射电镜原位纳米压痕方法 |
PCT/CN2019/077962 WO2020168601A1 (zh) | 2019-02-19 | 2019-03-13 | 一种硅的损伤层透射电镜原位纳米压痕方法 |
US16/761,345 US11099110B2 (en) | 2019-02-19 | 2019-03-13 | Method of in-situ TEM nanoindentation for damaged layer of silicon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910120919.7A CN109708944B (zh) | 2019-02-19 | 2019-02-19 | 一种硅的损伤层透射电镜原位纳米压痕方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109708944A CN109708944A (zh) | 2019-05-03 |
CN109708944B true CN109708944B (zh) | 2021-03-26 |
Family
ID=66264449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910120919.7A Expired - Fee Related CN109708944B (zh) | 2019-02-19 | 2019-02-19 | 一种硅的损伤层透射电镜原位纳米压痕方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11099110B2 (zh) |
CN (1) | CN109708944B (zh) |
WO (1) | WO2020168601A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110940683A (zh) * | 2019-11-18 | 2020-03-31 | 中国科学院金属研究所 | 通过维氏硬度计结合透射电镜实现原位压缩观察的方法 |
CN114965002A (zh) * | 2021-02-25 | 2022-08-30 | 胜科纳米(苏州)有限公司 | 用于器件级纳米膜层的压痕测试方法 |
CN116046825B (zh) * | 2023-04-03 | 2023-06-27 | 中国核动力研究设计院 | 辐照后弥散燃料纳米压痕试样及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102816911A (zh) * | 2012-08-26 | 2012-12-12 | 大连理工大学 | 一种机械变形制备超高硬度单向连续无晶界纳米孪晶方法 |
WO2013055368A1 (en) * | 2011-10-14 | 2013-04-18 | Memc Electronic Materials, Inc. | Method to delineate crystal related defects |
CN105223213A (zh) * | 2015-09-28 | 2016-01-06 | 北京工业大学 | 一种透射电镜双倾原位纳米压痕平台 |
WO2018000350A1 (zh) * | 2016-06-30 | 2018-01-04 | 周肇梅 | 一种柔性膜脆断方法 |
CN107621471A (zh) * | 2017-08-28 | 2018-01-23 | 大连理工大学 | 微米合金含有等长单个纳米孪晶的透射电镜原位纳米压痕方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5494829A (en) * | 1992-07-31 | 1996-02-27 | Biostar, Inc. | Devices and methods for detection of an analyte based upon light interference |
JPH1160735A (ja) * | 1996-12-09 | 1999-03-05 | Toshiba Corp | ポリシランおよびパターン形成方法 |
US7107694B2 (en) * | 2004-06-29 | 2006-09-19 | Hysitron, Incorporated | Method for observation of microstructural surface features in heterogeneous materials |
JP2006039260A (ja) * | 2004-07-28 | 2006-02-09 | Sii Nanotechnology Inc | 原子間力顕微鏡を用いたフォトマスクのパーティクル除去方法 |
US7878071B2 (en) * | 2006-12-22 | 2011-02-01 | California Institute Of Technology | Nanoindenter tip for uniaxial tension and compression testing |
US8288737B1 (en) * | 2007-04-23 | 2012-10-16 | South Bay Technology, Inc. | Ion sputter removal from thin microscopy samples with ions extracted from an RF generated plasma |
US20130277573A1 (en) | 2011-01-07 | 2013-10-24 | Dune Sciences, Inc. | Functionalized carbon membranes |
CN102621169B (zh) | 2012-04-11 | 2013-11-06 | 大连理工大学 | 一种ii-vi族软脆晶体超精密加工样品的定点原子成像方法 |
KR102207486B1 (ko) * | 2013-02-18 | 2021-01-26 | 다이니폰 인사츠 가부시키가이샤 | 전지용 포장 재료 |
KR20170138444A (ko) * | 2015-04-20 | 2017-12-15 | 쎄코 툴스 에이비 | 코팅된 절삭 공구 및 절삭 공구를 코팅하는 방법 |
CN106033040A (zh) | 2016-01-26 | 2016-10-19 | 江苏省(丹阳)高性能合金材料研究院 | 一种金属基复合材料剪切强度的测试方法及试样制备方法 |
-
2019
- 2019-02-19 CN CN201910120919.7A patent/CN109708944B/zh not_active Expired - Fee Related
- 2019-03-13 US US16/761,345 patent/US11099110B2/en active Active
- 2019-03-13 WO PCT/CN2019/077962 patent/WO2020168601A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013055368A1 (en) * | 2011-10-14 | 2013-04-18 | Memc Electronic Materials, Inc. | Method to delineate crystal related defects |
CN102816911A (zh) * | 2012-08-26 | 2012-12-12 | 大连理工大学 | 一种机械变形制备超高硬度单向连续无晶界纳米孪晶方法 |
CN105223213A (zh) * | 2015-09-28 | 2016-01-06 | 北京工业大学 | 一种透射电镜双倾原位纳米压痕平台 |
WO2018000350A1 (zh) * | 2016-06-30 | 2018-01-04 | 周肇梅 | 一种柔性膜脆断方法 |
CN107621471A (zh) * | 2017-08-28 | 2018-01-23 | 大连理工大学 | 微米合金含有等长单个纳米孪晶的透射电镜原位纳米压痕方法 |
Also Published As
Publication number | Publication date |
---|---|
US11099110B2 (en) | 2021-08-24 |
WO2020168601A1 (zh) | 2020-08-27 |
US20210080361A1 (en) | 2021-03-18 |
CN109708944A (zh) | 2019-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109708944B (zh) | 一种硅的损伤层透射电镜原位纳米压痕方法 | |
Li et al. | Molecular dynamics simulation of laser assisted grinding of GaN crystals | |
TW201036059A (en) | Methods for damage etch and texturing of silicon single crystal substrates | |
CN104819876B (zh) | 一种用于透射电镜原位加电场和应力的薄膜样品制备方法 | |
Inoue et al. | Influence of Si wafer thinning processes on (sub) surface defects | |
US9934995B2 (en) | Method for manufacturing a handle substrate for the temporary bonding of a substrate | |
WO2019200760A1 (zh) | 一维材料透射电镜力 - 电耦合原位测试方法 | |
EP2246882A1 (en) | Method for transferring a layer from a donor substrate onto a handle substrate | |
Tsai et al. | Polishing single-crystal silicon carbide with porous structure diamond and graphene-TiO 2 slurries | |
Sopori et al. | Characterizing damage on Si wafer surfaces cut by slurry and diamond wire sawing | |
Wu et al. | Surface damage and metal-catalyzed chemical etching investigation of multicrystalline silicon by diamond wire sawing | |
CN107287597A (zh) | 单晶硅表面处理用的制绒剂及其制作方法和使用方法 | |
CN110877255B (zh) | 一种熔石英光学表面超光滑加工的组合加工工艺 | |
Iqbal et al. | Highly efficient and less time consuming additive free anisotropic etching of silicon wafers for photovoltaics | |
Wu et al. | Effects of crystal planes on topography evolution of silicon surface during nanoscratch-induced selective etching | |
CN109972204A (zh) | 超薄超平晶片和制备该超薄超平晶片的方法 | |
CN108723897B (zh) | 单晶SiC的离子注入表面改性与纳米尺度抛光方法 | |
Pandey et al. | Silicon wafers; Its manufacturing processes and finishing techniques: An Overview | |
CN106316468B (zh) | 采用afm金刚石探针对陶瓷材料进行纳米条纹阵列加工的方法 | |
Luo et al. | Tribochemical mechanisms of abrasives for SiC and sapphire substrates in nanoscale polishing | |
CN116652700A (zh) | 一种锑化镓单晶片的手工抛光方法 | |
CN106744671A (zh) | 一种基于紫外臭氧的单晶硅表面纳米加工方法 | |
Burger et al. | Aspects of the surface roughness of ceramic bonding tools on a nanometer scale investigated with atomic force microscopy | |
CN103072938B (zh) | 一种平面碳膜电极的制备方法 | |
CN106567131A (zh) | 基于压痕诱导选择性刻蚀的单晶硅表面针尖的加工方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210326 Termination date: 20220219 |
|
CF01 | Termination of patent right due to non-payment of annual fee |