WO2020157792A1 - スクロール圧縮機 - Google Patents

スクロール圧縮機 Download PDF

Info

Publication number
WO2020157792A1
WO2020157792A1 PCT/JP2019/002689 JP2019002689W WO2020157792A1 WO 2020157792 A1 WO2020157792 A1 WO 2020157792A1 JP 2019002689 W JP2019002689 W JP 2019002689W WO 2020157792 A1 WO2020157792 A1 WO 2020157792A1
Authority
WO
WIPO (PCT)
Prior art keywords
thrust
scroll
oil
shell
scroll compressor
Prior art date
Application number
PCT/JP2019/002689
Other languages
English (en)
French (fr)
Inventor
浩平 達脇
石園 文彦
祐司 ▲高▼村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980089972.3A priority Critical patent/CN113396283B/zh
Priority to GB2109442.0A priority patent/GB2594196B/en
Priority to US17/297,550 priority patent/US11713762B2/en
Priority to JP2020568883A priority patent/JP7118177B2/ja
Priority to PCT/JP2019/002689 priority patent/WO2020157792A1/ja
Publication of WO2020157792A1 publication Critical patent/WO2020157792A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C17/00Arrangements for drive of co-operating members, e.g. for rotary piston and casing
    • F01C17/06Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements
    • F01C17/066Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements with an intermediate piece sliding along perpendicular axes, e.g. Oldham coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/007General arrangements of parts; Frames and supporting elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/14Lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/20Fluid liquid, i.e. incompressible
    • F04C2210/206Oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft

Definitions

  • the present invention relates to a scroll compressor used in a refrigeration cycle such as refrigeration or an air conditioning application.
  • a conventional scroll compressor includes a frame that slidably holds an orbiting scroll, a fixed scroll that forms a compression chamber together with the orbiting scroll, and a shell that accommodates the frame and the fixed scroll (for example, Patent Document 1). Reference 1).
  • a gap is formed in each of the fixed scroll and the frame, and a positioning pin is inserted in the gap, and the frame and the fixed scroll are connected by the positioning pin. ..
  • the thrust plate when the thrust plate is arranged between the frame and the orbiting scroll, it is considered to prevent the rotation of the thrust plate by a positioning pin that connects the fixed scroll and the frame.
  • the present invention is intended to solve the above problems, and a scroll compression that can increase the upper limit capacity of a compressor by increasing the size of the orbiting scroll while preventing the rotation of the thrust plate. Machine.
  • the scroll compressor according to the present invention forms an outer shell and a shell that forms an oil reservoir for storing lubricating oil inside, a fixed scroll housed in the shell, and a shell that is housed in the shell and forms a compression chamber together with the fixed scroll.
  • the thrust plate has a hole penetrating between the first surface portion slidably contacting the orbiting scroll and the second surface portion facing the frame, and the thrust oil return pipe is formed in the hole portion. It is inserted and fitted to the thrust plate, and the upper end portion of the thrust oil return pipe does not project from the first surface portion of the thrust plate.
  • the thrust oil return pipe is inserted into the hole and fitted to the thrust plate, and the upper end portion of the thrust oil return pipe does not protrude from the first surface portion of the thrust plate. It is a thing. Therefore, the scroll compressor according to the present invention can prevent the thrust plate from rotating without a positioning pin that connects the fixed scroll and the frame. Further, in the scroll compressor according to the present invention, since there is no positioning pin that connects the fixed scroll and the frame, the size of the orbiting scroll can be made large, and the upper limit capacity of the compressor can be expanded.
  • FIG. 3 is a top view of a thrust plate used in the scroll compressor according to Embodiment 1 of the present invention.
  • FIG. 3 is a bottom view of the orbiting scroll used in the scroll compressor according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged detailed view of a region Y in the scroll compressor of FIG. 1. It is explanatory drawing of the positional relationship of a thrust plate and a thrust oil return pipe in the scroll compressor of FIG. It is a longitudinal section of a scroll compressor concerning a comparative example.
  • FIG. 1 It is an exploded perspective view of a partial configuration of a scroll compressor according to a comparative example. It is a bottom view of the orbiting scroll used for the scroll compressor which concerns on Embodiment 2 of this invention. It is a longitudinal cross-sectional view of the sealing material used for the scroll compressor which concerns on Embodiment 3 of this invention.
  • FIG. 1 is a vertical sectional view of a scroll compressor 100 according to Embodiment 1 of the present invention.
  • the scroll compressor 100 is applied to a refrigeration cycle device used for refrigeration or air conditioning, such as a refrigerator or freezer, a vending machine, an air conditioner, a refrigerating device, and a water heater.
  • the scroll compressor 100 sucks the refrigerant circulating in the refrigeration circuit of the refrigeration cycle apparatus, compresses the refrigerant, and discharges the refrigerant in a high-temperature and high-pressure state.
  • the scroll compressor 100 includes a shell 1, a main frame 2, a thrust plate 3, a compression mechanism section 4, and a thrust oil return pipe 29.
  • the scroll compressor 100 also includes a drive mechanism unit 5, a sub-frame 6, a crankshaft 7, and a bush 8.
  • the scroll compressor 100 according to the first embodiment is a so-called vertical compressor that is used with the central axis of the crankshaft 7 being substantially perpendicular to the ground.
  • the upward arrow side in the figure will be referred to as one end side U as the upper side, and the downward arrow side in the figure will be referred to as the other end side L as the lower side.
  • the shell 1 constitutes an outer shell of the scroll compressor 100.
  • the shell 1 is a cylindrical casing made of a conductive material such as metal and having both ends closed, and includes a main shell 11, an upper shell 12, a lower shell 13, a suction pipe 14, a discharge pipe 15, and a power supply.
  • the unit 16 and the fixed base 17 are provided.
  • the fixed scroll 41 and the main frame 2 are fixed to the inner wall of the shell 1.
  • An oil sump 131 for storing lubricating oil is formed in the lower portion inside the shell 1.
  • the main shell 11 is a cylindrical tube and constitutes a cylindrical peripheral wall.
  • the upper shell 12 is a substantially hemispherical lid, and a part thereof is connected by welding or the like at one end side U of the main shell 11 to close one opening of the main shell 11.
  • the lower shell 13 is a substantially hemispherical bottom body, and a part of the lower shell 13 is connected to the other end side L of the main shell 11 by welding or the like to close the other opening of the main shell 11.
  • the lower shell 13 constitutes an oil sump 131 in which lubricating oil is stored. The lubricating oil is supplied to a lubricated portion such as a bearing portion of the scroll compressor 100.
  • the suction pipe 14 is a pipe for introducing the refrigerant into the shell 1.
  • the suction pipe 14 is connected to the hole formed in the side wall of the main shell 11 by brazing or the like in a partially inserted state so as to communicate with the internal space of the shell 1.
  • the discharge pipe 15 is a pipe for discharging the refrigerant compressed by the compression mechanism unit 4 to the outside of the shell 1.
  • the discharge pipe 15 is connected to the inner space of the shell 1 by brazing or the like with a part thereof inserted in a hole formed in the upper portion of the upper shell 12.
  • the discharge pipe 15 connects the internal space of the shell 1 and the refrigeration circuit outside the shell 1.
  • the power supply unit 16 is a member used to supply power to the scroll compressor 100, and is provided on the outer wall of the main shell 11.
  • the power feeding unit 16 includes a cover 161, a power feeding terminal 162, and a wiring 163.
  • the cover 161 is a cover member.
  • the power supply terminal 162 is made of a metal member, one of which is provided so as to be surrounded by the cover 161, and the other of which is provided inside the main shell 11.
  • One of the wirings 163 is connected to the power supply terminal 162, and the other is connected to the stator 51 of the drive mechanism section 5 described later.
  • the fixed base 17 is a support base that supports the shell 1.
  • the fixing base 17 has a plurality of legs each having a screw hole formed therein, and by fixing these legs with screws, the scroll compressor 100 can be mounted on another member such as a casing of an air conditioning outdoor unit. Can be fixed.
  • FIG. 2 is an exploded perspective view of a partial configuration of the scroll compressor 100 according to Embodiment 1 of the present invention.
  • the main frame 2 will be described with reference to FIGS. 1 and 2.
  • the main frame 2 is one of the frames included in the scroll compressor 100.
  • the outer peripheral end of the main frame 2 is fixed to the inner peripheral wall of the main shell 11.
  • the main frame 2 is a cylindrical metal frame, is provided inside the shell 1, and holds an orbiting scroll 42 of a compression mechanism section 4 described later so as to be capable of swinging.
  • the main frame 2 includes a main body portion 21 and an oil return pipe 27.
  • a flat surface 22, a housing portion 23, a shaft hole 24, a suction port 25, an oil return hole 26, and a thrust oil return hole 28 are formed in the main body portion 21 of the main frame 2. ..
  • the main body 21 is a main part of the main frame 2.
  • the main body 21 is fixedly supported on the inner peripheral surface of the one end side U of the main shell 11 by, for example, shrink fitting or welding.
  • the main body portion 21 is formed in a tubular shape, the outer peripheral portion is fixed to the shell 1, and the compression mechanism portion 4 is partially accommodated in the inner peripheral portion.
  • the flat surface 22 is a wall surface on the one end side U of the main body 21 and is formed in an annular shape.
  • the thrust plate 3, which will be described later, is placed on the flat surface 22.
  • a housing portion 23 is formed on the inner peripheral side of the flat surface 22 formed in an annular shape.
  • the accommodating portion 23 is a portion that is formed in a concave shape in the radial center of the main frame 2 along the longitudinal direction of the shell 1, that is, the axial direction of the crankshaft 7.
  • the accommodating portion 23 is open at one end side U, and the inside thereof is formed in a stepped shape in which the space gradually narrows toward the other end side L.
  • the accommodation portion 23 has an Oldham accommodation portion 231, a bush accommodation portion 232, and a first Oldham groove 233.
  • An Oldham accommodating portion 231 is formed in a part of the step portion on the other end side L of the flat surface 22 of the main frame 2.
  • the Oldham accommodation portion 231 is formed on one end side U of the accommodation portion 23.
  • the bush accommodation portion 232 is formed on the other end side L of the accommodation portion 23 and communicates with the Oldham accommodation portion 231.
  • a first Oldham groove 233 is formed in the Oldham housing portion 231.
  • the first Oldham groove 233 is an Oldham groove formed in the main frame 2.
  • the first Oldham groove 233 is formed so that the outer end side invades a part of the inner peripheral side of the flat surface 22.
  • the first Oldham groove 233 is formed in a pair, and they are formed so as to be aligned in a substantially straight line with the axis of the crankshaft 7 interposed therebetween.
  • the first Oldham groove 233 is a key groove formed in a part of the main body portion 21 and the flat surface 22, and communicates with the Oldham housing portion 231.
  • the shaft hole 24 is formed on the other end side L of the housing portion 23 and communicates with the bush housing portion 232. That is, the main body 21 has a space that penetrates the main frame 2 in the up-down direction and widens in a step shape toward the one end side U by the housing 23 and the shaft hole 24.
  • the portion of the main frame 2 in which the shaft hole 24 is formed supports the crankshaft 7 as the main bearing portion 2a. That is, the main bearing portion 2a constitutes the other end side L of the main body portion 21, and the shaft hole 24 is formed therein.
  • the suction port 25 is a hole for supplying a refrigerant to the compression mechanism section 4, and is formed on the outer end side of the flat surface 22 of the main frame 2 so as to vertically penetrate the main body section 21.
  • the oil return hole 26 is formed on the other end side L of the main frame 2 and communicates with the bush housing 232.
  • An oil return pipe 27 for returning the lubricating oil accumulated in the housing portion 23 to the oil sump 131 in the lower shell 13 is inserted into the oil return hole 26.
  • the suction port 25 and the oil return hole 26 are not limited to one, and a plurality of oil return pipes 27 may be provided instead of one.
  • the thrust oil return hole 28 penetrates the main body portion 21 in the vertical direction, and as shown in FIG. 2, the flat oil surface 22 has an opening for the thrust oil return hole 28. ..
  • Two or more thrust oil return holes 28 are formed in the main body 21.
  • the thrust oil return hole 28 communicates with a hole portion 32 in which a thrust plate 3 described below is formed. Further, a thrust oil return pipe 29 described later is inserted into the thrust oil return hole 28.
  • the thrust oil return pipe 29 inserted into the thrust oil return hole 28 is fixed to the main frame 2.
  • FIG. 3 is a top view of the thrust plate 3 used in the scroll compressor 100 according to Embodiment 1 of the present invention.
  • the thrust plate 3 will be described with reference to FIGS. 1 to 3.
  • the thrust plate 3 is arranged between the orbiting scroll 42 and the main frame 2.
  • the thrust plate 3 is a thin steel plate-type metal plate that functions as a thrust bearing, is placed on the flat surface 22 of the main frame 2, and supports the thrust load of the compression mechanism unit 4.
  • the thrust plate 3 is formed in a ring shape as shown in FIG.
  • the thrust plate 3 has a notch 31 and a hole 32.
  • the cutout portion 31 is a portion where a part of the outer edge of the ring-shaped thrust plate 3 is cut out, and is formed so as to communicate with the suction port 25 corresponding to the suction port 25 of the main frame 2.
  • the notch 31 has the same shape as or larger than the suction port 25 so as not to cover the suction port 25.
  • the hole 32 penetrates between the first surface 301 that slidably contacts the orbiting scroll 42 and the second surface 302 that faces the main frame 2.
  • the holes 32 are formed in two or more places on the thrust plate 3.
  • the hole 32 communicates with the thrust oil return hole 28 formed in the main frame 2, as described above. Further, the thrust oil return pipe 29 is inserted into the hole portion 32, and the upper end portion 29 a of the thrust oil return pipe 29 described later is arranged.
  • the compression mechanism unit 4 is a mechanism that compresses the refrigerant. As shown in FIG. 1, the compression mechanism section 4 includes a fixed scroll 41, an orbiting scroll 42, an Oldham ring 43, a chamber 44, and a discharge valve 45. The compression mechanism unit 4 forms a compression chamber 46 that compresses the refrigerant by combining the fixed scroll 41 and the orbiting scroll 42.
  • the fixed scroll 41 forms a compression chamber 46 together with the orbiting scroll 42 and compresses a fluid such as a refrigerant.
  • the fixed scroll 41 is housed in the shell 1 as shown in FIG.
  • the outer peripheral end of the fixed scroll 41 is fixed to the inner peripheral wall of the main shell 11.
  • the fixed scroll 41 faces the orbiting scroll 42 and also faces the main frame 2 via the thrust plate 3.
  • the fixed scroll 41 is made of metal such as cast iron and includes a first base plate 411, a first spiral body 412, and a tip seal 413.
  • the first base plate 411 is a disk-shaped substrate.
  • the first spiral body 412 is a spiral tooth formed so as to project from the surface of the first base plate 411 on the other end side L.
  • the tip seal 413 is made of, for example, hard plastic and is arranged in a groove formed at the tip of the first spiral body 412. The tip seal 413 suppresses the leakage of the refrigerant and maintains the airtightness of the compression chamber 46.
  • a discharge port 414 for discharging the refrigerant compressed in the compression chamber 46 is formed in the first base plate 411 of the fixed scroll 41.
  • the discharge port 414 is a through hole that is formed substantially in the center of the first base plate 411 in the vertical direction, which is the thickness direction thereof.
  • the orbiting scroll 42 forms a compression chamber 46 together with the fixed scroll 41 and compresses a fluid such as a refrigerant.
  • the orbiting scroll 42 is housed in the shell 1 as shown in FIG.
  • the orbiting scroll 42 is made of metal such as aluminum and includes a second base plate 421, a second spiral body 422, a tip seal 423, and a tubular portion 424.
  • the second base plate 421 of the orbiting scroll 42 is formed with a second Oldham groove 425 in which a part of the Oldham ring 43 is accommodated.
  • the second Oldham groove 425 is an Oldham groove formed in the orbiting scroll 42.
  • the second base plate 421 is a disk-shaped substrate.
  • the second base plate 421 has a second spiral body 422 formed on one upper surface 4211 side, and the other lower surface 4212 side faces the first surface portion 301 of the thrust plate 3.
  • the second spiral body 422 is a spiral tooth formed to project from the upper surface 4211 side of the one end side U of the second base plate 421.
  • the tip seal 423 is made of, for example, hard plastic and is arranged in a groove formed at the tip of the second spiral body 422. The tip seal 423 suppresses the leakage of the refrigerant and maintains the airtightness of the compression chamber 46.
  • the cylindrical portion 424 is a cylindrical boss formed to project from the approximate center of the lower surface 4212 side of the other end side L of the second base plate 421.
  • a rocking bearing which is a journal bearing, which rotatably supports a slider 81 described later, is provided on the inner peripheral surface of the cylindrical portion 424.
  • the tubular portion 424 is arranged in the shell 1 such that the central axis of the rocking bearing is parallel to the central axis of the crankshaft 7. Therefore, the orbiting scroll 42 is arranged eccentrically with respect to the fixed scroll 41.
  • the second Oldham groove 425 is an oval key groove formed on the other end side L surface of the second base plate 421.
  • a pair of second Oldham grooves 425 are formed so as to face each other with the tubular portion 424 interposed therebetween.
  • the pair of second Oldham grooves 425 are formed such that the line connecting them is orthogonal to the line connecting the pair of first Oldham grooves 233.
  • FIG. 4 is a bottom view of the orbiting scroll 42 used in the scroll compressor 100 according to Embodiment 1 of the present invention.
  • FIG. 5 is an enlarged detailed view of the region Y in the scroll compressor 100 of FIG. The structure of the orbiting scroll 42 will be described in more detail with reference to FIGS. 4 and 5.
  • 4 is a view of the orbiting scroll 42 as viewed from the other end side L.
  • An oil supply groove 47 and an oil supply passage 48 are formed in the second base plate 421 of the orbiting scroll 42.
  • the oil supply groove 47 is a circulation groove formed in the outer peripheral area of the lower surface 4212 of the second base plate 421. That is, the oil supply groove 47 is formed in an annular shape along the circumferential direction of the second base plate 421 on the wall portion facing the first surface portion 301.
  • the oil supply groove 47 supplies the lubricating oil supplied from the oil supply passage 48 to the first surface portion 301 of the thrust plate 3.
  • the oil supply groove 47 is arranged above the thrust return oil pipe 29 and communicates with the thrust return oil pipe 29 only in a predetermined section during one rotation of the crankshaft 7.
  • the oil supply passage 48 is a through hole formed inside the second base plate 421.
  • the oil supply passage 48 is formed so as to extend in the radial direction between the center and the outer edge of the second base plate 421 formed in a disc shape.
  • the oil supply passage 48 is formed in a substantially straight line on both sides of the second base plate 421 with the crankshaft 7 interposed therebetween.
  • One end of the oil supply passage 48 is connected to the inside of the tubular portion 424, and the other end of the oil supply passage 48 is an outlet portion 421a formed as an opening on the outer surface of the second base plate 421. Further, in the oil supply passage 48, the flow passage on the outlet 421a side of the tubular portion 424 communicates with the oil supply groove 47.
  • the cross-sectional shape of the oil supply passage 48 is formed into a substantially perfect circle, but the cross-sectional shape of the oil supply passage 48 is not limited to a perfect circle, and may be formed into an ellipse, a flat circle, a polygon, or the like.
  • the oil supply passage 48 is a passage for the lubricating oil supplied from the crankshaft 7 to flow from the inner side to the outer side in the radial direction.
  • a seal material 49 is inserted into the outlet portion 421a of the oil supply passage 48.
  • two oil supply passages 48 are formed in the circumferential direction of the second base plate 421, only one oil supply passage 48 may be formed, or three or more may be formed in some cases.
  • the oil supply passage 48 is formed so as to be substantially straight on both sides of the crankshaft 7, but the oil supply passage 48 is not limited to this configuration, and the oil supply passage 48 is It does not need to be formed in a substantially straight line on both sides of the crankshaft 7.
  • the seal material 49 is inserted from the side surface side of the second base plate 421.
  • the sealing material 49 is, for example, a metal screw made of a material having a linear expansion coefficient close to that of the fixed scroll 41 and the orbiting scroll 42.
  • the sealing material 49 is not limited to the metal screw.
  • the sealing material 49 may be, for example, a metal pin fixed by an adhesive or an elastic member such as rubber fixed by press fitting as long as it can be inserted and fixed in the hole of the oil supply passage 48.
  • the Oldham ring 43 is a member for preventing the orbiting scroll 42 from rotating, and includes a ring portion 431, a first key portion 432, and a second key portion 433 as shown in FIG. ing.
  • the ring portion 431 is formed in an annular shape and is arranged in the Oldham accommodation portion 231 of the main frame 2.
  • the first key portion 432 is provided on the other end side L surface of the ring portion 431.
  • the first key portions 432 are configured as a pair and are housed in the pair of first Oldham grooves 233 of the main frame 2, respectively.
  • the second key portion 433 is provided on the surface on the one end side U of the ring portion 431.
  • the second key portions 433 are configured as a pair and are housed in the pair of second Oldham grooves 425 of the orbiting scroll 42.
  • the position in the rotation direction of the second spiral body 422 of the orbiting scroll 42 is determined by aligning the second Oldham groove 425 of the orbiting scroll 42 with the second key portion 433 of the Oldham ring 43. That is, the Oldham ring 43 positions the orbiting scroll 42 with respect to the main frame 2, and determines the phase of the second spiral body 422 with respect to the main frame 2. Therefore, the Oldham ring 43 prevents the orbiting movement of the orbiting scroll 42 and enables the orbiting movement of the orbiting scroll 42.
  • the chamber 44 is a plate-shaped member, is provided on the surface of the fixed scroll 41 on one end side U, and forms a discharge hole 441 that spatially communicates with the discharge port 414.
  • the discharge valve 45 is a valve that opens and closes the discharge hole 441 according to the pressure of the refrigerant, and is screwed to the chamber 44. The discharge valve 45 opens the discharge hole 441 when the refrigerant in the compression chamber 46 communicating with the discharge port 414 reaches a predetermined pressure.
  • the compression chamber 46 is formed by meshing the first spiral body 412 of the fixed scroll 41 and the second spiral body 422 of the orbiting scroll 42 with each other. More specifically, the compression chamber 46 is formed by the first spiral body 412 and the first base plate 411, and the second spiral body 422 and the second base plate 421. The compression chamber 46 is sealed by the tip of the first spiral body 412, the tip seal 413 and the second base plate 421, and the tip of the second spiral body 422, the tip seal 423 and the first base plate 411. ,It is formed.
  • the compression chamber 46 is composed of a plurality of compression chambers whose volume decreases from the outside to the inside in the radial direction of the scroll, and the orbiting scroll 42 revolves by taking the refrigerant from the spiral body located at the outer end. As a result, the refrigerant is gradually compressed.
  • the compression chamber 46 communicates with a discharge port 414 formed through the central portion of the first base plate 411 of the fixed scroll 41, and the compressed refrigerant is discharged from this discharge port 414.
  • a halogenated hydrocarbon having a carbon double bond for example, a halogenated hydrocarbon having a carbon double bond, a halogenated hydrocarbon having no carbon double bond in the composition, a natural refrigerant, or a mixture containing them can be used.
  • Halogenated hydrocarbons having no double bond carbons R32 (CH 2 F 2) , R41 (CH 3 F), R125 (C 2 HF 3), R134a (CH 2 FCF 2), R143a (CF 3 CH 3 ), R410A (R32/R125), R407C (R32/R125/R134a), and other HFC refrigerants.
  • R32 (difluoromethane) represented by CH 2 F 2, R41 etc. refrigerant mixture is exemplified.
  • Natural refrigerant is ammonia (NH 3), carbon dioxide (CO 2), and propane (C 3 H 8), propylene (C 3 H 6), butane (C 4 H 10), isobutane (CH (CH 3) 3) Etc.
  • the thrust oil return pipe 29 is inserted into the thrust oil return hole 28 formed in the main frame 2, and is fixed to the main frame 2. Lubricating oil supplied to the lubricated portion of the scroll compressor 100 and returning to the oil sump 131 flows through the thrust oil return pipe 29.
  • the thrust oil return pipe 29 is arranged so as to vertically pass through the main body portion 21 of the main frame 2. That is, the thrust oil return pipe 29 is provided so as to extend in the vertical direction of the shell 1, and is provided along the extending direction of the crankshaft 7.
  • the thrust oil return pipe 29 is inserted into the hole 32 of the thrust plate 3 and fitted with the thrust plate 3.
  • the thrust oil return pipe 29 may be one, but it is preferable that a plurality of thrust oil return pipes 29 are provided.
  • the plurality of thrust oil return pipes 29 are inserted into the plurality of holes 32 formed in the thrust plate 3 and fitted with the thrust plate 3. ing.
  • the position of the thrust plate 3 with respect to the main frame 2 is determined by the plurality of thrust oil return pipes 29.
  • the drive mechanism unit 5 generates a rotary motion that rotates the crankshaft 7 inside the shell 1.
  • the drive mechanism section 5 is provided on the other end side L of the main frame 2.
  • the drive mechanism unit 5 includes a stator 51 and a rotor 52.
  • the stator 51 is, for example, a stator formed by winding a winding around an iron core formed by laminating a plurality of electromagnetic steel sheets with an insulating layer interposed therebetween, and is formed in a ring shape.
  • the stator 51 is fixed to the inner wall of the main shell 11 by shrink fitting or the like.
  • the stator 51 rotates the rotor 52 with electric power supplied from the outside of the scroll compressor 100.
  • the rotor 52 is a cylindrical rotor that has a permanent magnet built in an iron core formed by stacking a plurality of electromagnetic steel plates, and has a through hole that vertically penetrates in the center, and is arranged in the internal space of the stator 51. ing.
  • a crankshaft 7 that transmits the rotational driving force of the drive mechanism unit 5 to the orbiting scroll 42 is fixed to the rotor 52. When electric power is supplied to the stator 51, the rotor 52 rotates and rotates together with the crankshaft 7.
  • the sub-frame 6 is one of the frames included in the scroll compressor 100.
  • the sub-frame 6 is a metal frame, is provided on the other end side L of the drive mechanism unit 5, and is fixed to the inner peripheral wall of the main shell 11 by shrink fitting, welding, or the like.
  • the sub frame 6 rotatably supports the crankshaft 7 via the sub bearing portion 61.
  • the sub frame 6 includes a sub bearing portion 61 and an oil pump 62.
  • the sub-bearing portion 61 is a ball bearing provided on the upper center of the sub-frame 6.
  • the sub-bearing portion 61 is not limited to the ball bearing, and may be configured by another bearing.
  • the oil pump 62 is a pump for sucking up the lubricating oil stored in the oil sump 131 of the shell 1, and is provided on the lower center side of the subframe 6.
  • the oil pump 62 supplies the lubricating oil sucked from the oil sump 131 of the shell 1 to a lubricated portion such as a bearing portion of the scroll compressor 100 to lubricate the lubricated portion.
  • the lubricating oil is stored in the lower portion of the shell 1, that is, in the lower shell 13, is sucked up by the oil pump 62, and is supplied to the compression mechanism section 4 and the like through an oil passage 73 in the crankshaft 7 described later.
  • Lubricating oil reduces wear of parts that are in mechanical contact with each other, such as the compression mechanism part 4, temperature control of a sliding part, and sealability.
  • As the lubricating oil an oil having an appropriate viscosity while being excellent in lubrication characteristics, electric insulation, stability, refrigerant solubility, low temperature fluidity and the like is suitable.
  • the scroll compressor 100 for example, naphthene-based, polyol ester (POE), polyvinyl ether (PVE), or polyalkylene glycol (PAG) oil can be used.
  • crankshaft 7 connects the drive mechanism unit 5 and the orbiting scroll 42 of the compression mechanism unit 4 and transmits the rotational movement of the drive mechanism unit 5 to the orbiting scroll 42.
  • the crankshaft 7 is a metal rod-shaped member and is provided inside the shell 1.
  • the crankshaft 7 includes a main shaft portion 71 and an eccentric shaft portion 72. Further, the crankshaft 7 has an oil passage 73 formed inside the main shaft portion 71 and the eccentric shaft portion 72.
  • the main shaft portion 71 is a shaft that constitutes a main portion of the crankshaft 7, and is arranged so that its central axis coincides with the central axis of the main shell 11.
  • the main shaft 71 is fixed to the through hole at the center of the rotor 52 by shrink fitting or the like.
  • the eccentric shaft portion 72 is provided on one end side U of the main shaft portion 71 so that the central axis of the eccentric shaft portion 72 is eccentric with respect to the central axis of the main shaft portion 71.
  • the oil passage 73 is formed inside the main shaft portion 71 and the eccentric shaft portion 72 so as to penetrate vertically along the axial direction. The lubricating oil sucked up from the oil sump 131 by the oil pump 62 flows through the oil passage 73.
  • the crankshaft 7 is inserted into the shaft hole 24 of the main frame 2, and the other end side L is inserted into the through hole of the sub bearing portion 61 of the sub frame 6 so as to be rotatably supported by the main frame 2 and the sub frame 6. To be done.
  • the eccentric shaft portion 72 located above the crankshaft 7 is arranged in the cylinder of the cylindrical portion 424.
  • the rotor 52 fixed to the crankshaft 7 is arranged corresponding to the stator 51, and its outer peripheral surface is arranged with a predetermined gap from the inner peripheral surface of the stator 51.
  • the bush 8 is a connecting member that is made of metal such as iron and that connects the orbiting scroll 42 and the crankshaft 7. As shown in FIG. 2, the bush 8 includes a slider 81 and a balance weight 82.
  • the slider 81 is a tubular member having a flange, and is fitted into the tubular portion 424 with the eccentric shaft portion 72 inserted therein.
  • the balance weight 82 is a doughnut-shaped member including a weight portion 821 whose shape viewed from the one end side U is substantially C-shaped, and in order to cancel the centrifugal force of the orbiting scroll 42, the balance weight 82 is biased with respect to the rotation center. It is provided as a core.
  • the balance weight 82 is fitted to the collar of the slider 81 by shrink fitting, for example.
  • the fixed scroll 41 is fixed to the first inner wall surface portion 111 of the main shell 11, which is the inner wall of the shell 1, as shown in the area Z of FIG. More specifically, as shown in FIG. 2, the main shell 11 has a first inner wall surface portion 111 and a second inner wall surface portion 112 from one end side U toward the other end side L.
  • the second inner wall surface portion 112 is a portion having an inner diameter smaller than that of the first inner wall surface portion 111. That is, the second inner wall surface portion 112 is formed so as to project from the first inner wall surface portion 111 toward the center of the main shell 11. Therefore, the second inner wall surface portion 112 has the first positioning portion 113 formed in a step shape between the second inner wall surface portion 112 and the first inner wall surface portion 111.
  • the first positioning portion 113 is formed on the second inner wall surface portion 112 toward the one end side U and positions the fixed scroll 41.
  • the fixed scroll 41 is fixed to the first inner wall surface portion 111 by shrink fitting, welding, or the like while being positioned by the first positioning portion 113. That is, the main shell 11 includes a stepped portion having an inner diameter that decreases from the one end side U to the other end side L, and the fixed scroll 41 is positioned and fixed using the step. There is.
  • the main shell 11 further has a third inner wall surface portion 115.
  • the third inner wall surface portion 115 is a portion having an inner diameter smaller than that of the second inner wall surface portion 112.
  • the third inner wall surface portion 115 is formed so as to project from the second inner wall surface portion 112 toward the center of the main shell 11. Therefore, the third inner wall surface portion 115 has the second positioning portion 116 formed in a step shape between the third inner wall surface portion 115 and the second inner wall surface portion 112.
  • the second positioning portion 116 is formed toward the one end side U in the third inner wall surface portion 115 and positions the main frame 2.
  • the main frame 2 is fixed to the second inner wall surface portion 112 by shrink fitting or the like while being positioned by the second positioning portion 116. That is, the main shell 11 has a stepped portion whose inner diameter decreases from the one end side U to the other end side L, and positioning and fixing of the main frame 2 are performed by utilizing the step. There is.
  • the scroll compressor 100 can realize a frame outer wall-less structure by fixing the fixed scroll 41 to the inner wall surface of the main shell 11.
  • the main frame 2 since the fixed scroll 41 is screwed to the main frame 2, the main frame 2 is generally provided with an outer wall on which the fixed scroll 41 is placed along the outer edge of the one end side U. Target.
  • the orbiting scroll 42 is arranged in the space inside the outer wall, and the size of the orbiting scroll 42 is restricted by the outer wall of the main frame 2. Therefore, in the conventional scroll compressor, since the spiral capacity is restricted due to the size restriction of the orbiting scroll 42, the upper limit capacity of the compressor cannot be expanded.
  • the main frame 2 does not have an outer wall for screwing the fixed scroll 41. Therefore, in the scroll compressor 100, a space is formed between the side surface of the second base plate 421 of the orbiting scroll 42 and the inner wall surface of the main shell 11. In other words, in the scroll compressor 100, since the space in the radial direction inside the main shell 11 in which the orbiting scroll 42 is arranged is widened, the outer diameter of the second base plate 421 and the winding diameter of the second spiral body 422 are set to be larger than those in the related art. Can also be larger.
  • the upper limit capacity of the compressor can be expanded by increasing the diameters of the first spiral body 412 and the second spiral body 422 with the shell 1 having the conventional design.
  • the scroll compressor 100 can be designed to reduce the surface pressure of the thrust load by enlarging the second base plate 421 with the shell 1 having the conventional design.
  • the size of the orbiting scroll 42 may be left unchanged, and the diameter of the main shell 11 may be reduced to allow the compressor to be downsized without lowering the upper limit capacity.
  • FIG. 6 is an explanatory diagram of the positional relationship between the thrust plate 3 and the thrust oil return pipe 29 in the scroll compressor 100 of FIG. The positional relationship between the thrust plate 3, the thrust oil return pipe 29, and the main shell 11 will be described with reference to FIGS. 2 to 6.
  • the thrust oil return pipe 29 is inserted into the thrust oil return hole 28 formed in the main body portion 21 of the main frame 2, and the position of the upper end portion 29 a of the thrust oil return pipe 29 protrudes from the flat surface 22 by a predetermined amount. Fixed. Here, two or more thrust oil return pipes 29 are inserted and fixed to the main frame 2.
  • the thrust plate 3 is arranged on the flat surface 22 so that the hole portion 32 of the thrust plate 3 and the thrust oil return pipe 29 protruding from the flat surface 22 are fitted to each other.
  • the outer diameter of the thrust oil return pipe 29 and the inner diameter of the hole 32 are such that a predetermined gap is formed so that the outer diameter of the thrust plate 3 does not contact the second inner wall surface 114 of the main shell 11. And the thrust plate 3 are fitted together. That is, the positioning of the thrust plate 3 is determined only by the fitting of the thrust oil return pipe 29 and the hole 32 of the thrust plate 3. Further, the projection amount of the thrust oil return pipe 29 from the flat surface 22 is made smaller than the thickness of the thrust plate 3 so that the upper end portion 29 a of the thrust oil return pipe 29 does not project from the first surface portion 301 of the thrust plate 3. ..
  • the refrigerant in the gas state sucked into the shell 1 from the suction pipe 14 is separated between the first scroll body 412 of the fixed scroll 41 and the second scroll body 422 of the orbiting scroll 42. It is taken into the compression chamber 46 formed between them and is compressed toward the center. Then, the compressed refrigerant passes through the discharge port 414 formed in the first base plate 411 of the fixed scroll 41 and is discharged by opening the discharge valve 45 from the discharge hole 441 formed in the chamber 44. It is discharged from the pipe 15 to the refrigerant circuit outside the scroll compressor 100.
  • a part of the lubricating oil that has reached the upper end of the crankshaft 7 through the oil passage 73 in the crankshaft 7 is located on the thrust surface of the orbiting scroll 42 via the oil supply passage 48 of the orbiting scroll 42. It is supplied to the oil supply groove 47.
  • the oil supply groove 47 is arranged so as to overlap the hole 32 of the thrust plate 3, that is, the opening of the thrust oil return pipe 29, only in a predetermined section during one rotation of the compressor.
  • the oil that lubricates the thrust surface of the orbiting scroll 42 is returned to the lower portion of the shell 1, that is, the lower shell 13 via the thrust oil return pipe 29.
  • the outlet portion 421 a of the second base plate 421 of the oil supply passage 48 is sealed by a sealing material 49 so that the lubricating oil passing through the oil supply passage 48 is supplied to the oil supply groove 47.
  • Method for manufacturing scroll compressor 100 A method of manufacturing the scroll compressor 100 according to the first embodiment of the present invention, in particular, an arrangement of the fixed scroll 41 and the like will be described with reference to FIGS. 1 to 5.
  • the worker inserts the main frame 2 into the main shell 11 from one end side U of the main shell 11. At this time, the main frame 2 comes into surface contact with the second positioning portion 116 of the third inner wall surface portion 115, and is positioned in the height direction with respect to the main shell 11. In this state, the worker shrink-fits the main frame 2 on the second inner wall surface portion 112 or fixes the main frame 2 by arc spot welding or the like. Then, the worker inserts the crankshaft 7 into the shaft hole 24 of the main frame 2, attaches the bush 8 to the eccentric shaft portion 72, and further arranges the Oldham ring 43, the swing scroll 42, and the like.
  • the worker inserts the fixed scroll 41 into the main shell 11 from one end side U of the main shell 11.
  • the fixed scroll 41 comes into surface contact with the first positioning portion 113 of the second inner wall surface portion 112, and is positioned in the height direction with respect to the main shell 11.
  • the fixed scroll 41 can rotate with respect to the orbiting scroll 42 until the fixed scroll 41 is fixed to the first inner wall surface portion 111.
  • the positional relationship between the first spiral body 412 and the second spiral body 422 may shift. Therefore, in the scroll compressor 100, the fixed scroll 41 is rotated and the phase is adjusted so that the positional relationship of the first spiral body 412 with respect to the second spiral body 422 of the orbiting scroll 42 becomes predetermined.
  • the fixed scroll 41 is shrink-fitted to the first inner wall surface portion 111, or fixed by arc spot welding or the like.
  • FIG. 7 is a vertical cross-sectional view of the scroll compressor 200 according to the comparative example.
  • FIG. 8 is an exploded perspective view of a partial configuration of the scroll compressor 200 according to the comparative example. Parts having the same functions as those of the scroll compressor 100 shown in FIGS. 1 to 6 are designated by the same reference numerals, and the description thereof will be omitted.
  • the scroll compressor 200 according to the comparative example is a so-called frame outer wall-less structure, and is a compressor similar to the scroll compressor of Patent Document 1 in that the fixed scroll 41 and the main frame 2 are connected by the positioning pin 9. is there.
  • the lower end portion of the positioning pin 9 is inserted into the recess 211 formed in the main frame 2, and the upper end portion of the positioning pin 9 is attached to the fixed scroll 41, so that the fixed scroll 41 and the main scroll 41 are connected to each other.
  • the frame 2 is connected.
  • the thrust load generated when the refrigerant is compressed is supported by the main frame 2 via the orbiting scroll 42.
  • the scroll compressor 200 according to the comparative example has a so-called frame outer wall-less structure
  • the outer peripheral edge portion of the thrust plate 3 and the inner wall of the shell 1 make intermittent contact with each other during operation of the compressor, resulting in noise and vibration. May increase.
  • the positioning plate 9 connecting the fixed scroll 41 and the main frame 2 prevents the thrust plate 3 from rotating.
  • the size of the spiral capacity that determines the upper limit capacity of the compressor is limited.
  • the scroll compressor 100 According to the scroll compressor 100, the thrust oil return pipe 29 is inserted into the hole 32 and fitted to the thrust plate 3, and the upper end portion 29 a of the thrust oil return pipe 29 is attached to the first surface portion 301 of the thrust plate 3. It does not stick out from. Therefore, the scroll compressor 100 can prevent the thrust plate 3 from rotating without the positioning pin 9 that connects the fixed scroll 41 and the main frame 2 to each other. Further, since the scroll compressor 100 does not have the positioning pin 9 that connects the fixed scroll 41 and the main frame 2, it is possible to increase the size of the orbiting scroll 42 and expand the upper limit capacity of the compressor. Further, the scroll compressor 100 can prevent rotation of the thrust plate 3 and can avoid contact between the outer diameter of the thrust plate 3 and the inner wall of the main shell 11, thereby reducing noise and vibration of the compressor. You can
  • the position of the thrust plate 3 with respect to the main frame 2 is determined by a plurality of thrust oil return pipes 29. Therefore, the scroll compressor 100 can prevent rotation of the thrust plate 3 even without the positioning pin 9 that connects the fixed scroll 41 and the main frame 2, and makes the orbiting scroll 42 large in size. The maximum capacity can be expanded. Further, the scroll compressor 100 can prevent rotation of the thrust plate 3 and can avoid contact between the outer diameter of the thrust plate 3 and the inner wall of the main shell 11 to reduce noise and vibration of the compressor. You can
  • the fixed scroll 41 faces the orbiting scroll 42 and the main frame 2 via the thrust plate 3, and the fixed scroll 41 and the main frame 2 are fixed to the shell 1.
  • the scroll compressor 100 has a so-called frame outer wall-less structure in which a gap is formed between the fixed scroll 41 and the main frame 2, and the thrust load generated at the time of refrigerant compression is supported by the main frame 2 via the orbiting scroll 42. To be done. Even if the scroll compressor 100 has a so-called frame outer wallless structure, the thrust plate 3 can be prevented from rotating without using the positioning pin 9 that connects the fixed scroll 41 and the main frame 2.
  • the size of the orbiting scroll 42 is configured to be large, the upper limit capacity of the compressor can be expanded, and contact between the outer diameter of the thrust plate 3 and the inner wall of the main shell 11 is avoided, and the compressor is reduced.
  • the noise and vibration can be reduced. That is, even if the scroll compressor 100 has a frame outer wall-less structure, the upper limit capacity of the compressor can be expanded, and a low noise, low vibration, high performance, and highly reliable compressor is provided.
  • the thrust load increases as the upper limit capacity of the compressor expands due to the expansion of the size of the orbiting scroll 42.
  • the oil supply groove 47 of the orbiting scroll 42 is formed in an annular shape along the circumferential direction of the second base plate 421 in the wall portion of the second base plate 421 that faces the first surface portion 301 and forms the thrust surface.
  • the oil supply groove 47 is arranged so as to face the upper end portion of the thrust oil return pipe 29 and communicates with the thrust oil return pipe 29 only in a predetermined section during one rotation of the crankshaft 7. Therefore, in the scroll compressor 100, by adjusting the supply amount of the thrust lubricating oil, the thrust sliding property is improved, the thrust sliding loss can be reduced, and the thrust reliability can be secured.
  • a seal material 49 is inserted at the outer peripheral end of the oil supply passage 48.
  • the scroll compressor 100 can seal the outer end side of the oil supply passage 48 by using the sealing material 49. Therefore, the scroll compressor 100 can easily form the oil supply passage 48 extending in the radial direction of the second base plate 421.
  • FIG. 9 is a bottom view of the orbiting scroll 42a used in the scroll compressor 100 according to Embodiment 2 of the present invention. Portions having the same configurations as those of the scroll compressor 100 of FIGS. 1 to 6 are designated by the same reference numerals, and the description thereof will be omitted. Items that are not particularly described in the orbiting scroll 42a are the same as those of the orbiting scroll 42 of the scroll compressor 100 according to Embodiment 1 of the present invention, and the same functions and configurations are described using the same reference numerals. I will.
  • the orbiting scroll 42a differs from the orbiting scroll 42 of the scroll compressor 100 according to the first embodiment in that the oil supply groove 47 communicates with the second Oldham groove 425. That is, the second Oldham groove 425 is formed so as to communicate with the oil supply groove 47. Therefore, in the scroll compressor 100, the lubricating oil supplied from the oil supply passage 48 to the oil supply groove 47 is easily supplied from the oil supply groove 47 to the second Oldham groove 425.
  • the scroll compressor 100 using the orbiting scroll 42a has improved slidability between the second Oldham groove 425 and the second key portion 433 of the Oldham ring 43. To be done.
  • FIG. 10 is a vertical cross-sectional view of the sealing material 49a used in the scroll compressor 100 according to Embodiment 3 of the present invention. Portions having the same configurations as those of the scroll compressor 100 shown in FIGS. 1 to 6 and 9 are designated by the same reference numerals, and the description thereof will be omitted. Items not specifically described in the seal material 49a are the same as those of the seal material 49 of the scroll compressor 100 according to Embodiment 1 of the present invention, and the same functions and configurations will be described using the same symbols. To do.
  • the seal material 49a differs from the seal material 49 of the scroll compressor 100 according to the first embodiment in that a through hole 491 is formed in the seal material 49a.
  • the number of the through holes 491 formed in the sealing material 49a may be one or plural.
  • the through hole 491 is formed in the radial direction of the second base plate 421 in a state where the seal material 49a is inserted into the end portion of the oil supply passage 48.
  • the through hole 491 communicates with the oil supply passage 48.
  • the lubricating oil flowing through the oil supply passage 48 part of the lubricating oil flows in the direction of the oil supply groove 47, and part of the lubricating oil flows in the direction of the seal material 49a.
  • the lubricating oil flowing in the direction of the oil supply groove 47 lubricates the lower surface 4212 of the second base plate 421 and the thrust plate 3.
  • the lubricating oil flowing in the direction of the seal material 49 is discharged from the side surface of the second base plate 421 after the flow rate is adjusted by the through hole 491.
  • the scroll compressor 100 using the seal material 49a since the lubricating oil is supplied to the compression chamber 46 through the through hole 491 of the seal material 49a, in addition to the effects of the scroll compressor 100 according to the first embodiment, the scroll compressor 100 The slidability of the body is improved.
  • the embodiment of the present invention is not limited to the above-described first to third embodiments, and various changes can be added.
  • the scroll compressor 100 according to the first embodiment has been described for the case where the oil supply groove 47 has an annular shape and only one, but the shape and the number of the oil supply groove 47 are provided as long as the expected effect can be obtained. It doesn't matter.
  • the scroll compressor 100 according to the first embodiment has been described as a so-called frame outer wall-less compressor.
  • the scroll compressor 100 may be a compressor having a structure having a frame outer wall on which the fixed scroll 41 is mounted on the outer peripheral portion of the main frame 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

スクロール圧縮機(100)は、外郭を構成し、内部に潤滑油を貯める油溜め(131)を構成するシェル(1)と、シェルに収容された固定スクロール(41)と、シェルに収容され、固定スクロールと共に圧縮室を形成する揺動スクロール(42)と、揺動スクロールを保持するフレーム(2)と、揺動スクロールとフレームとの間に配置されたスラストプレート(3)と、フレームに固定され、油溜めに戻る潤滑油が流れるスラスト返油管(29)と、を有し、スラストプレートには、揺動スクロールと摺動自在に当接する第1面部とフレームに対向する第2面部との間を貫通した孔部(32)が形成されており、スラスト返油管は、孔部に挿入されてスラストプレートと嵌合されていると共に、スラスト返油管の上端部が、スラストプレートの第1面部から突出していないものである。

Description

スクロール圧縮機
 本発明は、冷凍、あるいは、空調用途等の冷凍サイクルに用いられるスクロール圧縮機に関するものである。
 従来のスクロール圧縮機は、揺動スクロールを摺動自在に保持するフレームと、揺動スクロールと共に圧縮室を形成する固定スクロールと、フレーム及び固定スクロールを収容したシェルとを備えている(例えば、特許文献1参照)。特許文献1のスクロール圧縮機は、固定スクロール及びフレームにそれぞれ空隙部が形成されていると共に、この空隙部に位置決めピンが挿入されており、この位置決めピンによってフレームと固定スクロールとが連結されている。この特許文献1のスクロール圧縮機において、フレームと揺動スクロールとの間にスラストプレートが配置される場合には、固定スクロールとフレームとを連結する位置決めピンによってスラストプレートの自転防止を図ることが考えられる。
特開2015-209767号公報
 しかしながら、特許文献1のスクロール圧縮機は、固定スクロールとフレームとを連結する位置決めピンと、揺動スクロールとの干渉を回避する必要があり、揺動スクロールのサイズを大きく構成することができない。そのため、特許文献1のスクロール圧縮機は、圧縮機の上限能力を決定する渦巻容量のサイズが制限されてしまう。
 本発明は、上記のような課題を解決するためのものであり、スラストプレートの自転防止を図りながら、揺動スクロールのサイズを大きく構成し、圧縮機の上限能力を拡大することができるスクロール圧縮機を提供するものである。
 本発明に係るスクロール圧縮機は、外郭を構成し、内部に潤滑油を貯める油溜めを構成するシェルと、シェルに収容された固定スクロールと、シェルに収容され、固定スクロールと共に圧縮室を形成する揺動スクロールと、揺動スクロールを保持するフレームと、揺動スクロールとフレームとの間に配置されたスラストプレートと、フレームに固定され、油溜めに戻る潤滑油が流れるスラスト返油管と、を有し、スラストプレートには、揺動スクロールと摺動自在に当接する第1面部とフレームに対向する第2面部との間を貫通した孔部が形成されており、スラスト返油管は、孔部に挿入されてスラストプレートと嵌合されていると共に、スラスト返油管の上端部が、スラストプレートの第1面部から突出していないものである。
 本発明に係るスクロール圧縮機によれば、スラスト返油管は、孔部に挿入されてスラストプレートと嵌合されていると共に、スラスト返油管の上端部が、スラストプレートの第1面部から突出していないものである。そのため、本発明に係るスクロール圧縮機は、固定スクロールとフレームとを連結する位置決めピンがなくとも、スラストプレートの自転防止が可能となる。また、本発明に係るスクロール圧縮機は、固定スクロールとフレームとを連結する位置決めピンがないため揺動スクロールのサイズを大きく構成し、圧縮機の上限能力を拡大することができる。
本発明の実施の形態1に係るスクロール圧縮機の縦断面図である。 本発明の実施の形態1に係るスクロール圧縮機の一部構成の分解斜視図である。 本発明の実施の形態1に係るスクロール圧縮機に用いられるスラストプレートの上面図である。 本発明の実施の形態1に係るスクロール圧縮機に用いられる揺動スクロールの下面図である。 図1のスクロール圧縮機における領域Yの拡大詳細図である。 図5のスクロール圧縮機における、スラストプレートとスラスト返油管との位置関係の説明図である。 比較例に係るスクロール圧縮機の縦断面図である。 比較例に係るスクロール圧縮機の一部構成の分解斜視図である。 本発明の実施の形態2に係るスクロール圧縮機に用いられる揺動スクロールの下面図である。 本発明の実施の形態3に係るスクロール圧縮機に用いられるシール材の縦断面図である。
 以下、本発明の実施の形態に係るスクロール圧縮機100について図面を参照しながら説明する。以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。また、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」等)を適宜用いるが、それらの表記は、説明の便宜上、そのように記載しているだけであって、装置あるいは部品の配置及び向きを限定するものではない。
実施の形態1.
[スクロール圧縮機100の構成]
 図1は、本発明の実施の形態1に係るスクロール圧縮機100の縦断面図である。スクロール圧縮機100は、例えば、冷蔵庫あるいは冷凍庫、自動販売機、空気調和装置、冷凍装置、給湯器等の、冷凍用途又は空調用途に用いられる冷凍サイクル装置に適用される。スクロール圧縮機100は、冷凍サイクル装置の冷凍回路を循環する冷媒を吸入し、圧縮して高温高圧の状態にして吐出する。
 スクロール圧縮機100は、シェル1と、メインフレーム2と、スラストプレート3と、圧縮機構部4と、スラスト返油管29と、を備えている。また、スクロール圧縮機100は、駆動機構部5と、サブフレーム6と、クランクシャフト7と、ブッシュ8と、を備えている。この実施の形態1に係るスクロール圧縮機100は、クランクシャフト7の中心軸が地面に対して略垂直の状態で使用される、いわゆる縦置型の圧縮機である。なお、以下の説明では、図中上方向の矢印側を上側としての一端側Uと称し、図中下方向の矢印側を下側としての他端側Lと称して説明する。
(シェル1)
 シェル1は、スクロール圧縮機100の外郭を構成する。シェル1は、金属等の導電性部材からなる両端が閉塞された筒状の筐体であり、メインシェル11と、アッパーシェル12と、ロアシェル13と、吸入管14と、吐出管15と、給電部16と、固定台17と、を備えている。シェル1の内壁には、固定スクロール41とメインフレーム2とが固定されている。また、シェル1の内部の下部には、潤滑油を貯める油溜め131が形成されている。
 メインシェル11は、円筒状の管であり、円筒状の周壁を構成する。アッパーシェル12は、略半球状の蓋体であり、その一部がメインシェル11の一端側Uにおいて、溶接等により接続され、メインシェル11の一方の開口を閉じている。ロアシェル13は、略半球状の底体であり、その一部がメインシェル11の他端側Lにおいて、溶接等により接続され、メインシェル11の他方の開口を閉じている。ロアシェル13は、潤滑油が貯められる油溜め131を構成する。潤滑油は、スクロール圧縮機100の軸受部等の被潤滑部に供給される。
 吸入管14は、冷媒をシェル1の内部に導入するための管である。吸入管14は、シェル1の内部空間と連通するように、メインシェル11の側壁に形成された孔に、一部が挿入された状態でろう付け等により接続されている。
 吐出管15は、圧縮機構部4で圧縮された冷媒をシェル1の外部に吐出するための管である。吐出管15は、シェル1の内部空間と連通するように、アッパーシェル12の上部に形成された孔に、一部が挿入された状態でろう付け等により接続されている。吐出管15は、シェル1の内部空間と、シェル1の外部の冷凍回路とを接続する。
 給電部16は、スクロール圧縮機100の給電に用いられる部材であり、メインシェル11の外側壁に設けられている。給電部16は、カバー161と、給電端子162と、配線163と、を備えている。カバー161は、カバー部材である。給電端子162は、金属部材からなり、一方がカバー161に囲まれるように設けられ、他方がメインシェル11の内部に設けられている。配線163は、一方が給電端子162と接続され、他方が後述する駆動機構部5のステータ51と接続されている。
 固定台17は、シェル1を支える支持台である。固定台17は、それぞれにネジ孔が形成された複数の脚部を有しており、これらの脚部をネジ固定することによってスクロール圧縮機100を空調室外機の筐体等の他の部材に固定できる。
(メインフレーム2)
 図2は、本発明の実施の形態1に係るスクロール圧縮機100の一部構成の分解斜視図である。図1及び図2を用いてメインフレーム2について説明する。メインフレーム2は、スクロール圧縮機100が有するフレームの1つである。メインフレーム2の外周端部は、メインシェル11の内周壁に固定されている。メインフレーム2は、円筒状の金属フレームであり、シェル1の内部に設けられ、後述する圧縮機構部4の揺動スクロール42を揺動自在に保持している。メインフレーム2は、本体部21と、返油管27と、を備えている。また、メインフレーム2の本体部21には、平坦面22と、収容部23と、軸孔24と、吸入ポート25と、返油孔26と、スラスト返油孔28と、が形成されている。
 本体部21は、メインフレーム2を構成する主要な部分である。本体部21は、例えば、焼き嵌め、あるいは、溶接等によってメインシェル11の一端側Uの内周面に固着支持されている。本体部21は、筒状に形成されており、外周部はシェル1に固定され、内周部には圧縮機構部4の一部が収納される。平坦面22は、本体部21における一端側Uの壁面であり、環状に形成されている。平坦面22には、後述するスラストプレート3が載置される。環状に形成された平坦面22の内周側には、収容部23が形成されている。
 収容部23は、メインフレーム2の径方向の中央において、シェル1の長手方向、すなわちクランクシャフト7の軸方向に沿って凹状に形成された部分である。収容部23は、一端側Uが開口していると共に、内部が他端側Lに向かって空間が段階的に狭くなる段差状に形成されている。収容部23は、図2に示すとおり、オルダム収容部231と、ブッシュ収容部232と、第1オルダム溝233と、が形成されている。
 メインフレーム2の平坦面22よりも他端側Lの段差部分の一部には、オルダム収容部231が形成されている。オルダム収容部231は、収容部23の一端側Uに形成されている。ブッシュ収容部232は、収容部23の他端側Lに形成されており、オルダム収容部231と連通している。オルダム収容部231には、第1オルダム溝233が形成されている。第1オルダム溝233は、メインフレーム2に形成されたオルダム溝である。第1オルダム溝233は、外端側が平坦面22の内周側の一部に侵入するように、形成されている。第1オルダム溝233は、一対形成されており、それらはクランクシャフト7の軸を挟んで略一直線に並ぶように形成されている。第1オルダム溝233は、本体部21及び平坦面22の一部に形成されたキー溝であり、オルダム収容部231と連通している。
 軸孔24は、収容部23の他端側Lに形成されており、ブッシュ収容部232と連通している。すなわち、本体部21は、収容部23及び軸孔24により、メインフレーム2の上下方向に貫通し、かつ一端側Uに向かって段状に広くなる空間が形成されている。なお、この軸孔24が形成されているメインフレーム2の部分は、主軸受部2aとしてクランクシャフト7を支持する。すなわち、主軸受部2aは、本体部21の他端側Lを構成しており、その内部には軸孔24が形成されている。
 吸入ポート25は、圧縮機構部4に冷媒を供給するための孔であり、メインフレーム2の平坦面22の外端側に、本体部21を上下方向に貫通して形成されている。返油孔26は、メインフレーム2における他端側Lに形成され、ブッシュ収容部232と連通している。この返油孔26には、収容部23に溜まった潤滑油をロアシェル13内の油溜め131に戻すための返油管27が挿入されている。なお、吸入ポート25、返油孔26は、1つに限らず複数形成されてもよく、返油管27は、1つに限らず、複数設けられてもよい。
 スラスト返油孔28は、図1に示すように、本体部21の上下方向に貫通しており、図2に示すように、平坦面22にはスラスト返油孔28の開口が形成されている。スラスト返油孔28は、本体部21に2箇所以上形成されている。スラスト返油孔28は、後述するスラストプレート3の形成された孔部32と連通する。また、スラスト返油孔28には、後述するスラスト返油管29が挿入されている。スラスト返油孔28に挿入されたスラスト返油管29は、メインフレーム2に固定されている。
(スラストプレート3)
 図3は、本発明の実施の形態1に係るスクロール圧縮機100に用いられるスラストプレート3の上面図である。図1~図3を用いてスラストプレート3について説明する。スラストプレート3は、図1に示すように、揺動スクロール42とメインフレーム2との間に配置されている。スラストプレート3は、スラスト軸受として機能する鋼板系の薄い金属板であり、メインフレーム2の平坦面22に載置され、圧縮機構部4のスラスト荷重を支持する。スラストプレート3は、図3に示すように、リング状に形成されている。スラストプレート3には、切欠部31と、孔部32と、が形成されている。
 切欠部31は、リング状のスラストプレート3の外縁の一部を切欠く部分であり、メインフレーム2の吸入ポート25に対応して吸入ポート25と連通するように形成されている。切欠部31は、吸入ポート25を覆わないよう、吸入ポート25と同じ形状か、それよりも大きく形成されている。孔部32は、揺動スクロール42と摺動自在に当接する第1面部301とメインフレーム2に対向する第2面部302との間を貫通している。孔部32は、スラストプレート3に2箇所以上形成されている。孔部32は、上述したように、メインフレーム2に形成されたスラスト返油孔28と連通する。また、孔部32には、スラスト返油管29が挿入され、後述するスラスト返油管29の上端部29aが配置される。
(圧縮機構部4)
 圧縮機構部4は、冷媒を圧縮する機構である。圧縮機構部4は、図1に示すように、固定スクロール41と、揺動スクロール42と、オルダムリング43と、チャンバー44と、吐出弁45と、を備えている。圧縮機構部4は、固定スクロール41と揺動スクロール42とを組み合わせることにより、冷媒を圧縮する圧縮室46を構成している。
 固定スクロール41は、揺動スクロール42と共に圧縮室46を形成し、冷媒等の流体を圧縮する。固定スクロール41は、図1に示すように、シェル1に収容されている。固定スクロール41の外周端部は、メインシェル11の内周壁に固定されている。固定スクロール41は、揺動スクロール42と対向すると共に、スラストプレート3を介してメインフレーム2と対向する。固定スクロール41は、鋳鉄等の金属からなり、第1台板411と、第1渦巻体412と、チップシール413と、を備えている。
 第1台板411は、円盤状の基板である。第1渦巻体412は、第1台板411における他端側Lの面から突出して形成された渦巻状の歯である。チップシール413は、例えば硬質プラスチックからなり、第1渦巻体412の先端に形成された溝に配置されている。チップシール413は、冷媒の漏れを抑制し、圧縮室46の気密性を保持するものである。固定スクロール41の第1台板411には、圧縮室46で圧縮された冷媒を吐出するための吐出ポート414が形成されている。吐出ポート414は、第1台板411の略中央に、その厚み方向である上下方向に形成された貫通孔である。
 揺動スクロール42は、固定スクロール41と共に圧縮室46を形成し、冷媒等の流体を圧縮する。揺動スクロール42は、図1に示すように、シェル1に収容されている。揺動スクロール42は、アルミニウム等の金属からなり、第2台板421と、第2渦巻体422と、チップシール423と、筒状部424と、を備えている。また、揺動スクロール42の第2台板421には、オルダムリング43の一部が収容される第2オルダム溝425が形成されている。第2オルダム溝425は、揺動スクロール42に形成されたオルダム溝である。第2台板421は、円盤状の基板である。第2台板421は、一方の上面4211側には第2渦巻体422が形成されており、他方の下面4212側がスラストプレート3の第1面部301と対向する。
 第2渦巻体422は、第2台板421における一端側Uの上面4211側から突出して形成された渦巻状の歯である。チップシール423は、例えば硬質プラスチックからなり、第2渦巻体422の先端に形成された溝に配置されている。チップシール423は、冷媒の漏れを抑制し、圧縮室46の気密性を保持するものである。筒状部424は、第2台板421の他端側Lの下面4212側の略中央から突出して形成された円筒状のボスである。筒状部424の内周面には、後述するスライダ81を回転自在に支持する揺動軸受、いわゆるジャーナル軸受が設けられている。筒状部424は、この揺動軸受の中心軸がクランクシャフト7の中心軸と平行になるようにシェル1内に配置されている。そのため、揺動スクロール42は、固定スクロール41に対して偏心して配置されている。
 第2オルダム溝425は、第2台板421の他端側Lの面に形成された長丸形状のキー溝である。第2オルダム溝425は、筒状部424を挟んで対向するように一対形成されている。一対の第2オルダム溝425は、それらを結ぶ線が、一対の第1オルダム溝233を結ぶ線に対して、直交する関係になるように形成されている。
 図4は、本発明の実施の形態1に係るスクロール圧縮機100に用いられる揺動スクロール42の下面図である。図5は、図1のスクロール圧縮機100における領域Yの拡大詳細図である。揺動スクロール42の構造について、図4及び図5を参照してさらに詳しく説明する。なお、図4は、揺動スクロール42を他端側Lから見たときの図である。
 揺動スクロール42の第2台板421には、油供給溝47と、油供給通路48と、が形成されている。油供給溝47は、第2台板421の下面4212の外周領域に形成された周回溝である。すなわち、油供給溝47は、第1面部301と対向する壁部において、第2台板421の周方向に沿って環状に形成されている。油供給溝47は、油供給通路48から供給された潤滑油をスラストプレート3の第1面部301に供給する。油供給溝47は、クランクシャフト7が1回転する間の所定の区間のみ、スラスト返油管29の上方に配置され、スラスト返油管29と連通する。
 油供給通路48は、第2台板421の内部に形成された貫通孔である。油供給通路48は、円盤状に形成された第2台板421の中央と外縁部との間において、径方向に延びるように形成されている。油供給通路48は、第2台板421において、クランクシャフト7を挟んで両側に略一直線状に形成されている。油供給通路48の一端は、筒状部424の内部とつながり、油供給通路48の他端は、第2台板421の外側面に開口として形成された出口部421aである。また、油供給通路48は、筒状部424に対して出口部421a側の流路が油供給溝47と連通している。油供給通路48の断面形状は、略真円に形成されているが、油供給通路48の断面形状は、真円に限らず、楕円、扁平円、多角形等に形成されてもよい。油供給通路48は、クランクシャフト7から供給された潤滑油を径方向の内側から外側に流す潤滑油の流路である。油供給通路48の出口部421aには、シール材49が挿入されている。なお、油供給通路48は、第2台板421の周方向において2つ形成されているが、1つのみ形成されてもよく、場合によっては3つ以上形成されてもよい。また、油供給通路48は、クランクシャフト7を挟んで両側に略一直線状となるように形成されているが、油供給通路48は当該構成に限定されるものではなく、油供給通路48は、クランクシャフト7を挟んで両側に略一直線状に形成されていなくてもよい。
 シール材49は、第2台板421の側面側から挿入されている。シール材49は、例えば、固定スクロール41及び揺動スクロール42と線膨張係数が近い材料で構成された金属ネジである。なお、シール材49は、金属ネジに限られない。シール材49は、油供給通路48の孔に挿入され固定することができれば、例えば、接着剤で固定される金属ピンでもよく、圧入して固定されるゴム等の弾性部材であってもよい。
 図1及び図2に戻り、オルダムリング43について説明する。オルダムリング43は、揺動スクロール42が自転することを防止するための部材であり、図2に示すように、リング部431と、第1キー部432と、第2キー部433と、を備えている。リング部431は、環状に形成されており、メインフレーム2のオルダム収容部231に配置される。第1キー部432は、リング部431の他端側Lの面に設けられている。第1キー部432は、一対で構成され、メインフレーム2の一対の第1オルダム溝233に各々収容される。第2キー部433は、リング部431の一端側Uの面に設けられている。第2キー部433は、一対で構成され、揺動スクロール42の一対の第2オルダム溝425に各々収容される。
 スクロール圧縮機100は、揺動スクロール42の第2オルダム溝425をオルダムリング43の第2キー部433に合わせることで、揺動スクロール42の第2渦巻体422の回転方向の位置が決まる。つまり、オルダムリング43により、メインフレーム2に対して揺動スクロール42が位置決めされ、メインフレーム2に対する第2渦巻体422の位相が決定する。そのため、オルダムリング43は、揺動スクロール42の自転運動を阻止するとともに、揺動スクロール42の揺動運動を可能にする。
 チャンバー44は、板状の部材であり、固定スクロール41の一端側Uの面に設けられ、吐出ポート414と空間的に連通する吐出孔441を形成している。吐出弁45は、冷媒の圧力に応じて吐出孔441を開閉する弁であり、チャンバー44にねじ止めにされている。吐出弁45は、吐出ポート414と連通する圧縮室46の冷媒が所定の圧力に達したときに、吐出孔441を開状態にする。
 圧縮室46は、固定スクロール41の第1渦巻体412と、揺動スクロール42の第2渦巻体422と、を互いに噛み合わせることで形成される。より詳細には、圧縮室46は、第1渦巻体412及び第1台板411と、第2渦巻体422及び第2台板421と、により形成される。また、圧縮室46は、第1渦巻体412の先端、チップシール413及び第2台板421と、第2渦巻体422の先端、チップシール423及び第1台板411と、でシールすることにより、形成される。
 圧縮室46は、スクロールの半径方向において、外側から内側へ向かうに従って容積が縮小する複数の圧縮室で構成され、冷媒を外端に位置する渦巻体から取り入れて揺動スクロール42が公転旋回することにより冷媒が徐々に圧縮される。圧縮室46は、固定スクロール41の第1台板411の中央部に貫通して形成された吐出ポート414と連通しており、圧縮された冷媒は、この吐出ポート414から排出される。
 冷媒は、例えば、組成中に、炭素の二重結合を有するハロゲン化炭化水素、炭素の二重結合を有しないハロゲン化炭化水素、自然冷媒、又は、それらを含む混合物を使用することができる。炭素の二重結合を有するハロゲン化炭化水素は、R1234yf(CFCF=CH)、R1234ze(CFCH=CHF)、R1233zd(CFCH=CHCl)等のHFO冷媒が挙げられる。炭素の二重結合を有しないハロゲン化炭化水素は、R32(CH)、R41(CHF)、R125(CHF)、R134a(CHFCF)、R143a(CFCH)、R410A(R32/R125)、R407C(R32/R125/R134a)等のHFC冷媒が挙げられる。また、混合物は、CHで表されるR32(ジフルオロメタン)、R41等が混合された冷媒が例示される。自然冷媒は、アンモニア(NH)、二酸化炭素(CO)、プロパン(C)、プロピレン(C)、ブタン(C10)、イソブタン(CH(CH)等が挙げられる。
(スラスト返油管29)
 スラスト返油管29は、メインフレーム2に形成されたスラスト返油孔28に挿入され、メインフレーム2に固定されている。スラスト返油管29には、スクロール圧縮機100の被潤滑部に供給されて油溜め131に戻る潤滑油が流れる。スラスト返油管29は、メインフレーム2の本体部21を上下方向に貫通するように配置されている。すなわち、スラスト返油管29は、シェル1の上下方向に延びるように設けられており、クランクシャフト7の延びる方向に沿って設けられている。
 スラスト返油管29は、スラストプレート3の孔部32に挿入されてスラストプレート3と嵌合されている。スラスト返油管29は、1つでもよいが、複数設けられていることが望ましい。スクロール圧縮機100が複数のスラスト返油管29を有する場合には、複数のスラスト返油管29は、スラストプレート3に形成された複数の孔部32のそれぞれに挿入されてスラストプレート3と嵌合されている。そして、スラストプレート3は、複数のスラスト返油管29によって、メインフレーム2に対する位置が定められている。
(駆動機構部5)
 駆動機構部5は、シェル1の内部において、クランクシャフト7を回転させる回転運動を発生させる。駆動機構部5は、メインフレーム2より他端側Lに設けられている。駆動機構部5は、ステータ51と、ロータ52と、を備えている。
 ステータ51は、例えば電磁鋼板を複数積層してなる鉄心に、絶縁層を介して巻線を巻回してなる固定子であり、リング状に形成されている。ステータ51は、焼き嵌め等によりメインシェル11の内壁に固定されている。ステータ51は、スクロール圧縮機100の外部から供給される電力によって、ロータ52を回転させる。ロータ52は、電磁鋼板を複数積層してなる鉄心の内部に永久磁石を内蔵するとともに、中央に上下方向に貫通する貫通孔を有する円筒状の回転子であり、ステータ51の内部空間に配置されている。ロータ52には、揺動スクロール42に駆動機構部5の回転駆動力を伝達するクランクシャフト7が固定されている。ステータ51に電力が供給されると、ロータ52は、自転することにより、クランクシャフト7と一体となって回転する。
(サブフレーム6)
 サブフレーム6は、スクロール圧縮機100が有するフレームの1つである。サブフレーム6は、金属製のフレームであり、駆動機構部5の他端側Lに設けられ、焼き嵌め、あるいは、溶接等によってメインシェル11の内周壁に固定されている。サブフレーム6は、副軸受部61を介してクランクシャフト7を回転自在に支持する。サブフレーム6は、副軸受部61と、オイルポンプ62と、を備えている。
 副軸受部61は、サブフレーム6の中央上側に設けられたボールベアリングである。なお、副軸受部61は、ボールベアリングに限定されるものではなく、他の軸受による構成であってもよい。オイルポンプ62は、シェル1の油溜め131に貯留された潤滑油を吸い上げるためのポンプであり、サブフレーム6の中央下側に設けられている。オイルポンプ62は、シェル1の油溜め131から吸い上げた潤滑油をスクロール圧縮機100の軸受部等の被潤滑部に供給し、被潤滑部を潤滑させる。
 潤滑油は、シェル1の下部、すなわちロアシェル13に貯留されており、オイルポンプ62で吸い上げられて、後述するクランクシャフト7内の通油路73を通り、圧縮機構部4等に供給される。潤滑油は、圧縮機構部4等の機械的に接触するパーツ同士の摩耗低減、摺動部の温度調節、シール性等を改善する。潤滑油としては、潤滑特性、電気絶縁性、安定性、冷媒溶解性、低温流動性等に優れるとともに、適度な粘度の油が好適である。スクロール圧縮機100は、例えば、ナフテン系、ポリオールエステル(POE)、ポリビニールエーテル(PVE)、ポリアルキレングリコール(PAG)の油を使用することができる。
(クランクシャフト7)
 クランクシャフト7は、駆動機構部5と圧縮機構部4の揺動スクロール42とを連結し、駆動機構部5の回転運動を揺動スクロール42に伝達する。クランクシャフト7は、金属製の棒状部材であり、シェル1の内部に設けられている。クランクシャフト7は、主軸部71と、偏心軸部72と、を備えている。また、クランクシャフト7は、主軸部71及び偏心軸部72の内部に通油路73が形成されている。
 主軸部71は、クランクシャフト7の主要部を構成する軸であり、その中心軸がメインシェル11の中心軸と一致するように配置されている。主軸部71は、ロータ52の中心の貫通孔に焼嵌め等により固定されている。偏心軸部72は、その中心軸が主軸部71の中心軸に対して偏心するように、主軸部71の一端側Uに設けられている。通油路73は、主軸部71及び偏心軸部72の内部において、軸方向に沿って上下に貫通するように形成されている。通油路73には、オイルポンプ62によって油溜め131から吸い上げられた潤滑油が流れる。
 クランクシャフト7は、メインフレーム2の軸孔24に挿入されると共に、他端側Lがサブフレーム6の副軸受部61の貫通孔に挿入され、メインフレーム2及びサブフレーム6によって回転自在に支持される。これにより、クランクシャフト7の上部に位置する偏心軸部72は、筒状部424の筒内に配置される。また、クランクシャフト7に固定されたロータ52は、ステータ51に対応して配置されると共に、その外周面がステータ51の内周面と所定の隙間を保って配置される。
(ブッシュ8)
 ブッシュ8は、鉄等の金属からなり、揺動スクロール42とクランクシャフト7とを接続する接続部材である。ブッシュ8は、図2に示すように、スライダ81と、バランスウエイト82と、を備える。
 スライダ81は、鍔が形成された筒状の部材であり、内部に偏心軸部72が挿入された状態で、筒状部424に嵌入されている。バランスウエイト82は、一端側Uから見た形状が略C状を呈するウエイト部821を備えたドーナツ状の部材であり、揺動スクロール42の遠心力を相殺するために、回転中心に対して偏芯して設けられている。バランスウエイト82は、例えばスライダ81の鍔に焼嵌め等の方法により、嵌合されている。
[シェル1と圧縮機構部4との関係]
 シェル1と圧縮機構部4との関係について、図2及び図5を参照してさらに詳しく説明する。
 固定スクロール41は、図5の領域Zに示すとおり、シェル1の内壁であるメインシェル11の第1内壁面部111に固定されている。より具体的には、図2に示すように、メインシェル11は、一端側Uから他端側Lに向かって、第1内壁面部111と、第2内壁面部112とを有する。メインシェル11の内壁において、第2内壁面部112は、第1内壁面部111と比較して内径が小さく形成された部分である。すなわち、第2内壁面部112は、第1内壁面部111からメインシェル11の中心方向に突出するように形成されている。そのため、第2内壁面部112は、第1内壁面部111との間に段差状に形成された第1位置決め部113を有している。
 第1位置決め部113は、第2内壁面部112において一端側Uに向けて形成されており、固定スクロール41を位置決めする。固定スクロール41は、第1位置決め部113で位置決めされた状態で、焼き嵌め、あるいは、溶接等により、第1内壁面部111に固定されている。つまり、メインシェル11は、一端側Uから他端側Lに向かって、内径が小さくなる段状の部分を備えており、その段差を利用して固定スクロール41の位置決めと固定とが行われている。
 メインシェル11は、さらに第3内壁面部115を有している。メインシェル11の内壁において、第3内壁面部115は、第2内壁面部112と比較して内径が小さく形成された部分である。第3内壁面部115は、第2内壁面部112からメインシェル11の中心方向に突出するように形成されている。そのため、第3内壁面部115は、第2内壁面部112との間に段差状に形成された第2位置決め部116を有している。
 第2位置決め部116は、第3内壁面部115において一端側Uに向けて形成されており、メインフレーム2を位置決めする。メインフレーム2は、第2位置決め部116で位置決めされた状態で、焼き嵌め等により、第2内壁面部112に固定されている。つまり、メインシェル11は、一端側Uから他端側Lに向かって、内径が小さくなる段状の部分を備えており、その段差を利用してメインフレーム2の位置決めと固定とが行われている。
 このように、スクロール圧縮機100は、固定スクロール41をメインシェル11の内壁面に固定することにより、フレーム外壁レス構造を実現できる。従来のスクロール圧縮機は、固定スクロール41がメインフレーム2にネジ止めされるために、メインフレーム2は、一端側Uの外縁部に沿って固定スクロール41が載置される外壁を備えることが一般的である。しかし、メインフレーム2が外壁を備えると、揺動スクロール42はその外壁内の空間に配置され、揺動スクロール42のサイズはメインフレーム2の外壁に制約される。そのため、従来のスクロール圧縮機は、揺動スクロール42のサイズの制約に伴い、渦巻容量が制約されるため、圧縮機の上限能力を拡大することができない。
 これに対して、スクロール圧縮機100のようなフレーム外壁レス構造では、メインフレーム2が固定スクロール41とのネジ止めのための外壁を備えない。そのため、スクロール圧縮機100は、揺動スクロール42の第2台板421の側面とメインシェル11の内壁面との間に空間が形成されることになる。換言すると、スクロール圧縮機100は、揺動スクロール42が配置されるメインシェル11内部の径方向の空間が広がるため、第2台板421の外径及び第2渦巻体422の巻径を従来よりも大きくすることができる。すなわち、スクロール圧縮機100は、シェル1を従来設計のままで、第1渦巻体412及び第2渦巻体422の直径を大きくすることで圧縮機の上限能力を拡大することができる。また、スクロール圧縮機100は、シェル1を従来設計のままで、第2台板421を大きくすることでスラスト荷重の面圧を低減する設計が可能となる。若しくは、スクロール圧縮機100は、揺動スクロール42のサイズはそのままで、メインシェル11の直径を小さくすることで、上限能力を下げずに圧縮機を小型化する設計も可能になる。
[スラストプレート3とスラスト返油管29の関係]
 図6は、図5のスクロール圧縮機100における、スラストプレート3とスラスト返油管29との位置関係の説明図である。図2~図6を参照して、スラストプレート3、スラスト返油管29、メインシェル11の位置関係について説明する。
 スラスト返油管29は、メインフレーム2の本体部21に形成されたスラスト返油孔28に挿入され、スラスト返油管29の上端部29aの位置が平坦面22に対し、所定量だけ突出した位置で固定される。ここでメインフレーム2に挿入固定されるスラスト返油管29は2個以上とする。スラストプレート3の孔部32と、平坦面22から突出したスラスト返油管29と、が嵌合するようにスラストプレート3は平坦面22に配置される。
 スラスト返油管29の外径と孔部32の内径とは、スラストプレート3の外径がメインシェル11の第2内壁面114と接触しないように所定の隙間が形成された状態でスラスト返油管29とスラストプレート3とが嵌合される。すなわち、スラストプレート3の位置決めは、スラスト返油管29とスラストプレート3の孔部32との嵌合のみにより決定される。また、スラスト返油管29の平坦面22からの突出量は、スラストプレート3の厚みより小さくし、スラスト返油管29の上端部29aがスラストプレート3の第1面部301から突出しないように構成される。
[スクロール圧縮機100の動作説明]
 次に、スクロール圧縮機100の動作について説明する。スクロール圧縮機100の外部からステータ51に電力が供給されると、ステータ51に磁界が発生する。この磁界は、ロータ52を回転させるように働く。すなわち、ステータ51に電力が供給されると、ロータ52がトルクを発生し、メインフレーム2とサブフレーム6とで支持されたクランクシャフト7が回転する。クランクシャフト7に接続された揺動スクロール42は、メインフレーム2の第1オルダム溝233方向に往復動するオルダムリング43により自転を規制され、揺動運動する。これらの動作により、スクロール圧縮機100は、固定スクロール41の第1渦巻体412と揺動スクロール42の第2渦巻体422との組み合せで形成される圧縮室46の容積を変化させる。
 揺動スクロール42の揺動運動に伴い、吸入管14からシェル1内に吸入されるガス状態の冷媒は、固定スクロール41の第1渦巻体412と揺動スクロール42の第2渦巻体422との間に形成される圧縮室46に取り込まれ、中心に向かいつつ圧縮されて行く。そして、圧縮された冷媒は、固定スクロール41の第1台板411に形成されている吐出ポート414を通過しチャンバー44に形成された吐出孔441から吐出弁45を開弁させて吐出し、吐出管15からスクロール圧縮機100の外部の冷媒回路へ排出される。
[揺動スクロール42への給油]
 次に、図2~図3を参照して、揺動スクロール42のスラスト面への給油について説明する。潤滑油は、シェル1の下部、すなわちロアシェル13に貯留されており、前述したように、オイルポンプ62で吸い上げられて、クランクシャフト7内の通油路73を通り、圧縮機構部4等に供給される。
 クランクシャフト7内の通油路73を通り、クランクシャフト7の上端まで達した潤滑油の一部は、揺動スクロール42の油供給通路48を介して、揺動スクロール42のスラスト面に位置する油供給溝47に供給される。ここで、油供給溝47は圧縮機1回転中の所定区間のみ、スラストプレート3の孔部32、すなわちスラスト返油管29の開口部とラップするように配置される。そして、揺動スクロール42のスラスト面を潤滑した油は、スラスト返油管29を介して、シェル1の下部、すなわちロアシェル13に返油される。ここで、油供給通路48を通る潤滑油が油供給溝47へ供給されるように、油供給通路48の第2台板421の出口部421aは、シール材49によりシールされている。
[スクロール圧縮機100の製造方法]
 図1~図5を参照して、本発明の実施の形態1に係るスクロール圧縮機100の製造方法、特に固定スクロール41の配置等について説明する。
 作業者は、メインシェル11に対して、メインシェル11の一端側Uから、メインフレーム2を挿入する。この際、メインフレーム2は、第3内壁面部115の第2位置決め部116に面で接触し、メインシェル11に対して高さ方向の位置決めがされる。作業者は、その状態で、メインフレーム2を第2内壁面部112に焼き嵌め、あるいは、アークスポット溶接等により固定する。そして、作業者は、メインフレーム2の軸孔24にクランクシャフト7を挿入したのち、偏心軸部72にブッシュ8を取り付け、さらにオルダムリング43及び揺動スクロール42等を配置する。
 次いで、作業者は、メインシェル11に対して、メインシェル11の一端側Uから、固定スクロール41を挿入する。この際、固定スクロール41は、第2内壁面部112の第1位置決め部113に面で接触し、メインシェル11に対して高さ方向に位置決めがされる。
 なお、実施の形態1では、固定スクロール41の周方向の位置決めをする従来のネジのような部材がない。そのため、スクロール圧縮機100は、固定スクロール41を第1内壁面部111に固定するまでは揺動スクロール42に対して固定スクロール41が回転可能である。その結果、スクロール圧縮機100は、第1渦巻体412と第2渦巻体422との位置関係がずれるおそれがある。そこで、スクロール圧縮機100は、揺動スクロール42の第2渦巻体422に対する第1渦巻体412の位置関係が所定となるように固定スクロール41を回転させて位相が調整される。その後、スクロール圧縮機100は、固定スクロール41を第1内壁面部111に焼き嵌め、あるいは、アークスポット溶接等により固定される。
[比較例のスクロール圧縮機200]
 図7は、比較例に係るスクロール圧縮機200の縦断面図である。図8は、比較例に係るスクロール圧縮機200の一部構成の分解斜視図である。図1~図6のスクロール圧縮機100と同一の機能を有する部位には同一の符号を付してその説明を省略する。比較例に係るスクロール圧縮機200は、いわゆるフレーム外壁レス構造であり、位置決めピン9によって固定スクロール41とメインフレーム2とを連結している点で特許文献1のスクロール圧縮機に類似する圧縮機である。比較例に係るスクロール圧縮機200は、メインフレーム2に形成された凹部211に位置決めピン9の下端部が挿入され、固定スクロール41に位置決めピン9の上端部が取り付けられて、固定スクロール41とメインフレーム2とが連結されている。
 比較例に係るスクロール圧縮機200は、冷媒圧縮時に生じるスラスト荷重が揺動スクロール42を介してメインフレーム2で支持される。比較例に係るスクロール圧縮機200のように、いわゆるフレーム外壁レス構造である場合には、圧縮機の運転中にスラストプレート3の外周縁部とシェル1の内壁とが断続接触し、騒音及び振動が増加する恐れがある。また、比較例に係るスクロール圧縮機200は、固定スクロール41とメインフレーム2とを連結する位置決めピン9によってスラストプレート3の自転防止を図ることが考えられる。例えば、比較例に係るスクロール圧縮機200は、スラストプレート3に形成された孔部321に位置決めピン9を挿入することでスラストプレート3の自転防止を図ることが考えられる。しかしながら、比較例に係るスクロール圧縮機200は、固定スクロール41とメインフレーム2とを連結する位置決めピン9と、揺動スクロール42との干渉を回避する必要があり、揺動スクロール42のサイズを大きく構成することができない。そのため、比較例に係るスクロール圧縮機200は、圧縮機の上限能力を決定する渦巻容量のサイズが制限されてしまう。
[スクロール圧縮機100の作用効果]
 スクロール圧縮機100によれば、スラスト返油管29は、孔部32に挿入されてスラストプレート3と嵌合されていると共に、スラスト返油管29の上端部29aが、スラストプレート3の第1面部301から突出していないものである。そのため、スクロール圧縮機100は、固定スクロール41とメインフレーム2とを連結する位置決めピン9がなくとも、スラストプレート3の自転防止が可能となる。また、スクロール圧縮機100は、固定スクロール41とメインフレーム2とを連結する位置決めピン9がないため揺動スクロール42のサイズを大きく構成し、圧縮機の上限能力を拡大することができる。さらに、スクロール圧縮機100は、スラストプレート3の自転防止が可能となり、スラストプレート3の外径とメインシェル11の内壁との接触を回避することができ、圧縮機の騒音及び振動を低減することができる。
 また、スラストプレート3は、複数のスラスト返油管29によって、メインフレーム2に対する位置が定められている。そのため、スクロール圧縮機100は、固定スクロール41とメインフレーム2とを連結する位置決めピン9がなくとも、スラストプレート3の自転防止が可能となり、揺動スクロール42のサイズを大きく構成し、圧縮機の上限能力を拡大することができる。また、スクロール圧縮機100は、スラストプレート3の自転防止が可能となり、スラストプレート3の外径とメインシェル11の内壁との接触を回避することができ、圧縮機の騒音及び振動を低減することができる。
 また、固定スクロール41は、揺動スクロール42と対向すると共に、スラストプレート3を介してメインフレーム2と対向し、シェル1には、固定スクロール41とメインフレーム2とが固定されている。スクロール圧縮機100は、固定スクロール41とメインフレーム2との間に隙間が形成された、いわゆるフレーム外壁レス構造であり、冷媒圧縮時に生じるスラスト荷重が揺動スクロール42を介してメインフレーム2で支持される。スクロール圧縮機100は、いわゆるフレーム外壁レス構造であったとしても、固定スクロール41とメインフレーム2とを連結する位置決めピン9を使用せず、スラストプレート3の自転防止が可能となる。そのため、スクロール圧縮機100は、揺動スクロール42のサイズを大きく構成し、圧縮機の上限能力拡大が図れると共に、スラストプレート3の外径とメインシェル11の内壁との接触を回避し、圧縮機の騒音及び振動が低減できる。すなわち、スクロール圧縮機100は、フレーム外壁レス構造であっても、圧縮機の上限能力を拡大でき、低騒音、低振動かつ高性能、高信頼性な圧縮機を提供するものである。
 また、スクロール圧縮機100は、揺動スクロール42のサイズの拡大による圧縮機の上限能力拡大に伴い、スラスト荷重が増加する。しかし、揺動スクロール42の油供給溝47は、第1面部301と対向してスラスト面を構成する第2台板421の壁部において、第2台板421の周方向に沿って環状に形成されている。そして、油供給溝47は、クランクシャフト7が1回転する間の所定の区間のみ、スラスト返油管29の前記上端部と対向するように配置され、スラスト返油管29と連通する。そのため、スクロール圧縮機100は、スラスト潤滑油の供給量の適正化を図ることでスラスト摺動性が改善され、スラスト摺動損失が低減できるとともに、スラスト信頼性が確保できる。
 また、油供給通路48の外周端には、シール材49が挿入されている。スクロール圧縮機100は、シール材49を用いることで、油供給通路48の外端側を封じることができる。そのため、スクロール圧縮機100は、第2台板421の径方向に延びる油供給通路48の形成を容易に行うことができる。
実施の形態2.
 図9は、本発明の実施の形態2に係るスクロール圧縮機100に用いられる揺動スクロール42aの下面図である。図1~図6のスクロール圧縮機100と同一の構成を有する部位には同一の符号を付してその説明を省略する。また、揺動スクロール42aにおいて特に記述しない項目については、本発明の実施の形態1に係るスクロール圧縮機100の揺動スクロール42と同様とし、同一の機能及び構成については同一の符号を用いて述べることとする。
 揺動スクロール42aは、油供給溝47が第2オルダム溝425と連通している点で実施の形態1に係るスクロール圧縮機100の揺動スクロール42と異なる。すなわち、第2オルダム溝425は、油供給溝47と連通するように形成されている。そのため、スクロール圧縮機100は、油供給通路48から油供給溝47に供給された潤滑油が、油供給溝47から第2オルダム溝425に供給されやすくなる。
 揺動スクロール42aを用いたスクロール圧縮機100は、実施の形態1に係るスクロール圧縮機100の効果に加え、第2オルダム溝425とオルダムリング43の第2キー部433との摺動性が改善される。
実施の形態3.
 図10は、本発明の実施の形態3に係るスクロール圧縮機100に用いられるシール材49aの縦断面図である。図1~図6及び図9のスクロール圧縮機100と同一の構成を有する部位には同一の符号を付してその説明を省略する。また、シール材49aにおいて特に記述しない項目については、本発明の実施の形態1に係るスクロール圧縮機100のシール材49と同様とし、同一の機能及び構成については同一の符号を用いて述べることとする。
 シール材49aは、シール材49aに貫通穴491が形成されている点で、実施の形態1に係るスクロール圧縮機100のシール材49と異なる。シール材49aに形成される貫通穴491は、1つでもよく、複数でもよい。貫通穴491は、シール材49aが油供給通路48の端部に挿入された状態において、第2台板421の径方向に形成されている。貫通穴491は、油供給通路48と連通している。
 油供給通路48を流れる潤滑油は、一部の潤滑油が油供給溝47の方向に流れ、一部の潤滑油がシール材49aの方向に流れる。油供給溝47の方向に流れる潤滑油は、第2台板421の下面4212とスラストプレート3とを潤滑する。シール材49の方向に流れた潤滑油は、貫通穴491で流量を調整されたのち、第2台板421の側面から吐出される。
 シール材49aを用いたスクロール圧縮機100は、シール材49aの貫通穴491を介して圧縮室46に潤滑油が供給されるため、実施の形態1に係るスクロール圧縮機100の効果に加え、渦巻体の摺動性が改善される。
 なお、本発明の実施の形態は、上記実施の形態1~3に限定されず、種々の変更を加えることができる。例えば、実施の形態1に係るスクロール圧縮機100は、油供給溝47が円環形状かつ1個の場合について説明したが、想定する効果が得られるのであれば、油供給溝47の形状及び個数は問わない。また、実施の形態1に係るスクロール圧縮機100は、いわゆるフレーム外壁レス構造の圧縮機について説明した。しかし、スクロール圧縮機100は、メインフレーム2の外周部に固定スクロール41が載置されるフレーム外壁を有する構造の圧縮機であってもよい。
 1 シェル、2 メインフレーム、2a 主軸受部、3 スラストプレート、4 圧縮機構部、5 駆動機構部、6 サブフレーム、7 クランクシャフト、8 ブッシュ、9 位置決めピン、11 メインシェル、12 アッパーシェル、13 ロアシェル、14 吸入管、15 吐出管、16 給電部、17 固定台、21 本体部、22 平坦面、23 収容部、24 軸孔、25 吸入ポート、26 返油孔、27 返油管、28 スラスト返油孔、29 スラスト返油管、29a 上端部、31 切欠部、32 孔部、41 固定スクロール、42 揺動スクロール、42a 揺動スクロール、43 オルダムリング、44 チャンバー、45 吐出弁、46 圧縮室、47 油供給溝、48 油供給通路、49 シール材、49a シール材、51 ステータ、52 ロータ、61 副軸受部、62 オイルポンプ、71 主軸部、72 偏心軸部、73 通油路、81 スライダ、82 バランスウエイト、100 スクロール圧縮機、111 第1内壁面部、112 第2内壁面部、113 第1位置決め部、114 第2内壁面、115 第3内壁面部、116 第2位置決め部、131 油溜め、161 カバー、162 給電端子、163 配線、200 スクロール圧縮機、211 凹部、231 オルダム収容部、232 ブッシュ収容部、233 第1オルダム溝、301 第1面部、302 第2面部、321 孔部、411 第1台板、412 第1渦巻体、413 チップシール、414 吐出ポート、421 第2台板、421a 出口部、422 第2渦巻体、423 チップシール、424 筒状部、425 第2オルダム溝、431 リング部、432 第1キー部、433 第2キー部、441 吐出孔、491 貫通穴、821 ウエイト部、4211 上面、4212 下面。

Claims (7)

  1.  外郭を構成し、内部に潤滑油を貯める油溜めを構成するシェルと、
     前記シェルに収容された固定スクロールと、
     前記シェルに収容され、前記固定スクロールと共に圧縮室を形成する揺動スクロールと、
     前記揺動スクロールを保持するフレームと、
     前記揺動スクロールと前記フレームとの間に配置されたスラストプレートと、
     前記フレームに固定され、前記油溜めに戻る潤滑油が流れるスラスト返油管と、
    を有し、
     前記スラストプレートには、前記揺動スクロールと摺動自在に当接する第1面部と前記フレームに対向する第2面部との間を貫通した孔部が形成されており、
     前記スラスト返油管は、
     前記孔部に挿入されて前記スラストプレートと嵌合されていると共に、前記スラスト返油管の上端部が、前記スラストプレートの前記第1面部から突出していないスクロール圧縮機。
  2.  前記スラストプレートには、前記孔部が複数形成されており、
     前記フレームには、複数の前記スラスト返油管が固定されており、
     複数の前記スラスト返油管は、
     複数の前記孔部にそれぞれ挿入されて前記スラストプレートと嵌合されており、
     前記スラストプレートは、
     複数の前記スラスト返油管によって、前記フレームに対する位置が定められている請求項1に記載のスクロール圧縮機。
  3.  前記固定スクロールは、
     前記揺動スクロールと対向すると共に、前記スラストプレートを介して前記フレームと対向し、
     前記シェルには、前記固定スクロールと前記フレームとが固定されている請求項1又は2に記載のスクロール圧縮機。
  4.  前記油溜めから吸い上げられた潤滑油が流れる通油路が形成されたクランクシャフトをさらに有し、
     前記揺動スクロールは、
     円盤状に形成されており、一方の面側には渦巻体が形成されており、他方の面側が前記第1面部と対向する台板を有し、
     前記台板には、
     前記クランクシャフトから供給された潤滑油を径方向の内側から外側に流す油供給通路と、
     前記油供給通路から供給された潤滑油を前記第1面部に供給する油供給溝と、
    が形成されており、
     前記油供給溝は、
     前記第1面部と対向する前記台板の壁部において、前記台板の周方向に沿って環状に形成されており、前記クランクシャフトが1回転する間の所定の区間のみ、前記スラスト返油管の前記上端部と対向するように配置され、前記スラスト返油管と連通する請求項1~3のいずれか1項に記載のスクロール圧縮機。
  5.  前記油供給通路は、
     前記台板の外側面に貫通しており、
     前記油供給通路の外周端には、シール材が挿入されている請求項4に記載のスクロール圧縮機。
  6.  前記シール材には、1つ以上の貫通穴が形成されている請求項5に記載のスクロール圧縮機。
  7.  前記台板には、オルダムリングの一部が収容される前記揺動スクロールのオルダム溝が形成されており、
     前記オルダム溝は、
     前記油供給溝と連通するように形成されている請求項4~6のいずれか1項に記載のスクロール圧縮機。
PCT/JP2019/002689 2019-01-28 2019-01-28 スクロール圧縮機 WO2020157792A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980089972.3A CN113396283B (zh) 2019-01-28 2019-01-28 涡旋压缩机
GB2109442.0A GB2594196B (en) 2019-01-28 2019-01-28 Scroll compressor
US17/297,550 US11713762B2 (en) 2019-01-28 2019-01-28 Scroll compressor
JP2020568883A JP7118177B2 (ja) 2019-01-28 2019-01-28 スクロール圧縮機
PCT/JP2019/002689 WO2020157792A1 (ja) 2019-01-28 2019-01-28 スクロール圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/002689 WO2020157792A1 (ja) 2019-01-28 2019-01-28 スクロール圧縮機

Publications (1)

Publication Number Publication Date
WO2020157792A1 true WO2020157792A1 (ja) 2020-08-06

Family

ID=71842427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002689 WO2020157792A1 (ja) 2019-01-28 2019-01-28 スクロール圧縮機

Country Status (5)

Country Link
US (1) US11713762B2 (ja)
JP (1) JP7118177B2 (ja)
CN (1) CN113396283B (ja)
GB (1) GB2594196B (ja)
WO (1) WO2020157792A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022145048A1 (ja) * 2021-01-04 2022-07-07
WO2023090149A1 (ja) * 2021-11-22 2023-05-25 三菱重工サーマルシステムズ株式会社 圧縮機

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387287U (ja) * 1986-11-27 1988-06-07
JP2010174902A (ja) * 2010-04-23 2010-08-12 Denso Corp 圧縮機
JP2013204488A (ja) * 2012-03-28 2013-10-07 Mitsubishi Electric Corp スクロール式流体機械
JP2014173525A (ja) * 2013-03-11 2014-09-22 Mitsubishi Electric Corp スクロール流体機械
CN205047435U (zh) * 2015-08-18 2016-02-24 珠海格力节能环保制冷技术研究中心有限公司 涡旋压缩机及其泵体组件
WO2017169596A1 (ja) * 2016-03-31 2017-10-05 三菱電機株式会社 スクロール圧縮機、および冷凍サイクル装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073080A (ja) * 1983-09-30 1985-04-25 Toshiba Corp スクロ−ル型圧縮装置
JPS6387287A (ja) * 1986-09-30 1988-04-18 Kyodo Seisaku:Kk スクラツチシ−ト及びそのスクラツチ印刷方法
JP3858743B2 (ja) * 2002-04-03 2006-12-20 ダイキン工業株式会社 圧縮機
JP2005083290A (ja) * 2003-09-10 2005-03-31 Fujitsu General Ltd スクロール圧縮機
JP2007291879A (ja) * 2006-04-21 2007-11-08 Sanden Corp スクロール型流体機械
JP5880513B2 (ja) * 2013-10-01 2016-03-09 ダイキン工業株式会社 圧縮機
JP6484796B2 (ja) 2014-04-24 2019-03-20 パナソニックIpマネジメント株式会社 スクロール圧縮機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387287U (ja) * 1986-11-27 1988-06-07
JP2010174902A (ja) * 2010-04-23 2010-08-12 Denso Corp 圧縮機
JP2013204488A (ja) * 2012-03-28 2013-10-07 Mitsubishi Electric Corp スクロール式流体機械
JP2014173525A (ja) * 2013-03-11 2014-09-22 Mitsubishi Electric Corp スクロール流体機械
CN205047435U (zh) * 2015-08-18 2016-02-24 珠海格力节能环保制冷技术研究中心有限公司 涡旋压缩机及其泵体组件
WO2017169596A1 (ja) * 2016-03-31 2017-10-05 三菱電機株式会社 スクロール圧縮機、および冷凍サイクル装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022145048A1 (ja) * 2021-01-04 2022-07-07
WO2022145048A1 (ja) * 2021-01-04 2022-07-07 三菱電機株式会社 圧縮機およびそれを備えた冷凍サイクル装置
JP7378646B2 (ja) 2021-01-04 2023-11-13 三菱電機株式会社 圧縮機およびそれを備えた冷凍サイクル装置
WO2023090149A1 (ja) * 2021-11-22 2023-05-25 三菱重工サーマルシステムズ株式会社 圧縮機

Also Published As

Publication number Publication date
CN113396283A (zh) 2021-09-14
JP7118177B2 (ja) 2022-08-15
GB2594196A (en) 2021-10-20
GB202109442D0 (en) 2021-08-11
JPWO2020157792A1 (ja) 2021-09-30
US11713762B2 (en) 2023-08-01
GB2594196B (en) 2022-12-07
US20220010797A1 (en) 2022-01-13
CN113396283B (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
JP6678762B2 (ja) スクロール圧縮機、冷凍サイクル装置およびシェル
JP6678811B2 (ja) スクロール圧縮機および冷凍サイクル装置
WO2019087227A1 (ja) スクロール圧縮機
WO2020157792A1 (ja) スクロール圧縮機
JP6057535B2 (ja) 冷媒圧縮機
WO2021084607A1 (ja) スクロール圧縮機および冷凍サイクル装置
WO2020161965A1 (ja) 回転式圧縮機、回転式圧縮機の製造方法及び冷凍サイクル装置
JP2021076085A (ja) スクロール圧縮機
WO2019207759A1 (ja) スクロール圧縮機
JP7076537B2 (ja) スクロール圧縮機
JP2020186672A (ja) スクロール圧縮機及び当該スクロール圧縮機を使用した冷凍サイクル装置
JPWO2019207785A1 (ja) スクロール圧縮機
JP7055245B2 (ja) スクロール圧縮機及びそのスクロール圧縮機の製造方法
WO2023135731A1 (ja) 圧縮機用吸入返油管、スクロール圧縮機および冷凍サイクル装置
JP7313570B2 (ja) スクロール圧縮機
CN114072580B (zh) 涡旋压缩机
WO2023079667A1 (ja) スクロール圧縮機およびこのスクロール圧縮機を備えた冷凍サイクル装置
WO2021245754A1 (ja) スクロール圧縮機及び冷凍サイクル装置
JP7191246B2 (ja) スクロール圧縮機および冷凍サイクル装置
WO2023119625A1 (ja) スクロール圧縮機
WO2021014641A1 (ja) スクロール圧縮機
WO2018150525A1 (ja) スクロール圧縮機
WO2019207784A1 (ja) スクロール圧縮機及び冷凍サイクル装置
JP2008138574A (ja) スクロール圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912638

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020568883

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 202109442

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20190128

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912638

Country of ref document: EP

Kind code of ref document: A1