WO2021084607A1 - スクロール圧縮機および冷凍サイクル装置 - Google Patents

スクロール圧縮機および冷凍サイクル装置 Download PDF

Info

Publication number
WO2021084607A1
WO2021084607A1 PCT/JP2019/042334 JP2019042334W WO2021084607A1 WO 2021084607 A1 WO2021084607 A1 WO 2021084607A1 JP 2019042334 W JP2019042334 W JP 2019042334W WO 2021084607 A1 WO2021084607 A1 WO 2021084607A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixed
frame
shell
scroll compressor
scroll
Prior art date
Application number
PCT/JP2019/042334
Other languages
English (en)
French (fr)
Inventor
政則 伊藤
増本 浩二
修平 小山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980101663.3A priority Critical patent/CN114641617A/zh
Priority to JP2021553923A priority patent/JPWO2021084607A1/ja
Priority to PCT/JP2019/042334 priority patent/WO2021084607A1/ja
Publication of WO2021084607A1 publication Critical patent/WO2021084607A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present invention relates to a scroll compressor and a refrigerating cycle device used in an air conditioner, a refrigerating machine, and the like.
  • the frame supporting the fixed scroll is fixed to the inner wall of the tubular shell.
  • the frame has a tubular outer wall extending in the axial direction of the shell and located on the outer peripheral side of the spiral teeth of the fixed scroll, and is fixed to the inner wall of the shell by shrink fitting or the like on the outer peripheral surface of the outer wall.
  • the fixed scroll is fixed to the outer wall of the frame by fixing the contact portion between the axial end surface of the outer wall of the frame and the base plate of the fixed scroll with screws.
  • the outer wall of the frame is located on the outer peripheral side of the spiral teeth of the fixed scroll, so that the refrigerant suction space is narrowed.
  • the outer peripheral portion of the upper part of the frame was fixed to the shell by shrink fitting. Therefore, in the frame, a fixed region fixed to the shell was arranged in the upper stage. Further, in the scroll compressor of Patent Document 1, a bearing region for supporting the main shaft is arranged in the lower stage of the frame. That is, in the scroll compressor of Patent Document 1, a fixed region and a bearing region are arranged in the vertical direction of the frame.
  • the present invention is for solving the above-mentioned problems, and is a scroll compressor and a refrigerating cycle apparatus capable of reducing the overturning moment generated with respect to the fixed region of the frame and reducing the shrinkage holding force of the frame.
  • the purpose is to provide.
  • the scroll compressor according to the present invention transmits the compression mechanism unit housed in the tubular shell, the drive mechanism unit that drives the compression mechanism unit, and the driving force of the drive mechanism unit to the compression mechanism unit.
  • a scroll compressor having a spindle and a frame fixed to the inner wall surface of the shell, wherein the compression mechanism unit faces the fixed scroll fixed to the inner wall surface of the shell and the fixed scroll.
  • the frame includes an arranged swing scroll, and the frame slidably holds the swing scroll, rotatably supports the spindle, and rotatably supports the spindle, and a shell.
  • a fixed area fixed to the inner wall surface of the above is arranged so that at least a part thereof is overlapped with each other.
  • the refrigeration cycle device includes the scroll compressor described above.
  • the arrangement position of the fixed area of the frame and the arrangement position of the bearing area of the frame are arranged so as to overlap at least a part thereof, the overturning moment generated with respect to the fixed area of the frame can be reduced. , The shrinkage holding force of the frame can be reduced.
  • FIG. It is explanatory drawing which shows schematic the vertical section of the scroll compressor which concerns on Embodiment 1.
  • FIG. It is the schematic which shows the main frame of the scroll compressor which concerns on Embodiment 1 as seen from above. It is an exploded perspective view which shows the peripheral structure of the main frame of the scroll compressor which concerns on Embodiment 1.
  • FIG. It is a vertical cross-sectional view which shows the sticking state of the main frame of the scroll compressor which concerns on Embodiment 1.
  • FIG. It is a refrigerant circuit diagram which shows an example of the refrigeration cycle apparatus using the scroll compressor which concerns on Embodiment 1.
  • FIG. It is a vertical cross-sectional view which shows the sticking state of the main frame in the conventional scroll compressor as a comparative example.
  • FIG. 1 It is a vertical cross-sectional view which shows the sticking state of the main frame in the modification 1 of the scroll compressor which concerns on Embodiment 1.
  • FIG. 2 It is a vertical cross-sectional view which shows the sticking state of the main frame in the modification 2 of the scroll compressor which concerns on Embodiment 1.
  • FIG. 1 is an explanatory view schematically showing a vertical cross section of the scroll compressor 100 according to the first embodiment.
  • FIG. 2 is a schematic view showing the main frame 2 of the scroll compressor 100 according to the first embodiment as viewed from above.
  • FIG. 3 is an exploded perspective view showing the peripheral structure of the main frame 2 of the scroll compressor 100 according to the first embodiment.
  • FIG. 4 is a vertical cross-sectional view showing a fixed state of the main frame 2 of the scroll compressor 100 according to the first embodiment.
  • the scroll compressor 100 is a so-called vertical scroll compressor in which the central axis of the drive shaft 6 having the rotating shaft and the driving shaft is used in a state of being substantially perpendicular to the ground.
  • the scroll compressor 100 includes a shell 1, a main frame 2, a compression mechanism unit 3, a drive mechanism unit 4, a subframe 5, a drive shaft 6, a bush 7, and a power supply unit 8.
  • the upper side where the compression mechanism unit 3 is provided is directed to the U side
  • the lower side where the drive mechanism unit 4 is provided is oriented to the other end L side.
  • Shell 1 is a closed container that is a tubular housing made of a conductive member such as metal and whose both ends are closed.
  • the shell 1 includes a main shell 11, an upper shell 12 as an end shell, and a lower shell 13.
  • the main shell 11 has a cylindrical shape extending in the axial direction.
  • a suction pipe 14 is connected to the main shell 11 by welding or the like.
  • the suction pipe 14 is a pipe that introduces the refrigerant into the shell 1 and communicates with the inside of the main shell 11.
  • the upper shell 12 is a substantially hemispherical end shell. A part of the side wall portion of the upper shell 12 is joined by welding the circumference to one end U side of the main shell 11. As a result, one end U side of the main shell 11 is fixed to the upper shell 12. Then, the upper shell 12 closes the opening on the U side at one end of the main shell 11.
  • a discharge pipe 15 is connected to the upper part of the upper shell 12 by welding or the like.
  • the discharge pipe 15 is a pipe that discharges the refrigerant to the outside of the shell 1 and communicates with the discharge space 9 in the main shell 11.
  • the lower shell 13 is a substantially hemispherical end shell.
  • the lower shell 13 is joined to the main shell 11 in the same manner as the upper shell 12.
  • a part of the side wall of the lower shell 13 is joined to the other end L side of the main shell 11 via a connecting shell 16 by welding or the like.
  • the other end L side of the main shell 11 is fixed to the lower shell 13.
  • the lower shell 13 closes the opening on the other end L side of the main shell 11.
  • the shell 1 is supported by a fixing base 17 having a plurality of bolt holes.
  • a plurality of bolt holes are formed in the fixing base 17, and by fastening with bolts through these bolt holes, the scroll compressor 100 can be attached to other members such as the housing of the outdoor unit in the air conditioner. It can be fixed.
  • the main frame 2 is a hollow metal frame having a cavity formed in the center, and is provided inside the shell 1.
  • the main frame 2 includes a main body portion 21 as a fixed region, a main bearing portion 22 as a bearing region, and an oil return pipe 23.
  • the main body 21 is formed in a convex shape protruding outward from the outer circumference of the main frame 2 on the other end L side below the main frame 2.
  • the outer peripheral surface of the protruding main body 21 functions as a fixed region.
  • a gap K is formed between the outer peripheral surface on one end U side, which is above the main frame 2, and the second inner wall surface 114, which will be described later, of the main shell 11, other than the main body portion 21 of the main frame 2.
  • the main frame 2 is fixed to the second inner wall surface 114 on the other end L side of the main shell 11 via the main body 21.
  • a second protruding portion 116 protruding inward of the main shell 11 is formed on the other end L side of the second inner wall surface 114 of the main shell 11.
  • the main body 21 is positioned by the second protrusion 116.
  • a storage space 211 is formed along the longitudinal direction of the shell 1 extending coaxially with the central axis of the drive shaft 6 which is the main axis.
  • the accommodation space 211 is formed in a stepped shape in which the U side is open at one end and the internal space is narrowed toward the L side at the other end.
  • An annular flat surface 212 is formed on one end U side of the main frame 2 so as to surround the accommodation space 211.
  • a ring-shaped thrust plate 24 made of a steel plate-based material such as valve steel is arranged on the flat surface 212.
  • the thrust plate 24 functions as a thrust bearing.
  • a suction port 213 is formed at a position that does not overlap with the thrust plate 24 on the outer end side of the flat surface 212.
  • the suction port 213 is a space that penetrates the main frame 2 in the vertical direction, that is, the main frame 2 at one end U side and the other end L side.
  • the number of suction ports 213 is not limited to one, and a plurality of suction ports 213 may be formed.
  • An oldham accommodating portion 214 is formed at a step portion on the other end L side of the flat surface 212 of the main frame 2.
  • a pair of first old dam grooves 215 are formed in the old dam accommodating portion 214.
  • the first Oldham groove 215 is formed so that a part of the outer end side is cut off from the inner end side of the flat surface 212. Therefore, when the main frame 2 is viewed from the U side, a part of the first Oldham groove 215 overlaps with the thrust plate 24.
  • the pair of first Oldham grooves 215 are formed so as to face each other.
  • the main bearing portion 22 is continuously formed on the other end L side of the main frame 2.
  • a shaft hole 221 is formed inside the main bearing portion 22.
  • the shaft hole 221 penetrates the main bearing portion 22 in the vertical direction, that is, the main bearing portion 22 at one end U side and the other end L side, and one end U side communicates with the accommodation space 211.
  • the oil return pipe 23 is a pipe that returns the lubricating oil accumulated in the accommodation space 211 to the oil reservoir inside the lower shell 13.
  • the oil return pipe 23 is inserted and fixed in an oil drain hole formed through the inside and outside of the main frame 2.
  • the lubricating oil is, for example, a refrigerating machine oil containing an ester-based synthetic oil.
  • the lubricating oil is stored in the lower part of the shell 1, that is, in the lower shell 13.
  • the stored lubricating oil is sucked up by the oil pump 52, which will be described later, passes through the oil passage 63 in the drive shaft 6, reduces wear between mechanically contacting parts such as the compression mechanism portion 3, and slides. Adjust the temperature or improve the sealing performance.
  • As the lubricating oil it is preferable to use an oil having excellent lubrication characteristics, electrical insulation, stability, refrigerant solubility, low-temperature fluidity, etc., and having an appropriate viscosity.
  • the outer end of the flat surface 212 of the main frame 2 has a ring-shaped protruding wall 216 protruding in the upper shell 12 (see FIG. 1) direction, that is, one end toward the U side. Is formed.
  • the thrust plate 24 is arranged on a flat surface 212 inside the protruding wall 216 so as to cover a part of the first Oldham groove 215.
  • the swing scroll 32 (see FIG. 1) can be slid with the thrust plate 24. That is, the main frame 2 slidably holds the swing scroll 32.
  • the thickness of the thrust plate 24 is usually about 0.5 mm, but if a thickness of about 0.6 mm is used, the gap at the tip of the spiral can be reduced, and the refrigerant can be used between the tip of the spiral and the base plate. It is possible to prevent leakage to the adjacent compression space through the gap between the two.
  • the thrust plate 24 and the protruding wall 216 are formed with a convex portion or a concave portion, and the convex portion and the concave portion are engaged so as to suppress the rotation of the thrust plate 24.
  • the flat surface 212 and the thrust plate 24 of the main frame 2 both have a ring shape, so that the thrust plate 24 may rotate with respect to the flat surface 212 as the swing scroll 32 swings. Is. By locking the convex portion in the concave portion, the rotation is suppressed.
  • the convex portion is composed of a pair of protruding portions 217 formed so as to project from the protruding wall 216 in the direction of the thrust plate 24, and the concave portion is a notch 241 formed in the outer peripheral portion of the thrust plate 24. It is configured. Then, a pair of protrusions 217 are provided so as to be locked to the opposite sides of the notch 241.
  • the suction port 213 is arranged in a portion of the main frame 2 located between the pair of protrusions 217. That is, since the suction port 213 is arranged in the notch 241 portion, the refrigerant can be taken into the refrigerant intake space 37 without being blocked by the thrust plate 24.
  • the compression mechanism unit 3 includes a fixed scroll 31 and a swing scroll 32, and is a scroll compression mechanism that compresses the refrigerant.
  • the fixed scroll 31 is made of a metal such as cast iron, and includes a first circular base plate 311 and a first spiral body 312.
  • the fixed scroll 31 is fixed to the first inner wall surface 111 on the U side of the main shell 11 via the outer peripheral surface of the first circular base plate 311. At this time, a first protruding portion 113 protruding inward of the main shell 11 is formed on one end U side of the first inner wall surface 111 of the main shell 11. The fixed scroll 31 is positioned by the first protrusion 113.
  • the first circular base plate 311 is formed in a disk shape, and a discharge port 313 that penetrates the first circular base plate 311 in the vertical direction, that is, one end U side and the other end L side is formed in the center thereof. There is.
  • the first spiral body 312 projects from the surface on the other end L side of the first circular base plate 311 to form a spiral wall portion, and the tip thereof projects toward the other end L side.
  • the swing scroll 32 is made of a metal such as aluminum.
  • the swing scroll 32 includes a second circular base plate 321, a second spiral body 322, a tubular portion 323, and a pair of second Oldham grooves 324.
  • the second circular base plate 321 is formed in a disk shape.
  • the second circular base plate 321 has a surface on the U side at one end on which the second spiral body 322 is formed, a surface on the L side at the other end where at least a part of the outer peripheral region is a sliding surface 3211, and the outermost surface in the radial direction. It is located in the above and includes a side surface 3212 for connecting one end U side surface and the other end L side surface.
  • the sliding surface 3211 is supported or supported by the main frame 2 so as to be slidable on the thrust plate 24.
  • the second spiral body 322 protrudes from the surface of the second circular base plate 321 on the U side at one end to form a spiral wall portion, and the tip thereof projects to the U side at one end.
  • a seal member for suppressing leakage of the refrigerant is provided at the tip of the first spiral body 312 of the fixed scroll 31 and the second spiral body 322 of the rocking scroll 32.
  • the tubular portion 323 is a cylindrical boss formed so as to project from the center of the surface of the second circular base plate 321 on the other end L side to the other end L side.
  • a swing bearing that rotatably supports the slider 71, which will be described later, is provided on the inner peripheral surface of the tubular portion 323 so that the central axis of a so-called journal bearing is parallel to the central axis of the drive shaft 6.
  • the second oldham groove 324 is an oval-shaped groove formed on the other end L-side surface of the second circular base plate 321.
  • the pair of second Oldham grooves 324 are provided so as to face each other.
  • the line connecting the pair of second Oldham grooves 324 is provided so as to be orthogonal to the line connecting the pair of first Oldham grooves 215.
  • an old dam ring 33 is provided in the old dam accommodating portion 214 of the main frame 2.
  • the Oldham ring 33 includes a ring portion 331, a pair of first key portions 332, and a pair of second key portions 333.
  • the ring portion 331 has a ring shape.
  • the pair of first key portions 332 are formed so as to face the surface on the other end L side of the ring portion 331.
  • Each of the pair of first key portions 332 is housed in each of the pair of first Oldham grooves 215 of the main frame 2.
  • the pair of second key portions 333 are formed so as to face one end U-side surface of the ring portion 331.
  • Each of the pair of second key portions 333 is housed in each of the pair of second Oldham grooves 324 of the swing scroll 32 (see FIG. 1).
  • the compression chamber 34 is formed by engaging the first spiral body 312 of the fixed scroll 31 and the second spiral body 322 of the swing scroll 32 with each other.
  • the volume of the compression chamber 34 decreases from the outside to the inside in the radial direction. Therefore, the refrigerant is taken in from the outer end side of the first spiral body 312 and the second spiral body 322, and is gradually compressed by being moved to the central side.
  • the compression chamber 34 communicates with the discharge port 313 at the central portion of the fixed scroll 31.
  • a muffler 35 having a discharge hole 351 is provided on one end U-side surface of the fixed scroll 31.
  • a discharge valve 36 is provided on the surface of the muffler 35 on the U side at one end to open and close the discharge hole 351 at a preset timing to prevent the backflow of the refrigerant. Therefore, the refrigerant compressed in the compression chamber 34 passes through the discharge port 313, opens the discharge valve 36 at that pressure, and is discharged from the discharge hole 351 into the discharge space 9 in the upper shell 12. After that, the discharged refrigerant flows out from the discharge pipe 15.
  • the refrigerant comprises, for example, a halogenated hydrocarbon having a carbon double bond, a halogenated hydrocarbon having no carbon double bond, a hydrocarbon, or a mixture containing them in the composition.
  • the refrigerant composed of a halogenated hydrocarbon having a carbon double bond is an HFC refrigerant having an ozone depletion potential of zero or a chlorofluorocarbon-based low GWP refrigerant.
  • the low GWP refrigerant include HFO refrigerants, and examples thereof include tetrafluoropropenes such as HFO1234yf, HFO1234ze, and HFO1243zf whose chemical formula is represented by C 3 H 2 F 4.
  • Examples of the refrigerant composed of a halogenated hydrocarbon having no carbon double bond include a refrigerant in which R32 (difluoromethane) represented by CH 2 F 2 or R41 or the like is mixed.
  • Examples of the refrigerant composed of hydrocarbons include propane, which is a natural refrigerant, and propylene.
  • Examples of the refrigerant composed of the mixture include a mixed refrigerant in which R32, R41, etc. are mixed with HFO1234yf, HFO1234ze, HFO1243zf, or the like.
  • propane or propylene which are components such as HFO1234yf, HFO1234ze, or HFO1243zf, operate at a relatively low pressure and low density. Therefore, the exclusion volume of the compressor required to obtain the same capacity is about two to three times as large as that of the current refrigerant such as R410A.
  • the drive mechanism unit 4 is provided on the other end L side of the main frame 2 in the shell 1.
  • the drive mechanism unit 4 includes a stator 41 and a rotor 42.
  • the stator 41 is an annular stator.
  • the stator 41 is formed, for example, by arranging a plurality of teeth in which windings are wound through an insulating layer in an annular shape on an iron core in which a plurality of electromagnetic steel plates are laminated.
  • the stator 41 is fixedly supported in the main shell 11 by shrink fitting or the like.
  • the rotor 42 is arranged in the internal space of the stator 41. That is, the rotor 42 is a cylindrical rotor arranged in the central hole formed inside the stator 41 which is an annular stator.
  • the rotor 42 has a permanent magnet built in an iron core in which a plurality of electromagnetic steel sheets and the like are laminated.
  • a hole is formed in the center of the rotor 42 in the vertical direction, that is, through the rotor 42 at one end U side and the other end L side.
  • the subframe 5 is a metal frame, and is provided in the shell 1 on the other end L side of the drive mechanism unit 4.
  • the subframe 5 is fixedly supported on the inner peripheral surface 115 on the other end L side of the main shell 11 by shrink fitting, welding, or the like.
  • the subframe 5 includes an auxiliary bearing portion 51 and an oil pump 52.
  • the sub-bearing portion 51 is a ball bearing provided on the upper side of the central portion of the sub-frame 5.
  • a hole is formed in the center of the sub-bearing portion 51 so as to penetrate the sub-bearing portion 51 in the vertical direction, that is, at one end U side and the other end L side.
  • the oil pump 52 is provided on the lower side of the central portion of the subframe 5.
  • the oil pump 52 is arranged by immersing at least a part of the lubricating oil stored in the oil reservoir in the lower shell 13.
  • the drive shaft 6 is a long metal rod-shaped member, which is provided in the shell 1 and transmits the driving force of the drive mechanism unit 4 to the compression mechanism unit 3.
  • the drive shaft 6 includes a spindle portion 61, an eccentric shaft portion 62, and an oil passage 63.
  • the spindle portion 61 is a shaft that constitutes the main portion of the drive shaft 6.
  • the central axis of the main shaft portion 61 is arranged so as to coincide with the central axis of the main shell 11.
  • a rotor 42 is contact-fixed to the outer surface of the spindle portion 61.
  • the eccentric shaft portion 62 is provided on one end U side of the spindle portion 61.
  • the central axis of the eccentric shaft portion 62 is eccentric with respect to the central axis of the main shaft portion 61.
  • the oil passage 63 is provided so as to penetrate vertically inside the main shaft portion 61 and the eccentric shaft portion 62.
  • One end U side of the spindle portion 61 of the drive shaft 6 is inserted into the main bearing portion 22 of the main frame 2. Further, the other end L side of the main shaft portion 61 of the drive shaft 6 is inserted and fixed to the sub bearing portion 51 of the subframe 5. As a result, the eccentric shaft portion 62 is arranged in the cylinder of the tubular portion 323. Further, the rotor 42, which is contact-fixed to the main shaft portion 61, is arranged so that the outer peripheral surface thereof and the inner peripheral surface of the stator 41 maintain a predetermined gap.
  • a first balancer 64 is provided in the middle of one end of the spindle portion 61 on the U side.
  • a second balancer 65 is provided in the middle of the other end L side of the main shaft portion 61. The first and second balancers 64 and 65 are provided to cancel the unbalanced state due to the swinging motion of the swinging scroll 32.
  • the bush 7 is a connecting member that connects the swing scroll 32 and the drive shaft 6.
  • the bush 7 is made of a metal such as iron.
  • the bush 7 is composed of two parts.
  • the bush 7 includes a slider 71 and a balance weight 72.
  • the slider 71 is a tubular member having a brim that extends to the outer peripheral side.
  • the slider 71 is fitted into each of the eccentric shaft portion 62 and the tubular portion 323.
  • the balance weight 72 is a donut-shaped member provided with a weight portion 721.
  • the shape of the weight portion 721 as seen from one end U side is a C-shape.
  • the balance weight 72 is provided eccentrically with respect to the center of rotation in order to cancel the centrifugal force of the swing scroll 32.
  • the balance weight 72 is fitted to the collar of the slider 71 by a method such as shrink fitting.
  • the power feeding unit 8 is a power feeding member that supplies power to the scroll compressor 100.
  • the power feeding unit 8 is formed on the outer peripheral surface of the main shell 11.
  • the power feeding unit 8 includes a cover 81, a power feeding terminal 82, and a wiring 83.
  • the cover 81 is a cover member having a cylindrical shape in which the bottom is attached to the outer wall surface of the main shell 11, and an opening facing the bottom is formed in a portion away from the main shell 11.
  • the power supply terminal 82 is made of a metal member, one of which is provided in the cover 81 and the other of which is provided in the shell 1. That is, the power feeding terminal 82 is provided so as to connect one and the other and penetrate the shell 1.
  • One of the wiring 83 is connected to the power feeding terminal 82, and the other is connected to the stator 41. That is, the wiring 83 connects one and the other to supply power to the stator 41 from the power supply terminal 82.
  • FIG. 5 is a refrigerant circuit diagram showing an example of the refrigeration cycle apparatus 200 using the scroll compressor 100 according to the first embodiment.
  • the refrigerating cycle device 200 performs cooling or heating operation by transferring heat between the outside air and the indoor air via a refrigerant, for example, to perform air conditioning in the room. Functions as a device.
  • the refrigeration cycle device 200 has an indoor unit 201 and an outdoor unit 202.
  • the scroll compressor 100 will be referred to as a compressor 250.
  • the indoor unit 201 and the outdoor unit 202 are connected to each other via the refrigerant pipes 203, 203a, and 203b to form a refrigerant circuit 204 in which the refrigerant circulates.
  • the refrigerant circuit 204 is provided with a compressor 250, a flow path switching device 251, a heat exchanger 252, an expansion valve 253 and an indoor heat exchanger 254, and these are connected via the refrigerant pipes 203, 203a and 203b. ..
  • the outdoor unit 202 has a compressor 250, a flow path switching device 251, a heat exchanger 252, and an expansion valve 253.
  • the compressor 250 compresses and discharges the sucked refrigerant.
  • the compressor 250 may include an inverter device (not shown). When the inverter device is provided, the operation frequency can be changed by the control unit 205 to change the capacity of the compressor 250.
  • the capacity of the compressor 250 is the amount of refrigerant delivered per unit time.
  • the flow path switching device 251 is, for example, a four-way valve, which switches the direction of the refrigerant flow path.
  • the refrigerating cycle device 200 can realize a heating operation or a cooling operation by switching the flow of the refrigerant by using the flow path switching device 251 based on the instruction from the control unit 205.
  • the heat exchanger 252 exchanges heat between the refrigerant and the outdoor air. Further, the heat exchanger 252 is provided with an outdoor blower 255 in order to improve the efficiency of heat exchange between the refrigerant and the outdoor air.
  • An inverter device (not shown) may be attached to the outdoor blower 255.
  • the inverter device changes the rotation speed of the fan by changing the operating frequency of the fan motor 256, which is the drive source of the outdoor blower 255.
  • the outdoor blower 255 is not limited to this as long as the same effect can be obtained.
  • the type of fan may be a sirocco fan or a plug fan.
  • the outdoor blower 255 may be a pushing type or a pulling type.
  • the heat exchanger 252 functions as an evaporator during the heating operation and exchanges heat between the low-pressure refrigerant flowing in from the refrigerant pipe 203b side and the outdoor air to evaporate and vaporize the refrigerant. , Flow out to the refrigerant pipe 203a side. Further, the heat exchanger 252 functions as a condenser during the cooling operation, and is between the refrigerant compressed by the compressor 250 flowing from the refrigerant pipe 203a side via the flow path switching device 251 and the outdoor air. The refrigerant is condensed and liquefied, and is discharged to the refrigerant pipe 203b side.
  • the external fluid is not limited to the gas containing the outdoor air, and may be a liquid containing water.
  • the expansion valve 253 is a throttle device that controls the flow rate of the refrigerant, and adjusts the pressure of the refrigerant by adjusting the flow rate of the refrigerant flowing through the refrigerant pipe 203 by changing the opening degree of the expansion valve 253. During the cooling operation, the expansion valve 253 expands the high-pressure liquid state refrigerant into the low-pressure gas-liquid two-phase state refrigerant to reduce the pressure.
  • the expansion valve 253 is not limited to this, and an electronic expansion valve, a capillary tube, or the like may be used as long as the same effect can be obtained. For example, when the expansion valve 253 is composed of an electronic expansion valve, the opening degree is adjusted based on the instruction of the control unit 205.
  • the indoor unit 201 includes an indoor heat exchanger 254 that exchanges heat between the refrigerant and the indoor air, and an indoor blower 257 that adjusts the flow of air that the indoor heat exchanger 254 exchanges heat with.
  • the indoor heat exchanger 254 acts as a condenser during the heating operation, exchanges heat between the refrigerant flowing in from the refrigerant pipe 203a side and the indoor air, condenses the refrigerant and liquefies it, and causes the refrigerant pipe. Let it flow out to the 203b side. Further, the indoor heat exchanger 254 functions as an evaporator during the cooling operation. The indoor heat exchanger 254 exchanges heat between the refrigerant that has been brought into a low pressure state by the expansion valve 253 that has flowed in from the refrigerant pipe 203b side and the indoor air, and causes the refrigerant to take away the heat of the air and evaporate it.
  • the external fluid is not limited to the gas containing the indoor air, and may be a liquid containing water.
  • the operating speed of the indoor blower 257 is determined by the user's settings. It is preferable to attach an inverter device to the indoor blower 257 and change the operating frequency of the fan motor 258 to change the rotation speed of the fan.
  • the indoor blower 257 is not limited to this as long as the same effect can be obtained.
  • the type of fan may be a sirocco fan or a plug fan.
  • the indoor blower 257 may be a pushing type or a pulling type.
  • the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 250 flows into the heat exchanger 252 via the flow path switching device 251.
  • the gas refrigerant that has flowed into the heat exchanger 252 is condensed by heat exchange with the outside air blown by the outdoor blower 255, becomes a low-temperature refrigerant, and flows out from the heat exchanger 252.
  • the refrigerant flowing out of the heat exchanger 252 is expanded and depressurized by the expansion valve 253 to become a low-temperature low-pressure gas-liquid two-phase refrigerant.
  • This gas-liquid two-phase refrigerant flows into the indoor heat exchanger 254 of the indoor unit 201, evaporates by heat exchange with the indoor air blown by the indoor blower 257, becomes a low-temperature low-pressure gas refrigerant, and becomes an indoor heat exchanger. Outflow from 254. At this time, the indoor air that has been cooled by being absorbed by the refrigerant becomes air-conditioned air (blown air) and is blown out from the indoor unit 201 into the room that is the air-conditioned space. The gas refrigerant flowing out of the indoor heat exchanger 254 is sucked into the compressor 250 via the flow path switching device 251 and is compressed again. In the cooling operation of the refrigeration cycle device 200, the above operation is repeated (indicated by a solid arrow in FIG. 5).
  • the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 250 flows into the indoor heat exchanger 254 of the indoor unit 201 via the flow path switching device 251.
  • the gas refrigerant that has flowed into the indoor heat exchanger 254 is condensed by heat exchange with the indoor air blown by the indoor blower 257, becomes a low-temperature refrigerant, and flows out from the indoor heat exchanger 254.
  • the indoor air that has been warmed by receiving heat from the gas refrigerant becomes conditioned air (blow-out air) and is blown out from the indoor unit 201 into the room.
  • the refrigerant flowing out of the indoor heat exchanger 254 is expanded and depressurized by the expansion valve 253 to become a low-temperature low-pressure gas-liquid two-phase refrigerant.
  • This gas-liquid two-phase refrigerant flows into the heat exchanger 252 of the outdoor unit 202, evaporates by heat exchange with the outside air blown by the outdoor blower 255, becomes a low-temperature low-pressure gas refrigerant, and flows out from the heat exchanger 252. To do.
  • the gas refrigerant flowing out of the heat exchanger 252 is sucked into the compressor 250 via the flow path switching device 251 and is compressed again. In the heating operation of the refrigeration cycle device 200, the above operation is repeated (indicated by the broken line arrow in FIG. 5).
  • FIG. 6 is a vertical cross-sectional view showing a fixed state of the main frame 2 in a conventional scroll compressor as a comparative example.
  • the characteristic configuration of the scroll compressor 100 of the first embodiment will be described with reference to FIG.
  • the scroll compressor 100 of the first embodiment as shown in FIG. 4, at least the arrangement position of the main body portion 21 as a fixed region in the main frame 2 and the arrangement position of the main bearing portion 22 as a bearing region are at least.
  • the configuration is characterized in that some of them are arranged on top of each other.
  • the vertical arrangement region H1 of the main body portion 21 is arranged so as to be included in the vertical arrangement region H2 of the main bearing portion 22. That is, in this case, the main body portion 21 and the main bearing portion 22 are arranged in the same region at the height of the main frame 2 in the vertical direction, in other words, in the same region in the horizontal direction.
  • the main body 21 is arranged above the main frame 2 and the main bearing 22 is arranged below the main frame 2.
  • the following effects can be obtained as compared with the case of That is, as compared with the case where the main body portion 21 and the main bearing portion 22 are arranged vertically apart from each other, the main body portion 21 is arranged in the same height region in the vertical direction of the main frame 2.
  • the overturning moment generated for 21 can be reduced, and the shrink fit holding force can be reduced.
  • the shrink fit allowance is set to the outer diameter L3 of the main frame 2 with respect to the inner diameter L1 of the conventional main shell 11. It can be made smaller than the shrink fitting allowance. Therefore, the shrinkage fitting allowance when the main frame 2 is fixed to the main shell 11 can be reduced, and the shrinkage fitting overheating time can be shortened.
  • the shrink fit allowance can be reduced and the shrink fit overheating time can be shortened. Therefore, the power supply terminal 82 as a glass terminal having a temperature limit is arranged in the vicinity of the main frame 2. can do. Moreover, since the shrink fitting overheating time can be shortened, as shown in FIG. 4, the power supply terminal 82 having a temperature limit can be arranged closer to the main frame 2 as compared with the conventional case shown in FIG. (H3 ⁇ H4).
  • the arrangement area H2 of the main bearing portion 22 of the main frame 2 is set to be larger than the arrangement area H1 of the main body portion 21 of the main frame 2 (H2> H1).
  • FIG. 7 is a vertical cross-sectional view showing a fixed state of the main frame 2 in the first modification of the scroll compressor 100 according to the first embodiment.
  • FIG. 8 is a vertical cross-sectional view showing a fixed state of the main frame 2 in the second modification of the scroll compressor 100 according to the first embodiment.
  • the main body portion 21 and the main bearing portion 22 are arranged in the same region at the height of the main frame 2 in the vertical direction, that is, in the same region in the horizontal direction.
  • the configuration of the mainframe 2 is not limited to this.
  • FIGS. 7 or 8 in which the corresponding portions corresponding to FIG. 4 are designated by the same reference numerals, the arrangement position of the main body portion 21 as a fixed region in the main frame 2 and the arrangement of the main bearing portion 22 as a bearing region. It suffices that at least a part of the position and the position are overlapped with each other.
  • the size of the overlapping region H5 between the arrangement region H2 of the main bearing portion 22 of the main frame 2 and the arrangement region H1 of the main body portion 21 of the main frame 2 may be set to be “0” or more. .. As a result, the overturning moment of the main frame 2 can be reduced, and the shrinkage fitting holding force can be reduced.
  • the arrangement position of the main body portion 21 may be arranged at one end U side above the arrangement position of the main bearing portion 22 (see FIG. 7), or the main bearing portion 22 is arranged.
  • the position may be arranged on the U side at one end above the arrangement position of the main body 21 (see FIG. 8). That is, which of the main body portion 21 and the main bearing portion 22 may be arranged above and which may be arranged below in the vertical direction of the main frame 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

筒状のシェル内に収容された圧縮機構部と、圧縮機構部を駆動する駆動機構部と、駆動機構部の駆動力を圧縮機構部に伝達する主軸と、シェルの内壁面に固着され、主軸を回転自在に支持するフレームと、を有するスクロール圧縮機であって、フレームは、主軸を支持する軸受け領域と、シェルの内壁面に固着される固定領域と、が少なくとも一部を重ねて配置されている。これにより、フレームの焼嵌め固定部の配置位置と、フレームの主軸受け部の配置位置と、が少なくとも一部を重ねて配置されるため、フレームの焼嵌め固定部に対して発生する転覆モーメントを軽減でき、フレームの焼嵌め保持力を低減できる。

Description

スクロール圧縮機および冷凍サイクル装置
 本発明は、空気調和装置および冷凍機等に利用されるスクロール圧縮機および冷凍サイクル装置に関する。
 従来のスクロール圧縮機では、固定スクロールを支持するフレームが筒状のシェルの内壁に固定されている。フレームは、シェルの軸方向に延び、且つ固定スクロールの渦巻歯の外周側に位置する筒状の外壁を有しており、外壁の外周面でシェルの内壁に焼嵌などで固定されている。そして、フレームの外壁の軸方向の端面と固定スクロールの台板との接触部分がねじで固定されることで、固定スクロールがフレームの外壁に固定されている。この構成では、フレームの外壁が固定スクロールの渦巻歯の外周側に位置することで、冷媒吸入空間が狭くなる。このため、近年では、冷媒吸入空間を広げる観点からフレームの外壁を無くしたスクロール圧縮機が提案されている(例えば、特許文献1参照)。特許文献1では、フレームの外壁が無くなることで、固定スクロールの固定先が無くなることから、固定スクロールを直接、シェルの内壁に固着する構成としている。
国際公開第2018/078787号
 特許文献1のスクロール圧縮機では、シェルに対してフレームの上段の外周部を焼嵌めにて固定していた。よって、フレームは、シェルに対して固着される固定領域が上段に配置されていた。また、特許文献1のスクロール圧縮機では、フレームの下段に主軸を支持する軸受け領域を配置していた。つまり、特許文献1のスクロール圧縮機では、フレームの上下方向に固定領域と軸受け領域とが配置されていた。
 そのため、かかるスクロール圧縮機においては、フレームの軸受け領域に加わる荷重によって、フレームの固定領域に転覆モーメントが発生し、フレームの焼嵌め保持力が増大するため、焼嵌め代を大きくしなければならない虞があった。これは、渦巻き容量を拡大する際に障害となることを意味している。
 そこで、本発明は、上述した課題を解決するためのものであり、フレームの固定領域に対して発生する転覆モーメントを軽減でき、フレームの焼嵌め保持力を低減可能なスクロール圧縮機および冷凍サイクル装置を提供することを目的とする。
 本発明に係るスクロール圧縮機は、筒状のシェル内に収容された圧縮機構部と、前記圧縮機構部を駆動する駆動機構部と、前記駆動機構部の駆動力を前記圧縮機構部に伝達する主軸と、前記シェルの内壁面に固着されたフレームと、を有するスクロール圧縮機であって、前記圧縮機構部は、前記シェルの内壁面に固着された固定スクロールと、前記固定スクロールに対向して配置された揺動スクロールと、を備え、前記フレームは、前記揺動スクロールを摺動自在に保持すると共に前記主軸を回転自在に支持し、前記主軸を回転自在に支持する軸受け領域と、前記シェルの内壁面に固着された固定領域と、が少なくとも一部を重ねて配置されているものである。
 本発明に係る冷凍サイクル装置は、上記のスクロール圧縮機を備えるものである。
 本発明によれば、フレームの固定領域の配置位置と、フレームの軸受け領域の配置位置と、が少なくとも一部を重ねて配置されるため、フレームの固定領域に対して発生する転覆モーメントを軽減でき、フレームの焼嵌め保持力を低減できる。
実施の形態1に係るスクロール圧縮機の縦断面を概略的に示す説明図である。 実施の形態1に係るスクロール圧縮機のメインフレームを上方から見て示す概略図である。 実施の形態1に係るスクロール圧縮機のメインフレームの周辺構造を示す分解斜視図である。 実施の形態1に係るスクロール圧縮機のメインフレームの固着状態を示す縦断面図である。 実施の形態1に係るスクロール圧縮機を用いた冷凍サイクル装置の一例を示す冷媒回路図である。 従来のスクロール圧縮機におけるメインフレームの固着状態を比較例として示す縦断面図である。 実施の形態1に係るスクロール圧縮機の変形例1におけるメインフレームの固着状態を示す縦断面図である。 実施の形態1に係るスクロール圧縮機の変形例2におけるメインフレームの固着状態を示す縦断面図である。
 以下、本発明に係るスクロール圧縮機および冷凍サイクル装置の実施の形態について、添付の図面を参照しながら説明する。なお、明細書全文および図面に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。すなわち、本発明は、請求の範囲および明細書全体から読み取ることのできる発明の要旨又は思想に反しない範囲で適宜変更可能である。また、そのような変更を伴うスクロール圧縮機および冷凍サイクル装置も本発明の技術思想に含まれる。さらに、各図において、同一の符号を付したものは、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。
実施の形態1.
<スクロール圧縮機の全体構成>
 図1~図4を参照しながら、本実施の形態1に係るスクロール圧縮機100について説明する。図1は、実施の形態1に係るスクロール圧縮機100の縦断面を概略的に示す説明図である。図2は、実施の形態1に係るスクロール圧縮機100のメインフレーム2を上方から見て示す概略図である。図3は、実施の形態1に係るスクロール圧縮機100のメインフレーム2の周辺構造を示す分解斜視図である。図4は、実施の形態1に係るスクロール圧縮機100のメインフレーム2の固着状態を示す縦断面図である。
 図1に示すように、スクロール圧縮機100は、回転軸およびドライビングシャフトを有する駆動軸6の中心軸が地面に対して概略垂直の状態で使用される、いわゆる縦型のスクロール圧縮機である。
 スクロール圧縮機100は、シェル1と、メインフレーム2と、圧縮機構部3と、駆動機構部4と、サブフレーム5と、駆動軸6と、ブッシュ7と、給電部8と、を備える。以下では、メインフレーム2を基準として、圧縮機構部3が設けられている上側を一端U側、駆動機構部4が設けられている下側を他端L側と方向付けて説明する。
 シェル1は、金属などの導電性部材からなる両端が閉塞された筒状の筐体となる密閉容器である。シェル1は、メインシェル11と、端部シェルとしてのアッパーシェル12と、ロアシェル13と、を備える。
 メインシェル11は、軸方向に延びる円筒形状をなしている。メインシェル11には、吸入管14が溶接などにより接続される。吸入管14は、冷媒をシェル1内に導入する管であり、メインシェル11内と連通する。
 アッパーシェル12は、略半球状の端部シェルである。アッパーシェル12の側壁部の一部は、メインシェル11の一端U側の端部に円周が溶接されることにより接合される。これにより、メインシェル11の一端U側は、アッパーシェル12に固定される。そして、アッパーシェル12は、メインシェル11の一端U側の開口を塞ぐ。
 アッパーシェル12の上部には、吐出管15が溶接などにより接続される。吐出管15は、冷媒をシェル1外に吐出する管であり、メインシェル11内の吐出空間9と連通している。
 ロアシェル13は、略半球状の端部シェルである。ロアシェル13は、アッパーシェル12と同様にメインシェル11に接合される。ロアシェル13の側壁の一部は、メインシェル11の他端L側の端部に、連結シェル16を介して溶接などにより接合される。これにより、メインシェル11の他端L側は、ロアシェル13に固定される。そして、ロアシェル13は、メインシェル11の他端L側の開口を塞ぐ。
 なお、シェル1は、複数のボルト穴を備える固定台17によって支持されている。固定台17には、複数のボルト穴が形成されており、それらのボルト穴を介してボルトで締結することにより、スクロール圧縮機100を空気調和装置における室外機の筐体などの他の部材に固定できるようになっている。
 メインフレーム2は、中央に空洞が形成された中空状の金属製のフレームであり、シェル1の内部に設けられている。メインフレーム2は、固定領域としての本体部21と、軸受け領域としての主軸受部22と、返油管23と、を備える。
 本体部21は、図1および図4に示すように、メインフレーム2の下方である他端L側において、当該メインフレーム2の外周から外方へ向けて突出した凸状に形成されており、当該突出した本体部21の外周面が固定領域として機能する。メインフレーム2における本体部21以外、とりわけ、メインフレーム2の上方である一端U側の外周面と、メインシェル11の後述する第2内壁面114と、の間には隙間Kが形成される。
 メインフレーム2は、図2~図4に示すように、本体部21を介してメインシェル11における他端L側の第2内壁面114に固着されている。このとき、メインシェル11の第2内壁面114における他端L側には、当該メインシェル11の内方へ向かって突出した第2突出部116が形成されている。そして、本体部21は、第2突出部116によって位置決めされている。
 また、メインフレーム2の中央には、主軸である駆動軸6の中心軸と同軸上に延長するシェル1の長手方向に沿って収容空間211が形成されている。収容空間211は、一端U側が開口していると共に、他端L側に向かって内部空間が狭くなる段差状に形成されている。
 メインフレーム2の一端U側には、収容空間211を囲むように環状の平坦面212が形成されている。平坦面212には、バルブ鋼などの鋼板系材料からなるリング状のスラストプレート24が配置されている。スラストプレート24は、スラスト軸受として機能する。
 平坦面212の外端側のスラストプレート24と重ならない位置には、吸入ポート213が形成される。吸入ポート213は、メインフレーム2の上下方向、すなわちメインフレーム2を一端U側と他端L側とに貫通する空間である。なお、吸入ポート213は、一つに限らず、複数形成されてもよい。
 メインフレーム2の平坦面212よりも他端L側の段差部分には、オルダム収容部214が形成されている。オルダム収容部214には、一対の第1オルダム溝215が形成されている。第1オルダム溝215は、外端側の一部が平坦面212の内端側を削るように形成されている。そのため、メインフレーム2を一端U側から見たときに、第1オルダム溝215の一部は、スラストプレート24と重なる。一対の第1オルダム溝215は、対向して形成されている。
 主軸受部22は、メインフレーム2の他端L側に連続して形成されている。主軸受部22の内部には、軸孔221が形成されている。軸孔221は、主軸受部22の上下方向、すなわち主軸受部22を一端U側と他端L側とに貫通し、その一端U側が収容空間211と連通している。
 返油管23は、収容空間211に溜まった潤滑油をロアシェル13の内側の油溜めに戻す管である。返油管23は、メインフレーム2の内外に貫通して形成された排油孔に挿入固定されている。
 潤滑油は、例えば、エステル系合成油を含む冷凍機油である。潤滑油は、シェル1の下部、すなわちロアシェル13内に貯留される。貯留される潤滑油は、後述するオイルポンプ52によって吸い上げられ、駆動軸6内の通油路63を通り、圧縮機構部3などの機械的に接触する部品同士の摩耗を低減し、摺動部の温度を調節し、または、シール性を改善する。潤滑油としては、潤滑特性、電気絶縁性、安定性、冷媒溶解性、または、低温流動性等に優れると共に、適度な粘度を有する油を用いることが好適である。
 また、メインフレーム2の平坦面212の外端部には、図2および図3に示すように、アッパーシェル12(図1参照)方向、すなわち、一端U側に突出するリング状の突壁216が形成されている。スラストプレート24は、突壁216の内側の平坦面212に、第1オルダム溝215の一部を覆って配置されている。
 突壁216の平坦面212からの高さは、スラストプレート24の厚みより小さく設定されているため、揺動スクロール32(図1参照)を、スラストプレート24と摺動させることができる。すなわち、メインフレーム2は、揺動スクロール32を摺動自在に保持する。なお、スラストプレート24の厚みを調整することで、一方のスクロールの台板と、他方のスクロールの渦巻体との間隔である渦巻先端隙間を好適な範囲に設定することも可能である。例えば、スラストプレート24の厚みは、通常0.5mm程度であるが、当該厚みが0.6mm程度のものを使用すれば、渦巻先端隙間を小さくすることができ、冷媒が渦巻先端と台板との隙間を通って、隣の圧縮空間に漏れることを抑制できる。
 ここで、スラストプレート24および突壁216には、凸部または凹部が形成されており、スラストプレート24の回転を抑止可能に凸部と凹部とが係合している。これは、メインフレーム2の平坦面212およびスラストプレート24は、共にリング形状であることで、揺動スクロール32の揺動に伴ってスラストプレート24が平坦面212に対して回転する場合があるためである。凹部に凸部を係止することで、その回転を抑制する。本実施の形態1では、凸部は突壁216からスラストプレート24の方向に突出して形成された一対の突部217で構成され、凹部はスラストプレート24の外周部分に形成された切欠き241で構成されている。そして、一対の突部217を切欠き241の対向する辺にそれぞれ係止するように設けている。なお、メインフレーム2の一対の突部217の間に位置する部分には、吸入ポート213が配置されている。すなわち、切欠き241部分に吸入ポート213を配置しているため、冷媒をスラストプレート24によって遮られることなく、冷媒取込空間37に取り込むことができる。
 圧縮機構部3は、図1および図3に示すように、固定スクロール31と、揺動スクロール32と、を備えており、冷媒を圧縮するスクロール圧縮機構である。
 固定スクロール31は、鋳鉄などの金属で構成されており、第1円形台板311と、第1渦巻体312と、を備えている。
 固定スクロール31は、第1円形台板311の外周面を介してメインシェル11における一端U側の第1内壁面111に固着されている。このとき、メインシェル11の第1内壁面111における一端U側には、当該メインシェル11の内方へ向かって突出した第1突出部113が形成されている。そして、固定スクロール31は、第1突出部113によって位置決めされている。
 第1円形台板311は、円盤状に構成されており、その中央には上下方向、すなわち第1円形台板311を一端U側と他端L側とに貫通した吐出ポート313が形成されている。
 第1渦巻体312は、第1円形台板311の他端L側の面から突出して渦巻状の壁部を形成しており、その先端は他端L側に突出している。
 揺動スクロール32は、アルミニウムなどの金属から構成される。揺動スクロール32は、第2円形台板321と、第2渦巻体322と、筒状部323と、一対の第2オルダム溝324と、を備えている。
 第2円形台板321は、円盤状に形成される。第2円形台板321は、第2渦巻体322が形成された一端U側の面と、外周領域の少なくとも一部が摺動面3211となる他端L側の面と、径方向の最外部に位置し、一端U側の面と他端L側の面とを接続する側面3212と、を備えている。
 摺動面3211は、スラストプレート24に摺動可能に、メインフレーム2に支持あるいは支承されている。
 第2渦巻体322は、第2円形台板321の一端U側の面から突出して渦巻状の壁部を形成しており、その先端は一端U側に突出している。なお、固定スクロール31の第1渦巻体312と、揺動スクロール32の第2渦巻体322の先端部には、冷媒の漏れを抑制するためのシール部材が設けられている。
 筒状部323は、第2円形台板321の他端L側の面の中央から他端L側に突出して形成された円筒状のボスである。筒状部323の内周面には、後述するスライダ71を回転自在に支持する揺動軸受、いわゆるジャーナル軸受の中心軸が、駆動軸6の中心軸と平行になるように設けられている。
 第2オルダム溝324は、第2円形台板321の他端L側の面に形成された長丸形状の溝である。一対の第2オルダム溝324は、対向して設けられている。一対の第2オルダム溝324を結ぶ線は、一対の第1オルダム溝215を結ぶ線に対して、直交するように設けられている。
 図3に示すように、メインフレーム2のオルダム収容部214には、オルダムリング33が設けられている。オルダムリング33は、リング部331と、一対の第1キー部332と、一対の第2キー部333と、を備えている。
 リング部331は、リング形状をなしている。一対の第1キー部332は、リング部331の他端L側の面に対向して形成されている。一対の第1キー部332のそれぞれは、メインフレーム2の一対の第1オルダム溝215のそれぞれに収容される。一対の第2キー部333は、リング部331の一端U側の面に対向して形成されている。一対の第2キー部333のそれぞれは、揺動スクロール32(図1参照)の一対の第2オルダム溝324のそれぞれに収容される。
 駆動軸6(図1参照)の回転によって揺動スクロール32が公転旋回する際に、第1キー部332が第1オルダム溝215内でスライドし、且つ、第2キー部333が第2オルダム溝324内でスライドする。これにより、オルダムリング33は、揺動スクロール32の自転を防止する。
 図1に示すように、固定スクロール31の第1渦巻体312と、揺動スクロール32の第2渦巻体322と、を互いに噛み合わせることにより圧縮室34が形成される。圧縮室34は、半径方向において、外側から内側へ向かうにしたがって容積が縮小するものである。そのため、冷媒は、第1渦巻体312と第2渦巻体322との外端部側から取り入れられ、中央側に移動されることで徐々に圧縮される。
 圧縮室34は、固定スクロール31の中央部において、吐出ポート313と連通する。固定スクロール31の一端U側の面には、吐出孔351を有したマフラー35が設けられている。マフラー35の一端U側の表面には、吐出孔351を予め設定されたタイミングで開閉し、冷媒の逆流を防止する吐出弁36が設けられている。そのため、圧縮室34で圧縮された冷媒は、吐出ポート313を経て、その圧力で吐出弁36を開弁させて吐出孔351からアッパーシェル12内の吐出空間9に吐出される。その後、吐出された冷媒は、吐出管15から流出する。
 冷媒は、例えば、組成中に、炭素の二重結合を有するハロゲン化炭化水素、炭素の二重結合を有しないハロゲン化炭化水素、炭化水素、または、それらを含む混合物からなる。
 炭素の二重結合を有するハロゲン化炭化水素からなる冷媒は、オゾン層破壊係数がゼロであるHFC冷媒、または、フロン系低GWP冷媒である。低GWP冷媒としては、例えばHFO冷媒が挙げられ、化学式がCで表されるHFO1234yf、HFO1234ze、または、HFO1243zf等のテトラフルオロプロペンが例示される。
 炭素の二重結合を有しないハロゲン化炭化水素からなる冷媒は、CHで表されるR32(ジフルオロメタン)、または、R41等が混合された冷媒が例示される。
 炭化水素からなる冷媒は、自然冷媒であるプロパン、または、プロピレン等が例示される。
 混合物からなる冷媒は、HFO1234yf、HFO1234ze、または、HFO1243zf等に、R32、または、R41等を混合した混合冷媒が例示される。
 有力な低GWP冷媒のうちの、HFO1234yf、HFO1234ze、または、HFO1243zf等の成分であるプロパンあるいはプロピレン等は、比較的低圧低密度で動作する。このため、同等能力を得るのに必要な圧縮機の排除容積は、現行冷媒であるR410Aなどと比較して2倍から3倍程度の大きさである。
 駆動機構部4は、図1に示すように、シェル1内のメインフレーム2の他端L側に設けられている。駆動機構部4は、ステータ41と、ロータ42と、を備えている。
 ステータ41は、円環状の固定子である。ステータ41は、例えば電磁鋼板を複数積層した鉄心に、絶縁層を介して巻線を巻回したティースを環状に複数並べて形成される。ステータ41は、焼嵌めなどによりメインシェル11内に固着支持されている。
 ロータ42は、ステータ41の内部空間に配置される。つまり、ロータ42は、円環状の固定子であるステータ41の内側に形成された中央孔に配置される円筒状の回転子である。ロータ42は、電磁鋼板などを複数積層される鉄心内に永久磁石を内蔵する。ロータ42の中央には、上下方向、すなわちロータ42を一端U側と他端L側とに貫通する穴が形成されている。
 サブフレーム5は、図1に示すように、金属製のフレームであり、シェル1内にて駆動機構部4の他端L側に設けられている。サブフレーム5は、焼嵌め、または、溶接等によりメインシェル11の他端L側の内周面115に固着支持される。サブフレーム5は、副軸受部51と、オイルポンプ52と、を備えている。
 副軸受部51は、サブフレーム5の中央部上側に設けられるボールベアリングである。副軸受部51の中央には、上下方向、すなわち副軸受部51を一端U側と他端L側とに貫通する孔が形成されている。
 オイルポンプ52は、サブフレーム5の中央部下側に設けられる。オイルポンプ52は、ロアシェル13内の油溜めに貯留された潤滑油に少なくとも一部を浸漬させて配置されている。
 駆動軸6は、図1に示すように、長尺な金属製の棒状部材であり、シェル1内に設けられており、駆動機構部4の駆動力を圧縮機構部3に伝達する。駆動軸6は、主軸部61と、偏心軸部62と、通油路63と、を備えている。
 主軸部61は、駆動軸6の主要部を構成する軸である。主軸部61の中心軸は、メインシェル11の中心軸と一致するように配置されている。主軸部61の外表面には、ロータ42が接触固定されている。
 偏心軸部62は、主軸部61の一端U側に設けられている。偏心軸部62の中心軸は、主軸部61の中心軸に対して偏心する。通油路63は、主軸部61および偏心軸部62の内部に上下に貫通して設けられている。
 駆動軸6における主軸部61の一端U側は、メインフレーム2の主軸受部22に挿入される。また、駆動軸6における主軸部61の他端L側は、サブフレーム5の副軸受部51に挿入固定される。これにより、偏心軸部62は、筒状部323の筒内に配置される。また、主軸部61に接触固定されるロータ42は、その外周面とステータ41の内周面とが、所定の隙間を保持して配置される。
 主軸部61の一端U側の途中には、第1バランサ64が設けられる。主軸部61の他端L側の途中には、第2バランサ65が設けられる。第1および第2バランサ64および65は、揺動スクロール32の揺動運動によるアンバランス状態を相殺するために設けられている。
 ブッシュ7は、図1および図3に示すように、揺動スクロール32と駆動軸6とを接続する接続部材である。ブッシュ7は、鉄などの金属からなる。ブッシュ7は、2部品で構成される。ブッシュ7は、スライダ71と、バランスウエイト72と、を備える。
 スライダ71は、外周側に広がる鍔を有した筒状の部材である。スライダ71は、偏心軸部62および筒状部323のそれぞれに嵌入される。
 バランスウエイト72は、ウエイト部721を備えたドーナツ状の部材である。ウエイト部721の一端U側から見た形状は、C字形状である。バランスウエイト72は、揺動スクロール32の遠心力を相殺するために、回転中心に対して偏芯して設けられる。バランスウエイト72は、スライダ71の鍔に焼嵌めなどの手法により嵌合される。
 給電部8は、図1に示すように、スクロール圧縮機100に給電する給電部材である。給電部8は、メインシェル11の外周面に形成される。給電部8は、カバー81と、給電端子82と、配線83と、を備えている。
 カバー81は、メインシェル11の外壁面部に底を取り付ける円筒形状であって、メインシェル11から離れた部分に底と対向する開口が形成されたカバー部材である。
 給電端子82は、金属部材からなり、一方がカバー81内に設けられ、他方がシェル1内に設けられている。つまり、給電端子82は、一方と他方とを繋げてシェル1を貫通して設けられている。
 配線83は、一方が給電端子82と接続され、他方がステータ41と接続されている。つまり、配線83は、一方と他方とを繋げて給電端子82からステータ41に給電する。
 以上のように構成されたスクロール圧縮機100は、例えば、空気調和装置として機能する冷凍サイクル装置に適用できる。ここで、図5を参照しながら、スクロール圧縮機100を用いた冷凍サイクル装置200について説明する。図5は、実施の形態1に係るスクロール圧縮機100を用いた冷凍サイクル装置200の一例を示す冷媒回路図である。
<冷凍サイクル装置200の構成>
 図5に示すように、冷凍サイクル装置200は、例えば、冷媒を介して外気と室内の空気との間で熱を移動させることにより、冷房または暖房運転を行って室内の空気調和を行う空気調和装置として機能する。冷凍サイクル装置200は、室内機201と室外機202とを有している。なお、以下では、スクロール圧縮機100を圧縮機250として称す。
 冷凍サイクル装置200においては、室内機201と室外機202とが冷媒配管203、203a、および、203bを介して配管接続され、冷媒が循環する冷媒回路204を構成している。冷媒回路204には、圧縮機250、流路切替装置251、熱交換器252、膨張弁253および室内熱交換器254が設けられ、これらが冷媒配管203、203aおよび203bを介して接続されている。
 室外機202は、圧縮機250、流路切替装置251、熱交換器252および膨張弁253を有している。圧縮機250は、吸入した冷媒を圧縮して吐出する。ここで、圧縮機250は、不図示のインバータ装置を備えていてもよい。インバータ装置を備えた場合、制御部205によって運転周波数を変化させて、圧縮機250の容量を変更することができる。なお、圧縮機250の容量とは、単位時間当たりに送り出す冷媒の量である。
 流路切替装置251は、例えば四方弁であり、冷媒流路の方向の切り換えが行われる装置である。冷凍サイクル装置200は、制御部205からの指示に基づいて、流路切替装置251を用いて冷媒の流れを切り換えることで、暖房運転または冷房運転を実現することができる。熱交換器252は、冷媒と室外空気との熱交換を行う。また、熱交換器252には、冷媒と室外空気との間の熱交換の効率を高めるために、室外送風機255が設けられている。室外送風機255には、不図示のインバータ装置が取り付けられていてもよい。この場合、インバータ装置は、室外送風機255の駆動源であるファンモーター256の運転周波数を変化させてファンの回転速度を変更する。なお、室外送風機255は、同様の効果が得られるものであればこれに限らず、例えばファンの種類はシロッコファンでもよいし、プラグファンでもよい。また、室外送風機255は押し込み方式でもよいし、引っぱり方式でもよい。
 ここで、熱交換器252は、暖房運転時において蒸発器として機能し、冷媒配管203b側から流入した低圧の冷媒と、室外空気と、の間で熱交換を行って冷媒を蒸発させて気化させ、冷媒配管203a側に流出させる。また、熱交換器252は、冷房運転時において凝縮器として機能し、冷媒配管203a側から流路切替装置251を介して流入した圧縮機250にて圧縮済の冷媒と、室外空気と、の間で熱交換を行い、冷媒を凝縮させて液化させ、冷媒配管203b側に流出させる。なお、ここでは室外空気を外部流体として用いる場合を例に説明したが、外部流体は室外空気を含む気体に限らず、水を含む液体であってもよい。
 膨張弁253は、冷媒の流量を制御する絞り装置であり、膨張弁253の開度を変化させることで冷媒配管203を流れる冷媒の流量を調節することにより、冷媒の圧力を調整する。膨張弁253は、冷房運転時において、高圧の液状態の冷媒を低圧の気液二相状態の冷媒へと膨張させ減圧させる。なお、膨張弁253としてはこれに限らず、同様の効果が得られるものであれば、電子膨張弁またはキャピラリーチューブ等でもよい。例えば、膨張弁253が、電子式膨張弁で構成された場合は、制御部205の指示に基づいて開度調整が行われる。
 室内機201は、冷媒と室内空気との間で熱交換を行う室内熱交換器254と、室内熱交換器254が熱交換を行う空気の流れを調整する室内送風機257と、を有する。
 室内熱交換器254は、暖房運転時において凝縮器の働きをし、冷媒配管203a側から流入した冷媒と、室内空気と、の間で熱交換を行い、冷媒を凝縮させて液化させ、冷媒配管203b側に流出させる。また、室内熱交換器254は、冷房運転時において蒸発器として機能する。室内熱交換器254は、冷媒配管203b側から流入した膨張弁253によって低圧状態にされた冷媒と、室内空気と、の間で熱交換を行い、冷媒に空気の熱を奪わせて蒸発させて気化させ、冷媒配管203a側に流出させる。なお、ここでは室内空気を外部流体として用いる場合を例に説明したが、外部流体は室内空気を含む気体に限らず、水を含む液体であってもよい。
 室内送風機257の運転速度は、ユーザーの設定により決定される。室内送風機257には、インバータ装置を取り付け、ファンモーター258の運転周波数を変化させてファンの回転速度を変更することが好ましい。なお、室内送風機257は、同様の効果が得られるものであればこれに限らず、例えば、ファンの種類はシロッコファンでもよいし、プラグファンでもよい。また、室内送風機257は押し込み方式でもよいし、引っぱり方式でもよい。
<冷凍サイクル装置200の動作例>
 次に、冷凍サイクル装置200の動作例として冷房運転の動作を説明する。圧縮機250によって圧縮され吐出された高温高圧のガス冷媒は、流路切替装置251を経由して、熱交換器252に流入する。熱交換器252に流入したガス冷媒は、室外送風機255により送風される外気との熱交換により凝縮し、低温の冷媒となって、熱交換器252から流出する。熱交換器252から流出した冷媒は、膨張弁253によって膨張および減圧され、低温低圧の気液二相冷媒となる。この気液二相冷媒は、室内機201の室内熱交換器254に流入し、室内送風機257により送風される室内空気との熱交換により蒸発し、低温低圧のガス冷媒となって室内熱交換器254から流出する。このとき、冷媒に吸熱されて冷却された室内空気は、空調空気(吹出風)となって、室内機201から空調対象空間である室内に吹き出される。室内熱交換器254から流出したガス冷媒は、流路切替装置251を経由して圧縮機250に吸入され、再び圧縮される。冷凍サイクル装置200の冷房運転は、以上の動作が繰り返される(図5中、実線の矢印で示す)。
 次に、冷凍サイクル装置200の動作例として暖房運転の動作を説明する。圧縮機250によって圧縮され吐出された高温高圧のガス冷媒は、流路切替装置251を経由して、室内機201の室内熱交換器254に流入する。室内熱交換器254に流入したガス冷媒は、室内送風機257により送風される室内空気との熱交換により凝縮し、低温の冷媒となって、室内熱交換器254から流出する。このとき、ガス冷媒から熱を受け取り暖められた室内空気は、空調空気(吹出風)となって、室内機201から室内に吹き出される。室内熱交換器254から流出した冷媒は、膨張弁253によって膨張および減圧され、低温低圧の気液二相冷媒となる。この気液二相冷媒は、室外機202の熱交換器252に流入し、室外送風機255により送風される外気との熱交換により蒸発し、低温低圧のガス冷媒となって熱交換器252から流出する。熱交換器252から流出したガス冷媒は、流路切替装置251を経由して圧縮機250に吸入され、再び圧縮される。冷凍サイクル装置200の暖房運転は、以上の動作が繰り返される(図5中、破線の矢印で示す)。
<メインフレーム2の構成>
 図6は、従来のスクロール圧縮機におけるメインフレーム2の固着状態を比較例として示す縦断面図である。ここで、図4を参照しながら、本実施の形態1のスクロール圧縮機100における特徴的な構成について説明する。本実施の形態1のスクロール圧縮機100では、図4に示すように、メインフレーム2における固定領域としての本体部21の配置位置と、軸受け領域としての主軸受部22の配置位置と、が少なくとも一部を重ねて配置される点を特徴とする構成としている。具体的には、メインフレーム2の上下方向において、本体部21の上下方向の配置領域H1が、主軸受部22の上下方向の配置領域H2に含まれるように配置するようにした。つまり、この場合、本体部21と主軸受部22とが、メインフレーム2の上下方向の高さにおいて同じ領域、換言すれば、水平方向に同じ領域に配置されることとなる。
 これにより、例えば、図6に示すような従来のスクロール圧縮機におけるメインフレーム2のように、本体部21がメインフレーム2の上方に配置され、主軸受部22がメインフレーム2の下方に配置された場合と比較して、次のような効果を得ることができる。すなわち、本体部21と主軸受部22とが、メインフレーム2の上下に離れて配置される場合と比較して、メインフレーム2の上下方向において同じ高さの領域に配置される分、本体部21に対して発生する転覆モーメントを軽減でき、焼嵌め保持力を低減できる。
<実施の形態1の効果>
 以上、説明したように、本実施の形態1によれば、メインフレーム2の本体部21の配置位置と、メインフレーム2の主軸受部22の配置位置と、が少なくとも一部を重ねて配置される。このため、メインフレーム2の本体部21に対して発生する転覆モーメントを軽減でき、メインフレーム2の焼嵌め保持力を低減できる。
 また、焼嵌め保持力を低減することにより、メインシェル11の内径L1に対するメインフレーム2の外径L2、すなわち、焼嵌め代を、従来のメインシェル11の内径L1に対するメインフレーム2の外径L3である焼嵌め代に比較して小さくすることができる。よって、メインシェル11に対してメインフレーム2を固着する際の焼嵌め代を小さくできる分、焼嵌め過熱時間を短縮できる。
 さらに、焼嵌め保持力を低減することにより、焼嵌め代を小さくでき、焼嵌め過熱時間を短縮することができるので、温度制限のあるガラス端子としての給電端子82をメインフレーム2の近傍に配置することができる。しかも、焼嵌め過熱時間を短縮できるため、図4に示すように、温度制限のある給電端子82を、図5に示す従来の場合と比較して、メインフレーム2の近くに配置することができる(H3<H4)。
 加えて、このとき、メインフレーム2の主軸受部22の配置領域H2が、メインフレーム2の本体部21の配置領域H1よりも大きくなる(H2>H1)ように設定する。これにより、メインフレーム2の転覆モーメントを格段に軽減でき、焼嵌め保持力をより一層低減できる。
<実施の形態1の変形例>
 図7は、実施の形態1に係るスクロール圧縮機100の変形例1におけるメインフレーム2の固着状態を示す縦断面図である。図8は、実施の形態1に係るスクロール圧縮機100の変形例2におけるメインフレーム2の固着状態を示す縦断面図である。
 なお、本実施の形態1に係るスクロール圧縮機100では、本体部21と主軸受部22とが、メインフレーム2の上下方向の高さにおいて同じ領域、すなわち、水平方向に同じ領域に配置される場合について述べたが、メインフレーム2の構成としてはこれに限ることはない。
 すなわち、図4との対応部分に同一符号を付した図7または図8に示すように、メインフレーム2における固定領域としての本体部21の配置位置と、軸受け領域としての主軸受部22の配置位置と、が少なくとも一部を重ねて配置されていればよい。
 この場合、メインフレーム2の主軸受部22の配置領域H2と、メインフレーム2の本体部21の配置領域H1と、の重なる領域H5の大きさを「0」以上となるように設定すればよい。これにより、メインフレーム2の転覆モーメントを軽減でき、焼嵌め保持力を低減できる。
 また、メインフレーム2の上下方向において、本体部21の配置位置が主軸受部22の配置位置より上方の一端U側に配置されていてもよいし(図7参照)、主軸受部22の配置位置が本体部21の配置位置より上方の一端U側に配置されていてもよい(図8参照)。つまり、本体部21と主軸受部22とは、メインフレーム2の上下方向において、どちらが上方に配置され、どちらが下方に配置されてもよい。
 1 シェル、2 メインフレーム、3 圧縮機構部、4 駆動機構部、5 サブフレーム、6 駆動軸、7 ブッシュ、8 給電部、9 吐出空間、11 メインシェル、12 アッパーシェル、13 ロアシェル、14 吸入管、15 吐出管、16 連結シェル、17 固定台、21 本体部、22 主軸受部、23 返油管、24 スラストプレート、31 固定スクロール、32 揺動スクロール、33 オルダムリング、34 圧縮室、35 マフラー、36 吐出弁、37 冷媒取込空間、41 ステータ、42 ロータ、51 副軸受部、52 オイルポンプ、61 主軸部、62 偏心軸部、63 通油路、64 第1バランサ、65 第2バランサ、71 スライダ、72 バランスウエイト、81 カバー、82 給電端子、83 配線、100 スクロール圧縮機、111 第1内壁面、113 第1突出部、114 第2内壁面、115 内周面、116 第2突出部、200 冷凍サイクル装置、201 室内機、202 室外機、203 冷媒配管、203a冷媒配管、203b冷媒配管、204 冷媒回路、205 制御部、211 収容空間、212 平坦面、213 吸入ポート、214 オルダム収容部、215 第1オルダム溝、216 突壁、217 突部、221 軸孔、241 切欠き、250 圧縮機、251 流路切替装置、252 熱交換器、253 膨張弁、254 室内熱交換器、255 室外送風機、256 ファンモーター、257 室内送風機、258 ファンモーター、311 第1円形台板、312 第1渦巻体、313 吐出ポート、321 第2円形台板、322 第2渦巻体、323 筒状部、324 第2オルダム溝、331 リング部、332 第1キー部、333 第2キー部、351 吐出孔、721 ウエイト部、3211 摺動面、3212 側面、H1 配置領域、H2 配置領域、K 隙間、L 他端、U 一端。

Claims (7)

  1.  筒状のシェル内に収容された圧縮機構部と、前記圧縮機構部を駆動する駆動機構部と、前記駆動機構部の駆動力を前記圧縮機構部に伝達する主軸と、前記シェルの内壁面に固着されたフレームと、を有するスクロール圧縮機であって、
     前記圧縮機構部は、
     前記シェルの内壁面に固着された固定スクロールと、
     前記固定スクロールに対向して配置された揺動スクロールと、を備え、
     前記フレームは、
     前記揺動スクロールを摺動自在に保持すると共に前記主軸を回転自在に支持し、
     前記主軸を回転自在に支持する軸受け領域と、
     前記シェルの内壁面に固着された固定領域と、
    が少なくとも一部を重ねて配置されている、スクロール圧縮機。
  2.  前記固定領域は、
     前記フレームの下方において、当該フレームの外周から外方へ向けて突出して形成されており、当該突出した外周面が前記固定領域として機能する、請求項1に記載のスクロール圧縮機。
  3.  前記フレームにおける前記固定領域以外の前記外周面と、前記シェルの内壁面と、の間には隙間が形成される、請求項2に記載のスクロール圧縮機。
  4.  前記フレームは、
     前記軸受け領域が、前記固定領域よりも大きくなるように設定されている、請求項1~3のいずれか一項に記載のスクロール圧縮機。
  5.  前記シェルは、
     第1内壁面と、
     第2内壁面と、
     前記第1内壁面から当該シェルの内方へ向かって突出し、前記固定スクロールを位置決めする第1突出部と、
     前記第2内壁面から当該シェルの内方へ向かって突出し、前記フレームを位置決めする第2突出部と、を有し、
     前記固定スクロールは、前記第1内壁面に固着され、
     前記フレームは、前記第2内壁面に固着される、請求項1~4のいずれか一項に記載のスクロール圧縮機。
  6.  前記フレームは、焼嵌めによって前記シェルの内壁面に固着される、請求項1~5のいずれか一項に記載のスクロール圧縮機。
  7.  請求項1~6のいずれか一項に記載のスクロール圧縮機を備える冷凍サイクル装置。
PCT/JP2019/042334 2019-10-29 2019-10-29 スクロール圧縮機および冷凍サイクル装置 WO2021084607A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980101663.3A CN114641617A (zh) 2019-10-29 2019-10-29 涡旋压缩机以及制冷循环装置
JP2021553923A JPWO2021084607A1 (ja) 2019-10-29 2019-10-29
PCT/JP2019/042334 WO2021084607A1 (ja) 2019-10-29 2019-10-29 スクロール圧縮機および冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/042334 WO2021084607A1 (ja) 2019-10-29 2019-10-29 スクロール圧縮機および冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2021084607A1 true WO2021084607A1 (ja) 2021-05-06

Family

ID=75715888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042334 WO2021084607A1 (ja) 2019-10-29 2019-10-29 スクロール圧縮機および冷凍サイクル装置

Country Status (3)

Country Link
JP (1) JPWO2021084607A1 (ja)
CN (1) CN114641617A (ja)
WO (1) WO2021084607A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276020A1 (ja) * 2021-06-30 2023-01-05 三菱電機株式会社 スクロール圧縮機
WO2023119625A1 (ja) * 2021-12-24 2023-06-29 三菱電機株式会社 スクロール圧縮機

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126205A (ja) * 1985-11-27 1987-06-08 Mitsubishi Electric Corp スクロ−ル圧縮機
WO2018078787A1 (ja) * 2016-10-28 2018-05-03 三菱電機株式会社 スクロール圧縮機、冷凍サイクル装置およびシェル

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126205A (ja) * 1985-11-27 1987-06-08 Mitsubishi Electric Corp スクロ−ル圧縮機
WO2018078787A1 (ja) * 2016-10-28 2018-05-03 三菱電機株式会社 スクロール圧縮機、冷凍サイクル装置およびシェル

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276020A1 (ja) * 2021-06-30 2023-01-05 三菱電機株式会社 スクロール圧縮機
WO2023119625A1 (ja) * 2021-12-24 2023-06-29 三菱電機株式会社 スクロール圧縮機

Also Published As

Publication number Publication date
JPWO2021084607A1 (ja) 2021-05-06
CN114641617A (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
JP4875484B2 (ja) 多段圧縮機
WO2021084607A1 (ja) スクロール圧縮機および冷凍サイクル装置
JP6678811B2 (ja) スクロール圧縮機および冷凍サイクル装置
KR20040084978A (ko) 냉매 사이클 장치
JP6896092B2 (ja) スクロール圧縮機
JP6762253B2 (ja) 回転式圧縮機及び冷凍サイクル装置
JP7113091B2 (ja) 回転式圧縮機、回転式圧縮機の製造方法及び冷凍サイクル装置
JP7118177B2 (ja) スクロール圧縮機
JP6057535B2 (ja) 冷媒圧縮機
JP2017172346A (ja) スクロール圧縮機、及び、空気調和機
JP7191246B2 (ja) スクロール圧縮機および冷凍サイクル装置
WO2021214913A1 (ja) 圧縮機
WO2021245754A1 (ja) スクロール圧縮機及び冷凍サイクル装置
WO2023079667A1 (ja) スクロール圧縮機およびこのスクロール圧縮機を備えた冷凍サイクル装置
JP7055245B2 (ja) スクロール圧縮機及びそのスクロール圧縮機の製造方法
WO2023188422A1 (ja) 圧縮機およびアッパーシェル
WO2024069829A1 (ja) スクロール圧縮機及び空気調和機
JP7213382B1 (ja) スクロール圧縮機及び冷凍サイクル装置
WO2023181173A1 (ja) スクロール圧縮機
WO2021100141A1 (ja) スクロール圧縮機および冷凍サイクル装置
JP7357178B1 (ja) 圧縮機および空気調和装置
JP6773932B1 (ja) 圧縮機および空気調和装置
WO2023233838A1 (ja) 圧縮機および冷凍サイクル装置
WO2023013370A1 (ja) スクロール圧縮機及び冷凍サイクル装置
WO2021152844A1 (ja) 室外ユニットおよび冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553923

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950726

Country of ref document: EP

Kind code of ref document: A1