WO2020161965A1 - 回転式圧縮機、回転式圧縮機の製造方法及び冷凍サイクル装置 - Google Patents

回転式圧縮機、回転式圧縮機の製造方法及び冷凍サイクル装置 Download PDF

Info

Publication number
WO2020161965A1
WO2020161965A1 PCT/JP2019/041020 JP2019041020W WO2020161965A1 WO 2020161965 A1 WO2020161965 A1 WO 2020161965A1 JP 2019041020 W JP2019041020 W JP 2019041020W WO 2020161965 A1 WO2020161965 A1 WO 2020161965A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
rotary compressor
shaft
balancer
rotary
Prior art date
Application number
PCT/JP2019/041020
Other languages
English (en)
French (fr)
Inventor
平山 卓也
大志 長畑
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to CN201980091316.7A priority Critical patent/CN113396285B/zh
Priority to JP2020570364A priority patent/JP7113091B2/ja
Priority to EP19914314.0A priority patent/EP3922854A4/en
Publication of WO2020161965A1 publication Critical patent/WO2020161965A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/603Shafts with internal channels for fluid distribution, e.g. hollow shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/807Balance weight, counterweight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/809Lubricant sump

Definitions

  • Embodiments of the present invention relate to a rotary compressor, a method of manufacturing a rotary compressor, and a refrigeration cycle device.
  • the present application claims priority to Japanese Patent Application No. 2019-020870 filed in Japan on February 7, 2019, the contents of which are incorporated herein by reference.
  • a rotary compressor is used as a refrigeration cycle device such as an air conditioner.
  • the eccentric portion of the rotary shaft is eccentrically rotated by the compression mechanism portion, so that the refrigerant is compressed.
  • the rotary shaft has a supply passage that supplies the lubricating oil stored in the case to the sliding portion between the rotary shaft and the bearing.
  • the refrigerant compressed by the compression mechanism portion enters the supply passage, there is a possibility that desired lubrication performance may not be obtained.
  • the problem to be solved by the present invention is to provide a rotary compressor, a method for manufacturing the rotary compressor, and a refrigeration cycle device that can obtain a desired lubricating performance.
  • the rotary compressor of the embodiment has a case, a rotary shaft, a compression mechanism section, a balancer, and a balancer cover.
  • Lubricating oil is stored in the case.
  • the rotating shaft is arranged in the case and has an eccentric portion.
  • the compression mechanism section has a cylinder, a main bearing, and a sub bearing. An eccentric part is accommodated in the cylinder.
  • the main bearing rotatably supports the rotating shaft above the cylinder.
  • the sub bearing rotatably supports the rotating shaft below the cylinder.
  • a through hole is formed at a position axially opposed to the rotary shaft of the balancer cover.
  • the rotating shaft has a thrust sliding portion, a protruding portion, and a supply passage.
  • the thrust sliding portion of the rotary shaft axially abuts the seal portion located around the through hole of the balancer cover.
  • the protruding portion is located on the inner peripheral side of the thrust sliding portion and protrudes below the through hole through the through hole.
  • the supply passage opens at the lower end surface of the protruding portion and guides the lubricating oil.
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle device including a cross-sectional view of a rotary compressor according to a first embodiment.
  • FIG. 2 is a sectional view of a compression mechanism portion corresponding to line II-II in FIG. 1. The enlarged view of the principal part of FIG. The partial cross section figure of the rotary compressor in a 2nd embodiment. The process drawing for demonstrating an assembly process.
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle device 1 including a cross-sectional view of a rotary compressor 2 according to the first embodiment.
  • the refrigeration cycle apparatus 1 of the present embodiment includes a rotary compressor 2, a condenser 3 which is a radiator connected to the rotary compressor 2, and an expansion connected to the condenser 3.
  • a device 4 and an evaporator 5 as a heat absorber connected between the expansion device 4 and the rotary compressor 2 are provided.
  • the rotary compressor 2 is a so-called rotary compressor.
  • the rotary compressor 2 compresses the low-pressure gas refrigerant taken into it into a high-temperature, high-pressure gas refrigerant.
  • the specific configuration of the rotary compressor 2 will be described later.
  • the condenser 3 dissipates heat from the high-temperature, high-pressure gas refrigerant sent from the rotary compressor 2 into a high-pressure liquid refrigerant.
  • the expansion device 4 reduces the pressure of the high-pressure liquid refrigerant sent from the condenser 3 into a low-temperature low-pressure liquid refrigerant.
  • the evaporator 5 vaporizes the low-temperature low-pressure liquid refrigerant sent from the expansion device 4, and turns the low-temperature low-pressure liquid refrigerant into a low-pressure gas refrigerant. Then, in the evaporator 5, when the low-pressure liquid refrigerant is vaporized, heat of vaporization is taken from the surroundings to cool the surroundings.
  • the low-pressure gaseous refrigerant that has passed through the evaporator 5 is taken into the rotary compressor 2 described above.
  • the refrigerant that is the working fluid circulates into the gas refrigerant and the liquid refrigerant while changing phases.
  • the refrigerant may be an HFC refrigerant such as R410A or R32, an HFO refrigerant such as R1234yf or R1234ze, or a natural refrigerant such as CO 2 .
  • the rotary compressor 2 of the present embodiment includes a compressor body 11 and an accumulator 12.
  • the accumulator 12 is a so-called gas-liquid separator.
  • the accumulator 12 is provided between the evaporator 5 and the compressor body 11 described above.
  • the accumulator 12 is connected to the compressor body 11 through a suction pipe 21.
  • the accumulator 12 supplies only the gas refrigerant, out of the gas refrigerant vaporized in the evaporator 5 and the liquid refrigerant not vaporized in the evaporator 5, to the compressor body 11.
  • the compressor body 11 includes a rotating shaft 31, an electric motor unit 32, a compression mechanism unit 33, and a case 34 that houses the rotating shaft 31, the electric motor unit 32, and the compression mechanism unit 33.
  • the compressor body 11 of the present embodiment is arranged with the axial direction of the rotary shaft 31 as the vertical direction.
  • the case 34 is formed in a tubular shape, and both ends in the axial direction are closed. Lubricating oil J is contained in the case 34. A part of the compression mechanism portion 33 is immersed in the lubricating oil J.
  • the rotating shaft 31 is arranged coaxially with the axis O of the case 34.
  • the direction along the axis O is simply referred to as the axial direction
  • the direction orthogonal to the axial direction is referred to as the radial direction
  • the direction around the axis O is referred to as the circumferential direction.
  • the electric motor unit 32 is arranged on the first side in the axial direction in the case 34.
  • the compression mechanism portion 33 is arranged on the second side in the axial direction in the case 34.
  • the side of the electric motor unit 32 along the axial direction is the upper side and the side of the compression mechanism unit 33 is the lower side.
  • the electric motor unit 32 is a so-called inner rotor type DC brushless motor.
  • the electric motor unit 32 includes a stator 35 and a rotor 36.
  • the stator 35 is fixed to the inner wall surface of the case 34 by shrink fitting or the like.
  • the rotor 36 is fixed to the upper part of the rotary shaft 31 in a state in which a gap is provided inside the stator 35 in the radial direction.
  • a counterbore 37 is formed on the inner surface of the lower surface of the rotor 36.
  • the counter bore 37 is an annular recess that is recessed upward from the lower surface of the rotor 36 and is formed over the entire circumference of the rotor 36.
  • a balancer 39 is provided on the outer peripheral portion of the lower surface of the rotor 36.
  • the balancer 39 is formed in, for example, an arc shape when seen in a plan view from the axial direction.
  • the balancer 39 is provided on the lower surface of the rotor 36 in a part of the circumferential direction.
  • the compression mechanism portion 33 has a cylindrical cylinder 41 through which the rotation shaft 31 penetrates, a main bearing 42 and a sub-bearing 43 that rotatably support the rotation shaft 31 while separately closing both end openings of the cylinder 41. Equipped with.
  • the space formed by the cylinder 41, the main bearing 42, and the auxiliary bearing 43 forms a cylinder chamber 46.
  • An eccentric portion 51 that is eccentric in the radial direction with respect to the axis O is formed in a portion of the rotary shaft 31 that is located inside the cylinder chamber 46.
  • the eccentric direction of the eccentric portion 51 is set on the opposite side of the balancer 39 with the axis O interposed therebetween.
  • a roller 53 is externally attached to the eccentric portion 51.
  • the roller 53 is configured to be eccentrically rotatable with respect to the axis O while the outer peripheral surface thereof is in sliding contact with the inner peripheral surface of the cylinder 41 as the rotary shaft 31 rotates.
  • FIG. 2 is a cross-sectional view of the compression mechanism portion 33 corresponding to line II-II in FIG.
  • a blade groove 54 that is recessed outward in the radial direction is formed in a part of the circumferential direction.
  • the blade groove 54 is formed over the entire axial direction (vertical direction) of the cylinder 41.
  • the blade groove 54 communicates with the inside of the case 34 at the outer end in the radial direction.
  • a blade 55 is provided in the blade groove 54.
  • the blade 55 is configured to be slidable in the radial direction with respect to the cylinder 41.
  • the blade 55 is biased inward in the radial direction by a biasing member (not shown).
  • the radially inner end surface of the blade 55 is in contact with the outer peripheral surface of the roller 53 in the cylinder chamber 46. As a result, the blade 55 moves back and forth in the cylinder chamber 46 as the roller 53 eccentrically rotates.
  • the cylinder chamber 46 is divided by the roller 53 and the blade 55 into a suction chamber 46a and a compression chamber 46b. Then, in the compression mechanism portion 33, the compression operation is performed in the cylinder chamber 46 by the rotation operation of the roller 53 and the forward/backward movement of the blade 55.
  • a suction hole 56 is formed.
  • the suction pipe 56 (see FIG. 1) described above is connected to the suction hole 56 from the outer end in the radial direction.
  • the radially inner end of the suction hole 56 opens into the cylinder chamber 46 (suction chamber 46a).
  • the main bearing 42 closes the upper end opening of the cylinder 41.
  • the main bearing 42 rotatably supports a portion of the rotary shaft 31 located above the cylinder 41.
  • the main bearing 42 includes a tubular portion 61 through which the rotary shaft 31 is inserted, and a flange portion 62 that projects from the lower end portion of the tubular portion 61 toward the outside in the radial direction.
  • the upper end of the tubular portion 61 is accommodated in the counter bore 37 described above.
  • the rotary compressor 2 (compressor body 11) is downsized in the axial direction.
  • a main bearing discharge hole 64 that axially penetrates the flange portion 62 is formed in a part of the flange portion 62 in the circumferential direction.
  • the main bearing discharge hole 64 communicates with the cylinder chamber 46 (compression chamber 46b).
  • a discharge valve mechanism 67 is arranged on the flange portion 62. The discharge valve mechanism 67 opens the main bearing discharge hole 64 as the pressure inside the cylinder chamber 46 (compression chamber 46b) rises, and discharges the refrigerant to the outside of the cylinder chamber 46.
  • the main bearing 42 is provided with a muffler 65 that covers the main bearing 42 from above.
  • a communication hole 66 that communicates the inside and outside of the muffler 65 is formed in the central portion of the muffler 65 in the radial direction.
  • the high-temperature, high-pressure gaseous refrigerant discharged through the discharge hole 64 described above is discharged into the case 34 through the communication hole 66.
  • the auxiliary bearing 43 closes the lower end opening of the cylinder 41.
  • the sub bearing 43 rotatably supports a portion of the rotary shaft 31 located below the cylinder 41.
  • the sub bearing 43 includes a tubular portion 71 through which the rotary shaft 31 is inserted, and a flange portion 72 that projects from the upper end of the tubular portion 71 toward the outside in the radial direction.
  • a part of the flange portion 72 in the circumferential direction is formed with an auxiliary bearing discharge hole 73 that penetrates the flange portion 72 in the axial direction.
  • the auxiliary bearing discharge hole 73 communicates with the inside of the cylinder chamber 46 (compression chamber 46b).
  • a discharge valve mechanism 75 is arranged on the flange portion 72. The discharge valve mechanism 75 opens the auxiliary bearing discharge hole 73 as the pressure inside the cylinder chamber 46 (compression chamber 46b) rises, and discharges the refrigerant to the outside of the cylinder chamber 46.
  • the sub bearing 43 is provided with a balancer cover 81 that covers the sub bearing 43 from below.
  • the balancer cover 81 is formed in a bottomed tubular shape that opens upward.
  • a seal portion 82 is formed at the center in the radial direction.
  • the seal portion 82 is formed by bulging upward with respect to the outer peripheral portion of the bottom portion of the balancer cover 81. However, the seal portion 82 does not have to bulge from the bottom portion of the balancer cover 81.
  • the upper surface of the seal portion 82 is formed as a flat surface orthogonal to the axis O.
  • a through hole 84 is formed in the central portion (portion located on the axis O) of the seal portion 82 so as to penetrate the seal portion 82 in the axial direction.
  • a communication hole 85 is formed in the main bearing 42, the cylinder 41, and the auxiliary bearing 43 to connect the inside of the muffler 65 and the inside of the balancer cover 81.
  • the communication hole 85 penetrates the main bearing 42, the cylinder 41, and the sub bearing 43 in the axial direction at a position that faces the above-described discharge holes 64 and 73 in the radial direction with the axis O interposed therebetween.
  • FIG. 3 is an enlarged view of a main part of FIG.
  • the rotary shaft 31 of the present embodiment has a thrust sliding portion 90 and a protruding portion 87 located on the inner peripheral side of the thrust sliding portion 90 and protruding downward. ..
  • the rotating shaft 31 further includes the above-described eccentric portion 51, the main shaft portion 88, and the sub shaft portion 89.
  • the main shaft portion 88 is a portion located above the eccentric portion 51 in the rotating shaft 31 described above.
  • the main shaft portion 88 is connected above the eccentric portion 51 via the connection portion 51a.
  • the main shaft portion 88 is supported by the main bearing 42, and the rotor 36 is fixed.
  • the sub shaft portion 89 is a portion located below the eccentric portion 51 in the rotary shaft 31.
  • the sub shaft portion 89 is connected to the lower side of the eccentric portion 51 via the connection portion 51b.
  • the sub shaft portion 89 is supported by the sub bearing 43.
  • the outer diameter ⁇ Ds of the auxiliary shaft portion 89 is smaller than the outer diameter ⁇ Dm of the main shaft portion 88.
  • at least the portion of the auxiliary shaft portion 89 projecting below the auxiliary bearing 43 has a smaller diameter than the main shaft portion 88. That is, a portion of the sub shaft portion 89 located in the sub bearing 43 may have an outer diameter equivalent to that of the main shaft portion 88.
  • the seal portion 82 of the balancer cover 81 receives the axial load acting on the rotating shaft 31 and slidably supports the thrust sliding portion 90 of the rotating shaft 31. Axial contact between the thrust sliding portion 90 and the seal portion 82 blocks communication between the inside and outside of the balancer cover 81 through the through hole 84.
  • the thrust sliding portion 90 of the present embodiment is the lower end surface of the auxiliary shaft portion 89.
  • the thrust sliding portion 90 is a flat surface orthogonal to the axial direction.
  • the thrust sliding portion 90 is preferably pressed against the seal portion 82 by the weight of the rotating shaft 31 and the rotor 36, the magnetic force generated between the stator 35 and the rotor 36, and the like.
  • the eccentric portion 51, the main bearing 88, and the sub bearing 89 form a base shaft portion.
  • a balancer 91 is attached to a portion of the sub shaft portion 89 that projects below the sub bearing 43.
  • the balancer 91 is formed in a disc shape, for example.
  • An attachment hole 92 is formed at a position eccentric to the center of the balancer 91 so as to penetrate the balancer 91 in the axial direction.
  • the auxiliary shaft portion 89 of the rotating shaft 31 is fixed in the mounting hole 92 by press fitting or the like.
  • the center of the balancer 91 is eccentric to the axis O in the direction opposite to the eccentric direction of the eccentric portion 51 (the same direction as the balancer 39). That is, the balancer 91 and the eccentric portion 51 are arranged with a phase difference of 180° in the circumferential direction.
  • the shape of the balancer 91 is not limited to the disc shape.
  • the balancer 91 is provided on the auxiliary shaft portion 89, so that the balancer 91 and the bearing (in the present embodiment, the auxiliary bearing are compared to the case where the balancer is provided on the upper surface of the rotor 36, for example. 43)
  • the distance to 43) can be shortened. As a result, the bending of the rotor 36 can be suppressed.
  • the centrifugal force acting on the eccentric portion 51 is F0
  • the centrifugal force acting on the balancer 91 is F1
  • the centrifugal force acting on the balancer 39 is F2.
  • the resultant force of the centrifugal forces F0, F1 and F2 be 0 (see the following equation (1)).
  • the centrifugal forces F0, F1, F2 can be calculated by mr ⁇ 2 (m: mass, r: radial distance from the axis O, ⁇ : angular velocity).
  • F0-F1-F2 0 (1)
  • L1 be the axial distance from the reference point to the action center of centrifugal force F1
  • L2 be the axial distance from the reference point to the action center of centrifugal force F2. ..
  • F1 ⁇ L1-F2 ⁇ L2 0
  • the axial distance L1 from the reference point to the action center of the centrifugal force F1 is preferably equal to or longer than the axial distance L2 from the reference point to the action center of the centrifugal force F2 ( L1 ⁇ L2).
  • the balancer 91 can be downsized and the amount of eccentricity can be reduced.
  • the amount of protrusion of the balancer 91 in the radial direction with respect to the axis O can be suppressed, and the size of the compressor body 11 in the radial direction can be reduced.
  • the protruding portion 87 projects downward from the inner peripheral portion of the thrust sliding portion 90.
  • the projecting portion 87 projects through the through hole 84 below the lower end opening edge of the through hole 84.
  • the projecting portion 87 of the present embodiment projects below the lowermost point (the lower surface of the seal portion 82) of the balancer cover 81.
  • the rotation shaft 31 has a predetermined distance in the axial direction with respect to the compression mechanism portion 33 due to the difference in the height of the cylinder chamber 46 and the axial length of the eccentric portion 51 and the connecting portions 51 a and 51 b provided above and below the eccentric portion 51. It can only be displaced (rattle in the vertical direction).
  • the amount of protrusion of the protrusion 87 from the opening edge of the lower end of the through hole 84 is larger than the predetermined distance which is the amount of displacement of the rotary shaft 31. That is, the protrusion amount is set such that the protrusion portion 87 always protrudes downward from the lower end opening edge of the through hole 84 of the balancer cover 81 even when the rotary shaft 31 is displaced by the vertical deviation. There is.
  • a supply path 94 is formed.
  • the supply passage 94 has a main passage 95 extending coaxially with the axis O and sub passages 96 and 97 extending radially from the main passage 95.
  • the lower end of the main flow path 95 is open at the lower end surface of the rotary shaft 31 (protrusion 87). As a result, the lubricating oil J in the case 34 can flow into the main flow path 95.
  • the upper end of the main channel 95 ends at the lower end of the main shaft 88.
  • the length of the main channel 95 in the axial direction can be appropriately changed as long as it reaches at least the cylinder 41.
  • the main flow path 95 may penetrate the rotating shaft 31 in the axial direction.
  • a twist plate or the like may be provided on the inner peripheral surface of the main flow path 95 to accelerate the rise of the lubricating oil J as the rotary shaft 31 rotates.
  • the first sub-flow passage 96 is formed in the connecting portion (connecting portion 51 a) between the main shaft portion 88 and the eccentric portion 51 of the rotating shaft 31.
  • the radially inner end portion of the first sub-channel 96 communicates with the above-described main channel 95.
  • the radially outer end portion of the first sub-channel 96 is open on the outer peripheral surface of the rotary shaft 31 toward the radially outer side.
  • the second sub flow passage 97 is formed in a portion of the sub shaft portion 89 located inside the sub bearing 43.
  • the radially inner end of the second sub-flow passage 97 communicates with the above-mentioned main flow passage 95.
  • the radially outer end portion of the second sub-flow passage 97 is open on the outer peripheral surface of the rotary shaft 31 toward the radially outer side.
  • a lower flow passage 99 is formed on the outer peripheral surface of the rotary shaft 31 (secondary shaft portion 89).
  • the lower flow passage 99 is formed by a spiral groove formed on the outer peripheral surface of the rotating shaft 31.
  • the lower end portion of the lower flow passage 99 communicates with the inside of the second sub-flow passage 97.
  • the upper end portion of the lower flow passage 99 is located at the upper end portion of the auxiliary shaft portion 89.
  • the lower flow passage 99 guides the lubricating oil J from the lower side to the upper side when the rotating shaft 31 rotates.
  • the lower flow passage 99 only needs to be able to supply the lubricating oil J between the outer peripheral surface of the auxiliary shaft portion 89 and the inner peripheral surface of the auxiliary bearing 43 (cylindrical portion 71).
  • a groove may be formed on the inner peripheral surface of the tubular portion 71.
  • the shape and layout of the lower flow passage 99 can be changed as appropriate.
  • an upper flow passage (not shown) is formed on the inner peripheral surface of the tubular portion 61.
  • the upper flow passage is formed in a spiral groove.
  • the lower end of the upper flow passage communicates with the inside of the first sub-flow passage 96.
  • the upper end of the upper flow passage communicates with the inside of the case 34.
  • the upper flow passage guides the lubricating oil J from the lower side to the upper side when the rotating shaft 31 rotates.
  • the upper flow passage may be formed on the outer peripheral surface of the main shaft portion 88.
  • the gas refrigerant is sucked into the suction chamber 46a through the suction hole 56, and the gas refrigerant previously sucked from the suction hole 56 is compressed in the compression chamber 46b.
  • the gas refrigerant discharged into the muffler 65 through the main bearing discharge hole 64 is discharged into the case 34 through the communication hole 66 of the muffler 65.
  • the gas refrigerant discharged into the balancer cover 81 through the auxiliary bearing discharge hole 73 flows into the muffler 65 through the communication hole 85, and then the inside of the case 34 through the communication hole 66 of the muffler 65. Is discharged.
  • the gas refrigerant discharged into the case 34 is sent to the condenser 3 as described above.
  • the lubricating oil J has a pressure equivalent to the discharge pressure of the gaseous refrigerant in the case 34. Therefore, the lubricating oil J flows into the main passage 95 and rises in the main passage 95 as the rotary shaft 31 rotates. The lubricating oil J rising in the main flow path 95 is distributed to the sub flow paths 96 and 97 by the centrifugal force generated by the rotation of the rotary shaft 31.
  • the lubricating oil J distributed to each of the sub-flow passages 96 and 97 is discharged on the outer peripheral surface of the rotating shaft 31 and supplied to each sliding portion.
  • the lubricating oil J discharged from the first sub-flow passage 96 rises in the upper flow passage as the rotary shaft 31 rotates and is supplied between the main shaft portion 88 and the main bearing 42.
  • the lubricating oil J discharged from the second sub-flow passage 97 rises in the lower flow passage 99 with the rotation of the rotating shaft 31, and the space between the sub shaft portion 89 and the sub bearing 43 and the eccentric portion. It is supplied between 51 and the roller 53.
  • the lubricating oil J supplied to each sliding portion is discharged from the compression mechanism portion 33 between the main shaft portion 88 and the main bearing 42, the cylinder chamber 46, and the like.
  • the thrust sliding portion 90 of the rotary shaft 31 and the seal portion 82 of the balancer cover 81 are brought into contact with each other to seal the space between the rotary shaft 31 and the balancer cover 81 in the axial direction. ..
  • the seal portion 82 axially seals between the rotary shaft 31 and the balancer cover 81, the lubricating oil J contained in the case 34 is prevented from entering the balancer cover 81. Can be suppressed.
  • the eccentric rotation of the balancer 91 causes the lubricating oil J to rotate when the rotating shaft 31 rotates. It can be suppressed.
  • the rotational resistance that acts on the balancer 91 when the rotary shaft 31 rotates can be reduced.
  • the compression performance can be improved.
  • the thrust sliding portion 90 and the seal portion 82 may be separated from each other when the rotary shaft 31 is displaced upward due to the vibration accompanying the eccentric rotation.
  • the gas refrigerant discharged into the balancer cover 81 through the auxiliary bearing discharge hole 73 may leak to the outside of the balancer cover 81 through the through hole 84.
  • the protruding portion 87 is configured to protrude downward more than the lower end opening edge of the through hole 84 of the balancer cover 81 by a predetermined distance which is the displacement amount of the rotating shaft 31. According to this configuration, when the gas refrigerant discharged into the balancer cover 81 leaks to the outside of the balancer cover 81 through the through hole 84, it goes around the protrusion 87 and flows into the main flow path 95. Can be suppressed. As a result, it is possible to prevent the gas refrigerant from flowing into the supply passage 94 and preventing the lubricating oil J from reaching the sliding portion. That is, in the rotary compressor 2 of the present embodiment, the lubricating oil J can be effectively supplied to the sliding portion, and desired lubricating performance can be obtained.
  • the refrigeration cycle apparatus 1 of the present embodiment includes the rotary compressor 2 described above, it is possible to provide the refrigeration cycle apparatus 1 that can improve operation reliability and compression performance over a long period of time. ..
  • FIG. 4 is a partial cross-sectional view of the rotary compressor 200 according to the second embodiment.
  • the rotary compressor 200 of the present embodiment is described above in that a plurality of (for example, three) cylinders (the upper cylinder 201, the intermediate cylinder 202, and the lower cylinder 203) are arranged side by side in the axial direction. This is different from the first embodiment.
  • the upper cylinder 201 and the intermediate cylinder 202 are axially butted with the upper partition 210 interposed therebetween.
  • the intermediate cylinder 202 and the lower cylinder 203 are axially butted against each other with the lower partition 211 interposed therebetween.
  • the configurations of the cylinders 201 to 203 are similar to those of the above-described embodiment.
  • the upper cylinder 201, the lower cylinder 203, the main bearing 42, the auxiliary bearing 43, and the partition parts 210 and 211 constitute the compression mechanism part 212 of this embodiment.
  • the upper end opening of the upper cylinder 201 is closed by the main bearing 42.
  • the space defined by the upper cylinder 201, the main bearing 42, and the upper partition 210 forms an upper cylinder chamber 221.
  • the space defined by the intermediate cylinder 202 and the partitions 210 and 211 forms an intermediate cylinder chamber 222.
  • the lower end opening of the lower cylinder 203 is closed by the auxiliary bearing 43.
  • the space defined by the lower cylinder 203, the auxiliary bearing 43, and the lower partition portion 211 forms a lower cylinder chamber 223.
  • the rotary shaft 225 includes a base shaft portion 226 provided with the thrust sliding portion 90, and an auxiliary shaft portion 228 that is fixed to the base shaft portion 226 and forms a protrusion 227.
  • the base shaft portion 226 includes a plurality of eccentric portions 231 to 233 housed in the cylinder chambers 221 to 223, respectively. Specifically, an upper eccentric portion 231 is formed in a portion of the base shaft portion 226 located inside the upper cylinder chamber 221. An intermediate eccentric portion 232 is formed in a portion of the base shaft portion 226 located inside the intermediate cylinder chamber 222. A lower eccentric portion 233 is formed in a portion of the base shaft portion 226 located inside the lower cylinder chamber 223.
  • the eccentric parts 231 to 233 have the same shape and the same outer shape when viewed from the axial direction.
  • the eccentric portions 231 to 233 are eccentric by the same amount in the radial direction with respect to the axis O with a phase difference of 120° in the circumferential direction. That is, the eccentric directions of the eccentric portions 231 to 233 are set to be equidistant from each other in the circumferential direction.
  • a roller 53 is fitted in each of the eccentric parts 231 to 233.
  • the lower end surface of the base shaft portion 226 is a thrust sliding portion 90.
  • a base flow path 235 is formed in the base shaft portion 226.
  • the base channel 235 extends coaxially with the axis O.
  • the lower end portion of the base flow path 235 is open at the lower end surface (thrust sliding portion 90) of the base shaft portion 226.
  • the base channel 235 communicates with the sub channels 96 and 97, respectively. It should be noted that in the base shaft portion 226, a sub flow path may be provided at a position corresponding to each partition portion 210, 211.
  • the protruding portion 227 including the auxiliary shaft portion 228 is formed in a cylindrical shape extending coaxially with the axis O. That is, the inside of the protrusion 227 constitutes a protrusion passage 236 that penetrates the protrusion 227 in the axial direction.
  • the upper end of the protrusion 227 is fixed in the base channel 235 by press fitting or the like. That is, the protruding portion 227 is fixed to the base shaft portion 226 in a state of protruding below the thrust sliding portion 90 and communicating with the base passage 235 and the protruding portion passage 236.
  • the base channel 235 and the protruding channel 236 form the main channel 237 of the present embodiment.
  • the method of fixing the base shaft portion 226 of the protruding portion 227 may be a method other than press fitting.
  • the balancer cover 240 of the present embodiment includes a cover body 241 that covers the sub bearing 43 from below, and a thrust plate 242 attached to the cover body 241.
  • the inside of the balancer cover 240 communicates with the inside of the muffler 65 through a communication hole (not shown).
  • the cover body 241 is formed in a bottomed tubular shape.
  • the upper end portion of the cover body 241 is attached to the flange portion 72 of the sub bearing 43.
  • a housing hole 243 is formed at the bottom of the cover body 241.
  • the accommodation hole 243 axially penetrates the bottom portion of the cover body 241.
  • the lower end of the base shaft portion 226 is housed in the housing hole 243.
  • the thrust plate 242 is formed in a disk shape having a diameter larger than that of the accommodation hole 243 described above.
  • the thrust plate 242 closes the housing hole 243 from below in a state where the outer peripheral portion is fixed to the bottom portion of the cover body 241 by the screw 244.
  • a through hole 245 is formed in a portion of the rotary shaft 225 which overlaps with the main flow path 237 in the axial direction.
  • the inner diameter of the through hole 245 is smaller than the inner diameter of the accommodation hole 243 and larger than the outer diameter of the protrusion 227.
  • the protrusion 227 described above penetrates into the through hole 245. As a result, the lower end opening of the main flow path 95 communicates with the case 34 below the balancer cover 81 (the lower surface of the thrust plate 242).
  • the above-mentioned thrust sliding portion 90 axially abuts a portion (sealing portion 242a) located around the through hole 245 on the upper surface of the thrust plate 242.
  • a portion located around the through hole 245 on the upper surface of the thrust plate 242.
  • the radial gap S1 between the inner peripheral surface of the accommodation hole 243 and the outer peripheral surface of the base shaft portion 226 is the radial gap between the inner peripheral surface of the through hole 245 and the outer peripheral surface of the protruding portion 227. It is larger than the gap S2.
  • the gaps S1 and S2 do not have to be uniform in the entire circumferential direction due to dimensional variations and the like.
  • the gap S1 may be less than or equal to the gap S2.
  • FIG. 5 is a process diagram for explaining the assembling process.
  • the assembling process of the thrust plate 242 of this embodiment includes a positioning process and a fixing process.
  • the jig 250 is used to position the thrust plate 242 with respect to the protrusion 227.
  • the jig 250 is formed in a tubular shape that is arranged coaxially with the axis O.
  • the jig 250 has an operation section 251 located at the bottom and a plate holding section 252 located at the top.
  • the outer diameter of the operation portion 251 is larger than the inner diameter of the through hole 245.
  • the plate holding part 252 is connected to the upper part of the operation part 251.
  • the plate holding portion 252 is formed in a tapered shape whose outer diameter gradually decreases as it goes upward.
  • the minimum outer diameter of the plate holding portion 252 is smaller than the inner diameter of the through hole 245.
  • the inside of the jig 250 constitutes an insertion hole 253 into which the protrusion 227 can be inserted.
  • the jig 250 is not limited to a tubular shape as long as it has a plate holding portion that holds the inner peripheral surface of the through hole 245 and a housing portion that can house the protrusion 227.
  • the plate holding part 252 is inserted into the through hole 245 of the thrust plate 242. Then, the lower end opening edge of the through hole 245 is held by the outer peripheral surface of the plate holding portion 252.
  • the plate holding portion 252 preferably holds the thrust plate 242 in a state where it does not project upward from the through hole 245.
  • the jig 250 is arranged below the rotary shaft 225 (cover body 241) coaxially with the axis O, and the thrust plate 242 and the jig 250 are raised. Then, the thrust plate 242 approaches the cover body 241 while the protrusion 227 is inserted into the insertion hole 253 of the jig 250. The thrust plate 242 is raised until the thrust plate 242 hits the lower surface of the cover body 241. As a result, the size of the gap between the through hole 245 of the thrust plate 242 and the outer peripheral surface of the projecting portion 227 becomes substantially uniform in the circumferential direction, and the thrust plate 242 is positioned in the radial direction with respect to the projecting portion 227. .. The thrust plate 242 may be rotated in the circumferential direction with respect to the cover body 241 in order to align the fixed portions of the thrust plate 242 and the cover body 241.
  • the thrust plate 242 is fixed to the cover body 241 with the screw 244 (see FIG. 4). After that, by retracting the jig 250, the assembly process of the thrust plate 242 is completed.
  • the present embodiment has the following effects in addition to the same effects as the above-described first embodiment. That is, in the present embodiment, by forming the base shaft portion 226 and the protruding portion 227 (auxiliary shaft portion 228) separately, the rotation shaft is stepped as in the case where the base shaft portion and the protruding portion are integrally formed. It is not necessary to process it to the attached shape. Therefore, the highly accurate thrust sliding part 90 can be easily manufactured, and the rotary compressor 200 with high manufacturing efficiency and low cost can be provided.
  • the base shaft portion 226 and the protruding portion 227 as separate bodies, it is possible to select the optimum material and the like for each component. Therefore, the degree of freedom in design can be improved. By forming the base shaft portion 226 and the protruding portion 227 as separate bodies, the axial length of each component can be shortened, and each component can be formed with high accuracy and easily.
  • the radial gap S1 between the inner peripheral surface of the accommodation hole 243 and the outer peripheral surface of the base shaft portion 226 is equal to the radial gap between the inner peripheral surface of the through hole 245 and the outer peripheral surface of the protruding portion 227.
  • the structure is larger than the gap S2. According to this configuration, by increasing the gap S1, it becomes easier to store the lubricating oil J existing in the balancer cover 240 in the gap S1. As a result, the lubricating oil J easily intervenes between the outer peripheral surface of the base shaft portion 226 and the inner peripheral surface of the housing hole 243, and between the thrust sliding portion 90 and the seal portion 242a, and improves the lubricating performance. be able to.
  • the thrust plate 242 is attached to the protruding portion 227 by using the jig 250 having the plate holding portion 252 that holds the inner peripheral surface of the through hole 245 and the insertion hole 253 into which the protruding portion 227 is inserted. Positioning is adopted. According to this configuration, contact between the protrusion 227 and the thrust plate 242 can be suppressed, and thus friction during operation can be suppressed.
  • By increasing the gap S1 as described above it is easy to avoid contact between the base shaft portion 226 of the rotation shaft 225, which has a large rotation radius, and the cover body 241. This also makes it possible to suppress friction during operation. As a result, it is possible to provide a high-quality rotary compressor 200 that saves power and has excellent operational reliability over a long period of time.
  • the configuration having three cylinders has been described, but a configuration having a plurality of cylinders other than three may be used.
  • the configuration in which the rotary shaft 225 and the balancer cover 240 are separately formed has been described, but even if either one of the rotary shaft 225 and the balancer cover 240 is separately formed.
  • the configuration in which the thrust plate 242 is assembled with the rotary shaft 225 and the cover body 241 assembled has been described, but the configuration is not limited to this.
  • the cover body 241 may be assembled to the auxiliary bearing 43 in a state where the cover body 241 and the thrust plate 242 are assembled in advance.
  • the configuration in which the roller 53 and the blade 55 are separate bodies has been described, but the configuration is not limited to this.
  • a type in which a blade and a roller are integrated may be used.
  • desired lubrication performance can be obtained.
  • auxiliary shaft part 230... balancer cover, 231... upper eccentric part (eccentric part), 232... intermediate eccentric part (eccentric part), 233... lower eccentric part (eccentric part), 240... balancer cover, 241 ... cover body, 242... thrust plate, 242a... seal part, 243... accommodation hole, 245... through hole, 250... jig

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

実施形態の回転式圧縮機は、ケースと、回転軸と、圧縮機構部と、バランサと、バランサカバーと、を有する。バランサカバーのうち、回転軸と軸方向で対向する位置には、貫通孔が形成されている。回転軸は、スラスト摺動部と、突出部と、供給路と、を有する。スラスト摺動部は、バランサカバーの貫通孔の周囲に位置するシール部に回転軸の軸方向で当接する。突出部は、スラスト摺動部に対して内周側に位置し、貫通孔を通じて貫通孔の下端よりも下方に突出する。供給路は、突出部の下端面で開口するとともに、潤滑油を導く。

Description

回転式圧縮機、回転式圧縮機の製造方法及び冷凍サイクル装置
 本発明の実施形態は、回転式圧縮機、回転式圧縮機の製造方法及び冷凍サイクル装置に関する。
 本願は、2019年2月7日に日本に出願された特願2019-020870号について優先権を主張し、その内容をここに援用する。
 空気調和装置等の冷凍サイクル装置には、回転式圧縮機が利用されている。回転式圧縮機では、回転軸の偏心部が圧縮機構部で偏心回転することで、冷媒が圧縮される。
 この種の回転式圧縮機において、回転軸には、ケース内に貯留される潤滑油を回転軸と軸受との摺動部分に供給する供給路が形成されている。しかしながら、圧縮機構部で圧縮された冷媒が供給路内に進入すると、所望の潤滑性能を得られない可能性があった。
特開2018-165502号公報
 本発明が解決しようとする課題は、所望の潤滑性能を得ることができる回転式圧縮機、回転式圧縮機の製造方法及び冷凍サイクル装置を提供することである。
 実施形態の回転式圧縮機は、ケースと、回転軸と、圧縮機構部と、バランサと、バランサカバーと、を有する。ケースには、潤滑油が貯留される。回転軸は、ケース内に配置され、偏心部を有する。圧縮機構部は、シリンダ、主軸受及び副軸受を有する。シリンダは、偏心部が収容される。主軸受は、シリンダの上方で回転軸を回転可能に支持する。副軸受は、シリンダの下方で回転軸を回転可能に支持する。バランサカバーの回転軸と軸方向で対向する位置に貫通孔が形成されている。回転軸は、スラスト摺動部と、突出部と、供給路と、を有する。回転軸のスラスト摺動部は、バランサカバーの貫通孔の周囲に位置するシール部に軸方向で当接する。突出部は、スラスト摺動部の内周側に位置し、貫通孔を通じて貫通孔よりも下方に突出する。供給路は、突出部の下端面で開口し、潤滑油を導く。
第1の実施形態における回転式圧縮機の断面図を含む、冷凍サイクル装置の概略構成図。 図1のII-II線に相当する圧縮機構部の断面図。 図1の要部拡大図。 第2の実施形態における回転式圧縮機の部分断面図。 組付工程を説明するための工程図。
 以下、実施形態の回転式圧縮機、回転式圧縮機の製造方法及び冷凍サイクル装置を、図面を参照して説明する。
 (第1の実施形態)
 始めに、冷凍サイクル装置1について簡単に説明する。図1は、第1の実施形態における回転式圧縮機2の断面図を含む、冷凍サイクル装置1の概略構成図である。
 図1に示すように、本実施形態の冷凍サイクル装置1は、回転式圧縮機2と、回転式圧縮機2に接続された放熱器である凝縮器3と、凝縮器3に接続された膨張装置4と、膨張装置4と回転式圧縮機2との間に接続された吸熱器としての蒸発器5と、を備えている。
 回転式圧縮機2は、いわゆるロータリ式の圧縮機である。回転式圧縮機2は、内部に取り込まれる低圧の気体冷媒を圧縮して高温・高圧の気体冷媒とする。なお、回転式圧縮機2の具体的な構成については後述する。
 凝縮器3は、回転式圧縮機2から送り込まれる高温・高圧の気体冷媒から熱を放熱させ、高圧の液体冷媒にする。
 膨張装置4は、凝縮器3から送り込まれる高圧の液体冷媒の圧力を下げ、低温・低圧の液体冷媒にする。
 蒸発器5は、膨張装置4から送り込まれる低温・低圧の液体冷媒を気化させ、低温・低圧の液体冷媒を低圧の気体冷媒にする。そして、蒸発器5において、低圧の液体冷媒が気化する際に周囲から気化熱を奪い、周囲が冷却される。なお、蒸発器5を通過した低圧の気体冷媒は、上述した回転式圧縮機2内に取り込まれる。
 このように、本実施形態の冷凍サイクル装置1では、作動流体である冷媒が気体冷媒と液体冷媒とに相変化しながら循環する。なお、本実施形態の冷凍サイクル装置1において、冷媒はR410AやR32等のHFC系冷媒、R1234yfやR1234ze等のHFO系冷媒、CO等の自然冷媒等を用いることが可能である。
 次に、上述した回転式圧縮機2について説明する。
 本実施形態の回転式圧縮機2は、圧縮機本体11と、アキュムレータ12と、を備えている。
 アキュムレータ12は、いわゆる気液分離器である。アキュムレータ12は、上述した蒸発器5と圧縮機本体11との間に設けられている。アキュムレータ12は、吸い込みパイプ21を通して圧縮機本体11に接続されている。アキュムレータ12は、蒸発器5で気化された気体冷媒、及び蒸発器5で気化されなかった液体冷媒のうち、気体冷媒のみを圧縮機本体11に供給する。
 圧縮機本体11は、回転軸31と、電動機部32と、圧縮機構部33と、これら回転軸31、電動機部32及び圧縮機構部33を収納するケース34と、を備えている。本実施形態の圧縮機本体11は、回転軸31の軸方向を上下方向として配置されている。
 ケース34は筒状に形成されるとともに、軸方向の両端部が閉塞されている。ケース34内には、潤滑油Jが収容されている。潤滑油J内には、圧縮機構部33の一部が浸漬されている。
 回転軸31は、ケース34の軸線Oと同軸上に配置されている。なお、以下の説明では、軸線Oに沿う方向を単に軸方向といい、軸方向に直交する方向を径方向といい、軸線O周りの方向を周方向という。
 電動機部32は、ケース34内における軸方向の第1側に配置されている。圧縮機構部33は、ケース34内における軸方向の第2側に配置されている。以下の説明では、軸方向に沿う電動機部32側を上側、圧縮機構部33側を下側とする。
 電動機部32は、いわゆるインナーロータ型のDCブラシレスモータである。具体的に、電動機部32は、固定子35と、回転子36と、を備えている。
 固定子35は、ケース34の内壁面に焼嵌め等により固定されている。
 回転子36は、固定子35の内側に径方向に間隔をあけた状態で、回転軸31の上部に固定されている。
 回転子36の下面における内周部分には、カウンタボア37が形成されている。カウンタボア37は、回転子36の下面から上方に窪むとともに、回転子36の全周に亘って形成された環状の凹部である。回転子36の下面における外周部分には、バランサ39が設けられている。バランサ39は、軸方向から見た平面視で例えば円弧状に形成されている。バランサ39は、回転子36の下面において、周方向の一部に設けられている。
 圧縮機構部33は、回転軸31が貫通する筒状のシリンダ41と、シリンダ41の両端開口部を各別に閉塞するとともに、回転軸31を回転可能に支持する主軸受42及び副軸受43と、を備えている。シリンダ41、主軸受42、及び副軸受43により形成された空間は、シリンダ室46を構成している。
 上述した回転軸31のうち、シリンダ室46内に位置する部分には、軸線Oに対して径方向に偏心する偏心部51が形成されている。本実施形態において、偏心部51の偏心方向は、軸線Oを間に挟んでバランサ39と反対側に設定されている。
 偏心部51にはローラ53が外挿されている。ローラ53は、回転軸31の回転に伴い、外周面がシリンダ41の内周面に摺接しながら、軸線Oに対して偏心回転可能に構成されている。
 図2は、図1のII-II線に相当する圧縮機構部33の断面図である。
 図2に示すように、シリンダ41において、周方向の一部には、径方向の外側に向けて窪むブレード溝54が形成されている。ブレード溝54は、シリンダ41の軸方向(上下方向)の全体に亘って形成されている。ブレード溝54は、径方向の外側端部において、ケース34内に連通している。
 ブレード溝54内には、ブレード55が設けられている。ブレード55は、シリンダ41に対して径方向にスライド移動可能に構成されている。ブレード55は、付勢部材(不図示)によって径方向の内側に向けて付勢されている。ブレード55における径方向の内側端面は、シリンダ室46内においてローラ53の外周面に当接している。これにより、ブレード55は、ローラ53の偏心回転に伴いシリンダ室46内に進退する。
 シリンダ室46は、ローラ53及びブレード55によって吸込室46aと圧縮室46bとに分割されている。そして、圧縮機構部33では、ローラ53の回転動作及びブレード55の進退動作により、シリンダ室46内で圧縮動作が行われる。
 シリンダ41において、ローラ53の回転方向(図2中の矢印参照)に沿うブレード溝54の奥側(図2中、ブレード溝54の左側)に位置する部分には、シリンダ41を径方向に貫通する吸込孔56が形成されている。吸込孔56には、径方向の外側端部から上述した吸い込みパイプ21(図1参照)が接続される。一方、吸込孔56の径方向の内側端部は、シリンダ室46(吸込室46a)内に開口している。
 主軸受42は、シリンダ41の上端開口部を閉塞している。主軸受42は、回転軸31のうち、シリンダ41よりも上方に位置する部分を回転可能に支持している。具体的に、主軸受42は、回転軸31が挿通された筒部61と、筒部61の下端部から径方向の外側に向けて突設されたフランジ部62と、を備えている。
 筒部61の上端部は、上述したカウンタボア37内に収容されている。これにより、回転式圧縮機2(圧縮機本体11)の軸方向での小型化が図られている。
 フランジ部62の周方向の一部には、フランジ部62を軸方向に貫通する主軸受吐出孔64が形成されている。主軸受吐出孔64は、シリンダ室46(圧縮室46b)内に連通している。なお、フランジ部62には、吐出弁機構67が配設されている。吐出弁機構67は、シリンダ室46(圧縮室46b)内の圧力上昇に伴い主軸受吐出孔64を開放し、シリンダ室46外に冷媒を吐出する。
 主軸受42には、主軸受42を上方から覆うマフラ65が設けられている。マフラ65における径方向の中央部には、マフラ65の内外を連通する連通孔66が形成されている。上述した吐出孔64を通して吐出される高温・高圧の気体冷媒は、連通孔66を通してケース34内に吐出される。
 副軸受43は、シリンダ41の下端開口部を閉塞している。副軸受43は、回転軸31のうち、シリンダ41よりも下方に位置する部分を回転可能に支持している。具体的に、副軸受43は、回転軸31が挿通される筒部71と、筒部71の上端部から径方向の外側に向けて突設されたフランジ部72と、を備えている。
 フランジ部72の周方向の一部には、フランジ部72を軸方向に貫通する副軸受吐出孔73が形成されている。副軸受吐出孔73は、シリンダ室46(圧縮室46b)内に連通している。なお、フランジ部72には、吐出弁機構75が配設されている。吐出弁機構75は、シリンダ室46(圧縮室46b)内の圧力上昇に伴い副軸受吐出孔73を開放し、シリンダ室46外に冷媒を吐出する。
 副軸受43には、副軸受43を下方から覆うバランサカバー81が設けられている。バランサカバー81は、上方に開口する有底筒状に形成されている。バランサカバー81の底部において、径方向の中央部には、シール部82が形成されている。シール部82は、バランサカバー81の底部のうち、外周部分に対して上方に膨出して形成されている。但し、シール部82はバランサカバー81の底部から、膨出していなくともよい。シール部82における上面は、軸線Oに直交する平坦面に形成されている。シール部82における中央部(軸線O上に位置する部分)には、シール部82を軸方向に貫通する貫通孔84が形成されている。
 主軸受42、シリンダ41及び副軸受43には、マフラ65内とバランサカバー81内とを連通させる連絡孔85が形成されている。連絡孔85は、上述した吐出孔64,73に対して軸線Oを間に挟んで径方向で対向する位置において、主軸受42、シリンダ41及び副軸受43を軸方向で貫通している。
 図3は、図1の要部拡大図である。
 図3に示すように、本実施形態の回転軸31は、スラスト摺動部90と、スラスト摺動部90の内周側に位置して下方に突出した突出部87と、を有している。
 回転軸31は、上述した偏心部51と、主軸部88と、副軸部89と、をさらに有している。
 主軸部88は、上述した回転軸31において、偏心部51に対して上方に位置する部分である。主軸部88は、接続部51aを介して偏心部51の上方に連なっている。主軸部88は、主軸受42に支持されるとともに、回転子36が固定されている。
 一方、副軸部89は、回転軸31において、偏心部51に対して下方に位置する部分である。副軸部89は、接続部51bを介して偏心部51の下方に連なっている。副軸部89は、副軸受43に支持されている。本実施形態において、副軸部89の外径φDsは、主軸部88の外径φDmよりも小さくなっている。但し、副軸部89は、少なくとも副軸受43よりも下方に突出した部分が主軸部88よりも小径であればよい。すなわち、副軸部89のうち副軸受43内に位置する部分は、主軸部88と同等の外径であってもよい。
 バランサカバー81のシール部82は、回転軸31に作用する軸方向の荷重を受け止め、回転軸31のスラスト摺動部90を摺動可能に支持する。スラスト摺動部90及びシール部82が軸方向で当接することで、貫通孔84を通じたバランサカバー81の内外の連通が遮断されている。本実施形態のスラスト摺動部90は、副軸部89の下端面である。スラスト摺動部90は、軸方向に直交する平坦面とされている。スラスト摺動部90は、回転軸31や回転子36の自重や、固定子35と回転子36との間に発生する磁力等によってシール部82に押し付けられていることが好ましい。なお、本実施形態では、偏心部51、主軸受88及び副軸受89によってベース軸部を構成している。
 副軸部89のうち、副軸受43よりも下方に突出する部分には、バランサ91が取り付けられている。バランサ91は、例えば円板形状に形成されている。バランサ91の中心に対して偏心した位置には、バランサ91を軸方向に貫通する取付け孔92が形成されている。取付け孔92内には、回転軸31の副軸部89が圧入等により固定されている。この場合、バランサ91の中心は、軸線Oに対して偏心部51の偏心方向と逆方向(バランサ39と同方向)に偏心している。すなわち、バランサ91及び偏心部51は、周方向に180°の位相差をもって配置されている。なお、バランサ91の形状は、円板状に限られない。
 このように、本実施形態では、副軸部89にバランサ91が設けられているため、例えば回転子36の上面にバランサを設ける場合に比べて、バランサ91と軸受(本実施形態では、副軸受43)との距離を短縮できる。これにより、回転子36の撓み等を抑制することができる。
 ここで、圧縮機本体11では、回転軸31の回転に伴い、偏心部51と各バランサ39,91には遠心力が生じる。この場合、回転軸31の回転バランスを安定させるためには、以下の2式((1),(2))を満たすことが好ましい。
 具体的に、偏心部51に作用する遠心力をF0、バランサ91に作用する遠心力をF1、バランサ39に作用する遠心力をF2とする。この場合、各遠心力F0,F1,F2の合力が0になることが好ましい(次式(1)参照)。なお、各遠心力F0,F1,F2は、mrω(m:質量、r:軸線Oからの径方向の距離、ω:角速度)で算出することができる。
 F0-F1-F2=0…(1)
 遠心力F0の作用中心を基準点とし、基準点から遠心力F1の作用中心までの軸方向での距離をL1、基準点から遠心力F2の作用中心までの軸方向での距離をL2とする。この場合、遠心力F1,F2に起因して回転軸31に作用するモーメントの和が0になることが好ましい(次式(2)参照)。
 F1・L1-F2・L2=0…(2)
 本実施形態において、基準点から遠心力F1の作用中心までの軸方向での距離L1は、基準点から遠心力F2の作用中心までの軸方向での距離L2以上になっていることが好ましい(L1≧L2)。これにより、バランサ91の小型化や偏心量の軽減を図ることができる。その結果、特に軸線Oに対するバランサ91の径方向での突出量を抑えることができ、圧縮機本体11の径方向での小型化を図ることができる。
 突出部87は、スラスト摺動部90の内周部分から下方に突出している。突出部87は、貫通孔84を通じて貫通孔84の下端開口縁よりも下方に突出している。具体的に、本実施形態の突出部87は、バランサカバー81の最下点(シール部82の下面)よりも下方に突出している。回転軸31は、シリンダ室46の高さと、偏心部51及び偏心部51の上下に設けられる接続部51a,51bの軸方向長さの差により、圧縮機構部33に対して軸方向に所定距離だけ変位可能(上下方向のがた)である。そのため、本実施形態において、突出部87の貫通孔84の下端開口縁からの突出量は、回転軸31の変位量である所定距離よりも大きくなっている。すなわち、突出部87は、回転軸31が上下方向にがた分変位した場合であっても、常にバランサカバー81の貫通孔84の下端開口縁から下方に突出するように突出量が設定されている。
 回転軸31には、圧縮機構部33における各摺動部分(例えば、偏心部51とローラ53との間や、回転軸31と軸受42,43との間等)に潤滑油Jを供給するための供給路94が形成されている。供給路94は、軸線Oと同軸で延在するメイン流路95と、メイン流路95から径方向に延在するサブ流路96,97と、を有している。
 メイン流路95の下端部は、回転軸31(突出部87)の下端面で開口している。これにより、メイン流路95には、ケース34内の潤滑油Jが流入可能になっている。
 メイン流路95の上端部は、主軸部88の下端部で終端している。但し、メイン流路95の軸方向での長さは、少なくともシリンダ41に到達している構成であれば、適宜変更が可能である。例えば、メイン流路95は、回転軸31を軸方向に貫通していてもよい。メイン流路95の内周面には、回転軸31の回転に伴い、潤滑油Jの上昇を促すねじり板等を設けてもよい。
 第1サブ流路96は、回転軸31のうち主軸部88と偏心部51との接続部分(接続部51a)に形成されている。第1サブ流路96における径方向の内側端部は、上述したメイン流路95内に連通している。一方、第1サブ流路96における径方向の外側端部は、回転軸31の外周面上で径方向の外側に向けて開口している。
 第2サブ流路97は、副軸部89のうち副軸受43内に位置する部分に形成されている。第2サブ流路97における径方向の内側端部は、上述したメイン流路95内に連通している。一方、第2サブ流路97における径方向の外側端部は、回転軸31の外周面上で径方向の外側に向けて開口している。
 回転軸31(副軸部89)の外周面には、下側流通路99が形成されている。下側流通路99は、回転軸31の外周面に形成された螺旋状溝により形成されている。下側流通路99の下端部は、第2サブ流路97内に連通している。一方、下側流通路99の上端部は、副軸部89の上端部に位置している。下側流通路99は、回転軸31が回転したときに、下方から上方に向かって潤滑油Jを導く。なお、下側流通路99は、副軸部89の外周面と副軸受43(筒部71)の内周面との間に、潤滑油Jが供給可能であればよい。この場合、例えば筒部71の内周面に溝を形成してもよい。下側流通路99の形状やレイアウト等は、適宜変更が可能である。
 なお、主軸受42において、筒部61の内周面には、上側流通路(不図示)が形成されている。上側流通路は、螺旋状溝に形成されている。上側流通路の下端部は、第1サブ流路96内に連通している。一方、上側流通路の上端部は、ケース34内に連通している。上側流通路は、回転軸31が回転したときに、下方から上方に向かって潤滑油Jを導く。なお、上側流通路は、主軸部88の外周面に形成してもよい。
 次に、上述した回転式圧縮機2の作用について説明する。
 図1に示すように、電動機部32の固定子35に電力が供給されると、回転軸31が回転子36とともに軸線O周りに回転する。そして、回転軸31の回転に伴い、偏心部51及びローラ53がシリンダ室46内で偏心回転する。このとき、ローラ53がシリンダ41の内周面にそれぞれ摺接する。これにより、吸込みパイプ21を通してシリンダ室46内に気体冷媒が取り込まれるとともに、シリンダ室46内に取り込まれた気体冷媒が圧縮される。
 具体的には、シリンダ室46のうち、吸込室46a内に吸込孔56を通して気体冷媒が吸い込まれるとともに、圧縮室46bにて先に吸込孔56から吸い込まれた気体冷媒が圧縮される。圧縮された気体冷媒のうち、主軸受吐出孔64を通してマフラ65内に吐出された気体冷媒は、マフラ65の連通孔66を通してケース34内に吐出される。一方、圧縮された気体冷媒のうち、副軸受吐出孔73を通してバランサカバー81内に吐出された気体冷媒は、連絡孔85を通してマフラ65内に流入した後、マフラ65の連通孔66を通してケース34内に吐出される。なお、ケース34内に吐出された気体冷媒は、上述したように凝縮器3に送り込まれる。
 ところで、潤滑油Jには、ケース34内において気体冷媒の吐出圧力と同等の圧力が作用している。そのため、潤滑油Jは、メイン流路95内に流入するとともに、回転軸31の回転に伴い、メイン流路95内を上昇する。メイン流路95内を上昇する潤滑油Jは、回転軸31の回転に伴う遠心力によって、各サブ流路96,97に分配される。
 各サブ流路96,97に分配された潤滑油Jは、回転軸31の外周面上で排出され、各摺動部分に供給される。例えば、第1サブ流路96から排出された潤滑油Jは、回転軸31の回転に伴い上側流通路内を上昇して、主軸部88と主軸受42との間等に供給される。一方、第2サブ流路97から排出された潤滑油Jは、回転軸31の回転に伴い下側流通路99内を上昇して、副軸部89と副軸受43との間や、偏心部51とローラ53との間等に供給される。なお、各摺動部分に供給された潤滑油Jは、主軸部88と主軸受42との間や、シリンダ室46等を通して圧縮機構部33から排出される。
 ここで、本実施形態では、回転軸31のスラスト摺動部90とバランサカバー81のシール部82を当接させて、回転軸31とバランサカバー81との間を軸方向にシールする構成とした。
 この構成によれば、回転軸31とバランサカバー81との間がシール部82により軸方向にシールされているため、ケース34内に収容された潤滑油Jがバランサカバー81内に進入するのを抑制できる。バランサカバー81内への潤滑油Jの進入を抑制することで、副軸部89にバランサ91を設けた場合であっても、回転軸31の回転時においてバランサ91の偏心回転が潤滑油Jに阻害されるのを抑制できる。これにより、回転軸31の回転時にバランサ91に作用する回転抵抗を軽減できる。その結果、回転軸31を効率的に回転させることができ、圧縮性能を向上させることができる。
 ところで、回転式圧縮機2では、回転軸31が偏心回転に伴う振動等により、上方に変位した場合には、スラスト摺動部90とシール部82とが離間する場合がある。この場合には、副軸受吐出孔73を通してバランサカバー81内に吐出された気体冷媒が、貫通孔84を通じてバランサカバー81の外部に漏れ出る可能性がある。
 そこで、本実施形態では、突出部87がバランサカバー81の貫通孔84の下端開口縁よりも、回転軸31の変位量である所定距離よりも大きく下方に突出する構成とした。
 この構成によれば、バランサカバー81内に吐出された気体冷媒が、貫通孔84を通じてバランサカバー81の外部に漏れ出た場合に、突出部87を回り込んでメイン流路95内に流入するのを抑制できる。これにより、供給路94内に気体冷媒が流入して、摺動部分に潤滑油Jが行き渡らなくなるのを抑制できる。すなわち、本実施形態の回転式圧縮機2では、摺動部分に潤滑油Jを効果的に供給することができ、所望の潤滑性能を得ることができる。
 そして、本実施形態の冷凍サイクル装置1においては、上述した回転式圧縮機2を備えているため、長期に亘って動作信頼性及び圧縮性能の向上を図ることができる冷凍サイクル装置1を提供できる。
(第2の実施形態)
 図4は、第2の実施形態に係る回転式圧縮機200の部分断面図である。以下の説明では、上述した各実施形態と同様の構成については、同一の符号を付して説明を省略する。
 本実施形態の回転式圧縮機200は、複数(例えば、3つ)のシリンダ(上側シリンダ201、中間シリンダ202及び下側シリンダ203)が軸方向に並んで配設されている点で、上述した第1の実施形態と相違している。
 図4に示す回転式圧縮機200において、上側シリンダ201と中間シリンダ202とは、上側仕切部210を間に挟んで軸方向で突き合わされている。中間シリンダ202と下側シリンダ203とは、下側仕切部211を間に挟んで軸方向で突き合わされている。なお、各シリンダ201~203の構成は、上述した実施形態と同様である。上側シリンダ201、下側シリンダ203、主軸受42、副軸受43及び仕切部210,211は、本実施形態の圧縮機構部212を構成している。
 上側シリンダ201の上端開口部は、主軸受42によって閉塞されている。上側シリンダ201、主軸受42及び上側仕切部210によって画成された空間は、上側シリンダ室221を形成している。
 中間シリンダ202、仕切部210,211によって画成された空間は、中間シリンダ室222を形成している。
 下側シリンダ203の下端開口部は、副軸受43によって閉塞されている。下側シリンダ203、副軸受43及び下側仕切部211によって画成された空間は、下側シリンダ室223を形成している。
 回転軸225は、スラスト摺動部90が設けられたベース軸部226と、ベース軸部226に固定され、突出部227を構成する補助軸部228と、を備えている。
 ベース軸部226は、各シリンダ室221~223に収容される複数の偏心部231~233を備えている。具体的に、ベース軸部226のうち、上側シリンダ室221内に位置する部分には、上側偏心部231が形成されている。ベース軸部226のうち、中間シリンダ室222内に位置する部分には、中間偏心部232が形成されている。ベース軸部226のうち、下側シリンダ室223内に位置する部分には、下側偏心部233が形成されている。各偏心部231~233は、軸方向から見た外形が同形同大とされている。各偏心部231~233は、周方向に120°の位相差をもって、軸線Oに対して径方向に同一量ずつ偏心している。すなわち、各偏心部231~233の偏心方向は、周方向で互いに等配に設定されている。なお、各偏心部231~233には、それぞれローラ53が嵌合されている。ベース軸部226の下端面はスラスト摺動部90とされている。
 ベース軸部226には、ベース流路235が形成されている。ベース流路235は、軸線Oと同軸で延在している。ベース流路235の下端部は、ベース軸部226の下端面(スラスト摺動部90)で開口している。ベース流路235は、サブ流路96,97にそれぞれ連通している。なお、ベース軸部226において、各仕切部210,211に対応する位置にもサブ流路が設けられていてもよい。
 補助軸部228からなる突出部227は、軸線Oと同軸で延びる筒状に形成されている。すなわち、突出部227の内側は、突出部227を軸方向に貫通する突出部流路236を構成している。突出部227の上端部は、ベース流路235内に圧入等により固定されている。すなわち、突出部227は、スラスト摺動部90よりも下方に突出し、かつベース流路235及び突出部流路236が連通した状態で、ベース軸部226に固定されている。なお、ベース流路235及び突出部流路236によって、本実施形態のメイン流路237を構成している。突出部227のベース軸部226の固定方法は、圧入以外の方法であってもよい。
 本実施形態のバランサカバー240は、副軸受43を下方から覆うカバー本体241と、カバー本体241に取り付けられたスラストプレート242と、を備えている。なお、本実施形態においても、バランサカバー240内は、連絡孔(不図示)を通して、マフラ65内に連通している。
 カバー本体241は、有底筒状に形成されている。カバー本体241の上端部は、副軸受43のフランジ部72に取り付けられている。カバー本体241の底部には、収容孔243が形成されている。収容孔243は、カバー本体241の底部を軸方向に貫通している。収容孔243内には、ベース軸部226の下端部が収容されている。なお、図示の例において、スラスト摺動部90とカバー本体241の底部(下面)とは面一に配置されていることが好ましい。
 スラストプレート242は、上述した収容孔243よりも大径の円板状に形成されている。スラストプレート242は、外周部分がビス244によってカバー本体241の底部に固定された状態で、収容孔243を下方から閉塞している。スラストプレート242において、回転軸225のメイン流路237に軸方向から見て重なり合う部分には、貫通孔245が形成されている。貫通孔245の内径は、収容孔243の内径よりも小さく、突出部227の外径よりも大きい。貫通孔245内には、上述した突出部227が貫通している。これにより、メイン流路95の下端開口部は、バランサカバー81(スラストプレート242の下面)よりも下方においてケース34内に連通している。
 上述したスラスト摺動部90は、スラストプレート242の上面において、貫通孔245の周囲に位置する部分(シール部242a)に軸方向で当接している。これにより、バランサカバー81内とケース34内との間の連通が遮断されている。
 本実施形態において、収容孔243の内周面とベース軸部226の外周面との径方向での隙間S1は、貫通孔245の内周面と突出部227の外周面との径方向での隙間S2に比べて大きい。なお、隙間S1,S2は、寸法ばらつき等によって周方向の全体で一様でなくてもよい。隙間S1は、隙間S2以下であってもよい。
 次に、本実施形態の回転式圧縮機200の製造方法について説明する。以下の説明では、回転軸225やカバー本体241が組み付けられた状態で、スラストプレート242をカバー本体241に組み付ける組付工程について説明する。
 図5は、組付工程を説明するための工程図である。
 図5に示すように、本実施形態のスラストプレート242の組付工程は、位置決め工程と、固定工程と、を有している。
 位置決め工程では、治具250を用いて、突出部227に対してスラストプレート242を位置決めする。具体的に、治具250は、軸線Oと同軸で配置される筒状に形成されている。治具250は、下部に位置する操作部251と、上部に位置するプレート保持部252と、を有している。
 操作部251の外径は、貫通孔245の内径よりも大きくなっている。
 プレート保持部252は、操作部251の上方に連なっている。プレート保持部252は、上方に向かうに従い外径が漸次縮小するテーパ状に形成されている。プレート保持部252の最小外径は、貫通孔245の内径よりも小さくなっている。
 治具250の内側は、突出部227が挿入可能な挿入孔253を構成している。なお、治具250は、貫通孔245の内周面を保持するプレート保持部、及び突出部227が収容可能な収容部を有する構成であれば筒状に限られない。
 位置決め工程では、プレート保持部252をスラストプレート242の貫通孔245内に挿入する。すると、貫通孔245の下端開口縁が、プレート保持部252の外周面によって保持される。なお、プレート保持部252は、貫通孔245から上方に突出しない状態で、スラストプレート242を保持していることが好ましい。
 続いて、回転軸225(カバー本体241)の下方において、治具250を軸線Oと同軸に配置し、スラストプレート242及び治具250を上昇させる。すると、突出部227が治具250の挿入孔253内に挿入されながら、スラストプレート242がカバー本体241に接近する。スラストプレート242がカバー本体241の下面に突き当たるまで、スラストプレート242を上昇させる。これにより、スラストプレート242の貫通孔245と突出部227の外周面間の隙間の大きさが、周方向において略均一になり、スラストプレート242が、突出部227に対して径方向で位置決めされる。なお、スラストプレート242とカバー本体241との固定部分を位置合わせするために、スラストプレート242をカバー本体241に対して周方向に回転等させてもよい。
 次に、固定工程において、スラストプレート242をビス244(図4参照)によってカバー本体241に固定する。その後、治具250を退避させることで、スラストプレート242の組付工程が完了する。
 本実施形態では、上述した第1の実施形態と同様の作用効果を奏することに加え、以下の作用効果を奏する。
 すなわち、本実施形態では、ベース軸部226と突出部227(補助軸部228)とを別体で形成することで、ベース軸部及び突出部を一体で形成する場合のように回転軸を段付き形状に加工する必要がない。そのため、高精度なスラスト摺動部90を容易に製造することができ、製造効率が高く低コストな回転式圧縮機200を提供できる。ベース軸部226と突出部227とを別体で形成することで、各部品に最適な材料等を選択できる。そのため、設計自由度の向上を図ることができる。
 ベース軸部226及び突出部227を別体とすることで、各部品の軸長を短縮することができ、各部品を高精度、かつ容易に形成できる。
 本実施形態では、収容孔243の内周面とベース軸部226の外周面との径方向での隙間S1が、貫通孔245の内周面と突出部227の外周面との径方向での隙間S2に比べて大きい構成とした。
 この構成によれば、隙間S1を大きくすることで、バランサカバー240内に存在する潤滑油Jを隙間S1内に収容し易くなる。これにより、ベース軸部226の外周面と収容孔243の内周面との間や、スラスト摺動部90やシール部242aとの間に潤滑油Jが介在し易くなり、潤滑性能を向上させることができる。
 一方、隙間S2を小さくすることで、スラスト摺動部90とシール部242aとの接触面積(シール面積)を増加させ易くなる。これにより、シール性を向上させることができるとともに、スラスト摺動部90とシール部242aとの間に作用する面圧を軽減できる。
 そのため、省電力で長期に亘って動作信頼性に優れた高品質な回転式圧縮機200を提供できる。回転軸225の位置が上方に変位した際に、バランサカバー240内に吐出された気体冷媒が、貫通孔245を通じてバランサカバー240の外部に漏れる量を抑制することができる。
 本実施形態では、貫通孔245の内周面を保持するプレート保持部252、及び突出部227が挿入される挿入孔253を有する治具250を用いて、スラストプレート242を突出部227に対して位置決めする構成とした。
 この構成によれば、突出部227とスラストプレート242との接触を抑制できるので、動作時における摩擦を抑制できる。
 上述したように隙間S1を大きくすることで、回転軸225のうち回転半径の大きいベース軸部226とカバー本体241との接触を回避し易くなる。これによっても動作時における摩擦を抑制できる。
 その結果、省電力で長期に亘って動作信頼性に優れた高品質な回転式圧縮機200を提供できる。
 なお、第2の実施形態では、シリンダを3つ有する構成について説明したが、シリンダを3つ以外の複数有する構成であってもよい。
 第2の実施形態では、回転軸225及びバランサカバー240がそれぞれ別体で形成された構成について説明したが、回転軸225及びバランサカバー240のうち、何れか一方が別体で形成されていてもよい。
 第2の実施形態では、回転軸225及びカバー本体241が組み付けられた状態でスラストプレート242を組み付ける構成について説明したが、この構成のみに限られない。例えば、カバー本体241とスラストプレート242とを事前に組み付けた状態で、カバー本体241を副軸受43に組み付けてもよい。
 上述した実施形態では、ローラ53とブレード55とが別体である構成について説明したが、この構成のみに限られない。例えば、例えば、ブレードとローラとが一体となったタイプであってもよい。
 以上説明した少なくともひとつの実施形態によれば、所望の潤滑性能を得ることができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1…冷凍サイクル装置、2…回転式圧縮機、3…凝縮器、4…膨張装置、5…蒸発器、33…圧縮機構部、31…回転軸、33…圧縮機構部、34…ケース、41…シリンダ、42…主軸受、43…副軸受、51…偏心部、81…バランサカバー、82…シール部、84…貫通孔、87…突出部、90…スラスト摺動部、91…バランサ、94…供給路、200…回転式圧縮機、201…上側シリンダ(シリンダ)、202…中間シリンダ(シリンダ)、203…下側シリンダ(シリンダ)、225…回転軸、226…ベース軸部、227…突出部、228…補助軸部、230…バランサカバー、231…上側偏心部(偏心部)、232…中間偏心部(偏心部)、233…下側偏心部(偏心部)、240…バランサカバー、241…カバー本体、242…スラストプレート、242a…シール部、243…収容孔、245…貫通孔、250…治具

Claims (6)

  1.  潤滑油が貯留されるケースと、
     前記ケース内に配置され、偏心部を有する回転軸と、
     前記偏心部が収容されたシリンダ、前記シリンダの上方で前記回転軸を回転可能に支持する主軸受、及び前記シリンダの下方で前記回転軸を回転可能に支持する副軸受を有する圧縮機構部と、
     前記副軸受よりも下方の位置において前記回転軸に取り付けられたバランサと、
     前記バランサを下方から覆うバランサカバーと、を備え、
     前記バランサカバーの前記回転軸と軸方向で対向する位置に貫通孔が形成され、
     前記回転軸は、前記バランサカバーの前記貫通孔の周囲に位置するシール部に軸方向で当接するスラスト摺動部と、
     前記スラスト摺動部の内周側に位置し、前記貫通孔を通じて前記貫通孔の下端よりも下方に突出する突出部と、
     前記突出部の下端面で開口し、潤滑油を導く供給路と、を備えている、
     回転式圧縮機。
  2.  請求項1に記載の回転式圧縮機において、
     前記回転軸は、前記圧縮機構部に対して軸方向に所定距離変位可能であり、
     前記突出部は前記貫通孔の下端から前記所定距離よりも長く突出する、
     回転式圧縮機。
  3.  請求項1又は請求項2に記載の回転式圧縮機において、
     前記回転軸は前記スラスト摺動部が設けられたベース軸部と、
     前記ベース軸部に固定され前記突出部を構成する補助軸部と、を備えている、
     回転式圧縮機。
  4.  請求項1から請求項3の何れか1項に記載の回転式圧縮機において、
     前記回転軸は前記スラスト摺動部が設けられたベース軸部を有し、
     前記バランサカバーは、
      前記副軸受に取り付けられるとともに、前記ベース軸部が収容される収容孔を有するカバー本体と、
      前記貫通孔が形成されるとともに、前記スラスト摺動部が当接するスラストプレートと、を備え、
     前記ベース軸部の外周面と前記収容孔の内周面との間における前記回転軸の径方向での隙間が、前記突出部の外周面と前記貫通孔の内周面との間における前記径方向の隙間に比べて広くなっている、
     回転式圧縮機。
  5.  請求項4に記載の回転式圧縮機の製造方法であって、
     前記副軸受に固定された前記カバー本体の前記収容孔内に前記ベース軸部が収容された状態で、前記スラストプレートを前記カバー本体に組み付ける組付工程を有し、
     前記組付工程は、
      前記スラストプレートを前記突出部に対して位置決めする位置決め工程と、
      位置決めされた前記スラストプレートを前記カバー本体に固定する固定工程と、を有している、
     回転式圧縮機の製造方法。
  6.  請求項1から請求項4の何れか1項に記載の回転式圧縮機と、
     前記回転式圧縮機に接続された放熱器と、
     前記放熱器に接続された膨張装置と、
     前記膨張装置と前記回転式圧縮機との間に接続された蒸発器と、を備えていることを特徴とする冷凍サイクル装置。
PCT/JP2019/041020 2019-02-07 2019-10-18 回転式圧縮機、回転式圧縮機の製造方法及び冷凍サイクル装置 WO2020161965A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980091316.7A CN113396285B (zh) 2019-02-07 2019-10-18 旋转式压缩机、旋转式压缩机的制造方法及制冷循环装置
JP2020570364A JP7113091B2 (ja) 2019-02-07 2019-10-18 回転式圧縮機、回転式圧縮機の製造方法及び冷凍サイクル装置
EP19914314.0A EP3922854A4 (en) 2019-02-07 2019-10-18 ROTARY COMPRESSOR, METHOD OF MANUFACTURE OF ROTARY COMPRESSOR AND REFRIGERATION CYCLE DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-020870 2019-02-07
JP2019020870 2019-02-07

Publications (1)

Publication Number Publication Date
WO2020161965A1 true WO2020161965A1 (ja) 2020-08-13

Family

ID=71947549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041020 WO2020161965A1 (ja) 2019-02-07 2019-10-18 回転式圧縮機、回転式圧縮機の製造方法及び冷凍サイクル装置

Country Status (4)

Country Link
EP (1) EP3922854A4 (ja)
JP (1) JP7113091B2 (ja)
CN (1) CN113396285B (ja)
WO (1) WO2020161965A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022080179A1 (ja) * 2020-10-14 2022-04-21
WO2022085443A1 (ja) * 2020-10-22 2022-04-28 東芝キヤリア株式会社 圧縮機、および冷凍サイクル装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171890A (ja) * 1985-01-28 1986-08-02 Sanyo Electric Co Ltd 密閉型圧縮機の油戻装置
JP2015197044A (ja) * 2014-03-31 2015-11-09 ダイキン工業株式会社 ロータリ圧縮機
JP2018165502A (ja) 2017-03-28 2018-10-25 東芝キヤリア株式会社 回転式圧縮機及び冷凍サイクル装置
JP2019020870A (ja) 2017-07-13 2019-02-07 日立オートモティブシステムズ株式会社 車両制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618491A (ja) * 1984-06-20 1986-01-16 Matsushita Electric Ind Co Ltd 回転式圧縮機の給油装置
TW411382B (en) * 1997-10-23 2000-11-11 Toshiba Corp Helical compressor and method of assembling the same
KR101718014B1 (ko) * 2010-02-26 2017-03-20 엘지전자 주식회사 오일 레벨 제어수단을 갖는 압축기
CN103782038B (zh) * 2012-07-09 2016-08-17 松下知识产权经营株式会社 回转式压缩机
JP2017002814A (ja) * 2015-06-10 2017-01-05 ダイキン工業株式会社 ロータリ型圧縮機
KR102483241B1 (ko) * 2016-04-26 2022-12-30 엘지전자 주식회사 스크롤 압축기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171890A (ja) * 1985-01-28 1986-08-02 Sanyo Electric Co Ltd 密閉型圧縮機の油戻装置
JP2015197044A (ja) * 2014-03-31 2015-11-09 ダイキン工業株式会社 ロータリ圧縮機
JP2018165502A (ja) 2017-03-28 2018-10-25 東芝キヤリア株式会社 回転式圧縮機及び冷凍サイクル装置
JP2019020870A (ja) 2017-07-13 2019-02-07 日立オートモティブシステムズ株式会社 車両制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3922854A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022080179A1 (ja) * 2020-10-14 2022-04-21
WO2022080179A1 (ja) * 2020-10-14 2022-04-21 東芝キヤリア株式会社 圧縮機、および冷凍サイクル装置
WO2022085443A1 (ja) * 2020-10-22 2022-04-28 東芝キヤリア株式会社 圧縮機、および冷凍サイクル装置
JPWO2022085443A1 (ja) * 2020-10-22 2022-04-28

Also Published As

Publication number Publication date
CN113396285B (zh) 2023-02-17
EP3922854A1 (en) 2021-12-15
JPWO2020161965A1 (ja) 2021-10-14
EP3922854A4 (en) 2022-11-02
JP7113091B2 (ja) 2022-08-04
CN113396285A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
KR101587286B1 (ko) 압축기
WO2007000854A1 (ja) 流体機械及び冷凍サイクル装置
JP6762253B2 (ja) 回転式圧縮機及び冷凍サイクル装置
JP5905005B2 (ja) 多気筒回転式圧縮機及び冷凍サイクル装置
WO2020161965A1 (ja) 回転式圧縮機、回転式圧縮機の製造方法及び冷凍サイクル装置
JP2017025762A (ja) 圧縮機
JP2004138059A (ja) 水平式二段階回転圧縮機
US6089834A (en) Helical compressor and method of assembling the same
CN108457858B (zh) 旋转式压缩机以及制冷循环装置
JP6057535B2 (ja) 冷媒圧縮機
JP7118177B2 (ja) スクロール圧縮機
JP2021076085A (ja) スクロール圧縮機
WO2021084607A1 (ja) スクロール圧縮機および冷凍サイクル装置
JP2017141802A (ja) 回転式圧縮機および冷凍サイクル装置
JP7433697B2 (ja) スクロール圧縮機及び当該スクロール圧縮機を使用した冷凍サイクル装置
JP7400080B2 (ja) 回転式圧縮機及び冷凍サイクル装置
WO2019207785A1 (ja) スクロール圧縮機
CN112639291A (zh) 旋转式压缩机以及冷冻循环装置
JP7191246B2 (ja) スクロール圧縮機および冷凍サイクル装置
JP7361585B2 (ja) スクロール圧縮機及びスクロール圧縮機の製造方法
KR102040626B1 (ko) 압축기 및 압축기의 제조방법
JP2004003525A (ja) スクロ−ル圧縮機
WO2023188422A1 (ja) 圧縮機およびアッパーシェル
JP6903228B2 (ja) スクロール圧縮機及び冷凍サイクル装置
CN109072916B (zh) 密闭型回转压缩机以及制冷循环装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914314

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020570364

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019914314

Country of ref document: EP

Effective date: 20210907