WO2020157970A1 - 内燃エンジン - Google Patents

内燃エンジン Download PDF

Info

Publication number
WO2020157970A1
WO2020157970A1 PCT/JP2019/003682 JP2019003682W WO2020157970A1 WO 2020157970 A1 WO2020157970 A1 WO 2020157970A1 JP 2019003682 W JP2019003682 W JP 2019003682W WO 2020157970 A1 WO2020157970 A1 WO 2020157970A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
internal combustion
combustion engine
cylinder head
drive gear
Prior art date
Application number
PCT/JP2019/003682
Other languages
English (en)
French (fr)
Inventor
将之 大谷
佐藤 信彦
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US17/426,784 priority Critical patent/US11781453B2/en
Priority to PCT/JP2019/003682 priority patent/WO2020157970A1/ja
Priority to CN201980090269.4A priority patent/CN113330193B/zh
Priority to EP19913993.2A priority patent/EP3919725B1/en
Priority to JP2020569322A priority patent/JP7088321B2/ja
Publication of WO2020157970A1 publication Critical patent/WO2020157970A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M9/00Lubrication means having pertinent characteristics not provided for in, or of interest apart from, groups F01M1/00 - F01M7/00
    • F01M9/10Lubrication of valve gear or auxiliaries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M9/00Lubrication means having pertinent characteristics not provided for in, or of interest apart from, groups F01M1/00 - F01M7/00
    • F01M9/08Drip lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/02Arrangements of lubricant conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M9/00Lubrication means having pertinent characteristics not provided for in, or of interest apart from, groups F01M1/00 - F01M7/00
    • F01M9/10Lubrication of valve gear or auxiliaries
    • F01M9/105Lubrication of valve gear or auxiliaries using distribution conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M9/00Lubrication means having pertinent characteristics not provided for in, or of interest apart from, groups F01M1/00 - F01M7/00
    • F01M9/10Lubrication of valve gear or auxiliaries
    • F01M9/106Oil reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M9/00Lubrication means having pertinent characteristics not provided for in, or of interest apart from, groups F01M1/00 - F01M7/00
    • F01M9/10Lubrication of valve gear or auxiliaries
    • F01M9/108Lubrication of valve gear or auxiliaries of auxiliaries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/02Arrangements of lubricant conduits
    • F01M2011/023Arrangements of lubricant conduits between oil sump and cylinder head

Definitions

  • the present invention relates to an internal combustion engine.
  • lubricating oil is supplied to valve operating members such as an intake valve and an exhaust valve inside a cylinder head, and the supplied oil flows into an oil drop hole provided in the cylinder head. Then, the oil that has flowed into the oil drop hole passes through the cylinder block below the cylinder head and is dripped into the oil pan. Finally, the oil stored in the oil pan is pumped up and circulated again to the cylinder head.
  • valve operating members such as an intake valve and an exhaust valve inside a cylinder head
  • the purpose of the present invention is to prevent the insufficient lubrication of members such as gears by making it easier for the lubricating oil to flow into the oil drop hole.
  • An internal combustion engine has an oil circulation structure in which oil that lubricates a valve operating member provided in a cylinder head is dropped into an oil pan and the oil stored in the oil pan is pumped back to the cylinder head.
  • the internal combustion engine is provided at two or more corners of the rectangular bottom surface of the cylinder head, communicates with an oil drop hole into which oil that lubricates the valve operating member flows, and a lower end of the oil drop hole, and collects the oil that has flowed into the oil drop hole.
  • FIG. 1 is a perspective view of the engine of the first embodiment.
  • FIG. 2 is a top view of the cylinder head of the engine shown in FIG.
  • FIG. 3 is a sectional view of the cylinder head taken along the line AA in FIG.
  • FIG. 4 is a top view of the engine of the second embodiment.
  • FIG. 5 is a perspective view of the engine of the third embodiment.
  • FIG. 1 is a perspective view of an internal combustion engine 100 according to the first embodiment.
  • the internal combustion engine 100 further includes a power generator 30 in addition to the engine body composed of the cylinder block 10 and the cylinder head 20.
  • the internal combustion engine 100 will be simply referred to as the engine 100.
  • the engine 100 is mounted on a vehicle, and the engine 100 is used as a drive source to generate power by the generator 30 and the generated power can be supplied to a battery, a motor, or the like (not shown). Further, the engine 100 can be motored by the generator 30.
  • a drive gear 11 is provided at an end of a crankshaft included in the cylinder block 10
  • a transmission gear 31 is provided at an end of a rotor shaft of the generator 30, and the drive gear 11 and the transmission gear 31 are configured to mesh with each other. ..
  • the rotational driving force of the engine 100 is transmitted to the generator 30 via the drive gear 11 and the transmission gear 31.
  • a cover (not shown) that covers the drive gear 11 and the transmission gear 31 is provided, and the drive gear 11, the transmission gear 31, and the cover are collectively referred to as a gear box.
  • An oil pan 40 is provided below the cylinder block 10.
  • the driving gear 11 and the transmission gear 31 rotate in the meshing direction away from the cylinder head 20. That is, when the engine 100 is driven and the generator 30 is generating power when the vehicle is traveling, the drive gear 11 rotates counterclockwise and the transmission gear 31 rotates clockwise as shown in the figure. Rotate to.
  • the front left side in the figure where the generator 30 is provided is the front (FR) of the vehicle
  • the rear right side in the figure where 10 is provided is the rear (RE). That is, the generator 30 is provided so as to be adjacent to the cylinder block 10 in front of the vehicle (FR).
  • the axial direction of the crankshaft of the engine 100 and the rotor shaft of the generator 30 is the width direction of the vehicle, with the left back in the figure being the right (R) and the front right being the left (L).
  • the cylinder block 10 is provided with a plurality of cylinders 12 (three in the present embodiment) that accommodate pistons. Since the cylinders 12 are arranged side by side in the lateral direction of the vehicle, the lateral direction of the vehicle is also referred to as the cylinder arrangement direction.
  • the cylinder 12 is provided with an ignition plug 21 that ignites the fuel in the cylinder 12, an intake valve 22 that controls intake air, and an exhaust valve 23 that controls exhaust gas.
  • the cylinder head 20 is arranged on the upper part of the cylinder block 10 and is configured such that its width in the lateral direction (vehicle front-rear direction) becomes wider upward.
  • one spark plug 21 is provided for each cylinder 12, and two intake valves 22 and two exhaust valves 23 are provided for each cylinder 12.
  • the intake valve 22, the exhaust valve 23, etc. are configured to be slidable, and are referred to as valve operating members.
  • the intake valve 22 and the exhaust valve 23 are connected to a camshaft provided in the cylinder head 20, and when the rotation shaft of each camshaft is rotationally driven by the power of the crankshaft, the intake port and the exhaust port are accompanied by the rotation.
  • the port is configured to open and close. Combustion in the cylinder 12 is controlled by moving the intake valve 22 and the exhaust valve 23 up and down by the rotation of the camshaft. As a result, the piston moves up and down in the cylinder 12, the crankshaft and the drive gear 11 rotate with this up and down motion, and this rotational drive force is transmitted to the generator 30 via the transmission gear 31.
  • oil that lubricates sliding valve operating members such as the intake valve 22 and the exhaust valve 23 is supplied.
  • the supplied oil drips downward through the cylinder block 10 and is stored in an oil pan 40 below the cylinder block 10.
  • the oil stored in the oil pan 40 is pumped up to the cylinder head 20 by a pump (not shown) and supplied again to the valve operating member. In this way, the oil circulation structure in the engine 100 is constructed.
  • FIG. 2 is a top view of the engine 100 shown in FIG. 1, and FIG. 3 is a sectional view of the engine 100 taken along the line AA of FIG.
  • the upper side of the figure corresponds to the right side (R) of the vehicle
  • the right side of the figure corresponds to the rear side of the vehicle (RE)
  • the lower side of the figure corresponds to the left side of the vehicle (L)
  • the left side of the figure corresponds to the front side of the vehicle (FR).
  • FIG. 3 the right side of the drawing corresponds to the vehicle rear (RE) and the left direction corresponds to the vehicle front (FR).
  • the bottom of the cylinder head 20 is formed in a substantially rectangular shape in a plan view, and oil drop holes 24A to 24D into which oil supplied to the valve operating member flows are provided at four corners thereof. ing. As shown in FIG. 3, the oil drop holes 24A to 24D extend in the vertical direction.
  • the oil drop hole 24A is the oil drop hole 24 on the side opposite to the drive gear 11 (right side of the vehicle: R) and on the generator 30 side (front side of the vehicle: FR).
  • the oil drop hole 24 on the drive gear 11 side (left side of the vehicle: L) and on the generator 30 side (FR) is the oil drop hole 24B.
  • the oil drop hole 24 on the drive gear 11 side (L) and on the opposite side of the generator 30 (vehicle rear: RE) is the oil drop hole 24C.
  • the oil drop hole 24 on the opposite side (R) of the drive gear 11 and the opposite side (RE) of the generator 30 is an oil drop hole 24D.
  • annular oil reservoir 25 having an opening diameter larger than the hole diameter of the oil drop hole 24 is provided.
  • the cross section of the oil drop hole 24 and the oil sump 25 is not limited to a circular shape, and may be an arbitrary shape such as a rectangular shape.
  • first oil flow paths 13A and 13B extending in the cylinder arrangement direction (RL direction) are provided in the vehicle front-rear direction (FR-RE direction) via the cylinder 12. It is provided so as to face each other.
  • the first oil flow path 13 on the generator 30 side (FR) is the first oil flow path 13A
  • the first oil flow path 13 on the opposite side (RE) of the generator 30 is the first oil flow path 13B. Is.
  • the first oil flow path 13A has a part of the upper surface that communicates with the lower ends of the oil drop holes 24A and 24B at both ends in the cylinder arrangement direction. Further, the first oil passage 13A is inclined so as to descend from the oil drop hole 24A toward the oil drop hole 24B, that is, in the direction (L) toward the drive gear 11 in the cylinder arrangement direction. Therefore, the oil that has flowed into the oil drop hole 24A is guided in the direction (L) toward the drive gear 11 in the first oil flow path 13A, and joins with the oil that has flowed into the oil drop hole 24B near the drive gear 11.
  • the first oil flow path 13B communicates with the lower ends of the oil drop holes 24C and 24D at both ends in the cylinder arrangement direction.
  • the first oil flow path 13B is inclined so as to descend in the direction (L) toward the drive gear 11.
  • the oil that has flowed into the oil drop hole 24D is guided in the direction (L) toward the drive gear 11 in the first oil flow path 13B and merges with the oil that has flowed into the oil drop hole 24C near the drive gear 11.
  • the first oil flow passages 13A and 13B are connected to the second oil flow passages 14A and 14B at the ends on the drive gear 11 side.
  • the second oil flow passages 14A and 14B are configured so as to extend from the connection portion with the first oil flow passages 13A and 13B toward the meshing portion between the drive gear 11 and the transmission gear 31, respectively, and in front of the meshing portion.
  • the third oil flow path 15 provided downstream of the merging portion is arranged so that the lower opening serving as the discharge port is directed toward the meshing portion between the drive gear 11 and the transmission gear 31.
  • the first oil flow paths 13A and 13B, the second oil flow paths 14A and 14B, and the third oil flow path 15 may be integrally formed in the cylinder block by casting in casting, or the cylinder block 10 may be formed. , And a cylindrical member arranged in the cylinder head 20. Further, in the present embodiment, an example in which the oil passages 13 to 15 are provided in the cylinder block 10 and the oil drop hole 24 is provided in the cylinder head 20 has been described, but the present invention is not limited to this. The oil passages 13 to 15 and the oil drop hole 24 may be provided in either the cylinder block 10 or the cylinder head 20.
  • the transmission gear 31 to which the driving force of the drive gear 11 of the engine 100 is transmitted is provided on the rotor shaft of the generator 30 has been described, but the present invention is not limited to this.
  • the transmission gear 31 may be provided on the drive shaft of the transmission, or may be provided on the drive shaft of any configuration.
  • the engine 100 of the first embodiment has an oil drop hole 24 at the corner of the bottom surface of the cylinder block 10 into which the oil lubricating the valve operating member flows.
  • the oil flowing into the oil drop hole 24 is guided to the drive gear 11 that transmits the driving force of the engine 100 by the oil flow paths 13 to 15, and is dropped into the drive gear 11 and then stored in the oil pan 40. ..
  • the oil supplied into the cylinder head 20 may be unevenly distributed at the bottom due to acceleration/deceleration of the vehicle and inclination of the vehicle itself.
  • the oil drop holes 24 are provided at the four corners of the cylinder head 20, the oil at the bottom of the cylinder head 20 flows into any of the oil drop holes 24A to 24D even if the distribution is uneven.
  • the oil is unevenly distributed in the rear of the vehicle (RE) at the bottom of the cylinder head 20, and the oil unevenly distributed in the rear of the vehicle flows into the oil drop holes 24C and 24D.
  • the oil is unevenly distributed in the front of the vehicle (FR), and the oil unevenly distributed in the front of the vehicle flows into the oil drop holes 24A and 24B.
  • the oil is unevenly distributed to the left (L) of the vehicle due to centrifugal force, and the oil unevenly distributed to the left of the vehicle flows into the oil drop holes 24B and 24C.
  • the oil is unevenly distributed to the right (R) of the vehicle, and the oil unevenly distributed to the right of the vehicle flows into the oil drop holes 24A and 24D.
  • the oil flowing into the oil drop hole 24 is guided to the drive gear 11 of the engine 100 via the oil flow paths 13 to 15. In this way, the oil supplied to the valve operating member in the cylinder head 20 is supplied to the drive gear 11 via the oil drop hole 24 and the oil passages 13 to 15 regardless of the operating state of the vehicle. Insufficient lubrication in the drive gear 11 can be suppressed.
  • the oil circulation mechanism in the cylinder head 20 is also used for supplying oil to the drive gear 11. Has been. As a result, it is not necessary to separately provide a pump or an oil jet as an oil system for supplying oil to the drive gear 11, so that the configuration of the engine 100 can be simplified.
  • the oil supplied to the valve operating member of the cylinder head 20 is the oil after lubricating the valve operating member, it has a relatively high temperature and a low viscosity. Therefore, it is possible to further reduce the friction in the drive gear 11 as compared with the case where the oil supply structure for the drive gear 11 is separately provided.
  • the engine 100 of the first embodiment includes an oil sump 25 that communicates with the oil drop hole 24 above the oil drop hole 24.
  • the oil sump 25 has an opening diameter larger than the diameter of the oil drop hole 24.
  • the oil that has flowed into the oil sump 25 is temporarily stored inside and then guided to the oil drop hole 24 along the inner surface.
  • the first oil passages 13A and 13B communicating with the lower end of the oil drop hole 24 are configured to be inclined downward toward the drive gear 11 side.
  • the second oil flow paths 14A and 14B communicating with the first oil flow paths 13A and 13B, and the third oil flow path 15 which is the final discharge port are also lowered toward the drive gear 11 side. With this configuration, the oil can be smoothly supplied to the drive gear 11.
  • the oil that has flowed into the oil drop hole 24 is dripped from the third oil passage 15 to the portion where the drive gear 11 and the transmission gear 31 mesh with each other.
  • the rotation direction of the drive gear 11 is the direction away from the cylinder head 20 at the meshing portion with the transmission gear 31. That is, in the drive gear 11 and the transmission gear 31, the meshing portion rotates in a direction away from the discharge portion of the third oil flow path 15 serving as the oil supply port. In this way, in the meshing portion, the oil dripping direction coincides with the rotation directions of the drive gear 11 and the transmission gear 31, so that the oil supplied from the third oil flow path 15 is supplied to a portion other than the drive gear 11 and the transmission gear 31. It can suppress the jumping.
  • the engine 100 of the first embodiment is configured integrally with the generator 30, and the drive gear 11 of the engine 100 meshes with the transmission gear 31 of the generator 30.
  • the structure for supplying oil to the drive gear 11 and the transmission gear 31 and the structure for circulating oil in the engine 100 can be shared, so that the engine 100 as a whole can be downsized.
  • the cylinder head 20 has an oil drop hole 24A provided on the opposite side of the drive gear 11 and on the generator 30 side (R, FR), the drive gear 11 and the generator 30 side (L, FR). ), and a case where the drive gear 11 and the oil drop hole 24C provided on the opposite side (L, RE) of the generator 30 are provided.
  • the oil unevenly distributed in the vehicle rear (RE) at the time of acceleration flows into the oil drop hole 24C
  • the oil unevenly distributed in the vehicle front (FR) at the time of deceleration flows into the oil drop holes 24A and 24B
  • the oil that is unevenly distributed to the left side (L) of the vehicle when turning turns flows into the oil drop holes 24B and C
  • the oil that is unevenly distributed to the right side (R) of the vehicle when turning left flows into the oil drop hole 24A.
  • FIG. 4 is a top view of the cylinder head 20 of the second embodiment.
  • the cylinder head 20 has an oil drop hole 24B on the drive gear 11 side (L) and the generator 30 side (FR), and an opposite side (R) of the drive gear 11 and the generator.
  • An oil drop hole 24D on the opposite side (RE) of 30 is provided.
  • the cylinder block 10 is provided with a first oil flow path 13B communicating with the oil drop hole 24D.
  • the oil drop holes 24A and 24C are omitted, and the first oil flow path 13A communicates with the oil drop hole 24B and has a short length. Even with this configuration, even if the oil distribution on the bottom surface of the cylinder head 20 is biased depending on the running state of the vehicle, the oil can be made to flow into the oil drop holes 24B, 24D. As in the present embodiment, if the oil drop holes 24 are provided at at least two diagonal corners of the four corners of the cylinder head 20, even if the oil distribution is uneven, any one of the oil drop holes 24 will be formed. Allows oil to flow into.
  • the oil drop holes 24B and 24D are provided at two diagonal corners of the bottom surface of the cylinder head 20. Therefore, even if the oil on the bottom surface of the cylinder head 20 is inclined due to the running state of the vehicle, the oil can be made to flow into the oil drop holes 24B, 24D.
  • the oil drop holes 24A and 24C can be omitted, so that the configuration of the engine 100 can be simplified and stable even when the oil distribution is biased depending on the running state of the vehicle.
  • the oil can be supplied to the drive gear 11 effectively.
  • the cylinder head 20 has an oil drop hole 24A provided on the opposite side of the drive gear 11 and on the generator 30 side (R, FR), the drive gear 11 and the generator 30 side (L, FR).
  • the oil that is unevenly distributed in the front of the vehicle (FR) during deceleration flows into the oil drop holes 24A and 24B, and the oil that is unevenly distributed in the right side (R) of the vehicle when turning left flows into the oil drop hole 24A.
  • the oil that is unevenly distributed to the left side (L) of the vehicle when turning right flows into the oil drop hole 24B.
  • the cylinder head 20 includes the oil drop hole 24B provided on the drive gear 11 and the generator 30 side (L, FR), and the opposite side (L, RE) of the drive gear 11 and the generator 30.
  • the oil that is unevenly distributed to the left (L) of the vehicle when turning right flows into the oil drop holes 24B and 24C, and the oil that is unevenly distributed to the front (FR) of the vehicle when decelerating flows into the oil drop hole 24B.
  • the oil unevenly distributed to the rear (RE) of the vehicle during acceleration flows into the oil drop hole 24C.
  • the oil can be made to flow into the oil drop hole 24, so that the oil can be stably supplied to the drive gear 11 and the drive gear 11 can be supplied. Insufficient lubrication can be suppressed.
  • FIG. 5 is a perspective view of the engine 100 according to the third embodiment.
  • the engine 100 of the third embodiment is different from the engine 100 of the first embodiment in that the second oil passages 14A, 14B and the third oil passage 15 are omitted.
  • the ends of the first oil flow paths 13A and 13B on the drive gear 11 side (L side) open above the drive gear 11. Therefore, oil is dripped into the drive gear 11 from the openings of the first oil flow paths 13A and 13B.
  • any of the oil drop holes 24A to 24D is provided even if the oil distribution on the bottom surface is unevenly distributed depending on the running state of the vehicle. Allows oil to flow in.
  • the ends of the first oil passages 13A and 13B communicating with the lower ends of the oil drop holes 24A to 24D are open above the drive gear 11 at the drive gear 11 side (L side). Even with this configuration, the oil flowing into the oil drop holes 24A to 24D can be supplied to the drive gear 11 via the first oil flow paths 13A and 13B.
  • the oil can be stably supplied to the drive gear 11, and the configuration of the engine 100, particularly the cylinder block 10, can be simplified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

内燃エンジンは、シリンダヘッドに設けられた動弁部材を潤滑したオイルをオイルパンに滴下させ、オイルパンに貯えられたオイルを再びシリンダヘッドへと汲み上げるオイル循環構造を有する。内燃エンジンは、シリンダヘッドの矩形状の底面の2以上の隅部に設けられ、動弁部材を潤滑したオイルが流入するオイル落とし穴と、オイル落とし穴の下端と連通し、オイル落とし穴に流入したオイルをエンジンの駆動力を伝達する駆動ギアへ誘導するオイル流路と、を備える。

Description

内燃エンジン
 本発明は、内燃エンジンに関するものである。
 一般に、内燃エンジンにおいては、シリンダヘッドの内部にて吸気バルブや排気バルブなどの動弁部材に潤滑オイルが供給されており、供給されたオイルは、シリンダヘッドに設けられたオイル落とし穴に流入する。そして、オイル落とし穴に流入したオイルは、シリンダヘッドの下部にあるシリンダブロックを通り、オイルパンに滴下される。最終的に、オイルパンに貯えられたオイルは、ポンプによって汲み上げられ、再びシリンダヘッドへと循環される。(例えば、JPS62-99607A)
 エンジンが車両に搭載される車両において、JPS62-99607Aのようにオイル落とし穴がシリンダヘッドの側面の近傍に設けられる場合について検討する。このような場合には、車両の走行状態によっては、加減速などに起因して、シリンダヘッド内部の底部に溜まったオイルの分布に偏りが生じ、オイルがオイル落とし穴に流入しにくくなる。そのため、オイル落とし穴に流入したオイルを利用してギア等の部材を潤滑する場合には、潤滑不足を招くおそれがある。
 本発明の目的は、オイル落とし穴へ潤滑オイルを流入しやすくすることで、ギア等の部材の潤滑不足を抑制することである。
 本発明のある態様の内燃エンジンは、シリンダヘッドに設けられた動弁部材を潤滑したオイルをオイルパンに滴下させ、オイルパンに貯えられたオイルを再びシリンダヘッドへと汲み上げるオイル循環構造を有する。内燃エンジンは、シリンダヘッドの矩形状の底面の2以上の隅部に設けられ、動弁部材を潤滑したオイルが流入するオイル落とし穴と、オイル落とし穴の下端と連通し、オイル落とし穴に流入したオイルをエンジンの駆動力を伝達する駆動ギアへ誘導するオイル流路と、を備える。
図1は、第1実施形態のエンジンの斜視図である。 図2は、図1に示されるエンジンのシリンダヘッドの上面図である。 図3は、図2のA―Aにおけるシリンダヘッドの断面図である。 図4は、第2実施形態のエンジンの上面図である。 図5は、第3実施形態のエンジンの斜視図である。
 以下、図面を用いて各実施形態に係るエンジンについて説明する。
 (第1実施形態)
 図1は、第1実施形態の内燃エンジン100の斜視図である。
 内燃エンジン100は、シリンダブロック10とシリンダヘッド20とにより構成されるエンジン本体に加えて、発電機30をさらに備える。なお、以下において、内燃エンジン100は、単に、エンジン100と称するものとする。エンジン100は車両に搭載されるものであり、エンジン100を駆動源として発電機30による発電を行い、発電された電力を不図示のバッテリやモータなどに供給できる。また、発電機30によりエンジン100をモータリングすることができる。
 シリンダブロック10が備えるクランクシャフトの端部に駆動ギア11が設けられ、発電機30のロータシャフトの端部に伝達ギア31が設けられ、駆動ギア11と伝達ギア31とが噛み合うように構成される。このような構成となることで、エンジン100の回転駆動力は、駆動ギア11及び伝達ギア31を介して発電機30に伝達される。なお、駆動ギア11及び伝達ギア31を覆うカバー(不図示)が設けられており、駆動ギア11、伝達ギア31、及び、カバーは、あわせて、ギアボックスと称される。そして、シリンダブロック10の下部には、オイルパン40が設けられている。
 駆動ギア11及び伝達ギア31は、噛み合い部における回転方向が、シリンダヘッド20から遠ざかる方向となる。すなわち、車両走行時等においてエンジン100が駆動されて発電機30が発電している時には、図示されるように、駆動ギア11は、反時計周り方向に回転し、伝達ギア31は、時計回り方向に回転する。
 この図においては、図左手前-右奥方向、すなわち、シリンダブロック10と発電機30との並設方向において、発電機30が設けられる図左手前側が、車両の前方(FR)となり、シリンダブロック10が設けられる図右奥側が、後方(RE)となる。すなわち、発電機30は、シリンダブロック10に対して、車両前方(FR)において隣接するように設けられている。また、エンジン100のクランクシャフト、及び、発電機30のロータシャフトの軸方向が、車両の幅方向となり、図左奥が右方(R)で、右手前が左方(L)となる。
 シリンダブロック10においては、ピストンを収容するシリンダ12が複数(本実施形態では3つ)設けられている。なお、シリンダ12は車両の左右方向に並設されているため、車両左右方向は、気筒配列方向とも称される。シリンダ12には、シリンダ12内の燃料を点火する点火プラグ21、吸気を制御する吸気バルブ22、及び、排気を制御する排気バルブ23が設けられる。
 点火プラグ21、吸気バルブ22、及び、排気バルブ23を制御することで、大気と燃料との混合気の吸入、圧縮、燃焼、及び、排出が繰り返し行われ、ピストンがシリンダ12内にて往復する。ピストンのコンロッドの下端は、クランクシャフトと接続されており、ピストンの上下方向の往復運動がクランクシャフトの回転運動へと変換される。このようにして、クランクシャフトの端部に設けられる駆動ギア11が回転する。
 シリンダヘッド20は、シリンダブロック10の上部に配置されるとともに、上方に向かって短手方向(車両前後方向)の幅が広くなるように構成されている。本実施形態では、1つのシリンダ12に対して、点火プラグ21が1つ設けられ、吸気バルブ22、及び、排気バルブ23は、それぞれ2つ設けられる。一般に、吸気バルブ22、及び、排気バルブ23などは、摺動可能に構成されており、動弁部材と称される。
 吸気バルブ22、及び、排気バルブ23は、シリンダヘッド20に設けられるカムシャフトと接続されており、クランクシャフトの動力により各カムシャフトの回転軸が回転駆動すると、その回転に伴って吸気ポート及び排気ポートが開閉するように構成されている。カムシャフトの回転により、吸気バルブ22、及び、排気バルブ23を上下させることで、シリンダ12内の燃焼が制御される。その結果、シリンダ12内においてピストンが上下運動し、この上下運動に伴ってクランクシャフト及び駆動ギア11が回転し、この回転駆動力が伝達ギア31を介して発電機30に伝達される。
 シリンダヘッド20においては、吸気バルブ22、及び、排気バルブ23などの摺動する動弁部材を潤滑するオイルが供給される。供給されたオイルは、シリンダブロック10内を通って下方へと滴下し、シリンダブロック10の下部にあるオイルパン40に貯えられる。そして、オイルパン40に貯えられたオイルは、ポンプ(不図示)によってシリンダヘッド20に汲み上げられ、再度、動弁部材に供給される。このようにして、エンジン100におけるオイル循環構造が構成される。
 ここで、シリンダブロック10、及び、シリンダヘッド20におけるオイルの経路の詳細について説明する。図2は、図1に示されるエンジン100の上面図であり、図3は図2のA-Aにおけるエンジン100の断面図である。図2においては、図上方が車両右側(R)、図右方が車両後方(RE)、図下方が車両左方(L)、図左方が車両前方(FR)に相当する。また、図3においては、図右方が車両後方(RE)、左方向が車両前方(FR)に相当する。
 図2に示されるように、シリンダヘッド20の底部は、平面視において略矩形状に構成されており、その四隅に、動弁部材に供給されたオイルが流入するオイル落とし穴24A~24Dが設けられている。図3に示されるように、オイル落とし穴24A~24Dは、鉛直方向に延在する。
 オイル落とし穴24A~24Dのうち、駆動ギア11と反対側(車両右方:R)、かつ、発電機30の側(車両前方:FR)のオイル落とし穴24がオイル落とし穴24Aである。駆動ギア11の側(車両左方:L)、かつ、発電機30の側(FR)のオイル落とし穴24がオイル落とし穴24Bである。駆動ギア11の側(L)、かつ、発電機30の反対側(車両後方:RE)のオイル落とし穴24がオイル落とし穴24Cである。駆動ギア11の反対側(R)、かつ、発電機30の反対側(RE)のオイル落とし穴24がオイル落とし穴24Dである。
 さらに、シリンダヘッド20の底面において、それぞれのオイル落とし穴24A~24Dの上部に、オイル落とし穴24の穴径よりも開口径が大きな円環溝形状のオイル溜まり25が設けられている。なお、オイル落とし穴24、及び、オイル溜まり25の断面は、円形に限られず、矩形など任意の形状でよい。
 そして、シリンダブロック10の内部には、気筒配列方向(R-L方向)に延在する2つの第1オイル流路13A、13Bが、シリンダ12を介して車両前後方向(FR-RE方向)において対向するように設けられる。発電機30の側(FR)の第1オイル流路13が、第1オイル流路13Aであり、発電機30の反対側(RE)の第1オイル流路13が、第1オイル流路13Bである。第1オイル流路13A、13Bにおいては、駆動ギア11の側(L)に向かってオイルが流れる。
 第1オイル流路13Aは、気筒配列方向の両端において、上面の一部がオイル落とし穴24A、24Bの下端と連通する。さらに、第1オイル流路13Aは、オイル落とし穴24Aからオイル落とし穴24Bに向かう方向、すなわち、気筒配列方向において駆動ギア11へと向かう方向(L)に下るように傾斜する。そのため、オイル落とし穴24Aに流入されたオイルは、第1オイル流路13Aにおいて駆動ギア11に向かう方向(L)へ導かれ、駆動ギア11の近傍にてオイル落とし穴24Bに流入したオイルと合流する。
 同様に、第1オイル流路13Bは、気筒配列方向の両端においてオイル落とし穴24C、24Dの下端と連通する。第1オイル流路13Bは、駆動ギア11へと向かう方向(L)に下るように傾斜する。オイル落とし穴24Dに流入したオイルは、第1オイル流路13Bにおいて駆動ギア11に向かう方向(L)に導かれ、駆動ギア11の近傍にてオイル落とし穴24Cに流入したオイルと合流する。
 図1に示されるように、第1オイル流路13A、13Bは、駆動ギア11側の端部において、第2オイル流路14A、14Bと接続される。第2オイル流路14A、14Bは、それぞれ、第1オイル流路13A、13Bとの接続部から、駆動ギア11と伝達ギア31との噛み合い部へと向かうように構成され、噛み合い部の手前において合流する。そして、合流部の下流に設けられる第3オイル流路15は、吐出口となる下部の開口が駆動ギア11と伝達ギア31との噛み合い部へと向かうように配置される。
 このように構成されることで、オイル落とし穴24A~24Dに流入したオイルは、シリンダブロック10の内部において第1オイル流路13A、13B、第2オイル流路14A、14B、及び、第3オイル流路15を介して、駆動ギア11と伝達ギア31の噛み合い部へと導出される。そして、第3オイル流路15の吐出口から駆動ギア11と伝達ギア31との噛み合い部に、オイルが滴下され、これにより、駆動ギア11及び伝達ギア31を潤滑できる。そして、駆動ギア11及び伝達ギア31を潤滑したオイルは、ギアボックスの下部からオイルパン40へ導かれる。
 なお、第1オイル流路13A、13B、第2オイル流路14A、14B、及び、第3オイル流路15は、鋳造における鋳抜きによりシリンダブロック内に一体形成されてもよいし、シリンダブロック10、及び、シリンダヘッド20内に配置される筒状の部材により構成されてもよい。また、本実施形態においては、シリンダブロック10にオイル流路13~15が設けられる、シリンダヘッド20にオイル落とし穴24が設けられる例について説明したが、これに限らない。オイル流路13~15、及び、オイル落とし穴24は、シリンダブロック10及びシリンダヘッド20のいずれに設けてもよい。
 本実施形態において、エンジン100の駆動ギア11の駆動力が伝達される伝達ギア31が、発電機30のロータシャフトに設けられる例について説明したが、これに限らない。伝達ギア31は、変速機の駆動軸に設けられてもよく、任意の構成の駆動軸に設けられうる。
 第1実施形態のエンジン100によれば、以下の効果を得ることができる。
 第1実施形態のエンジン100は、シリンダブロック10の底面の隅部において、動弁部材を潤滑したオイルが流入するオイル落とし穴24を有する。そして、オイル落とし穴24へと流入したオイルは、オイル流路13~15によりエンジン100の駆動力を伝達する駆動ギア11に誘導され、駆動ギア11に滴下された後に、オイルパン40へと貯えられる。
 エンジン100を搭載する車両の走行状態によっては、車両の加減速や車両自体の傾きによって、シリンダヘッド20内に供給されたオイルは底部における分布に偏りが生じる。本実施形態では、オイル落とし穴24がシリンダヘッド20の四隅に設けられるため、シリンダヘッド20の底部におけるオイルは、分布に偏りがあったとしても、オイル落とし穴24A~24Dのいずれかに流入する。
 具体的には、車両が加速する場合には、シリンダヘッド20の底部においてオイルが車両後方(RE)に偏在し、車両後方に偏在するオイルはオイル落とし穴24C、24Dに流入する。車両が減速する場合には、オイルが車両前方(FR)に偏在し、車両前方に偏在するオイルはオイル落とし穴24A、24Bに流入する。車両が右旋回する場合には、遠心力によってオイルが車両左方(L)に偏在し、車両左方に偏在するオイルはオイル落とし穴24B、24Cに流入する。車両が左旋回する場合には、オイルが車両右方(R)に偏在し、車両右方に偏在するオイルはオイル落とし穴24A、24Dに流入する。
 オイル落とし穴24に流入したオイルは、オイル流路13~15を介して、エンジン100の駆動ギア11に誘導される。このようにして、車両の運転状態によらず、シリンダヘッド20において動弁部材に供給されたオイルは、オイル落とし穴24、及び、オイル流路13~15を介して駆動ギア11に供給されるので、駆動ギア11における潤滑不足を抑制することができる。
 また、シリンダヘッド20において動弁部材を潤滑したオイルは、オイル落とし穴24に流入し、駆動ギア11へ供給されるので、シリンダヘッド20におけるオイルの循環機構が、駆動ギア11への給油にも用いられている。その結果、駆動ギア11へ給油するオイル系統としてポンプやオイルジェットなどを別途設ける必要がなくなるため、エンジン100の構成を簡略化できる。
 さらに、シリンダヘッド20の動弁部材に供給されるオイルは、動弁部材を潤滑した後のオイルであるため、比較的温度が高く粘度が低い。そのため、駆動ギア11への給油構成を別途設ける場合よりも、駆動ギア11における摩擦をさらに低減することができる。
 第1実施形態のエンジン100は、オイル落とし穴24の上部に、オイル落とし穴24と連通するオイル溜まり25を備える。オイル溜まり25は、オイル落とし穴24の穴径よりも開口径が大きい。このようなオイル溜まり25に流入したオイルは、内部にて一時的に貯えられた後、内面を伝ってオイル落とし穴24まで導かれる。このようにオイル落とし穴24の上部に中間的にオイルを貯えることができるオイル溜まり25を設けることで、シリンダヘッド20の底部に溜まるオイルを、オイル落とし穴24を介して駆動ギア11に安定的に供給することができる。
 第1実施形態のエンジン100によれば、オイル落とし穴24の下端と連通する第1オイル流路13A、13Bは、駆動ギア11側に向かって下り傾斜となるように構成される。これにより、オイル落とし穴24へと流入したオイルは、駆動ギア11側へと誘導されるので、駆動ギア11にスムーズにオイルを供給することができる。なお、第1オイル流路13A、13Bと連通する第2オイル流路14A、14B、及び、最終的な吐出口となる第3オイル流路15についても、駆動ギア11側に向かって低くなるように構成されるので、駆動ギア11にスムーズにオイルを供給できる。
 第1実施形態のエンジン100によれば、オイル落とし穴24へと流入したオイルは、第3オイル流路15から、駆動ギア11と伝達ギア31とが噛み合わさる部分に滴下される。このような構成となることで、駆動力を伝達するエンジン100の駆動ギア11と、駆動力が伝達される発電機30の伝達ギア31との両者に同時に給油することができるので、駆動ギア11と伝達ギア31との摩擦をより確実に低減することができる。
 第1実施形態のエンジン100によれば、駆動ギア11の回転方向は、伝達ギア31との噛み合わせ部においてシリンダヘッド20から遠ざかる方向である。すなわち、駆動ギア11及び伝達ギア31において、噛み合わせ部は、給油口となる第3オイル流路15の吐出部から遠ざかる方向へ回転する。このように、噛み合わせ部分において、オイルの滴下方向が駆動ギア11及び伝達ギア31の回転方向と一致するので、第3オイル流路15から供給されるオイルの駆動ギア11及び伝達ギア31以外へのとびはねを抑制できる。
 第1実施形態のエンジン100は、発電機30と一体となって構成されており、エンジン100の駆動ギア11は、発電機30の伝達ギア31と噛み合う。このような構成においては、駆動ギア11及び伝達ギア31への給油構造と、エンジン100におけるオイルの循環構造とを共用できるので、エンジン100全体の小型化を図ることができる。
 (変形例)
 第1実施形態においては、シリンダヘッド20が、シリンダヘッド20の底部の四隅の4箇所に、オイル落とし穴24A~24Dを備える例について説明したが、これに限らない。オイル落とし穴24が四隅のうち3箇所以上にオイル落とし穴24が設けられていれば、シリンダヘッド20の底部にてオイルが偏在していても、オイル落とし穴24にオイルを流入させることができる。
 第1変形例として、シリンダヘッド20が、駆動ギア11の反対、かつ、発電機30側(R、FR)に設けられるオイル落とし穴24Aと、駆動ギア11、かつ、発電機30側(L、FR)に設けられるオイル落とし穴24Bと、駆動ギア11、かつ、発電機30の反対側(L、RE)に設けられるオイル落とし穴24Cと、を有する場合について検討する。
 この場合には、加速時に車両後方(RE)に偏在するオイルは、オイル落とし穴24Cへと流入し、減速時に車両前方(FR)に偏在するオイルは、オイル落とし穴24A、24Bへと流入し、右旋回時に車両左方(L)に偏在するオイルは、オイル落とし穴24B、Cへと流入し、左旋回時に車両右方(R)に偏在するオイルは、オイル落とし穴24Aへと流入する。
 そのため、車両前後左右方向のいずれにオイルが偏在している場合であっても、オイル落とし穴24A~24Cのいずれかにオイルを流入させることができる。これにより、駆動ギア11にオイルを安定的に供給できるので、駆動ギア11における潤滑不足を抑制することができる。
 (第2実施形態)
 第1実施形態においては、シリンダヘッド20の底部の四隅にオイル落とし穴24が設けられる例について説明したが、これに限らない。底部の四隅のうちの一部にオイル落とし穴24が設けられていてもよい。
 図4は、第2実施形態のシリンダヘッド20の上面図である。
 この図によれば、シリンダヘッド20には、駆動ギア11側(L)、かつ、発電機30側(FR)のオイル落とし穴24B、及び、駆動ギア11の反対側(R)、かつ、発電機30の反対側(RE)のオイル落とし穴24Dが設けられている。さらに、シリンダブロック10には、オイル落とし穴24Dと連通する第1オイル流路13Bが設けられている。
 この構成について第1実施形態と比較すると、オイル落とし穴24A、24Cが省略されており、第1オイル流路13Aは、オイル落とし穴24Bと連通し、長さが短い。このように構成しても、車両の走行状態に応じてシリンダヘッド20の底面におけるオイル分布に偏りが生じたとしても、オイル落とし穴24B、24Dにオイルを流入させることができる。本実施形態のように、オイル落とし穴24は、シリンダヘッド20の四隅のうち、少なくとも対角をなす2箇所に設けられていれば、オイルの分布に偏りがある場合でも、いずれかのオイル落とし穴24にオイルを流入させることができる。
 第2実施形態のエンジン100によれば、以下の効果を得ることができる。
 シリンダヘッド20の底面の四隅のうちの対角をなす二隅に、オイル落とし穴24B、24Dが設けられている。そのため、車両の走行状態によってシリンダヘッド20の底面におけるオイルに傾きが発生したとしても、オイル落とし穴24B、24Dにオイルを流入させることができる。
 車両が加速して車両後方(RE)にオイルが偏る場合や、車両が左旋回して右方(R)にオイルが偏る場合には、オイル落とし穴24Dにオイルが流入する。車両が減速して車両前方(FR)にオイルが偏る場合や、車両が右旋回して左方(L)にオイルが偏る場合には、オイル落とし穴24Bにオイルが流入する。そして、オイル落とし穴24A、24Dに流入したオイルは、オイル流路13~15を介して駆動ギア11に供給される。
 そのため、第1実施形態と比較すると、オイル落とし穴24A、24Cを省略することができるのでエンジン100の構成を簡略化されるとともに、車両の走行状態によってオイルの分布に偏りが発生した場合でも、安定的にオイルを駆動ギア11に供給できる。
 (変形例)
 第2実施形態においては、シリンダヘッド20において、対角をなすオイル落とし穴24Bと、オイル落とし穴24Dとを有する例について説明したがこれに限らない。2つのオイル落とし穴24が対角をなして設けられていない場合でも、シリンダヘッド20の隅部のうち2箇所以上にオイル落とし穴24が設けられていれば、シリンダヘッド20の底部にてオイルが偏在していても、オイル落とし穴24にオイルを流入させることができる。
 変形例2として、シリンダヘッド20が、駆動ギア11の反対、かつ、発電機30側(R、FR)に設けられるオイル落とし穴24Aと、駆動ギア11、かつ、発電機30側(L、FR)に設けられるオイル落とし穴24Bと、を有する場合について検討する。
 この場合には、減速時に車両前方(FR)に偏在するオイルは、オイル落とし穴24A、24Bへと流入し、左旋回時に車両右方(R)に偏在するオイルは、オイル落とし穴24Aへと流入し、右旋回時に車両左方(L)に偏在するオイルは、オイル落とし穴24Bへと流入する。
 変形例3として、シリンダヘッド20が、駆動ギア11、かつ、発電機30側(L、FR)に設けられるオイル落とし穴24Bと、駆動ギア11、かつ、発電機30の反対側(L、RE)に設けられるオイル落とし穴24Cと、を有する場合について検討する。
 この場合には、右旋回時に車両左方(L)に偏在するオイルは、オイル落とし穴24B、24Cへと流入し、減速時に車両前方(FR)に偏在するオイルは、オイル落とし穴24Bへと流入し、加速時に車両後方(RE)に偏在するオイルは、オイル落とし穴24Cへと流入する。
 これらの例に示されるように、シリンダヘッド20の底面においてオイルが偏在する場合でも、オイル落とし穴24にオイルを流入させることができるので、駆動ギア11にオイルが安定的に供給され、駆動ギア11における潤滑不足を抑制することができる。
 (第3実施形態)
 第1実施形態においては、第1オイル流路13A、13Bの駆動ギア11側(L)の端部に、第2オイル流路14A、14B及び第3オイル流路15が設けられる例について説明したが、これに限らない。本実施形態では、第2オイル流路14A、14B及び第3オイル流路15が省略される例について説明する。
 図5は、第3実施形態のエンジン100の斜視図である。第3実施形態のエンジン100は、第1実施形態のエンジン100と比較すると、第2オイル流路14A、14B及び第3オイル流路15が省略されている。そして、第1オイル流路13A、13Bは、駆動ギア11側(L側)の端部は、駆動ギア11の上方にて開口する。そのため、第1オイル流路13A、13Bの開口から、駆動ギア11へとオイルが滴下されることになる。
 このような第3実施形態のエンジン100によれば、以下の効果を得ることができる。
 シリンダヘッド20の底面の四隅にはオイル落とし穴24A~24Dが設けられるので、車両の走行状態に応じて底面のオイル分布に偏りが生じた場合であっても、オイル落とし穴24A~24Dのいずれかにオイルを流入させることができる。そして、オイル落とし穴24A~24Dの下端と連通する第1オイル流路13A、13Bは、駆動ギア11側(L側)の端部が、駆動ギア11の上方にて開口する。このように構成しても、オイル落とし穴24A~24Dに流入するオイルは、第1オイル流路13A、13Bを介して、駆動ギア11に供給できる。
 そのため、車両の走行状態によってオイルの分布に偏りが発生した場合でも、安定的にオイルを駆動ギア11に供給でき、さらに、エンジン100、特に、シリンダブロック10の構成を簡略化できる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。また、上記実施形態は、適宜組み合わせ可能である。

Claims (7)

  1.  シリンダヘッドに設けられた動弁部材を潤滑したオイルをオイルパンに滴下させ、前記オイルパンに貯えられたオイルを再び前記シリンダヘッドへと汲み上げるオイル循環構造を有する内燃エンジンであって、
     前記シリンダヘッドの矩形状の底面の2以上の隅部に設けられ、前記動弁部材を潤滑したオイルが流入するオイル落とし穴と、
     前記オイル落とし穴の下端と連通し、前記オイル落とし穴に流入したオイルを前記内燃エンジンの駆動力を伝達する駆動ギアへ誘導するオイル流路と、を備える、内燃エンジン。
  2.  請求項1に記載の内燃エンジンであって、
     前記オイル落とし穴は、少なくとも、前記シリンダヘッドの底部の隅部のうち対角をなす2箇所に設けられる、内燃エンジン。
  3.  請求項1または2に記載の内燃エンジンであって、
     前記シリンダヘッドの底面において、前記オイル落とし穴の上部に、前記オイル落とし穴の穴径よりも開口径が大きなオイル溜まりを、さらに有する、内燃エンジン。
  4.  請求項1から3のいずれか1項に記載の内燃エンジンであって、
     前記オイル流路は、前記駆動ギアに向かって下り傾斜するように構成される、内燃エンジン。
  5.  請求項1から4のいずれか1項に記載の内燃エンジンであって、
     前記オイル流路により誘導されるオイルは、前記駆動ギアと、前記内燃エンジンの駆動力が伝達される伝達ギアとの噛み合い部に滴下される、内燃エンジン。
  6.  請求項5に記載の内燃エンジンであって、
     前記駆動ギア、及び、前記伝達ギアは、前記オイルが滴下される部分におけるギアの回転が、前記シリンダヘッドから遠ざかる方向である、内燃エンジン。
  7.  請求項5または6に記載の内燃エンジンであって、
     前記伝達ギアは、前記内燃エンジンと隣接する発電機に設けられ、
     前記発電機は、発電された電力をバッテリ及びモータの少なくとも一方に供給するように構成される、内燃エンジン。
PCT/JP2019/003682 2019-02-01 2019-02-01 内燃エンジン WO2020157970A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/426,784 US11781453B2 (en) 2019-02-01 2019-02-01 Internal combustion engine
PCT/JP2019/003682 WO2020157970A1 (ja) 2019-02-01 2019-02-01 内燃エンジン
CN201980090269.4A CN113330193B (zh) 2019-02-01 2019-02-01 内燃发动机
EP19913993.2A EP3919725B1 (en) 2019-02-01 2019-02-01 Internal combustion engine
JP2020569322A JP7088321B2 (ja) 2019-02-01 2019-02-01 内燃エンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/003682 WO2020157970A1 (ja) 2019-02-01 2019-02-01 内燃エンジン

Publications (1)

Publication Number Publication Date
WO2020157970A1 true WO2020157970A1 (ja) 2020-08-06

Family

ID=71842003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003682 WO2020157970A1 (ja) 2019-02-01 2019-02-01 内燃エンジン

Country Status (5)

Country Link
US (1) US11781453B2 (ja)
EP (1) EP3919725B1 (ja)
JP (1) JP7088321B2 (ja)
CN (1) CN113330193B (ja)
WO (1) WO2020157970A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11840945B2 (en) * 2021-03-09 2023-12-12 Cummins Inc. Lubrication fluid storage system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880664U (ja) * 1981-11-28 1983-05-31 本田技研工業株式会社 トランスミツシヨンの潤滑装置
JPS6299607A (ja) * 1985-10-25 1987-05-09 Suzuki Motor Co Ltd エンジンスタータギヤ潤滑装置
JPH0466307U (ja) * 1990-10-17 1992-06-11
JP2002138810A (ja) * 2000-11-01 2002-05-17 Honda Motor Co Ltd エンジンにおける調時伝動装置の潤滑装置
US20100326393A1 (en) * 2009-06-26 2010-12-30 Ford Global Technologies, Llc Lubrication and sealing system for internal combustion engine
JP2013113276A (ja) * 2011-11-30 2013-06-10 Daihatsu Motor Co Ltd オイル落とし通路構造
JP2014218936A (ja) * 2013-05-08 2014-11-20 スズキ株式会社 車両用エンジンのバランサ潤滑構造
JP2018178832A (ja) * 2017-04-11 2018-11-15 三菱自動車工業株式会社 ギア潤滑機構

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880664A (ja) * 1981-11-09 1983-05-14 Canon Inc 複写機の制御装置
US4688529A (en) * 1985-07-10 1987-08-25 Kawasaki Jukogyo Kabushiki Kaisha Lubricating system for horizontal cylinder overhead valve engine
US4771745A (en) * 1986-03-22 1988-09-20 Mitsubishi Jidosha Kogyo Kabushiki Kaishi Structure of internal combustion engine
JP3606237B2 (ja) * 2001-07-25 2005-01-05 日産自動車株式会社 内燃機関
JP2003330194A (ja) * 2002-05-14 2003-11-19 Fuji Photo Film Co Ltd ポジ型感光性組成物
DE102005022415A1 (de) * 2005-05-14 2006-11-23 Bayerische Motoren Werke Ag Zylinderkopf für eine Brennkraftmaschine
JP4506621B2 (ja) * 2005-09-06 2010-07-21 日産自動車株式会社 多気筒内燃機関のシリンダヘッド
JP4636506B2 (ja) * 2006-02-28 2011-02-23 本田技研工業株式会社 車両用発電機の冷却構造
JP4254833B2 (ja) * 2006-09-26 2009-04-15 トヨタ自動車株式会社 可変圧縮比内燃機関を含んでなる車体に搭載される駆動装置
CN105026510B (zh) 2013-01-22 2017-03-15 东丽株式会社 粘合剂组合物、粘合剂片材以及使用它们的固化物及半导体器件
JP2015090149A (ja) * 2013-11-07 2015-05-11 ヤマハ発動機株式会社 エンジンおよびそれを備えた鞍乗型車両
JP5892992B2 (ja) * 2013-11-08 2016-03-23 本田技研工業株式会社 ドライサンプエンジンの油路構造、及び、v型ドライサンプエンジンの油路構造
JP6117990B2 (ja) * 2014-03-28 2017-04-19 本田技研工業株式会社 エンジンの潤滑構造
JP6087868B2 (ja) * 2014-06-03 2017-03-01 本田技研工業株式会社 内燃機関の動弁室の潤滑油回収構造
JP6156297B2 (ja) * 2014-09-11 2017-07-05 マツダ株式会社 エンジンのオイル供給装置
JP5880664B1 (ja) 2014-10-31 2016-03-09 サンケン電気株式会社 半導体装置
JP6867840B2 (ja) * 2017-03-27 2021-05-12 ダイハツ工業株式会社 自動車用内燃機関
JP7092080B2 (ja) * 2019-03-15 2022-06-28 トヨタ自動車株式会社 潤滑油供給構造

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880664U (ja) * 1981-11-28 1983-05-31 本田技研工業株式会社 トランスミツシヨンの潤滑装置
JPS6299607A (ja) * 1985-10-25 1987-05-09 Suzuki Motor Co Ltd エンジンスタータギヤ潤滑装置
JPH0466307U (ja) * 1990-10-17 1992-06-11
JP2002138810A (ja) * 2000-11-01 2002-05-17 Honda Motor Co Ltd エンジンにおける調時伝動装置の潤滑装置
US20100326393A1 (en) * 2009-06-26 2010-12-30 Ford Global Technologies, Llc Lubrication and sealing system for internal combustion engine
JP2013113276A (ja) * 2011-11-30 2013-06-10 Daihatsu Motor Co Ltd オイル落とし通路構造
JP2014218936A (ja) * 2013-05-08 2014-11-20 スズキ株式会社 車両用エンジンのバランサ潤滑構造
JP2018178832A (ja) * 2017-04-11 2018-11-15 三菱自動車工業株式会社 ギア潤滑機構

Also Published As

Publication number Publication date
CN113330193A (zh) 2021-08-31
JPWO2020157970A1 (ja) 2021-11-18
JP7088321B2 (ja) 2022-06-21
US20220127981A1 (en) 2022-04-28
EP3919725A1 (en) 2021-12-08
EP3919725A4 (en) 2022-01-26
CN113330193B (zh) 2022-11-15
US11781453B2 (en) 2023-10-10
EP3919725B1 (en) 2022-08-10

Similar Documents

Publication Publication Date Title
JP4512011B2 (ja) 内燃機関
BRPI1102040A2 (pt) estrutura de cárter para motor de combustão interna
JP2013015055A (ja) 自動二輪車用エンジンにおけるブリーザ構造
JP4647420B2 (ja) エンジン用ジェネレータ冷却構造
US6422194B2 (en) Handheld type four-cycle engine
WO2020157970A1 (ja) 内燃エンジン
CN1201067C (zh) Ohc发动机的润滑结构
JP6071362B2 (ja) 車両用エンジンのオイル循環構造
JP6414150B2 (ja) エンジンのオイル供給装置
US7779727B2 (en) Power unit case configured to house both an engine and a transmission, and power unit including same
JP4467916B2 (ja) 内燃機関のブリーザ装置
JP2009013887A (ja) エンジンの潤滑装置
JP5356356B2 (ja) エンジン用ジェネレータ冷却構造
JP2004108236A (ja) 4サイクルエンジンのオイルポンプ
JP2020084976A (ja) 内燃機関
JP4175709B2 (ja) ユニットスイングエンジンの潤滑構造
CN1303466A (zh) 倾斜式单缸发动机
JP2009270545A (ja) 内燃機関の油中希釈燃料分離装置
JP2009052421A (ja) エンジンの潤滑装置
JPH0953432A (ja) 内燃機関の潤滑油戻し通路
EP1134366B1 (en) Handheld type four-cycle engine
JP5443046B2 (ja) 液体循環装置
JP6409809B2 (ja) エンジンのオイル供給装置
JP2016173086A (ja) 潤滑油の排出装置
JPH11303618A (ja) 車両用エンジンのシリンダヘッドカバー構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569322

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019913993

Country of ref document: EP

Effective date: 20210901